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Abstract

Cyber-Physical Systems (CPSs) are systems that integrate distributed computation and commu-
nication with physical processes. They consist of networked devices that process data between
sensors and actuators. They interact with their physical environment in an orchestrated, distrib-
uted and useful way. CPSs provide us with new possibilities that augment our world in ways that
were previously unreachable.

Researchers and policymakers predict that CPSs will play a key role in solving social and eco-
nomic challenges. These expectations attract the interest of industry and government, which
stimulates research and investments in CPS development, applications and related technologies.
Subsequently, new technologies and processes become available that take away technological
and financial obstacles of CPSs. For example, processors and sensors become ever smaller,
cheaper, more powerful and more efficient. But while financial and physical limitations disappear,
new ones come into play: the growing complexity of CPSs makes their realization increasingly
difficult. Human developers, designers and architects are limited in their ability to manage this
complexity.

The objective of this research is to improve the design and management of CPSs by making its
complexity more manageable. To do this, an Architecture Framework for CPSs is created. This
framework aims at supporting the process of designing, testing and maintaining during the life
cycle of the system. The framework consists of a selection of stakeholders and concerns and five
viewpoints: the scenario viewpoint, the logical viewpoint, the process viewpoint, the deployment
viewpoint and the development viewpoint. Application guidelines for using the framework are
presented as well.

To validate the framework, it is applied to three use cases to evaluate how it supports a selection
of eight characteristic concerns: effectiveness, modularity, consistency, reusability, extensibility,
testability, understandability and simplicity.
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1
Introduction

CPSs are complex spatial and temporal distributed systems that tightly
integrate physical and software components. Though the current and
possible applications of these systems are promising; the complexity
of their design and management is the bottleneck in their adoption.
The architectural approach to CPS design encompasses an Architecture
Framework (AF) to improve the process of CPSs design and manage-
ment.

As an introduction to the problem; this chapter describes the notion
of CPS and provides an analysis of its design difficulties. Then; based
on the analysis; it describes how this work contributes to reducing the
design difficulties and what the scope of this contribution is.

1.1
Cyber-Pysical Systems

CPSs integrate computation and communication (the cyber aspect) with
physical processes [1]. They observe and control themselves and their
environment in a distributed manner to achieve their goals. CPSs find
applications in all aspects of society.

A typical CPS is a heterogeneous network of computers equipped with
sensors; actuators and networking elements that intertwine physical
and software components. These components exhibit multiple and dis-
tinct behavioural modalities. Consequently; a CPS is a heterogeneous
system of systems. Proper operation and regulation of CPSs requires
careful co-design of its subsystems [2].

Intertwining of physical and software components is achieved through
the use of sensors; actuators and networking elements. Sensors trans-
late physical variables to the computer domain while actuators translate
computer signals to the physical domain. Networking elements trans-
fer data in the computer domain over physical media; they allow for
internal and external communication. Internal communication between
the CPS’s components allows distribution of information. External com-
munication between the CPS and other systems allows for retrieving
information and commands. These other systems include computer net-
works; like the internet; or humans; through user interfaces. The CPS
processes and analyses the obtained information to operate and regu-
late itself and its environment. Ideally; it performs better than a subset
of its components. The physical environment that a CPS intertwines
with is of critical importance. People or valueable objects might damage
when a CPS malfunctions. For instance; a crash of self-driving vehicles
in a smart-city; as visualized in Figure 1.1; has serious consequences for

1



1.1. Cyber-Pysical Systems 2

Figure 1.1 A smart-city is equipped with technologies that enable distributed
data acquisition and control of all its aspects. Traffic-sensors;
real-time energy-meters; litter detectors and presence detection
are examples of sensing technologies that enable analysis and
insights of the state of a city. These insights can then be used to
anticipate and improve the usage of resources; such as energy
and time.

the valuable resources that these vehicles contain. Because we want
to avoid scenarios like these; a CPS must be dependable: trustworthy
and reliable.

A CPS differentiates itself from systems with similar components in how
it puts them to use. To make this more explicit; and to help differentiate
CPSs from other systems; Torngren et al. [3] describes four descriptive
aspects of CPSs:

• Technical emphasis
• Cross-cutting aspects
• Level of automation
• Life cycle integration

These aspects occur in any CPS; like in the smart-city described above:

Technical emphasis refers to the relevance of the technical aspects
of the computation and communication components that a CPS con-
sists of. Examples of such aspects are communication capabilities and
optimization strategies. The potential of a CPS is in these technical
aspects. Consequently; technical emphasis is a necessary aspect of
CPSs. In a smart-city; communication and optimization strategies are
not trivial. Handling unreliable communication from millions of sensors
will require a specially developed infrastructure. Optimizing the re-
source usage of a complex system will require extensive modelling and
analysis. The development and implementation of such communication
and optimization techniques will require significant effort.

Cross-cutting aspects refer to the fact that CPS design involves a wide
variety of disciplines such as control engineering; embedded software;
sensors and actuators; networking and electronics. The involved en-
gineers need to cope with the cross-cutting concerns rooted in these
disciplines. Managing interdisciplinary dependencies between require-
ments is one of the main difficulties and main potentials of CPS [4, 5].
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A smart-city is a perfect example of a system in which cross-cutting
aspects are omnipresent. To optimize energy usage of a city; one must
consider physical; electrotechnical; societal and business aspects.

Level of Automation refers to the smartness or autonomy of the sys-
tem. In the vision of autonomic computing this is captured by the
self-star properties of systems [6]: self-optimization; self-healing; self-
configuration and self-protection.

Life cycle integration refers to the design approach that a system is not
designed for its operational phase but also for its production; testing;
maintenance and reusing phases.

In light of Torngren et al.’s four aspects; a smart-city is a CPS.

Further examples of CPSs include modern building automation [7];
smart agriculture [8]; Industry 4.0 [9] and the smart-grid [10]. CPSs
can also be smaller scale like autonomous vehicles [11] and robotic
prosthetics [12].

1.2
Difficulty of Designing and

Managing CPSs

New and emerging applications of CPSs attract great academic and
industrial interest due to their prospected economic; technical and
social potential [13]. The evolution of CPSs is further stimulated by an
increase in availability of hardware like sensors; actuators; computation
resources and communication facilities. The production of sensors; for
example; is growing exponentially: market forecasters expect a trillion
units per year market within this decade [14]. At the same time; the
availability of computational power is increasing as the cost; size and
energy efficiency of processors and embedded devices improve. These
developments will allow CPSs with more sensors; actuators and con-
nected devices. Designing; implementing; validating and maintaining
these systems will become increasingly difficult. Furthermore; the in-
creasing number of connected devices presents us with new challenges
like handling the resulting amounts of data; ensuring safety; security
and resilience; coordination among groups of devices.

Lee [15] and Wolf [5] argue that in the long term; patching and im-
proving the conventional computer abstractions (computer-centric ap-
proach) is not sufficient. Lee [15]; Derler, Lee and Vincentelli [16] and
Rajhans et al. [17] agree on the need for stronger modelling semantics
to adequately address the challenges of CPSs and cope with increasing
complexity. Although academia and industry put much effort in CPS de-
velopment research; like modelling and simulation techniques; formal
methods for design; analysis and validation; software frameworks and
middleware [2], this is not nearly a game played out.

1.3
A Framework to Design and

Manage CPSs

In an effort to contribute to a solution for the problem of CPSs design
and management difficulty; the remainder of this text concerns the
following research goal:

Develop a framework to improve the design and management
of CPSs.

To try to achieve that goal; the following research-questions will be
answered in the form of an Architecture Framework (AF):
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Q1 What is a typical CPS: what systems do we mean by CPS in this
context and what are the common characteristics and problems
of their design and management?

Q2 What aspects improve the design and management of
CPSs: which aspects contribute to improvement of the design
and management process of CPSs and how to quantify them?

Q3 What are suitable viewpoints to cover these aspects: how
to look at the system to handle these aspects in a relatively
independent way?

Q4 Does the resulting AF indeed improve CPSs: does applica-
tion of the AF to use cases show that CPSs indeed benefit from
the AF.

Today; companies and institutes use a mix of different systems-engineering
methodologies and tailored frameworks to manage the development of
CPSs. Standardized and specialized CPS management methodologies
are still lacking as the industrial and academic interest in and adoption
of these systems is relatively recent. Existing systems-engineering
methodologies and frameworks; such as the V-model; Model Driven
Development (MDD) and Agile methodologies; target towards more
general systems and do not take into account the specificities of CPSs.
Larger parties that involve in CPS design and management might modify
and tailor these existing methodologies and framework or construct
new ones but often keep the result in-house and proprietary.

In this report; we advocate an architectural approach to cyber-physical
system design: a framework for managing CPSs throughout their life
cycle targeted towards those that prefer to use a standardized method-
ology without having to fully tailor a methodology specifically to their
needs. It encompasses an architecture based framework for creat-
ing and managing CPSs that provides guidelines for setting up a work
product that motivates; documents; tests and creates CPSs: an Archi-
tecture Description (AD). Consequently; this document is an AF that
aims at creating versatile ADs for CPSs. This AF encourages a way or
creating and managing the AD of a CPS targeted towards individuals
and small teams. It provides guidelines for using the resulting AD to
reduce the complexity of creation and management during the CPSs’
life cycle. The guidelines advocated in this document; including the
tools used; are not binding; yet they serve as Proof of Concepts (PoCs)
and starting point.

The central idea is that the AF addresses and simplifies problems that
arise from CPSs’ common characteristics. For example; CPSs involve
communication and interaction with physical processes. These aspects
bring forth problems that only partially concern the specific method
of communication or the type of process. An effective AF addresses
common issues while allowing specialized solutions to specific issues.

The inherent complexity and multi-disciplinary nature of a CPS makes it
difficult to describe and analyse it as a whole. By describing the design
problem from distinct perspectives; the AF simplifies problem descrip-
tion and analysis. The AF suggests five fundamental perspectives or
viewpoints that are common to CPSs. These viewpoints constitute views
that describe actual systems in an AD.

Architecture models are the components of a view. These models follow
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rules that an AF specifies or points out. An important goal of the AF is
to impose model kinds that serve not only as building block for views;
but as building blocks for the actual CPS too. This means that views will
overlap with the actual system; up to the ideal situation in which an AD
serves as system and vice versa.

1.4
Scope of the Framework

The development of this AF came forth out of a need for a structured
way to work on:

Research projects that involve systems that have a cyber-physical
character and in which structured architecture and informa-
tion management is valued.

Such projects are about the development of new technologies and
working principles that are tested using prototypes and elaborated in
development and pre-market devices. The AF aims at improving these
research-centric CPSs by providing a structured way of working; in the
form of an AF; that guides the CPS design and development process;
making the inherent complexity of CPSs more manageable and thereby
allowing for a more efficient and effective development process that
eventually leads to better systems. Evolution qualities - such as test-
ability and extensibility - are assumed to be of essential importance to
those systems that are within the scope of the framework. Chapter 3 de-
scribes the specific system aspects - in terms of stakeholders’ concerns
- that the AF supports to achieve its goals.

This AF is of interest to those that involve in the development and
management of CPSs and that want to structure and standardize their
development strategy without developing a tailored framework from
scratch. The structure provided by an architectural approach typically
benefits the quality of the system, its documentation and its rationale.
In a project that is within the framework’s scope, these qualities are
valued.

1.5
Evaluating the Framework

The successfulness of the framework will be assessed by evaluating
how well it improves the design and management of CPSs. To do this,
the issue of ‘design and management’ will be represented by a number
of concerns, being:

Effectiveness The framework should support development and ana-
lysis of the goals and functionality of the system.

Modularity The framework should support modularity to decrease the
coupling and dependencies between subsystems and components.
Modularity is associated with increased flexibility and reduced
development effort [18, 19].

Consistency The framework should help in pointing out inconsisten-
cies in the system as soon as possible to be better able to recover
from them.

Reusability Well-designed components and subsystems must be re-
used to cope with increasing system complexity.

Extensibility The framework should provide measures to extend sys-
tems throughout their life cycle.

Testability The framework should provide means to make a system
testable.
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Understandability The framework should present the system in an
understandable way.

Simplicity The framework should help in creating systems that achieve
their purpose in a simple way. Simplicity is considered a prerequis-
ite of reliability [20].

These concerns will be explained in section 3.2. Then, the framework
will be applied to use cases that each involve a combination of these
concerns. The use cases are then reviewed to determine whether and
to what extend the framework tends to all concerns. Thus, the use
cases will serve as an evaluation of the framework.

1.6
Architecture

This work explores advantages and disadvantages of putting architec-
ture central to the creation of CPSs. The topic of architecture involves
closely related concepts that may lead to confusion when not used
precisely and consistently. To effectively discuss about the influence
of architecture, this work adheres to a standardized description of ar-
chitecture related terms and notions. The first section describes the
meaning of architecture according to this standard.

Every system has an architecture. An architecture is the conception
of a system that explains fundamental and unifying properties of the
system. These properties explain why the individual components of a
system form a whole and they describe the system’s form, function and
value.

Architecture is relevant to the system not only at the conception but
throughout the whole life cycle of a system. A life cycle consists of
phases that make up the lifespan of a system from its earliest concep-
tion until its end of life. A development process that takes into account
distinct phases of a system’s life is called a Systems Development Life
Cycle (SDLC).

A wide range of life cycle models exists of which Thoben et al. [21] lists
7 in the context of CPSs. Of these, the ISO/IEC/IEEE 12207 standard
[22] - focussing on software - and the Product Life Cycle Management
for Internet of Things (IoT) [23] match the scope of this framework best.
From these models, five phases are distilled which make up the life
cycle model of a CPSs in this work (Fig. 1.2):

analysis

design

realizationmaintenance

reusing

Figure 1.2 The life cycle consists of system engineering phases that focus
on different aspects.
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Analysis is about the process of determining the goals of the system of
interest and what components the system needs to achieve these
goals. Determining the goals typically involves the specification of
requirements and expected behaviour which are the input to the
design of tests for the system. This process includes the analysis
of the feasibility of these components and adjusting the goals or
components accordingly.

Design comprises the detailed description of the working of the sys-
tems’ components. These components include the tests, specified
at a higher level in the previous phase. The result of this phase
consists of building plans of the components of the system and
the system itself.

Realization is the phase in which the building plans are used to create
the tangible components of the system that are realizations of
the logical models developed in the design phase. Realization and
execution of unit, feature and system tests should accompany the
creation of the system’s components. The result of this phase is a
set of realized components integrated into a realized system with
a corresponding test report.

Maintenance involves the use, preservation and repair of the system.
Typically in this phase, the system is used to achieve the pre-
defined goals. Tests find a use in this phase too: in checking the
correct working during operation and after modifications or re-
pairs. The output of this phase is a set of results that describe for
example whether the system achieved the intended goal; the ad-
vantages and disadvantages of using the system and noticeable
events and behaviour related to the system.

Reusing is the process of determining how the existing system, its
components and its intellectual property influence the system
and possible successors and correspondingly preparing the sys-
tem for its intended reuse. Reuse may signify a combination of
improving, adapting, archiving and deconstructing the system, its
components and its intellectual property. When reuse involves
significant improvements, adaptions or other modifications, it is
followed up by an analysis phase again.

These phases form a cyclic pattern that emphasizes the ever-developing
cyclic nature of most valuable and relevant systems. A specific system
might profit from a refined or different life cycle model. The practises
in this work that relate to one of the listed phases can be translated to
a different model.

All but the most trivial systems need a plan to be successful. Developing
and communicating such a plan quickly becomes impossible without
a tangible (including digitally) work product. This work product is the
Architecture Description (AD), attempting to express and convey the
system’s conception. Note that a work product is not limited to textual
or graphical documents. For example, it could also concern a graphical
model, physical machine or a combination of these. This is critical to al-
low for the ideal situation of the AD approximating the system (see 1.3).
A saying that explains intuitively the relation between architecture and
AD is: ‘The map is not the territory’ ([24]). We further describe ADs in
the next section.

An Architecture Framework (AF) is a work product that conveys prin-
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ciples and practices for the description of ADs in a specific application
domain. Another saying that explains the relation between architecture
description and architecture framework is: ‘The legend is not the map’
([24]). We describe AFs in section 1.6.1.

1.6.1 Architecture Description and Framework

The terms used conform to ISO/IEC/IEEE 42010 - Architecture Descrip-
tion [24], a standard developed by IEEE Work-Group 42 (WG42).

Architecture Description

An Architecture Description (AD) is a work-product that expresses an
architecture. The form of this work-product depends on the context
and may be whatever is helpful to the stakeholders. Stakeholders
are entities that have interests in a system. Concerns explain the
scope of these interests and describe their motivation. The system is
the thing under consideration of an AD that exists either in hardware,
software, logic or another form. It interacts with its environment which
may consist of physical entities, software components, humans etc.
An architecture captures a system’s concepts and properties in its
environment. Stakeholders use ADs to help them understand and use
the system of interest.

The ADs contains the following Architecture Descriptions (ADs):

Stakeholders are individuals or groups that have interest in a system
through their typical set of concerns.

Concerns are interests in the system that are relevant to one or more
stakeholders. These concerns include the purpose, feasibility,
evolution, risks and impact of a system. They structure how the
stakeholders define the success of a system.

Architecture Viewpoints are ways of looking at a system such that
they frame concerns posed by one or more stakeholders. All
stakeholders’ concerns have at least one framing viewpoint. The
viewpoint consists of a set of model kinds. Viewpoints structure
what aspects to show to treat one or more concerns.

Architecture Views are the result of looking at a system from specific
viewpoints, consisting of models. Views face the system from a
viewpoint such that it can be created, analysed or modified to
comply to the respective concerns.

Model-kinds describes the goal, construction, rules and usage of
models.

Architecture Models are initiations of model-kinds for a specific ar-
chitecture that makes up the architecture views. Models yield the
work product that describe the system and its architecture.

Architecture Rationale and Decisions list and explain key decisions
in the AD. Rationale helps in understanding the architects their
motivations behind these choices. Typical reasons to record a
decision and its rationale include: the decision has architectural
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Figure 1.3 The structure of an Architecture Description, adapted from the
IEEE 42010 standard.
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Figure 1.4 The structure of an Architecture Framework, adapted from the
IEEE 42010 standard.

significant impact; the decision affects key stakeholders; the reas-
oning behind a stakeholder is exceptional or counter-intuitive; the
decision has a high associated cost or risk.

Correspondence Rules are rules for architecture relations between
AD elements (any element of an AD). Architects or design tools can
check or enforce these rules to guarantee architecture consistency.
Correspondence rules can also indicate design constraints of a
system.

Correspondences are architecture specific instances of relations between
AD elements.

Figure 1.3 shows the conceptual model of the architecture description.

Architecture Framework

An Architecture Framework describes conventions for creating and
analyzing architecture descriptions. Its structure is comparable to
that of the AD as shown in Figure 1.3 except that it does not identify
a specific system nor express an architecture. As such, it does not
include the architecture specific instantiations: views, models and
correspondences. It also does not include design rationale.

Figure 1.4 shows the conceptual model of the architecture framework.

The 2010 revision of the standard expands on architecture rationale
and decisions. Figure 1.5 shows the structural meta-model of the Archi-
tecture Decisions (ADcs) and Architecture Rationales (ARs).
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Figure 1.5 Meta-model of Architecture Rationale and Decisions, adapted
from the IEEE 42010 standard.

1.6.2 Related Architecture Frameworks

WG42 collects examples of architecture frameworks. From this list, AFs
that relate to the scope of this work are selected. After scoring out
frameworks that target unrelated specific applications such as defense
and enterprise architecture, three AFs remain: IEEE P2413 âĂŞ Archi-
tecture Framework for the Internet of Things (AFIoT), KruchtenâĂŹs
4+1 view model and Customer Objectives, Application, Functional,
Conceptual, Realization (CAFCR). The 5C CPS AF [25] is another more
recent but relatively well-known architecture.

AFIoT The Architecture Framework for the Internet of Things (AFIoT)
is an AF developed by an IEEE standards working group that is
in a very early phase of development. No official architecture
documentation is released so there is no point in evaluating this
AF.

4+1 View Model [26] is a framework for software intensive systems,
shown in Figure 1.6. At the time of this framework’s conception,
the terminology was not standardized (see IEEE42010:2011), this
is why the term View Model was used instead of AF. While the ar-
chitecture framework targets software intensive systems, some of
its design principles are applicable to CPS development as we will
show in this paper. As its name suggests, the architectural model
consists of 5 views. The logical view describes the classes, inter-
faces and collaborations that the system uses to achieve its goal.
The process view describes the thread and process aspects such
as synchronization and concurrency. The development view de-
scribes the organization of the software system in its development
environment: libraries, components, executables. The deploy-
ment view describes how the software system maps to physical
hardware. The fifth view scenarios is redundant with the others
and connects the other views through use cases, scenarios and
requirements. It describes the use cases of the system as seen by
its end users, analysts and testers. These five architecture views
express the design of the AD from different perspectives. The use
cases in the scenarios view also help in validating the AD and act
as guiding examples of applying the AD.

CAFCR architecture framework [27] builds upon five views: customer
objectives, what does the customer want to achieve; application,
how does the customer realize its goals; functional, the what of
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Figure 1.7 Iteration in the CAFCR framework. Viewpoints constitute a what or
a how. The first two views are customer focussed, the latter three
product focussed with the rightmost two viewpoints constituting
a single how. The idea here is that a system’s how is conceptually
much more stable than the realization.

the product; conceptual and realization: the how of the product.
From C to R, the views drive their following, from R to C, each view
support their following. The how of the product is split in 2 views
to increase stability: concepts change sporadically, realizations
change often. Customer., Application, Functional, Conceptual,
Realization (CAFCR) is focussed on a customer’s world in a busi-
ness context where the term customer describes any stakeholder.
Figure 1.7 shows an iteration within the CAFCR set of viewpoints.

5C architecture [25] targets industrial CPSs and proposes a hierarchical
set of five levels. The first level being Smart Connection Level,
comprising sensors and actuators that form a sensor network of
plug-and-play devices. Then, the Data-to-Information Level that
involves analysis of data to assess component’s health, wear,
degradation and performance prediction. The Cyber Level com-
bines the data from the previous layer with simulation models
to discover anomalies and provide higher-level information. The
Cognition Level translates the information and data to a human-
interpretable format and allows collaborative diagnostics and
decision making. Finally, the Configuration Level processes the
information and control inputs to update the configuration of the
system to amount for variations, changes and disturbances. The
5C architecture describes a number of layers and concepts but
does not provide any tools that help in implementing an actual
CPS.

Hilliard, involved in systems and software engineering and IEEE-42010
in particular, published a treatise on the lessons from the unity of ar-
chitecting [28] in which he enumerates weak and strong aspects of
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architectural work products (frameworks, standards, methods, prac-
tices, life cycle models, systems).

A good architectural product is:

• Minimal: it assumes as little as possible, does one thing very well,
is open and agnostic to combination with other products.

• Precise: it is clear about its scope, uses strict terminology and
relations through an ontology (e.g. IEEE-42010 for AFs and ADs).

• Contextual: it takes all of its context, interests, stakeholders and
concerns throughout the life cycle into account.

• Separating Concerns: the product facilitates the practice of sys-
tem architecting by supporting separation of system concerns to
make the system comprehensible.

Kruchten’s 4+1 view model excels in its minimality, it provides support
for separation of concerns. It is focussed on software-intensive systems
and lacks context-awareness. The CAFCR framework excels in how it
takes context into account, from stakeholder to realization. It features
an interesting separation of concerns based on the stability of views.
The 5C architecture provides a very clear CPS specific separation of
concerns but does assume a industry-centric system context and lacks
a precise use of ontology to clarify the framework.

Kruchten’s 4+1 view model is elegant in its simplicity but not tailored
towards CPSs. Yet, its choice of views is conceptually very interesting
and might provide a starting point for a minimal AF for CPSs.

4+1 Viewpoints for CPSs

Kruchten’s 4+1 view model targets Software Intensive (SI) systems.
The previous revision of the ISO 42010 standard - IEEE1471-2000, tar-
geted more specifically to Software Intensive (SI) systems - defined
software intensive systems as Systems in which software contributes
essential influence to the design, construction, deployment and evolu-
tion of the system as a whole [29]. According to this definition, a CPS
has characteristics of a SI system. Software, however, is not the only
essential influence to the development of a CPS. A CPS is about how
both software, hardware and environment influence and balance each
other. Its software focus is the main reason why Kruchten’s 4+1 falls
short for CPSs.

• The logical view describes the classes, interfaces and collabora-
tions that the system uses to achieve its goals. In CPSs, distilling
the required classes, interfaces and collaborations from the high-
level goals of the system is non-trivial. Rather, the logical view
should map concerns and use cases to goals and decompose
these goals in lower-level goals and features, assisted by system
requirements.

• The process view assumes the existence of threads and processes
in an operating systems sense. A CPS is heterogeneous by defini-
tion and encompasses both the physical and the cyber world. The
4+1 view refers to processes in the software context of operating
systems whereas in a CPS context, processes would refer to their
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systems behavioural context, a unifying approach to both physical
and cyber processes.

• The development view describes the components of the system
used to assemble it. In typical software systems this involves
executables, libraries and components. In CPSs, cyber-nodes
host the software. Each cyber-node introduces specific software
components such as sensor, actuator and communication drivers,
middleware and application programs depending on the node
type. A development view that serves CPS design should allow the
designer to naturally specify the software structure for different
types.

• In the deployment view the 4+1 model describes the hardware
nodes at which the system runs. This view does not take the
cyber-physical context of CPSs into account to express the relation
between nodes, sensors, actuators, communication and physical
components. In a CPS AF, the deployment view focusses on the
structure (linking) of the system.

• The scenarios view describes the behaviour of the system as
seen by the end user and tests through a set of use cases. The
4+1 view model suggests the use of Unified Modeling Language
(UML) Use Case diagrams to denote this view. These diagrams
provide the user with the possibility to specify the actions that
occur between actors (parts of the system and possibly groups of
users). Cyber-physical systems involve in complex interactions
with the environment that a diagram with atomic interactions
might not capture well. Other forms of diagrams are required as
well. Examples are simulations and user stories.

The 4+1 view model specifies a usage flow: start with logical, then con-
struct development and process, then construct deployment. In CPSs,
the dependency between development and deployment is the other
way around: the goals and the functionality that the system provides in
cooperation with the physical world determines the deployment. The
deployment in turn determines the development components.

Kruchten’s 4+1 view model helped the development of SI systems but
is not perfect for CPS design.

This work proposes a framework for CPSs that borrows from Kruchten’s
4+1 view model its core separation of concerns, but tailored to CPSs in
their full context and cast into the IEEE-42010 ontology framework.

Chapter 3 starts with a specification of stakeholders and concerns.
Then, chapter 4 describe the framework’s viewpoints and chapter 5
discusses application guidelines. Chapter 6 shows application examples
for reference and validation.

1.6.3 Advantages of Standard Compliance

The AF that this document describes builds upon the foundations
provided by the ISO/IEC/IEEE 42010 Architecture Description standard
[24] that provides meta-models for ADs and AFs. Though the standard
originally targeted software intensive systems, it now treats general
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systems engineering as well. The definitions and terminology used
in this standard provide consensus and a starting point for this doc-
ument. The AF claims compliance to the IEEE 42010 standard and
aims at producing ADs that comply to the standard too. The standard
specifies the exact requirements of a standard-compliant AD and AF.
This includes the need to demonstrate whether the product satisfies
these specified requirement when it claims compliance. Note that the
requirements target contents, not form or organization. This is in-line
with the goal of our architectural approach, to provide a structured
architecture-centric way of working for CPSs that tightly integrates into
their life cycle. Consequently, this document must evaluate whether
the proposed AF satisfies the requirements. The requirements and their
evaluation are listed in appendix A.

By complying to the IEEE 42010 standard, the AF aims at the following
advantages:

• Its terminology and structure follow an accepted and standardized
consensus.

• Its users can apply their knowledge of and experience with other
IEEE 42010 compatible AFs and ADs.

• It can benefit from existing and future research, training and other
resources that targets IEEE 42010 AFs and ADs.

1.7
Using Architecture to Design

and Manage CPSs

The Architectural Approach to Cyber-Physical System Design is: using
the Architecture Framework (AF) to create an Architecture Description
(AD) for use during the life-cycle of the CPS.

Though the realization or translation of an AD to an actual system may
bring problems of its own, it is assumed that they are either acceptable
or trivially solvable: Any aspect of a system that poses non-acceptable
or non-trivially solvable problems should be subject of the AD in the
first place. If, for example, the realization of an AD is too costly then
the issue of cost should be part of the AD.

This work focusses on the difficulty associated with conceiving the
system and subsequently the system’s AD. The architectural approach
aims to helps in addressing difficulties throughout the life cycle of a
system. Benefits of the use of an architectural description include:

• It helps in specifying appropriate stakeholders, concerns and view-
points for both the design of the system and the intended applica-
tion of the system.

• It provides a systematic approach to multi-view design of systems.
Relations between views help in assessing the impact of changes
and the cause of problems.

• It provides a framework for simulation, synthesis and validation

• It serves as an information management framework, organizing
the most important aspect of design: making decisions.

Successful use of the AF results in CPSs that perform better and are
better manageable, in which the frameworks benefit outweigh the
overhead of using it. Unsuccessful use of the framework means that
the costs of its use do not outweigh its benefit, or worse, loss. Caution
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should be taken when selecting a methodology or framework: evaluate
it, test it in small, discuss the selection with fellow stakeholders and
reflect often. A framework is not recipe for success but rather a tool
that is powerful when used right.

The purpose of this report is two-fold: first, it analyzes the problem of
CPS complexity and proposes and evaluates a solution based on an
AF; second, it acts as a work product that governs this AF. Appendix A
recaps where the elements of the AF can be found in this document.

1.8
Structure of this report

Before we describe the AF we analyse the fundamental concepts of
CPSs in chapter 2. In this chapter, the notion of a general CPS will
be developed which will support the elements (Architecture Elements
(AEs)) of the architectural approach. The following chapters describe
the AEs of the framework and answer the research questions:

• Rationale of CPSs (chapter 2)
• Stakeholders and Concerns (chapter 3)
• Viewpoints (chapter 4, answers Q3)
• Guidelines for applying the AF (chapter 5)
• Use Cases, validation of the AF and application examples (chapter 6)

The rationale answers question Q1; stakeholders and concerns answers
question Q2; viewpoints, consistency and correspondences answer
question Q3. The use cases serve as application examples of the AFs
and as an evaluation to check whether the framework indeed helps in
managing the complexity of CPS development as to answer question Q4.
In chapter 7 and 8 we provide respectively the discussion and the
conclusion of this report.

This work contributes the following:

• Analysis of the foundational concepts of CPSs
• A new Architecture Framework (AF) for CPSs
• Best-practices for applying the AF
• Analysis of the AF throughout the CPS’s life cycle
• Validation of the AF by application to three use cases

1.9
Summary

This section discussed CPSs and its design and management difficulties.
It outlines an approach to manage these difficulties and explains the
scope of this approach and the intended evaluation method. Then, the
section discussed the concept of architecture and the work products
Architecture Description (AD) and Architecture Framework (AF) accord-
ing to the IEEE 42010 standard for Architecture Descriptions. Finally, it
explained how an ADs can possibly benefit the design and management
process and how this work serves as an AF for such ADs.



2
Rationale of A Framework for

Cyber-Physical Systems
‘An effective Architecture Framework (AF) addresses common issues
while allowing specialized solutions to specific issues.’ (section 1.3)

Determining the common issues that this framework needs to address,
requires a specification of a general CPS and the involved stakeholders.
This chapter reviews and connects a number of existing concepts that
constitute a base for CPSs. The base CPS is an abstraction that repres-
ents the overlap between systems such that ideally, any CPS would
extend this base CPS. A base CPS allows for statements about specific
systems without knowing their full details. This base CPS serves as
a premise for framework development. The base CPS is an abstract
model of a real CPS thus, by definition, there is discrepancy between
the simplified model and reality. This discrepancy might cause conflicts
that, to be resolved, require knowledge about the working and the
internals of the abstraction. In control theory for example, a controller
might stabilize a linear model of a plant while the realization of this
controller is not able to stabilize the real system. To resolve a conflict
like this, the engineer needs to know about the assumptions of linear
models, the implications of controller realization and uncertainties. So,
by example it can be seen that models and abstractions are no substitu-
tion for knowledge about their working and underlying principles. When
discrepancy between models, abstractions and reality affect a system,
the discrepancies might be said to leak through: a phenomenon dubbed
the Law of Leaky Abstractions [30]. This usefulness of abstractions and
models is in that they help in getting more done with less effort as long
as reality sufficiently complies to its abstraction. The abstraction that
this chapter presents is a model of CPSs that is helpful but no substitu-
tion for in-depth knowledge as discrepancies between the model and
actual CPSs will affect systems. In chapter 6 use cases and 7 discussion
we will respectively encounter and discuss the consequences of these
discrepancies.

Besides discussing the base CPS, this chapter provides supporting
rationale.

Characterizing for a CPS is the cyber world This is the ‘space’ containing
information about the system and allowing components to process and
communicate this information. A cyber world mirrors the physical
world, between these information flows. We discuss both the flow of
information from physical to cyber and vice versa, then we discuss the
groups of components of which a CPS consists. Finally, we discuss the

16
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inherent complexity and difficulties of this general notion of CPSs.

2.1
The Physical and the Cyber

World

A CPS integrates computation and communication with physical pro-
cesses. The physical components and environment of the system
constitute the physical world. The system retrieves information from
the physical world by combining sensor-readings with existing internal
and external information. It uses the obtained information to track rel-
evant aspects of the physical world through a model, by a simulation of
the world. This simulation resides in the space made up by networked
devices and memory: the cyber world [31].

Strictly speaking, the cyber world is part of the physical world too, for
the processors, memories and communication buses eventually are
physical devices. Being part of the physical world, other processes can
influence the computation and communication of a CPS. Yet, the CPSs’
cyber world is based upon computer abstractions that do not directly
take the influence of these physical processes into account. These ab-
stractions, called Model of Computations (MoCs), live at a higher level
than that of electrical physical circuits because lowering their level of
abstraction to such detail would impede modelling and analysis to an
unworkable extend. The CPS’ way to deal with the influence of phys-
ical processes on its computation and communication processes is to
model them on the relevant process’ level of abstraction. For example:
electrical noise on a communication line can be modelled at the level of
computer transactions as a stochastic process like a stochastic model
that either successfully transmits our corrupts a message (such as a
Binary Symmetric Channel (BSC)).

The cyber world is a model that mirrors the physical world. The concept
of a world model saw early applications in robotics in the eighties:
Kent and Albus [32] showed a world model that used sensor meas-
urements and information in the system to make a model that tracks
relevant aspects of the real world. The possibilities back then were
limited, but today, through the increased availability of computation
and communication, large-scale distributed world modelling becomes
practical. System architectures based on cyber world models find ap-
plication in industry and academics. An example of an architecture for
CPSs that applied the cyber world model is Lee, Bagheri and Kao’s 5C-
architecture for CPS manufacturing systems. This architecture bases
upon the concept of cyber-twins that model their physical counterparts.
These models are used to control, test, predict and understand the
corresponding physical devices. Lee, Bagheri and Kao’s architecture is
discussed and compared in section 7.

This principle of interconnecting the physical world and the cyber world
is illustrated in Figure 2.1. Note that the world model in the cyber world,
being a model, does not have to imitate the representation our all of
the detail of the physical world.

The increasing availability of computer devices, sensors and actuators
combined with size and power reductions increases the granularity and
distribution of the interface between the physical world and the cyber
world. The interface becomes ubiquitous and invisible, it seems to fade.
This is known as hybridization [33]. A CPS hybridizes the physical and
the cyber world: it forms an interface between the two. To design a
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Figure 2.1 A CPS maintains a simulation of relevant aspects of the world
through a world model constructed by combining sensor-readings
with other information.

CPS architecture is to design an architecture for the interconnections
between these worlds.

The cyber world is the total space of networked devices and memories
that make up the CPS. It contains information that the system uses to
achieve its design goals. The information in the cyber world can change
over time. Devices provide new information to the world like sensor up-
dates, failure states, goals and estimations. The cyber-world can span
multiple connected devices and information distributes among them. In-
formation does not necessarily have to be available to all devices in the
CPS at all time. Such distributed systems require communication and
coordination. Communication and coordination can significantly alter
the behaviour of a system and therefore require attention. Communic-
ation between devices enables the exchange of information although
not perfectly reliable. This is comparable to how a group of people in
the physical world has distributed knowledge and how communication
enables them to achieve goals that the members of the group can not
achieve individually [34]. In a CPS, individual devices work together to
achieve goals that they could not do individually.

After entering the cyber world through sensors and processors, the
CPS processes and combines the information to model the world. The
CPS uses the world model to help it in achieving its goals. These goals
often include influencing the physical world through actuators. The
system picks up these influences again through its sensors, closing the
cycle. While the concept of a cyber world may sound at first instant
relevant to only a small number of systems, it is actually common to
almost any thinkable system that interacts with and controls parts of
the world. To influence the world in a meaningful way, the system must
know how to do this. May it be pre-programmed, open-loop our through
an advanced control program, the system uses information about the
world to influence it. This information is, in the case of a CPS, available
in the memories of the networked devices known as the cyber world.

The model of a physical and cyber world found successful applications
in both architectures and systems. It is simple yet it elegantly models
general intelligent systems that tightly interact with physical processes.

2.2
Constructing the Cyber World

A CPS interacts between the physical and the cyber world. This section
focusses on how sensing physical processes helps to construct the
cyber world. The next section discusses the other way around: how the
cyber world actuates physical processes.
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Figure 2.2 A physical event of interest causes reactions that sensors meas-
ure. The system fuses and combines these measurements to
distil information about the particular physical event.

A CPS constructs its cyber world by distilling useful information from
physical processes. This information consists of data about physical
quantities and information about the world. Sensors take care of trans-
lating physical variables to computer-interpretable data. The CPS com-
bines this with other data and information such as present prior know-
ledge and models to deduct further information.

Sensors enable the CPS to obtain low-level information by measuring
physical variables like forces our temperatures. Though these physical
variables might not be interesting in themselves, the events that cause
them and their relations are. In general, low-level information produces
higher-level information through combination and deduction. Computer
vision, for example, uses two-dimensional matrices of intensity values
known as images in sequences called videos to obtain information
about the world at a certain time and place. In gesture recognition, we
use time-series of accelerometers, gyroscopes and magnetometers to
estimate intended gestures. Figure 2.2 shows how a high-level event
of interest (such as a robot moving an end-effector) causes reactions
(such as accelerations) that sensors measure. The CPS combines these
measurements with each other and with information that is already
available in the cyber space to deduct relevant information about their
causes. Note that the implied causality of unidirectional influence of
(sub-)systems in the physical part of the figure does not generally exist,
instead the influence is bidirectional and simultaneous as we will see in
section 2.5.

2.2.1 A hierarchy of information

Sensor and model information is combined to distil more useful inform-
ation. The resulting higher level information might be used again to
deduct conclusions. It is tempting to categorize the ‘level’ of informa-
tion in distinct groups and include this hierarchy in the base CPS.

Indeed, researchers proposed different hierarchies to to distinguish
discrete levels of information. A popular example is the Data, Informa-
tion, Knowledge, Wisdom (DIKW) hierarchy [35]. Rowley [35] found the
following common properties: data is symbols that represent observa-
tions; information derives from data and adds meaning to the perceived
data; knowledge is a mixture of information, experience, skills and val-
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Figure 2.3 The systems needs to translate high-level goals to lower-level
goals until the goals are so low-level that the system is able to
achieve them by trivial control of its actuators.

ues. Frick [36] criticizes the hierarchy over its inconsistency in defining
the different levels of the hierarchy.

The DIKW hierarchy suggests that there is a discrete number of levels;
but this classification is highly application dependent. Furthermore, for
some applications a different discrete classification our a continuous
hierarchy is better suited. Because of these problems and application
dependency, adopting the DIKW levelled hierarchy for the cyber world
is not useful to a general CPS.

Note that although a single adopted classification scheme lacks, a CPS
can adopt any scheme to its liking. Because such a hierarchy is very
application dependent, it does not belong to a base CPS.

2.3
Controlling the Physical

World

The goals of a CPS might require it to control our affect properties of the
physical world. These goals are often formulated at a high-level such
as "use the robotic end-effector to shake a user’s hand" our "ensure
that the load of the power-line network is optimally distributed". The
CPS cannot achieve these goals by trivial control of actuators. It needs
to combine high-level goals with information about the physical world.
This information the system has available in cyber space and helps to
decide how to control the actuators to achieve the system’s goal. This
approach is complementary to the way in which we modelled how a CPS
constructs a world model in the cyber space: the CPS uses the cyber
space world model to determine how it should control its actuators to
achieve a particular result. Figure 2.3 shows this principle in a similar
fashion as Figure 2.2. Again, note that the implied cause-effect relation
of physical sub-systems of the figure does not generally hold. Rather,
systems influence each other simultaneously.

In a typical robotic CPS, for example, a trajectory-planner translates the
system’s goal to end-point trajectories, then another module translates
these endpoint trajectories to actuator trajectories and actuator control
signals. To be able to control these different system levels, the respons-
ible modules need access to system information like the kinematic
configuration and interaction forces. This information is available in the
cyber world. Constructing the cyber world and controlling the physical
world are two interwoven processes.
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2.4
The Complexity of the

Physical World

We outlined a general model of how the CPS interacts with the physical
world. The process of constructing the cyber world and controlling the
physical world is difficult due to their complexity. We need to take into
account this complexity when designing an architecture framework.
Goldenfeld and Kadanoff [37] defined complex systems as systems
that cannot be fully explained by understanding their components. The
physical world is a complex system: understanding fundamental phys-
ics laws does not result in the full understanding of all aspects of the
world. A CPS is a complex system as well: looking at each component
individually does not result in fully understanding the system.

The CPS tries to extract useful information from the physical world.
Goldenfeld and Kadanoff noted three modes of investigation to extract
knowledge from a complex system: experiment, theory and computa-
tion. CPSs use all three modes to construct the world model.

Experiment Sensors instrument and actuators affect the physical
world to find clues about the actual state of relevant aspects
and the relation of the system with its (uncertain) environment.

Theory Theoretical models of relevant aspects of the world explain
relations between measurements and observations.

Computation Simulation and estimation are computational methods
that can help in understanding relevant aspects of the world.

These three modes make up the set of modes of investigation. In a
CPS these modes complement each other. Classical examples of how
combining experiment and theory help to investigate complex systems
are Kalman filtering and outlier detection. These methods have clear
applications in cyber-physical systems. Combining measurements and
simulation is useful for comparison and anomaly detection. Theory and
computation can help with validating each other. Choosing the right
level of description is important in each of the modes of investigation.
To be able to do this it must be clear what the actual goals are that the
system tries to achieve and what questions it needs to answer: what
are the system’s concerns?

2.5
Dynamical Models

Models are useful for designers and for the system. A model can
improve a designer’s understanding, analysis and validation of systems
while it can help a CPS with reasoning about measurements, goals and
approaches. Models are most powerful when they are able to reflect
complexity in system behaviour without becoming so complex that
utility degrades [38].

The physical world is inherently complex and to model its aspects that
are relevant to the CPS we need a systematic method. Willems [39]
outlines an elegant hierarchical approach to systems modelling based
on the three steps tearing, zooming and linking. The modeller tears
a black-box system apart to identify smaller sub-systems and model
them when appropriate. The modeller zooms onto each of these sub-
systems and recursively applies the tear-zoom-link sequence. Then,
the modeller links the subsystems together. This approach is visualized
in Figure 2.4.
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Tear Zoom Link

Figure 2.4 Tearing decomposes a model into sub-models, zooming is about
modelling these sub-models and linking involves modelling the
interconnections between these models.

Viewing the interaction of a system with its environment as an input/out-
put relation is not an appropriate method to model dynamic systems.
To show this we will look into models from a mathematical point of view.

A mathematical model is a pair (U,B) with U a set, the universum
with elements called outcomes and B ⊆ U called the behaviour. The
behaviour is the restricted set of outcomes that are possible. If the
universum follows from the context, the mathematical model can be
taken as B. A mathematical model is nothing more than a restriction of
outcomes.

Consider a point in a two-dimensional space on a circle with radius r. A
mathematical model for this constrained point’s position is given by the
universum U = R2 and behaviour B = {(x, y) ∈ U|x2 + y2 = r2}. The
represenation of B is given by the formula x2 + y2 = r2. The elements
of U for which the equation holds belong to the behaviour. This is a
behavioural equation representation of the mathematical model (U,B).
In general, a behavioural equation representation of a mathematical
model is denoted by (U,E, f1, f2) in which f1, f2 : U → E and E is
the equating space. In the point example f1 is x2 + y2, f2 is r2 and
E is R. It is also possible for mathematical models to be expressed
by behavioural inequalities our any other kind of description. Note
that it is the behaviour, not the description of behaviour, that is the
mathematical model.

A dynamic system is a mathematical model that relates time to out-
comes. It is a triple

Σ = (T,W,B) (2.1)

where T is a subset of R called the Time Axis. W is the set of outcomes
called the Signal Space. B is a subset of the universum, that is B ⊆WT

where WT is the set of all maps from T to W. Again, the behaviour
is central. It formalizes which trajectories w : T → W agree with the
model.

Some models need additional variables besides the manifest variables
that the model aims to describe. These latent our internal variables
can be included in an extended definition of a mathematical model: A
mathematical model with latent variables is a triple

(U,Ul,Bl) (2.2)
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with Ul the universum of latent variables and Bf ⊆ (U× Ul) the full be-
haviour. The manifest mathematical model is (U,B) with the manifest
behaviour (our behaviour) B := {(u ∈ U|∃l ∈ Ul) s.t.(u, l) ∈ Bf}.

Applying this notion to dynamic systems we obtain a definition compar-
able to (2.2). A dynamic system with latent variables is a 4-tuple

Σfull = (T,W,L,B) (2.3)

with L the set of latent variables and the full behaviour Bf ⊆ (W×L)T a
subset of the set of maps from time to the Cartesian product of the sets
of signal and latent variables. A special case of a dynamic system with
latent variables is a state-space model. This model relates the variables
of interest (manifest), input and output, through a set of hidden (latent)
variables, the state.

Systems with latent variables are essential in modelling physical sys-
tems. Although latent variables might be possible to eliminate, this
is not always helpful our possible. Latent variables can provide more
insight into the system, as is the case with state-space models.

2.6
Interconnecting Dynamical

Models

As described above, there are interactions going on between the phys-
ical and the cyber world. We have explained these interactions intuit-
ively by input-output and cause-effect. This kind of explanation kept a
central place in systems and control theory throughout the past century.
Although mankind has been able to solve many problems using this ap-
proach, it does not describe the true nature of the behaviour of complex
systems. Not signal transmission but variable sharing is the universal
foundation of complex system interconnection [39]. Explaining a math-
ematical model by inputs and outputs is possible when an input/output
partitioning exists. Finding such a partition is the approach taken in
bond-graphs models: components share effort and flow variables which
the modeller partitions into input and output such that the modeller
can simulate this variable sharing by input-output relations.

A CPS constructs a world model. To sufficiently model physical phenom-
ena, it has to take into account the variable sharing nature of these
phenomena. Thus, components that model interconnected systems
should support bidirectional communication when an input/output par-
titioning is not possible.

Let us describe the tear-zoom-link approach to interconnected systems
modelling as introduced above. The main components are modules
and terminals. A module is a model that specifies the behaviour of the
variables that live on the terminals. The behaviour relates the variables
on the terminals to each other. A terminal has a type such as electrical,
3D-mechanical our thermal.

The interconnection graph describes the connection between models
and terminals:

G = (V,E,L) (2.4)

G is a graph with leaves. V is the set of vertices that represent modules,
E = {{x, y}|x, y ∈ V } is the set of edges that represent connections
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between terminals and L = {x ∈ V } the set of leaves representing
open connections of terminals.

E may contain self-loops (e = ({x, x}, t)), representing that a module
has two connected terminals, which contribute 2 to the degree of the
vertex x. The degree of vertex equals the number of terminals that
a module has. Two terminals, of physical type, that are connected
(represented by an edge) must have the same type. This graph provides
us with a system of connected modules that specify their behaviour.

Connecting this system to other systems starts by defining the inter-
connection equations which follow naturally from the terminal type: in
electrical terminals Kirchhoff’s laws hold and in logical connections the
input must equal the output.

The interconnection equations together with the module equations give
rise to the behaviour of the connected system. We now specify the
manifest variables as a function of the terminal variables. The terminal
variables are thus considered latent. The module and interconnection
equations and the manifest variable assignment define again the full
behaviour of the system Bf .

Now that we connected the modules together we are ready to zoom in
on a module and decompose it, zoom out off the system to connect it
our be happy with the result.

2.7
Signal-flow Models

Variable sharing is the correct way to interconnect dynamical models.
The main reason why the input-output approach survives in engineering
and research is that it can describe certain classes of systems suffi-
ciently. These classes describe unilateral phenomena like transistors
and amplifiers. If the omitted physical details in the simplification are
not of significance to the problem, there is no problem in using such
a simplification. Some systems and phenomena are better described
by input/output models than by dynamical models. This is in line with
Goldenfeld and Kadanoff’s notice: choosing the right level of descrip-
tion is important. Like a biologist should not model the human body
at the level of atomic interactions, a computer engineer should not
model a computer at the level of electrical networks of transistors and
other electrical components. Systems that have a typical direction
of signal-flow are generally not modelled well by dynamical systems.
These systems are better modelled at a higher level of abstraction like
discrete events, synchronous dataflow our finite state machines.

Interconnecting systems with signal flow is a matter of connecting
inputs to outputs and vice versa. To allow for signal flow terminals in
the interconnection graph we, two terminals of opposite (input/output)
type need connection through an edge e ∈ E.

The cyber-world of a CPS consists of computing and communication
devices: devices that, at their core abstraction, have unilateral influ-
ence on each other. This might be one of the most important differences
between the physical and the cyber world. The physical world is typic-
ally modelled by interconnected dynamical system models whereas the
cyber world is modelled by interconnected signal-flow system models.
Despite this essential difference, sub-systems in the cyber world rely
heavily on analysis and simulation of physical models.
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Figure 2.5 The cyber world and the physical world interact through sensors
(s) and actuators (a). The cyber world might analyse and control
the physical world through models. These models are encapsu-
lated in the cyber world’s own MoC.

The common situation of mixing different MoCs, as illustrated in Fig-
ure 2.5 emphasizes the need for a way make these abstractions and
their connections explicit. Model of Computations (MoCs) play a central
role in this.

2.8
Interconnecting Different

Types of Models

We discussed the modelling and interconnection of dynamic systems
and showed that the interconnection and behaviour of dynamic systems
follow a set of rules. We showed that a different type of model, signal-
flow, yields a different set of rules. In a heterogeneous system, like a
CPS, we want to combine these different types of models. Be that as it
may, interconnecting different types of models is non-trivial.

Take dynamical systems and signal-flow systems. The typical way to
connect a signal flow output to an electrical circuit is to use a model
of a modulated voltage our current source. The target effort our flow
is set by computing the flow our effort. This is a design choice that
may not reflect the physical possibilities and impossibilities of this
interconnection. As soon as there occurs respectively a short-circuit our
disconnection, the interconnection would yield infinite flow our infinite
effort which is physically impossible. The designer has to take this
into account when interconnecting different types of systems. Another
example is connecting an electrical network to a signal flow input.
Measuring an effort our a flow is modelled by a sensor that reads
variables without affecting them. In practice, sensors do affect the
dynamics of the dynamical system. The designer has to take care this
effect is insignificant on the total system behaviour.

2.9
Models of Computation

The previous sections introduces two different types of models: dynam-
ical models and signal-flow models. The semantics of interconnection
and behaviour differ per type of model. MoCs provide a formal way of
describing these semantics. A MoC defines the interconnection and
behavioural semantics of models within the domain of the MoC [40]. In
the previous subsection we came across a continuous time dynamical
systems MoC and a signal-flow MoC. Typical MoCs used in engineer-
ing and research are finite state machines, petri nets, communicating
sequential processes.

Models of Computation generally describe the semantics of intercon-
nection and behaviour of computer processes. We suggest extending
this to include models of physical processes, such as continuous time
dynamical systems, as well. This gives us a unified framework for mod-
elling both physical and cyber processes. Being able to model physical
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processes in the same framework as computational processes is a great
benefit for CPSs as it allows for a natural way to combine the cyber
world and the physical world.

We call models in a specific MoC processes. The MoC provides intercon-
necting and behaviour rules for processes in its own domain. The MoC
does not, however, provide rules for combining models of different do-
mains. This makes interconnecting heterogeneous models a non-trivial
task (as we showed in section 2.8). Yet, heterogeneous interconnecting
is a core characteristic of CPSs and is of essential importance to model-
ling, simulating, synthesizing and validating them. Different methods
to solve this heterogeneous interconnection problem exist.

We list four types of methods:

• Frameworks that wrap a model with an adaption layer that unifies
the exposed MoC such as ForSyDe [41].

• Modelling environments that interconnect heterogeneous models
through domain-specific receivers and directors such as Kepler
[42] and Ptolemy II [43].

• Models that expose a common interface (MoC) and that are re-
sponsible for translation between their native MoC and the com-
monly exposed MoC such as Functional Mock-up Interface (FMI)
[44].

• Modelling languages that natively support different MoCs like
SystemC [45, 46].

The right method for a given situation is application dependent.

We claim that MoCs and processes are central to the design of hetero-
geneous systems like CPSs and that they should take a central role in an
architecture as a way to formalize models, behaviour and interaction.

2.10
Components of a CPS

We proposed the use of MoCs and processes as a formal way to model
the behaviour of CPS. This behaviour is realized by the system’s com-
ponents. We categorize these components in two categories: cyber
components and physical components. Cyber components are physical
components that form the cyber world: cyber-nodes, sensors, actuators,
communication media and external nodes:

Cyber-Nodes The general CPS that this paper concerns consists of a fi-
nite number of cyber-nodes. Cyber-nodes are devices that provide
computing resources, can communicate through communication
media and may have storage facilities.

Sensors and Actuators Cyber-nodes connect to sensor and actuator
devices that respectively sense and affect properties of the phys-
ical world. These devices form the interface between the physical
and the cyber world. The physical embodiment of the CPS is part
of the physical world as well, so the system might sense and affect
its own state as well. For example, the CPS may measure its own
temperature and acceleration. Sensor and actuator devices model
relevant relations between the CPS and the physical world. Peri-
pheral devices (e.g. I/O modules, webcams and HVAC systems)
that connect to cyber-nodes provide both sensors and actuators.
A motor-driver, for example, might actuate field-effect transistors
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and sense currents, temperatures and logical system states. The
architect is free to choose a suitable level of abstraction for the
output of sensors and input of actuators. Sensors and actuators
cannot communicate with other components but cyber-nodes by
definition. Configuration and data exchange between sensors and
actuators occur through cyber-nodes. A smart sensor that con-
nects to a communication medium, like a Wi-Fi connected climate
sensor, is a cyber-node with one our more sensors.

Communication Media Cyber-nodes can communicate through com-
munication media. Examples of media are serial buses, the air,
electrical connections, a protocol-stack. The level of abstraction
depends on the requirements of the application. A higher level of
abstraction means that the communication medium has greater
responsibility of managing the communication. The characterist-
ics of communication (determinacy, delay, bandwidth, . . . ) follow
from the chosen medium. The designer should choose a medium
that supports the systems concerns and requirements. This is gen-
erally achieved in an iterative way: the designer either chooses an
ideal (no delay, perfect transmissions, . . . ) our realistic existing
medium (EtherCAT, Wi-Fi, . . . ) and uses this medium to check,
through formal analysis, prototyping our simulation, whether the
system achieves its requirements. Depending on the outcome
of this check, the designer can adjust the medium (cheaper with
less bandwidth, more realistic by introducing delay, . . . ).

External Nodes External nodes can interact with cyber-nodes in the
CPS by joining a communication medium. External nodes do
not interact through sensors and actuators but directly via the
communication medium.

Physical components are components that form the relevant aspects
of the physical world and include components that either belong to the
system our to the environment like motors, robot links, a car, electrical
networks, pneumatic mechanisms, dynamic systems, objects, persons,
the universe. The native MoC of physical components is continuous
time dynamical systems although it might be useful to model these
components by MoCs with a higher level of abstraction. Figure 2.6
shows how a CPS can be expressed as a graph of cyber-nodes connec-
ted through communication media, sensors, actuators and external
communication. Physical components are connected to sensors and
actuators and to each other. White shapes visualize the vertices that
represent physical components and the overlap of two shapes visualizes
the edge that represents the connection of the physical components.

Let us show how graphs can describe the physical model of a CPS. A
graph is a pair

G = (V,E) (2.5)

with V a set of vertices and E = {{x, y}|(x, y) ∈ V } a set of unordered
pairs of elements in V . A graph that describes a CPS is a tuple

GCPS = (Vc, Vs, Va, Ve, Vm, Vp, Ec sa, Esa p, Ec, Ep) (2.6)

such that Vc, Vs, Va, Ve, Vm, Vp are vertices of respectively cyber-nodes,
sensors, actuators, external nodes, communication media and physical
elements.
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Figure 2.6 Cooperating robotic arms in a manufacturing environment. A
graph overlays the schematic drawing to show how a graph of
cyber-nodes, sensors and actuators can represent a CPS. Note
that the white shapes of the robot arm represent vertices Vp

whereas their overlap represents the edges Ep.

• Ec sa = {{x, y}|x ∈ Vc, y ∈ (Vs ∪ Va)} are edges that connect
cyber-nodes to sensors our actuators.

• Esa p = {{x, y}|x ∈ (Vs ∪ Va), y ∈∈ Vp} are edges that connect
actuators our sensors to physical components.

• Em ce = {{x, y}|x ∈ Vm, y ∈ (Vc ∪ Ve)} are edges that connect
communication media with nodes.

• Ep = {x, y ∈ Vp} are edges that connect physical components to
each other.

This graph represents the components of a CPS. From the definition
of edges, we can see that every path from a physical component to a
cyber-node contains at least one sensor our actuator. This corresponds
to Figures 2.2 and 2.3 in which sensors and actuators form the interface
between the physical and the cyber world.

Strictly speaking, cyber components are part of the physical world as
well: it is possible that the physical manifestation of a cyber component,
like a sensor, influences the behaviour of the physical components. In
that case, the designer should add a physical component that accounts
for the influence of the component. For example, a voltage sensor in an
electrical circuit does ideally not influence the behaviour of the system
effectively. However, when it does, the designer can model this effect
as an impedance parallel to the ideal sensor. This approach ensures
that the cyber and physical worlds remain separated and Figure 2.7
visualizes this principle.

An alternative categorization of components was proposed by Bhave
et al., consisting of: data stores, computation and I/O interfaces in
the CPS domain; energy storage, sources, dissipative components and
physical transducers in the physical domain; cyber-physical interface
components and cyber-physical interface connectors [47].

This method combines the system interconnection structure with that
of the interconnection of physical components. An advantage of this
approach is that it provides overview in smaller systems. A downside
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Figure 2.7 When a sensor our actuator has an effect on the physical compon-
ents of the system it should be modelled as a physical component
that represents this effect parallel to the CPS sensor our actuator
component.

Table 2.1 Comparison of Bhave et al.’s components and the components
presented in this section. Motivations of differences with respect
to Bhave et al. are given.

Bhave This Work Comments

Cyber

Data Store Cyber-/external-node Data storage, computation and computational transformations
are part of the cyber domain and therefore belong to
cyber-nodes and external nodes.

Computation „ „
I/O Interface „ „
Communication Communication Media The link between nodes is a concern of components, represen-

ted by communication media, the way of interacting is not a
component concern.

Physical

Energy Source Physical Component
Physical components represent systems with corresponding
behaviour. This behaviour can be specified in many ways of
which the energy based approach is one.

Energy Storage „ „
Energy Dissipative „ „
Physical Transducer „ „
Common variable Edges Ep The connection between physical components is represented

by edges between them. The behaviour of the connection is
not a component concern.

Common effort „ „
Measurement „ „

Cyber-Physical

CPI components Sensors / Actuators The interface between cyber and physical is represented by
sensors and actuators which might be accompanied by
physical components to account for their physical influence.

CPI connectors „ „

is that it enforces a specific set of physical components with corres-
ponding behaviour: an energy-based modelling domain. Also, this
approach dilutes the separation between structure and behaviour. The
set suggested earlier in this section does not enforce specific physical
components.

For comparison, elements of Bhave et al.’s approach are mapped to
this work’s components in Table 2.1.

Validating the usability of the proposed categorization and correspond-
ing denotation of components is important. The use cases will demon-
strate the proposed abstraction which is then evaluated in the discus-
sion.

2.11
Summary

To be able to propose an Architecture Framework (AF), the characteriz-
ing properties and elements of a CPS need to be known. In this chapter,
an analysis of general CPSs was conducted to distil these properties
and elements.

Two worlds were discussed, the physical world and the cyber world.
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The cyber world contains information about the physical world that the
CPS uses to achieve its designed goals. A CPS connects the two worlds
through sensors and actuators.

By definition, CPSs involve in interactions between the cyber world
and the physical world. The CPS investigates and interacts with the
complex physical world. Three modes of investigation were mentioned,
all relying on models. Models are an essential component of CPSs. They
are useful for testing, simulating, code generations, state estimation,
prediction and more. The rules and semantics of a model are described
by MoCs. As CPSs are heterogeneous, different MoCs need to intercon-
nect and this is non-trivial. Solving this problem is a job that academics
and industry now undertake and that results in possible methods that
enable interconnecting heterogeneous models.

A simple and somewhat academic example that exposes most of the
discussed properties is a CPS that optimally controls a physical subsys-
tem. The CPS needs sensors and actuators to investigate the physical
subsystem through experiment. For simplicity’s sake, we assume that
the system in this specific example is well-described by an Linear Time-
Invariant (LTI) dynamical system and that the sensors and actuators are
such that the system is observable and controllable. A linear-quadratic
regulator is a controller that optimally controls the system in the sense
of lowest cost. A weighted integral of quadratic error and effort de-
termines the cost. The optimal controller requires full state feedback
[48]. Although the full state is generally not available, a state observer
approaches the actual state of the system as the system’s model bet-
ter represents the real system, which is the case for many practical
systems looking at the omnipresence of state observers in real world
systems. The estimated state with the optimal feedback gain, calcu-
lated from the system model with the algebraic Ricatti equation, yield
the optimal controller: theory and computation. The controller states
the actuator outputs which in turn actuate the system. This forms a
closed loop. A realization of the controller typically (but not necessarily)
runs on a digital system and requires discretised models and a Discrete
Time (DT) MoC.

The following chapters construct the Architecture Elements (AEs) (sec-
tion 1.6.1) of the framework based on the presented rationale.



3
Stakeholders and Concerns

CPS development is difficult because of the great number of dependen-
cies that arise from the stakeholders and concerns through the system
life cycle. The AF provides a structured way of working with stakeholders
and concerns that helps to untangle and structure these dependencies.
The goal of a stakeholder-concern analysis is determining why the sys-
tem has the right to exist in its form in the first place. Its result is a
set of stakeholders and per stakeholder a set of their concerns. Stake-
holders have interest in a system because it addresses their concerns.
Figure 3.1 visualizes this.
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Figure 3.1 Interest in a system comes from stakeholders due to their con-
cerns being addressed by that system.

This chapter provides a set of domain stakeholders and domain con-
cerns, stakeholders and concerns that are common to the CPS domain.
When creating an AD, the user of the framework extends these sets
to incorporate application specific stakeholders and concerns. These
extra concerns typically boil down to those that involve functionality
and business as these are specific to the problem.

3.1
Domain Stakeholders

The AF provides a selection of stakeholders that involve in a typical CPS:
the domain stakeholders.

This selection bases on the ISO/IEC/IEEE 42010:2011(E) suggested set
of stakeholders for generic systems. The standard suggests users,
operators, acquirers, owners, suppliers, developers, builders and main-
tainers. From this set, three core stakeholder groups are selected that
are present in any CPS: those that design, those that construct and
those that use the system.

Architects, Designers and Developers , constituting the design-
ing group, determine requirements and translate them into actual
software and hardware components or blueprints thereof. They

31
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might work in teams and be responsible for whole or part of the
system. Their involvement concentrates around the design and
reuse phase of the CPS life cycle.

Builders and Maintainers , constituting the constructing group, con-
struct and maintain the system. They distinguish from architects,
designers and developers in that they are not responsible for
design decisions. They work with the system but distinguish from
end-users by the fact that they are more experienced and have
in-depth knowledge of relevant aspects of the system. They are
mainly involved in the manufacturing, assembling and mainten-
ance phase of the CPS life cycle.

End-users , constituting the using group, are the intended users of
the system. Their involvement is in the operational phases of
the life cycle. They care about whether the system is useful in
completing its goals.

These three groups are logical stakeholder groups and a physical user
might belong to more than one group. For example, if a person both
constructs and uses the system, they are member of the constructing
and the using group. The user of the AF remains free to add other, more
specific, groups to their application specific AD.

The question remains whether this selection of application unspecific
stakeholder groups is appropriate. The use cases will provide some
insight in whether this is the case.

3.2
Domain Concerns

Concerns describe the interests of stakeholders in a system. The AF
proposes concerns that represent fundamental interests of stakeholders
in a CPSs, the domain concerns, like modularity and simplicity. To this
set, the user of the AF adds application specific concerns that describe
the specific interests in the system under consideration. Section 3.3
explains this extensibility of concerns in more detail.

The domain concerns that the AF proposes are:

Effectiveness The effectiveness of the system refers to the extend
to which it achieves its goals. The architecture framework should
support the design and management of effective systems. It
should provide tools for the analysis, design and realization of
corresponding functionality. Effectiveness is important to the
architects, designers and developers during the analysis, design
and realization phase and important to the end-user to allow its
concerns to be addressed appropriately.

Modularity The key to complex systems design is modularity. Simple
components can bring forth complex behaviour when interconnec-
ted [37]. A limitation of humans is that they cannot comprehend
complex systems from all relevant viewpoints at once. Architects,
designers and developers should be able to develop complex sys-
tems in a modular way such that they can focus on a specific
aspect at a time. Builders and maintainers benefit from modular-
ity as this can make repairing and constructing the system easier.
In a software context, modularity can furthermore reduce code
duplication and promote code-reuse. Separation of the different
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aspects of a system is known as Separation of Concerns [49]. Fig-
ure 3.2 visualizes modularity in a general way: by specifying clear
interfaces, components can be optional and interchangeable.

Consistency A system and its architecture should be consistent such
that the relationships between different views and models are
valid [50]. Ensuring consistent relations promotes the early dis-
covery of potential integration problems. This is in the interest
of architects, designers and developers during development and
validation of the system. Builders and maintainers rely on the
consistency of views as well, when constructing a part of the
system.

Reusability The typical software engineering principle that promotes
reusability is Don’t repeat yourself (DRY). Reusability applies not
only to the life cycle of a system but also to other related systems.
Reusing components in different applications is beneficial for the
stakeholders concerned with development and construction: it
reduces development time and it promotes understandability and
reliability by throughout testing and documentation of high-quality
modules.

Extensibility The requirements of a CPS can adapt to changing needs
during its lifetime. To support the addition of functionality, a
system should be extensible. This is especially important when
end-users’ needs change. The implications of extensibility differ
per context. Figure 3.2 shows extensibility in an abstract context
of components. In a stakeholders-concerns context, extensibility
means the ability to freely add stakeholders and concerns. Sec-
tion 3.3 explains this kind of stakeholder-concern extensibility. In a
software context, extensibility means the use of buses and clearly
defined interfaces [51]. Extensibility in the context of specific
viewpoints is discussed in chapter 4.
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Figure 3.2 Abstract view of modularity and extensibility of three components.
Interfaces ensure compatibility between components such that
they can be modularly used and exchanged. A bus is a means to
connect multiple components through a standardized interface.
These principles hold for hardware, software and architecture.

Testability Concerns the validation of the operation of the system with
respect to the expected behaviour and its intended goals. Testing
can reduce the development risk and efficiency by early detection
of problems with the system. Tracing the source of an error is
easier when tests are automated and targeted towards specific
functionality, (automated) unit tests serve this purpose. Validating
the system and its features as a whole is complementary to these
unit tests and is best handled by feature or acceptance tests.
Testability of a system is of interest to all that design, develop and
manage one and is therefore an important domain concern.
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Table 3.1 Stakeholder-Concern traceability table
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Archi., Design.and Devel. X X X X X X X X

Builders and Maintainers X X X X X X
End-users X

Understandability Understandability refers to the degree to which a
system is understood by people with relevant background know-
ledge of the systems fundamental principles. By integrating the
architecture description in a system, it contributes to its own
documentation and explanation. The ultimate form of understand-
ability is a system that explains itself to anyone with appropriate
background knowledge. A nice example of how a system’s de-
scription follows its function is the bond-graph [52], assuming
fundamental background in bond-graphs. The visual structure of
the bond-graph model represents the physical form and function
of the system it describes and it integrates this into the actual sys-
tem model without introducing additional documents or models.
Understandability is of great importance to architects, designers
and developers and to a lesser extend to builders and maintainers.

Simplicity Keep it short and simple (KISS), is a well-known principle in
software engineering introduced by Edger Dijkstra. The designer
should try to keep an already complex system as simple as pos-
sible to avoid introducing unnecessary dependencies that limit
the design process.

Table 3.1 is the stakeholder-concern traceability table that shows which
stakeholders have interest in which concerns.

This selection of general application-unspecific concerns should frame
most of the CPS development issues. In chapter 6, use cases are
elaborated to demonstrate whether the AF indeed helps in addressing
these issues and correspondingly helps in managing the CPS design
and management complexity.

3.3
Using Stakeholders and

Concerns

This architecture framework specifies a starting point for stakeholders
and concerns. This starting point targets interests in the general life-
cycle of a CPS but not the application-specific interests. Both are of
importance but as the application is not specified in advance this frame-
work considers application unspecific concerns. The designer should
extend the starting point to suit the actual application stakeholders and
concerns. This means that the designer may regroup, change, add or
remove stakeholders as well as concerns and the relations between
stakeholders and concerns. Figure 3.3 visualizes this.

A formal way of describing the stakeholders and relations is a bipartite
graph. Such a graph has a mathematical representation:
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Figure 3.3 The framework stakeholders and concerns (green and yellow) are
the starting point for an application. The designer should add
application-specific stakeholders and concerns to this starting
point. This figure shows how the designer can add extra stake-
holders and concerns and change an existing concern.

GS&C = (VS , VC , ESV ) (3.1)

with VS and VC sets of vertices that respectively represent stakehold-
ers (listed in section 3.1) and concerns (listed in section 3.2) and
ESV = {(x, y)|x ∈ S, y ∈ C} a set of edges that are pairs that re-
late stakeholders to concerns (these edges correspond to the checks of
Table 3.1).

The user of the framework can use this graph to determine how con-
cerns and stakeholders relate to each other. Automated procedures can
read this graph to analyze relations between stakeholders, concerns
and other AEs which can provide the user of the framework with more
insight.

3.4
Summary

This section introduced stakeholders and concerns that are generally
involved in the design and management of CPSs. Stakeholders are
reduced to three groups: those that design, those that construct and
those that use the system. Eight stakeholders were described. Together,
these serve as the starting point and can be extended with stakeholders
and concerns that are appropriate to a specific system.



4
Viewpoints

In his 1982 note on the role of scientific thought, Dijkstra described
what he then called the separation of concerns. This idea started
from the notion that a good system must conform to a wide range of
requirements that yields a correspondingly complex design problem.
Dijkstra noted that, though the system must conform to all of them
simultaneously, studying all aspects and requirements simultaneously
is not an effective approach. Instead, he argued, studying a system from
a single specialized perspective at a time allows better understanding
and more effective analysis [53].

Viewpoints provide these perspectives that allow the designer to focus
on a part of the problem without entangling themselves in the full
problem. The downside of this approach is that viewpoints could diverge
and conflict. The AF provides architectural tools (correspondence rules)
and methodological tools (an iterative process and testing) to help the
framework’s user to avoid and resolve inconsistencies.

Furthermore, viewpoints provide documentation structure that guides
users in a focussed manner through an architecture. So, an AD decom-
poses the architecture of a system in views using viewpoints that each
explain a subset of the aspects of the system of interest.

The AF - described in this document - helps users in decomposing CPSs
from 5 fundamental viewpoints. Figure 4.1 shows the structure of the
proposed framework. The figure introduces the base 5 viewpoints and
viewpoint support.

The viewpoints are as follows:

Scenario Viewpoint concerns the expected interaction of the sys-
tem with its environment, based on the stakeholders’ concerns
that are involved in the design. The scenarios should capture
what stakeholders want of a system and relevant subsystems but
not how these goals are achieved. Scenarios are discussed in
section 4.1.

Logical Viewpoint decomposes the concerns and scenarios into a
hierarchy of objectives accompanied by qualities and metrics of
these objectives: goals and requirements. The hierarchy cov-
ers how the system’s goals are achieved through objectives and
requirements, and why, through corresponding decisions and
rationale. The logical viewpoint is subject of section 4.2.

Process Viewpoint consists of models that describe the behaviour of
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Figure 4.1 Structure of the viewpoints of the architecture framework. The
arrows describe the typical order of elaboration of viewpoints,
starting with the set (oval icon) of stakeholders and concerns. The
order forms a cycle: the development viewpoint closes a single
iteration and provides input to the next. Scenarios, simulations
and tests are evaluated and compared to the system’s concerns.
This provides input to a new cycle to improve the architecture of
the system. A database (stack icon) of decisions and rationale
contains the fundamental reasoning behind main choices of the
system.

the system - both cyber and physical - to realize the objectives
and requirements defined in the logical viewpoint. The process
viewpoint is discussed in section 4.3.

Deployment Viewpoint concerns the physical connections, or struc-
ture, of the system - both cyber and physical - to realize the
objectives and requirements of the logical viewpoint. Section 4.4
discusses the deployment viewpoint.

Development Viewpoint concerns the implementation of the cyber-
nodes of the system. This includes determining what the cyber-
nodes execute and what components they require, which sensors
and actuators need to be connected and what communication
links supported. The result consists of one or more models that
describe the blueprint of the different types of cyber-nodes. The
development viewpoint is discussed in section 4.5.

Figure 4.1 also shows AEs of the framework that support the previously
listed viewpoints. These elements are:

Stakeholders and Concerns As introduced in the previous chapter,
chapter 3, stakeholders and concerns describe who is interested
in a system and what their interests encompass.

Relations Correspondence and consistencies model the relations between
the elements of the architecture. They describe how views should
relate to each other. Correspondences and consistencies are in-
troduced with every viewpoint and an overview is presented in
section 4.6.
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Architecture Decisions and Rationale Architecture Decisions en-
compass choices that affect elements of the architecture, justified
by rationale. The relevance and importance of recording and or-
ganizing rationale and decisions has been stressed by architects
that are heavily involved in the evolution of architectures in engin-
eering [54, 55, 56]. These decisions might raise new architecture
concerns or dependent sub-decisions. Architecture decisions are
introduced in section 4.7.

Though the set of viewpoints bears naming resemblance to Kruchten’s
4+1 view model, the proposed framework is not a mere translation of
Kruchten’s. Rather, the high-level separation of concerns of the 4+1
framework was found applicable to CPSs too. The proposed framework
is designed from the ground up for CPSs and the viewpoints themselves
and their order vastly differ from the 4+1 view model. Section 7.4.2
expands on the differences from other frameworks.

In the Use Cases section, we apply the viewpoints to three cases and
analyse whether the chosen set of viewpoints indeed helps in managing
CPSs throughout the life cycle.

We will now discuss the viewpoints in more detail. Each viewpoint
includes:

• Stakeholders and Concerns
• Model Kinds

– Language/Notation
– Metamodel
– Operations on Model Kind
– Correspondence Rules

• Operations on Views

Viewpoint correspondence rules are provided in section 4.6, after the
introduction of the viewpoints. Examples and sources are provided
throughout the text.

4.1
Scenario Viewpoint

It all starts with knowing what you actually want and the scenarios
viewpoint is the appropriate way to find out. The scenarios view plays
in important role in the iterative development of a system. It provides
use cases and scenarios that describe and help discover the goals of
the system at the beginning of an iteration while serving as a means
of integration and testing at the end of an iteration. The usefulness of
scenarios is two-fold:

• Scenarios drive the discovery of architectural elements of the AD
of the CPS during the design phase.

• Scenarios provide documentation, example, illustration and tests
of the system under consideration. They provide a means of com-
munication and help the stakeholders to understand the system
in its environment.

The scenario viewpoint concerns the purpose and the intended oper-
ation of the system from the stakeholders’ perspective: the ‘visible’
interface between the system and its environment. Describing in what
way this operation is achieved is not a primary concern of this view-
point but that of the other viewpoints. At the end of a development
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iteration, however, the outcome of the other viewpoints is integrated in
the scenario models to assess and validate the system.

The designer can create the scenarios by careful evaluation of the
application-specific concerns. The architect can use the feedback from
the validation of the architecture using scenarios to revise and improve
the requirements. This is the basis for an iterative development process.

Scenarios can be designed using different kinds of models, depending
oon n the context of the system. A suitable model is able to express the
intended and unintended interaction of the system of interest with its
environment as to operationalize the stakeholders’ concerns. Subsec-
tion 4.1.2 elaborates on what makes a model kind suitable for scenario
specification.

This section introduces two examples of suitable models: SysML/UML-
2 use case and activity model kinds; multi-body dynamical systems
model kinds. But first, it explains the relevance of this viewpoint to a
CPS’ stakeholders in the context of their concerns.

4.1.1 Stakeholders and Concerns

The scenarios viewpoint is by design of interest to all stakeholders. It
helps in defining system requirements, documenting and testing. The
scenarios help validating the implementation of the architecture using
simulations or co-simulations with hardware in the loop.

Effectiveness The scenarios view frames the effectiveness concern
by connecting the concerns of the system to typical usages. These
scenarios help in analysing how the system can effectively fullfill
its purpose. The iterative development method that the scenarios
view supports helps the designer in focussing on the effectiveness
of the architecture without getting lost in the details of the other
views.

Consistency The designer can derive integration-tests from the scen-
arios that help in detecting inconsistencies in the design.

Extensibility Addition or alteration of system requirements directly
relates to the corresponding scenarios. The designer can see
the impact of changing or adding requirements by checking how
the relevant scenarios and use cases relate to other views. The
scenarios form a clear starting point for extending the system
architecture.

Testability The designer can use the scenarios for integration- and
acceptance-tests. These tests are also useable as regression-
tests to ensure the correct functioning of the whole system during
development.

4.1.2 Model Kinds

Different kinds of models are suitable to specify the scenarios of a
system. The suitability of model kinds for scenarios depends on the sys-
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tem of interest. In Software Intensive systems, for example, sequence
diagrams model expected scenarios. For CPSs, scenarios need to take
into account the interactions between the physical environment and
the system too.

User stories and multi-body dynamical systems are typical examples
of suitable types of models. The following text introduces two groups of
model kinds to model scenarios: SysML/UML-2 based activity and use
case models and multi-body dynamical system models.

Selecting the right model(s) for the job is a task for the user of the
framework, guided by their experience and insight. Often, this is a
matter of what models and tools the users of the framework feel com-
fortable with; the availability of knowledge and tools; successful use of
models in other projects. The selection of the right model remains a,
possibly very difficult, task for the user of the framework.

The set of model kinds that can be used in virtually infinite, making
it impossible to discuss each and every one. Instead, the framework
allows the use of additional model kinds under the condition that their
description is included or referred to in the AD in accordance with IEEE
42010:2011 B.2.6. This allows users of the AD to use, analyse and
interpret these additional model kinds like those mentioned in this AF.
In general, the model must be able to express the intended interaction
between system and environment with respect to the stakeholder’s
concerns. For example, if a concern is that the systems succeeds in
a certain sequential interaction between the system and an end-user,
a suitable model kind might be a SysML/UML2 activity diagram. If
the concern is that the system must undergo a dynamical physical
interaction with itself and its environment, a multi-body dynamical
system might describe the scenario well.

4.1.3 Model Kind: SysML/UML2 use case and activ-

ity

The UML2 specification [57] defines a number of behaviour constructs
that can be used to express the behaviour of systems. These con-
structs are activities and use cases and they are designed to model a
diverse and wide range of systems. State machines and interactions,
other UML2 behaviour classes, are less suitable for scenario description
and more for detailed description of behaviour in the process view.
The UML2 standard describes the meta-model of these models, the
templates and languages for these models and the operations on them.

Note that SysML, a standard for systems modelling, reuses these UML2
meta-models so they correspond to SysML too [58]. These SysML/UML2
constructs are briefly introduced below:

Activity Models

Also called control flow or object flow is a sequence of actions that
aims at modelling the sequence and conditions of behaviour. Figure 4.2
shows an example of an activity diagram that models a scenario of a set
of coordinating robots. This diagram is based on a set of concerns: the
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Figure 4.2 Activity Diagram of Coordinating Robots

robots must accept commands; the robots must autonomously avoid
conflicts. It describes how the system should interact without specifying
the implementation.

When a prototype, simulation or logical model of the system is available,
the model can be used to assess the system by executing the described
sequence of actions and check whether the system adheres to the
scenario. In this case, the scenario can be tested by sending a command
to the system and either inflict a conflict or not, to check if the system
acts as intended. The result of this process should be discussed with
the relevant stakeholders.

Use Case Models

UML2 introduces a use cases that consists of meta-models for specifying
the required usage of the system. As such, the use cases package is
an ideal candidate for supplying modelling semantics in the scenarios
viewpoint of the AF.

Central to this package of meta-models are actors and use cases next
to a number of supporting meta-models (classifier, extend, etc.).

Actor An entity that interacts with the subject and is external to it.

Use Case An entity that models interactions within a system with
observable results.

A specific use case may own other behaviour constructs - such as
activities, interactions and state machines - that define how the
subject interacts with the actor.

Actors in these diagrams may directly point to stakeholders in the AF.
A use case diagram clarifies who has interest in specific behaviour
and motivates them to exactly specify their requirements. Use case
diagrams describe the use cases only briefly so they need to be accom-
panied by other diagrams. An example use case diagram for top-level
use cases of a Unmanned Aerial Vehiicle (UAV) is shown in Figure 4.3.
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Figure 4.3 Use Cases diagram of a UAV

4.1.4 Model Kind: Multi-body Dynamical Systems

Multi-body dynamics models can typically mimic the operation of a
real-life system or subsystem and its environment through computer-
simulation.

They can provide insight in the (intended) behavior of such a system
and environment. Constraints on the operation of the simulation may
help to estimate performance, indicate issues and test the system.

Modern simulation tools and model repositories allow the fast and
effective prototyping of systems and their environment for the purpose
of providing scenarios. Examples of scenario models that are suitable
for CPSs’ design are MATLAB, Gazebo and 20-Sim models.

4.1.5 Operations on Views

Operations describe how the product of this viewpoint, the scenarios
view, can be used.

Creation

Scenarios are created by evaluating the stakeholders’ concerns and
motivation. Typically, the user of the framework engages in a discussion
with other stakeholders, sketches a scenario and has the stakeholder
review it. At least some of the other stakeholders should be able to
understand the scenario. All stakeholders should review other stake-
holder’s scenarios too and any inconsistencies in expectation that are
clear before hand should be resolved.

Evaluation

The logical, process, deployment and development view will lead to an
architecture description that can be integrated in the initial scenario to
evaluate, assess and validate the result. For example, if a scenario de-
scribes an intended sequence of interactions between the system and a
user, the resulting system architecture can now be used in this scenario
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to test whether the system passes or to assess the performance of the
system.

When a situation matches a scenario but the realized (physical, simu-
lated) system deviates from expectations, two causes are possible:

• The system is incorrect
• The scenarios are incorrect

The actual cause could be a combination of these too. Either way,
something went wrong and a resolution should be sought. Both causes
will occur during the life cycle of a system as specifying scenarios can be
as difficult as designing a system and both may supply useful insights
in the systems of interest.

Typical resolutions are:

Modifying the system This will lead to a chain of consequences in-
volving the system’s viewpoints.

Modifying the scenario Which might lead to a revision or reinter-
pretation of concerns and requirements.

Accepting the inconsistency When the inconsistency is of minor
importance. The inconsistency should be tracked down, recorded
in the AD and motivated.

4.2
Logical Viewpoint

The concerns and scenarios are important in translating the stake-
holder’s wishes to achievable requirements. The logical viewpoint
focusses on the decomposition and grouping of functionality in the form
of a hierarchy of building blocks. Its goal is to ensure the effective-
ness of the system of interest with respect to its concerns. The logical
viewpoint helps in defining high-level systems goals and creating a
hierarchy of functionality from these goals.

The uses of this viewpoint are:

• Serve as a framework for reasoning about the functionality that
the system should provide to be effective.

• Promote separation of application dependent functionality from
more general functional building blocks.

• Discover the functionality and components that are needed to
achieve the intended system goals.

The logical architecture view describes the core functional elements
of a system and the dependencies of these functional elements: the
building blocks of the system. Accompanying these blocks are relevant
requirements on their operation such as minimum bandwidth, cost,
technical implementation and development effort.

First, the relevance of this viewpoint to a CPS’ stakeholders and their
respective concerns is discussed. Then, the functionality diagram is
introduced.
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4.2.1 Stakeholders and Concerns

The insight in functionality and decomposition from the viewpoint is
important to all stakeholders. It bridges the stakeholders’ functional
concerns with elements of the system.

Effectiveness The logical viewpoint helps in defining the functional
components that support the application goal. The logical view
relates requirements and concerns to components. When re-
quirements or concerns change, the logical view shows which
components change accordingly.

Modularity The logical viewpoint promotes explicit functional modu-
larity. The modularity of functional components allows developers
of different specializations to work on the system concurrently.

Reusability The separation of concerns that also benefits the modu-
larity promotes the independent reusability of functional compon-
ents.

Understandability The logical viewpoint explains how functional com-
ponents relate to each other.

4.2.2 Model Kind: Functionality Diagram

The central model kind of this viewpoint is a hierarchical diagram of
functional elements.

Metamodel

The classification of these elements is based on the Separation of Levels
as used in the EU RobMoSys project [59]. The classification consists of
the following classes, the totally ordered set S enumerated by ordinal
numbers.

S1 Goal The high-level goal of the system, the functional stakeholder
concerns, regardless of the implementation.

S2 Task Decomposition of a goal into tasks that the system must
achieve. Describes a composition of skills.

S3 Skill Basic functionality of the system, the building block of tasks.
Skills rely on a set of services.

S4 Service The access-point of system functionality. Services should
hide their implementation from other parts of the system and
provide an interface instead. This makes them the preferred
separation between systems and sub-systems.

S5 Function Functionality that the system provides to services. Imple-
mented by code, a model of computation, a library. The lowest
functional level.

Each functional element belongs to one of the classes and relates typic-
ally to elements in a higher class (supports) and elements in a lower
class (depends). The elements may have one or more requirements
that define metrics and characteristics that the functional element
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should achieve to be successful. Requirements are metrics that indic-
ate the qualitative and quantitative properties that a logical element
should adhere to.

Each element of the hierarchy configures and coordinates the lower
level elements such that it can achieve its goals. That means that
the elements of the hierarchy include some logic to orchestrate its
supporting elements. In this way, the supporting elements do not have
to know about their exact use and configuration in the hierarchy which
reduces the coupling between components and improves reusability
and modularity.

Language

The hierarchical diagram is an undirected graph Glogical = (V,E) with
V the set of vertices that has a type through the mapping type : V → S,
a name through name : V → N where N is the set of names and an an-
notation through annotation : V → A where A is the set of annotations
including the empty annotation; E the set of edges E = {{x, y}|(x, y) ∈
V ∧ x 6= y}: unordered pairs that connect different vertices. The graph
is undirected because the ordering of vertices - and consequently the
direction of the edges - follows from their level (SN |N ∈ {1..5}). In most
cases, an edge connects adjacent classes: the difference between the
two index numbers of the types of the vertices type(v) ∈ S is one or oc-
casionally zero (normally elements on the same level connect through a
coodinating element at the higher level). This allows a straightforward
partition of the graph into regions in which all vertices are of a single
type. If this is not the case, an annotation should include motivation
and the vertices should have individual graphical labels that denote
their type.

Figure 4.4 shows a graphical denotation of the information contained
in G and the mappings type, name and annotation. These diagrams
provide a graphical language that framework users can use to document
the logical view.

4.2.3 Operations on Views

Creation

Creating the view requires a list of concerns and a set of scenarios.
The designer constructs the model by distilling goals from the concerns
and the scenarios, tasks from the goals, and so forth. If specific re-
quirements need to be fulfilled, these can be added to the elements.
The requirement might be associated with an architecture decision
with corresponding rationale. Architecture decisions are discussed in
section 4.7.

Figure 4.4 shows an example instantiation of this model.

Grouping the elements of the view allows for the creation and composi-
tion of complex logical views.
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Figure 4.4 Example instantiation of the diagram for a robotic soccer player.
Note how the elements are partitioned in goals, tasks, skills, ser-
vices and functions. A feature for the sake of overview is grouping
that allows parts of the diagram to be repeated or documented
elsewhere.

Updating

During the development of the system the logical view will need updat-
ing to refine the system, improve its performance or resolve problems.
Adding or refining functionality is a matter of adding or replacing corres-
ponding logical elements and requirements. The relation between the
the logical view and the other views helps in determining the impact
of such changes. Situation may arise in which another view indicates
issues which cannot be resolved in an acceptable way. In these situ-
ation, the corresponding logical elements and requirements might need
revision of the logical elements or adjustment of requirements to allow
a different solution. Correspondences between the logical view and
other views help in tracing this relation.

Testing

The logical view elements can be accompanied by requirements that
should be assessed at the end of a development iteration. Some re-
quirements can be assessed using models in a single view (like: commu-
nication must be wireless), others require the integration of the views
at the end of the iteration (like: the system should process at least 100
items per hour; be available 99% of time). When a model or system
fails to satisfy a requirement, the requirements or the system has to be
adjusted, or both.

4.3
Process Viewpoint

The process viewpoint describes the behaviour, flow of information, con-
currency and distribution of the system including behaviour of relevant
components of the physical environment. Model of Computation (MoC)
is an important ingredient of the process view that provide a means to
account for CPSs’ characterizing heterogeneity. Choosing and compos-
ing MoCs allows the designer to select the appropriate abstraction level
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for the job. The uses of this viewpoint are:

• Serve as a framework for reasoning about the behaviour that
realizes the functionality of the logical view.

• Describe the structure of different behavioural modalities by com-
posing MoCs.

MoCs traditionally define the interaction and behaviour semantics of
computer objects called actors [42, 16]. Most of the existing MoCs play
a role in computer system analysis, synthesis and verification. Finite
State Machine (FSM) and Kahn Process Network (KPN) are examples of
such MoCs that are synthesizable to code or hardware. The designer
should prefer reusing existing MoCs as a broad range of models is
available in research, simulation tools and synthesis tools.

Though these models can play an important role in the design of cyber-
nodes, a CPS design also needs to account for its (non-computer) phys-
ical elements. Lee and Sangiovanni-Vincentelli [40] demonstrated a
framework for comparing MoCs, in which processes play an essential
role: they specify the behaviour of a model of computation in the
presence constraining inputs. Willems [39] described the behavioural
approach to open and interconnected systems which describes phys-
ical dynamical systems from a similar behavioural point of view. The
suggested solution here is that interpreting dynamical system models
as MoCs unifies the cyber and physical parts of a CPS. The MoC concept
can bridge the gap between physical and cyber processes which is
useful for modelling and analysis.

4.3.1 Stakeholders and Concerns

The process view is relevant for the architects, designers and de-
velopers of the system. It helps in reasoning about the behaviour
of the system and its environment.

Usefulness Models, in particular as processes in a MoC, are general
concepts that provide a sound foundation to express a large range
of behavioural modalities. Their composition is essential to any
system. The trivial case, no composition, is a single MoC with a
process.

Modularity The process view promotes splitting the behaviour of the
system and relevant physical components in modules. Using a
limited set of core processes to describe a more complex system
is powerful and helps in keeping the system understandable.

Reusability Combining heterogeneous processes is possible through
composition of MoCs. Thus, reusing processes in different con-
texts and systems belongs to the possibilities. This feature ad-
dresses the reusability concern.

Extensibility Composing MoC domains and processes allows natural
extension of the system’s behaviour.

Understandability The process view provides a global overview of
the, potentially distributed, behaviour of the system. This is a
property that benefits the understandability of the system. It
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Figure 4.5 Example of model used in process view. The Continuous Time (CT)
domain contains CT actors, a Finite State Machine (FSM) actor and
a DT actor. The connections between actors are ports. The MoC
or combination of MoCs determines the interaction semantics of
the actors.

exposes relations between behaviours such that tracing how dif-
ferent behaviours relate is possible.

4.3.2 Model Kinds

The process viewpoint uses two architectural model-kinds and in a
typical process view, both models will be used:

• Model of Computation, specifying operating and interconnection
semantics of processes in their corresponding domain.

• Hierarchical composition of MoCs and processes.

The first model kind describes the model in its respective MoC domain
according to the semantics defined by this model. We cannot provide
an exhaustive list of possible models of computation as the framework
does not specifically limit this list.

The second model kind used in the process view is a diagram of connec-
ted actors in hierarchically composed MoCs. This diagram shows how
different actors connect in a specific MoC domain. Ptolemy II’s notation
of composed domains influenced this model kind [43]. Figure 4.5 shows
a diagram that visualizes an example composition. The visual style of
the figure is in no way fixed, so the user remains free to manage the
model in an appropriate way. When designing a system, these models
are typically created in a computer modelling environment that also
visualizes the models.

MoCs are also useful to model the physical part of a system. Energy
and power-based models such as bond graphs and Lagrangian models
[60] can be used for this purpose. These models then represent the
behaviour of physical components in the deployment view.

4.3.3 Model Kind: Models of Computation

Typical model kinds that can describe the flow of information through
the system are MoCs such as Synchronous Data-Flow (SDF), Commu-
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nicating Sequential Processes (CSP) and Kahn Process Network (KPN).
CT and DT MoCs are often used in control systems.

Researchers and industry developed a broad range of different MoCs.
A system designer can reuses an existing MoC if it suits his needs.
Developing custom MoCs is another possibility but that topic is beyond
the scope of this paper.

4.3.4 Model Kind: Composition of MoCs

Creating the model of composition of MoCs and processes starts with
evaluating the logical view. The system designer must reason what
behaviour the system must expose to support the functionality in the
logical view. This process is highly application dependent. For inspiring
examples, the reader is directed to section 6 that discusses the use
cases.

After identification of the required processes, the designer can model
relevant physical components of the environment in the process view
as well. The natural MoC for these processes is Continuous Time (CT) as
processes are dynamical models. Section 2.5 described the modelling
and interconnection of these models and thus their MoC.

4.3.5 Operations on Views

Working with process views involves some operations: creating and
updating, testing and realization.

Creation

The process view involves the behaviour and processes that enable
the functionality of the logical view. A typical creation process starts
by evaluating the top-most goals and how it needs to coordinate the
corresponding tasks to achieve the behaviour that enables the goal.
This is repeated for the elements of the task level in terms of skills and
for the lower levels correspondingly.

This operation makes the problem of process design more comprehens-
ible and understandable than trying to design all system processes
simultaneously.

Updating

The view will need updating when the system’s functionality changes or
the processes do not achieve their goal. In the first cast, changes in the
system’s functionality are administered in the logical view. Through the
relation between elements of the logical view and models in the process
view, the user of the framework can determine which models need to
be revised. In the second case, when processes do not achieve their
goal, the corresponding logical elements can be traced back. Then,
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the user must decide upon the appropriate next step: changing the
corresponding process, changing the corresponding logical element
or changing both. The user can use the rationale and architecture
decisions to help in choosing the most appropriate action.

Testing

The process view, or parts thereof, can be tested throughout the CPS
life cycle. The appropriate tools and methods to do this depend on the
used MoCs and their composition.

Realization

Some models will allow automatic realization in terms of executable
programs through code generation and synthesis. This is generally the
case for cyber MoCs and sporanically for physical MoCs. The realiza-
tion of physical subsystems typically involves conventional engineering
methods in the domains of mechanical, chemical and electrical engin-
eering.

4.4
Deployment Viewpoint

The deployment viewpoint describes the embodiment of the CPS in
its environment in terms of components and their connections. This
viewpoint structures reasoning how the cyber world relates to the
physical world in a CPS. The viewpoints provides help in determining
the sensors and actuators that the CPS requires and what physical
components and cyber-nodes they connect.

The scenario view, logical view and process view specified parts of
the system that involve connections between the physical and cyber
world of the system. These views, however, did not specify how the
system senses from and acts upon the cyber and physical worlds. This
is the main concern of the deployment view: design the connection of
physical components, cyber-nodes, sensors, actuators and media to
link them together and allow flows of information through the system
to enable it to achieve its goal.

The idea is that the configuration of sensors, actuators and communic-
ation media should follow from the purpose of the system and corres-
ponding processes, not the other way around. As sensors, actuators
and communication are getting cheaper, smaller and omnipresent, it
is more feasible to design the scenarios and processes without the
constraints of sensor, actuator and communication availability. The
configuration of sensor, actuator and communication is then designed
afterwards. Still, limitations on the number, placement or performance
of sensors, actuators and media might arise. These limits might prohibit
an earlier defined certain process or scenario. Some of these issues
can be resolved in the deployment view by changing the placement
and configuration of sensors, actuators and communication. If the issue
cannot be resolved in this view, the corresponding elements of the
architecture must be modified in the current or a following iteration.
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4.4.1 Stakeholders and Concerns

The deployment viewpoint is of interest to Architects, Designers and
Developers and Builders and Maintainers through the following con-
cerns.

Usefulness : The deployment view presents a general way to express
the embodiment of a CPS in its environment. The models are
general enough to apply to a broad range of systems. Yet, they
provide the designer with insight in how the components of a CPS
relate to the functionality and processes described in the logical
and process view.

Consistency The deployment viewpoint is a hub that provides the de-
signer with insight in how functionality, processes and cyber-node
type models (discussed next) relate. This overview helps in keep-
ing the system consistent. The correspondence rules discussed in
section 4.6 further help in keeping the system consistent.

Reusability The deployment view promotes modularity of the system
by identifying similarities between cyber-nodes. Cyber-nodes with
many similarities can share the same development structure as
will become clear in the next section.

Extensibility The deployment view improves the extensibility by provid-
ing a model that allows the addition of extra components and
relations without fully redesigning the system. The designer can
determine how a change in the embodiment of a CPS influences
processes, functionality and implementation by evaluating the
relations between these views.

Testability The deployment view enables trivial hardware-in-the-loop
and software-in-the-loop testing of CPSs by either simulating or
realizing a set of components in the model. For example, one
can choose to simulate all components of an autonomous car but
realize the cyber-nodes responsible for cruise control in hardware.

Understandability The deployment view is a natural way of describ-
ing the embodiment of a CPS because it can be modelled such
that its components correspond to their actual location in the
intended system.

4.4.2 Model Kinds

In section 2.10 we described a model of CPS components. We will adopt
this model in the deployment view. This means that we represent the
embodiment of the CPS and the relation to its environment by a graph
of cyber-nodes, sensors, actuators, external nodes, media and physical
components:

Gdeployment = (Vc, Vs, Va, Ve, Vm, Vp, Ec sa, Esa p, Ec, Ep) (4.1)
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Figure 4.6 Visualisation of the graph model that represents the embodiment
of a CPS in its environment. In this example, three cyber-nodes
share communication medium and three sensors and three ac-
tuators interact with the environment which consists of three
interconnected physical components.

of which section 2.10 discussed the meaning and interpretation. Fig-
ure 4.6 shows a visualization of an example graph.

This model is created by determining what the relevant physical com-
ponents are that the CPS interacts with, what properties of these phys-
ical components need to be measured or influenced, what sensors and
actuators are needed to achieve this and how these connect physical
components with cyber-nodes. Secondly, the designer should determ-
ine which cyber-nodes need to exchange information and add commu-
nication media correspondingly.

The deployment diagram of a large system comprises many compon-
ents in repeating patterns. The deployment diagram includes two fea-
tures to help the user organize it. First, the user can place a (schematic)
background image in the diagram. Second, the user can use named
modules that unravel the diagram and allow for reuse of arrangements
of components. Figure 4.7 shows a diagram that includes both features.

A module is a pair consisting of a deployment graph with an ordered
list of externally accessible (public) vertices P . In case of the gripper:

Mgripper = (Ggripper, Pgripper) (4.2)

Embedding a module in a deployment diagram is a matter of placing
a reference to the module in the graph and connecting vertices to the
publicly accessible vertices, indicated by ordinal number enumerated
connectors. Vertices connect to these connectors like they do to any
other vertex of the type the connector points to.

4.4.3 Operations in Views

Creation

The deployment perspectives focussed on the problem of designing an
appropriate interconnection of the system. Typically, the user of the
framework evaluates the stakeholders, concerns, scenarios and logical
view to extract requirements and constraints that determine part of the
structure. Then, the user should determine what interactions between
the physical and the cyber world are necessary to achieve the goals,
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Figure 4.7 The deployment diagram ideally resembles the physical embod-
iment of the system of interest. This provides everyone that
uses the diagram with an intuitive means to relate deployment
components to the actual system. In this figure the silhouette of
a drone lies beneath the other components. In this figure, the
legend of figure 4.6 holds.

tasks, etc. of the system. The appropriate actuators and sensors must
then be connected to the physical components and corresponding cyber-
nodes. This process might involve interaction between the deployment
and the process view to agree on the right structure of components and
interactions.

4.5
Development Viewpoint

The previous three viewpoints treated the system from a functional,
behavioral and physical perspective. The fourth viewpoint is the De-
velopment Viewpoint which focusses on the implementation of cyber-
nodes. The cyber-nodes are responsible for realizing the behavior and
functionality of the process and logical view in the cyber-nodes of the
deployment view. The development view describes the structure of the
components and libraries in different types of cyber-nodes.

4.5.1 Concerns and Stakeholders

The development viewpoint is helpful for addressing concerns of archi-
tects, designers and developers and builders and maintainers.

Modularity The development view describes the structure of the im-
plementation of cyber-nodes. This viewpoint decomposes cyber-
nodes into components that developers can develop individually.
The developer can provide unit-tests with every module such that
he can verify the functionality of the module independently of
other modules.

Consistency The developer specifies the interfaces of software com-
ponents in this view. Clear definition of interfaces helps in ensur-
ing consistency between components. The developer also defines
the interface between the cyber-node and the rest of the system.
This interface will provide means to check for consistency in the
physical view.
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Reusability A development view that defines a flexible and clear
cyber-node structure is reusable in other CPS as well.

Testability The development view provides features that benefit the
testability of cyber-nodes. Unit-tests verify the functionality of in-
dividual software components independent of other components.
The interface between the cyber-node and the outside enables
hardware in the loop (HIL) of software in the loop (SIL) simula-
tions.

4.5.2 Model Kinds

The view uses a layered model to describe the structure of a cyber-node.
Figure 4.8 shows an example of such a model.

The bottom layer is the interface-drivers layer that concerns the inter-
face of the cyber-node with other cyber-components: sensors, actuators
and media. In this layer blocks represent what driving functionality is
necessary.

The layer on top of that is the middleware layer. This layer contains
intermediate functionality that the cyber-nodes require to realize the
other layers. This includes the operating system, libraries and man-
agement functionality for managing the information exchange between
drivers and MoCs.

On top of the middleware layer are the MoC layers. These MoC layers
are responsible for providing an execution environment for the pro-
cesses depicted in the process view. For example, a dataflow MoC layer
provides an execution environment for dataflow models.

Creating this model requires looking at the process and deployment
view to distill the different types of cyber-nodes that exist in the system.
Every unique combination of interfaces (sensors, actuators, communic-
ation media) and processes yields a cyber-node type. The task of the
designer is to balance between one model for all nodes and a unique
model for every node. The advantage of a small number of models is
the low number of cyber-node types need development. The advantage
of having a large number of models is that each model has a more
specific task and can be simpler to develop.

4.6
Consistency and

Correspondences

Consistency is an important topic whenever more than one viewpoint
or model involves in the description of a system. Although viewpoints
and models aim to decouple different aspects of the system there is
overlap between them. This overlap must be consistent within the
AD. The IEEE 42010 Architecture Description standard provides the ar-
chitectural concept of correspondence rules to help in formulating the
rules that the architect must follow to achieve consistency throughout
different viewpoints and models. The correspondence rules describe
the relations between the different elements of the architecture de-
scription. AD elements are the most fundamental objects in the AD:
stakeholders, concerns, viewpoints and their views, model kinds and
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Figure 4.8 The development view describes the structure of a cyber-node. It
connects the MoCs to sensors, actuators and media through inter-
face drivers. The development view also shows what middleware
is in a cyber-node.

their architecture models. Intuitively speaking, correspondence rules
glue the architecture description together.

A benefit of specifying correspondence rules, next to ensuring con-
sistency, is the guidance they provide during the process of creating
and changing the system. In this section we will describe the corres-
pondence rules between the proposed viewpoints and model in the
framework. In the next section we will discuss how the architecture
framework including the correspondence rules benefits the design and
maintenance during the lifecycle of the system.

We also suggest to denote the consistencies between AEs through
bipartite graphs: graphs of which the vertices belong to one of two sets
and edges connect an element of each set. These graphs allow tracing
(indirect) relations between AEs when designing by hand or Computer-
Aided Design (CAD). Extending these simple graphs to include metadata
could allow for more sophisticated design and validation facilities. Such
an extension could be part of future research. Practical architecture
descriptions will involve tens, hundreds or more AD elements and the
number of relations between these elements is often much higher.
These practical ADs should make use of Computer-Aided Design (CAD)
techniques to allow for easy creation and modification. In the Use
Case section we will discuss the usefulness of the current simple graph
relations between AEs.

4.6.1 Stakeholders, Concerns and Scenarios

The stakeholders’ concerns describe what properties, functionality and
interactions of the system’s application are relevant to them. The
scenarios describe interactions and situations which are prototypical
for the system. This means that scenarios should capture concerns by
interactions and situations that involve these concerns. The concerns
then impose constraints on the specification of scenarios.

A concern like:
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Figure 4.9 Correspondence rule 3 to 7.

The positioning error of the system should not exceed 1mm.

expresses a concern that relates to the system following a reference.

This concern may translate to a scenario like this textual user story:

The system starts in state S. The reference position is a
rectangular trajectory of 1m by 1m. The system follows
the reference position. The position error stays below 1mm
during the following of the reference.

which involves the relevant behaviour (the system following a reference)
and corresponding constraints (the error is lower than 1mm).

Note that assessing success or failure of a scenario is useful to check if
the system complies to the postulated concerns. If the scenario fails
then either the system or the corresponding concerns need revision.
The correspondence rule is:

Correspondence Rule 1 Concerns that involve interaction, function-
ality and requirements of the system should reflect in scenarios that
are favourably testable through assessment. Consequently, scenarios
instantiate the concepts, ideas and requirements specified by the con-
cerns.

The architecture description should include a list of relations (corres-
pondences) between concerns and scenarios. A suitable model that
allows expressing this relation is a bipartite graph with concerns and
scenarios as vertices and their relations as edges. This is visualized in
figure 4.10.

Inconsistencies

Specifying appropriate scenarios from concerns require a clear picture
of what the stakeholders actually mean by their associated concerns.
The risk of misinterpretation exits which may lead to inconsistency
between concerns and scenarios. Asking why questions in discussions
with stakeholders might provide information about the essence of the
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Figure 4.10 Correspondences between concerns and scenarios that satisfy
the correspondence rule 1. Scenarios instantiate the concepts,
requirements and ideas specified by the concerns. In this ex-
ample, two scenarios exist. One is an assessable simulation, the
other consists of unit tests.

stakeholders’ problems and concerns and how to translate them to
consistent scenarios. Reflecting early and often and involving all stake-
holders therein helps in detecting inconsistencies in scenarios and
concerns.

4.6.2 Scenarios and Logical Viewpoint

The logical viewpoint describes the functional components of the sys-
tem in a hierarchy: goals, tasks, skills, interfaces and functions. The
scenarios describe prototypical interactions and situations of the sys-
tem. Together with the constraints posed by the concerns they make
up the input of for the logical view. By analysing the concerns and
scenarios one can derive the main functional components like goals
and tasks. Then, the designer decomposes the goals and tasks in sub-
tasks, skills, interfaces and functions up to a level of abstraction that is
suitable for the goal of the architecture description.

There exists a relation between components of the logical view and the
union of (parts of) scenarios and concerns. Writing down these relations
allows for tracing logical elements and dependencies of these elements
to scenarios and subsequently to concerns. Figure 4.11 visualizes
correspondence rule 2.

Correspondence Rule 2 Components of the logical viewpoint that
relate to a (part of a) scenario should be explicitly listed in the archi-
tecture description. A suitable model that allows expressing this rela-
tion is a bipartite graph with scenarios and logical elements as vertices
and their relations as edges.

Not all elements involve directly in this correspondence rule: a task
may relate to a concern or scenario while its child elements - skills,
services, functions - do not. Their purpose is realizing the functionality
of their parent elements.
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Figure 4.11 Correspondence rule 2 involves the relation between the union
of concerns and scenarios and the elements of the logical view.
Black lines are correspondences.

4.6.3 Logical and Process Viewpoint

The process viewpoint describes the system’s models and their com-
position that gives the behaviour of the system as well as models
that describe the behaviour of the environment. These models realize
functionality of the logical view. The correspondence rule is:

Correspondence Rule 3 (Sub-)modules of the process view model
the behaviour of functional components of the logical view. The archi-
tecture description should make this relation explicit. A suitable model
to do this is a bipartite graph with logical elements and process view
(sub-)models as vertices and edges that represent their relation.

Inconsistencies

A possible inconsistency between the process and logical views arises
when an elements of the logical view are not supported by sufficient
lower-level elements to achieve the intended behaviour. In this case,
this inconsistency should be tracked and the missing elements of the
logical view should be added in the next iteration.

4.6.4 Logical and Deployment Viewpoint

The deployment view shows how physical components of the system
connect to each other and how they relate to the physical embodiment
of the system and its environment. The logical view gives a first impres-
sion of what actuators, sensors, communication and cyber-nodes the
system requires to realize the functional elements.
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Correspondence Rule 4 The architecture description should express
the relation between logical elements and physical elements of the de-
ployment viewpoint. A bipartite graph with logical elements and the
union of cyber-nodes, actuators, sensors, external nodes and commu-
nication media (Vc ∪ Vs ∪ Va ∪ Ve ∪ Vm) as vertices could serve this
purpose.

4.6.5 Process and Deployment Viewpoint

The models in the process view represent behaviour of physical compon-
ents of the system and its environment. These models map to physical
components of the system and the environment in the deployment
view.

Correspondence Rule 5 Models in the process view map to cyber-
nodes and physical components. Connections between physical com-
ponents involve variable sharing (common flow, common effort). Con-
nections between cyber-nodes involve input-output connections (net-
works, data-lines). The architecture description should express this
mapping. A bipartite graph could represent this mapping in which
process view (sub-)modules and physical components are the vertices
and the edges represent the mapping.

Inconsistencies

Inconsistency between the process and deployment view may arise
from the fact that the structure of components - as seen from the
deployment view - influences the behaviour of the processes. This
coupling can be insignificant, for example in input/output connections,
or of essential importance, as in typical links between physical systems.
If the connection between components yields changes in behaviour,
this should be noted in the process view.

For example:

Physical connection X in deployment model Y couples phys-
ical process P and Q through a common flow bond.

4.6.6 Process and Development Viewpoint

The processes of the process viewpoint belong to the domains of MoCs.
Some of these processes take place on cyber-nodes. The development
view describes how the cyber-nodes provide an execution environment
for the processes of different MoCs. The hierarchy of composition of
domains in the process view should be respected in the development
view. For example, if a discrete event process is a sub-process of a
finite state machine, the development view should provide an execu-
tion environment for discrete event process on top of an execution
environment for the finite state machine.
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Correspondence Rule 6 The hierarchy of composition of domains in
the process view should be preserved in the layered model of the de-
velopment view. The architecture description should express a map-
ping between process domains of the process view and execution en-
vironments in the layers of the development view. A bipartite graph
could serve this purpose.

4.6.7 Deployment and Development Viewpoint

The elements of the deployment view connect cyber-nodes with physical
elements and external nodes. The development view should place the
driving functionality of these interface elements (sensors, actuators,
media) in the lower layer. Each cyber-node in the deployment view
corresponds to a cyber-node type model in the development view.

Correspondence Rule 7 Each cyber-node in the deployment view
should correspond to a cyber-node type model in the development
view. This cyber-node type model should designate components that
provide driving functionality for the interface elements (sensors, ac-
tuators, media) for all sensors, actuators and media that the cyber-
node connects to in the deployment view. The architecture description
should express the mapping between cyber-nodes of the deployment
view and cyber-node type models of the development view. A bipartite
graph could serve this purpose.

4.6.8 Development and Scenarios Viewpoint

The development view brings together the logical, process and deploy-
ment view into a cyber-node type model. These cyber-node type models
play a role in some of or all the scenarios provided in the scenarios
view.

Correspondence Rule 8 In scenarios, the cyber-node type models
can be simulated, tested and validated. The scenarios that cyber-node
types relates to can be backtracked through correspondence rules 3
to 7.

4.7
Architecture Decisions and

Rationale

The process of creating a system is full of making decisions. The
functionality that a system supports, its performance and reliability
demands and especially its realization need to be decided upon. These
decisions make the backbone of a system and have significant impact
on its eventual realization. The decisions themselves, their rationale,
the involved stakeholders and concerns of the systems; all are essential
parts of a system’s architecture and should be managed as such. The
importance of decisions in a system’s architecture and the need to
record them has been emphasized by Tyree and Akerman [56] and
Taylor, Software Engineering and 2007 [61]. Frameworks and languages
for recording decisions have been proposed [55]. Kruchten, Capilla
and Dueñas advocated a specialized view for decisions in software
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architectures [54]. This AF chooses to adopt decisions as first-class
AEs like described in IEEE-42010:2010 [24] because of their important
viewpoint-supporting role.

Decisions are the fundamental entities of an architecture, while view-
points provide the perspectives that separate the concerns of a system
to make the system more comprehensible and allow for making better
decisions and better systems consequently.

The user of the AF is free to select an appropriate language to capture
and record decisions: Architecture Decision Records (ADRs). Available
languages range from relatively simple [56, 62] to complex and feature-
rich [55]. The number of decisions and the amount of related rationale
in a typical project might become incomprehensible for a single per-
son. Therefore, the chosen method should at any rate support linking
decisions and rationale to specific elements of a system’s architec-
ture such that an interested party can easily browse the database of
decisions and rationale.

The Architectural Decision Records GitHub-group provides tools for
ADRs that integrate with version-controlled source-code. The Mark-
down ADR method [63] is a useful example.

4.8
Summary

Viewpoints provide a perspective on a system that allows focussing on
an aspect without getting too much entangled by other aspects. This
AF proposed five viewpoints: the scenario viewpoint, to focus on the
purpose of the system; the logical viewpoint to focus on the objectives
and requirements to achieve the purpose; the process viewpoint to
describe the behaviour of the system; the deployment view to focus on
the structure of the system and the connection between cyber and phys-
ical components; the development view to focus on the composition of
cyber nodes to realize the cyber aspect of the system.

To support the viewpoints, three types of AEs are introduced: stake-
holders and concerns in the previous chapter; relations, in the form
of correspondence rules to describe the relation between viewpoints;
architecture decisions and rationale, to make explicit the decisions
made in the architecture and their rationale.

Together, these AEs provide the building blocks of an AD for CPSs.
The following chapter discusses the application guidelines of these
elements.
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Application Guidelines

This chapter explains how to put the Architecture Elements (AEs) -
presented in previous chapters - to use, during the life cycle of a system
of interest. These guidelines constitute, together with the presented
AEs, the architectural approach. The design and management of CPSs
involves tasks like documenting, simulating, analysing and realizing.
Yet, these guidelines do not dictate what exact tools the user of the
framework should use for these tasks. Rather, these guidelines show
and exemplify how to integrate existing tools and methods with the AF
to tailor it to the way of working that the user of the framework prefers.

By decoupling the AF from the tools used, the AF’s user retains the
flexibility to select the best tool for the job and to use the tools they
know and trust. So, as a high level tool the AF can and should work
together with other design tools that automate tasks such as document-
ing, design space exploration, verification and synthesis, testing and
debugging. Integrated into a workflow tailored to the specific problems
that the user of the method faces, the AF becomes most powerful.
Section 5.1 treats the core principles of using the framework.

5.1
Philosophy

Complexity is the main challenge of CPSs and it manifests itself in
problems and difficulties throughout the life cycle. It may, for example,
hide the actual goals and requirements of a system or make focussing
on side issues tempting. Complexity also makes systems and their
context less comprehensible to the stakeholders.

The philosophy and the core ideas of the architectural approach target
this complexity and run as a thread through these guidelines. These
core ideas guide the use of the method and help the architect in de-
termining whether this approach suits their ideas, needs and purposes.

The following subsections describe the important complexity reducing
aspects of the AF philosophy.

5.1.1 Central Role of Stakeholders and Concerns

As part of a remedy to complexity, the architectural approach focusses
on distillation of a system’s purpose before anything else. It does that
by putting stakeholders and concerns central to the system, from its
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analysis until its reuse phase. Taking into account stakeholders and con-
cerns is typical for architecture-centric development and standardized
by IEEE 42010, but there is still much to gain from integrating these
elements more deeply in the CPS life cycle than merely documenting
and analysing them as independent parts of a system’s design. Con-
sequently, stakeholders and their concerns play an important role in
every phase of the life cycle as they influence all decisions to be made
for the system either directly or indirectly.

In the analysis phase, the user must make an attempt at identifying the
stakeholders of the system and their concerns. Wherever possible, the
user should distil requirements from these concerns. Together, these
concerns and requirements are input to the design of scenarios and to
the highest levels of the logical view. The relevant levels of the logical
view in this phase are typically S1 and S2, goals and tasks respectively.

The following phase - design - comprises the description and working of
the system’s components, including tests. So, this phase is driven by
the concerns, requirements and logical view derived from stakeholders
in the previous phase. During this phase, stakeholders should inquire
whether their perception of each other’s concerns and requirements is
correct.

During the later phases, the effect of stakeholders and their concerns
is visible through the validating tests and use cases. Tests are the
instrumental devices in which stakeholders and concerns reflect in
these phases. They express the state of the system or its model during
the development process and allow early detection of issues The use
of testing techniques is yet another means to reduce the development
complexity of systems which is discussed in the following section.

5.1.2 Iterative Design and Development

The creation of a system’s architecture is not contained in a single
event. This process requires the successive application of a strategy
to gradually improve the architecture. If designing an architecture is a
complex optimization problem in the solution space of possible archi-
tectures, then this process is comparable to finding an optimal value
in an iterative way (comparable to iterative numerical optimization).
We cannot find the optimal value at once because the optimization
problem is too complex for us to comprehend, instead, we guess an
initial architecture and start optimizing it gradually from that point on.
This iterative characteristic is essential to the design and development
process.

A rather simple design problem, for example, might have 10 design
parameters, each with a value in R, thus having a solution space in R10.
Even if the parameters have limited range and their values are coarsely
gridded in, say, 10 steps, the number of possible designs is enormous:
10 billion in this example. Prototyping and testing or even simulating all
designs takes too much time and effort. This effect is popularly referred
to as the Curse of Dimensionality coined by Richard Bellman [64]. A
better approach would have a reduced number of parameters and to
prototype and test or simulate it, then adjust some design parameters
together with variants that have different design parameters close to
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Figure 5.1 Simplified visualization of direct and iterative design space ex-
ploration. The iterative method reduces the number of designs
that need evaluation which makes finding a good design more
practical than when evaluating all possible designs at once.

the original parameters. This reduces the solution space to a fraction
of the original one. The approach requires the procedure to repeat but
now with the best design of the last iteration and with a more limited
range, finer gridding and the introduction of more design dimensions.
While this approach does not generally guarantee that the result is the
optimal design, the alternative, evaluating all designs, is not practical.

Iterative processes are seen in many different design and development
processes and have been successful in many more projects, from small
to large scale. Consider an exemplary iterative design process for a
mechatronic motion system. It has design parameters that influence
the weight, size and stiffness of the system which affect its reliability
and price. It also has less important design parameters that mainly
influence the internals of the system such as motor and gear design
parameters that have a minor effect on price. We start the design
process by guessing one or more initial designs based on best practices,
back of the envelope calculations or any other method of preference.
Using these initial design choices we work out the systems architecture
in all views starting with logical, then process and deployment and
then development. We assess the resulting architecture by simulation
and test (of scenarios) either virtually or physically. The outcome of
the assessment determines what design is best. This design is the
input to the next iteration which includes more finely distributed design
parameters or extra design parameters that concern the internals of
the system such as the motor and gear design parameters.

Figure 5.1 visualizes how this procedure differs from one in which all
design parameters are concurrent.

A single iteration consists of phases that represent an effort to solve sub-
problems of the architecture. Examples of these phases are stakeholder
and concern inventarisation, dynamical system modelling and field-
test. Typically, later iterations have more phases because they include
more extensive models, viewpoints and tests. The difference between
an iteration and a phase is that an iteration results in a complete
architecture whereas phases results in solutions to sub-problems of
that architecture. Figure 5.2 visualizes a typical development progress
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Figure 5.2 Gantt-chart of development progress that shows iterations and
their phases. The first iteration consists of fewer phases than the
second, this is typical for more extensive architectures.

in a Gantt-chart.

5.1.3 Testing

Testing is determining whether and how a subject complies with the
given criteria. The practice of testing has acquired a central place in
software and systems engineering as it allows validating systems and
components already during development. This helps in early detection
of deviations and errors in metrics such as behaviour, performance
and reliability. Early detection is key to reducing development cost and
increasing efficiency, as indicated by the (in)famous cost of change
curve of systems [65]. Tests reduce the range of design parameters
and consequently reduce complexity.

The architectural approach assumes that testing can play an equally
important role in CPS design as it plays in software engineering. The
user of the AF should consider making the following AEs testable:

Use cases Concerns and requirements constitute use cases, which
act as acceptance tests.

Goals and tasks are elements of the logical view which describe ex-
pected features, tasks and behaviour that can serve as feature
tests.

Skills and Services are logical view elements that describe the ba-
sic functionality and their access points. Making them testable
provides interface and component tests.

Functions describe how a component or piece of software should act.
Test vectors with expected outcome serve as unit tests.

A test or a testable element, typically can:

• Determine whether a (sub-)system or its (sub-)model complies
with relevant concerns and requirements, automatically if pos-
sible.

• Optionally provide metrics about how much the system deviates
from these goals and requirements.

• Optionally hint how changing the system influences these metrics.

An example of an automatable test is a simulation of a use case of a
robot arm that interacts with an object: the simulation can determine
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whether the excited force, grid and speed is within range; hint on how
much the metrics deviate from this range and provide information on
how changing forces might impact the result.

Other tests cannot be easily automated, such as a requirement on the
experience of a user interface. Such a test must then be executed
manually by surveying stakeholders or a panel of users. On the other
hand, these users might provide information on how much the subject
deviates from the requirement, and how changing elements of the user
interface might influence the requirement.

When changing a component alters the behaviour of another compon-
ent, one experiences regression. Changing the mechanical charac-
teristics of a robot might for, example change, its servo performance.
Regression indicates coupling between components and though, minim-
izing coupling between components is good practice, it cannot be com-
pletely prevented. Regression tests focus on detecting how changes
to a component change the behaviour of other components. When
resolving regression issues, architectural correspondences come into
play. Correspondences show how the elements of an architecture relate
to each other and help in tracing regressive issues.

5.2
Analysis-phase

In the analysis-phase, architects, designers and developers use the
architectural approach to conduct a structured analysis of the stake-
holders, concerns and scenarios to derive what the logical function of
the system is. They consider conceptual process views, deployment
views and development views to access the feasibility of the goals and
the concept system. When the architects, designers and developers
agree on the feasibility of the system and the conceptual architecture,
they use the conceptual architecture as input to the design phase.

In this phase, the architecture is in the initial stage of development.
Its documentation might consist of outline documents, prototype im-
plementations, proof of principles, lists of stakeholders and their initial
concerns. Although updated and improved documents follow up these
drafts throughout the development of the system of interest, archiving
these initial documents is a good idea. A typical complication of com-
plex systems’ design is a system diverging from its intended purpose.
Being able to keep track of the progress might help in withholding or
recovering the design process from diverging.

It might be necessary to analyse some of the subsystems that the actual
system-of-interest consists of. This helps the user in anticipating on,
yet unknown, properties of these subsystems like for example the cost,
performance, feasibility and weight. When developing, for example, a
multi-agent system of drones, one has an interest in the performance
of the driving mechanism of these drones. It might as well be possible
that the intended system is not achievable within the resource limits
available. In this phase, the user tries to detect these problems as soon
as possible to reduce the cost and risk of development

Figure 5.3 shows how typical work products look like in this phase of the
life cycle. In this example, the actuator circuitry, a subsystem of the
system of interests, undergoes characterization. Results of the analysis
phase are used in the following phases.
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Figure 5.3 During the analysis phase, the designer tests working principles
and subsystems. This enables them to use the results in the
design phase and help them reduce development risk.

5.3
Design-phase

The architect starts with defining stakeholders and corresponding con-
cerns. The architect translates the concerns to scenarios that capture
the essential goal of the system. The architect decomposes the scen-
arios into logical components that are responsible for separate tasks to
construct the logical view. The logical view is input to the construction
of the process and deployment view which provide respectively insight
into the behavior and embodiment of the CPS. These two views are
input to the development view which involves the structure of the cyber
node’s realization.

This cyclic process allows an iterative way of designing CPS in which
the transition from initial concept, to model, to simulation, to prototype,
to the final system can take place in small steps. This reduces the risk
of late discovery of inconsistencies and helps to stay focused on the
actual goal of the system under consideration.

The structure of the architecture framework and the form of the archi-
tecture description it dictates allow powerful methods for validating
(parts of) the architecture.

• Scenarios should be testable, preferably automated, to check if
the model, simulation, prototype or finalized system complies to
the application-specific concerns of the stakeholders. A scenario
that fails encourages the developer to discover and fix problems
in the system or the scenarios early.

• Unit tests can be built around individual processes to test whether
they comply with their specification.

• The deployment view allows for Software in the Loop (SIL) or Hard-
ware in the Loop (HIL) tests of parts of the CPS embodiment. The
deployment view shows how a part of the embodiment is connec-
ted to another part through sensor, actuator, and communication
media connections.

• The development view allows the unit-testing of middleware com-
ponents that implement the functionality described in the logical
view, like math-libraries, ODE-solvers, OS-schedulers, etc.

Figure 5.4 shows this development process in a visual way.

A possible method to model, simulate and validate the heterogeneous
system described by the architecture description is to use co-simulation.
We explained how this could be achieved with the Functional Mock-up
Interface (FMI) in B. An alternative way of modelling, simulating and
synthesizing (parts of) CPSs is the use of a language that supports
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Figure 5.4 The CPS development process when using the proposed architec-
ture. The flask indicates that the viewpoint is used for validation.

heterogeneous compositions of MoCs like SystemC. We explain this in C.
SystemC is also very suitable for the creation of unit-tests in the devel-
opment view because the modelling language (C++) often matches the
language that the actual cyber-nodes are developed with. Figure 5.5
visualizes how the elements of the architecture can be integrated into
a simulation or realization for testing. The results of this testing and
simulating is then used for reporting and eventually for assessing and
validating the system.

5.4
Realization-phase

During the realization-phase, the builders construct the system from the
architecture description. The architecture description provides them
with structures documentation about the actual intention of the system.
Builders will use the deployment view to understand what components
of the system interact. They can use the validation methods described
in the Design-phase section to test if the resulting system works. If
there is something wrong, they will use the correspondence relations
(section 4.6) to determine what might be the cause of the failure. The ar-
chitecture description also provides tools that help with communication
between builders and architects, designers and developers.

5.5
Maintenance-phase

The maintenance-phase involves regular testing and fault recovery.
Maintainers can use the same tools as builders to help them in this
process. The validation methods of the development-phase help in
checking the correct operation. The consistency rules and correspond-
ences help in determining what might have caused a certain failure.

Issues and faults that occur during operation of the system should be
tracked and linked to the corresponding elements in the architecture.
When a maintainer intervenes to resolve the issue, they might help in
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Figure 5.5 Overview of a possible structure of a development iteration. The
models of the architecture are connected and combined in a test
and simulation environment. In this case, through the FMI with
System Structure Parameterization (SSP). Models in the process
view and the development view correspond to Functional Mock-up
Units (FMUs) and the deployment view corresponds to the struc-
ture of their connection: the System Structure Parameterization
(SSP). The simulation environment is then used to report on, as-
sess and validate the architecture. The results are then input to
the next design step.
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doing this. A suitable issue tracking system should then be present,
were it a digital tracking system or an analogue piece of paper that is
located with the device. The preferred method should be noted in the
AD including appropriate links and directions to the tracking systems.
CPSs are typically connected and sometimes intelligent enough to
detect issues and problems. In these cases, it is highly recommended
that the system itself logs issues in a tracking system such as a remote
database or a log file. The resulting data can be used for resolving the
issues, improving the system and tracking down related issues.

5.6
Reusing-phase

When designing a different CPS or changing an existing CPS the architec-
tural approach motivates reusing architectural components. Changing
concerns will lead to different scenarios that incorporate these changes.
Functional components of the logical view can be reused to achieve
overlapping concerns between systems. The relation of these functional
components to deployment and processes help in determining what
parts of the CPS embodiment and process composition can be reused.
The relation between the process, deployment and development views
helps in determining what elements of the development structure can
be reused.

During this process, the validation tools that the architectural approach
provides are helpful. They assess that the system achieves its intended
goal and help with modifying parts of the system or parts of the scenario
(and concerns) when the system does not achieve its goals.

This leads us to the following section in which we apply the architectural
approach to three use cases and evaluate the process and the resulting
systems.



6
Use Cases

The previous chapters introduced the elements of the AF and guidelines
on how to use the framework. Yet, they provided little evidence on
whether the AF is successful in its goal of improving CPS design and
management.

This chapter has two objectives:

Validate whether the AF improves the design and development pro-
cess of CPSs by assessing how the AF helps in addressing the CPS
domain concerns throughout the design and management of the
system (section 3.2).

Demonstrate the use of the framework for purposes of reference and
clarification.

This chapter will treat three use cases to achieve these goals. Though,
strictly speaking, use cases do not validate more than the applicabil-
ity of the AF to the specific use cases, the logical fallacy of proof by
example, they provide at least an intuition of the applicability of the
framework to comparable situations. This is the most practical way to
test the approach as formal proofs are beyond the scope of this report
because of their complexity. The three use cases demonstrate the use
of the AF as a whole, tending to the goal of demonstration. Table 6.1
summarizes the concerns that each use case focusses on.

The first use case involves the design of a virtual system that is able
to catch an object. In this use case, we pay attention to the process
of problem analysis and formulation and creation of corresponding

Table 6.1 Overview of focus concerns in each use case
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scenarios. We will then show how the scenarios and four viewpoints
impact the design process of the system and how the result of an
iteration forms the basis for the next iteration.

The second use case involves design improvement of an orthotic wear-
able device. An existing device for hand pose reconstruction and envir-
onment dynamics estimation is the basis for this device. This use cases
focusses on reuse of existing devices and technologies and on complex
physical systems.

The third use case discusses design of an industrial plant which is
implemented on a scale model of this plant. The use case focusses on
Hardware in the Loop (HIL) and Software in the Loop (SIL) simulations,
code generation, component reusability and implementation issues.

Notation

In this section the architecture framework is applied to three use cases.
The result consists of a set of stakeholders, concerns, requirements,
views and scenarios: the architecture. Among the AEs that make up
the architecture we provide motivation and discussion to highlight how
the architecture framework applies to the problem and what are its ad-
vantages and disadvantages. Blocks that are marked-up corresponding
to their type will contain the different types of AEs. Every architecture
description benefits from a clear textual and visual style to guide its
reader. Though the style used throughout this chapter may be taken as
a starting point, we will not impose any style requirements on the user
of the framework to allow them to choose a style that suits the intended
audience best. No single best style exists because the most suitable
style will depend heavily on the form of the architecture description.

Concerns must have a system-wide unique identification number and
must have one or more stakeholders. Concerns feature a finger-up
icon, indicating their stakeholder’s need for attention and have an iden-
tification starting with a C and post-fixed with ex in case of explanatory
examples like the three listed below:

� C0.1ex - Organizational Concerns (Example)
Stakeholder(s): Architect
This block describes the architect’s concern which might be rather
general (reliability, organization) or more specific (the system must
conform ISO42010).

Scenarios describe situations that test a system. They include rules
that let the system pass or fail, comparable to expressions in program-
ming languages. They must have a system-wide unique identification
number and feature a book icon, referring to their often story-like oc-
currence.

� S0.1ex - Faulty Powersupply (Example)

• This scenario describes a situation that involves a faulty power-
supply

• During normal operation the voltage drops to zero with a chance
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of 0.1% per minute.

• Í The system should shutdown to pass.

• o The system fails if the shutdown takes longer than 4 seconds.

Requirements must have a system-wide unique identification number
and must relate to architecture elements and may relate to architec-
ture decisions that explain and motivate the requirement. They feature
a checkbox icon, referring to their need to be checked.

� R0.1ex - Requirements according to ISO42010 (Example)
Concern(s): Reliability Concern
Logical Element(s): Motion Control Service
Decision(s): ADR-1

• The bandwidth of the motion control must be 100 rad s−1

• The overshoot of the motion control must be less than 5%

Comments that discuss the architecture framework in the context of a
use case are provided. These comments exist to discuss the application
of the framework and would be absent in any independent AD.

What stakeholders say and what they want Example
When determining the concerns of stakeholders, it is important to
realize the discrepancy between what a stakeholder says and what
one wants. For example, a stakeholder might pose a concern that the
system should be real-time while, essentially, the stakeholder wants
a system that is reliable and safe.



6.1. Cooperative Pet Catcher 74

Figure 6.1 Pet Catch system will involve a pet that is at height and a number
of existing surveillance drones.

6.1
Cooperative Pet Catcher

The fire department experiences busy times due to dryness and ex-
tended periods of heat that cause fires. At the same time, the usual
number of pets climbs up trees to become too scared to get down again.
The fire department has a number of surveillance drones available that
might be helpful in these situations. The goal of this system is to catch
pets that are to fall from trees and other heights. Figure 6.1 shows an
impression of this situation.

This use case focusses on effectiveness, consistency, testability
and simplicity concerns. By demonstrating how the framework helps
in translating stakeholder’s concerns to a suitable architecture, the
effectiveness is evaluated. Consistency is discussed in the context of
creating views and the correspondence rules that bind their elements.
The testability is assessed by evaluating how the framework supports
testing of parts of the architecture. Eventually, this difficulty of apply-
ing the framework is reviewed to assess how the simplicity concern is
addressed in this situation.

To study the feasibility of this system and develop a concept, the AF
will be applied to this problem. The starting point is to inventory the
relevant stakeholders and their concerns.

6.1.1 Stakeholders and Concerns

A situation like this may sound strange at first and raise many ques-
tions but dealing with stakeholders will involve bridging a perception
and language gap. Stakeholder and concerns analysis helps in dis-
tilling this purpose of a system from its stakeholders.

The framework provides us with a starting point of three typical stake-
holders: first, those that design the system (architects, designers,
developers); second, those that construct the system (builders, main-
tainers) and third, those that use the system. In this use case, we use
the framework to design and construct a system to solve a problem we
have ourselves: we, a group of persons, embody the three typical stake-
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holder groups. An additional stakeholder group is involved: the readers
of this document, interested in the motivation, usage, advantages and
downsides of the architecture framework.

The stakeholder-concern mapping of the system under design is based
upon the starting point provided by the architecture framework in
table 3.1 because the system’s stakeholders include the default three.
Addition of the additional stakeholder group, readers, and two additional
problem-specific concerns tailor the stakeholder-concern mapping to
the use-case.

� C1.1 Catch Pet Safely
Stakeholder(s): End-user
The user wants the system to catch the pet without it being hurt.

Next to the end-user, the reader poses an educational concern: they
want to understand how the architecture framework influences sys-
tem design. The stakeholder group of readers has an interest in the
demonstrative purpose of the system.

� C1.2 Demonstrative Purpose
Stakeholder(s): Reader
The system and its design must demonstrate the typical usage of the
architecture framework, including advantages and disadvantages.

6.1.2 Scenarios

The next step is to construct a scenario that captures this concern. In
the form of a story:

� S1.1 - Cat falling from tree
A cat is in a tree, 3 to 8 meters above the ground. It is too afraid to
come down and too tired to stay so the cat jumps down.

The initial velocity of the cat is a 3-dimensional vector with magnitude
less than 2m s−1. The system predicts the location of impact and
catches the cat.

• Í The system should catch the cat

• Í The cat must not be exposed to unsafe accelerations

• Í After catching, the cat must be brought near the ground

Figure 6.2 shows a simulation of this scenario in a 20-Sim 3D anima-
tion window. The scenarios provide the designer with tools for both
architecting and testing the system.

• Scenarios are input to the logical view construction and help the
architects, designers and developers to reason about the required
functionality of the system.

• The designer can use the scenarios to assess whether the system
addresses the concerns of the stakeholders, both manually and
automatically.
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Figure 6.2 Three-dimensional visualization of the scenario in 20-Sim. Such a
visualization helps the stakeholders in aligning their expectations
and concerns and the designers and builders of the system in
assessing its correctness of operation.

6.1.3 Logical View

The scenarios help in determining what the main goal of the system is.
The essence of the application is to save pet. This goal is then decom-
posed into two enabling tasks: to actually catch the pet and to move
it to a safe location. These tasks require three skills: object trajectory
prediction, collaborative movement and collaborative localization.

• Object trajectory prediction: Requires a service that can predict
dynamics of objects. The involved differential equations need the
functionality of solver algorithms.

• Collaborative movement: Requires services for configuration plan-
ning, position control, broadcast communication and current state
estimation. Configuration planning relies on functionality for de-
termining the appropriate location; position control relies on force
control functionality; broadcast communication requires trans-
ceiver functionality and state estimation can reuse the differential
equation solver algorithm functionality used in the object traject-
ory prediction task. To estimate the state of an element we choose
to incorporate acceleration and gyration sensing functionality.

• Collaborative localization: Requires services for state estimation,
broadcast communication, object localization and distance meas-
urement. This skill can share state estimation and broadcast
communication with the collaborative movement skill. To enable
object localization, some localize functionality is used. Trilatera-
tion, triangulation, computer vision or another technique could
be used but no choice has to be made: a placeholder localize
technique is inserted in the logical view. Also measuring distance
requires functionality that is not fully specified at this early phase
of development.

The choice for collaboration of multiple catchers is at this moment a
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Figure 6.3 Hierarchical diagram that relates goals, tasks, skills, services and
functions. The diagram is part of the logical view of the system.

result of an architecture decision.

Services provide functionality to in turn enable the skills in an applica-
tion independent way. That means that through the skill knows about
the available services, the service is not designed specifically for the
skill. These services are access-points to system functionality like al-
gorithms, libraries, controllers, solvers, sensors and actuators. Because
the services are not specific to the corresponding skills, they can more
easily be used to enable more than one skill. Also, reusing components
is easier. Figure 6.3 shows the logical view of the system. Now that the
goals, tasks, skills, services and functions are defined, the correspond-
ing behaviour in the process view and their physical embodiment in the
deployment view must be designed.

In early iterations, it might not be evident which functionality is appro-
priate. The concerned functionality can then be modelled in a more
general way, like in Figure 6.3: it is unclear what function is needed
to support the ‘measure distance’ service, so it is substituted by a
general placeholder. Choosing a specific implementation can then be
postponed to a later moment in the development of the system when
more constraints are in place and context is better known.

However, a significant downside of this is the possibility that the
functionality is not possible within the posed constraints. Such an
issue might then lead to a significant increase in costs with respect to
earlier detection of the impossibility. To avoid situations like these, the
user should provide rationale with its decisions, based on experience,
literature or an analysis.
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6.1.4 Process View

The process view describes the behaviour of the physical and the cyber
components. The process view of the physical parts of the system
describes the behaviour of the catchers and the object to catch (the
pet). It can be identified from the scenarios: there are catchers and
there is an object to catch. This behaviour can be modelled by bond-
graphs and in this use case, 20-Sim was used as modelling tool to
do this. Bond-graphs are a graphical representation and a dynamical
model at the same time which is beneficial for documentation and
analysis. Figure 6.4 shows the model of the physical process.

The processes view of the cyber parts of the system describes the
behaviour of the cyber-nodes. The model is a composition of MoCs that
provides the functionality of the logical view.

Creation of the process view is typically done by modelling the pro-
cesses needed to achieve the goal, then the tasks, and so on. The main
goal has two tasks that are about coordination and movement of the
catchers. These two tasks could be implemented in a single process.

The object trajectory prediction skill is used to help the catcher extra-
polate the perceived state of collaborating catchers and the object to
catch. To achieve the catch object and move object tasks, the three
skills need to collaborate in a process. Four parallel processes are
identified by grouping the services of the logical view:

Coordination A process takes care of analysing the available data to
estimate the system state and to plan future actions. This pro-
cess can use a FSM MoC. Internally, it uses dynamics predication
and state estimation services. These regular processes can be
modelled in a DT MoC.

Positioning Takes care of controlling the position of the drone based
on sensor measurements. Controllers need regular execution and
a SDF MoC is a relatively simple model that allows this.

Information Exchange Takes care of regularly transmitting measure-
ments and receiving those of other catchers. A FSM is initially
chosen as MoC.

Communication Is responsible for low-level communication, such as
carrier sense and queueing. A detailed design of this process
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Figure 6.5 Process view, model of the processes that realize the functionality
of the logic view.

is not necessary in this early phase as communication can be
mimicked in tests.

The selection of MoCs is a design challenge that requires insight
into the problem and the possible solution to solve. In the end, the
core difficulty of creating an architecture remains to make the right
decisions. The framework does not make decisions but rather it
helps its user in making better ones. Determining what is the right
decision might require a process of trial and error which fits fine
within the framework. An important decision should be recorded in
the architecture’s decision repository as a ADR with its corresponding
motivation and rationale.

Figure 6.5 shows the resulting process view of this design iteration.

6.1.5 Deployment View

The deployment view captures the relation between components of the
CPS and the physical environment.

We choose to equip each mechanical element with a cyber-node, a 2D
planar force actuator, a planar accelerometer and gyroscope for de-
termining the position and an ultrasonic distance sensor that measures
the distance of the element to the ball.

The diagram in Figure 6.6 shows the relation between cyber-node,
medium, sensors and actuators for a single mechanical element as sup-
posed in the scenario. We can construct the full deployment graph by
repeating the shown vertices and edges for every mechanical element.

6.1.6 Development View

The combination of the process and the deployment view specifies the
types of cyber-nodes that exist in the system by a mapping of MoCs
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to cyber-nodes. The number of types of cyber-nodes should be as
low as practically possible to ease development, testing and updating.
Typical valid reasons to use different types of cyber-nodes are that
the performance requirements differ between nodes such that using
high-performance hardware and software on every node is unnecessary
and expensive.

In this system, there is one cyber-node type since the catchers are
functionally equal. We can determine the communication medium
and connected sensors and actuators for this cyber-node type from
the deployment view: An IMU, force actuators and a communication
interface and distance sensor of which the exact implementations are
not yet decided upon in this iteration. These devices are the interface of
the catcher’s cyber-node type with the physical world (through sensors
and actuators) and the rest of the cyber world (through communication).
This interface is on the lowest level of the development view.

The middleware layer contains libraries and supporting functionality,
based on the required functionality and the processes. In this case, an
ODE solver and trilateration algorithms are the supporting components
in this layer. Because the process view has concurrent processes, a
mechanism that manages this concurrency is necessary. Simulation
environments take the responsibility for such a mechanism but when
implementing the cyber-nodes on hardware, a scheduler component -
typically part of an Real-Time Operating System (RTOS) - is necessary.

The MoC levels follow from the process view: the base level is an FSM
and the second level contains SDF and DT processes. Note that it is
possible that different cyber-node types realize different parts of the
cyber part of the process view. In this use case, there is just one cyber-
node type - that of the catcher - so all processes are present in the
development view.

Figure 6.7 shows the resulting development view. This view shows
that there are two MoC interfaces: FSM-DT and FSM-SDF. The appro-
priate way to realize this interface depends on the situation. In this
first development iteration, we suggest using methods provided by a
heterogeneous simulation environment, such as Ptolemy II or ForSyDe.
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6.1.7 Concluding the Iteration

We now have everything we need to complete the development itera-
tion by putting the resulting views together and assessing the scenarios.
This integration of views and realization of a result (simulation, proto-
type, product, report) will involve effort from all stakeholders of the
system. Though early integration can be difficult, integrating all views
only at the end is doomed to fail: views might have diverged and issues
have not been discovered and resolved to lead to incompatibilities that
are far more complex than those detected earlier in the process.

The development view, process view and deployment view together
can form an executable system. The designer can simulate the sys-
tem in a simulation environment, use code-generation or coding by
hand to build the system on actual hardware or a bit of both with
hardware-in-the-loop and software-in-the-loop simulations. In this first
development cycle, simulations are often the way to go. Figure 6.8
shows the architecture in Ptolemy II, the similarity between this model
and the deployment view is noteworthy. The physical process view,
shown in Figure 6.4 is reusable in this model. The Functional Mock-up
Interface version 2.0 (FMU 2.0) allowed compilation of the original
20-Sim model for incorporation in the Ptolemy II model. Appendix B
gives more info on this topic.

Executing the simulation will allow assessing the architecture to validate
the result and discover issues. A new development iteration can be
started, or in some cases, the development might be ceased. If the
scenario failed, either the scenario or the architecture needs revision.
Checking the scenario is important to see whether failure or success
indeed indicates that the concerns are respectively violated or complied
with.

6.1.8 Further Iterations

The number of iterations that the user can apply the framework is
not limited. The framework’s user chooses when to stop iterating and
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Figure 6.8 Heterogeneous Simulation in Ptolemy II with co-simulated 20-Sim
model. The colouring of the diagram reflects the component types
of the deployment view: teal cyber-nodes, brown communication
medium, grey physical components, yellow sensors, purple actu-
ators.

for what reason, whether it is time, money, satisfactory results or a
combination of these and other reasons. Most systems that involve
different parties and deal with a high number of concerns are never
eternally finished because the environment, stakeholders and concerns
may change in unexpected ways, requiring the system to adapt.

In later iterations, more realistic simulations could be created to even-
tually realize a physical system. HIL and SIL technologies will allow us
to make this transition gradually.
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Wrapping Up

The advantages of the architectural approach in this use case are:

• The framework provides a thread that guides us through the
process like a step-by-step guide.

• It helps in translating vague requirements and concern to tan-
gible goals, task, etc.

• The set of views provided relatively independent perspectives
on the system.

• The system and scenarios are automatically testable.

The main disadvantages of this use case are:

• The selection of appropriate MoCs, functions and implementa-
tions remains difficult.

• A top-down approach risks the possibility that implementation
details make certain choices impossible.

The effectiveness of the system’s architecture benefits from the
structured analysis of the initial requirements and concerns to goals
and tasks. The corresponding scenarios allow assessing the system’s
effectiveness during its development.

The architecture is described using largely independent views, but to
fit together they must be consistent. By providing correspondence
rules and means for testing the resulting architecture, this consistency
can be checked. This, however, does not guarantee the consistency
and when integrating the views to realize the system this can lead to
integration problems. By keeping iterations relatively small, inconsist-
encies are kept correspondingly small.

The architecture views of the system are to some degree individu-
ally testable. Through the scenario view, the framework provides
an integration test for the system. The guidelines for applying the
framework help in creating a simulation architecture, in this case in
Ptolemy II and 20-Sim.

The framework forces through its top-down approach a goal-oriented
way of working: try to get a simple prototype working as soon as
possible. The simplicity of the system might benefit from this as
long as implementation issues are detected and resolved in time.

Although this use case of applying the architectural approach is no
formal proof, it portrays its characteristic advantages and disadvant-
ages. The discussed principles are applicable to other CPS design
problems as well.
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Figure 6.9 Illustration of the PowerGlove with three devices of four (for 1
finger) or seven (for 2 fingers) 9-DOF IMUs attached for a total of
162 measured DOFs

6.2
PowerGlove Use Case,
Architecture Recovery

The starting point of this use case is an existing system (Figure 6.9),
developed in previous work, to estimate the hand pose [66] and energy
expenditure of a person [67]. This device bears the name PowerGlove,
it utilizes Hand-pose Reconstruction (HPR) algorithms to estimate the
pose of the hand from time-series acquired from IMUs.

In this use case, an architecture is recovered from an existing system.
A benefit of architecture recovery is that it helps in making a system
better understandable. This architecture can then be used to ana-
lyse and eventually extend the system in an effort to demonstrate
the extensibility concern. The use case shows by example how the
AF addresses reusability concerns.

The PowerGlove is developed independently of the AF and no actively
maintained AD is currently available, so the first step is to obtain one.
This is the process of architecture recovery, creating an AD from a
system without a known AD. The recovery follows the familiar steps of
the AF, possibly iterative to fine-tune the architecture to sufficient detail.
A complete recovered architecture may be used for documentation,
reference and as a starting point for extending the system with extra
functionality.

First, the stakeholders and concerns are re-evaluated and the uses of
the system are described in the form of scenarios. The logical view is
built by decomposing the uses into goals and requirements based on
the scenarios. The process and deployment views are built by assigning
the structure and behaviour of the system to respective nodes and
processes, then assigning these elements to their respective logical
elements. Then, the deployment view is constructed by evaluating
the layered structure of the cyber nodes: drivers, supporting libraries,
models of computation used, then assigning these elements to their
corresponding processes and nodes.

Decisions that significantly influence the system, such as should be
tracked and linked to the corresponding AE in the form of Architecture
Decisions (ADcs). ADcs are an ideal place to store pieces of information
recovered from the original system, such as notes, literature references,
code comments and models.
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6.2.1 Stakeholders and Concerns

The original system stakeholders are generally recoverable from avail-
able documentation, research papers, notes and work logs.

The architecture framework specifies three standard groups of stake-
holders. In this specific system, the end-user stakeholder is replaced
by two more system specific stakeholders:

Clinicians use the system to assess the functioning and performance
of the hand.

Patients wear the system to have their hand assessed.

And a third stakeholder group is added:

Researchers use the system to test and evaluate new technologies
and algorithms.

The resulting five stakeholder groups cover the most important groups
that have unique interests in the PowerGlove system.

The system-specific concerns of the PowerGlove are, based on docu-
mentation and papers:

Data Availability All measured DOFs of all fingers must be available
for reference and analysis

Pose Reconstruction The pose of the hand must be reconstructed
from the data

Assessable The pose of the data must be assessable, both visually
and using clinical performance metrics

6.2.2 Scenarios

To further recover the architecture, typical usage scenarios are distilled
from the stakeholders, concerns and existing documentation [66, 68]
of the system.

The most typical scenarios are those in which the glove is used to record
data and those in which the device is used to reconstruct and assess
the hand and its functioning.

� S2.1 - Data Acquisition and Recording

• This scenario describes a situation in which a person wears the
device.

• The device is appropriately enabled (connected, powered).

• The operator (researcher, patient or clinician) starts and stops
the recording.

• Í The system must record the movement data of the hand
of the person and present this data for further processing or
storage.
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� S2.2 - Hand Pose Reconstruction and Analysis

• The conditions equal those of S2.1

• Í The system must reconstruct the hand pose and assess
relevant clinical performance metrics and present these results
to display or to allow further processing.

Another scenario describes how the device should influence the user.

� S2.3 - Using the Device as a Wearer

• The user wears the device in a clinical setting during perform-
ance assessment.

• Í The user spells the sign language alphabet with the hand
wearing the device. Throughout the process, the system must
not impede the movement of the wearer. Whether the move-
ment was impeded or not is assessed by directly asking the
wearer.

The third scenario describes an interaction between the system and
the wearer and a condition that indicates whether the system func-
tions correctly. The current way of assessing the result is by asking the
wearer a question, indicating that a physical device must be present.
Some scenarios are not automatically assessable, like S2.3. Where
possible, however, try to design scenarios that can be automatically
assessed or at least simulated because this enables a range of tools
that can improve the design process.

The resulting scenarios can now be discussed by the stakeholders to
align their expectations.

6.2.3 Logical View

From the listed scenarios and existing documentation, the logical view
can be constructed.

The core goal of the system follows from the previously described
functionality and concerns: enable the evaluation of the hand pose.
This functionality is of a high-level and requires supporting system
tasks to succeed. These tasks are: estimating the hand pose of the
wearer; assessing the performance of the user; exposing the results to
the environment.

Tasks, in turn, rely on basic functional skills of the system. Skills provide
a means to transition from high-level tasks to actual system configur-
ation. Skills are supported by services, which provide the interface of
the system to potential subsystems and components. The tasks of the
PowerGlove are decomposed into tasks, skills and finally functions and
summarized in Figure 6.10. Note that this figure is just a diagram and



6.2. PowerGlove Use Case, Architecture Recovery 87

G

T

Sk

Srv

F

Analyse

Hand Pose

Estimate

Hand Pose

Record and 

Retrieve Data

Matrix Math

Library

Hand Pose 

Est. Algorithm

Extended

Kalman Filt.

Pose Est.

inertial meas.

Inertial Meas.

of Full Hand

Retrieve

IMU Data

IMU

Driver + IO

Send/Rece.

Data

xBus

Communic.

Store/Retr.

HPR Data

Send HPR

Data to User

Store/Retr.

Data

Send

Data to User

TCP

Server

Storage

Backend

Filesystem

Storage

Memory

Storage

Assess

Hand Perfor.

Calc. Clinical

Perf. Metrics

Performance

Algorithms

Figure 6.10 Diagram of the logical view of the PowerGlove. Higher-level
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that the actual way of representing the view is free for the user of the
framework to choose. For example, by storing the logical view textually
in the code base of the system.

At this level, requirements can be incorporated in the view too. In this
use case, that comes down to recovering the original requirements and
their motivation from the system.

A requirement that plays an important role is:

� R2.1 - Sample rate of Hand Pose and Inertial Data
Affects: Estimate Hand Pose Task, Expose Results Task
Related Decision(s): ADR-PG-0001-decision-on-sample-rates

• The sample rate of gyroscopic data must be at least 200Hz
• The sample rate of acceleration data must be at least 100Hz
• The update rate of hand-pose reconstruction must be at least

20Hz online ‘real time’ and 50Hz offline post-processed.

The ADR includes references to appropriate rationale and research,
the considered alternatives and the motivation for the decision made.
The documentation and notation approach that suits the system un-
der consideration best also remains free to choose to the user of the
framework.

An independent AD typically includes more decisions and rationale
but the number of ADRs tracked in this use case is kept low for reasons
of brevity. The decisions are listed in Appendix D.2.
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Figure 6.11 Process view of the PowerGlove, based on the existing system.

6.2.4 Process View

The process view describes the composition of processes that are re-
sponsible for the behaviour of the system. This composition should
support the functional elements in the logical view. The process view
will be based on the processes in the existing PowerGlove and will in
this iteration only incorporate the cyber-aspect of the system: those
responsible for processing the data.

The three main processes in the system are: the HPR and data re-
cording process, this runs typically on a powerful computer; the data
acquisition and configuration process, responsible for acquiring IMU
data, distributing a common clock signal and preparing the data for
transmission to another device (the host); the IMU read-out process.

The process view is visualized in Figure 6.11.

During architecture recovery, it is possible that the architecture of the
system of interest has (minor) inconsistencies. For example, some
functionality might not be realized or requirements might not be
fulfilled. Sometimes, this analysis gives insight in bugs and issues in
the system or what aspects of the system can be improved.

6.2.5 Deployment View

The original PowerGlove uses 3 sets of IMUs per hand device to retrieve
sensor data from 7 or 4 IMUs and a coordinating device to retrieve
data from the 3 sets to sending it to the receiving device: typically a
computer.

Each set of IMUs has a dedicated microcontroller, the coordinating
device has another microprocessor. This makes a total of 5 cyber-nodes,
including the host computer. The full deployment view is shown in
figure 6.12.
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6.2.6 Development View

Comparable to the way that the development view of the cooperative
pet catcher is constructed, the designer can create a development view
for the cyber-node types of the PowerGlove. The main cyber-node types
in the original PowerGlove are the computer type which represents the
device used for visualization (NC), the hand type, which represents the
cyber-node NH and the string type which represents the cyber-nodes
that connect to the sensors on the fingers (NSn).

The required sensor, actuator and medium drivers follow from the
deployment view (Figure 6.12). The required MoC layers follow from
the process view. Figure 6.13 shows the development diagrams of the
three types of cyber-nodes.

The middleware that the cyber-node types require depends on the
MoCs, algorithms, sensors and actuators used. A cyber-node that uses
a single main FSM does in theory not need any scheduling or Operat-
ing System (OS) and is implementable in C or any other embedded
programming language. However, this is a typical example of a leaky
abstraction: the model simplifies something through abstractions but
the abstraction is affected by the underlying implementation. In this
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case, interrupts, background data-transfers and communication will
interrupt the execution of the FSM and this may cause it to behave
differently. In this case, the decision (ADR-PG-0002) is to accept the
leak in the abstraction and handle and document it appropriately.

• The discrepancy is taken care of by ensuring that interrupts have
no significant impact on the behaviour of the FSM.

• The shortcoming of the FSM process model is document in the
AD.

Models and abstractions try to approximate the underlying phenomenon.
Eventually, they diverge from the phenomenon they represent. This
can be dangerous and misleading to those involved in the model.
When the divergence between model and reality has significant con-
sequences, there are typically two things one can do: either use
a more realistic or specialized model or accept the divergence and
handle it as well as possible: document and handle the consequence
appropriately.

The computer-type cyber-node does require the concurrent execution
of another MoC. The computer has an OS available so this can take care
(abstract away the implementation details) of concurrency. Existing OS
facilities are used to support communication between processes.

6.2.7 Concluding the Iteration

This iteration demonstrated the creation of an AD from an existing
system.

The next step can be to model and simulate the new hand cyber-node
type and run a software-in-the-loop experiment with the existing Power-
Glove to start a new development iteration. In this new iteration, the
views may be detailed out or expressed in an executable graphical
model such as in Ptolemy II or Simulink.

To improve and automate scenarios, a welcome addition would be to
add the behaviour of the physical components of the system to the
process view. This includes the dynamics of the hand, the user and the
objects that it interacts with. Reusing existing biomechanical models of
the hand - like that of Peerdeman et al. [69] - is a solution. In general,
one should consider using, adjusting or extending existing models of
environments and systems to avoid duplicate work.

The proposed scenarios cannot be simulated in this iteration because
there is no model created for the ‘environment’ of the system (the
wearing hand). Situations like these, in which complex dynamics are
involved, limit the possibilities of simulation and automatic testing.

The following section will sketch an approach to use the recovered AD
to extend the system. Then, the use case will be wrapped up.
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6.2.8 Extending the PowerGlove

The created AD could serve as a starting point for extending the system.
For example, in adding grasp support to the system.

The extended PowerGlove adds to the patient’s concerns that the device
must support the grasp of the user by supplying a force that amplifies
the subject’s neuromuscular intent to grasping.

This section is for illustrating the starting point of a possible approach
to extend a system using its AD. To actually do this, a more throughout
analysis of stakeholders and concerns should be conducted. The focus
of this section is on the process, not the result. The production cell
use case provides a more extensive demonstration of extension.

A suitable scenario, based on the extra concern of the extended Power-
Glove, consists of a user, wearing the glove, that tries to grasp a glass:

� S2.4 - Grasp Support

• The user wears the device in a clinical setting during perform-
ance assessment.

• The user grasps a glass wine, beer glass that is empty, full.

• Í The extended PowerGlove should apply a supportive force to
the grasp.

• o The scenario fails is the glove does apply supportive force
when NOT grasping.

This is a still a crude scenario but it suits this exploration phase and is
still extendable for later development iterations.

Figure 6.10 shows a possible extension of the logical view of the exten-
ded PowerGlove. Additions for the extended PowerGlove are yellow-
coloured. From the scenarios and the new concern, the main goal is
derived. The corresponding task is strengthening grasp, which reuses
the estimate hand pose task. The task relies on grasp detection and
grasp force production skill which in turn require some basic services
and functions as the diagram clarifies. The logical view helps in reusing
functionality of the existing PowerGlove. A downside is that it is not
clear from the view whether the functionality is located at the same
physical location, this follows from other views.

Through careful evaluation of the correspondences between the logical
view and the other views and the addition of missing elements to these
views, the system can be iteratively further developed.
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Figure 6.14 Example of the logical view of an extended PowerGlove. Addi-
tions are marked yellow.

Wrapping up

The advantages of the architectural approach in this use case are:

• Ability to express an existing architecture to improve its under-
standing and documentation

• The logical, process, deployment and development viewpoints
allow expressing the whole system from relatively independent
perspectives.

• Scenarios force the user of the framework to explicitly think
about the purpose of the system.

• New functionality can reuse existing functionality.
• Small development iterations reduce development risks and

ensure consistency throughout the development.

In this use case, the main disadvantages are:

• Difficult to simulate and test the system in the early phase as
complex models of the environment are required.

• Process view relies on abstractions that do not always hold,
requires patching that may lead to confusion.

• Scenarios provide consensus but poorly constructed scenarios
provide confusion. Designing good scenarios can be difficult.

• Not all possible scenarios can be exhaustively tested, so the
selection of the appropriate scenarios remains a design problem.

In terms of understandability, the framework provides document-
ation, scenarios and detailed information about the system’s imple-
mentation.

The extensibility of the system benefits from the logical view, which
provides an overview of all functionality available in the system and
their links to corresponding elements in the process an deployment
view. In case of the grasp support extension, the functionality was
added to the logical view through the addition of a concern and a
corresponding scenario.

The reusability is parts of the system improves from the presence
of an AD as it allows to analyse an structure the functionality and
features already available.
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(b) Abstract view of the production cell’s components
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Figure 6.15 The Production Cell

6.3
Production Cell Use Case

The Production Cell Setup [70] is a scale model of an industrial plant.
It serves as an experimentation platform for mechatronics and CPSs
featuring multi-domain sensors, actuators, a mechanical setup, power
electronics and an embedded control system. Figure 6.15a shows a
bird’s eye view of the system and figure 6.15b shows a simplified top-
view of its mechanisms.

The platform is the result of researchers and students’ efforts at the
University of Twente and intended to facilitate CPS research. In their
2009 paper, Groothuis and Broenink explored the software and hard-
ware design space of the setup. The result consisted of seven motion
control system implementations which build upon or relate to the CSP
language. In 2015, Vos extended the production cell with a sorting mod-
ule, Robot Operating System (ROS) and TERRA-LUNA support. Then, in
2018, Ridder improved the setup and corresponding software. Results
of Ridder’s improvements, include a simulation in ROS’ Gazebo simu-
lation environment; TERRA-LUNA support for Functional Mock-up Units
(FMUs), ZeroMQ messaging and ROS communication support.

The production-cell platform has the typical multi-domain and multi-
node characteristics of a CPS: Distributed control, communication and
orchestration contribute to the technical emphasis of the platform. The
level of automation of the platform reflects in its ability to manage and
orchestrate itself, mostly without human intervention. The system is
subjected to continuous development and improvements and this be-
nefits from a life cycle integrating development strategy that produces
artifacts such as simulations, tests, documentation and publications.
The coupling between control performance, mechanical design, orches-
tration and communication demonstrate the cross-cutting aspects of
the platform.

This use case builds upon the results of these previous researches
to show how to incorporate existing efforts to speed up development.
Among these previous results are a simulation model and a physical pro-
totype. Because of these previous efforts, this iteration is enumerated
N.
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Figure 6.16 Development process of the Production Cell Setup in the AF. The
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environment whereas the realization is a hard real-time system.
The hardware simulation is executed in the Gazebo simulation
environment.

In this - more extensive - use case, all domain concerns are involved.
The fact that the architecture will be tested on a real system, makes
this use case more representative for an actual CPS than the first
use cases. In the process of distilling goals and requirements, the
effectiveness of the framework’s contribution can be evaluated.
The framework’s contribution to the modularity, reusability and
extensibility is discussed. Testing and consistency will be topics
of this use case as well. Finally, the way in which the framework
helps to address the simplicity and understandability concerns
are discussed.

A summary of the iterations is, in advance, shown in Figure 6.16. The
first iteration (N) aims at setting out and simulating the preliminary
system architecture and implementation. First, using an idealized
system that does not involve any component dynamics but rather
enforces the setpoints on the plant. Then, the architecture is extended
by including component dynamics and controller to the simulation.
A fully working (co-)simulation is the goal of the first iteration. This
co-simulation might help in identifying issues and possible solutions.

Throughout the life cycle of the system, development iterations will
result in improved versions of the architecture that succeed previous
ones. Newer iterations will typically improve functionality and per-
formance and reduce issues. However, where possible, track these
earlier versions together with their corresponding architecture de-
cisions and rationale. Older versions of architecture can still provide
useful insights and information about the system.

The following sections describe the AD of the production cell (itera-
tion N): stakeholders and concerns; scenarios; the logical, process,
deployment and development views.

Architecture decisions are tracked in the digital software/model reposit-
ory in which the AD will be tracked too. A copy of the ADRs is provided in
Appendix D.3 and to specific ADRs is referred to using the ADR-PC-0000
notation where the number corresponds to a single ADR. The first de-
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cision involved in the design of this use case is the choice to track ADRs
using the Markdown Architectural Decision Record (MADR) convention
(see ADR-PC-0000).

6.3.1 Stakeholders and Concerns

The purpose of the system is to ‘mould’ blocks in a way that satisfies its
stakeholders. A stakeholder-concern analysis will help in determining
what the stakeholders would satisfy.

The first step is to determine the involves groups of stakeholders. The
AF suggests three classes of stakeholders (chapter 3) that are the
starting-point of the analysis.

Architects, Designers and Developers are those that involve in
the analysis, control and documentation of the system.

Builders and Maintainers care about the feasibility of the system
and the maintainability of its components.

End-users care about the performance and cost of the system and
the effort involved in operating it.

The general concerns of the domain stakeholders are listed in the AF.
Additionally, the following specific concerns are identified:

Self-dependence The system must operate with as little supervision
as possible (end-users).

Productive The system must be productive in moulding blocks (end-
users)

Compatible The system must be compatible with its intended envir-
onment (builders, end-users)

Note that the use case involves a scale model and that full system is
much bigger. Compatibility with the intended environment thus boils
down to compatibility with (the scale of) a factory floor. These system
specific stakeholders and concerns form together with the standard the
full set of the production cell in this iteration.

It may be difficult to distil all relevant stakeholders and concerns from
the information available to a user of the framework. A somewhat
crude initial guess will provide a basis for the first iteration, the out-
come of which can be used to review the selection of stakeholders
and concerns in later iterations.

6.3.2 Scenarios

Scenarios describe a situation and the expected behaviour of the sys-
tem.

The normal production operation is a very important scenario that
describes the situation in which the system functions as intended. Situ-
ations in which the system does not function as intended must be
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evaluated too, to analyse the consequences of these situations and how
to handle them. The most probable scenario that describes a situation
that is abnormal, is that a component of the system halts, causing any
blocks in that component to halt. In this scenario, the system must
ensure that feeding components do not overload the halting component
and cause collisions.

These basic scenarios will allow an initial problem analysis and a crude
solution design. The ability to simulate scenarios can be helpful during
analysis, design and test. To enable this, a simulation environment must
be set up that is suitable for the kind of system under consideration: a
multi-body three-dimensional mechatronic CPS.

Simulation Environment

To make such a scenario testable and preferably automated, a suit-
able test environment is required. A complex physical system like the
production cell undergoes more interactions than can conveniently
be mathematically described. Especially the physical interactions of
non-rigid (realistic) multi-body are difficult to model analytically. An
outcome to work with such systems is the use of a multi-body physical
simulation environment and Gazebo is such an environment. Gazebo
is part of the ROS ecosystem and as such is highly integrated into
the robot development system. The use of Gazebo in this iteration is
decided in ADR-PC-0001.

A suitable simulation of a complex system requires modelling of its
physical components. Though this may sound like a difficult extra effort
that is not necessarily true: especially the components of the system
that need manufacturing will be modelled digitally in the first place.
Creating simulation models is then a matter of translating these digital
models which is rather trivial with modern simulation software that
supports importing and exporting a wide range of models. In the case
of the production cell, the components are modelled in the SolidWorks
CAD application and then imported into the Gazebo simulation system.

The resulting model is shown in Figure 6.17a and the striking similarity
to the actual production cell (Figure 6.15a) is promising. Figure 6.17b
shows a sample of the simulation interface available to the user.

An attractive aspect of the simulation environment is that it can be
interfaced with using the same control software as can be used with
the actual plant. Another advantage of the simulation environment is
that measurement of states and variables is not limited to those that
have a corresponding sensor attached. This allows better analysis of
the simulation.

The following section discusses the scenarios and their corresponding
Gazebo model.

Normal Production Operation

The normal production operation scenario describes a situation in which
the production cell operates to produce blocks.
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(a) 3D overview of the model (b) Sample of simulation interface. LRUD: plot traces;
list of topics; command console; Gazebo visualiza-
tion

Figure 6.17 Simulation model of the Production Cell Setup in Gazebo

� S3.1 - Normal Production Operation

• This scenario describes the full production cell in a standby
situation

• Zero to eight objects are placed in the production process,
spaced at least half a length of an edge

• The production cell is given the START signal

• Í The system should process all items

– Blocks are fed to the moulder

– Blocks are moulded

– Blocks are removed from the moulder

– Blocks are stored

• o The system fails if any operation on any block fails, i.e., if a
block gets lost in the process or stuck in a component.

To enable the initial situation, the Gazebo simulation environment is set
up. The output of the simulation is exposed on the ROS communication
bus which allows a simple listening ROS node to determine whether
the scenario succeeded or failed. The Gazebo simulation timescales
with processing power and can potentially run faster than real-time,
enabling test speed-ups. Figure 6.18a visualizes scenario S3.1 and
shows a situation in which the scenario test fails.

Collision Avoidance

An important aspect of the system is that collisions should be avoided.
This test describes the situation of collision and how the system should
(not) act to resolve such a situation. Figure 6.18b visualizes this scen-
ario.
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(a) A scenario that describes that blocks must not leave
the belt. In the situation pictured, the scenario
failed.

(b) Visualization of a scenario in which a collision is
tested.

Figure 6.18 Visualization of two scenarios of the Production Cell

� S3.2 - Collision Avoidance

• This scenario describes the logistics unit and the moulding unit.

• At any pick-up or drop-off position, a block is put and hold.

• Another block is in the system too.

• Í The system should avoid collisions by waiting until a position
is free

• o The system fails if an object gets stuck or leaves the process

6.3.3 Logical View

Using the concerns and the proposed scenarios, the logical view can now
be created. By evaluating the stakeholders, concerns and scenarios,
a first goal is extracted: Produce Moulded Blocks. This rather straight-
forward core goal can satisfies the concerns and fits the proposed
scenarios of the production cell and is, therefore, a suitable starting
point.

This goal can be decomposed into tasks and consequently skills. Two
tasks support the main goal. First, Block Moulding Operation Control
to ensure that each component operates as intended. The scenario
describes that collisions should be avoided while the concern of self-
dependence was posed. A design question that comes to mind is: what
type of coordination between components is most suitable. This answer
is decided in ADR-PC-0004: decentralized and opportunistic to allow
subsystems to function independently of other systems. Only some
supervision and interaction is required to orchestrate the system. That
means that the subsystems should coordinate.

The Supervision and Interaction task takes care of this coordination
of the system as a whole. Interaction was not explicitly listed as a
concern but an architect might suspect that the end-user still wants to
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Figure 6.19 Logical view of the Production Cell

start, pause and (emergency)stop the system, so this is decided to be
included in the supervision task.

The user of the framework is the architect of the system and uses the
input from stakeholders to coordinate the creation of the architecture.
The architect must realize that this input is a guideline and that their
freedom remains to add or alter the system as they see fit. If it were
not for these difficult situations that require insight and analysis, there
would not be much for an architect to do in the first place.

The hierarchy is further decomposed. The Block Moulding Operation
Control task depends on operation skills that enable the task: moulding
a block, feeding the moulder, extracting from the moulder and logistics
management.

The Supervision and Interaction task is enabled by a plant coordination
skill and communication with the Block Moulding Operation Control
task.

Finally, the skills are supported by services and functions. For now, the
skill-elements will be supported by a set of services and functions that
help in plant control whereas the plant coordination and plant supervi-
sion skills will be supported by networking services and functions. In this
way, the plant control functionality is decoupled from the application
and can be reused or developped independently. Appendix F provides
information about the control library used. Figure 6.19 visualizes the
logical view described above.
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In an early iteration a concise description of the functional elements
is often sufficient because of two reasons:
First, it is hard if not impossible to determine all details of the system
in such an early stage of development; Second, defining all functional
elements that support the full implementation of the final system is
often not necessary in prototypes and simulations.

6.3.4 Process View

The process view comprises the behaviour of the system through com-
positions of processes in different MoCs.

The previously discussed AEs guide the creation of the process view. As
indicated by the AF, this typically starts by determining how the top-
most goals must coordinate the corresponding tasks to be successful
and then repeat this for the lower levels.

The logical view gives an overview of what the system needs to achieve.
To enable the Produce Moulded Blocks goal, both supporting task must
be active throughout the operation of the system. The supporting skills
need to be active throughout the operation too. This can be achieved
using parallel processes or repetitive sequential processes. For this
global coordination, a Communicating Sequential Processes (CSP) MoC
is selected that - based on experience - integrates well with this type of
system and available tools (see ADR-PC-0003).

Within this base MoC, the processes that enable the tasks and skills
must find a place. The parallel nature of the production cell’s compon-
ents favour parallel CSP processes for sequence control and decent-
ralized opportunistic control. The information required from sensors
and the control setpoints are modelled as CSP readers and writers. The
sequence controllers have a state and event nature so they might be
modelled as FSMs. The output of the sequence control section needs to
lead to actual control of the system. An actuator control CSP process
is added with a similar structure but with discrete time MoC for the
controllers instead.

Figure 6.20 visualizes the structure of the process view of this iteration.

The discussed process view will be implemented in the TERRA-LUNA en-
vironment because of its support for the relevant MoCs and integration
with available hardware (see ADR-0002). These models are configurable,
editable and automatically generate corresponding program code.

The process view does not model the behaviour of the mechanical
system as the mechanical design freedom in this use case is limited
and appropriate information about the mechanical behaviour can be
retrieved from the scenario simulations.
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Figure 6.20 Overview of the first iteration of the process view of the produc-
tion cell setup. The process view denotes a composition of CSP,
FSM and DT MoCs.

6.3.5 Deployment View

The deployment view describes the structure of the system under
consideration. This view involves the relation between physical com-
ponents of a system and the goals and tasks that they need to achieve
cooperatively.

The goal is to determine the connection and structure of the physical
and cyber parts of the system to enable the goals and tasks of the
system.

The compatibility concern might influence this view significantly: the
use case represents a scale model which should be designed for com-
patibility with the scale of a factory floor. That means that using a
single cyber-node at the centre of the system may not be practical.
So, two cyber-nodes will be used. One at each end of the production
cell, connected by a communication medium. Furthermore, all sensors
and actuators connect to the corresponding cyber-node. This provides
us with an initial deployment view for the production cell. Figure 6.21
visualizes the deployment view of the production cell in this iteration.

The deployment view is also implemented in the TERRA-LUNA envir-
onment though this environment has some limitations with respect to
the components that can be modelled. Physical components, external
nodes and communication links between nodes are not well described
by the TERRA-LUNA framework.

6.3.6 Development View

The last view of the architecture to be constructed in this iteration
is the development view that models how the cyber-nodes should be
implemented to support the structure and behaviour described in the
other views.
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Figure 6.22 Development view of the production cell, using ROS communic-
ation

Also, decisions about what libraries and implementations to use belong
to this model.

Figure 6.22 visualizes the development view of the production cell.
The result is an overview of the structure of the cyber-nodes to be
implemented.

The production cell uses a real-time execution framework LUNA, a
library with control algorithms and a ROS communication library.

6.3.7 Putting it all together

The models of the process view and the deployment view where mod-
elled in the TERRA-LUNA environment. To create actual executable
applications, the development model needs to be modelled in the
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TERRA-LUNA environment too. Currently, there is no support for model-
ling such a development model, so this had to be done by hand:

• Configure the MoCs and their coordination
• Configure drivers for communication, sensors and actuators
• Link all libraries appropriately

In the case of the production cell, this is done through a combination
of hand-coding, code-generation and build automation. This process
resulted in executable binaries that represent the corresponding cyber-
nodes.

The sensor and actuator interface was chosen such that these binaries
can be combined with a simulation using ROS Gazebo. A simulation
was set-up and configured - using technologies developed by Ridder
[72] - to assess the result of the architecture. This simulation setup
allows to develop and test preliminary developments before applying
them to a physical setup. In the case of high-cost or sensitive systems,
this can be a useful alternative to testing on the physical system.

Though the simulation environment was successful in this use case,
the technologies used are still far from perfect. To name some signi-
ficant issues:

• The performance of the TERRA-LUNA / ROS Gazebo setup was
very low, about 0.1x normal time.

• Because a standard interface between applications and tech-
nologies lacks, creating co-simulations often requires custom
created simulation interfaces which are tedious to create and
error-prone.

• Representative models of the scenario need to be created which
is often unfeasible.

• A simulation is not the actual system and it is unclear what
discrepancies between the simulation an reality mean to the
results.

The alternative in these situations is to test and validate parts of
the system digitally and execute an integration test on a physical
prototype or system.

The results of the integration of the architecture helped in testing the
sequence control processes. Another result of the simulation is that the
control effort is too high when using step-shaped references. Also, the
actual production cell has no absolute position sensor - as opposed to
the simulation - but only limit-switches. Homing functionality is required
to make the production-cell work. Furthermore, the evaluation of the
architecture led to a new concern: safety.

The following section starts a new iteration to improve the production
cell architecture.

6.3.8 Continuing development, Iteration N+1

Iteration N+1 takes the development of the production cell further by
improving the motion controllers, introducing safety functionality and
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realizing the architecture on the physical setup. To ease the transition
from simulation to realization, the setup goes through an intermediate
step in which the cyber-nodes are realized on hardware but the plant is
still a simulation. The main benefit of this Hardware in the Loop (HIL)
approach is the ability to find controller realization issues and bugs
without risking the actual system which increases system safety and
decreases realization costs.

6.3.9 Stakeholders and Concerns

The previous iteration raised a safety concern, and to take care of it, it
is added to the system’s AD.

Safety All stakeholders care about the physical safety of the users
that work with the system, may it be because of direct danger
or indirect responsibility. The system should be able to handle
emergencies.

6.3.10 Scenario Viewpoint

A scenario is added to the architecture that represents a situation in
the safety concern is very relevant:

� S3.3 - Emergency

• The system is in any state, stopped, paused or running.

• Any controlling cyber-node detects an emergency

• The cyber-node triggers an emergency signal

• Í The system should halt within 100ms

• o The system fails if it does not come to a halt within 100ms

• Í When the system is not sure whether there was an emer-
gency (no communication possible) it should also halt.

6.3.11 Logical View

The logical view is now adjusted to accommodate new and modified
functions. Figure 6.23 visualizes the modified logical view.

• Safety features are added. The supervision and interaction tasks
could be made responsible for the emergency feature. The plant is
extended with an additional supervision skill and a communication
service. A requirement is added to the plant supervision skill:
maximum 100ms between an emergency signal and actual plant
stop.
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Figure 6.23 Extension of the logical view in the second iteration. Includes
communication service, plant supervision and motion profile
generation.

• The control-effort of the first iteration was too high. By using
motion-profiles, the peaks of step-shaped setpoints can be avoided.
The motion control service is extended by adding a motion profile
generator function.

• A homing procedure is required to obtain the absolute position of
the actuators. This functionality is in the scope of the feed, mould,
extract and store skills.

6.3.12 Process View

The modifications of the logical view must now be implemented in the
process view. To account for motion profile functionality and homing
operation, a new process is added as an intermediate between the
sequence and actuator control processes. Figure 6.24 shows this exten-
sion. Both homing sequences and motion profile generators are added
to a CSP process. To allow switching between the homing and motion
profile state, an alternative construct is used (indicated by block square
in the centre).

The safety functionality is implemented in the lowest level process: the
actuator control process. To ensure that the system passes the scenario
and requirements, the CSP process was modified with two sequential
safety processes. The safety processes send a status message with a
sequence number to the next node in a chain. The next node checks
the sequence number and the state of the message. If both sequence
number and state are fine, the processing is continued. If the status
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Figure 6.24 The process view is extended with a motion control model that
takes care of homing and motion profile generation.
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Figure 6.25 To ensure safety, a mechanism of exchanging safety messages
is implemented in the low-level controller. The controller does
not block on messages.

is emergency, the node stops operating and forwards the message. If
no message arrives with an expected sequence number within 100ms,
the node also shuts down. The system recovers when all nodes are fine
and the sequence numbers of messages are correct. Figure 6.25 shows
the modified actuator control process.

6.3.13 Deployment View

The deployment view does not need significant modifications in this
iteration, except for a communication line between cyber-nodes that
allows the exchange of status and safety information and the addition
of two limit switches at each actuator to enable determine the absolute
position through homing.
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Figure 6.26 The updated development view of the Production Cell. The ROS
communication is replaced by actual sensors and actuators

6.3.14 Development View

The development view of the system is now adjusted to incorporate the
changes in the process view: addition of a motion control process, a
safety process, a motion profile generation library, ZeroMQ libraries.
The system can be tested with the previously discussed simulation
environment and if that suffices, it is time to test it on the physical
plant. To do this, only the connections in the development view model
and corresponding parts of the system need modification. The resulting
development view is shown in Figure 6.26.

6.3.15 Concluding the iteration

Once again, the updated models can be integrated to test the architec-
ture. First, in simulation, and if that succeeds, on the physical system.

Moving from simulation to real system involved some difficulties: the
mechanics of the simulation behave not exactly as the actual mech-
anics so the tuning of the controller and motion parameters was off.
This, however, was expected and resolved through the well known
straightforward trial and error process of parameter tuning.

The resulting system can be witnessed on video, see the link below.
https://youtu.be/8rRGD0P6vJM

https://youtu.be/8rRGD0P6vJM
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Wrapping up

This use case discussed two iterations of applying the AF to a design
problem.

Code generation played an important role in the realization of the
system from the AD. Though code generation makes the realization
process initially faster, it will require extensive knowledge about the
underlying implementation as soon as something works differently
than expected.

Because the mechanical design of the production cell already existed,
its design was not part of the design process. The framework provides
only few tools and means that help in the mechanical design of the
system.

The main advantages of the framework in this use case are:

• Architecture helps in reasoning about possible structure of the
system.

• The framework supports an iterative design process, combined
with HIL techniques, to streamline the transition from simulation
to realization.

• The production cell could be simulated as a whole to enable a
safe, reusable testing environment.

• The meat of the architecture is tracked in the form of Architec-
ture Decisions (ADcs) and linked to the corresponding Architec-
ture Elements (AEs).

The subsequent disadvantages of the framework in this use case are:

• No tools available to model and realize the development view.
• Integrating all models to enable simulation requires writing

custom wrappers and coordinators which is tedious and error-
prone.

• Though the mechanical system design was already determined,
the framework provides very few means to design and analyse
it.

The structured analysis of stakeholders and concerns helped in de-
termining scenarios and correspondingly the required functionality
and components for an effective system. Integrating and simulating
the system at the end of an iteration helps in assessing its perform-
ance and indicating whether all requirements are met. In the use
case, the integration of the first iteration led to a new concern, that
of safety, and the framework allowed to translate this concern to a
corresponding effective architecture.

By separating application specific goals and tasks from generic func-
tionality and components, the modularity and reusability benefit.
For example, the control libraries and I/O interface were decoupled
through logical services from the goals, tasks and skills of the system.

The help that the framework provides with extending is demon-
strated in iteration N+1, in which safety signal functionality is added.

A testable system typically results in fewer problems during run-time.
The framework provided means to improve the testability of the CPS.
The downside of these means is that they require suitable models
of the system and its environment which are not always available or
feasible.
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The framework supports the consistency of the production cell ar-
chitecture by providing rules to check for consistency between archi-
tectural elements and an iterative design process with integration
both early and often through scenarios. In this use case, testing and
consistency checking helped in detecting implementation issues like
unsafe control efforts and the absence of absolute position sensors
next to the big number of smaller and general bug-fixes.

The understandability of the system benefits from the availability
of an AD that consists largely of models that are used in the actual
system too. Also, the tracking of architecture decisions and rationale
helps in improving the understandability of the system.

Whether the simplicity of the system benefits from the framework
is hard to subjectively determine but rather a matter of preference.
The framework tries to steer towards a goal-oriented and iterative
development process while keeping the AD concise and to the point.
Some designers, however, might prefer a purely computer-model
based approach that does not involve a stakeholder-concern analysis
and the specification of scenarios.

A video recording of a demonstration is available online.
https://youtu.be/8rRGD0P6vJM

https://youtu.be/8rRGD0P6vJM
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Discussion

The design and management of CPSs is complex and a bottleneck in
their adoption. Though industry and academics are putting much effort
in CPSs research, a need for stronger modelling semantics remains.
This research aimed at developing an Architecture Framework (AF) to
improve the design and management of CPSs in research projects in
order to create better CPSs. The goal was set out in four research
questions that yield the elements of the AF:

Q1 What is a typical CPS: rationale, chapter 2

Q2 What aspects improve the design and management of CPSs:
stakeholders and concerns, chapter 3

Q3 What are suitable viewpoints to cover these aspects: viewpoints,
chapter 4

Q4 Does the resulting AF indeed improve CPSs: chapter 6

The following sections discuss these research questions.

7.1
What is a Typical CPS

In chapter 2 the main characteristics of CPS were extracted to an-
swer the research question ‘What is a typical CPS’. A clear separation
between cyber and physical; with a hierarchical structure of informa-
tion flow between these worlds was identified. This notion of separate
worlds builds upon the assumption that they can be modelled relatively
independently but in the end, the cyber world consists of physical ele-
ments. So, strictly speaking, there is no real independence but only
approximated independence. To make sense of the physical world, the
process of information extraction in a CPS was identified and split into
three phases: experiment, theory and computation. MoCs are the gen-
eralization of modelling conventions in which these phases work and
interconnecting different kinds of MoCs is the foundation of heterogen-
eity. The physical components of a CPS were determined: cyber-nodes,
sensors and actuators, communication media and external nodes. All
abstractions, however, suffer to some degree from leakyness. This
comes forward in the abstraction that the cyber world and the physical
world solely interconnect through sensors and actuators. Situations in
which the physical world does affect the cyber world and vice versa are
not modelled intuitively in this framework. To account for this, physical
components or communication media dynamics must respectively rep-
resent the influence of cyber-components on the physical world and the
influence of the physical world on the cyber world. This limitation is the
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price we pay for the benefit of being able to decouple the two worlds.
The result of this analysis is a description of a base CPS that essentially
is an abstraction of specific CPSs and that provides an interface to these
specific CPSs without having to concern about their implementation.

We did not decide on a hierarchy of information in the cyber-world. Such
a hierarchy, however, seems to exist in most systems. The ability to
reason about the level, quality, and hierarchy of information could be a
useful concept to improve the power of the architecture framework and
corresponding architecture descriptions. A possible solution to this may
be found in the field of ontologies. This is a topic for future research.

Composing different models of computation is essential in the frame-
work. This is a non-trivial problem which involves weighing different
methods by their advantages and disadvantages. We discussed two
solutions for the simulation of heterogeneous models in the appendix
that have different benefits and problems. A de-facto solution to het-
erogeneous composition does not yet exist.

We proposed the use of graphs as a possible mathematical notation of
relations. These graphs are powerful in that they are combinable and
analysable with graph theory. Such an analysis might automate parts
of the design procedure by, for example, optimizing the deployment or
restructuring the development model for cyber-nodes. Thorough formal
validation of architecture descriptions belongs to the possibilities. We
did not yet explore this possibility and propose this to be a topic of
future research.

7.2
What aspects improve CPS’

design and management

Good practice in systems and software engineering is to first determ-
ine which parties are involved in a system and what their concerns
are. This AF sees to this through the adoption of stakeholders and
concerns as primary design artifacts. Chapter 3 translated aspects that
improve CPS’ design and management into eight concerns to answer
question Q2 in a form that is compatible with an AF. This choice of
domain concerns is based on literature review but is extensible by the
user of the framework to allow the addition of system-specific concerns.
It remains questionable whether the proposed selection of concerns is
best.

7.3
What viewpoints cover these

aspects

Chapter 4 explained the viewpoints that make up the core of the AF.
These viewpoints answer research question Q3 and are formulated to
comply to the IEEE-42010 standard.

The scenario viewpoint aims at describing the intended use of the
system and the interaction with its environment. The logical viewpoint
provides a perspective on the system aimed at distilling the functionality
and required components from concerns and scenarios. The process
viewpoint focusses on the description of behaviour of the physical and
cyber aspects of the system. The deployment viewpoint targets the
structure and connection of the physical components of the system.
The development viewpoint provides a perspective on the structure of
the cyber-nodes of the system.

In the use cases, these viewpoints showed useful to describe different
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systems. The viewpoints helped especially in the creation and design
of cyber-nodes that interact with the physical part of the system and
the environment. The design of the physical aspects of the system
themselves, like mechanics, is more difficult using these viewpoints
and relatively underexposed in the use cases.

The separation between behaviour - through the process viewpoint -
and structure - through the deployment viewpoint - can be troublesome
as structure and behaviour are physically tightly related. This results
in coupling between the two views that might result in inconsistencies
when integrated. Currently, early and often integrating the views is the
proposed solution to this possible issue.

7.4
Does the AF improve CPS’
design and management

In this research, we discussed the application of the architectural ap-
proach to three use cases. These use cases serve two purposes: they
help to show whether the AF indeed improves CPSs (question Q4) and
they serve as example applications for the AF. Especially the third use
case is useful because it applies the AF to a real-life system that rep-
resents a typical CPS and will, therefore, do a better job at pointing out
issues with applying the framework. These use cases, however, provide
only anecdotal ‘proof’ of whether the framework is useful in practice.

7.4.1 Reviewing the Concerns

Section 3.2 listed the domain concerns of the AF and this section will
discuss how the AF addresses each of these concerns. The starting
point per concern is an explanation of what extra handles, tools and
methods specific to this concern the AF provides. This then leads to an
explanation of the advantages and disadvantages of using the AF for
addressing the concern.

Effectiveness

The framework supports the effectiveness of CPSs by providing a struc-
tured way to work with high-level concerns and goals through the
stakeholders and their concerns and the decomposition of goals in the
logical view. In the use cases, the framework guided the translation of
concerns and scenarios to decompositions of functionality and support-
ing components. The main problem with this top-down approach is that
it requires the user to specify functionality and components rather early
in the process. Substituting implementation details with placeholders
might solve this problem in early phases of development.

Modularity

The logical, process, deployment and development viewpoints allow
the user of the framework to decomposition complex models and func-
tionality into compositions of smaller sub-models and sub-functionality.
This addresses the modularity concern. The Production Cell use case
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demonstrated this modularity by separating control functionality from
motion profile generation and I/O functionality.

Consistency

The framework provides an explicit set of correspondence rules with
methods to check and resolve inconsistencies. In the use cases, the
framework provided operations on views and correspondence rules to
help in maintaining consistent views. Integrating the system’s views in
the iterative development cycle of the framework allows to incompatib-
ilities to be resolve early and converge. Currently, no tooling is used to
automatically evaluate consistency rules.

Reusability

As described in the Reusing-phase, the reusability concern is addressed
by the framework because it provides its users with the ability to reuse
components of an architecture description in different architectures.
The architecture also separates computation and communication within
MoCs from its development implementation which allows the re-usage
of processes on different hardware architectures. The PowerGlove use
case demonstrated how an existing system can be reused by recov-
ering its architecture. In the Production Cell use case, the framework
promoted reuse of software components through the separation of
application-specific and generic functionality.

Extensibility

The framework allows extension of the architecture description by
providing its user with the possibility to extend the architecture models
and reuse existing components of these models. This addresses the
extensibility concern. The Production Cell use case showed how the
framework supports extending functionality of a system by adding
additional safety concerns and updating the other views accordingly.
The result was a working system that incorporates an emergency signal
mechanism.

Testability

The testability concern is addressed by the many methods that the
framework supplies for the testing of the system and parts of it in all
phases of the development (modelling, simulation, prototyping, produc-
tion). In the Pet Catcher use case, an approach to test the architecture
through basic (co-)simulation was demonstrated. The Production Cell
use case showed how to framework makes co-simulation and HIL pos-
sible to incrementally migrate from simulation to actual system. Though
these approaches look promising, a range of problems persist that must
be resolved to make it useable: the interface between co-simulated
models requires custom wrappers and connectors which can be hard to
write and error-prone. Furthermore, the performance of the Production
Cell setup was currently very low. Meaningful simulation requires the
use of appropriate models of the environment and interacting systems.
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Depending on the CPS’s context, modelling the environment and in-
teracting subsystems can be a daunting task. Discrepancies between
simulations and reality are another problem of this approach and the
impact of these discrepancies can be hard to assess. In summary, a full
system simulation is only feasible in a limited number of situations and
when such a simulation is not possible, the user of the framework must
resort to testing sub-systems instead and conducting integration tests
on a prototype or actual physical plant.

Understandability

The models in the scenarios and deployment viewpoints correspond
closely to the actual appearance of the system. Their explicitly defined
relations with other viewpoints ensure that from every viewpoint the
user of the architecture can understand how an architectural element
of one of the views relates to the appearance of the actual system. This
makes the architecture of the system understandable to the frame-
work’s users, addressing the understandability concern.

The PowerGlove use case demonstrated the process of architecture
recovery to obtain an AD for the device. The question remains whether
creating an AD of an existing system for the sake of understanding and
documentation is worth the effort. This will probably depend on the
preference and the experience of the user of the framework.

Simplicity

Although this work contains a lengthy elaboration of the rationale be-
hind key decisions of the framework, the architectural approach itself
is rather simple to apply and maintain as we showed in the previous
chapter. The approach stimulates straight-forward architecture descrip-
tions that relate closely to the goals that the system’s stakeholders
have in mind. Whether this actually results in a simple architecture
remains a question that is particularly difficult to answer objectively. A
possible way to determine this is to survey potential users of the AF to
have them assess the simplicity of the resulting architectures.

7.4.2 Comparison with existing frameworks

AFs have been around for a long time and they have been proposed in
different fields. Some of the more well-known ones are - introduced in
section 1.6.2 - are:

• 4+1 Framework
• 5C Architecture
• CAFCR Framework

To compare these existing ones to the framework proposed in this
document, they will be briefly discussed in the light of the domain
concerns.
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4+1 Framework

Kruchten [26] proposed with the 4+1 view model one of the most
popular software frameworks to date. He proposed 4 views:

Logical View Targets the functional requirements of the system, class
diagrams form the central model to decompose the system into a
set of key abstractions.

Process View The process view takes into account the organization of
tasks, processes and their communication. The components are
tasks and processes and they are connected with communication
types, like messages or rendezvous.

Development View The development view focusses on the organiza-
tion of software modules and subsystems. A layered hierarchy of
components is a suitable model according to Kruchten.

Physical View Compares best to the deployment viewpoint of the
AF. This viewpoint focusses on non-functional requirements like
availability and reliability. Kruchten indicates that a range of
notations is possible to model this view.

Scenarios Scenarios are used to discover architecture elements and
to validate the resulting system. The typical notation of a scenario
is a combination of the components of the logical view with the
connectors of the process view.

The purpose of views of the 4+1 framework has much in common
with that of the proposed AF. The later could even be seen as the 4+1
framework for CPSs but this would wrongly indicate a mere translation
of the 4+1 framework to the CPS domain. The proposed AF was de-
signed based on good practices in the worlds of systems, software and
CPS design. Especially the process and deployment viewpoints of the
proposed AF and the 4+1 framework are specific to respectively the
CPS and the software domain. The 4+1 view model does not provide
the unification of physical and cyber processes through the concept of
MoCs, nor the insight of a process composition model which is essential
to model the heterogeneity of CPSs. The physical view of the 4+1
view model describes the mapping of the software onto hardware. The
comparable deployment viewpoint of the proposed AF focusses on the
physical structure of the CPS by modelling it as a graph of cyber-nodes,
physical components, sensors, actuators, communication media and
external nodes. In the proposed AF, the logical view is not only used
to manage the functionality of the system, but also to manage the
functional and non-functional requirements of the system.

An advantage of the 4+1 view model is that each viewpoint is suppor-
ted by a wide range of tooling and diagrams to visualize and analyse
systems using the framework. The proposed AF is lacking such support.

5C Architecture

Lee, Bagheri and Kao [25] introduced the 5C Architecture as a guideline
for the implementation of CPSs in manufacturing systems. The archi-
tecture consists of 5 levels that target connection, conversion, cyber,
cognition and configuration. For each level, possible algorithms and
technologies are listed that could be used in realizing this level. The
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5C architecture shares the concepts of cyber-models that mimic the
behaviour of the related physical system.

The 5C architecture, however, does not specify the details, semantics
and operations on each of the levels of the architecture. Consequently,
it is hard to use the 5C architecture as a guideline for the development
of (manufacturing) CPSs.

CAFCR Framework

The Customer Objectives; Application; Functional; Conceptual; Realiz-
ation - or CAFCR - framework is developed by Muller [27]. It provides a
framework for the creation of products and systems.

Customer objectives describes the system from a perspective of key
drivers and business models. This viewpoint answers what the
customer wants to achieve.

Application viewpoint describes the stakeholders and concerns and
the system’s context. The viewpoint answers how the customer
realizes his goals.

Functional describes the use cases, a functional decomposition and
non-functional requirements. The viewpoint answers what the
system is.

Conceptual focusses on the concepts (stable) that implement the
functionality of the system.

Realization focusses on the implementation details (unstable) of the
product. Together, Conceptual and Realization answer the how
questions of the system.

The customer objectives and application viewpoint are comparable
to the stakeholders and concerns and the scenario viewpoint of the
AF. The function viewpoint corresponds to the logical viewpoint of the
AF and the conceptual and realization viewpoints correspond to the
remaining three viewpoints.

The CAFCR architecture approaches system and product design from
viewpoints that focus on different phases in the product realization. Es-
pecially the decomposition of the system implementation in conceptual
and realization is different. Splitting up implementation in a stable and
an unstable part is an appealing method to improve understandability,
reusability and modularity. The logical viewpoint of the proposed AF
features a layered hierarchy that shows some similarity to this method
in the functional hierarchy.

7.4.3 Architecture Framework in the Context of En-

gineering Methods

An AF provides means to work with ADs in a specific domain. A frame-
work describes both the types of elements of a corresponding architec-
ture as well as the methods used to work with them. The AF proposed
in this document describes a number of methods to work with the five
viewpoints and the supporting architectural elements. Most of the
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methods and techniques used in the AF find their origin in existing
development framework. Take for example iterative development; the
development process describes by the V-model or Model-driven engin-
eering. These techniques are no replacement for an AF but rather a
companion to it: as a matter of fact, the user of the AF is recommended
to use the tools and methods that they prefer to work with.

The added value of an AF is that it provides guidance during the cre-
ation of an AD in the form of viewpoints and supporting AEs, together
with recommended practises for models and operations specific to the
problem domain of the framework.



8
Conclusion

Designing CPSs is complex because of their heterogeneous and dis-
tributed nature and the great number of dependencies that arise from
the stakeholders and their concerns. Possible applications of CPSs are
promising but their realization is limited by the difficulty of designing
and managing these complex systems. Reducing this complexity is key
to enabling more promising CPS applications.

In an effort to cope with this complexity, this work introduces an Archi-
tecture Framework (AF) for Cyber-Physical System (CPS) that aims at
improving design and management by helping in managing their com-
plexity throughout their life cycle. The creation of the AFs is disguised
in four research questions.

‘What is a typical CPS?’ boils down to a base CPS that consists of com-
ponents that represent and interconnect the physical and the cyber
world. The behaviour of the system is the result of distributed interac-
tion between the two worlds. MoCs provide the abstractions that allow
modelling individual parts of the system while their composition yields
a model of the comprising system. Associated with these MoCs is the
remaining difficulty of defining their interactions.

The aspects that improve the design and management of CPSs are
selected as effectiveness, modularity, consistency, reusability, extens-
ibility, testability, understandability and simplicity. By selecting these
non-functional qualities, improvement can be defined without know-
ledge of the functionality of an actual CPS. These domain concerns
relate to three groups of domain stakeholders.

The scenario viewpoint provides a situational overview and a way to
take the result of other viewpoints together to validate the result. This
viewpoint relies on specifying how the system should work. Ideally, a
scenario is a representation of the actual situation and implemented
in a computer testable way. However, though many tools exist to do
this, some situations are difficult to model or simulate which limits the
usefulness of the scenario.

The logical viewpoint aims at distilling what the goals of the system
are and what elements are needed to support this goal. The resulting
model is a decomposition of the system’s primary objectives into a
hierarchy of ‘elements’. Adding functionality or changing requirements
find an entry-point into the system in this hierarchy. The main difficulty
remains to choose the right decomposition of components.

The process viewpoint approaches the system from a behavioural point
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of view. CPSs are by definition heterogeneous and the viewpoint takes
that into account through the concept of Model of Computations (MoCs),
providing a model-kind that allows for specifying the composition of
MoCs. Modelling and design tools that allow composing heterogen-
eous MoCs are getting more common, allowing for a wider range of
integration possibilities into project workflows. The interaction of MoCs
requires attention as the rules of this interaction are ambiguous and
may differ by convention or per tool while this interaction can signific-
antly influence the resulting system.

The deployment viewpoint focusses on the connection of components
of the physical and the cyber world. From this perspective, the connec-
tion and placement of physical components, cyber and external nodes,
sensors, actuators and communication media can be considered. A
consequence of separating behaviour and structure through the pro-
cess and deployment view is their inherent dependence: linking of
components yields alterations in their behaviour.

The development viewpoint focusses on the implementation of cyber-
nodes: which connections, middleware and composition of processes
give rise to corresponding cyber-nodes.

This selection of five viewpoints covers the general aspects of CPS
design and the extensibility of the AF allows adding specific viewpoints
to a system’s AD.

By evaluating three use cases, the successfulness of the framework was
assessed while at the same time, these use cases serve as application
examples. The use cases showed by example how the framework copes
with the eight central domain concerns. The proposed AF seems to
benefit the process of design and management of CPSs in terms of the
eight concerns. Yet, its application raises conceptual issues in itself
like how to handle detailed functionality in an early design phase and
how to integrate the design of physical components into the process.
Besides these conceptual issues, practical issues will occur like: how
to sufficiently model the environment and interacting systems and
how to set up an appropriate simulation environment. Though this
work showed that there are definitely benefits to using the proposed
framework to design CPSs, there are also issues that need attention.
In the end, it remains the architect’s job to pick the right tools for the
job and weigh the advantages and disadvantages of using a framework
like that discussed in this work.

8.1
Future Research

Though the use cases showed the impact of the framework with respect
to the domain concerns, the validation would benefit from applying
the framework in an independent project. Additionally, future research
should look further into comparison of the AF with existing frameworks,
favourably through systematic analysis.

The consistency rules between views have been specified but no method
for automatically checking and analysing them is proposed. As there is
much information in the relation between the elements of views, future
research should explore the automatic checking of consistency rules
and the analysis of inconsistencies.

The TERRA-LUNA framework provides a development environment and
software framework for the development of real-time software. Cur-
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rently, the software supports the design of process views based on
CSP models. Extending the software with the ability to compose het-
erogeneous MoCs makes TERRA-LUNA more suited for CPS design and
development. The TERRA-LUNA architecture models provide a means
to describe the cyber, media and interface parts of the deployment
view but the physical part is lacking. Future research should point out
the feasibility of adding physical components to these models.

Currently, no tooling for managing the hierarchical model of the logical
view is used. Future research should look into an appropriate way to
manage these models in a development environment and link the ele-
ments of the model and corresponding requirements to other parts of
the system. This could improve the consistency of the architecture by
allowing checking of correspondence rules and automatic evaluation
of requirements. Principles of checking view consistency have been
explored by Bhave et al. [50] and Rajhans et al. [17]. A similar problem
holds for the development view model. The current model is represen-
ted by a layered diagram of development components that has to be
translated to actual compilable code or binaries. Tooling could help in
automating this process and ensuring consistency of the architecture.
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A IEEE 42010 Standard Compliance

This appendix should show all requirements and how the AF addresses them

This appendix lists all requirements of a standard compliant AD and AF and shows
how the proposed AF addresses them.

The following abbreviations hold:

S Stakeholder
C Concern
VP Architecture Viewpoint
V Architecture View
MK Model Kind
M Architecture Model
CR Correspondence Rule
Co Correspondence
R Rationale and Architecture Decisions

The requirements of ADs are adapted from the AD template [73] and listed in
table A.1. The requirements of an AF are a subset of these requirements, indicated
by the absence of the (AD only) label.

Standard-compliance of the AF

Table A.2 indicates where the required components of a standard-compliant are
located in the report.
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Table A.1 Requirements of a IEEE 42010 compliant AD and AF, based on the AD template
[73]

.

# Requirement Elements

1 Stakeholders (S) and Concerns (C)
1.1 Identify and describe stakeholders S

1.2 Consider predefined S groups S
See standard §5.3

1.3 Identify fundamental C’s C
1.4 Consider predefined C’s C

See standard §5.3

1.5 Provide a S-C traceability table S, C

2 Viewpoints (VP)
2.1 Specify each VP used VP
2.2 Each C must have at least one addressing VP C, VP
2.3 Provide rationale for each VP VP, R
2.4 Each VP has a representative name VP
2.5 Describe the key features of each VP VP
2.6 Document S’s and C’s that the VP targets S, C, VP

2.7 Identify each MK used in the VP VP, MK
See standard §4.2.5, §5.5, §5.6

2.8 Describe each MK’s conventions MK
Refer to language, meta model, template or a combination

2.9 Describe Operations on Views VP, V
Construction, interpretation, analysis and implementation

2.10 Document all CR’s defined by the VP or M’s VP, M, CR
2.11 Provide examples or usage notes (optional) VP
2.12 Provide sources VP

According to standard §7

3 Views (V) (AD only)
3.1 Include a V for each VP VP, V
3.2 Each V has a representative name V

3.3 Provide one or more M’s that adhere to VP VP, V, M
3.4 M must address all C’s framed by VP, for whole system VP, M
3.5 Each M shall include versioning M
3.6 Each M shall identify governing MK’s MK, M

3.7 V documents discrepancies between V and VP VP, V

4 Consistency and Correspondences
4.1 Record any known inconsistencies CR, R
4.2 Provide consistency analysis of V’s and M’s (optional) V, M, CR
4.3 Identify each Co, its CR’s and participating AD elements CR, Co
4.4 Identify each CR applying to the AD CR
4.5 Check if each CR holds, record violations CR

5 Architecture Decisions and Rationale (AD only)
5.1 Provide evidence of consideration of alternatives and their rationale (optional) R
5.2 Record key architecture decisions (optional) R
5.3 Recorded decisions are structured R

See standard §5.8.2
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Table A.2 Standard-compliance of the AF

Stakeholders (S) and Concerns (C)
Requirement 1.1 1.2 1.3 1.4 1.5

Section §3.1 §3.1 §3.2 §3.2 §3.2
Chapter 3 defines stakeholders and concerns of the AF.

Viewpoints (VP)
Requirement 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 2.12

Section §4.1-§4.5 §4.6 Ch 6
The concerns, rationale, features and models are identified in the respect-
ive subsection of the viewpoints. Integrated examples are provided by
the use cases.

Consistency and Correspondences
Requirement 4.1 4.2 4.3 4.4 4.5

Section §4.6, Ch. 7 §4.6 AD AD
Correspondence rules are proposed in section 4.6.
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B Co-simulation with FMI

The Functional Mock-up Interface (FMI) standard is a result of the MODELISAR
project. FMI is a standard for co-simulation and model-exchange. FMI compatibility
ensures that models comply to a standardized C API and provide model information
through XML-files. FMI is an open standard managed by the Modelica Association.
95 tools on different platforms support FMI at the moment of writing. The packaged
models are Functional Mock-up Units (FMUs) [74]. Co-simulation differs from model-
exchange in that the solver algorithm is in the FMU, whereas with model-exchange,
the solver of the FMI master simulates the model.

An example of a co-simulation setup with FMI is shown in figure B.1. This particular
example shows the Co-simulation Orchestration Engine (COE) as FMI master with
a dedicated manager application that controls the engine through HTTP. The
Co-simulation Orchestration Engine (COE), part of the INTO-CPS project [75].

Although 95 tools support FMI this does not mean that they support all the FMI
functionalities. For example, saving of model state and re-rolling it, is not supported
in most tools. Not all models allow the retrieval of input-output derivatives which
the FMI master can use for stabilization.

Let us show an example of the effect of co-simulation. We start with a simple
dynamic model of a mass connected through a spring to a wall. The force on
the mass is controllable and the distance from the wall is measurable. A suitably
designed controller can make the mass follow a reference position. Figure B.2
shows this model implemented in 20-Sim.

20-Sim supports the generation of FMUs of sub-models. We generated FMUs for
the Controller and the Plant. We compiled these FMUs with the same solver as
we used in 20-Sim (fixed-step 1ms RK4) and executed a co-simulation using two
tools: Ptolemy II and PyFMI. Ptolemy II was not able to resolve causality of the two
sub-systems due to a dependency cycle. Including a delay of one solver iteration
solves this problem. Figure B.3 shows the Ptolemy II configuration. Another tool,
PyFMI, is a Python tool for FMI co-simulation based on Assimulo and a master
algorithm for co-simulation [76]. PyFMI resolved the loop on its own.

We run the simulations with the settings listed in Table B.1. Figure B.4 shows

FMI Master

Co-simulation 

Orchestration 

Engine

HTTP Server

FMI Slave

CPS 

Software 

Architecture

SystemC / AMS

FMI Slave
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Hardware

Model
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Hardware

Model

FMI Slave

CPS 

Hardware

Model

20-sim
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World

Model
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config
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Figure B.1 Overview of the co-simulation environment
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Figure B.2 20-Sim model of a controlled mass

Figure B.3 Ptolemy II co-simulation

a graph of the time series of the output of the plant. The outcomes of the co-
simulation environments differ from the reference simulation in 20-Sim. This is due
to the delay that the programs introduced in the loop to solve the causality. In this
case the system is stable but this deviation may as well result in instability of the
closed loop.

The designer can decrease the effect of this delay by selecting a smaller time-step
for both the master and the co-simulation models. As shown in Figure B.4, reducing
the time-step of the master alone is not enough. Another option is to use iterative
variable-step solvers. FMI supports this but not all simulators support exporting
of variable-step solvers because functionality for restoring state is not included.
FMI 2.0 provides an optional capability for FMUs that allows them to provide
the system’s Jacobian to the solver to improve the performance and stability of
simulation [77].

Table B.1 Simulation environment and solver settings

tool solver timestep
20-Sim Runge-Kutta 4 1ms
PyFMI CVode 1ms

Ptolemy II Runge-Kutta 4 10ms
Ptolemy II Runge-Kutta 4 1ms
Ptolemy II Runge-Kutta 4 0.1ms
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C Heterogeneous modelling with System-C

System-C is a suitable platform for heterogeneous systems modeling. SystemC is
an extension to the C++ standard language that provides a simulation kernel for
concurrent processes. The language specification is IEEE standardized [78]. The
core language targets hardware and software simulation of embedded systems
and hardware synthesis.

The main advantages of SystemC are:

• Standardized language and freely available reference implementation

• Different models of computation supported through extension

• Extension of well-known C++ language

• C++ enables both hardware and software modeling

• Big user community

Disadvantages are:

• Focus on hardware and software simulation, not on co-simulation with dy-
namic systems

• Hardware synthesis is mainly supported by commercial tools

• No built-in FMI compatibility

Standard SystemC is an extension to C++ that adds data-types such as four state
logic (1/0/X/Z) and parallel digital inputs and outputs; port, interface and channel
primitives; events sensitivity and notifications and a simulation interface for con-
current processes. SystemC targets to become the default modeling language for
high-level embedded systems design. SystemC’s default modeling abstraction is
Register-Transfer Level (RTL). This level is the natural base-level of computers and
supports discrete event Models of Computation (MoC) well.

SystemC Transaction-Level Modeling (TLM) is an addition to the RTL modeling
provided by the language. The main advantages are reduced modeling complexity
and increased simulation performance. TLM replaces register-level transactions
by transactions of discrete messages.

SystemC Analog/Mixed-Signal Extension (AMS) is an extension to SystemC that
provides more Models of Computation (MoCs): Timed Data Flow, Linear Signal Flow
and Electrical Linear Networks. The extension enables modeling dynamic systems
through differential equations. IEEE standardized this SystemC language extension
[79].

Extending the SystemC kernel with custom MoCs is possible because the language
is standardized and the reference implementation is open-source. Patel and Shukla
[45] showed the possibility of extending the SystemC language with more models
of computation. Maehne, Vachoux and Leblebici [46] developed a bond graph
based model of computation.

SystemC has no standard support for co-simulation through FMI. Academics
showed the feasibility of extending the kernel for enabling FMI co-simulation [80].
No standardized method is available at the time of writing.
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D Architecture Decisions

D.1
Repository Structure

A typical Architecture Decisions repository for a CPS is tracked digitally and stays
closely with the documentation, production diagrams and source code of the
system.

The repositories of the systems in the use cases were Git repostories, added as
submodules to the relevant system repostiories. This provides a tried and tested
method for tracking and collaboration. The structure of the repository - using
Markdown Architecture Decision Records - is basically:

README.md
decisions
|− 0000−use−markdown−architectural−decision−records .md
|− 0001−use−gazebo−simulation .md

The specific repositories used in the use cases utilized scripts to automatically
convert Markdown files to LaTeX, HTML or other formats.

D.2
PowerGlove

Decisions regarding the recovery of the PowerGlove architecture.

ADR-PG-0001 Sample Rates

Context and Problem Statement

This decision concerns the sample and refresh rates of sensor data acquisition and
hand pose reconstruction.

What must the sample rates of the acceleration and gyration sensors be? What
must the refresh rate of the HPR be?

Considered Options

Constant rates in the range of 0Hz to 1000Hz.

Decision Outcome

Acceleration: 100Hz, gyration: 200Hz, magnetometer: 100Hz.
Hand pose reconstruction: 20Hz online, 50Hz off-line, post processed.

• Finger and hand movement bandwidth is typically lower than 20Hz
• 100Hz acceleration and magnetometer sample rate and 200Hz gyroscope

sample rate have shown to be suitable rates in earlier work.
• The mentioned samples rates would require data bandwidth that are achiev-

able with typical communication buses.
• On-line, the HPR should at least as an animation eye, 20Hz is suitable for this.
• Off-line, the HPR should offer a more fluid result, 50Hz is suitable for this.

133



ADR-PG-0002 Use FSM process model

Context and Problem Statement

The process model of the data-acquisition and IMU-reading processes are based on
a FSM. On the actual device however, the implementation will involve interrupts
that can alter the behaviour of the FSM.

What measures should be taken to account for this?

Considered Options

• Accept the discrepancy and handle it by ensuring its impact can be ignored
• Use a better process model that can handle the behaviour of interrupts
• Integrate interrupts in the FSM

Decision Outcome

Accept the abstraction and ensure its impact can be ignored.

Because it is possible to ensure that the impact can kept to acceptable proportions
while the FSM description can stay in place, which is favourable because of its
simplicity and clarity.

D.3
Production Cell

This is a collection of ADcs of the Production Cell setup.

ADR-PC-0000 Use Markdown Architectural Decision Records

Context and Problem Statement

Which format and structure should architecture decision records follow?

Considered Options

• MADR 2.1.0 - The Markdown Architectural Decision Records
• Michael Nygard’s template - The first incarnation of the term “ADR”
• Sustainable Architectural Decisions - The Y-Statements

Decision Outcome

Chosen option: “MADR 2.1.0”, because

• Implicit assumptions should be made explicit. Design documentation is
important to enable people understanding the decisions later on. See also A
rational design process: How and why to fake it.

• The MADR format is lean and fits our development style.
• The MADR structure is comprehensible and facilitates usage & maintenance.
• Markdown can be easily transformed to other document types using Pandoc
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ADR-PC-0001 Use Gazebo for System Simulation

Context and Problem Statement

To focus and analyze the problem, align stakeholders’ expectations, integrate and
test the system, a simulation is favorable. Do we want to simulate the system? If
so, what platform or framework should be chosen to do this simulation?

Considered Options

• No simulation
• Gazebo simulation framework
• 20-Sim simulation
• Unity Simulation

Decision Outcome

Chosen Gazebo because:

• Easy to use
• Superb integration with ROS and other robot tools
• Easier to model than 20-Sim
• More realistic physics engine compares to Unity

ADR-PC-0002 What Development Environment should be chosen

Context and Problem Statement

To develop the production cell, an IDE and set of tools can be very helpfull. What
development environment is best?

Considered Options

• TERRA-LUNA
• Simulink + Embedded Coder
• 20-Sim + C-code generation
• Plain code editor

Decision Outcome

Decided TERRA-LUNA because:

• Open-source
• Supports graphical CSP
• TERRA Architecture Models can function as deployment models
• Drivers available for RAM-Stix single board computers
• LUNA provides a software stack that simplifies creation of the development

view

ADR-PC-0003 What MoC is suitable as foundation

The MoC must guarantee real-time execution, provide overview during develop-
ment and must be easy to interpret.
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Considered Options

• Finite-State Machine
• Communicating Sequential Processes
• Synchronous Data-Flow

Decision Outcome

Chosen Communicating Sequential Processes because:

• Neatly integrates with TERRA environment
• Easy to interpret and to create
• Visualize-able through gCSP
• Can be checked for deadlock, live-lock

ADR-PC-0004 In what way should sub-systems collaborate?

What type of orchestration will serve the system best?

Considered Options

• Centralized Control (Master-Slaves)
• Decentralized Opportunistic

Decision Outcome

Decided Decentralized Opportunistic because:

• Robust to other components unresponsive or unreliable
• Problems are kept local, depending sub-systems will stop and wait in case of

errors
• In line with the self-dependence concern

Accepting Downsides:

• Sub-system does not now as much about other sub-systems so control might
be sub-optimal, affecting the productive concern.

• Still some kind of orchestration required for global messages (start/stop).
Might be resolved in future through a communication scheme.
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E Production-Cell Implementation Diagrams

E.1
Process Diagrams

Process diagrams describe the behaviour of the subsystems. At the highest level
the process diagrams of the Production Cell consist of graphical CSP diagrams.
These diagrams contain processes which are described by state-machines.

Figure E.1 and Figure E.2 show the CSP diagrams of respectively subsystem 1
and subsystem 3. Central is a sequence of acquire, control, output at a fixed
control rate. Also, there is a system state in and system state out process at an
alternative rate. These processes are responsible for coordinating the system
status and safety.
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Figure E.1 CSP diagram of controller 1, note the typical acquire, control, output sequence
and the system state in and output processes.

At a higher level, the subsystems have a motion controller that translates abrupt
setpoints to smooth trajectories. Figure E.3 and Figure E.4 show the corresponding
graphical CSP diagrams. The structure resembles that of a acquire, control, output
sequence with trajectory-generators. The control stage is provided with a homing
guard that ensures homing is done before normal operation.

At the highest level sequence controllers take care of the logical coordination of
the system. The CSP diagrams represent again acquire, control, output sequences
with an additional guard that ensures that ensures that the sequence starts when
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Figure E.2 CSP diagram of controller 3, comparable to number one but with fewer ports.

homing is done.

The homing sequence is represented by a relatively simple statechart as shown in
figure E.7. The chart consists of four states linked by event-triggered or guarded
transitions. Variables of concern are the reference frame (what direction is towards
and what direction is away from home) and the homing velocity (timeout times
position increment).

Figure E.8 shows the implementation of the rotation robot sequence controller.
Because the arm of the robot can be at one place at a time, its position is a natural
way to describe the main states of the robot. The moving states ensure that the
machine finished a movement before accepting another. The E_RDY (ready) event
fires when the settle-timer expires.

Figure E.9 and Figure E.10 show the statecharts of the feeder and the extraction
arm of the molding subsystem. An interesting aspect of this subsystem is that
the components share a physical space that they may not access concurrently or
this leads to malfunctioning. As there is no overseeing sequence orchestration in
the system, the subsystems have to coordinate access themselves. This mutual
exclusion is implemented using the classic Mutex constructs. The regions of to
mutual exclusion are the molder entrance and the exit gate:

Molder Entrace The feeder belt and feeder arm have to coordinate access to
the entrance of the molder. Failing to ensure mutual exclusion may lead to
damage to feeder arm or block.

Exit Gate The feeder arm, extraction arm and molder gate have to coordinate the
opening of the gate. The gate must be and stay cloed when the feeder arm
pushed a block and it must be open when the extraction arm picks a block.
Failure to ensure the correct state of the gate results in possible damage to
the molder or block.
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Figure E.3 The Motion Controller is a control loop with trajectory-generators combined
with a homing guard.

E.2
Deployment Diagrams

The following diagrams show the deployment of sensors, actuators, nodes and
communication. One diagram (Figure E.11) concerns the nodes and transducers
related to the moulder part of the system, the other diagram (Figure E.12) shows
those of the rotation-robot part of the system.

These diagrams originate from TERRA Architecture Models, part of the LUNA/TERRA
software suite. Sensors are indicated by open black circles, actuators by solid black
circles. Communication lines are indicated by black lines between filled and open
small squares. The annotated black rectangles indicate nodes.
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Figure E.4 Motion Controller 3 has a structure similar to Motion Controller 1
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F Reusable Generic Control Algorithms in C++

An actuated physical system (plant) typically needs control to behave as desired.
The subsystem responsible for controlling the plant is the controller. Design of the
behaviour of the controller and consequently that of the plant is the concern of
control-theory. Realization concerns translation of the behavioural description of a
control-system (e.g. differential-equations) to an executable implementation.

The steps involved in the design and realization of a controller differ per situation
and determining a satisfying strategy requires both insight in the control and
implementation issues. There is initially significant effort involved in this process
but it also poses an opportunity to create generic, reusable tools and software
that make the process easier in later situations. This appendix demonstrates how
such a general and reusable collection of code was developed in the context of the
production-cell use case but aimed at general CPSs.

In CPSs this executable implementation typically boils down to software that
utilizes digital control-algorithms to approximate the intended behaviour of the
designed controller. DT LTI systems provide a wealth of possibilities for control
design and because they are well-understood and suitable for generic computer
implementation, they are the system type of choice.

The software is publicly available in a hosted Git repository [81].

F.1
LTI systems

CT LTI systems are typically expressed as transfer-functions in the frequency
domain (with Laplace operator s) of the form:

YYY(s) = HHH(s)UUU(s) (F.1)

In which HHH is possibly a Multiple Input Multiple Output (MIMO) transfer-function
and U,YU,YU,Y are respectively vectors of input and output signals.

The DT equivalent of (F.1) is a linear shift invariant function in the z-domain. To
transform between CT LTI and DT systems, the Bilinear transform or Tustin’s

method can be used
(
z = esT ≈ 1+sT/2

1−sT/2

)
. The Bilinear transformation ensures

that stable CT LTI systems map to stable DT systems.

To express the transfer function HHH, a convenient representation is to be chosen.
We choose two: the state-space representation and the biquad representation,
having their own advantages and disadvantages.

F.1.1 State-Space Representation

The DT State-Space (SS) representation of an LTI system is:
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xxxz = AxAxAx+BuBuBu (F.2)

yyy = CxCxCxz +CuCuCu (F.3)

Where the z operator denotes a time-shift of one-step forward. The dimensions of
the matrices depend on the order Nx of the system and the number of out- and
inputs NuNy:

• AAA is square Nx

• BBB is Nx by Nu

• CCC is Ny by Nx

• DDD is Ny by Nu

Characteristics of the SS representation include:

• Straight-forward MIMO implementation

• Poles, zeros, determinant computable from matrices

• Z-transform is bijective

F.1.2 Biquad Representation

Another representation of DT LTI systems is that of Biquads (or Second-Order-
Sections). A biquad is particularly well suited for digital Single Input Single Output
(SISO) filters. Higher-order filters can be represented by chaining biquads. It may
be represented by the following transfer function:

H(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(F.4)

In which all coefficients are normalized by a0. This yields the following difference
equation for an input signal u and output signal y:

y = b0u+ b1xz
−1 + b2xz

−2 − a1yz−1 − a2yz2−1 (F.5)

This is direct form I in which the output y is a function of two previous values of
both u and y. This form can be rewritten to transposed direct form II:

s2 = b2x− a2y (F.6)

s1 = s2z
−1 + b1x− a1y (F.7)

y = b0x+ s1z
−1 (F.8)

In which the output y is a function of just two intermediate variables.

Characteristics of the biquad representation include:

• Requires just two state-variables per section

• Suited for SISO systems

• Straight-forward digital implementation
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F.2
Filters and Controllers

LTI transfer functions can represent the behaviour of a range of systems. The
systems of interest in the context of control-design are that of filters and controllers.

Filters find applications in noise-reduction and signal conditioning.

Controllers aim at regulating a plant. One of the most-used and general-purpose
controller-families is the Proportional Integral Derivative (PID) controller and its
relatives. Simple mass-damper-spring-like systems can be accurately controlled
using these controllers.

More advanced control-architectures are built around pole-placement such as
Linear-Quadratic Regulators (LQRs). These architectures require knowledge of
the full-state which is generally not trivially available. Consequently, an observer
needs to be added to the control loop. State-space models can be used to digitally
implement an observer and controller and are therefore very useful in the general
design of systems.

F.3
Implementation
Considerations

This section discusses the implementation details of the filter and control function-
ality discussed above.

F.3.1 Computer Arithmetic

Filters and controllers typically involve real numbers in R. In digital computers,
these numbers are represented by data-types such as floating-point and fixed
point. Different types have different characteristics in terms of performance,
range, precision, storage size and performance. To allow the developer to choose
an appropriate data-type, the control functions are templated: a C++ language
feature allowing users of code to dictate its data-types. A single-precision floating-
point (float) is the default-data type which suffices for simple control and filter
tasks while allowing hardware-floating point processing and vectorization on most
targets.

F.3.2 Biquad Implementation

A single biquad section is implemented as a Transposed Direct Form II with user-
preferred arithmetic type.

Listing F.1 Execution of a single biquad step.

T step (T x){%
T y;
y = x * B[0] + wz[0] ;
wz[0] = x * B[1] − A[0] * y + wz[1] ;
wz[1] = x * B[2] − A[1] * y ;
return y;

}

One step of a single biquad requires 5 multiplications, 4 additions and access to two
state-variables. The compiler will be made responsible for applying vectorization
when possible.
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F.3.3 State-space Implementation

Digital implementation of arbitrary order SSs required matrix algebra functionality.
This functionality is much used, generic and suitable for computer implementation.
Consequently, open-source libraries are available that provide these matrix algebra
functions for us. The nature of matrix operations allows for parallelisation of
operations, also known as vectorization or Single Instruction Multiple Data. To
exploit this performance potential and reduce development-time, the open-source,
templated, tried and testes Eigen 3 [82] library is used.

Templates are used to allow the user of the code to specify the data-types and
number of states Nx, inputs Nu and outputs Ny. Eigen’s comma-initialization
syntax allows straight-forward initialization of matrices and its operator overloading
enables semantic and easy to understand code. The core of the SS now boils down
to:

Listing F.2 Execution of a single step. Ty and Tu are types representing Eigen vectors of
appropriate arithmetic type.

Ty step (Tu u){%
x = A*x + B*u;
y = C*x + D*u;
return y;

}

Advantages of a state-space implementation include that the dynamics of the
system can be more easily understood from the system matrices and that the
full-state is easily available.

F.3.4 PID(F) Control

PID(F) controllers are implemented as single biquad filters. The control algorithms
allow construction of a PID(F) controller by providing Kp, τi, τd, N and Ts paramet-
ers directly to the constructor. Furthermore, a PI controller is a PID with τd = 0 and
N = ∞, a PD controller is a PID with τi = ∞ and a P controller is a simple multi-
plication. The corresponding biquad coefficients are calculated at compile-time,
resulting in zero run-time overhead.

The formulas to calculate b0 to b2 and a1 and a2 are:

b0 =
Kp

(
4 τd τi + 2 τd Ts +N Ts

2 + 4N τd τi + 2N τi Ts
)

2 τi (2 τd +N Ts)
(F.9)

b1 = −
Kp

(
−N Ts

2 + 4 τd τi + 4N τd τi
)

τi (2 τd +N Ts)
(F.10)

b2 =
Kp

(
4 τd τi − 2 τd Ts +N Ts

2 + 4N τd τi − 2N τi Ts
)

2 τi (2 τd +N Ts)
(F.11)

a1 = − 4 τd z

2 τd +N Ts
(F.12)

a2 =
2 τd −N Ts
2 τd +N Ts

(F.13)

These formulas are entered as constexpr functions in the C++ PID class.
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Down-side of a biquad implementation is the lack of anti-windup measures for the
integration action. If such a measure is required, a state-space implementation
might be preferred.
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G Motion Profiles

Appropriate motion profiles allow a fluent transition from an ideal position controlled
system to an actual servoed plant. Typically, polynomial profiles are preferred
because of their straight-forward differentiability and mathematical properties. A
polynomial motion profile of arbitrary order and its derivative are given by:

MN (x) = a0 + a1x+ a2x
2 + . . . aNx

N (G.1)

d

dx
MN (x) = a1 + 2a2x+ . . . NaNx

N−1 (G.2)

The coefficients an can be solved when the equations are properly constrained.
Typically, the begin and end position, position derivative, etcȧre constrained. Now
finding the appropriate coefficients is a matter of solving:



1 x0 x20 . . . xN0
1 xf x2f . . . xNf
0 1 2x0 . . . NxN−1

0
...

...
...

. . .
...

0 0 0 . . .
. . .




a0
a1
a2
...
aN

 =


MN (x0)

MN (xf )
d
dxMN (x0)

...
dN

dxNMN (xf )

 (G.3)

In which x0 and xf are respectively the initial and final values of x. Now the vector
A can be solved from the linear equation. The differentiability of an n-th order
polynomial profile ensures that no jumps occur in the first n derivatives of the
profile, reducing acceleration, jerk and so forth to reduce the control error of a
plant.
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