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Nomenclature

Symbol Discription Symbol Discription

General
np Order of polynomials n mode shape index
Nf Number of frequencies m master DOF index
Ni Number of inputs s slave DOF index
No Number of outputs N global DOF index
a Analytical x experimental
H Frequency response e estimated
γ Coherence Ψ Mode shape matrix
Φ Regression matrix Ω Complex Frequency
J Jacobian matrix ω Excitation frequency [rad/s]
Λ Eigenvalue matrix ζ Damping ratio
R Residue matrix λ Pole
L Modal participation factor vector ε error term
† Moore-Penrose pseudoinverse i Input index
Ĥoi(ωf ) Non-parametric estimated FRF o Output index
Hoi(ωf ) Parametric estimated FRF Nn Number of modes

iii



IV



Abstract

Within VDL ETG, the Structural Dynamics competence is responsible for the research to
the dynamic behaviour of the fabricated products. As clients handle over more and more
responsibility for the design improvements of entire systems, there is a need to streamline
the process of this investigation. In this thesis the data acquisition if streamlined by means
of a GUI which saves the measurements to a structured dataset.
Furthermore a user-friendly system identification technique is applied to this measured
dataset to identify the modal parameters of the system under study. The developed al-
gorithm is applied to experimental data by means of a simple steel plate and one typical
mechanical system fabricated by VDL ETG to illustrate the practical applicability.
Once the modal parameters are estimated, correlation analysis is performed to verify the
quality of the estimated model. These same metrics can be used to compare different
models for validation purposes.
All treated theory is implemented in Matlab code and these scripts are extensively explained.
All of this work is done to provide the Structural Dynamics competence at VDL ETG with
a practical useful toolbox which will enable them to perform Experimental Modal Analysis
(EMA) in a more convenient and efficient manner.

v



VI ABSTRACT



Contents

Nomenclature iii

Abstract v

List of acronyms ix

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Goal of the assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Report organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Data Acquisition 3
2.1 Frequency Response Function (FRF) based Experimental Modal Analysis . . 3

2.1.1 Impact Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.2 Calculation of the FRF . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1.3 Performing a good impact test . . . . . . . . . . . . . . . . . . . . . . 5
2.1.4 Roving hammer vs. roving accelerometer . . . . . . . . . . . . . . . . 6
2.1.5 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Application to an experimental structure . . . . . . . . . . . . . . . . . . . . . 7
2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 System Identification 11
3.1 The Modal model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Curve fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2.1 Right Matrix Fractional Description model . . . . . . . . . . . . . . . . 14
3.2.2 Identification of a Right Matrix Fractional Description model . . . . . . 14

3.3 Poles identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Residue identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Implementation using simulated data . . . . . . . . . . . . . . . . . . . . . . . 20

3.5.1 Rectangular plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.5.2 Bottom Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6 Application to an experimental structure . . . . . . . . . . . . . . . . . . . . . 31
3.6.1 rectangular Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

vii



VIII CONTENTS

3.6.2 Bottom frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 System Correlation 39
4.1 Correlation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Obtaining the analytical modal model . . . . . . . . . . . . . . . . . . . . . . 42

4.2.1 Mass normalisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.3 Model Reduction/Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.3.1 Reducing the analytical model . . . . . . . . . . . . . . . . . . . . . . 45
4.3.2 Orthogonality checks . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Conclusions and recommendations 49
5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

References 51

Appendices

A Laplace, Fourier and Z-Transforms 53

B Correlation metrics of identified systems 55

C Deducing analytical models from ANSYS FEM 57
C.1 Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

D The System Equivalent Reduction Expansion Process (SEREP) technique 65
D.1 Matlab Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

E Correlation analysis evaluated for the LTA2 Bottom Frame (BF) 71
E.0.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



List of acronyms

BF LTA2 Bottom Frame

COMAC COordinate Modal Assurance Criterion

DOF Degree Of Freedom

DFT Discrete Fourier Transform

ECOMAC Enhanced COordinate Modal Assurance Criterion

EMA Experimental Modal Analysis

ETG VDL Enabling Technologies Group

FEM Finte Element Model

FRAC Frequency Response Assurance Criterion

FRF Frequency Response Function

FRI Frequency Region of Interest

FRM Frequency Response Matrix

LS Least Squares

MAC Modal Assurance Criterion

MFD Matrix Fraction Description

MSF Modal Scale Factor

NLS Non-linear Least Squares

ODS Operational Deflection Shape

pLSCF Poly-reference Least-Squares Complex Frequency

POC Pseudo-Orthogonality Check

RHP Right Half Plane

RHS Right Hand Side

ix



X LIST OF ACRONYMS

RMFD Right Matrix Fraction Description

SEREP System Equivalent Reduction Expansion Process

SNR Signal to Noise Ratio

SV D Singular Value Decomposition

V DL Van Der Leegte groep



Chapter 1

Introduction

1.1 Motivation

Van Der Leegte groep (VDL) VDL Enabling Technologies Group (ETG) is supplier of many
complex mechatronic systems which are manufactured at site. These systems have to meet
strict specifications which all have to be verified before the client accepts these products.
Furthermore, clients hand over more and more responsibility to VDL ETG involving not only
the manufacturing of certain products but also to development of new versions of these
systems. So there is a need to perform EMA, in order to gain insight into the structural
dynamics of the variety of systems fabricated by VDL ETG. This is key to make a well
founded consideration about what modifications should be applied to obtain the desired
dynamic specifications.
In the last decades several system identification methods have been developed. Thanks
to nowadays developments of computational power of computers these methods are able
to handle large datasets in a short matter of time, making the application of EMA more
convenient.

1.2 Framework

The presented research is commissioned by the structural dynamics competence plan of
VDL ETG, managed by ir. M. Bruin. The assignment is in collaboration between the com-
petence group Structural Dynamics at VDL ETG and the chair Applied Mechanics, at the
University of Twente.
There are already several commercial software packages1 available which enable to perform
such an EMA, but these packages are very expensive, contain many irrelevant functionali-
ties and they are black box. A self-build GUI which is dedicated to the kind of systems which
VDL ETG manufactures is preferred. Self-written matlab code is developed based on known
methods. Primarily the data acquisition requires a GUI, since this significantly reduces the
time spent to measure a complete column of the Frequency Response Matrix (FRM). A GUI

1https://www.plm.automation.siemens.com/en/products/lms/testing/test-lab/structures/modal-analysis.shtml

1



2 CHAPTER 1. INTRODUCTION

can help the engineer to consistently save all different measurements into one dataset.
Finally, once an EMA is performed, engineers at VDL ETG want to compare the identified
modal model to compare it to the Finte Element Model (FEM) of the system under study. Any
discrepancies between both models have to be investigated to gain insight in the correct-
ness of the FEM. Later on this information can also be used to update the FEM to improve
accuracy. Nowadays the verification of analytical models utilizing experimental data is very
desirable.

1.3 Goal of the assignment

The main goal of this assignment is develop a stable, user-friendly, efficient algorithm which
enables the Structural Dynamics competence of VDL ETG to perform a full EMA. In order
to do so, the distinct goals must be met:

1. Implement a stable, user-friendly, efficient curve fitting technique

2. Estimate the modal model using the fitted model

3. Quantify the correlation between measured and estimated models to validate the fit

4. Develop a GUI which streamlines the process of acquiring a full FRM.

In this assignment a broad research is done to the state-of-the-art of EMA and extensive
comparison is made. Based on the applicability of these different techniques this knowledge
is then implemented into Matlab code and dedicated to the typical systems fabricated at
VDL ETG.

1.4 Report organization

The remainder of this report is organized as follows. In Chapter 2 the data acquisition is
treated. It describes the considerations to accurately measure the dynamic behaviour of the
system. The result of the step is the non-parametric FRM.
Then, in Chapter 3, this measured FRM is fitted by a modal model. A global curve fitting
technique is used to identify the poles of this representation.
Once the modal model is estimated, the correlation between measured and estimated mod-
els are quantified using correlation analysis, described in Chapter 4. These metrics can be
used in several ways; For instance to indicate discrepancies between representations. They
can also be used to verify the quality of the estimated model

Finally, in Chapter 5, conclusions and recommendations are given.



Chapter 2

Data Acquisition

This chapter describes the experiments required to perform a modal analysis on a mechan-
ical system. Non-parametric system identification is applied to the in- and output spectra to
obtain a set of FRFs; the FRM. This is an important step since it will involve the quality of
the rest of the EMA.

2.1 FRF based Experimental Modal Analysis

There is a variety of algorithms in the field of parametric system identification which start
directly form the measured in- and output time histories. For a typical EMA experiment this
implies that a large dataset has to be fitted and it is recommended to apply pre-processing to
the data to transform the measurement into the frequency domain. This reduces the size of
the dataset and lowers the noise levels before the parametric identification is initialized. This
step is called: non-parametric identification. The result of this step is the estimated FRF.
These FRFs are combined into one matrix, the FRM, which will be used for the parametric
system identification in the Chapter 3.

2.1.1 Impact Testing

The first step in the procedure is to measure the impulse response of a system, by means
of an impact test. This is done using an impact hammer and multiple acceleration sensors.
The in- and output signals between each excitation point and each measured output are
measured using a data acquisition module, which converts the analog signals into discrete
time signals which are communicated to the computer at fixed time intervals defined by the
sampling frequency. These in- and output signals are transformed to the frequency domain
by means of the Discrete Fourier Transform (DFT). These transformed signals are used to
calculate the Frequency Response Function.

2.1.2 Calculation of the FRF

This step is also called, non-parametric system identification, since the time-signals are con-
verted into a non-parametric curve in the frequency domain. Discrete Fourier Transformation

3



4 CHAPTER 2. DATA ACQUISITION

transforms the measurement data into the frequency domain by partitioning the entire set
of measurement data, containing Nt datapoints, into smaller sections, so-called frequency
points. To assure this representation is correct, the Shannon theorem should be obeyed:
If a function x(t) contains no frequencies higher than B hertz, it is completely determined
by giving its ordinates at a series of points spaced 1/(2B) seconds apart. To assure that
the algorithm works fast, the number of frequency points NFFT should be a power of two.
Therefore the preferred number of frequency points will be:

NFFT = 2A, A =

[
floor

(
log(Nt)

log(2)

)]
1

2x
(2.1)

In this the real positive integer x can be chosen equal to or larger then zero. In case of low
Signal to Noise Ratio (SNR) increasing this value increases the accuracy of the transforma-
tion. The highest frequency which can be retrieved is determined by the Nyquist frequency,
which is equal to half the sampling frequency. And the lowest frequency that can be retrieved
equals fs

NFFT
. In order to improve SNRof the measurements, the time-series are multiplied

by weighting functions before the DFT conversion This technique is called windowing and
is treated more extensively in paragraph 2.1.5. The frequency representations of the mea-
surements can now be used to calculate the Frequency Response Function. This can be
done in several ways, depending on the expected noise of the measurement. The two most
commonly used estimates are:

H(f) =
Y (f)

U(f)
→ H1(f) =

Syu(f)

Suu(f)
H2(f) =

Syy(f)

Suy(f)
(2.2)

in which Suy, Suu and Syy are the Cross Spectral Density and the Auto Spectral Densities of
frequency spectra of both in- and output-signals. In case of noiseless data both calculations
will give the same result. First of all, by dividing the cross-power spectral density of both
in and output-signal by the auto-power spectral density of the input signal, is based on the
assumption that the output of the system is expected to be noisy when compared to the
input. The second estimate assumes the input to the system to be noisy when compared
to the output. The H1(f) estimator underestimates the actual H(f) whereas the H2(f)

estimator gives an overestimation. So by calculating both one can obtain the limits of the
real FRF. There are also other estimates, but that is beyond the scope of this study. These
two estimates can be used to calculate the coherence γ2

uy(f) of the measurement. This
number is calculated by the ratio of both estimators:

γ2
uy(f) =

∥∥∥∥Syu(f)Suy(f)

Suu(f)Syy(f)

∥∥∥∥ =

∥∥∥∥H1(f)

H2(f)

∥∥∥∥ (2.3)

This indicates the quality of the measurement. If the noise level is low, the uncertainty will
be small and both bounds will be close to each other resulting in a coherence approaching
unity. At resonance frequencies the ratio will drop to zero, since the upper bound approaches
infinity for low damped systems. Therefore the bounds will be far apart, resulting in a drop
in ratio value. If the coherence is approaching unity for all other frequencies in the entire
frequency region of interest, the measurement is done correctly and the calculated FRF is
reliable.
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2.1.3 Performing a good impact test

First of all the excitation location and direction must be considered. Therefore the local flexi-
bility of the structure must considered to assure that the whole system is excited sufficiently.
If this is done correctly the measurement itself can be analysed. For a good measurement
the input force must have the following characteristics:

• One single peak, described by multiple data points; to assure accurate DFT

• A short impulsive excitation; lasting less than 5% of the sample interval

• High amplitude for a broad range of frequencies, well above the noise level of the
instrumentation

• Amplitude must be evenly distributed throughout this frequency range

This results in a FRF in which the peaks indicate the natural frequencies, since for all fre-
quencies the input is equal. Such a spectrum is achieved by using a hammer. The length
of time of the impact pulse determines the width of the range of excited frequencies. The
shorter the impact time, the broader the frequency domain response. To clarify this; there is
an inverse correlation between the time and frequency domain. Signals with a short duration
in time, have a broad response in frequency domain and vice versa. For instance a broad
time signal, a sine wave, will have a very narrow frequency spectrum will show up in the fre-
quency domain at only one frequency. So the shorter the impact time the more frequencies
can be excited.
The impact hammer is used to achieve this short impact force. The hammer can be adjusted
for a specific case, i.e. to excite the frequencies which are of interest. This input frequency
range can be adjusted by means of adding mass or changing the stiffness of the tip. This
will have the following effect on the input spectrum.

• Changing the stiffness; The time in which the hammer is in contact with the structure
can be changed by choosing a more rigid tip, for instance replacing the rubber tip with
a metal one.

• Changing the mass; Increased mass lengthens the time in which the direction of the
hammer is reversed.

The desired result is a clean FRF over the full frequency range of interest together with a
relatively evenly distributed input spectrum for that same frequency range. The right hammer
configuration depends always on the specific case. If all modes are excited, but also modes
beyond the Frequency Region of Interest (FRI), the FRF maybe have a lower SNR at the
lower frequency region, caused by the so called out-of-band overloads. This indicates that
the tip may be too hard. Another effect which can show up in the measured FRF, is noise
at the higher frequencies. This indicates that the hammer is too soft. So the user should
always make a well-founded choice of the configuration of the impact hammer since the
quality of the measurement will have influence on all further steps in the modal analysis
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procedure. The correct configuration will induce sufficient energy to excite the full frequency
range of interest, while the frequencies beyond this region will contain significantly lower
energy. Furthermore, the configuration must be such that there is enough force is begin
input to the structure, to excite all modes of the structure. So for a giant structure, e.g. a
bridge, also a giant impact hammer with sufficient mass will be required. Finally, the quality
of the measurement can also be indicated by means of the coherence. If the coherence
approaches one for entire frequency region of interest the measurement will be sufficiently
accurate. These aspects should be checked by the user for every measurement, to assure
that the FRM contains accurate measurements.

2.1.4 Roving hammer vs. roving accelerometer

In order to determine the mode shapes of a structure, one use either measure a full row or
column of the FRM. This corresponds to either roving the hammer over all measurement
points while holding the accelerometer at a fixed place, or excite the system at one place
and direction while roving the accelerometer. It will depend on the case which procedure is
preferred. The following considerations have to be made.
At first sight, roving the hammer has some practical advantages over roving the accelerom-
eter, since one does not have un- and remount the sensor. In case of very light structure,
moving the accelerometer will also influence the weight distribution, which influences the
measured dynamical behaviour of the system. There are also drawbacks on moving the
hammer, since the hammer is a single input and most accelerometers are tri-axial. So one
must note that all directions are excited. In practise it will be not possible to excite each point
in all there dimensions, for instance for a plate, which can only be excited in perpendicular
direction of all points. If not all directions are excited or measured incomplete columns will
be measured, which will also result in incomplete mode shapes. So for some cases, only
one method is applicable.

2.1.5 Windowing

In order to reduce the presence of noise in the measured signal the data is edited before
the DTFT analysis is applied, in order to improve the SNR. This technique is called window-
ing and the windows are weighting functions that have been developed for the transcient
signals. For impulse testing two common time domain windows are applied; the force and
exponential window which are applied to the in- and output signals respectively.
Ideally, the impact of the hammer is described by one peak in the input signal and all other
samples are equal to zero. Due to noise all other samples will be non-zero and the force
window will turn them into zeros to get a more reliable signal, after all the hammer has no
contact with the system outside the impulse, so all measured force will not be applied to the
measured system.
The output signals will be edited by the exponential window. The effect of this window is to
increase the apparent damping of the measured system. For instance, if a system contain a
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very lightly damped suspension frequency it can take a large amount of time before the sys-
tem comes at rest. To reduce measurement data, the measurement can be stopped before
the system is at rest. However, since the signals will not be decayed to zero, leakage1 will
occur. This has the effect an underestimation of the magnitude, distortion of the phase and
a drop in coherence at the peaks. The weights of exponential window can make the decay
closer to zero to reduce the leakage. The amount of added damping which is predictable
and can be compensated when the modal parameters are estimated. This trick is governed
by the shift property of the Laplace Transform. However, one must beware of the fact that
adding too much damping to the signals can make two closely spaced peaks undistinguish-
able, since the two peaks will combined into one in case of high damping, as illustrated in
figure 2.1. So noise can be reduced, but not be removed entirely by the applying windows
to the transient signals.

5 10 15 20 25 30 35 40

10-2

100

β=0
β=0.5
β=10

Figure 2.1: FRF of lightly damped system with closely spaced peaks. The increase in damp-
ing by application of exponential window

2.2 Application to an experimental structure

In this project the data acquisition device DT9837B device is used: This device is a high

Figure 2.2: DT9837 data acquisition module

accuracy dynamic signal acquisition module ideal for vibration measurements. It contains
4 synchronized 24-bit sensor inputs which provide a data stream that is matched in time,

1Leakage: a signal processing bias error which is caused by the fact that the begin and end conditions of the
signal are unequal to zero
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which can be used for signal analysis. During the tests only one SISO transfer is measured,
using one hammer and one uniaxial accelerometer. Each experiment was repeated at least
5 times, and the best 5 measurements were used to determine an averaged Frequency
Response Function for the corresponding SISO transfer. In this the best is based on a
selection of 5 measured responses, which result in the highest coherence

(a) Testing setup (b) Investigated mechanical
system

Figure 2.3: Equipment used during experiments

To verify the correctness of the data acquisition, an simple rectangular plate is used. The
mode shapes of this mechanical system are well known and therefore it can illustrate the
correctness of the algorithms. A (5×5) grid is applied to the plate, resulting in 25 possible
in- and output positions, see figure 2.4. A square (25×25) Frequency Response Matrix
can be made from the dynamic measurements between all grid points in which each entity
contains the corresponding measured FRF. This results in large data set will be fitted with a
mathematical model in the next phase of the the modal analysis: System Identification.

Figure 2.4: Measurement of H(24, 9)

All measured FRFs are shown in figure 2.5 and this already shows the large amount of
data which must be fitted in the next phase of the experimental modal analysis. The shown
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FRFs are equal to the H2 estimates of the response spectra. The FRFs show 15 clear lightly
damped peaks which can be explained by the fact the measured system is a the rectangular
plate. One can also see that the first two resonances and also the 10th and 11th resonance
are closely spaced, indicated by the black curves. The identification methods must be able
to distinguish all the natural frequencies, since in practise many mechanical systems will
contain symmetry which results in closely spaced natural frequencies.

Figure 2.5: Frequency Response Matrix; 22nd column

Also one can see a clear drop of magnitude at low frequencies, this is due to the high-pass
filter which is included in the data acquisition module. This part of the FRF will also be not
be used in the system identification, thanks to the frequency domain transformation this part
can be excluded easily.

2.3 Conclusion

The data acquisition is the key phase of the experimental modal analysis, since it influences
the accuracy of all further steps in the process. The measurements and their considera-
tions are evaluated and should be obeyed precisely to obtain an accurate FRM. In order
to illustrate what such a data acquisition procedure involves a rectangular plate is used. In
upcoming chapter also more complex systems will be treated. The main reason to start with
a rectangular plate is the fact that the rectangular plate has a response which contains few
damping and all mode shapes are well known. So this relatively simple system illustrates
how the FRM is measured.



10 CHAPTER 2. DATA ACQUISITION



Chapter 3

System Identification

This chapter describes all steps involved in the process in which the measured data is used
to identify a modal model ; a mathematical model which describes the dynamic behaviour of
the measured mechanical system in terms of modal parameters. First the FRFs are fitted
by algebraic equations, called curve fitting. The roots of these polynomials are related to the
poles of the system. These poles λn of the system define the denominator part of the modal
model. Subsequently this set of poles is fed into the residue estimator, which estimates the
so called residues Rn. Finally these residues are combined into vectors, which describe the
estimated mode shapes Ψmn. In the coming sections each step is explained extensively.
Finally, two mechanical systems are used to illustrate the performance of the system identi-
fication algorithm. First of all the simple steel plate which was also used to illustrate the data
acquisition, shown in section 2.2. The second mechanical system is a bottom frame which
are produced by VDL ETG. In the first two cases, both FRMs are simulated using the FEMs
of both systems. In case 3 and 4 the FRM contains experimental data of the steel plate and
bottom frame respectively.

3.1 The Modal model

This model assumes that the entire dynamic behaviour of a system can be described by
a cumulation of a set of subsystems, which are called modes. The linearised equations of
motion of a general mechanical system in a certain configuration are given by:

M̄q̈(t) + D̄q̇(t) + K̄q(t) = f(t) (3.1)

where M̄ is the system mass matrix, the damping matrix D̄ and the stiffness matrix K̄. The
vector B̄ is called the input vector and C̄ is called the output matrix. Furthermore the vector
q contains the degrees of freedom of the system. The measured accelerations are stored in
vector y, and the measured input force of the hammer is stored in the scalar u. The matrices
M̄, D̄ and K̄ ∈ <Nm×Nm , where Nm is the number of independent degrees-of-freedom; the
length of q. Using the Laplace transform and neglecting initial conditions results in the
frequency-domain equivalent for above equation given by:

Z(s)Q(s) = F (s) (3.2)

11
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in which Z(s) = M̄s2 + D̄s+ K̄. Next step is to invert the above equation:

Q(s) = H(s)F (s) (3.3)

in which H(s) = Z−1(s) is called the transfer function matrix. This matrix can be expressed
in its modal form; in terms of the modal parameters, (λm, φm and Lm) respectively the pole,
mode shape and modal participation factor of mode m.

H(s) = φ [sINm −Λ]−1 LT + φ∗ [sINn −Λ∗]−1 LH (3.4)

=

Nm∑
n=1

(
φnL

T
n

s− λn
+
φ∗nL

H
n

s− λ∗n

)
=

Nm∑
n=1

(
Rn

s− λn
+

R∗n
s− λ∗n

)
(3.5)

in which Λ is a diagonal matrix containing all λn and Nm the number of modes. The poles
λn = σn + jωn contain the natural frequencies fn = ωn/(2π) and corresponding damping
ratios dn = −ωn/

√
σ2
n + ω2

n. And the numerator terms can be substituted for the residues
Rn. Now the linearised equations of motion are rewritten in terms of modal parameters.
This modal model can be used to compare it with other modal models based on analytical
or other experimental models. The estimated modal parameters can be used to update a
FEM or e.g. to check if the mechanical system meets its specifications. If any discrepancies
between these datasets are measured, the mode shapes can give the insight into from which
part of the system these discrepancies originate, which can be very helpful in the verification
of a assembled mechanical system.

3.2 Curve fitting

There is a variety of curve fitting methods as to see in [1] and each method has its pros
and cons. Frequency Domain estimators were preferred, since estimation in the frequency
domain is a more convenient estimation process as this enable the user to select a FRI, to
specify which part of the spectrum is relevant for the modal analysis. This particularly is
given preference for so called stiff systems; systems that have both very slow and very fast
modes, which are difficult to handle using time-domain measurements. In order to capture
the slow modes a very long measurement time is required and a high sampling frequency
to capture the fast modes. As a results the dataset to be fitted will be very large, which
has negative influence on the computational afford of the identification process. The ad-
vantage of the frequency domain identification algorithms is the fact that the frequency do-
main measurement do not have to be equidistant. This can keep the size of the dataset
relatively small, while the system can still be identified accurately. For this assignment
a stable, user-friendly algorithm was found in the Poly-reference Least-Squares Complex
Frequency (pLSCF) method, in which a Right Matrix Fraction Description (RMFD) model is
estimated. More information about this model is given in section 3.2.1.

Complex frequencies The important contribution to the development of system identifi-
cation in the frequency domain is the relatively new method of frequency mapping. In this
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method, the generalized frequency called the z-transform, is a trigonometric mapping func-
tion; a complex number that has superior numerical conditioning to orthogonal polynomials
without the drawback that a generalized companion matrix eigen value problem has to be
solved. The frequency axis, which contains all selected frequencies of interest, stretches
from f1 until fNf

and is mapped onto a half unit circle in the upper half of the complex plane.
For clarity, in appendix A an elucidation between the Laplace, Fourier, and z-Transform is
given. The discrete polynomial basis Ωk(ωf ) functions are given by:

Ωk(ωf ) = zk = eiπ(ωk/Nf ), k = 1, 2, ..., Nf (3.6)

These discrete frequencies are used in identification methods and improve the numerical
stability of the algorithms. Since these complex basis function are implicitly orthogonal with
respect to the unit circle, a well conditioned Jacobian matrix J is usually obtained. This will
be cleared out in section 3.2.2.

Mode Shapes and Operating Deflection Shapes When a system is excited at of near
one of its eigen-frequencies, the corresponding mode shape will dominate. However, there
will still be a small contribution from all other modes present in this response. The measured
vibration shape is called the Operational Deflection Shape (ODS). Originally the ODS is
defined as the deflection of a structure at a particular frequency.
There are some subtle differences between ODS and mode shapes. First of all, ODS are
measured directly while the mode shapes are obtained after post-processing these data.
Secondly, the mode shapes are inherent properties of a structure, while the ODS will change
if the input spectrum changes. Therefore the ODS is expressed in units, while the mode
shapes are dimensionless. All mode shapes together describe the complete dynamic re-
sponse of a structure. In the case that two modes are closely coupled to each other, the
ODS is a linear combination of both mode shapes. In reality, all modes are contributing in
the ODS and the measurement is also disturbed by noise. More details can be found in the
original source [2].

Normal and Complex Mode Shapes The FEM is generally undamped and the corre-
sponding mode shapes are real. On the other hand, because damping is always present
in real-life structures, experimental modal analysis yields complex mode shapes. When the
numerical and experimental modes are to be correlated either damping must be added to
the FRM or only the real part of the experimental FRM compared. For VDL ETG, most
systems fabricated by VDL ETG are relatively stiff and therefore contain low damping. This
means only normal modes will be considered, containing so called standing waves. In this
the deformations are varying sinusoidal with no phase difference. So all deformation are
maximal at the same time. More details about the complex mode shapes can be found in
the original source [3].
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3.2.1 Right Matrix Fractional Description model

The common-denominator model is multi-variable transfer function model described by a
Matrix Fraction Description (MFD) i.e. a matrix of which each element contains a fraction of
two matrix polynomials. The relationship between input i (i = 1, ..., Ni) and all outputs can
be described by this model:

Ĥo(ωf ) = N o(Ωj(ωf )) ·D−1(Ωj(ωf )) (3.7)

This equation can be transformed from continuous to discrete form by using discrete poly-
nomial basis functions. In that case, the numerator row-vector polynomial(N o ∈ C1×Ni) of
output o is:

N o(ωf ) = Σn
j=0 Ωj(ωf )Boj (3.8)

and the denominator matrix polynomial(D ∈ CNi×Ni) is equal to:

D(ωf ) = Σn
j=0 Ωj(ωf )Aj (3.9)

So each transfer function can be represented with an analytical expression; a fraction of
these two polynomials. These coefficients are found using a curve-fitting technique. Sub-
sequently these coefficients are transformed into modal parameters; First the denomina-
tor polynomial D is reformulated into a generalized eigenvalue problem, resulting in npNo

eigenvalues and corresponding right eigenvectors. And once the poles and modal partic-
ipation factors are known, the numerator N is used to calculate the residues Rm using a
residue estimator. These residues are then transformed into mode shapes, using Singular
Value Decomposition (SVD). The benefit of fitting all FRFs of all inputs to output o is that
the modal participation factors and mode shapes directly; by solving a linear least squares
problem. Since the modal model is linear in the mode shapes. After completing both steps,
all polynomial coefficients are transformed into modal parameters. Which again results in
the modal model described by equation 3.4.

3.2.2 Identification of a Right Matrix Fractional Description model

The estimation of the polynomial coefficients is obtained by the pLSCF estimator. The work-
ing principles of this algorithm is explained in this section.
All coefficients of the numerator- and denominator polynomials are real valued. These ma-
trices are combined into one giant matrix with has the symbol θ, the optimal solution matrix.

βo =


Bonp

...
Bo1

Bo0

 ∈ R(np+1)×Ni , α =


Anp

...
A1

A0

 ∈ RNi(np+1)×Ni → θ =



β1

β2
...
βNo

α


(3.10)
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The size of this solution matrix is θ ∈ R(Ni+1)(n+1)×Ni . The estimation of the coefficients
can be obtained by minimizing the non-linear error between the model and the measured
dataset H̄o.

ξNLSo (ωf ,θ) = N o(ωf ,βo)D−1(ωf ,α)− H̄o(ωf ) (3.11)

The error eNLS(θ) is equal to the following Non-linear Least Squares (NLS) cost function;
non-linear with respect to the parameter matrix θ:

eNLS(θ) =

No∑
o=1

Nf∑
f=1

tr
((
ξNLSo (ωf ,θ)

)H
ξNLSo (ωf ,θ)

)
(3.12)

where tr(·) is the trace operator. This boils down to the fact that the NLS error ξo(ωf ) is a
row-vector which must be minimized.

Linear-in-the-parameters A (sub-optimal) linear Least Squares (LS) cost function can be
used to approximate this NLS one. By right-multiplying eNLS(θ) with D(ωf ,α) the NLS cost
function 3.12 becomes linear in the parameters:

ξLS(θ) = W o(ωf )ξNLSo D(ωf ,α) (3.13)

= W o(ωf )
(
N o(ωf ,βo)− H̄o(ωf ) ·D(ωf ,α)

)
(3.14)

= W o(ωf )
n∑
j=0

(
Ωj ·Boj − Ωj(ωf )H̄o(ωf )Aj

)
(3.15)

In this W o(ωf ) are weighting functions, which can be used to improve the estimation. For
instance, the coherence of the measurement, equation 2.3, can be used to bring forward
the parts of the measured FRF which are most accurate. These equations are ’linear-in-the-
parameters’ for f = 1, ..., Nf and can be reformulated into matrix form:

ξLSo (θ) =


ξLSo (ω1, θ)

ξLSo (ω2, θ)
...

ξLSo (ωNf
, θ)

 =
[
Xo Y o

]
·

[
βo

α

]
= Jo · θ (3.16)

where:

Xo =


(W o(ω1) [Ω0(ω1) . . . Ωn(ω1)])⊗ INi

...(
W o(ωNf

)
[
Ω0(ωNf

) . . . Ωn(ωNf
)
])
⊗ INi

 ∈ CNf×(np+1)) (3.17)

Y o =


− (W o(ω1) [Ω0(ω1) . . . Ωn(ω1)])⊗ H̄o(ω1)

...
−
(
W o(ωNf

)
[
Ω0(ωNf

) . . . Ωn(ωNf
)
])
⊗ H̄o(ωNf

)

 ∈ CNf×Ni(np+1)) (3.18)

in which ⊗ is the Kronecker product. The system can be transformed into a more compact
one; the reduced normal equations. First of all the former two matrices are entities of the
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Jacobian matrix J :

J =


X1 0 . . . 0 Y 1

0 X2 . . . 0 Y 2

...
...

. . .
...

...
0 0 0 . . . XNo Y No

 (3.19)

This Jacobian matrix J of this LS problem hasNiNoNf rows and (np+1) (NiNo + 1) columns,
to assure that the problem is well-conditioned the number of frequencies should be way more
then the order of polynomials(Nf >> np). This matrix, and therefore the system will have a
huge size for practical implementation, since the experiments of a frame can easily require
40-60 outputs, several inputs and thousands of frequency points. This leads to a numerical
’stiff’ system, which requires much computational effort.
The (Weighted) linear LS cost function, which is used to find the optimal solution:

eLS(θ) =

No∑
o=1

tr
((
ξLSo (θ)

)H · ξLSo (θ)
)

(3.20)

=

No∑
o=1

tr

([
βTo αT

]
·

[
Ro So

STo T o

]
·

[
βo

α

])
(3.21)

= tr
(
θT · JHJ · θ

)
(3.22)

where the matrices Ro = XH
o Xo ∈ C(n+1)×(np+1), So = XH

o Y o ∈ C(np+1)×Ni(np+1) and
T o = Y H

o Y o ∈ CNi(np+1)×Ni(np+1) contain the derivatives ∂ξLS
o
∂θ . The entries of these matri-

ces can be described by the following expressions:

[Ro]rs = Re

 Nf∑
k=1

|Wk(ωk)|2 · ΩH
r−1(ωk)Ωs−1(ωk)

 (3.23)

[So]rj = −Re

 Nf∑
k=1

|Wk(ωk)|2Ho(ωk) · ΩH
r−1(ωk)Ωs−1(ωk)

 (3.24)

[T o]ij = Re

 Nf∑
k=1

|Wk(ωk)|2HH
o (ωk)Ho(ωk) · ΩH

r−1(ωk)Ωs−1(ωk)

 (3.25)

with i = [(r − 1)Ni + 1 : rNi] , j = [(s− 1)Ni + 1 : sNi] for both r, s = 1, 2, ..., n + 1. These
matrices have a predefined Toeplitz structure given by:

[Ro]rs =

N∑
k=1

|Wk(ωk)|−2 · ei2π(s−r)f/Nf (3.26)

[So]rj = −
N∑
k=1

|Wk(ωk)|−2Ho(ωk) · ei2π(s−r)f/Nf (3.27)

[T o]ij =
N∑
k=1

|Wk(ωk)|−2HH
o (ωk)Ho(ωk) · ei2π(s−r)f/Nf (3.28)

If this Toeplitz structure is worked out in Matlab code, the computational effort(memory re-
quirements and computation time) can be reduced. For minimum of this cost function all
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derivatives with respect to all coefficients must be equal to zero. These derivatives are
combined into one giant matrix equation, which are called the normal equations.

JHJθ = 0 (3.29)

Mθ =


R1 0 . . . S1

0 R2 . . . S2

...
...

. . .
...

ST1 ST2 . . .
∑No

o=1 T o





β1

β1
...
βNo

α


= 0, M ∈ CNi(np+1)×Ni(np+1) (3.30)

Reduced normal equations The number of frequencies Nf can be eliminated from the
size of the system of equations by reformulating the normal equations. The β coefficients
can be expressed in terms of the α coefficients:

βo = −R−1
o So ·α (3.31)

This results in the following, much more compact, system; the reduced normal equations:

N0∑
o=1

(
T o − SHo R−1

o So
)
α (3.32)

The parameter redundancy can be removed by imposing the following constraint: The first
coefficient of the denominator polynomials is set equal to one, e.g. An = INi , for which the
LS solution is given by the following expression:

α =

[
−M−1

[1:npNi,1:npNi]
M [1:npNi,npNi+1:(np+1)Ni]

INi

]
(3.33)

This approach, which takes into account the structure of the normal equations, is much faster
than solving the system of equation 3.29 directly. Once all the denominator coefficientsα are
found, these coefficients are substituted back into equation 3.31 to calculate the numerator
coefficients β.

3.3 Poles identification

The main purpose of this step is to obtain the poles which can be used to build the Φ matrix
in equation 3.43. The amount of poles used to perform the estimation can be controlled by
adjusting the size of the M matrix, which is defined by the number of FRFs and the order
np of the polynomials, as to see in equation 3.29. In order to estimate the complete set of
poles, it is not necessary to estimate all FRFs. This can be relevant in case of a large FRM
to reduce the size M , since too large matrices cause numerical instability. A selection can
be made based on the accuracy of the measured FRF and the occurrence of mode shapes.
For instance, the ones close to the driving point will have low SNR and also some sensors
can be placed at nodes of a mode shape and therefore not all mode shapes are present in
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the corresponding FRF. Once all α coefficients are estimated by the RMFD estimator, the
so-called companion matrix can be build, which has the following structure:

Ac =



A ‘
np−1 A ‘

np−2 . . . A ‘
1 A ‘

0

INi 0 . . . 0 0

0 INi . . . 0 0
...

...
. . .

...
...

0 0 . . . INi 0


(3.34)

in which the terms A ‘
j = A −1

np
Aj . This matrix can be used to determine the poles and

modal participation factors of the system, respectively the eigenvalues and eigenvectors of
this matrix.

(Ac − λnI) Vn = 0 (3.35)

The poles are related to the eigenfrequencies ωr and damping ratio ζr:

λn, λ
∗
n = −ζnωn ± i

√
1− ζ2ωn (3.36)

and this set of poles, or a selection of them, is passed on to the residue estimator. In order to
discriminate the meaningful poles from the mathematical ones the so called stability diagram
is often used. It is a chart in which estimated poles of a variety RMFD models is plotted.
The meaningful poles will show up in each model and are therefore stable. By increasing the
complexity of the RMFD model the stable poles will converge to the real poles. The stability
chart will help to discriminate the meaningful poles from the entire set of estimated poles.
The eigenvectors in matrix Vm are related to the modal participation vector LNn, by means
of the following expression:

Vn =



λ
np−1
n L[:,n]

λ
np−2
n L[:,n]

...
λnL[:,n]

L[:,n]


(3.37)

So the last n rows are repeated rest of the in matrix Vn. If an entire column or row of FRFs
is selected, this information can be used to estimate the mode shapes directly with correct
scaling.
The modal model is based on the superposition principle and therefore the system will have
to following generalized mass matrix:

m̂ = ΨT
NnMNΨNn (3.38)

Let rn be the influence vector which represents the displacements of the masses resulting
from static application of a unit ground displacement. The influence vector induces a rigid
body motion in all modes. A coefficient vector is then equal to:

Γn = ΨT
NnMNrn (3.39)



3.4. RESIDUE IDENTIFICATION 19

The modal participation factor matrix Lmn for mode n is then:

Lmn =
Γn
m̂n

=
ΨT
NnMNrn

ΨT
NnMNΨNn

(3.40)

and the effective modal mass meff,n for mode n is:

meff,n =
Γ2
n

m̂n
(3.41)

Lmn =
ΨT
NnMNrn

ΨT
NnMNΨNn

(3.42)

if the mode shapes are normalized w.r.t. the mass matrix m̂n will be equal to one. The
effective modal mass provides a method for judging the significance of a vibration mode. It
also can be used to indicate if the number of modes is sufficient to describe the dynamic
behaviour of the complete system. For instance, the number of selected modes should be
high enough such that the total effective modal mass of the model is at least 90 % of the
actual mass. Such a constraint can be used to determine the number of modes which must
be taken into account.

3.4 Residue identification

The residue matrix Rmn is obtained in a second step by solving another LS problem in which
the modal model is used. It all boils down to the following linear algebra problem:

e(ωf )︸ ︷︷ ︸
ej

=

[ np∑
n=1

ω2
f

(iωf − λn) (iωf − λ∗n)

]
︸ ︷︷ ︸

Φ


R1j

R2j

...
RNpj

︸ ︷︷ ︸
θ

− Ĥj(ωf )︸ ︷︷ ︸
y

(3.43)

which is minimized. This Right Hand Side (RHS) of this equation resembles the following
matrix equation:

ω2
1

(iω1−λ1)(iω1−λ∗1)
. . .

ω2
1

(iω1−λn)(iω1−λ∗n)

...
. . .

...
ω2
Nf(

iωNf
−λ1

)(
iωNf

−λ∗1
) . . .

ω2
Nf(

iωNf
−λn

)(
iωNf

−λ∗n
)


︸ ︷︷ ︸

Φ


R1j

R2j

...
RNpj

︸ ︷︷ ︸
θ

−


Ĥj(ω1)

...
Ĥj(ωNf

)

︸ ︷︷ ︸
y

(3.44)

This error is minimized and the optimal solution can be found by calculating the pseudo
inverse of φ matrix:

θ =
[
ΦTΦ

]−1
ΦTy (3.45)
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Normally, the estimated residues R are subsequently decomposed into participation factors
L and mode shapes Ψ. Since the modal participation factors were already estimated by the
pole estimation, this information can be used to estimate the mode shapes directly:

e(ωf )︸ ︷︷ ︸
ej

=

[ np∑
r=1

ω2
fLr

(iωf − λr) (iωf − λ∗r)

]
︸ ︷︷ ︸

Φ


Ψ1j

Ψ2j

...
ΨNpj

︸ ︷︷ ︸
θ

− Ĥj(ωf )︸ ︷︷ ︸
y

(3.46)

Another advantage of this pLSCF algorithm. More information can be found in the original
source [4]. If the poles are estimated correctly, this residue estimator is very accurate. This
can be checked by running the matlab script CheckResidueEstimator.m in which the esti-
mated FRM is identical to the simulated FRM, this can be found SystemIdentification

3.5 Implementation using simulated data

Now that all steps of the system identification are treated the developed algorithm is illus-
trated using 4 cases; First a system identification is performed using simulated data. The
FRMs of the rectangular plate and the BF are simulated using the FEM of both systems and
part of these matrices is used to perform the system identification. Secondly, both mechan-
ical systems are identified using real experimental data.

3.5.1 Rectangular plate

First a simple rectangular plate is used to check the correctness of the algorithm. The sys-
tem is measured at the 25 intersection points of the measurement grid. Only displacement
in z-direction is considered, resulting in a 25 Degree Of Freedom (DOF) system. By adding
APDL code snippets to the modal analysis tree the required nodal information of these lo-
cations is calculated by ANSYS Workbench. The entire FRM is simulated and the first
column of the model will be used for system identification. This matrix is generated using
the Harmonic Response module inside ANSYS Workbench. The first 23 modes were used
to simulate the FRFs in ANSYS. This is sufficient, since the highest eigenfrequency in this
FRI is mode 14: 1060.90 Hz. The material is a standard steel alloy, with a Young’s modulus
of 200 MPA and a density of 7800 Kg/m3. The geometry of the rectangular plate is made and
the same (5×5) grid as in figure 2.4 is used. A global mass check was done; the total weight
of the FEM is 3.2932 Kg, which corresponds to the measured weight of the plate, 3.297 Kg.
Each gridpoint is defined as a NamedSelection. On these points a harmonic force of 100 N
was applied in z-direction. The first 23 modes are calculated in the Modal analysis and used
to simulate the ODS. For all points a FRF was calculated, the solutions were combined into
one matrix which is loaded into MATLAB.
For the sake of conciseness FRI is set to [10 : 1200] Hz with 2500 frequency points and
every mode has constant damping ratio of 2 · 10−3. In this FRI, 14 modes are present. The
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(a) Mesh, incl. NamesSelections (b) Tree with Command
Snippets

Figure 3.1: ANSYS WB 17.2: model

Figure 3.2: Simulated Frequency Response Matrix; 1st column

corresponding frequencies are listed in table 3.1 Furthermore only one column of the FRM
is used for the identification. This is sufficient to determine mode shapes and adding more
columns yields no further information and will only distract the reader from the essence of
this chapter. Lastly, the coherence will be equal to one for the entire frequency region since
the dataset is noise-free and therefore the weighting function Wk(ωf ) not applied; equal for
all frequencies. With this condensed simulated dataset both algorithms are compared. All
FRFs which are used for this estimation are shown in figure 3.2. Due to the low damping,
the transfer functions show sharp peaks and they are free of noise, so the system identi-
fication method should be able to estimate the natural frequencies and mode shapes very
accurately. The first two modes are very closely-coupled; The same holds for mode 4 and 5.
The algorithm should be able to distinguish these poles to be applicable in practise. In many
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Mode Frequency[Hz] Mode Frequency[Hz]
1 83.16 8 537.69
2 85.04 9 660.54
3 214.88 10 742.96
4 251.94 11 821.64
5 253.88 12 966.80
6 386.91 13 1021.74
7 442.96 14 1060.89

Table 3.1: Resonance frequencies

designs some kind of symmetry is involved. Due to practical reasons, for instance manufac-
turability, there will never be a perfect symmetry. This results in closely-spaced peaks and it
is important that the algorithm is able to handle this.

Estimated RMFD Model

The complete column is used to estimate the RMFD. The simulated FRFs are smooth func-
tions and therefore it is relatively easy to obtain an accurate fit. The ’synthesized’ polynomi-
als are matching the ’measured’ FRFs very accurately, as to see in figure 3.3; the identified
poles are matching with the peaks very well while the order of the polynomials is only very
low, np = 2. In order to quantify this fit equation 3.13 is calculated and divided by the ampli-
tudes of the FRFs to make the difference relative. The average relative residual is only 0.53

%. There are also some ’numerical’ poles; the ones which show no clear correspondence to
a peak. For convenience, a small part of the FRM H1:6,1,: is shown in figure 3.3; The ’mea-
sured’ FRFs and ’synthesized’ FRFs are shown in the middle and bottom window respec-
tively and the summations of both is shown in the top one. The rest of the FRM is estimated
with comparable accuracy. The estimation of the RMFD using pLSCF is implemented into a
Matlab function called pLSCFestimator, which can be found SystemIdentification

The estimation process is very computationally efficient. With a CPU time of 0.86 seconds all
polynomial coefficients are estimated. Also this system identification algorithm is stable and
very user-friendly, since the user only has to supply the measurement FRM and the polyno-
mial order of the estimated model. Of course, in practise the fit will be of less accuracy due
to the noise present in the measured dataset, this simulated data is noise free and has low
damping and for that reason the estimation is less complex. Now that the FRFs are fitted by
the RMFD model, the coefficients of the α matrix can be used to construct the companion
matrix and calculate the poles and corresponding modal participation factors using equation
3.35.

Pole selection The number of poles are determined by the size of the companion matrix.
This is equal to the product of the order of the polynomials and the number of outputs
Nonp and therefore the number of poles will vary significantly when the order is varied for
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Figure 3.3: Fit of RMFD to H1:6,1

practical FRMs. To discriminate the meaningful poles from the mathematical ones the RMFD
estimation is repeated with an increasing number of poles. To increase the number of poles
gently, only part of the column is fitted. First of all the majority of mathematical poles are
filtered using constraints, e.g. the Right Half Plane (RHP) poles are neglected as well as the
conjugates of each pole. The remaining poles of each estimation are shown in the so called
stability diagram, shown in figure 3.4. In this chart the blue curve represents the cumulative
of all FRFs. This clearly brings forward the resonances indicated by the red circles and
vertical lines, which makes the selection of relevant poles more convenient.
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Figure 3.4: Stability diagram of simulated rectangular Plate

Some sensor locations are at of close to node of a mode shape and therefore no resonance
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is observed. In order to get the most accurate estimate of all resonances, one should select
only FRFs in which all resonances are measured. Furthermore, mathematical poles will
differ more in value compared to the meaningful ones. This information can be used to
make a good distinction. The stability diagram shows that all meaningful poles are estimated
accurately when No = 18 or more. To estimate all modal participation factors the complete
column is fitted, but all poles are already known from fitting only the first 18 FRFs. The
selected poles are indicated by the orange markers and their indices. These poles are
passed on to the residue estimator in which they are used to build the regression matrix Φ.
One may wonder why this effort of applying a MDOF curve fitting technique is done when all
modal parameters can also be obtained by using a simple local SDOF estimation technique
like peak picking. The main reason is that these local estimates are less accurate and
more time consuming for practical cases. Also for real measurements the peaks will be
less obvious and then it will be quite hard to estimate the poles accurately. So for practical
purposes, a global curve fitting technique like pLSCF will result in a better estimate of the
poles of the system under study with less effort, since the user only has to supply a selection
of the FRFs and the order of polynomials and the stability charts will indicate the mechanical
poles of the system under study.

Estimated modal parameters

Once the meaningful poles are identified, they are used together with the measured FRM to
estimate the residues in a LS sense, as treated in section 3.4. The result of the procedure
is the modal model, shown in figure 3.5b. The Matlab function in which these steps are
implemented, is called ResidueEstimator.m. The FRF are influenced by modes outside the
FRI. This is approximated by adding upper and lower residue terms to the Φ matrix. The
result is an even more accurate modal model, presented in figure 3.5a.
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Figure 3.5: Modal Model of simulated rectangular plate

Looking to the poles in figure 3.5a one can see that the identified poles all correspond to a
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peak in the FRF. The estimated resonances show the very little deviation from the analytical
ones, the average deviation is only ∆ω̄n = −1.52 ·10−4 %. The other poles are mathematical
ones and are be filtered out to improve the fit. This same strategy is performed with a set of
poles which still contained three mathematical then the obtained results is still accurate. The
estimator gives very low residues for these mathematical poles, so they drop out. However,
the best fit will always be achieved when the amount of mathematical poles is as low as
possible.

Now that the residues Rmn are estimated, the mode shapes are determined using SVD
analysis. In this analysis the residue matrix is decomposed:

Rmn = UnSnV
T
n = Ψmn ·LTmn (3.47)

in this the matrix V is equal to unity,the diagonal matrix S describes the modal participation
factors Lmn and the matrix U equals the mode shape Ψmn. More specifically, the matrix U
is symmetric and the first row or column of this matrix described the mode shape Ψmn. This
is done for all modes and the results are shown in figure 3.6 for the first 12 modes.
As to see in the equation 3.47 the mode shapes can also be estimated directly when a full
column is fitted by the pLSCF. The vectors of Rm, and Ψmn are equivalent up to a scalar,
so if one is only interested in the shape this decomposition is not necessary. The modal
participation factor indicates the relative influence of the corresponding mode in the total
displacements

Figure 3.6: Estimates mode shapes of rectangular plate

The found shapes shown nearly perfect correspondence to the ones calculated in the modal
analysis of the FEM build in ANSYS Workbench, the first 3 modes are shown in figure 3.7.
The shape is already known from the residues, but the modal participation factor can be
used to scale all estimates mode shapes. The amplitudes of both estimated and simulated
FRMs are calculated at each resonance. The relative error between both is calculated by
division of the difference by the simulated amplitudes. The average error was 0.24 % with a
maximum of 1.1 % for the 6th resonance. The average error is of all other resonances is only
0.17 %. So if the measurements are noise free, the algorithm is able to consistently estimate
the entire set of modal parameters with very high accuracy.
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(a) Mode 1 (b) Mode 2 (c) Mode 3

Figure 3.7: LTA 2 Bottom Frame

3.5.2 Bottom Frame

The developed system identification algorithm is applied to one of the systems which are
fabricated by VDL ETG; the BF. The internal stiffness of the BF is of major importance
for the dynamical performance and thus position accuracy of the LTA2. In 2013 a design
verification study was performed on this particular system and the experimental data and
FEM of this study is used to illustrate the practical application of the developed algorithm.
For more information about the BF; the pdf file of the report of this study can be found in

VDL ETG.

(a) Measured system (b) NX model

Figure 3.8: LTA 2 Bottom Frame

In the FEM all 22 measurement locations are defined. To maintain consistent numbering;
namely all uneven number on one side, the index 18 is absent in the system. To visualize
the mode shapes a wire frame is made, shown in figure 3.9b.
First of all one entire column of the FRM is simulated using NX Nastran. More precisely,
the first n analytical resonance frequencies [ωan] and the corresponding nodal solutions of all
’measured’ nodes [Ψa

mn] are calculated by the program. Furthermore a constant damping
ratio of ζ = 0.01 is applied to all modes to get more realistic FRFs. The real measurements
often show more damping, the peaks are less clear then in the FRM of the rectangular plate.
These modal matrices are then used to calculate the state space model, using the following
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(a) Measurement numbering (b) Wire frame

Figure 3.9: Measurement locations

equations:

A =

[
0 I

−Λ2
n −2ζΛn

]
, C =

[
[Ψmn] 0

]
(3.48)

B =

[
0

[Ψmn]T

]
and D =

[
0
]

(3.49)

For the simulated FRM, node 1 is chosen the excitation point. The resulting matrix Ha
BF

contains 69 × 3, inputs are impact force applied to node 1 in all three Cartesian directions,
outputs are accelerations of all 22 nodes in all three Cartesian directions. The FRFs of node
17 are copied to node 18, to get a full matrix with corresponding indices.

Figure 3.10: Simulated Frequency Response Matrix; 1st column

This matrix is used to perform the system identification, in which the copied data is ne-
glected. It is important to notice that if there is any copied data, the system will become
singular. In practise two measurements will never be exactly the same so then this will be
a non-issue. This FRM has a more realistic amount of DOFs, this involves that a selection



28 CHAPTER 3. SYSTEM IDENTIFICATION

Mode Frequency Mode Frequency Mode Frequency Mode Frequency
1 40.79 8 115.89 15 142.90 22 178.37
2 56.71 9 124.69 16 146.69 23 180.17
3 63.49 10 127.29 17 150.57 24 182.73
4 91.06 11 128.45 18 158.35 25 183.90
5 92.20 12 135.68 19 160.86 26 188.47
6 97.43 13 137.01 20 162.33 27 195.95
7 111.99 14 137.31 21 172.52 28 198.58

Table 3.2: Resonance frequencies [Hz]

of the DOFs is used for the estimation of the poles of the complete modal model. All used
scripts to obtain the FRM can be found in VDL ETG/NXnastran.

Estimated RMFD model

The whole purpose of this curve fitting technique is to identify the poles of the system under
study, which resemble the denominator terms of the modal model. The (Weighted) linear LS
cost function, equation 3.20 is minimized to find the optimal set of polynomial coefficients.
The α matrix is subsequently used to estimate the poles of the system. This means that it
is not necessary to use all 66 FRFs for the estimation of the poles since all resonances are
visible in most of the FRFs. Some mode shapes are more active in one DOF than another
and for that reason fitting multiple FRFs results in better estimates. But this does not include
that the entire column of the FRM is required, since one would have an enormous amount
of poles to fit, namely equal to the product npNo and this means that no clear stability charts
can be made. The best result is by fitting the RMFD on a set of FRFs in which all modes
are present significantly. So the FRFs corresponding to the most active DOFs are preferred
over the ones which contain one or more zeros. A selection of the entire column of the
BF FRM is used to estimate the RMFD model. The error vector is summed and divided by
the sum of the FRFs, resulting in a relative error of 3.52 · 10−9. The fit could be improved
even more, when the mathematical poles are filtered out. For convenience, a small part
of the FRMs H1:6,1,: is shown in figure 3.11. The ’measured’ FRFs and ’synthesized’ FRFs
are shown in the middle and bottom window respectively and the summation of both is
shown in the top one. The rest of the FRM is estimated with comparable accuracy. The
estimation of the RMFD using pLSCF is implemented into the Matlab code pLSCF.m shown

VDL ETG/SystemIdentification/pLSCF.
The estimation process is very computationally efficient. With a CPU time of 0.25 seconds all
polynomial coefficients are estimated, from which all natural frequencies and mode shapes
can be calculated. Also this system identification algorithm is stable and very user-friendly,
since the user only has to supply a selection of the simulated FRM and the polynomial
order of the estimated model. The selection contains the 27 most active DOFs; this was
determined by summing the frequency content of each FRF.
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Figure 3.11: Fit of RMFD to H1:6,1

Pole selection The poles are selected using the stability chart shown in figure 3.12. The
order of the polynomials is set to np = 2 and in total 27 FRFs are fitted. The second
resonance, at approximately 57 Hz is the only resonance which is not represented in the
fitted modal model. The number of FRFs was increased until the resonance was identified,
but then the other estimates were estimated with less accuracy. This resonance is a so called
local mode, it only involves a small part of the DOFs, namely DOF 22 and 42. Therefore it
is not part of the common denominator, the pole is not inactive in all other FRFs. Al other
resonances are identified by a stable pole, since they are global mode shapes. The selected
poles are indicated by the orange markers.
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Figure 3.12: Stability diagram of simulated BF

Increasing the amount of FRFs does not result in better estimates, since the system will
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overloaded by the amount of mechanical poles. The number of poles used for the estimation
is limited. This depend on the complexity of the FRFs. E.g., for a FRF which shows 10
resonances approximately 10 complex pole pairs can be identified. Therefore the number of
poles should be approximately 20 to 30 to get a good fit. If the number of poles of the RMFD
is increased significantly further the α matrix will become close to singular which results in a
inaccurate fit. The system has too many unknowns to solve the set of equations accurately.
This can also be seen when looking to the condition number, which is the ratio between the
highest and lowest eigenvalue. A high condition number will result in a

Estimated modal parameters

The set of selected poles is entered into the mode shape estimator, which is able to estimate
the complete FRM. So the fact that the RMFD model estimator is not able to estimate the
complete FRM is not an issue, since the whole purpose of this step, the distillation of poles,
can also be performed based on a subset of the FRM. The estimated modal matrices of this
model are indicated by Ψ̃a

mn and Λ̃en
First the estimated mode shapes Ψ̃e

mn are compared to the FEM mode shapes Ψa
Nn graph-
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(b) Amplitude plot of FRMs; 24th column

Figure 3.13: Modal Model of simulated BF

ically. Visual information is very helpful to obtain insight in the structural dynamics of a
system, it tells way more than numerical results. As to see in figure 3.14 the wire frame
gives a clear indication of the FEM mode shape. The wire frame visualisation of the mea-
sured mode shape can be used to interpret resonances, which can be very helpful to gain
insight in the dynamic behaviour of the system under study. For instance, looking at the
mode shape shown in figure 3.14 one can clearly see that this resonance in mainly deter-
mined by bending at on of the corners of the frame in vertical direction. Furthermore a script
was developed to produce short animations of the mode shapes. To quantify the correspon-
dence between estimated and analytical models correlation analysis is performed and all
results will be treated in Chapter 4.
The estimation using the simulated FRM shows promising results, it proves that if the reso-
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(a) Estimated mode shape (b) FEM mode shape

Figure 3.14: mode 2: 63.5 Hz

nances are significantly present in the measurements, the developed algorithm will distillate
the modal parameters accurately. The amplitudes both estimated and simulated FRMs are
calculated at each resonance. The relative error between both is calculated by division of
the difference by the simulated amplitudes. The average error was 2.1 % with a maximum of
9.9 % for the first pole. The first and third pole are estimated relatively bad, the mean error
of all other resonances is only 1.2 %. So if the measurements are noise free, the algorithm
is able to consistently estimate a large DOF system with very high accuracy.

3.6 Application to an experimental structure

Subsequently, the real measurements on both systems are used. The presence of noise
results in a FRM which is harder to fit by the modal model. However, in practise mea-
sured FRFs will always be contaminated with noise and not all modes will be excited due
to compliance of the structure. The developed algorithm must be able to cope with these
imperfections and estimate the majority of the modal parameters with sufficient accuracy.
The coming sections will describe the performance of the algorithm in the specific cases.

3.6.1 rectangular Plate

Now that the simulated FRMs have convincingly proved that the algorithm is able to identify
a complete modal model of a mechanical system using a full column of noiseless data, the
same procedure is applied to real experimental data. The measured FRM, which was the
result of the data acquisition phase, shown in figure 2.5 is estimated using the same pLSCF
method, described in section 3.2.2. The low frequent suspension and inaccuracy of the
accelerometers at low frequencies are filtered out by increasing the starting frequency of
FRI to 36 Hz. Still substantial below the first resonance of the system, 81 Hz respectively.
With this small adjustment the identification process is performed similar as in the simulated
case.
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Estimated RMFD model

In this FRM the resonance peaks are still narrow which makes relatively easy to identify.
However, these FRFs contain noise and therefore it is harder for the algorithm to determine
all the mechanical poles accurately. This results relatively higher amount of mathematical
poles are estimated, therefore the polynomial order is increased, np = 6. Due to the pres-
ence of noise the FRFs are less smooth, as to see in middle window of figure 3.15. Also the
low frequency peaks are estimated less accurate since they show too much damping. Since
the FRFs are very noisy at these low frequencies and therefore the measured signal will not
be representing the real dynamic behaviour of the system under study. The lower residual
term is not able to represent this behaviour fully. This effect is reduced by increasing the
lower frequency limit slightly. The correspondence between the rest of the synthesized and
measured FRFs is still very accurate, as to see in the top window.

Figure 3.15: Fit of RMFD model to the measurements

The most important objective, the estimation of the peaks, is still very well succeeded. In
between the resonances some deviations show up, although their contribution is very little
realizing that they are plotted in decibel scale. The error vector is summed and divided by
the sum of the FRFs, resulting in a relative error of 9.78 · 10−4, still very close to zero.

Pole selection This RMFD model is estimated multiple times in which part of the mea-
sured FRFs is fitted. The procedure started by fitting the first 17 FRFs and is continued until
the full column was fitted. The stability chart of these results are shown in figure 3.16. Again
a selection of the poles of the RMFD model which estimates the full column are passed
on to the residue estimator. The selected poles are indicated by the orange markers. The
selection is based on the peaks of the blue curve and the stability of each pole throughout
the different estimations.
As the second mode clearly contained too much damping, the real part of this poles is
adjusted to obtain a better fit. This is done since there was just one pole which showed
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Figure 3.16: Stability diagram of measured rectangular Plate

significant discrepancy. If multiple poles are estimated badly one must compare multiple
sets of selected poles and use this to improve the estimation iteratively. More investigation
about this iterative process is required to develop a more convenient procedure to adjust the
damping of the poles. For this case the fit accuracy is sufficient to proceed with the next step
of the system identification process.

Estimated modal model

The identified poles are passed on to the residue estimator. The driving point FRF is shown
in figure 3.17a and it shows that the majority of the peaks are estimated accurately. The
addition of the lower- and upperresiduals improves the fit even more. As to see in figure
3.17b the complete set of FRFs is estimated accurately at the resonances, in between some
discrepancies are observed. The modal parameters are consistently estimated and these
modal matrices can be used for further analysis, e.g. for validation purposes.
For convenience, the absolute values of both measured and estimated FRMs are compared.
A matrix Hcomp is build in which the amplitude vectors of both datasets are stacked in al-
ternating order. The red and green corners indicate the measured and estimated values
respectively.
The average difference between measured and estimated FRMs is 5.4 % with a maximum
of 22.2 % for the 17th pole. The 14th pole is estimated relatively bad, the mean error of all
other resonances is only 4.4 %. This difference is not entirely caused by the estimator error
since also noise is inside the system which cannot be described by the modal model.
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Figure 3.17: Fit estimated FRFs
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Figure 3.18: Comparison FRMs at resonances

3.6.2 Bottom frame

In practise a system will be made out of many parts from different materials and also part of
the system can be complaint such that not all parts of the system are excited. This all will
result in a more complex FRM. Part of these effects can be recognized in the measurements
of the experiments executed on the BF. The peaks are less clear compared to former cases
and also some modes are only present is a small selection of the DOFs. This dataset is very
illustrative of any mechanical system fabricated at VDL ETG.
Vibration experiments are performed on one of the fabricated BFs. The system was excited
in x and z direction. In this case only the x direction is considered, so only the first 22 mea-
surement DOFs is measured. part of the FRM is measured, namely Hx

BF ([1 : 17, 19 : 23], 1)

and Hx
BF (46+[1 : 17, 19 : 23], 47). This matrix is used to perform the system identification, in

which the copied data is neglected. All used scripts can be found in VDL ETG/NXnastran.
This is the final test case for the identification algorithm, using real measurement data mea-
sured on one of the products of VDL ETG. Only part of the outputs was measured, due to
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Figure 3.19: Measured Frequency Response Matrix; H̃1:23,1

lack of time. The measurements show good correspondence to the FEM, as described in
the report of the design verification, present in folder VDL ETG/NXnastran. Corresponding
to a measurement in which the system is excited in x direction and all 23 nodes accelera-
tions in x-direction were measured. The second measurement involved excitation at node 1
and the accelerations of first 17 nodes were measured, all in z-direction. So two incomplete
columns are measured, this dataset is used to illustrate a practical implementation of the
developed algorithm.

Estimated RMFD model

The FRFs are estimated the pLSCF estimator which results in a RMFD model which can
be used to identify the poles of the system and subsequently the residue estimator is
used to calculates the corresponding mode shapes. Since the FRM Ha

BF contains many
FRFs, only of the first part of the estimated FRFs is shown in figure 3.21, but the rest
of the estimated FRFs show similar correspondence. All used scripts can be found in

SystemIdentification. The estimated FRFs is still very accurate, as to see in the top
window.

Pole identification The poles are less clear, as to see in figure 3.21.
In order to get such a good fit the user has to consider the size of the FRM to be estimated.
All available measured FRFs are used and the polynomial order np was determined after
couple of iterations. Increasing the order any further gives no improvement of the fit. It is
hard to identify the origin of this issue exactly, since it involves the complexity of the FRM,
the number of frequencies nf and the order of the polynomials np. More research about this



36 CHAPTER 3. SYSTEM IDENTIFICATION

-50

-40

-30

-20 Σ|H
est

|

Σ |H
ref

|

|H
re

f|

-100

-80

-60

-40

-20

Frequency [Hz]

40 60 80 100 120 140 160 180 200

|H
e
s
t|

-100

-80

-60

-40

-20

Figure 3.20: Fit of RMFD model to the BF measurements

issue would be required, but this is outside the scope of this study. As to see in figure 3.21
there are modes which only have little influence, so they are hard to identify. For that reason
also poles which are not close to a peak are selected.

Estimated modal model

Both measurements are fitted separately since different input directions are used. In figure
3.22a the driving points FRFs of these models are plotted together with analytical FRF.
The estimated modal matrices of this model are indicated by Ψx

mn and Λxn in which the
superscript x refers to experimental. The first 4 dominant resonances corresponds to the
simulated model very well. Since the measurements are only in one direction, the found
mode shape also only describe one DOF of the nodes. However, the knowledge of the FEM
can be used to expand the measured DOFs to all DOFs of the wireframe, this will be treated
in section 4.3.1.

Estimated modal model

The set of selected poles and the entire column of the measured FRM passed on to the
residue estimator to build the regression matrix Φ and the RHS y. As to see in figure 3.17a
the addition of the low and high frequent residual terms significantly increases the fit of
modal model and therefore the estimated residuals will be more accurate. Also one should
note that shown FRFs are plotted in decibels. Looking at the complete estimated FRM in
figure 3.17b one can see that this is achieved for all FRFs with comparable accuracy. In
between peaks differences are obtained but close to the resonances all amplitudes of the
FRFs are estimated correctly within an average error margin of 4.6 % and a maximal error
of 9.1 %, provided that the two worst estimated resonances are left out. In this case the 5th

and the 13th resonances contain a too much damping, the real part is estimated too large.
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Figure 3.21: Stability diagram of BF
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Figure 3.22: estimated H̃x
BF ([1 : 23], 1)

An attempt was made to adjust these two poles iteratively, but no consistent improvement
was found. More research to this issue should be done, for this study the error is accepted.
The corresponding estimated mode shapes are inaccurate and should not be used in further
analysis. The majority of the poles is estimated with high accuracy and this can also be seen
when comparing the both FRMs in figure 3.17 close to these frequencies; approximately
92 and 157 Hz. At those frequencies the amplitudes differ the most, for the rest of the
resonances a very satisfactory fit is found.

For convenience, the absolute values of both FRMs for each resonance frequency are
plotted in the three-dimensional bar graph in figure 3.23. The red and green lines indicate
the synthesized and measured FRM respectively. All vectors in this figure are normalized to
get a comparable scale. From this one can conclude that at most resonances the measured
response is accurately described by the estimated modal model, which is the main objective
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of performing an experimental analysis.
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Figure 3.23: Comparison FRMs at resonances

The average difference between measured and estimated FRMs is 5.4 % with a maximum
of 22.2 % for the 17th pole. The 14th pole is estimated relatively bad, the mean error of all
other resonances is only 4.4 %. This difference is not entirely caused by the estimator error
since also noise is inside the system.

3.7 Conclusion

The system identification procedure is now treated fully. Both systems, the rectangular plate
and the BF, using simulated and measured FRMs are estimated and the developed algo-
rithm is able to identify the poles and subsequently the mode shapes in short CPU time and
with minimal user input. The developed algorithm is user-friendly, since the only input asked
from the user is to select the FRI and the order np of the polynomials. One has to note that
the RMFD estimator, more specifically the matrix M , can run into singularity problems if the
number of poles is too large. The amount of poles can be increased gradually by selecting a
subset of the measured FRFs. On this subset a RMFD model is fitted and this model is then
used to calculate the poles. By gradually increasing the amount of selected FRFs multiple
sets of poles are found and presented in the so called stability diagram. This diagram can
then be used to identify all mechanical poles of the system. This procedure works best if the
FRFs corresponding to the most active DOF are selected.
Once the poles are identified they are passed on to the residue estimator in which they
are used to build the regression matrix φ. This estimator is very stable and therefore the
complete FRM is fitted by the modal model. Once all modal parameters are estimated this
information is saved as a Matlab data file .mat which can be used for the correlation analysis,
treated in Chapter 4.



Chapter 4

System Correlation

This chapter contains the correlation analysis, which is the final phase of the Experimental
Modal Analysis. The modal model which is identified system will be compared with an an-
alytical dataset and the correlation analysis is done to identify if and where any deviations
occur. This insight can be used to improve the FEM or to validate the system with a refer-
ence model to verify that the system meets its specifications. Each of the tools presented
below can help the engineer to gain insight in the cause of the discrepancies that exist be-
tween FRMs.

4.1 Correlation metrics

Every estimated set of modal parameters can be compared the reference dataset. Therefore
no knowledge about the system matrices is required and it can be a first step to investigate
correspondence between models. More details about these metrics can be found in the orig-
inal source [5]. All metrics will be illustrated by using the simulated and estimated data which
were presented in section 3.5.1. All used metrics are also calculated for the BF and these
results are shown in appendix B and used scripts can be found in SystemCorrelation.
This comparison can be done by comparing the resonance frequencies, the mode shapes
and by using entire FRFs.

The Frequency Response Assurance Criterion (FRAC) [6] The use of FRFs for correla-
tion instead of eigenvectors is attractive because experimental FRFs are measured directly,
therefore they are more easily obtainable than eigenvectors. The eigenvectors require sig-
nificant post measurement analysis of the FRM(system identification). The FRAC is defined
by the following expression:

FRACio =

∣∣∣{Ha
io(ωi)}

T {Hx
io(ωi)}

∗
∣∣∣2(

{Ha
io(ωi)}

T {Ha
io(ωi)}

∗
)(
{Hx

io(ωi)}
T {Hx

io(ωi)}
∗
) (4.1)

in this Ha
io(ωi) and Hx

io(ωi) refer to the FRF corresponding to input DOF i and output DOF o

of FRM a and x respectively; In practice most of times a will be the ’analytical’ dataset and
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x will be the ’experimental’ dataset. The FRFs can be compared over the full FRI, a part
of this range or only at the resonance frequencies. For this case the full FRI is used. The
resulting matrix indicates which DOFs are correlated. The matrix is evaluated for using the
simulated and estimated FRMs, shown in figure 4.1a. All maximums are at the diagonal,
indicating that all DOFs are corresponding. All diagonal terms are very close to one, which
indicates that the estimated FRFs are estimated with high accuracy. The higher the value of
the diagonal terms, the more both FRFs correspond.

The Modal Assurance Criterion (MAC) The modal parameters of the estimated modal
model can also be compared. MAC shows the degree of correlation between two vectors
and it is computed by the following expression:

MACpq =

∣∣∣{Ψa
p

}T {
Ψe∗
q

}∣∣∣2({
Ψa
p

}T {
Ψa∗
p

})({
Ψe
q

}T {
Ψe∗
q

}) (4.2)

in which Ψa∗
p and Ψe∗

q are the pth and qth column of the analytical and experimental mode
shape matrices respectively. The resulting matrix indicates which modes are correlated and
therefore identifies the mode pairs of in the two datasets. The matrix is evaluated for using
the simulated and estimated mode shape matrices, shown in figure 4.1b. The maximums
are at the diagonal terms, which indicates that all mode shapes correspond. Since mode
shapes are orthogonal, the off-diagonal terms should be very low. The more this matrix
approaches the unity matrix, that better the mode shapes are estimated.

The Modal Scale Factor (MSF) Once all modes are paired, their sizes and orientations
can be scaled using the MSF. It is calculated using the following equation:

MSF q =

{
Ψa
q

}T {
Ψe∗
q

}{
Ψa
q

}T {
Ψa∗
q

} (4.3)

In which Ψq is the qth mode pair.
By carefully applying these three checks both datasets are equally oriented in terms of
DOFs, mode shapes and directions. The matrices shown in figure 4.1 show high values at
the diagonal, indicating the estimated model is very well correlated to the simulated model.

The COordinate Modal Assurance Criterion (COMAC) Now that both modal matrices
have the correct scale and orientation the COMAC can be calculated to indicate the corre-
spondence between the mode shapes of two datasets in therms of the DOFs. This is done
by the following expression:

COMACq =

∑Nm
r=1

∣∣Ψa
qrΨ

e
qr

∣∣2∑Nm
r=1 Ψa

qrΨ
a∗
qr

∑Nm
r=1 Ψe

qrΨ
e∗
qr

(4.4)

in which Ψa
qr and Ψe

qr are the qth DOF of the rth mode shape. The expression is very compat-
ible to the MAC, only this time the mode shapes are summed for each DOF. This indicates
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Figure 4.1: FRAC and MAC matrices evaluated for estimation case 1

which DOF is deviating the most, which can give the engineer insight in the origin of the
deviation without need to calculate the structural matrices of the system. For this case the
following result is obtained:
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0.98

0.99

1 00.

DOF

0

Figure 4.2: COMAC values for estimation case 1

From which one can conclude the estimation is almost perfect, the worst estimation is in-
volved with mainly DOF 23 and 24 is less then 2%, so all DOFs are corresponding accurately.

The Enhanced COordinate Modal Assurance Criterion (ECOMAC) In practise experi-
mental modal vectors imply the potential problem of calibration scaling errors and/or sensor
orientation mistakes. In this metric the nominator part is equal to the COMAC. The terms
in the denominator part of the COMAC normalize the correlation coefficient and therefore
every error in scaling or orientation will not be recognized. The ECOMAC was developed to
extend the COMAC computation to be more aware of typical experimental errors that occur
in defining modal vectors such as sensor scaling mistakes and sensor orientation errors.

ECOMACq =

∑Nm
r=1

∣∣Ψa
qrΨ

e
qr

∣∣2
2Nm

(4.5)

The result is shown in figure 4.3a, this also indicates that the last three DOFs are deviation
the most. So this metric can be used to quickly check if the COMAC is evaluated correctly.

The absolute difference between mode shapes Finally, absolute differences between
both mode shape matrices are calculated. The resulting matrix is shown in figure 4.3b and
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clearly illustrates that the 10th mode shape is estimated the worst and that primarily last three
DOFs are involved in this difference. From which one can conclude the estimation is almost
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Figure 4.3: Correlation matrices evaluated for estimation case 1

perfect, the worst estimation is involved with mainly DOF 23 and 24.

4.1.1 Conclusion

The correlation metrics indicate that the estimated modal model very accurately describes
the dynamic behaviour of the system under study. These metrics can also be used to show if
and where in the system deviations occur. There is a variety of these assurance criteria and
by even weighting can be applied to focus on the most relevant frequencies. All these metrics
can help the engineer to identify any deviations between systems and this information in
combination with a decent engineering judgement can be used to draw conclusions about
the cause of these deviations. Furthermore in the case for a design validation study of a
fabricated product, these metrics can be used to quantify how well the fabricated product
meets its specifications.

4.2 Obtaining the analytical modal model

ANSYS is used to calculate full space matrices, including the global stiffness and mass
matrix of the system under study. In appendix C a manual is written in which the entire pro-
cedure is explained. These matrices can have very huge sizes, since a mesh of FEM model
can easily contain thousands of nodes and these nodes can have multiple DOFs. Only the
mode shapes corresponding to the resonances which are in the frequency region of interest
are relevant. First of all, the global mass and stiffness calculated by the modal analysis in
ANSYS are exported to a ’jobname.full ’ file, in which jobname is the user specified name of
the ANSYS session. An ADPL script is used to extract the global mass and stiffness matrix
into a Harwell-Boeing format(Kmat.matrix and Mmat.matrix) which are then imported into
Matlab.
These matrices are saved in a particular format, to reduce computational effort, therefore
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the imported matrices have to be rewritten to their original form. Because of the large
size (typically 106 elements) of structural matrices and the fact that elements are connected
to a small set of nodes, resulting in many zero elements,these matrices are converted to
sparse matrices. Also only the lower triangular part of the matrices is saved, that is suffi-
cient since global matrices are symmetric. When all of these rewriting steps are considered,
the first 20 solutions(6RBM+14FBM) are calculated using the Matlab command [ΨNn,Ω2

Nn]

= eigs(KN ,MN , 20,’sm’). Lastly one has to note that the global matrices are reordered to
minimize bandwidth, which also minimizes computational effort. This process is called in-
ternal ordering. No boundary conditions are applied, so the BCS ordering has no influence,
more info about the ordering can be found in the ANSYS Parametric Design Language
Guide1. To reorder the matrices into the same numbering as the nodes, the so called user
ordering, the PRNSOL,U command is used to export the first 14 flexible body modes calcu-
lated by the ANSYS modal analysis, resulting in the mode shape matrix ΨANSY S in which
the node numbers are known. The sum of the absolute values of each row of both mode
shape matrices Ψ are calculated and sorted in ascending order form which the correspond-
ing indices of both matrices can be found.
If all of these rewriting steps are considered, the original full global matrices [KNn] and
[MNn] are found, of this the indices indicate the sizes of both matrices. The reordering is
checked by solving the eigenvalue problem again using the reordered global matrices. The
found eigensolutions are equal to the mode shape vectors ΨANSY S .

4.2.1 Mass normalisation

To correlate measurements with analytical models, both modal parameters must be scaled
to the same size. First off all the orthogonality of the mode shapes is used to assure that both
mode shape matrices Ψ are ordered in the same sequence. Therefore the modal matrices
are calculated.
AnN DOF system, containsN natural frequencies and alsoN corresponding mode shapes.
Only the set of n resonances are of interest, since they are inside the FRI. For the steel plate
case these are the first 14 flexible body modes. Only this part of the mode shape matrix
considered in the correlation analysis.

{Ψ}Tr [M ] {Ψ}r = [mr] and {Ψ}Tr [K] {Ψ}r = [kr] , r = 1, 2, .., n (4.6)

In which the matrices [mr] and [kr], called the modal mass and modal stiffness matrix, are
diagonal matrices. This implies that the equations of motion are fully decoupled. The scaling
of the mode shape vectors is arbitrary. To get a unique, consistent solution the vectors are
normalized such that the modal mass matrix is equals to the unity matrix. As a consequence,
the diagonal elements of the modal stiffness matrix equal the natural frequencies squared.

[mr] = [I] , [kr] =
[
Ω2
n

]
= diag[ω2

1, ω
2
2, ..., ω

2
n] (4.7)

The mode shapes which are calculated in ANSYS are mass normalized by default.
1http://148.204.81.206/Ansys/150/ANSYS%20Parametric%20DesignLanguage%20Guide.pdf: 4.4
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4.3 Model Reduction/Expansion

In order to compare the analytical model with experimental models, the size of both systems
have to match. In practice a small set of locations will be measured and FEM models can
easily contain thousands of nodes.
In ANSYS the locations of the sensors can be defined as NamedSelection resulting in a
mesh with nodes at those locations. An APDL script is developed to obtain the correspond-
ing node numbers. With this information, the DOFs can be distinguished into measured and
unmeasured DOFs, the so called master and slave coordinates. Therefore the generalized
eigen value problem can be rewritten in the following form:[

−
[
Ω2
n

] [Mmm Mms

M sm M ss

]
+

[
Kmm Kms

Ksm Kss

]][
Ψmn

Ψsn

]
= [0] (4.8)

in which all selected mode shapes are stored in the columns of the matrix Ψ. For the steel
plate, the number of master and slave DOFs is 25 and 9537 respectively. The master DOFs
are ordered in the same ordering as the NamedSelections, all slave DOFs are ordered by
ascending node number. The analytical model contains information of all nodes and can
be used to expand the experimental test vectors to the full space of the FEM. Alternatively,
the full space matrices can be reduced to the size of the measured system, using the same
information. There are many techniques to reduce and expand modal models. In this study
the technique called SEREP2 is used. The SEREP produces exactly the same dynamic
properties in the reduced model as those of the full space model. There are alternative
approaches, but for this study only this procedure is used, since comparing different ex-
pansion/reduction techniques is done in numerous other studies such as [7]. From this the
SEREP procedure is found the most promising technique.

System Equivalent Reduction Expansion Process (SEREP)

As the name suggests, this technique is used for either the reduction of the finite element
structural matrices or for the expansion of the measured experimental modal vectors. The
SEREP modal transformation relies on the partitioning of the modal equations representing
the entire set of FE DOFs relative to the modal DOFs. The SEREP technique utilizes the
mode shapes from a full finite element solution to map to the limited set of master DOF.
SEREP is intended to perform an accurate mapping matrix for the transformation.
First of all the SEREP reduction is used to reduce the number of degrees of freedom in
an analytical model to reduce computing time while attempting to preserve the full DOF
characteristics. The full set of DOFs is expressed in terms of the master coordinates using
a transformation matrix [T ] which is determined by the pseudo-inverse of the master part
Ψmn of the selected mode shapes. For SEREP, the number of master DOFs Nmn must
be greater than of equal to the number of modes NΨ contained in the analytical modal
matrix. If the number of selected mode shapes is equal to the number of master DOFs the

2https://sem.org/wp-content/uploads/2016/01/sem.org-IMAC-XIV-14th-Int-14-36-1-SEREP-Expansion.pdf
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expanded mode shape vectors are exact. In the standard SEREP NΨ is equal to the number
of experimental mode shapes.

{XNn} =

{
Xmn

Xsn

}
= [T ] {Xmn} , [T ] = [ΨNn] [Ψmn]† (4.9)

If NΨ is less than Nmn the original experimental vectors are smoothed out in a least-squares
sense to best fit the test data, so original measured data is also changed. This can be ben-
eficial to reduce noise, but there is also risk to consistency issues. To clarify this concept,
in appendix D the SEREP technique is applied to a small 10 DOF lumped system using 4
master degrees of freedom.
The reduced system will be used in to perform error localisation. After various error matri-
ces are calculated, these results can be expanded to the full space. Now that the SEREP
technique is treated, systems of different sizes can be compared by levelling the sizes of the
matrices. Not only FEM with measurements, but also different measured models. For in-
stance, if in future investigation response of a system are measured in an optical way, many
more outputs can be measured. In that case the SEREP technique can then also be used
to expand and reduce the system matrices.

4.3.1 Reducing the analytical model

Obtaining reduced analytical structural matrices using global matrices

All nodes are expressed in terms of the master degrees of freedom by means of the SEREP
proses. This same transformation matrix can be used to reduce the full space matrices,
resulting in the reduced structural matrices [Km] and [Mm].

[Km] = [T ]T [KN ] [T ] , [Mm] = [T ]T [MN ] [T ] (4.10)

These reduced matrices represent the same dynamic behaviour, while their size is signif-
icantly smaller compared to the full space structural matrices. In this example, 25 × 25

compared to 9612 × 9612. As to see in figure 4.4, the modal matrices remain exactly the
same.

Figure 4.4: Modal matrices in terms of reduced and full space

One has to note small index n is left out of notation for readability reasons. The mode shape
matrix Ψmn is the part of the full space matrix ΨNn and it is not equal to the eigensolution of
eig([Km],[Mm]) since this is a different eigenvalue problem.
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Obtaining reduced analytical structural matrices using Ψmn only

If one is only interested in the reduced matrices, it is also possible to determine them di-
rectly; without knowledge of the full space matrices. Therefore, only the master part of the
mode shapes Ψmn is required. This can be explained by recalling the definition of the trans-
formation matrix [T ] = [ΨNn] [Ψmn]†, using this to rewrite equation 4.10 yields the following
expression, in which the modal matrices can be recognized

[Km] = [T ]T [MN ] [T ] = [Ψmn]†
T

[ΨNn]T [KN ] [ΨNn] [Ψmn]† = [Ψmn]†
T

[Ωn] [Ψmn]† (4.11)

[Mm] = [T ]T [MN ] [T ] = [Ψmn]†
T

[ΨNn]T [MN ] [ΨNn] [Ψmn]† = [Ψmn]†
T

[Ψmn]† (4.12)

So the full space system matrices are not required in order to compute the reduced system
matrices. This saves a lot of computational effort. The downside is that the mapping to the
FEM is not known directly, but this can be achieved using the SEREP expansion procedure.
The Matlab script in which this is implemented can be found in ANSYS/GetAnalyticalModel.
For large FEM this can be very useful, since only the nodal solution at the measured loca-
tions have to be calculated.

4.3.2 Orthogonality checks

The FEM can be verified using measured experimental modal data to verify the adequacy
of the model. The structural matrices can be combined with the experimental and ana-
lytical mode shapes to perform orthogonality checks. The Matlab script in which this is
implemented can be found in SystemCorrelation/OrthogonalityChecks. Furthermore
the correctness of the reduction/expansion of models can be verified using the so-called
Pseudo-Orthogonality Check (POC), which must be exactly the same for reduced and full
space systems. As already explained in paragraph 4.2.1, the eigensolutions of the FEM
are fully decoupled, which implies that they are orthogonal. By replacing one of the ana-
lytical mode shape matrices in equation 4.6 with the experimental one, the so called POC
is calculated. This result can be used to indicate how well the measured mode shapes are
correlated to the analytical mode shapes, with consideration of the system matrices. The
structural matrices scale the differences and therefore erroneous estimated modes show up
based on their importance to the full dynamic behaviour of the system. This can give more
insight in the important deviations between models. The results in the following expressions:

POCm = [Ψa
mn]T [Mr] [Ψx

mn] = [Ψa
Nn]T [MN ] [Ψx

Nn] (4.13)

POCm = [Ψx
mn]T [Mr] [Ψa

mn] = [Ψx
Nn]T [MN ] [Ψa

Nn] (4.14)

in which the superscripts a and x indicate the analytical and experimental mode shapes.
The same principle can be applied using the stiffness matrix to the POCk. These POCs can
also be calculated without the use of structural matrices. Only the master coordinates of
mode shape vectors Ψmn are required: To prove this statement, one must take a closer look
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to the components which constitute the POC .

POCm = [Ψa
mn]T [Mr] [Ψx

mn] = [Ψa
mn]T

(
[T ]T [MN ] [T ]

)
[Ψx

mn] (4.15)

= [Ψa
mn]T

(
[Ψa

mn]†
T

[Ψa
Nn]T [MN ] [Ψa

Nn] [Ψa
mn]†

)
[Ψx

mn] (4.16)

In this expression the expanded experimental modal matrix, Ψx
Nn = [Ψa

Nn] [Ψa
m]† [Ψx

mn] can
be recognized. Furthermore the first two matrices drop out since the matrix multiplication
of the analytical master coordinates matrix [Ψa

mn] with its pseudo-inverse equals the unity
matrix. Substituting this information to rewrite equation 4.15 into a more compact form
yields:

POCm = [I] [Ψa
Nn]T [MN ] Ψx

Nn = [Ψa
Nn]T [MN ] [Ψx

Nn] (4.17)

from which is proven that the POC s calculated in terms of reduced or full space will give the
same results. Obviously, calculating in reduced space will have significant computational
benefits.
These POC s can also be calculated without using any of structural matrices. Therefore the
POC is written in full space coordinates. By decomposing the expanded experimental modal
matrix, Ψx

Nn, into reduced experimental coordinates the mass orthogonality relationship can
be recognized, which equals the unity matrix and therefore drops out of the equation:

POCm = [Ψa
Nn]T [MN ] [Ψx

Nn] = [Ψa
Nn]T [MN ] [Ψa

Nn] [Ψa
mn]† [Ψx

mn] (4.18)

= [Ψa
mn]† [Ψx

mn] (4.19)

similar step can be executed to get the stiffness POCKwhich will be equal to the following
expression:

POCk = [Ψa
mn]† [Ψx

mn]
[
Ω2
n

]
(4.20)

So the POCk is obtained by post-multiplying the POCm with the diagonal matrix
[
Ω2
n

]
. There-

fore this matrix will only be scaled, but it will not contain new information.

Application to estimated models

Now that the theory is treated, the POCs are evaluated using the estimated and analytical
models of both the steel plate and the BF. As to see in figure 4.5a it is clear that the biggest
deviation originates from the 12th modepair. It is very comparable to the MAC matrix shown
in figure 4.1a, but now the off-diagonal terms are scaled to a smaller value, since the mass
contribution of the off-diagonal terms is also significantly lower. So the deviation is indicated
with more significance. In case of more and bigger deviations this improvement will be even
more, so the effort of including the structural matrices helps to recognise of most significant
deviations.
The same POC matrices are calculated for the estimation BF, for convenience these results
are shown in appendix E
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(a) POCm matrix (b) POCk matrix

Figure 4.5: POC matrices evaluated for estimation case 1



Chapter 5

Conclusions and recommendations

5.1 Conclusions

In this thesis a powerful toolbox is developed which provides the Structural Dynamics com-
petence at VDL ETG with Matlab scripts to perform a full EMA. The Matlab scripts are build
in a GUI to perform the impact measurements and combine them in a complete FRM.
Furthermore a stable, user-friendly, efficient curve fitting technique is found in the pLSCF
estimator, which accurately fits an RMFD model to the measured FRFs.
The estimated RMFD models result in clear stabilisation diagrams, from which the poles of
the modal model are identified. The user only has to select the most relevant FRFs and the
order of the polynomials. The poles are then used to estimate the modal model. If the poles
are perfectly identified, the estimated modal model is also.
A collection of the most applicable correlation metrics is implemented in Matlab scripts. This
collection can be used either to verify the quality of the fit or to compare models. All this
information is relevant to acquire insight in the dynamic behaviour of the fabricated systems.

5.2 Recommendations

In this thesis treated all fundamental steps of the EMA and all treated theory is implemented
in Matlab Scripts resulting in a useful toolbox for the Structural Dynamics competence of VDL
ETG. For the data acquisition a GUI is made to make the data acquisition more convenient.
To develop this EMA toolbox even further the following recommendations are presented:

1. Computational effort can be saved by implementing the Toeplitz notation of the matri-
ces Ro, So and T o in Matlab.

2. Error localisation can be used to identify updating parameters of the structural matrices
of the FEM of the system under study.

3. Calculation sensitivities of the FEM w.r.t. these updating parameters

4. Use this information to update the FEM using an FRF based optimization technique

49
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Looking at theRo, So and T o matrices, one can clearly see that these matrices show Toeplitz
behaviour. By making use of the build-in Matlab function toeplitz computational effort can
be saved. For this thesis experienced CPU time was very short, in order of seconds, so no
significant time will be saved. For larger systems involving larger datasets this becomes
relevant.
An attempt was made to develop tools(matlab scripts) which could localize errors using the
structural matrices calculated by the FEM packages, but no real satisfactory results were
obtained. For lumped system cases some methods worked but for practical implementation
more investigation must be performed to identify the most relevant parameters of the FEM.
In this thesis all precautions are already worked out, involving the methods to export the
structural matrices and to reduce and expand these matrices to level the size of both mea-
sured and analytical systems. So this thesis can be used a good starting point for further
investigation in this topic.
Nowadays many FEM packages contain features to export the sensitivities. This was not
treated in this thesis, since no clear error localisation was developed. If this issue is solved,
the sensitivities can be used to update the structural matrices of the FEM.
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Appendix A

Laplace, Fourier and Z-Transforms

This appendix is originates from the following textbook [8].

Laplace Transform The Laplace transform is one of the best-known and most widely used
integral transforms. It is commonly used to produce an easily solvable algebraic equation
from an ordinary differential equation. Furthermore, the Laplace transform is often inter-
preted as a transformation from the time domain, in which inputs and outputs are functions of
time, to the frequency domain, where the same inputs and outputs are functions of complex
angular frequency, or radians per unit time. For LTI systems, the Laplace transform provides
an alternative functional description that often simplifies the analysis of the behaviour of the
system. The most commonly applied Laplace transform is defined as

L [f(t)] ≡ F (s) :=

∫ ∞
0

f(t)e−stδt (A.1)

It is a linear operator on a function f(t)(original) with real argument t that transforms it to
a function F (s)(image) with complex argument s. The Laplace transform has the useful
property that relationships and operations over the originals f(t) correspond to simpler rela-
tionships and operations over the images F (s).

Fourier Transform The Fourier transform shows a close similarity to the Laplace trans-
form. The continuous Fourier transform is equivalent to evaluating the bilateral Laplace
transform with complex argument s = iω, with ω in rad/s. The result of a Fourier transforma-
tion of a real-valued function (f(t)) is often called the frequency domain representation of
the original function. In particular, it describes which frequencies are present in the original
function. There are several common conventions for defining the Fourier transform of an
integrable function f(t). In this book, with angular frequency ω = 2πz in rad/s and frequency
z in Hertz, we use:

F [f(t)] ≡ F (ω) :=

∫ ∞
−∞

f(t)e−iωtδt (A.2)

for every real number of t. The most important property for further use in this book is
illustrated by the following example.
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Example A.1 The Fourier transform: Fourier transformation of the convolution integral
y(t)

∫ t
−∞ g(t− τ)u(τ)δτ

Y (ω) = G(ω)U(ω) (A.3)

which, as in the case of the Laplace transform, defines an algebraic relationship between
transformed output signal Y (ω) and transformed input signal U(ω). For discrete signals the
Discrete Time Fourier Transform is used, in which the integral is replaced by a summation:

FN (ω) =
1√
N

N∑
t=1

f(t)e−iωt (A.4)

where ω = 2πk/N, k = 1, 2, ..., N . N/k is the period associated with the specific frequency
ωk. The absolute square value of F (ωk), |F (2πk/N)|2, is a measure of the energy contribu-
tion of this frequency to the energy of the signal. The plot of values of |F (ω)|2 as a function
of ω is called the periodogram of the signal f(t).

z-Transform The z-transform converts a discrete time-domain signal, which in general
is a sequence of real numbers, into a complex frequency domain representation. The z-
transform is like a discrete equivalent of the Laplace transform. The unilateral or one-sided
z-transform is simply the Laplace transform of an ideally sampled signal after the substitution
z = esTs , with Ts the sampling interval. The z-transform can also be seen as a generalization
of the Discrete Fourier transform (DFT), where the DFT can be found by evaluating the z-
transform F(z)at z = eiω. The two-sided z-transform of a discrete-time signal f(t) is the
function F (z) defined as

L [f(t)] ≡ F (z) :=
∞∑

t=−∞
f(t)z−t (A.5)

where t ∈ Z , and z is, in general, a complex number. In this book, and basically for causal
signals, the unilateral z-transform is used as well and is given by

L [f(t)] ≡ F (z) :=
∞∑
t=0

f(t)z−t (A.6)

Again, a very relevant property of the z-transform is illustrated in the following.
Example A.2 The z-transform: z-transformation of the convolution sum

y(t) =
k=0∑
t

g(t− k)u(k) (A.7)

with y(t), u(t), and g(t) discrete-time functions, gives

Y (z) = G(z)U(z) (A.8)

which defines a similar relationship between transformed output signal Y (z) and transformed
input signal U(z), as in the case of Laplace or Fourier transformation.



Appendix B

Correlation metrics of identified
systems

The FRAC [6] The use of FRFs for correlation instead of eigenvectors is attractive be-
cause experimental FRFs are measured directly, therefore they are more easily obtainable
than eigenvectors. The eigenvectors require significant post measurement analysis of the
FRM(system identification). The FRAC is defined by the following expression:

FRACio =

∣∣∣{Ha
io(ωi)}

T {Hx
io(ωi)}

∗
∣∣∣2(

{Ha
io(ωi)}

T {Ha
io(ωi)}

∗
)(
{Hx

io(ωi)}
T {Hx

io(ωi)}
∗
) (B.1)

in this Ha
io(ωi) and Hx

io(ωi) refer to the FRF corresponding to input DOF i and output DOF o

of FRM a and x respectively; In practice most of times a will be the ’analytical’ dataset and
x will be the ’experimental’ dataset. The FRFs can be compared over the full FRI, a part of
this range or only at the resonance frequencies. The resulting matrix indicates which DOFs
are correlated. The matrix is evaluated for using the simulated and estimated FRMs, shown
in figure 4.1a.

The MAC The modal parameters of the estimated modal model can also be compared.
MAC shows the degree of correlation between two vectors and it is computed by the following
expression:

MACcdr =

∣∣∣{Ψcr}T {Ψ∗dr}
∣∣∣2(

{Ψcr}T {Ψ∗cr}
)(
{Ψdr}T

{
Ψ∗dr

}) (B.2)

The resulting matrix indicates which modes are correlated and therefore identifies the mod-
epairs of in the two datasets. The matrix is evaluated for using the simulated and estimated
mode shape matrices, shown in figure 4.1b.
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The MSF Once all modes are paired, their sizes and orientations can be equalized using
the MSF. It is calculated using the following equation:

MSF cdr =

∣∣∣{Ψcr}T {Ψ∗dr}
∣∣∣(

{Ψ∗cr}
H {Ψ∗cr}

) (B.3)

By carefully applying these three checks both datasets are equally oriented in terms of
DOFs, mode shapes and directions. The matrices shown in figure B.1 show high values at
the diagonal, indicating the estimated model is very well correlated to the simulated model.
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Figure B.1: FRAC and MAC matrices evaluated for estimation case 1

The COMAC Now that both modal matrices are correctly scaled and oriented, the COMAC
can be calculated to indicate the correspondence between the mode shapes of two datasets
in therms of the DOFs. This indicates which DOF is deviating the most, which can give the
engineer insight in the origin of the deviation without need to calculate the structural matri-
ces of the system. For this case the following result is obtained:

0 5 10 15 20 25

0.98

0.99

1 00.

DOF

0

Figure B.2: COMAC values for estimation case 1

From which one can conclude the estimation is almost perfect, the worst estimation is in-
volved with mainly DOF 23 and 25.



Appendix C

Deducing analytical models from
ANSYS FEM

In this appendix the procedure to obtain a full space analytical model of a FEM is explained
step by step. To assure the obtained model is consistent with the modal analysis performed
in ANSYS there are some import aspects to note, following this manual will assure this is
done correctly, in case of a FEM model in which no boundary conditions are applied.
The procedure enhances the following steps:

1. Export the structural matrices [KN ] & [MN ] to .matrix binary files, using the
Harwell Boeing(HB) format

2. Export the mode shape matrix [Φa
N ] to .eig text file

3. Import all data into Matlab

4. Relocate the DOFs structural matrices to the user defined ordering.

For convenience, all used scripts are attached at the end of this manual.

Using ANSYS Workbench Modal Analysis To illustrate the procedure, the steel plate
model is used. This model is build using ANSYS Workbench 17.2 Mechanical. The com-
plete case study can be found in ANSYS/ANSYS CaseStudy

The system is measured at the 25 intersection points of the measurement grid. To make
sure that each point is described by a node of the mesh, these locations are defined as
NamedSelections. By adding APDL code snippets to the modal analysis tree, see figure
C.1b, the required nodal information of these locations is written to a Matlab file, contain-
ing the deformations and corresponding node numbers. As the name suggests, the mea-
sured nodes are defined by the snippet ’DefineMasterNodes’. All required pre- and post-
processing is done by ’res pre’ and ’res pos’ respectively. All these code snippets can be
found in ANSYS/GetEigenVectors.
After solving the modal analysis a matlabfile, named ’SessionName’+ the date on which
the file is created, will be written in the folder of the corresponding session, in this case
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(a) Mesh, incl. NamesSelections (b) Tree with Com-
mand Snippets

Figure C.1: ANSYS WB 17.2: model

ANSYS CASESTUDY PLATE files/dp0/SYS/MECH. After this is done the deducing procedure
can be executed.

1. Export the structural matrices [KN ] & [MN ] to .matrix binary files, using the
Harwell Boeing(HB) format

The structural matrices are exported using the binary file dumping processor AUX2 by
running the following script:

1 \aux2 -- open aux2 environment

2 hbmat,STIFFNESS,MATRIX,,ASCII,stiff,no,no

3 hbmat,MASS,MATRIX,,ASCII,mass,no,no

Implementation of this script in ANSYS 17.2 returns a warning message that the command
hbmat is unknown. however, the ASCII-files are exported correctly so one can neglect this
warning. Alternatively, the utility menu can be used using: UM→File→List→BinaryFiles.

2. Export the mode shape matrix [Φa
N ] to .eig text file

When the eigenvalue problem has been solved, the following script will write the ASCII-le
’file.eig’ which all nodal solution are printed using PRNSOL, U. In this case the file contains
the first 14 FB modes, all modes which are inside the frequency region of interest.

1 /post1 -- open post post processor

2 /output,,eig ! -- create the output .eig file

3 *do,i,7,20 ! -- set up do loop

4 set,,i prnsol,dof ! -- set ith eigensolution

5 prnsol,dof ! -- show ith eigensolution

6 /out -- write ith eigensolution to .eig file

7 *enddo
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Reason to start with the 7th eigensolution is that the first 6 modes are RB modes and
therefore they are irrelevant. Now all required matrices are exported into a format which
is compatible to Matlab. Furthermore some text .txt file are printed to check if the imported
matrices correspond to what is expacted. These scripts can be found in ANSYS Parametric
Design Language Guide1, this is not necessary but can be used to verify the produced ma-
trices.

Figure C.2: Folder of the corresponding session

If all steps are succeeded the ANSYS folder should contain the following files, as shown in
figure C.2. All this data will now be imported into Matlab, the ANSYS program is not used
for the rest of the procedure.

3. Import all data into Matlab

Every time ANSYS solves the session, the working directory is cleaned up and re-
moved. To prevent that exported matrices are deleted, all relevant files are copied to

ANSYS/GetAnalyticalModel/ANSYS Data, shown in figure C.3. All used functions can
be found on the upper level.

Figure C.3: Folder containing all exported data

First of all the matlab file is runned, to obtain the measured nodes and their initial coor-
dinates. Subsequently the structural matrices are converted to sparse matrices using the
function hb to msm2. The format minimizes memory size, since only non-zeros elements
are described. Furthermore the matrices are symmetric, so only the lower triangular part is
required to describe the entire matrix. In matlab, the full matrices are reconstructed again.
Subsequently, the printed nodal solutions are imported using the function importU, a Matlab

1http://148.204.81.206/Ansys/150/ANSYS%20Parametric%20DesignLanguage%20Guide.pdf: 4.7
2Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
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generated import function. The result is one giant matrix U which is then converted to the
usual mode shape vector format.

4. Relocate the DOFs structural matrices to the user defined ordering.

Next step is to solve the eigenvalue problem using the imported structural matrices, again
the RBMs are deleted from the eigensolutions. Calculating the modal mass and stiffness
matrix, yields to the same matrices as in equation 4.6. The DOFs are internally ordered and
have to be mapped into the user defined ordering in which the DOFs are linked to the nodes
numbers. To reconstruct this mapping, the absolute values of each column is summed for
both matrices and sorted in ascending order, as to see in figure C.4 in which the last column
represents the summation of all other columns. Now a unique match is found between both
matrices, form which the mapping is determined. The structural matrices are reordered
according to the user definition and this results in eigensolution which are identical to the
ones printed by ANSYS.

Figure C.4: Comparing modeshape matrices

There must be some APDL code possible in which the matrices are exported in user defined
ordering directly, but this was not found in any of the ANSYS help files. In future research
this would be an improvement to obtain the analytical full space model in a more convenient
manner.

C.1 Matlab Code

1 clc; clear all; close all;

2 addpath([pwd,'\ANSYS Data']); % Add ANSYS Data Folder

3

4 % Import ANSYS matrices

5 ImportFlag = false;

6 if ImportFlag == 1

7
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8 PlateModalAnalysis 09May2017% get nodal information

9 Sys.N m = Nodeandn(:,1);% collect indices of master nodes

10 Sys.X m = Nodeandn(:,2:end);% collect nodal coordinates

11

12 clearvars -except Sys % Clear all irrelevant nodal information

13

14 K sp = hb to msm('Kmat.matrix');% Sparse stiffness matrix

15 M sp = hb to msm('Mmat.matrix');% Sparse stiffness matrix

16

17 [U raw] = importU('file.eig');

18 Ui = find(isnan(U raw(:,1))==0);U = U raw(Ui,:);

19

20 else

21 load AnsysMatrices;

22 end

23

24 % Construct structural matrices

25 K N = K sp + tril(K sp,-1)';% Global stiffness matrix

26 M N = M sp + tril(M sp,-1)';% Global mass matrix

27 scrsz = get(groot,'ScreenSize');

28 figure('Name','imported and reconstructed matrix')

29 set(gcf,'Position',[1 scrsz(4)/21 scrsz(3)/4 scrsz(4)/4])

30 subplot(121)

31 bar3(K sp(1:100,1:100))

32 subplot(122)

33 bar3(K N(1:100,1:100))

34

35 clear K sp M sp % clear irrelevant parameters

36

37 % Construct mode shape matrix Phi ANSYS

38 N dof= length(K N); N nds = N dof/size(Sys.X m,2);

39 N mds= length(U)/N nds;

40

41 PHI a = U(:,2:end)'; Phi ANSYS = zeros(N dof,N mds);

42

43 for i = 1:N mds

44 i mn = (i-1)*N nds+1; i mx = i*N nds; Phi = PHI a(:,i mn:i mx);

45 Phi ANSYS(:,i) = Phi(:); %

46 end

47

48 % Solve generalized eigenvalue problem using global structural matrices

49 [Phi N,Omega N] = eigs(K N,M N,20,'sm');

50 Phi N = fliplr(Phi N(:,1:14)); Omega N = Omega N(1:14,1:14);

51 Omega N = flipud(Omega N); % horizontal flip

52 Omega N = fliplr(Omega N); % vertical flip

53 Wn = real(sqrt(diag(Omega N)))/2/pi;% eigen-frequencies [Hz]

54

55 scrsz = get(groot,'ScreenSize');

56 figure('Name','Orthogonality check')

57 set(gcf,'Position',[1 scrsz(4)/21+scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

58 subplot(121)
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59 bar3(Phi N'*K N*Phi N)

60 title('\Phi NˆT M N \Phi N')

61 subplot(122)

62 bar3(Phi N'*M N*Phi N)

63 title('\Phi NˆT K N \Phi N')

64

65 % reorder global matrices to user defined DOFs;

66 [SPhi ANSYS,i SPhi ANSYS] = sort(sum(abs(Phi ANSYS),2));% sum all rows, ...

sort ascending order

67 [SPhi N,i SPhi N] = sort(sum(abs(Phi N),2));% sum all rows, sort ascending ...

order

68

69 figure('Name','Phi comparison')

70 set(gcf,'Position',[1 scrsz(4)/21+scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

71 subplot(121)

72 bar3([abs(Phi ANSYS(i SPhi ANSYS(1:150),:)),...

73 sum(abs(Phi ANSYS(i SPhi ANSYS(1:150),:)),2)])

74 title('\Phi {ANSYS}')
75 subplot(122)

76 bar3([abs(Phi N(i SPhi N(1:150),:)),sum(abs(Phi N(i SPhi N(1:150),:)),2)])

77 title('\Phi N')

78

79 [¬,i SANSYS n] = ismember([1:9612]',i SPhi ANSYS);% indices to reoder sum ...

ind. to asc. order

80

81 figure('Name','Phi comparison 2')

82 set(gcf,'Position',[1 scrsz(4)/21+scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

83 subplot(121)

84 bar3([abs(Phi ANSYS(1:150,:))])

85 title('\Phi {ANSYS}')
86 subplot(122)

87 bar3([abs(Phi N(i SPhi N(i SANSYS n(1:150)),:))])

88 title('\Phi N')

89

90 i ud = i SPhi N(i SANSYS n);% mapping from internal ordering to user ...

defined ordering

91 K N = K N(i ud,i ud);% reorder global stiffness matrix

92 M N = M N(i ud,i ud);% reorder global massss matrix

93 [Phi N,Omega N] = eigs(K N,M N,20,'sm');% find first 20 eigensolutions

94 Phi N = fliplr(Phi N(:,1:14)); Omega N = Omega N(1:14,1:14);% delete Rigid ...

Body Modes

95 Omega N = flipud(Omega N); % horizontal flip

96 Omega N = fliplr(Omega N); % vertical flip

97 Wn = real(sqrt(diag(Omega N)))/2/pi;% eigen-frequencies [Hz]

98

99 figure('Name','Orthogonality check udo')

100 set(gcf,'Position',[1 scrsz(4)/21+3*scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

101 subplot(121)

102 bar3(Phi N'*K N*Phi N)

103 title('\Phi NˆT M N \Phi N')

104 subplot(122)
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105 bar3(Phi N'*M N*Phi N)

106 title('\Phi NˆT K N \Phi N')

107

108 figure

109 set(gcf,'Position',[1 scrsz(4)/21+2*scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

110 bar3([SPhi ANSYS(1:450),SPhi N(1:450)])

111 figure

112 set(gcf,'Position',[1 scrsz(4)/21+2*scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

113 bar3([SPhi ANSYS(1:450),SPhi N(1:450)])

114

115 figure('Name','Phi comparison')

116 set(gcf,'Position',[1 scrsz(4)/21+scrsz(4)/4 scrsz(3)/4 scrsz(4)/4])

117 subplot(121)

118 bar3(abs(Phi ANSYS((1:150),:)))

119 title('\Phi {ANSYS}')
120 subplot(122)

121 bar3(abs(Phi N((1:150),:)))

122 title('\Phi N')

123

124 save AnalyticalModel K N M N Phi ANSYS Phi N Sys Omega N % Save results ...

for file

125 clearvars -except K N M N Phi ANSYS Phi N Sys Omega N % Clear all ...

irrelevant nodal information
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Appendix D

The SEREP technique

In this appendix the concept of SEREP expansion and reduction is illustrated by means of a
academic 10 DOF lumped mass system. All steps can be found in the matlab script attached
to this appendix. The lumped system is described by the structural matrices, which are both
square symmetric 10 × 10 matrices. Solving the generalized eigen value problem results in
the full space model parameters Ω2

N and ΦN , containing 10 eigenvalues and corresponding
eigenvectors.
First step in the process is to reorder the system in terms of master and slave DOFs. In
this example 6 master DOFs are chosen in arbitrary order. This is done because the node
ordering by the NamedSelections in ANSYS is also non-ascending. The slave DOFs are
ordered in ascending order. This results in the following system:

XN = [x6 x9 x7 x1 | x2 x3 x4 x5 x8 x10 ] (D.1)

The full space structural matrices are reordered to this same sequence. Furthermore 4
mode shape are selected for the SEREP process, in this case mode shape numbers 8, 7, 1
and 2 are used. This results in the following analytical mode shape matrix:

[ΨN ] =

[
Ψm

Ψs

]
=



Ψ6,8 Ψ6,7 Ψ6,1 Ψ6,2

...
...

...
...

Ψ1,8 Ψ1,7 Ψ1,1 Ψ1,2

Ψ2,8 Ψ2,7 Ψ2,1 Ψ2,2

...
...

...
...


(D.2)

The master part of the mode shape matrix Φm is square in this case. The transformation
matrix T is calculated and used to calculate the reduced structural matrices Kr and Mr.
To check if the dynamic characteristics are maintained, the modal matrices of both full and
reduced space are calculated and shown in figure D.1. The modal stiffnesses corresponding
to the selected eigensolutions are maintained. The reduced matrices are used to calculate
the reduced mode shapes. Solving this small system yields 4 eigensolutions, corresponding
to the ones which where selected. These reduced mode shapes can be expanded to full
space using the same transformation matrix T . As to see in figure D.2 the selected eigen-
solution are reconstructed by the expansion. Both matrices show a clear match; they are
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Figure D.1: Modal matrices in terms of full and reduced matrices, square Φm
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Figure D.2: Mode shape matrices in terms of full and reduced matrices, square Φm

identical up to a scaling constant and some modes are reverted. These differences can be
solved easily using the modal scale factor and by demanding each first element of a vector
must be positive.
So if the master part of the mode shape matrix Φm is square the expansion/reduction step
is exact. This can also be seen in the transformation matrix; the top part (Ψm(ΨT

mΨm)−1Ψ′m)
will be equal to the identity matrix. In most cases only the first few modes are of interest,
resulting in a top part which has significantly more rows then columns. To same steps are
performed, but now the results will be smoothed out. In this example only mode shape 8,7
and 1 are selected. The resulting modal matrices become: The resulting mode shapes show
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Figure D.3: Mode shape matrices in terms of full and reduced matrices, non-square Φm

no difference with the 3 corresponding ones. However, when looking to the top part of the
transformation matrix one giant difference is observed: the top part is no longer equal to
the identity matrix and shows rank deficiency(Rank(Ψm(ΨT

mΨm)−1Ψ′m) = 3). Therefore the
not linear independent any more; the fourth equation is a linear combination of the other
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equations. Due to the fact that the reduced mode shapes are exact this make no difference.
In case that these measured mode shapes are contaminated with noise, this expansion/re-
duction process

D.1 Matlab Code

1 clc; clear all; close all

2

3 ma = [ 1 1 2 3 6 5 4 2 1 1];

4 ka = [0.4 0.48 0.60 1.2 2.2 1.6 1.32 1.0 0.8 0.68]*10ˆ6;

5

6 Ma = diag(ma); Ka = zeros(size(Ma));

7 Ka(1,1) = Ka(1,1) + ka(1);% stiffness 1

8 Ka(1:2,1:2) = Ka(1:2,1:2)+[ka(2) -ka(2);-ka(2) ka(2)];% stiffness 2

9 Ka(2:3,2:3) = Ka(2:3,2:3)+[ka(3) -ka(3);-ka(3) ka(3)];% stiffness 3

10 Ka(3:4,3:4) = Ka(3:4,3:4)+[ka(4) -ka(4);-ka(4) ka(4)];% stiffness 4

11 Ka(4:5,4:5) = Ka(4:5,4:5)+[ka(5) -ka(5);-ka(5) ka(5)];% stiffness 5

12 Ka(5:6,5:6) = Ka(5:6,5:6)+[ka(6) -ka(6);-ka(6) ka(6)];% stiffness 6

13 Ka(6:7,6:7) = Ka(6:7,6:7)+[ka(7) -ka(7);-ka(7) ka(7)];% stiffness 7

14 Ka(7:8,7:8) = Ka(7:8,7:8)+[ka(8) -ka(8);-ka(8) ka(8)];% stiffness 8

15 Ka(8:9,8:9) = Ka(8:9,8:9)+[ka(9) -ka(9);-ka(9) ka(9)];% stiffness 9

16 Ka(9:10,9:10) = Ka(9:10,9:10)+[ka(10) -ka(10);-ka(10) ka(10)];% stiffness 10

17

18 [Psia,Wna] = eig(Ka,Ma); % Analytical modal parameters

19

20 % MASTER DEGREES OF FREEDOM:

21 im = [6 9 4 1]; is = [2 3 5 7 8 10]; % indices of master and slave coord.

22 % ---- number of selected modes equal to number of master DOFs ------------

23 in = [8 7 1 2];% selected mode shapes

24 Psim = [Psia(im,in)]; % master DOFs of selected mode shapes

25 Psis = Psia; Psis = Psis(is,in);% slave DOFs of selected mode shapes

26 Psir = [Psim;Psis];% reordered mode shape matrix

27

28 Kar = Ka([im,is],[im,is]);% reordered stiffness matrix

29 Mar = Ma([im,is],[im,is]);% reordered mass matrix

30

31 Uag = (Psim'*Psim)ˆ-1*Psim'; % generalized inverse

32 T = Psir*Uag;% Transformation matrix

33 T top = Psim*Uag% top part of transformation matrix

34 rank(T top)% check if all mode shapes are lin. independent

35 [Psi R,Wn R] = eig(Kar,Mar);% reordered analytical model parameters

36 Kred = T'*Kar*T;% reduced stiffness matrix

37 Mred = T'*Mar*T;% reduced mass matrix

38

39 Korthog f = Psir'*Kar*Psir;% modal stiffness matrix(full space)

40 Morthog f = Psir'*Mar*Psir;% modal mass matrix(full space)

41 Korthog r = Psim'*Kred*Psim;% modal stiffness matrix(reduced space)

42 Morthog r = Psim'*Mred*Psim;% modal mass matrix(reduced space)



68 APPENDIX D. THE SEREP TECHNIQUE

43

44 figure('Name','Orthogonalities')

45 subplot(141)

46 bar3(Korthog f); title('\Psi N*K N*\Psi N')

47 Hm(1) = subplot(142);

48 bar3(Morthog f); title('\Psi N*M N*\Psi N'); zlim([0 1])

49 subplot(143)

50 bar3(Korthog r); title('\Psi m*K r*\Psi m')

51 hm(2) = subplot(144);

52 bar3(Morthog r); title('\Psi m*M r*\Psi m'); zlim([0 1])

53

54 [Phir, Wnr] = eig(Kred,Mred);% solve reduced system

55

56 figure('Name','reduced matrices')

57 subplot(121)

58 bar3(diag([Wna(8,8),Wna(7,7),Wna(2,2),Wna(1,1)]))

59 subplot(122)

60 bar3(Wnr)

61

62 Phi f = T*Phir;% Expand reduced eigensolution to full space

63

64 MAC = zeros(size(Phi f,2),size(Psi R,2));

65 for i = 1:size(Phi f,2)

66 for j = 1:size(Psi R,2)

67 MAC(i,j) = (Phi f(:,i)'*Psi R(:,j))ˆ2/...

68 ((Phi f(:,i)'*Phi f(:,i))*(Psi R(:,j)'*Psi R(:,j)));

69 end

70 end

71 figure('Name','MAC')

72 subplot(131)

73 bar3(MAC); title('MAC'); xlabel('\Phi N'); ylabel('[T]\Phi m')

74

75 subplot(132)

76 bar3(Psi R(:,[8 7 2 1])*diag([1 1 1 -1]))

77 title('\Psi N')

78 subplot(133)

79 bar3(Phi f(:,:)*diag([-1 -1 1 1]))

80 title('[T]\Psi m')

81 % ---- number of selected modes less than number of master DOFs -----------

82 % MASTER DEGREES OF FREEDOM:

83 im = [6 9 4 1]; is = [2 3 5 7 8 10]; % indices of master and slave coord.

84 in = [8 7 1];% selected mode shapes

85 Psim = [Psia(im,in)];% master DOFs of selected mode shapes

86 Psis = Psia; Psis = Psis(is,in);% slave DOFs of selected mode shapes

87 Psir = [Psim;Psis];% reordered mode shape matrix

88

89 Kar = Ka([im,is],[im,is]);% reordered stiffness matrix

90 Mar = Ma([im,is],[im,is]);% reordered mass matrix

91

92 Uag = (Psim'*Psim)ˆ-1*Psim'; % generalized inverse

93 clear T
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94 T = Psir*Uag;% Transformation matrix

95 T top = Psim*Uag% top part of Tranformation matrix

96 rank(T top)% check if all mode shapes are lin. independent

97 [Psi R,Wn R] = eig(Kar,Mar);% reordered analytical model parameters

98 Kred = T'*Kar*T;% reduced stiffness matrix

99 Mred = T'*Mar*T;% reduced mass matrix

100

101 Korthog f = Psir'*Kar*Psir;% modal stiffness matrix(full space)

102 Morthog f = Psir'*Mar*Psir;% modal mass matrix(full space)

103 Korthog r = Psim'*Kred*Psim;% modal stiffness matrix(reduced space)

104 Morthog r = Psim'*Mred*Psim;% modal mass matrix(reduced space)

105

106 figure('Name','Orthogonalities, nphi<nm')

107 subplot(141)

108 bar3(Korthog f); title('\Psi N*K N*\Psi N')

109 Hm(1) = subplot(142);

110 bar3(Morthog f); title('\Psi N*M N*\Psi N'); zlim([0 1])

111 subplot(143)

112 bar3(Korthog r); title('\Psi m*K r*\Psi m')

113 hm(2) = subplot(144);

114 bar3(Morthog r); title('\Psi m*M r*\Psi m'); zlim([0 1])

115

116 [Phir, Wnr] = eig(Kred,Mred);% solve reduced system

117

118 figure('Name','reduced matrices, nphi<nm')

119 subplot(121)

120 bar3(diag([Wna(8,8),Wna(7,7),Wna(1,1)]))

121 subplot(122)

122 bar3(Wnr)

123

124 Phi f = T*Phir;% Expand reduced eigensolution to full space

125

126 MAC = zeros(size(Phi f,2)-1,size(Psi R,2));

127 for i = 1:size(Phi f,2)-1

128 for j = 1:size(Psi R,2)

129 MAC(i,j) = (Phi f(:,i)'*Psi R(:,j))ˆ2/...

130 ((Phi f(:,i)'*Phi f(:,i))*(Psi R(:,j)'*Psi R(:,j)));

131 end

132 end

133 figure('Name','MAC, nphi<nm')

134 subplot(131)

135 bar3(MAC); title('MAC'); xlabel('\Phi N'); ylabel('[T]\Phi m')

136

137 subplot(132)

138 bar3(Psi R(:,[1 7 8])*diag([1 1 -1]))

139 title('\Psi N')

140 subplot(133)

141 bar3(Phi f(:,1:3)*diag([-1 -1 1]))

142 title('[T]\Psi m')
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Appendix E

Correlation analysis evaluated for the
BF

In this appendix the POC is evaluated using the analytical and estimated modal parameters
of the BF, which were a result of section 3.5.2. The Matlab script in which the correlation
analysis is evaluated can be found in SystemCorrelation/BaseFrame. The system con-
tains 66 DOFs corresponding to the 22 sensor locations which are all measured in 3D. The
first 28 modes, which were selected to simulate the FRM, are compared in the analysis.

FRAC and MAC matrices The corresponding FRFs are correlated using the FRAC and
as to see in figure E.1a, the majority of the FRFs show clear correspondence. The diag-
onal is very close to 1 for the majority of the FRFs. The lowest correlation coefficient is
equal to 0.9695 and the average value of the diagonal is 0.9988. So the modal model fits
the analytical FRM with very high accuracy. The 28 mode shapes are compared using the

(a) FRAC matrix
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(b) MAC matrix

Figure E.1: FRAC matrices evaluated for estimation case 2

MAC and this matrix also approaches the unity matrix. The 28th mode is not present in the
estimated since this resonance frequency(1247 Hz) is outside the FRI. Looking at the MAC

71
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matrix shown in figure E.1b the following conclusions can be drawn about the quality if the
fitted mode shapes; the 18th mode pair shows the lowest correlation value, which is equal
to 0.699. The average value of the diagonal terms is equal to 0.9541. Furthermore mode
shapes 9,10 and 11 are very comparable, corresponding to resonance frequencies 783, 799
and 807 Hz respectively, but they all show the highest correlation at the diagonal.
These two matrices confirm that the estimated modal model accurately represents the ’mea-
sured’ dataset of the BF.

COMAC All coordinates are show high COMAC values, the lowest value corresponding to
DOF 44 is 0.7935 and the average COMAC value is equal to 0.9857. If the last mode is left
out of the calculations the average if even high, 0.9933 respectively.
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Figure E.2: COMAC values for estimation case 1

This confirms that the mode shape are estimated accurately for all DOFs.

ECOMAC and absolute difference The ECOMAC,shown in figure E.3a indicates that
DOF 22 show the greatest deviations. Corresponding to node 22 in X-direction. That is
also indicated by the
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Figure E.3: Correlation matrices evaluated for estimation case 2

The POCs were not evaluated, since the global structural matrices are unknown. The
FEM is build in NX Nastran and time was found to export these matrices to Matlab. For
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further investigation the extration of these matrices must be investigated.

E.0.1 Conclusions

The correlation metrics clearly indicate that the estimated modal model represents the ’mea-
sured’ FRM. So if the measurements are done correctly, the algorithm will be able to cor-
rectly identify the modal parameters of these FRFs.
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