
1

An Augmented Reality

Game to Support the

Ski-Learning Process

BACHELOR THESIS

Luciënne de With

s1596349

Creative Technology

University of Twente

Supervisors
Dr. J. Zwiers

Dr. D. Reidsma

June 28th, 2017

2

Abstract

Within this research an augmented reality game that supports the ski-learning process has been

designed. The game that was designed throughout this research can serve as a support tool during

skiing lessons on a revolving ski slope and improves the user experience of the skiers. By making the

choice for augmented reality instead of virtual reality, the user’s safety while playing the game is

guaranteed and cyber sickness is prevented.

3

Summary

With this thesis it is investigated how a game in augmented reality that supports the ski-learning

process can be designed. A state of the art literature research on games that use augmented reality

to teach or train people in sports was done. Six augmented reality games that teach or train people

in sports were found. Furthermore, several reliable methods to provide feedback, to motivate the

players, and to cause a learning effect for players were found, which served as a basis for the further

steps in this research. Effective ways to provide feedback include summary feedback, intermediate

feedback, multimodal feedback, and the use of assessment games. People get motivated to play and

learn in games by the entertaining factor of games, multiplayer games, classic game elements such as

rankings and a clear goal in the game, personalization of the game, a human-like character as trainer

or coach, and rewards. Furthermore, a learning effect can be achieved within games by providing the

player with clear tasks and explanations, by building upon the player’s prior knowledge, and by

decreasing the guidance offered in the game. During the ideation phase of this project, a total of

twenty-four ideas were found for the possible implementation of a game in augmented reality that

supports the ski-learning process. In the specification phase, these ideas were brought back to one

final idea for the implementation, which was the following: a multiplayer game that can be played on

a revolving ski slope while wearing a head-mounted display, in which obstacles need to be avoided to

prevent losing points, and gates need to be skied through in order to gain points. This specified

product idea was implemented into an application that runs on the Microsoft Hololens. User tests

were executed in order to investigate how the users perceived the game. Based on the user tests, it

can be concluded that the product that resulted from this project is seen as enjoyable, interesting,

something to put effort in, important, and suitable for ski-learning purposes.

4

Acknowledgements

This project would not have been what it is today without the help of others. That is why there are

some people who I would like to thank for the help and dedication that they have put into this

project.

First of all, I would like to thank my supervisor from the University of Twente, Job Zwiers, for his

guidance, supervision, feedback, and his relevant suggestions for possible improvements that could

be made to this project. I would also like to thank my critical observer from the University of Twente,

Dennis Reidsma, for providing me with new insights regarding the possible directions of this project.

Furthermore, I want to thank the client of this project, Michiel Groot-Koerkamp, for initiating this

project, for offering me the opportunity to work on it, and for providing a portable revolving ski slope

that could be used during the user tests. Along with Michiel Groot-Koerkamp, I would like to offer

particular thanks to André de Brouwer, Richard Bults, and Job Zwiers for the dedication and effort

they put into facilitating the option to place the revolving ski slope at the terrain of the University of

Twente, and for offering me the opportunity to use the revolving ski slope during the user tests of

this project.

Moreover, I want to thank all the people who participated in the user tests and who shared their

opinions about the realised prototype with me. My special thanks go to Alfred de Vries, Henk

Waaijer, and Sander Baks for supervising my experiments and for assisting me alongside the

revolving ski slope when needed.

Finally, I would like to thank my family and friends, for their support during this project and for

searching their attics and garages while it was 30°C outside to be able to provide me with skiing

boots.

5

Table of Contents

Abstract ... 2

Summary ... 3

Acknowledgements ... 4

Table of Contents .. 5

List of Figures and Tables .. 7

Chapter 1 – Introduction ... 9

1.1 Problem statement ... 9

1.2 Research questions ... 9

1.3 Outline .. 9

Chapter 2 – Methods and Techniques .. 10

2.1 Creative Technology Design Process .. 10

2.2 Methods .. 12

Chapter 3 – State of the Art on Augmented Reality Games that Teach People in Sports 17

3.1 Related work ... 17

3.2 Motivational aspects... 18

3.3 Feedback ... 20

3.4 Learning effect .. 20

3.5 Cyber sickness ... 21

3.6 Conclusion... 23

Chapter 4 – Ideation and Exploration ... 24

4.1 First Ideation ... 24

4.2 Stakeholder Analysis ... 27

4.3 Early Design Choices ... 27

4.4 Use Cases .. 28

4.5 First Brainstorm .. 30

4.6 Brainstorm and Evaluation with Client ... 36

4.7 Product Idea .. 37

Chapter 5 – Product Specification ... 39

5.1 Early Prototypes .. 39

6

5.2 Requirements analysis .. 44

5.3 Game Design ... 46

Chapter 6 – Product Realisation .. 49

6.1 System Architecture ... 49

6.2 Implementation .. 50

Chapter 7 – Evaluation .. 63

7.1 Functional evaluation ... 63

7.2 User evaluation ... 65

7.2.1 First Round of User Tests ... 65

7.2.2 Second Round of User Tests .. 72

7.3 Conclusion and Discussion of Test Results ... 76

Chapter 8 – Discussion and Conclusion ... 79

8.1 Conclusions ... 79

8.2 Discussion ... 80

Chapter 9 – Future Work ... 83

Appendix .. 85

Appendix A. Code Markerless Augmented Reality Prototype .. 85

Appendix B. Realisation Timeline ... 87

Appendix C. Spawner Script .. 89

Appendix D. Camera Collider Script .. 93

Appendix E. Player Manager Script ... 95

Appendix F. Canvas Position Script ... 97

Appendix G. Floating Script .. 98

Appendix H. Game Manager Script .. 99

Appendix I. Network Manager Script.. 101

Appendix J. Obstacle Script ... 102

Appendix K. Ski Rotation Script... 103

Appendix L. Questionnaire First Round of User Tests .. 104

Appendix M. Questionnaire Second Round of User Tests .. 108

References ... 111

7

List of Figures and Tables

Figures

Figure Description Page

2.1 Creative Technology Design Process. 10

4.1 A revolving ski slope. 24

4.2 The first ideation phase. 26

4.3 The ideas that were found for skiing and earning points in the game. 31

4.4 The ideas that were found for the presence of a fellow player in the game. 33

4.5 The ideas that were found for providing feedback in the game. 34

4.6 The ideas that were found for implementing levels in the game. 35

5.1 An example of a Vuforia application that is very similar to the Vuforia prototype
that was made.

43

5.2 An application that is very similar to the markerless augmented reality prototype
that was made.

43

5.3 The multiplayer prototype, showing the game being played with only the host and
with the host and client.

44

5.4 The elemental tetrad, containing the four basic elements that form a game. 47

6.1 Simple system architecture of the skiing game. 49

6.2 An augmented reality application on a smartphone. 51

6.3 The three-dimensional objects created in the Maya software and used in the
game as gates and obstacles.

52

6.4 The situation on the revolving ski slope with the corresponding axes. 52

6.5 Placement of the game objects along the ski slope. 54

6.6 Placement of the game objects along the slope and the associated calculations. 55

6.7 The client-server model. 55

6.8 The parent-child relationship for the parent of the Unity camera and the Unity
camera.

58

6.9 A schematic overview of the communication between the scripts of the project. 60

6.10 The game from the perspective of the player. 61

6.11A Placement of the player and the game objects while the game is being played in
the Unity editor.

61

6.11B Placement of the player and the game objects while the game is being played in
the Unity editor.

62

7.1 Pie charts containing the characteristics of the test participants of the first round
of user tests.

65

7.2 Means and standard deviation of participants’ perceived cyber sickness
symptoms.

67

7.3 Overall scores for the questions about intrinsic motivation, divided in the
categories effort/importance, perceived competence, and interest/enjoyment.

68

7.4 Average IMI scores per category (interest/enjoyment, perceived competence,
effort/importance) over the whole population.

69

7.5 Average IMI scores per category (interest/enjoyment, perceived competence,
effort/importance) per level of experience.

70

7.6 Mean scores of the multiplayer statements in the test. 71

7.7 Mean scores of the multiplayer statements in the test for people who noticed the
fellow player.

71

7.8 Participants’ appreciation of the skiing game as a learning tool. 72

8

7.9 The updated appearance of the obstacle game object. 73

7.10 Pie charts containing the characteristics of the test participants of the first round
of user tests.

74

7.11 Means and standard deviation of participants’ perceived cyber sickness
symptoms.

75

7.12 Mean scores for statements related to feedback, given during the second round
of user tests.

76

Tables

Table Description Page

4.1 The possible sub-directions for direction number one and direction number three. 25

4.2 Overview of the stakeholders per category for the skiing game. 27

4.3 The ideas for skiing and earning points in the game and their explanations. 31

4.4 The ideas for the presence of a fellow player in the game and their explanations. 33

4.5 The ideas for providing feedback in the game and their explanations. 34

4.6 The ideas for implementing levels in the game and their explanations. 35

4.7 The results of the brainstorm session with the client. 36

4.8 Evaluation of the ideas that were generated through the brainstorm sessions. 37

5.1 A use scenario for the skiing game with the paper prototype that was made. 39

5.2 Product requirements and prioritization for the skiing game. 45

6.1 Overview of the scripts and their functionality. 59

7.1 Evaluation of the product requirements. 63

9

Chapter 1 – Introduction

1.1 Problem statement
Taking skiing classes on a ski-slope in The Netherlands does not necessarily provide the user with a

feeling that is related to the experience of being in the snowy mountains. Yet people go skiing to get

the “real” skiing experience, which is lacking at the moment. Therefore the idea arose of combining

skiing on an artificial ski-slope with augmented reality. To enable the user the learn something from

the experience and to add meaning to it, it was decided to make the envisioned product a serious

game that can be used to support the ski-learning process. Overall, games are seen as entertaining

and therefore motivational. However, serious games do not have a primary focus on entertainment

but on education instead [1], [2], [3], which makes them a perfect means for training people in the

field of sports. Since games are seen as entertaining, people experience learning through serious

games as entertaining as well, which makes them more excited to learn in serious games [4], [5].

Augmented reality, which presents the user to an environment where normally present surroundings

are overlaid with virtual three-dimensional objects [6], [7], is seen as a suitable technology for

serious games, as it allows for natural interactions between the player and the game.

1.2 Research questions
In this thesis it is investigated how a game that uses augmented reality technology to support the ski-

learning process can be designed. An important aspect when designing such a game is the question

what the added value of a game in augmented reality for skiing classes on a revolving ski slope is.

Another important aspect that was investigated is how people perceive a game in augmented reality

that is meant to support the ski-learning process. Additionally, it is researched if the augmented

reality skiing game that was designed causes cyber sickness symptoms for its players. These three

aspects were investigated in order to answer the main research question of this thesis.

1.3 Outline
In Chapter 2 a description of the used methods and techniques for this thesis will be given. This will

be followed by the results of a state of the art research on serious games that use augmented reality

to teach or train people in sports in Chapter 3. Subsequently, Chapter 4 describes the ideation and

exploration of the possible design choices for the skiing game. Chapter 5 gives an overview of the

product specifications of the skiing game, followed by a description of the product realisation in

Chapter 6. This will be followed by an evaluation of the user tests that were carried out in Chapter 7.

In Chapter 8, there will be a discussion of this research and conclusions will be drawn upon how a

game that uses augmented reality technology to support the ski-learning process can be designed.

Finally, in Chapter 9 recommendations for further research and future work will be given.

10

Chapter 2 – Methods and Techniques

In this chapter the methods and techniques that were used in this research to eventually answer the

research questions that were mentioned in Chapter 1 will be explained. The chapter starts with an

explanation of the design process that was followed throughout the project, which is the Creative

Technology Design Process. In order to properly execute the phases of the Creative Technology

Design Process, a number of methods were used. The used methods are listed and explained in this

chapter.

2.1 Creative Technology Design Process
The overall process of this graduation project was carried out following the Creative Technology

Design Process by Mader and Eggink [8]. The Design Process of Creative Technology consists of four

phases: Ideation, Specification, Realisation, and Evaluation. Figure 2.1 gives a schematic

representation of this design process.

Figure 2.1: Creative Technology Design Process

11

Every phase in the Creative Technology Design Process has two separate phases of its own, a

divergence phase and a convergence phase. Every phase (Ideation, Specification, Realisation,

Evaluation) starts with a divergence phase, where the design space is opened and different possible

solutions can be explored. The divergence phase is followed by the convergence phase, where the

design space is reduced again to one or few solutions.

2.1.1 Ideation

The ideation phase usually starts with a design question, an assignment from a client, or a creative

idea. In this case, the ideation phase started with the assignment that was given by the client of this

project, which was to make a combination between a revolving ski slope and augmented reality or

virtual reality. In the Creative Technology Design Process, technology can be the starting point for the

ideation phase. That is why tinkering, finding new functions or utilizations for existing technologies, is

an important part of the ideation phase.

Related work is often used as an inspiration during the ideation phase. Therefore Chapter 3, section

3.1, gives an overview of related work. This overview contains games that use augmented reality to

teach or train people in sports, since the search for games that use augmented reality to teach or

train people in skiing did not deliver results. The games found under related work were reviewed,

and useful techniques that were used in these games were taken into consideration in the ideation

phase.

It is important to know whom the final design of the skiing game is targeted at. That is why in the

ideation phase a stakeholder analysis was executed, to find out who the possible end users of the

skiing game are. Once it was clear who the end users were, several brainstorm sessions were held

and multiple use cases were made that entailed a variety of design possibilities. Out of the different

generated solutions, one product idea was chosen that was taken to the specification phase.

2.1.2 Specification

The product idea that resulted from the ideation phase served as a starting point for the specification

phase. The goal of the specification phase was to decide on the functional specifications of the skiing

game. Specification was done by making several prototypes and evaluating their functionalities. For

this purpose, a paper prototype was made of what the researcher envisioned the final game to be

like. Besides the paper prototype, several prototypes were made to test the possibilities and

functionalities of the software that was chosen to use for making the skiing game. After creating and

evaluating the prototypes, a list with functional requirements of the final prototype of the skiing

game was made. The MoSCoW method, which is explained in section 2.2.5, was used to prioritize

between the requirements.

2.1.3 Realisation

The functional requirements that were defined in the specification phase are the basis for the

realisation phase. The goal of the realisation phase is to make a working prototype that satisfies the

functional requirements as were set.

12

2.1.4 Evaluation

The final prototype that resulted from the realisation phase was evaluated in the evaluation phase.

The evaluation consisted of two parts, functional evaluation and user evaluation. Functional

evaluation was used to determine if the resulting prototype fulfils the functional requirements that

were set in the specification phase. This part of the evaluation was carried out by the researcher.

User evaluation consisted of test sessions with end users, where users got the chance to share their

opinions about the final prototype. User evaluation was done to determine if the final prototype

satisfies the needs and desires of the end user.

2.2 Methods
A number of methods were used throughout the process of this project. The used methods are listed

and explained in this section.

2.2.1 Research

Literature research was done in the field of serious games that use augmented reality to teach or

train people in sports. The results of this research can be found in chapter 3 and serve as background

knowledge to this project. First of all, a state of the art research was done about existing games that

use augmented reality to teach or train people in sports. The research was elaborated by the

techniques that were used in these games to teach people, give them feedback and motivate them.

Also, research was done about cyber sickness, especially about its causes and ways to decrease or

prevent its symptoms, since cyber sickness is a well-known problem in applications that present the

user to virtual environments. The result of the literature research served as a starting point and as

background knowledge for the ideation phase of this project.

2.2.2 Stakeholder analysis

An analysis of stakeholders was executed to identify the users that the skiing game was designed for.

Stakeholders are the people who will or can be affected by the product. The stakeholders of the

skiing game were identified using the methodology of Sharp et al. [9]. Sharp et al. identified four

groups of baseline stakeholders, the stakeholders who are most directly influenced by the product

and have the most influence on the product. The categories of baseline stakeholders are users,

developers, legislators, and decision-makers.

• Users

According to Sharp et al. [9], users are the people who interact with a product and control it

directly. Eason [10] argues that users can be divided into three different groups, which are

primary users, secondary users, and tertiary users. Primary users use the product the most

directly and often. Secondary users are the users who use the product occasionally. Tertiary

users are influenced by the product’s launch on the market and can have an influence on its

sales.

• Developers

The developers are the stakeholders who are responsible for the development of the

product. Stated differently, the developers are the people who design and build the product.

They have a great influence on the requirements engineering process of the product.

• Legislators

The legislators are the stakeholders that are capable of influencing the product by rules and

13

regulations. Legislators can be both people and institutions, on a local, national, or

international level.

• Decision-makers

As the name says, the decision-makers are the people who make decisions about the

product. According to Sharp et al. [9], decision-makers are present in both the developer

organisation and the user organisation.

2.2.3 Brainstorm

In the ideation phase, several brainstorm sessions were held in order to generate ideas on how to

design a game that supports people in the ski-learning process. There is a great number of

brainstorming techniques in existence that could be used to do this. Wilson [11] distinguishes

between individual brainstorming and group brainstorming. Wilson also mentions three fundamental

principles that should be taken into account when having brainstorm sessions. The first fundamental

principle is to aim for quantity, not quality. The goal of brainstorming is to get as many ideas as

possible, which means that the successfulness of a brainstorm session can be measured by the

number of ideas that was generated. The second fundamental principle of brainstorming is that the

ideas of others cannot be criticized, positively or negatively, implicitly or explicitly, during the

brainstorm session. The third principle is that new and wild ideas should be stimulated. New ideas

can arise from already existing ideas, by combining them, stretching them, improving them, or by

finding a metaphor for them. Wild ideas, which are ideas that are not directly feasible or applicable,

can serve as a trigger to find suitable ideas. These three fundamental principles for brainstorming

essentially mean that every idea is welcome in a brainstorm session.

Wilson [11] also mentions several brainstorming techniques for group brainstorming, which are the

following:

• Buzz Sessions

Buzz Sessions are an effective technique for brainstorm sessions in large groups. The group is

divided into smaller groups, which all get a topic to brainstorm about for a set period of time.

After the set period of time, all the small groups come back to the big group and present

their ideas.

• Free Listing

When Free Listing, all individual participants of a brainstorm session are asked to make a list

of their ideas or solutions to the topic of the brainstorm in a short and predefined period of

time.

• Reverse Brainstorming

In Reverse Brainstorming, also called Negative Brainstorming, the goal is to first find negative

ideas or faults and then focus on positive ideas and solutions. The idea behind this approach

is that it is often easier to find faults than it is to find solutions. The faults are used as an

input to find solutions.

• Delphi Method

The Delphi Method is a brainstorming technique that only involves experts in the field of the

topic of the brainstorm. A coordinator asks the experts for ideas on how to solve a specific

problem. All the experts give their opinion, and all their opinions are criticized by the other

experts. At the end, a summary of the given solutions is made and sent to all the experts. In a

second round, more specific questions are asked, based on earlier results. Again, the results

14

are summarized and sent to all the experts. This process continues until there is a final idea

that will serve as the solution.

• Remote Brainstorming

Remote Brainstorming is rather a communication technique than a brainstorm technique.

Using this method, brainstorm sessions can be held over distance, using communication

technologies. The options for brainstorming are dependent on the options that are offered

by the chosen communication technology.

Within this project, two brainstorm sessions were held. The first was an individual brainstorm session

by the researcher, using the Free Listing technique. The first brainstorm session served as an input to

the second session, which was held by the researcher and the client of this project. Also for that

brainstorm session the Free Listing technique was used, since no other techniques seemed applicable

for a small group like that.

2.2.4 Use Cases

In the ideation phase, use cases were used to identify requirements that were needed for the skiing

game from a user’s point of view. Use cases describe expected interactions between the user and the

product. A use case can be defined as a “set of scenarios tied together by a common user goal” [12].

In software engineering, the use case template of Cockburn is often used to construct valid use cases.

Cockburn [13] describes two structures for use cases, “fully dressed” and “casual”. For this project

the casual structure defined by Cockburn was used, which entails the following details:

• Title of the use case, stating the goal.

• Primary actor.

• Scope, answering what problem is being solved, how the problem will be solved, and why

this is an appropriate solution.

• Level, which can be “system”, “internal”, or “context”. The system level is applicable to goals

that can be reached in a single session with the system. The internal level applies to goals

that are not complete. The context level is used for goals that involve other systems next to

the system that the use case is about.

• Story, consisting of success scenario and extension conditions. Extension conditions are steps

that could go wrong in the scenario.

2.2.4 Game Design

Because the final prototype that resulted from this project is a game, game design principles were

studied. This was done by using the method of lenses by Schell [14]. Schell defines one hundred

lenses, which all provide different ways of seeing and thinking about a game. Every lens requires to

see the game from another perspective and possibly change thoughts about it. A selection of the

lenses of Schell were used to consider the possible solutions and design choices that arose from the

ideation and specification phase and to add or refine some of these ideas.

2.2.5 Requirements Analysis and Prioritization

In the specification phase the functional requirements that the skiing game should fulfil were set,

based on earlier results from the ideation phase and early prototypes. Since there is a time limit to

15

this project, the feasibility of the requirements had to be taken into account. Also, the different

requirements were prioritized, defining which requirements should be met first. The prioritization of

the requirements was done following the MoSCoW method [15]. MoSCoW stands for Must have,

Should have, Could have, and Won’t have. All four of them have their own level of prioritization,

where Must have is the most important and Won’t have the least important. The requirements on

the Must have-level are the minimal requirements that the product should fulfil. The Should have-

requirements are not as critical to the launch of the product as the Must have-requirements,

however they are of a high value to the user and are therefore seen as important. The Could have-

requirements are features that are nice to include in the design of the product, but only if time and

costs allow. These requirements are the first to be removed in case there is not enough time to fulfil

all requirements. Finally, the Won’t have-requirements are the requirements that were taken into

consideration for the final product, but were taken out of the design plan because of limited duration

of the project. The Won’t have-requirements typically include features that could be added to a

future version of the product.

2.2.6 Evaluation

After a functioning prototype of the skiing game was realised the prototype was be evaluated, which

was the last phase of this research. In the evaluation phase, a functional evaluation as well as a user

evaluation were executed. The functional evaluation assessed if the prototype functions as intended

and if all the requirements are met. The user evaluation allowed end users to interact with the

prototype and share their opinions about it. The functional evaluation had to be executed before the

user evaluation could be executed, to prevent the prototype from malfunctioning during user tests.

2.2.6.1 Functional Evaluation

The functional evaluation of the final prototype of the skiing game was done by comparing the

functionality of the skiing game to the requirements that were set in the specification phase, using

the MoSCoW analysis. A table containing the requirements and their MoSCoW value was made. For

every requirement it was assessed if the requirement was met in the prototype or not.

2.2.6.2 User Evaluation

The user evaluation was executed by organised test sessions with potential end users of the skiing

game. A number of test participants had to ski on the revolving ski slope while wearing a head-

mounted display that presented them to the skiing game. They could play the game for

approximately three to four minutes. After testing the game, they were presented to a questionnaire

that they had to fill out. The questionnaire was composed based on two validated tests. In addition

to the questions from the validated tests, some extra questions were added.

The first part of the questionnaire consists of the questions from the Simulator Sickness

Questionnaire by Kennedy et al. [16], also referred to as SSQ. In the SSQ a person can indicate how

much certain symptoms, which are related to cyber sickness, are affecting him/her at that moment.

To indicate how much a symptom is affecting the person who is answering the SSQ, the person can

choose from the options none, slight, moderate, and severe. Kennedy et al. divided the different

symptoms listed in the SSQ in three symptom clusters, which are Oculomotor, Disorientation, and

Nausea. The symptoms that belong to the Oculomotor cluster are general discomfort, fatigue,

16

headache, eyestrain, difficulty focussing, difficulty concentrating, and blurred vision. The

Disorientation cluster contains difficulty focussing, nausea, fullness of head, blurred vision, dizzy

(eyes open), dizzy (eyes closed), and vertigo as symptoms. The symptoms that belong to the Nausea

cluster are general discomfort, increased salivation, sweating, nausea, difficulty concentrating,

stomach awareness, and burping. It can be noted that some of the symptoms belong to two of the

symptom clusters. Based on how the test participants indicated being affected by the different

symptoms it was decided if they were suffering from cyber sickness after the experiment, or not.

Based on the symptoms that were rated highest it was decided what cluster of symptoms were

affecting the test participants the most.

The second part of the questionnaire consists of part of the questions from the Intrinsic Motivation

Inventory, also referred to as IMI, mentioned by Van Delden [17]. IMI is a validated test to measure a

participants’ subjective experience with an experiment. Stated differently, the results of IMI indicate

what the test participants’ opinions are about the prototype that is presented to them during the

experiment. However, only part of the questions of IMI were chosen to be included in the

questionnaire that was used in the user evaluation of the skiing game. Because of this, it can be

doubted how validated the test questions are, since they are taken out of their context. The

questions of IMI are divided into seven categories, which are interest/enjoyment, perceived

competence, effort/importance, pressure/tension, perceived choice, value/usefulness, and

relatedness. Participants could answer the questions by choosing points on a scale from one to

seven, where one means “not true at all” and seven means “very true”. A scale from one to seven

was chosen because the standard IMI questions also use a scale that ranges from one to seven and

the standard IMI test provides a way to calculate test scores based on these scales. Also, a scale from

one to seven allows test participants to give their answers very detailed, as they can choose from not

true at all, not true, slightly not true, neutral, slightly true, true, and very true. This way, participants

are allowed to show their doubts or their certainty when they are saying a statements is true or not

true, because they can also say it is slightly true/not true or very true/not true. Therefore, it is

expected that a scale from one to seven delivers more reliable results than when a smaller scale

would be used.

The categories which were part of the questionnaire that was presented to test participants after the

experiments are interest/enjoyment, perceived competence, and effort/importance. The other

categories are not related to the experience of the game and are therefore excluded, except for the

questions under value/usefulness. These were taken as a starting point to formulate new questions

about the use and usefulness of the skiing game in particular. A total of ten questions were added to

the questionnaire, consisting of two open questions and eight questions that should be answered on

a scale from one to seven. It was chosen to use a scale from one to seven again to keep the

questionnaire consistent, as all other questions also used a scale from one to seven.

The scores obtained from the IMI part of the questionnaire were processed by calculating the mean

score for every IMI category (interest/enjoyment, perceived competence, effort/importance) by

averaging the scores obtained for the statements in the category. Every IMI category consists of one

or more questions which are said to be “reversed statements”, as they state something negative.

According to the IMI test [18], the scores of the reversed statements can be calculated by subtracting

its value from eight, and using the resulting number as the item score.

17

Chapter 3 – State of the Art on
Augmented Reality Games that Teach
People in Sports

This chapter contains the result of a state of the art research on serious games that use augmented

reality to train people in sports. Section 3.1 presents related work, concerning related exergames,

movement games and rehabilitation games. In section 3.2, motivational aspects of serious games

that teach people in sports or movements are described. Section 3.3 gives an overview of effective

ways of providing feedback in serious games that are aimed at teaching people in sports or

movements. In section 3.4, the effects that cause a learning effect in serious games that train people

in sports or movements are described. This is followed by an explanation of cyber sickness and its

causes in section 3.5. Finally, section 3.6 provides a conclusion, describing aspects that will be taken

from this background research to the design process.

3.1 Related work
It is difficult to find a system that uses a serious game in augmented reality to train people for the

particular case of skiing. However, serious games that use augmented reality to train people in sports

or movements were found. The results include exergames, movement games, and rehabilitation

games. Exergames are games that encourage people to exercise [2], [19]. The category of movement

games entails the games in which people do not learn sports, but focus on learning certain

movements instead. Rehabilitation games use game technology to help and motivate people in their

physical rehabilitation. Per category a number of relevant games will be mentioned and explained.

3.1.1 Exergames

Various exergames were found, although only the games Calory Battle AR and GeoBoids actually

make use of augmented reality. Calory Battle AR is a mobile augmented reality exergame platform

that uses sensors to connect between the real world and the game [7]. In Calory Battle AR the player

has to help the Dews to fight the Caloroids by finding and deactivating calory bombs that were

placed around a geographical area. In order to do so, the player has to go outside and perform

physical activities. GeoBoids is a game that is rather similar to Calory Battle AR. It uses augmented

reality to display virtual creatures, the GeoBoids, on a map on the player’s smartphone. The player

has to find and catch them within a set time limit [7], [20]. While playing the game, the player can

see the GeoBoids moving around in the real world. Both exergames use augmented reality to make a

connection between the game and the real world, making the user feel more context aware and

motivated in the games.

3.1.2 Movement Games

YouMove is an augmented reality game that teaches the trainee how to perform bodily movements.

The trainee is presented to an augmented reality mirror that is overlaid with a simplified

representation of the human skeleton. The human skeleton on the mirror makes certain movements

18

that should be mimicked by the user. A Kinect is used to track the position and pose of the user,

which is directly compared to the pose presented on the mirror to determine if the user is correctly

imitating the human skeleton. The game consists of five stages which should be executed in the

following order: “demonstration”, “posture guide”, “movement guide”, “mirror”, “on your own”. In

every stage the trainee becomes less dependent on the system, which requires more skills from the

trainee [21]. To conclude, YouMove is a game that teaches the user movements by making the user

less reliant on the game system.

Reidsma et al. [22] designed a very different system that motivates its user to perform movements,

which entails a virtual trainer that looks and behaves like a human. This system is not a game

because it does not contain any game elements, such as competition, the chance of winning or the

risk of losing. However, it is seen as relevant to this research since it stimulates users to perform

physical activity. The movements to be made and the pace are determined and shown by the virtual

trainer based on the user’s heart-rate [22]. The system uses anthropomorphic behaviours and

representations to motivate and activate its user.

3.1.3 Rehabilitation Games

Tannous et al. [4] and Hossain et al. [23] both designed two comparable games that adopt game

technology and augmented reality for rehabilitation purposes. The serious game concept by Tannous

et al. shows similarities to the work of Anderson et al. [21] with the game YouMove. Just as in

YouMove, this game uses a Kinect to make a three-dimensional visualisation of the player’s body

which is directly compared to a model of the right position or movement to be made by the player.

The model of the position or movement is brought into the system by the expert, the person who

helps the patient in the rehabilitation process [4]. The second game, SIERRA from Hossain et al. [23],

uses augmented reality to display virtual objects on a real table, which should be reached for or

picked up by the player, the rehabilitation patient. For both games it is the case that the more

movements the patient is able to carry out correctly, the more complicated the next movements in

the game will be.

3.2 Motivational aspects
In a serious game motivational aspects are needed to allow the game to have an educational effect

on its players. That is because people need motivation to continue playing the game. Only when

people play the serious game long enough they get the chance to learn something from it.

Therefore, motivating the players of a serious game to play the game contributes significantly to the

effectiveness of the serious game.

Games in itself are seen as entertaining and therefore motivate people to play them. Serious games

make use of the concepts that make games entertaining, such as rules and a clear goal that should be

reached [3]. Hossain et al. [23] argue that by using the entertaining aspects of regular games, serious

games become more entertaining and motivate their players. However, Iten and Petko [24] disagree

and state that entertainment in games has also proven to distract the player. Distraction prevents

the player from having a focus on the learning goal of the serious game, which undermines the

purpose of the serious game. Therefore it remains doubtful to what extend a serious game should be

entertaining.

Besides entertainment, multiplayer games are more motivational for their players than single player

games. There are several reasons why people are more motivated to play multiplayer games. First of

19

all, Göbel et al. [2] state that multiplayer games offer competition. When there is competition,

people want to prove that they are the best which makes them likely to continue playing the game

until they get near that goal. Secondly, playing against a human opponent is less predictable than

playing against the computer, which enhances the replayability of the game [2]. Thirdly, Whitehead

et al. [19] add that there is a social aspect in multiplayer games. They argue that peer pressure plays

an important role in motivating the fellow player. Because of these three factors, people will enjoy

the game for a longer time and therefore feel motivated to play the game.

Also, classic game elements are known for contributing to a player’s motivation to play the game.

Göbel et al. [2] explain that when players are presented to a ranking of the best players, they tend to

compare their personal results to those of others, which makes them want to do better in the game

and continue playing. Cheng and Liu [25] add to this that a clear goal in the game makes the player

aware of the gap between what should be reached and the current situation that the player is in.

When the goal is clear and the game offers means that can be used to reach it, the player feels

motivated to keep on playing until the goal of the game has been reached. Also, Whitehead et al.

[19] state that games that do not allow for cheating are more motivational than games where

cheating is possible. Therefore, when cheating is impossible, people will feel motivated to play the

game because that is the only way they can reach their desired result. All in all, rankings, a clear goal

and fair play are classic game elements that motivate the players of a game.

Furthermore, personalization of a game increases the motivation of its players as well. This works

especially well for sports games. Hardy et al. indicate that serious sports games can be personalized

by giving trainers and trainees the option to add personal content to the game, such as training

schedules and exercises. Using this input, the training will be at an appropriate level of challenge for

the trainee [5]. It is clear that a challenging but manageable game adds to the motivation of the

player.

Another motivational factor in games, but also in general, is the use of a virtual human-like character

as a trainer. People have the tendency to follow the behaviour of the virtual trainer as long as it looks

and behaves like a human. Reidsma et al. [22] claim that a human-like virtual coach can be able to

make people do certain fitness exercises without verbally giving them the command to do so. People

tend to copy the behaviour of the human-like trainer. Therefore, a human-like representation in a

game that verbally or non-verbally transmits what should be done adds to a player’s motivation to

continue playing the game.

A final motivational factor in games are rewards, which are usually given for specific performances or

actions in the game. According to Swartz and Lyons [26] rewards offer the player a favour or

advantage in return for his/her performance in the game, which has a positive effect on the player’s

motivation to continue playing the game. Goh et al. [27] suggest that rewards reinforce a player’s

enjoyment and make a player feel self-determined and competent, which adds to the motivation of

the player. However, Cruz et al. [28] contradict these statements by claiming that rewards are not

stimulating every form of motivation. According to the Self-Determination Theory from Deci and

Ryan [29] there are two types of motivation: intrinsic motivation, and extrinsic motivation. Intrinsic

motivation is defined as an internal and inherent desire to do an activity for one’s own pleasure and

satisfaction, while extrinsic motivation is a feeling of motivation that comes from external sources

instead of from an internal drive. Cruz et al. [28] claim that rewards increase extrinsic motivation and

decrease intrinsic motivation. Rewards stimulate a player to play for the goal of getting more

rewards, instead of playing out of an internal drive to do so. This means that when the rewards are

removed from the game, the player will not feel motivated to play the game anymore. The two most

20

commonly used types of rewards are points and badges [26], [27]. Points and scores are the result of

change in behaviour [26] and supply the player with insights in personal performances [27], while

badges are seen as an indication of a player’s status in the game [27].

3.3 Feedback
Another important aspect in serious games is the feedback provided, since people need feedback to

know what they did right and what they did wrong. Based on feedback, improvements can be made

which will enable the player of the serious game to make progress. In the examined literature three

effective ways were found to provide feedback.

First of all, summary feedback and intermediate feedback play significant roles. Summary feedback

can be defined as feedback at the end of a series of trials in the game, whereas intermediate

feedback is provided at every single trial. Anderson et al. [21] state that providing a player with

intermediate feedback can possibly cause an overload of information presented to the player, which

will hardly benefit their performance. They add to this that supporting a player by summary feedback

instead will allow the player to think about the feedback for a longer time and will enable the player

to improve his/her skills throughout a series of trials, without being interrupted. However,

contradictory findings from Hossain et al. [23] show that real-time feedback is most effective, since it

allows the user to know what to do in every stage of the game. Real-time feedback is rather related

to intermediate feedback than to summary feedback, as it is provided continuously. Therefore, it

remains unclear if summary feedback is actually preferred over intermediate feedback. However, it is

expected that a restricted amount of intermediate feedback is desired from the trainee’s side, since

it allows the trainee to adapt behaviours according to the feedback at the right moments. The use of

a limited amount of intermediate feedback can be accompanied by summary feedback at the end of

every game to make the feedback more effective.

Second, multimodal feedback has positive effects on the player. Multimodal feedback is feedback

that is provided to multiple senses [23]. Usually, multimodal feedback entails audio feedback, visual

feedback, and possibly even haptic feedback. According to Hossein et al. [23], accessing multiple

senses by the feedback makes the player more aware of the feedback and more likely to change his

behaviour accordingly. Anderson et al. [21] add that audio, for example, has positive effects on the

learning timing of the player. All in all, multimodal feedback makes the player more attentive and

thoughtful towards his/her own behaviour in the game.

Third, the use of assessment games, intermediate games that assess whether the player actually

learnt something from the normal game, are seen as a powerful way to address the player and

provide feedback. Hossain et al. [23] state that by playing an assessment game, the player will

discover what skills were learnt throughout the gameplay and what skills are still inadequately

developed. This will help the player to clearly see what his/her competences are and what should still

be developed through gameplay. Assessment games also provide feedback to the game itself as to

what level the player is currently at. Using assessment games, the game can determine what

exercises or challenges the player needs in the regular game.

3.4 Learning effect
Since the aim of serious games is to educate players, it is important to look into the factors that

cause a learning effect in them. A learning effect can be defined as the case where the player learns

21

something new from the game. A number of causes that make a serious game more effective in

teaching were found.

First, clarity of the game enables the player to learn something from it. Ke [3] and Iten and Petko [24]

agree that clear tasks, explanation and cues in a serious game cause a learning effect for the player.

According to Iten and Petko [24] that is because a player’s expectations of an easy and instructive

game makes his/her approach towards the game more positive. Ke [3] adds that this becomes even

more effective when the game builds upon the player’s prior knowledge, as this makes it easier for

the player to connect the gameplay experience to the educational content of the game. Ke [3] also

states that in this case, rules play a significant role as well, to restrict the player in what can or cannot

be done during gameplay. Rules empower the player’s learning efforts even more as they force the

player to find alternative ways to reach the goal of the game. All in all, clear tasks and explanations,

the use of prior knowledge, and the use of rules add to the clarity of the serious game.

Second, a decrease in guidance during gameplay has positive effects on the player’s learning as well.

Anderson et al. [21] concluded that gradually reducing the guidance in the game forces the player to

fill up the gap of missing guidance with increased skill. Therefore, lowering the amount of guidance in

the game over time makes the player work harder on his/her skills and causes a learning effect.

Cheng and Liu [25] add that the decrease in guidance also helps the player to get in “flow”. Flow is

the situation where a challenging goal is set in the game and the supplies and techniques that are

offered enable the player to reach the goal. Learning in flow is most likely to happen when players

experience a balance between their own skills and the challenges offered by the game, which is an

important aspect to take into account when decreasing the guidance in the game.

3.5 Cyber sickness
An important aspect to consider when designing for virtual reality or augmented reality is cyber

sickness. Bruck and Watters [30] define cyber sickness, also referred to as simulator sickness or

virtual environment sickness [31], as a feeling of illness that is similar to motion sickness, while there

is no physical motion present. Rebenitsch and Owen [32] confirm this definition and describe cyber

sickness as an illness that is very similar to motion sickness, without the presence of actual physical

motion. The symptoms of cyber sickness are comparable to the symptoms of motion sickness and

include nausea, disorientation, headaches, and dizziness [31], [32].

3.5.1 Possible causes of cyber sickness

In the examined literature, six theories were found about the cause of cyber sickness. The first theory

is the sensory conflict theory, which confirms the definitions mentioned above. According to Duh et

al. [31] and Renebitsch and Owen [32] the sensory conflict theory claims that cyber sickness results

from contrasting information from a person’s visual perception and inertial perception. An example

of this is a system where the person is stationary in the physical world and gets visual signals of

movement in the virtual world.

Second, lag is considered as a cause for cyber sickness. Milgram [33] argues that in augmented reality

a lag of the graphics compared to the physically present world causes symptoms that are strongly

related to cyber sickness. Rebenitsch and Owen [32] also consider lag as a possible cause for cyber

sickness.

22

A third theory that explains a possible cause for cyber sickness is the postural instability theory.

Riccio and Stoffregen [34] posed the postural instability theory as an alternative to the sensory

conflict theory. The theory suggests that cyber sickness is caused by the fact that virtual

environments are different from people’s natural environment. They imply that virtual environments

force people to find new ways of controlling their postural stabilities, since it is different from their

natural environment. Similar to animals that get sick in environments where they cannot get control

over their balance, humans get sick from losing their postural stability. Rebenitsch and Owen [32]

also mention the postural instability theory as a possible cause for cyber sickness.

Fourth, the duration of exposure in augmented reality or virtual reality plays an important role.

Rebenitsch and Owen [32] claim that the intensity of cyber sickness increases as the duration of

exposure increases. Bruck and Waters [30] add to this that cyber sickness symptoms can already be

increased after only six to ten minutes of exposure.

The fifth theory that possibly explains the cause of cyber sickness is the rest frame theory.

Rebenitsch and Owen [32] describe the rest frame theory as a theory that is rather similar to the

postural stability theory. The rest frame theory claims that cyber sickness is caused by disagreements

between the direction a user thinks is upwards based on what he or she sees in the virtual

environment, and the actual upwards direction in the physical world. In other words, this theory

posits that if the virtual environment is tilted compared to the physical world, a user may experience

cyber sickness.

A sixth theory that was found on the cause of cyber sickness is the Eye Movement Theory of motion

sickness. Bruck and Watters [30] reported that fatigue is one of the components of cyber sickness.

They claim that rapid movement of the eyes results into tiredness of the eye muscles. In their

research they linked this to the Eye Movement Theory posed by Ebenholtz [35], which suggests that

overstimulating the muscles in the eye as a result from exposure to a virtual environment can cause

tiredness of the eye muscles and headache, which are symptoms of cyber sickness [31], [32].

3.5.2 Decreasing symptoms

Contrary to the possible causes of cyber sickness, there is not much information on ways to decrease

or prevent its symptoms. In the examined literature, only few methods were found to decrease cyber

sickness symptoms. Repeated exposures to the virtual environment can decrease symptoms of cyber

sickness. Duh et al. [31] mentioned a research from Kennedy and Fowlkes [36] in their work, that

showed that symptoms of cyber sickness decreased with repeated exposures to the virtual

environment. Besides the number of exposures, Rebenitsch and Owen [32] claim that limiting the

horizontal field of view and including the physical world in the virtual environment reduces cyber

sickness symptoms. The latter suggests that cyber sickness symptoms will be less severe in

augmented reality environments than in virtual reality environments, since augmented reality

environments include the physical world [6], [7].

Often times it is expected that cyber sickness symptoms can be decreased by improvements on the

technology. Duh et al. [31] report that it is often expected that improvements in computer hardware

can reduce cyber sickness. However, they oppose to this that, considering the sensory conflict theory

is true, improvements to the hardware will potentially even stimulate cyber sickness. Findings by

Rebenitsch and Owen [32] confirm this expectation, as they found that symptoms of cyber sickness

increased with improved technology. Based on these findings, it is expected that cyber sickness

symptoms will continue to increase with further improvements to technology.

23

3.6 Conclusion
Overall it can be concluded that several reliable methods exist that teach people in sports through a

serious game in augmented reality. In the examined literature, methods were found that are related

to motivational factors, feedback and learning effects in serious games. Also, it must be taken into

consideration that cyber sickness symptoms can appear when people play such games.

A number of exergames, movement games and rehabilitation games were found in a state of the art

research. Studies conducted on these games showed that, although players get motivated by the

entertaining aspect of serious games, this can also be a distraction for them. Furthermore,

multiplayer games, classic game elements such as rankings and a clear goal in the game,

personalization of the game, a human-like representation of the trainer or coach, and including

rewards in the game are successful motivational factors in serious games. With regard to the

feedback provided in serious games it remains unclear if summary feedback or intermediate

feedback is most adequate. However, based on the findings it can be concluded that multimodal

feedback and the use of assessment games are reliable and effective. Finally, clarity in games such as

clear tasks, explanation and cues enforce the learning effect that the game has on the player. Besides

that, a decrease in the guidance that the game offers also shows positive learning effects.

Cyber sickness symptoms, causes, and ways to prevent it were examined as well. Cyber sickness

symptoms are very similar to the symptoms of motion sickness, while there is no physical motion

present when one suffers from cyber sickness. Possible causes of cyber sickness are the sensory

conflict theory, lag of the graphics, the postural instability theory, long exposures to the virtual

environment, the rest frame theory, and the Eye Movement Theory of motion sickness. Cyber

sickness symptoms can be prevented or decreased by having repeated exposures to the virtual

environment, limiting the horizontal field of view, and inclusion of the physical world in the virtual

environment. Based on these findings it is expected that augmented reality, which presents the user

to an environment where the physical world is overlaid with three-dimensional virtual objects, will

not cause severe cyber sickness symptoms.

3.6.1 Design Recommendations

Based on the findings of this chapter several recommendations can be made about the design of the

serious skiing game. First of all, the envisioned game should be a multiplayer game, since that adds

to the motivational impact that the game has. Second, players should be able to earn points in the

game. Rankings should show how many points every single player has earned so that individual

players can compare their achievements to those of their opponents or other players. The rankings

will provide the players with more insight into their own performance in the game. Third,

intermediate feedback should be used. However, this should be done to a limited extent, to prevent

the player from being overloaded with information. The intermediate feedback should be in the form

of multimodal feedback, providing the player with visuals and audio that show areas where

improvement is possible and indicate how the improvements should be made. The actual look of the

multimodal intermediate feedback will be further explored in Chapter 4 Ideation and Exploration.

Fourth, the option to accompany the intermediate feedback with summary feedback will be

explored. At the end of every skiing attempt the player could get an overview of the things that went

well and the things that did not go well and how they could be improved. The summary feedback

could be given by a human-like virtual representation of a trainer or by multimodal feedback as well.

The latter is preferred since it is also used in other parts of the game. The final look of this form of

feedback will also be further explored in Chapter 4.

24

Chapter 4 – Ideation and Exploration

This chapter describes the results of the ideation phase, which was executed to gather possible

product ideas for the prototype that will be the result of this project. The ideation phase consisted of

diverging phases and converging phases. In the diverging phase, possible ideas were explored, which

were brought back to one final idea in the converging phase. The result of this chapter is a final

product idea, which will be further specified in the specification phase of this project.

4.1 First Ideation
The starting point for the ideation phase was the assignment that was given by the client of the

project. The client gave the assignment to make a combination between a revolving ski slope and

augmented reality or virtual reality. A revolving ski slope, also called infinite slope, is a ski slope with

a revolving surface [37]. This causes the same effect as running on a running treadmill, but then for

skiing. Figure 4.1 gives a visual representation of a revolving ski slope.

Figure 4.1: A revolving ski slope.

Based on the assignment, the first ideation phase was started. The goal of the first ideation phase

was to determine what the exact assignment for this project was going to be, since a combination

between a revolving ski slope and augmented reality or virtual reality can be made in many ways.

Possible directions for this project that were thought of were the following:

1. The combination between a revolving ski slope and augmented reality or virtual reality to

enhance the skiing experience. This could for example be done by stimulating the user’s

senses in such a way that an experience is being evoked that the user will strongly relate to

the experience of real skiing. The user could be shown to a visual representation of a real ski

area in the snowy mountains, accompanied with the sounds and smells that are present

there. Cold air or the feeling of snow could even be included to add to the skiing experience.

2. The combination between a revolving ski slope and augmented reality to offer people help

and instructions when they are skiing. This could for example be done by visualizing a track

that indicates to the user where he/she should ski.

3. The creation of a skiing teacher or teaching system in augmented reality or virtual reality,

which can be used to teach people how to ski.

25

4. The creation of a virtual coach that gives a skier instructions and exercises that can be done

before the actual skiing activity, as preparation.

5. The combination between sensors that measure physical data, such as heart rate and blood

pressure, and sensors that measure ski-related data, such as the pressure put on the skis.

This can be combined with augmented reality or virtual reality to inform a skier about his/her

data. Additionally, this could be taken even further by using the obtained data to control the

user’s behaviour based on it. For example, if the skier’s heart rate is too high, a

representation in augmented reality or virtual reality could be used to try to slow him/her

down, which is likely to eventually also slow the skier’s heart rate down.

6. The creation of a tracking system that can track a user’s positions and movements in the

physical world, on the actual ski slope that is, and uses that information to enable the user to

move himself/herself through a virtual environment based on his/her movements in the real

world.

7. The combination between skiing on a revolving ski slope and augmented reality or virtual

reality to make a social platform for skiers, which allows them to stay in contact while skiing.

The social platform would be presented to the users in augmented reality or virtual reality.

Out of the seven possible directions that are described above, two were considered most interesting

and feasible within the limited time that is available for this project. The two directions that were

further explored were direction number one, the combination between a revolving ski slope and

augmented reality or virtual reality to enhance the skiing experience, and direction number three,

the creation of a skiing teacher or teaching system in augmented reality or virtual reality. Directions

number two and four were considered feasible, but less interesting than directions number one and

three. Directions number five, six, and seven were not considered to be feasible within the limited

time scope of this project. With respect to direction number five, a system that combines sensor

input from multiple sensors, transfers the input to a form that can be used to make a representation

of it in virtual reality or augmented reality, and combines the data in such a way that meaningful

conclusions can be drawn upon it did not seem realistic and achievable within ten weeks. Regarding

direction number six, tracking is a subject that has undergone extensive research and yet there are

no easily implementable or reliable solutions found. Therefore, it is expected that this direction

poses problems that are unrealistic to solve within this project. Concerning direction number seven,

social platforms contain extensive internal architectures which are not seen as realistic to be

developed within the limited timeline of this project. Apart from the feasibility of direction number

seven, also its desirability was questioned. Distracting people from their skiing activities with a social

platform seems to be an objectionable thing to do. For both of the chosen directions, two possible

sub-directions were found. Table 4.1 lists the possible sub-directions per chosen direction.

Table 4.1: The possible sub-directions for direction number one and direction number three.

 Direction Sub-directions

1 The combination between a revolving ski
slope and augmented reality or virtual
reality to enhance the skiing experience

Research about the influence that the virtual
environment has on the skiing experience,
investigating if the environment has to look
realistic, or whether more abstract environments
can also enhance the skiing experience.

26

Research about which senses should be
stimulated and with how much intensity to give
users the feeling of skiing in the Alpes, instead of
on the revolving ski slope.

3 The creation of a skiing teacher or teaching
system in augmented reality or virtual
reality

The creation of a system that uses simple icons
to give skiers instruction and to teach them new
skiing techniques, which will be displayed to
them in augmented reality or virtual reality.

The creation of a (serious) game that teaches
people how to ski, using augmented reality or
virtual reality techniques.

The last sub-direction, the creation of a (serious) game that teaches people how to ski, was finally

chosen to be the direction for this project. This direction was chosen because it combines game

design with augmented reality or virtual reality, which is seen as an interesting direction. Therefore,

the rest of this chapter will focus on the direction of the (serious) teaching game for skiing. Figure 4.2

gives an overview of the converging and diverging phases of the first ideation phase that was

described in this section.

Figure 4.2: The first ideation phase.

 #1:

Enhancing

skiing

experience

#2: Offer

help and

instructions

to skiers

#3: Skiing

teacher or

teaching

system

#4: Virtual

coach to do

exercises

before skiing

#5:

Measurement

and

presentation

physical and

ski-related

data

#7: Social

platform

#6: Tracking

system

#1.1:

Influence of

realistic/

abstract

environment

on

experience

#1.2:

Stimulation

of senses

#2.1:

Instruction

system using

icons

#2.2:

(Serious)

game to

teach skiing

 = Converging

 = Diverging

Assignment:

Make a combination between a

revolving ski slope and augmented

reality or virtual reality.

27

4.2 Stakeholder Analysis
A stakeholder analysis was executed to identify who the product will be designed for. As was

described in Chapter 2 Methods and Techniques, stakeholders are identified according to the

methodology of Sharp et al. [9]. Sharp et al. identify four groups of baseline stakeholders, which are

users, developers, legislators, and decision-makers. The last three groups are not important for the

project in this early stage, as the focus is now on creating a working prototype that is aimed at the

primary users. There is no product in existence yet, which means that developers, legislators, and

decision-makers will not get confronted with the product and will not have an influence on it. This

might happen at a later stage, when there is a product being readied for the market.

The identified stakeholders per category are listed in Table 4.2. Four groups of user-stakeholders

were found, which include skiing pupils, skiing teachers, leisure skiers, and skiing centres. Skiing

pupils are people who take ski classes to learn how to ski, they can be seen as the primary target

group of the product. Skiing teachers are the people who teach the skiing pupils how to ski, they

could be interested in using the product that is being developed throughout this project as a support

tool during their teaching activities. Leisure skiers are people who practice skiing as a leisure activity,

for entertainment. The product could potentially be interesting for them as well to add more fun to

their skiing activities. Skiing centres are the places that employ the skiing teachers and where skiing

pupils can take lessons before they actually go to the real skiing areas. Skiing centres could be

interested in the product to offer it to their customers and their employees during skiing classes.

Table 4.2: Overview of the stakeholders per category for the skiing game.

Category Stakeholders

Users Skiing pupils

Skiing teachers

Leisure skiers

Skiing centres

Developers Software engineers and programmers

Developers of revolving ski slope

Legislators Government

Insurance companies

Decision-makers Management or CEO of the company that distributes the product

4.3 Early Design Choices
After the first ideation phase and the stakeholder identification, some early design choices could be

made. The first and very essential choice was the choice between augmented reality and virtual

reality. Augmented reality can be defined as the technology that presents the user to an

environment where normally present surroundings are overlaid with virtual three-dimensional

objects [6], [7], while virtual reality is the technology that presents the user to an environment that is

entirely virtual and simply replaces the real world entirely [38], [39]. As people will be presented to

the augmented reality environment or virtual reality environment while skiing on the revolving ski

slope, it is advisable to include the real world in the application. When a person cannot see his/her

physical, normally present surroundings during skiing, it is expected that the person might easily lose

his/her balance on the ski slope, which can cause dangerous situations. One of the problems with

virtual reality would be that people cannot see where they are located on the slope, so they can also

28

not correct their movements when they are likely to fall down the slope. Therefore, augmented

reality was chosen as the most suitable technology for this project.

A second early design choice that was made was the choice to make a system that supports the ski-

learning process, rather than a system that would replace the normal skiing teacher and become a

teacher on its own. Since skiing pupils need intensive and detailed instruction when they ski on the

slope for the first time, it is expected that this cannot be reached yet with a learning game in

augmented reality. However, it is expected that the teacher can use the game as an extra tool during

the teaching activities. Therefore, the skiing game will be designed as a tool that supports the ski-

learning process, instead of actually teaching a pupil how to ski.

4.4 Use Cases
Based on the stakeholders that were identified in the stakeholder analysis of section 4.2, two use

cases were made. The use cases were made based on the “casual” use case template by Cockburn

[13], which was explained in Chapter 2 Methods and Techniques. The goal of the use cases is to

identify requirements that are needed for the skiing game from a user’s point of view. Therefore, the

use cases are made for the users that are listed in Table 4.2. Use case number one has skiing pupils

and skiing teachers as the primary actors, use case number two has leisure skiers as primary actors

and the employees of skiing centres as secondary actors. Besides the actors, every use case contains

a scope, level, success scenario, and extension conditions. The latter consists of the steps that could

go wrong in the success scenario. The use cases described in this section served as a starting point for

the brainstorm sessions that were executed afterwards, as is described in the sections that follow.

Use case #1

Title

Using the skiing game during ski classes

Primary actors Skiing pupil
Skiing teacher

Scope For the pupil:
The problem of boring ski classes on a revolving ski slope is being solved by
introducing an augmented reality skiing game to the ski classes. This is an
appropriate solution because games are a good means for entertaining
people [3], [23] .

For the teacher:
The problem of only being capable of teaching one pupil at a time is being
solved by using the augmented reality skiing game. This is an appropriate
solution because the skiing game allows the teacher to let one pupil
practice on his/her own with the skiing game while giving personal
attention to another pupil, which can be reversed when the first pupil has
finished the game.

Level Internal

Success scenario 1. The skiing pupil comes to the skiing class.

29

2. The skiing pupil gathers the right materials (ski boots, skis) and
enters the slope.

3. The teacher gives the skiing pupil a head-mounted display with the
skiing game on it.

4. The pupil puts on the head-mounted display.
5. The teacher turns the revolving ski slope on.
6. When the pupil is stable enough, he/she can turn the game on and

the game will start.
7. The skiing game challenges the pupil to make certain movements

in order to perform well in the game. The pupil plays the game and
the teacher can give his/her attention to another pupil in the
meantime.

8. After some time, the game is finished. At that moment, the slope
stops. The pupil is presented to summary feedback, which
indicates how well he/she did in the game.

9. The pupil takes the head-mounted display off.
10. The teacher returns from the other pupil (who can now start

playing the game) and decides what should be worked on during
the lessons, based on how well the pupil performed in the game.

Extension conditions 5. If the pupil has never used the head-mounted display before while
skiing on the revolving slope, he/she might fall because distraction
or disorientation.

6. Due to technological problems, the game might not start.
7. The challenges of the skiing game might be too easy or too difficult

for the pupil, causing boredom or a feeling of incompetence.
Challenges that are too difficult can also cause dangerous
behaviour, because the pupil is demanded to perform actions that
he/she is not capable of.

Use case #2

Title

Using the skiing game for skiing for fun

Primary actors Leisure skiers

Secondary actors Employee of skiing centre

Scope The problem of the lack of fun while skiing on revolving ski slopes is solved
by using the augmented reality skiing game while skiing on the revolving
ski slope. This is an appropriate solution because games are a good means
for entertaining people [3], [23]. Besides that, the inclusion of the
multiplayer aspect in the game allows multiple leisure skiers to ski
together, even over distance.

Level System

Success scenario 1. The leisure skier goes to a skiing centre with revolving ski slopes.
2. The leisure skier gathers the right materials (ski boots, skis) and

enters the slope.

30

3. An employee of the skiing centre gives the leisure skier a head-
mounted display with the skiing game on it.

4. The leisure skier puts on the head-mounted display.
5. The leisure skier can start the game application.
6. The leisure skier has the option to connect his/her game to other

skiers, by virtually inviting skiers that are using the application at
the same time (which will be shown in the application). These
other skiers might be acquaintances of the leisure skier. However,
the leisure skier can also connect to skiers that he/she does not
know.

7. When the connection is made and all players are satisfied with the
amount of fellow players, the game starts.

8. The employee of the skiing centre turns the revolving ski slope on.
9. The leisure skier starts playing the game. The goal is to perform

well enough to earn the most points and reach the finish earlier
than the opponents.

10. When all players have reached the finish, the game ends.
11. The employee stops the revolving ski slope.
12. Summary feedback provides all players that were present in the

game with an overview that compares their personal
achievements to those of the other players.

13. The leisure skier can decide to play the game again (repeat from
step 5 onward), or to stop.

14. The leisure skier takes the head-mounted display off.
15. The leisure skier leaves.

Extension conditions 5. Due to technological problems, the game might not start.

6. Due to connection problems, it might not be possible to connect to
other players at all times.

7. Due to technological problems, the game might not start.
9. The challenges of the skiing game might be too easy or too difficult
 for the leisure skier, causing boredom or a feeling of
 incompetence. Challenges that are too difficult can also cause
 dangerous behaviour, because the leisure skier is demanded to
 perform actions that he/she is not capable of.
12. Due to technological problems, summary feedback might not
 appear.

4.5 First Brainstorm
Based on the choices made in the previous sections and the insights from the use cases, a first

individual brainstorm about the design of the skiing game and its interactions was executed. Chapter

3 State of the Art contains the background research that served as a basis for the decisions that were

made for the design of the skiing game. In the concluding section of that chapter, some design

recommendations were already made for the skiing game. These recommendations can be

summarized as follows: the game should be a multiplayer game, players should be able to earn

points in the game, players should be presented to a ranking with points, limited intermediate

feedback should be used in the game, the feedback should be in the form of multimodal feedback,

and summary feedback could be included if possible. The first brainstorm was held based on these

31

recommendations. Therefore, the brainstorm was conducted on the following four topics that need

to be included in the game: skiing and earning points, the presence of a fellow player, feedback, and

levels.

4.5.1 Skiing and Earning Points

This part of the brainstorm was about what tasks the user should complete while skiing in the game

and how points can be earned with it. A total of six ideas were found regarding this topic. First the

ideas numbered one to five were found. Idea six arose by combining ideas four and five. Figure 4.3

contains the ideas that were found. All the six ideas are summarized in Table 4.3 below the figure.

Figure 4.3: The ideas that were found for skiing and earning points in the game.

Table 4.3: The ideas for skiing and earning points in the game and their explanations.

Skiing and earning points

Idea Explanation

#1 The user sees a representation of a human skeleton in front of him/her. The human
skeleton performs movements that should be mimicked by the user. If the user is mimicking
the movements of the skeleton correctly, points will be earned. When the user does not
copy a movement or when the user is too late, points will be lost. The more points, the
more difficult the movements to be made become and the faster they need to be executed.

#2 Instead of a representation of a human skeleton, an arrow pointing in a certain direction
will guide the user in the movements to be made. However, this is very limited version of
the game as it can only steer the user in a direction. The arrow has to stop pointing in the
direction when the user is at the right place, because otherwise the user will reach the side
of the ski-slope which might lead to dangerous situations. Again, points can be earned by
following the instructions. When the instruction is missed or carried out wrong, the user
loses points. The more points, the more difficult the game becomes.

#1: Mimic

movements

of human

skeleton

#2: Follow

arrow

#3: Follow a

track

#4: Ski

through

gates

#6: Ski

through gates

and avoid

obstacles

#5: Avoid

obstacles

Skiing and earning points

32

#3 A track will be displayed in the game on the surface of the ski slope. The track can contain
curved parts and straight parts. The player has to follow the track. On the track are certain
marks that are placed at a predefined distance from each other. When the player manages
to ski on the track from one mark to another, points will be earned. The options could be
added that the player loses points if he/she does not manage to ski on the track between
two marks.

#4 The user has to ski through gates that are randomly being placed at the ski slope. The user
can see the gates coming from a distance. If the user successfully skies through the gates,
points will be earned. If the user misses a gate, no points will be earned or points might
even be lost. A feature that could be added to this idea is to make the placement of the
gates more difficult when the user earns more points. That means that the more points the
user earns, the more skiing skills he/she has to show.

#5 This idea is based on the actual situations during the teaching sessions at a revolving ski
slope in Deurningen. During these sessions the teacher places cones on the revolving ski
slope which should be avoided by the pupil. In a similar manner, obstacles could be placed
in the serious game. To make the situation more realistic, a person falling down could be an
obstacle that should be avoided by the player. A person falling down is harder to avoid and
less predictable than a cone that is being placed by a teacher, as the pupil can already see
the cone coming long before he/she is there. When one of the obstacles is hit by the player,
points will be lost. On the contrary, points can be earned by successful in avoiding the
obstacles. Points can be allocated based on the time that the user did not hit an obstacle.
The longer the player avoids obstacles, the more points he/she will get. The more points,
the more difficult the placement of the obstacles becomes.

#6 This idea is a combination between the idea of the gates and the idea of the obstacles. Both
the gates and the obstacles will be present in the game. The player can earn points by
successfully skiing through the gates and he/she can lose points by colliding with an
obstacle.

4.5.2 Presence of the Fellow Player

This part of the brainstorm was about the presence of the fellow player in the game, in case this

would be implemented. A total of five ideas for presenting a fellow player arose, which are shown in

Figure 4.4. Table 4.4 contains the explanations of the five ideas.

33

Figure 4.4: The ideas that were found for the presence of a fellow player in the game.

Table 4.4: The ideas for the presence of a fellow player in the game and their explanations.

Presence of fellow player
Idea Explanation

#1 A map that shows where you, the player, are and where your fellow players are. This could
be placed in a corner in a small format.

#2 A radar that shows where you, the player, are and where your fellow players are. This could
be placed in a corner in a small format.

#3 Fellow players do not have a visual presence during gameplay at all. They are only present
in the overall ranking that will be shown to the player once the game or a trail in the game
is over.

#4 The fellow players can be represented through audio. The player will hear skiing sounds,
such as the sound of ski blades moving over snow, that indicate that someone is present in
front of or behind him/her. If the opponent is in front, the player will hear the audio coming
from the front. If the opponent is behind the player, the player will hear the audio coming
from behind. If this is done, it could be made more realistic by using a visual representation
of the opponent as well when he/she is in front of the player.

#5 Over time certain notifications can be given that tell the player where the opponent is. For
example, every thirty seconds the game could tell the player “opponent is 200 meters in
front of you”, or something similar. This message could subtly be placed in a corner of the
visual part of the game. It should be taken into account that this option could lead to
distraction of the player.

#5.1 A very subtle version of presence of a fellow player, which is rather similar to the
idea described above, is that a player gets a notification once the fellow player has
reached the end of the game. However, then the player can only see where the
opponent is for once, only during gameplay, and only in case his/her opponent has
reached the end of the game earlier. In other words, the player that finishes first

#1: Map #2: Radar #3: Only

present in

ranking

#4: Audio

#5:

Notifications

Presence of fellow player

#5.1:

Notification

when fellow

player has

finished

34

never gets the notification of the other player finishing, which could result in him/her
not being aware of the fellow player during gameplay.

4.5.3 Feedback

This part of the brainstorm session was about how feedback could be provided to the players of the

skiing game. As can be seen in Figure 4.5, a total of six ideas arose on this topic. First, the ideas one

to five were found, after which the combination of ideas one, two, and three led to idea six. All the

six ideas regarding feedback in the game are explained in Table 4.5.

Figure 4.5: The ideas that were found for providing feedback in the game.

Table 4.5: The ideas for providing feedback in the game and their explanations.

Feedback

Idea Explanation

#1 Visual feedback. When the player is doing something right, the thing that was done right
will light up in a blue colour and the points that were earned with it will be displayed in a
blue colour as well, indicating that they add up to the total number of earned points. Blue
seems to be a suitable colour for giving positive visual feedback because blue is seen as
calm, serene, and healing [40]. On the other hand, when the player is doing something
wrong, the thing that was done wrong will light up in a red colour and the points that were
lost with it will be displayed in a red colour as well, indicating that they are subtracted from
the total number of earned points. Red seems to be a suitable colour for giving negative
feedback because red is seen as an intense and sometimes even angry colour [40].

#2 Audio feedback. A high tone (positive sound) will be played when the player is doing
something right, a low tone (negative sound) will be played when the player is doing
something wrong. The audio also indicates if points are earned, or lost.

#1: Visual

feedback:

blue and red

colours

#2: Audio

feedback:

high and low

tones

#3: Haptic

feedback:

buzzes

#4: Summary

feedback:

ranking

#5: Summary

feedback:

overview of

good and

bad actions

that were

performed

Feedback

#6:

Multimodal

feedback

35

#3 Haptic feedback. A light buzz will be given on the augmented reality device when the player
is doing something right, and a heavy buzz will be given when the player is about to lose the
game or when the player is doing something wrong.

#4 Summary feedback. A ranking at the end of a level that shows how well the player did
compared to his/her previous achievements and the achievements of others. The player’s
achievements and placement in the ranking will be represented by the amount of points
earned by the player and, if present, the opponent(s). This way, the player can see how well
he/she is doing compared to others or to his/her own previous results.

#5 Summary feedback. At the end of a level or at the end of the game an overview will be
provided to the player that shows the moments that went very well (where maximum
points were earned) and the moments that did not go so well (where no points were
earned or points were lost). For the moments that did not go so well, suggestions will be
given on how the player can improve his/her performances. The moments will be shown to
the player by screen captures of the game at that moment.

#6 Multimodal feedback. This is the combination of idea one, two, and three, which results
into a feedback system where visual feedback, audio feedback, and haptic feedback are
present.

4.5.4 Levels

The final part of the individual brainstorm session was about the way in which levels should be

implemented in the skiing game. This part of the brainstorm session resulted into four ideas, which

are all included in Figure 4.6 and explained in Table 4.6.

Figure 4.6: The ideas that were found for implementing levels in the game.

Table 4.6: The ideas for implementing levels in the game and their explanations.

Levels

Idea Explanation

#1 A one-level game where the level will be increased in difficulty, variation and
unpredictability over time to make sure that players that are longer in the game are or
become more skilled at skiing. Points can be earned in similar ways as described in the first
section of this ideation section. The more points, the better a player did in the level.

#2 A one-level game where a human teacher has influence on the game and decides on its
difficulty, duration and unpredictability. The teacher can do this through his/her own

#3: Multiple

levels,

ranging from

easy to

difficult

#4: Training

part besides

regular levels

#2: One level

that can be

influenced by

a real

teacher

#1: One level

that

increases in

difficulty

Levels

36

interface on a separate device, for example on a tablet, phone, laptop. This way, there is
still human judgement in the game, determining what level of difficulty the player can
handle.

#3 A game with multiple levels. The first level starts simple and does not last very long (one or
two minutes). The second level is slightly more difficult and lasts a little longer. Slowly but
steadily the difficulty and amount of time will be increased in the levels. A player can only
play a certain level once he/she has completed all the levels that were before it. Hence, a
player can only go to level five once levels one, two, three, and four have been successfully
completed. A level will be successfully completed when the player has played the whole
level and earned a sufficient amount of points.

#4 A training part besides the levels, where the player can practice before entering the game.
In the training part no points can be earned, it is mostly focussed at showing the right
movements to the player and at letting the player follow the movements. The player will
get visual and audio feedback. For example, when the player does something right in
practice, he/she will see a green representation of what went right and hear a high tone
(positive sound). The player’s achievements in the training part of the game do not give any
points, achievements, head start or other kinds of benefits in the game.

4.6 Brainstorm and Evaluation with Client
After collecting ideas about different parts of the skiing game through an individual brainstorm

session, the ideas were presented to the client for a second brainstorm session and an overall

evaluation of the ideas. The brainstorm session with the client was based on the ideas that were

already found during the individual brainstorm session that was executed beforehand. Also, since

there was already a number of ideas in existence, the brainstorm session with the client was smaller

than the individual brainstorm session. The results of the brainstorm session with the client included

three extra ideas for the representation of the fellow player in the game. These ideas are included

and explained in Table 4.7, where the numbering of the ideas is following the numbering of the ideas

that were generated in the first brainstorm session for this part of the game.

Table 4.7: The results of the brainstorm session with the client.

Presence of fellow player

Idea Explanation

#6 Giving opponents the possibility to stay in contact through a head-set, which enables them
to talk to one another. It must be noted that this can also be very distractive for the players.

#7 The fellow player can be present in the game through a shadow or three-dimensional model
that represents a person who is skiing. The shadow or model should be placed at the
location of the fellow player in the game.

#8 The fellow player can be present in the game through an arrow that is pointing at his/her
location in the game, with the fellow player’s avatar printed on the arrow so that it can be
seen who the fellow player is.

After the second brainstorm session, idea generation ended and idea evaluation started. Together

with the client, all the generated ideas were rated on feasibility within the limited timeline of this

project and desirability from the side of the client to be included in the skiing game. Table 4.8

provides an overview of the evaluation of the generated ideas. The last column of the table provides

a total score that was calculated by adding the score for feasibility to the score of desirability. The

37

amount of plusses and minuses in the column with the total score indicates how likely it is that the

idea will be implemented in the skiing game.

Table 4.8: Evaluation of the ideas that were generated through the brainstorm sessions.

Evaluation of generated ideas

Skiing and earning points

Idea Feasibility
++ = Very feasible
+ = Feasible
- = Not very feasible
-- = Not feasible at all

Desirability
++ = Highly desirable
+ = Desirable
- = Not very desirable
-- = Not desirable at all

Total

#1: Mimic movements of human skeleton - + 0

#2: Follow arrow ++ - +

#3: Follow a track + - 0

#4: Ski through gates ++ + +++

#5: Avoid obstacles ++ + +++

#6: Ski through gates and avoid obstacles ++ ++ ++++

Presence of fellow player

Idea Feasibility Desirability Total

#1: Present on map + + ++

#2: Present on radar + + ++

#3: Only present in ranking ++ - +

#4: Present through audio + + ++

#5: Present through notifications ++ - +

#5.1: Notification when fellow player has finished ++ - +

#6: Present through contact via head-set - - --

#7: Present through shadow or model of a skier ++ + +++

#8: Present through arrow with avatar on it + ++ +++

Feedback

Idea Feasibility Desirability Total

#1: Visual feedback: blue and red colours ++ + +++

#2: Audio feedback: high and low tones ++ + +++

#3: Haptic feedback: buzzes - + 0

#4: Summary feedback: ranking + + ++

#5: Summary feedback: overview of good and bad
actions that were performed

-- ++ 0

#6: Multimodal feedback + ++ +++

Levels

Idea Feasibility Desirability Total

#1: One level that increases in difficulty + + ++

#2: One level that can be influenced by a real
teacher

-- ++ 0

#3: Multiple levels, ranging from easy to difficult - ++ +

#4: Training part besides regular levels -- ++ 0

4.7 Product Idea
As a result of all the ideas that were generated throughout the ideation phase described in this

chapter, a final product idea was created. The decisions made for the final product idea were based

38

on the evaluation of the ideas with the client, where the ideas that obtained the highest score were

chosen to be included.

In the early stages of the ideation phase it was decided that the final product of this project will be a

(serious) skiing game. With regard to skiing and earning points in the game, it was decided that the

game will present the player to a series of gates and obstacles. The player can earn points by skiing

through the gates, and points are lost if the player collides with an obstacle. As was decided earlier

on, an attempt will be made to make the skiing game a multiplayer game. The presence of the fellow

player in the multiplayer version of the game will either be through a shadow or model of a skier at

the location of the fellow player, or through an arrow that is pointing at the location of the fellow

player with an avatar chosen by the fellow player on it. The choice between one of these options will

be made when it becomes clear which option is implementable within the limited scope of this

project. With regard to the feedback that will be provided to the players of the game, it is decided

that the players will receive multimodal feedback while playing the game and that they are

presented to a ranking of players and their scores at the end of the game. The latter serves as a form

of summary feedback. In the most ideal case, the multimodal feedback will consist of visual feedback,

audio feedback, and haptic feedback. Finally, the game will consist of one level that increases in

difficulty over time.

39

Chapter 5 – Product Specification

This chapter contains the results of the specification phase, which was executed to explore the

design space and to decide on the functional specifications of the skiing game. Requirements

elicitation was done by creating early prototypes, which include a paper prototype of the product

idea that resulted from the ideation phase and several technology prototypes that were made to

explore the possibilities that are offered by existing technologies. Based on these results, a

requirements analysis was executed in which the requirements of the skiing game were determined.

Finally, the game design of the skiing game is specified.

5.1 Early Prototypes
At the start of the requirements elicitation phase some early prototypes were generated to

investigate the product idea that resulted from the ideation phase and to explore the possibilities

that are being offered by the technology that is at hand. To do so, prototypes were made in two

different ways. First, a paper prototype of the skiing game was made to specify and visualize the

product idea that the ideation phase ended with. Paper prototyping was chosen for this purpose

since it allows for rapid prototyping and offers the possibility of quickly adjusting the prototype.

Second, three technology prototypes were made to explore the possibilities of augmented reality

technology and multiplayer games. Out of these three technology prototypes, two were made as

augmented reality prototypes and one was made as a multiplayer prototype.

5.1.1 Paper Prototyping

A paper prototype was made based on the product idea that resulted from the ideation phase. The

purpose of the paper prototype was to visualize and concretize the final product idea that resulted

from the ideation phase, so that it is clarified what must be made in the final prototype that will

result from the realisation phase. The results of the paper prototyping activity and a scenario for the

skiing game are included in Table 5.1.

Table 5.1: A use scenario for the skiing game with the paper prototype that was made.

Use scenario with paper prototype

1. The user has to tap or make
another gesture that is
recognized by the head-
mounted display to start the
game.

2. The player can enter his
name and start the game.

3. The game counts down to
one.

40

4. Then the game starts.

5. The opponent is visible via
an arrow pointing at his
location, with his name and
picture above it. The player has
zero points now. The player
can earn points by skiing
through the blue gates.

6. The opponent is ahead of
the player. The player is
getting close to the first blue
gate.

7. The opponent is now even
further ahead. The player
earns 150 points because he
successfully skies through the
big blue gate.

8. After skiing through the
gate, the gate disappeared and
the points are added to the
total amount of points the
player has earned in the game.

9. Now the player is
approaching a small blue gate
and an obstacle. If the player
skies through the small blue
gate he gets points, if he hits
the obstacle he loses points.

10. The player moved to the
left part of the slope to be able
to ski through the small blue
gate.

11. The player successfully
skies through the small blue
gate and earns 250 points with
it. However, he is in danger
right now because the obstacle
is also very close to him.

12. The 250 points are added
to the total amount of points
the player earned so far.

41

13. The player does not
manage to avoid the obstacle
and loses 200 points.
Meanwhile, the distance
between the player and the
opponent has decreased.

14. The 200 points are
subtracted from the total
amount of points the player
had earned so far. The player
continues to play the game and
meets a few more gates and
obstacles that should either be
hit or avoided.

15. Then the finish line
appears. Meanwhile player 2 is
falling behind.

16. The player approaches the
finish and manages to
overtake his opponent.

17. The player finishes.

18. All the players are
presented to a ranking that
shows their placement and the
points they earned. There is
the option to try again and the
option to quit.

The paper prototype shown in Table 5.1 was informally tested with two people. For these two

informal tests, the scenario described in Table 5.1 was followed. The goal of the tests was to

investigate if the game and its interactions were clear to people or not, not if people can ski with it.

Therefore, the people who tested the game were not obliged to have skiing experience in order to

participate in the test, which was the case for the people who eventually tested the final prototype

that resulted from this project. Before the scenario started, the participants were told that it is the

goal of the game to gain as many points as possible, which will help you as a player to reach the

42

finish before your fellow player does. The participants were also told that points can be earned by

skiing through the blue gates and that points are lost by colliding with the red obstacles.

After the test, both participants reported that the game was very clear to them. It was clear for them

what they had to do in order to reach the goal of the game. One of the players noted that the

difference between the gates was not very clear. This player noticed that some gates were bigger

than other gates, and that there was a difference in points that could be earned by skiing through

them. This participant gave the advice to either use different representations for different gates, for

example a difference in colour, or to not use different gates and keep the game simple. Also, both

participants asked what the arrow with the picture was while they were testing the paper prototype.

Only after some time they realized that this was a representation of their fellow player. One of the

test participants noted that this could be the case because the arrow does not show someone who is

skiing, which does not indicate that it is a fellow player who is also playing the skiing game.

Based on the results obtained from the informal tests of the paper prototype, it is decided that only

one version of the gates will be present in the game, to keep it simple which game objects should be

avoided and which should be aimed for. Also, it is decided that it might be better to use a three-

dimensional model of a person who is skiing as a representation for the fellow player, because that

indicates that there is another skier present in the game whom the player is competing with.

5.1.2 Technology Prototypes

After the product idea was concretized with a paper prototype, technology prototypes were made to

explore the possibilities of the existing technologies. First, two augmented reality prototypes were

made to gather insights in this specific technology and how it can be applied to this project. Second,

a multiplayer prototype was made to investigate how multiplayer games are made and if this is a

realistic option for this project. All technology prototypes are made in Unity3D, a game engine that

allows for augmented reality development and the creation of multiplayer games.

5.1.2.1 Augmented Reality Prototypes

The first augmented reality prototype was made with Vuforia, a plugin for Unity3D that is meant for

augmented reality development [41]. Vuforia can be described as marker-based augmented reality.

In a Vuforia application, certain markers can be identified, which are referred to as targets. Targets

can be a single image, a cuboid, a cylinder, or a three-dimensional image. Once a target is defined, it

can be recognized by the physical camera of the device that the application runs on. A three-

dimensional object can be added to the Unity scene, which causes the three-dimensional object to

be displayed over the target once the physical camera of the device detects it. The prototype that

was made with Vuforia was very simple and had minimal functionality, because it served as a way to

try the technology. The prototype consisted of an image of stones as a target and a cube as the

three-dimensional object that is displayed on the target image when the physical camera detects it.

Figure 5.1 shows a Vuforia application that is very similar to the prototype that was made with

Vuforia, except for the fact that in Figure 5.1 a teapot is used for the three-dimensional object that is

displayed over the target.

43

Figure 5.1: An example of a Vuforia application that is very similar to the Vuforia prototype that was

made.

Although Vuforia is easily implementable and functions very well, it was decided that this technology

is not suitable for this project. If Vuforia would be used, markers would be needed on the revolving

ski slope in order to present the user to three-dimensional objects in augmented reality. This is not

desirable, as the revolving ski slope does not have markers on it and placing markers on the revolving

ski slope means that the markers, and therefore the placement of the three-dimensional objects in

augmented reality, would be static. This would result in a very predictable skiing game.

The second augmented reality prototype that was made can be referred to as “markerless

augmented reality”, as it does not need any markers to provide augmented reality. This prototype

did not use an augmented reality plugin in Unity. For the prototype, a first-person shooter game was

developed based on this tutorial [42]. Figure 5.2 shows an application that is very similar to the

prototype that was made based on the tutorial. The first-person shooter game used the physical

camera of the device that it would run on to see the physical world. Three-dimensional objects were

simply overlaying the physical world by placing them in front of the physical camera object in Unity.

The application made it possible to look around and see all the three-dimensional objects by using

the device’s gyroscope. The code that was written for this prototype can be found in Appendix A:

Code Markerless Augmented Reality Prototype. Since this prototype has proven that markerless

augmented reality is implementable and does not require any markers to be placed on the revolving

ski slope, it is seen as a suitable approach for augmented reality development within this project.

Figure 5.2: An application that is very similar to the markerless augmented reality prototype that was

made.

https://www.youtube.com/watch?v=T6bd_MQ2ass

44

5.1.2.2 Multiplayer Prototype

A third technology prototype was made to investigate the possibilities with regard to the

development of a multiplayer game. For the multiplayer prototype, the Multiplayer Networking

tutorial provided by Unity [43] was followed. This resulted in a networked game. Every player that

entered the game got its own player prefab assigned. Players could shoot each other or the enemies.

When a player or an enemy is shot, its health, which is shown in a health bar near its head,

decreases. When the health of a player or enemy reaches zero, it dies. Figure 5.3 gives a visual

representation of the multiplayer prototype.

Figure 5.3: The multiplayer prototype, showing the game being played with only the host (left) and

with the host and client (right).

With this prototype it was discovered how multiplayer networking can be set up in a Unity project

and how multiple players can play a game with or against each other. Based on the new acquired

knowledge, it was expected that making the skiing game a multiplayer game is a feasible option.

5.2 Requirements analysis
Based on the product idea that resulted from the ideation phase and the early prototypes that were

made, a requirements analysis was executed. The requirements that the skiing game has to fulfil

have been composed based on the MoSCoW analysis [15], which was already explained in Chapter 2.

The MoSCoW analysis describes a product’s Must haves, Should haves, Could haves, and Won’t

haves. The Must have criteria are the minimal criteria to be reached in the final prototype. The

Should have criteria are important for the users to be included, but not necessary criteria for the final

prototype. The Could have criteria are desirable, but also not necessary for the final prototype. These

are the first criteria to be eliminated from the product when time does not allow to include all

requirements. Finally, the Won’t have criteria are the least critical criteria and are the criteria that

cannot be included in the end product due to the limited timeline of this project. However, they are

still listed in the requirements overview since they are desirable for later versions of the skiing game.

Table 5.2 provides an overview of the product requirements for the skiing game and their

prioritization based on the MoSCoW principle.

Player 1

(host)

Player 1

(host)
Player 2

(client)

45

Table 5.2: Product requirements and prioritization for the skiing game.

Requirement Prioritization
level

The application must contain an augmented reality environment that can be
displayed on a pair of augmented reality glasses.

Must

The application must offer the ability to play a game in the augmented reality
environment.

Must

The application must track a user’s motion in the physical world and determine
the user’s placement in the augmented reality environment based on it.

Must

The application must move the user forward in the augmented reality
environment, without the user having to move forward in the physical world
(since that will not occur on the revolving ski slope).

Must

The application must present three-dimensional objects that serve as gates in the
augmented reality environment.

Must

The application must allocate the user points when he/she skies through a gate. Must

The application should present three-dimensional objects that serve as obstacles
in the augmented reality environment.

Should

The application should subtract points from the user’s total number of points
when he/she collides with an obstacle.

Should

The application should provide multimodal feedback to the user, which includes
audio feedback, visual feedback, and if possible haptic feedback.

Should

Sub-
requirements

The application should play a low tone when the user hits an
obstacle.

The application should play a high tone when the user passes
through a gate.

The application should assign red colours to the obstacles.

The application should assign blue colours to the gates.

The application should give a heavy buzz when the user hits
an obstacle.

The application should give a small buzz when the user
passes through a gate.

The application should show a ranking based on the number of points per user, to
show the user how well he/she is doing compared to others.

Should

The application could offer the option to play the game with multiple people
(multiplayer).

Could

The application could display three-dimensional objects that are related to
physical skiing environments, such as trees and snow.

Could

The application could be an asymmetrical game, in which not every player gets
the same resources and powers assigned. This could solve the issue of one player
being abundantly better at the game than another.

Could

The application could be a game with triangularity, in which the user is presented
to high risk/high reward and low risk/low reward options.

Could

The application won’t present a visual representation of a human skeleton that is
skiing in front of the user and demonstrates movements that should be
mimicked.

Won’t

The application won’t consist of several levels. Won’t

The application won’t offer a training part, where people can practice their skiing
skills before they participate in the game.

Won’t

46

The application won’t offer the option for the teacher to give input to the game
(such as determining its difficulty, speed, slope, or duration) through a second
device that has its own interface.

Won’t

The application won’t contain summary feedback that gives an outline of the
parts of the game where the player performed well, and the parts where the
player did not perform well.

Won’t

5.3 Game Design
The final step of the specification phase was the specification of the game design of the skiing game.

The game design of the skiing game was done based on the lenses of Schell [14]. Schell defines one

hundred lenses, which all provide a different perspective through which a game can be viewed. Some

of the lenses defined by Schell were accessed to make decisions for the final game design of the

skiing game.

Two very essential lenses for this game are the Lens of Reward and the Lens of Punishment. Rewards

are given for good behaviours, while punishments are given for bad behaviours. Essentially, this

means that rewards and punishments can be seen as a form of feedback. In the skiing game, players

get rewards for skiing through the gates and punishments for colliding with the obstacles. The

rewards and punishments are given in the form of points, by respectively adding or subtracting

points from the total number of earned points. It is decided that skiing through a gate will deliver the

player as many points as colliding with an obstacle costs. An amount of one hundred points was

chosen for this. This is done to make players of the skiing game aware that the mistakes they make in

the game, by colliding with an obstacle, could lead to serious problems in case it would happen

during actual skiing. However, it was decided that collisions with obstacles should not cost more

points than the amount of points that can be earned by skiing through a gate, to prevent players

from becoming demotivated.

Another important lens for the skiing game is the Lens of Essential Experience, which indicates what

the essential experience of the game should be for the player. For the skiing game, the essential

experience that the player should have is two-sided. On the one hand the skiing game is designed to

support the ski-learning process, while on the other hand the skiing game should be fun to play and

should make skiing on a revolving slope more fun. Essential to those experiences are a game that has

a clear but challenging goal [3] and offers means or techniques to reach that goal [25]. That is why

the goal of the game, earning as many points as possible, is so simple and requires the simple action

of skiing at the right place on the slope to reach it. By having such a simple goal in the game, the

game also complies with the Lens of Flow. The Lens of Flow states that the game should hold the

player’s focus, which is most likely to happen for games with a simple goal. Within this context,

“simple” means easy to understand and clear, it does not mean that it is easy to perform. Also,

playing against a human opponent is seen as fun by most people, while it also helps them in their

learning process since they want to increase their skills in order to be better than their opponent.

That is why it will be attempted to make the skiing game a multiplayer game.

The next lens that is important for the skiing game is the Lens of Surprise. In the serious skiing game,

the aim is to surprise players by the varying placement of the gates and obstacles. That is why the

locations of gates and obstacles will be generated randomly in the game. This adds chance to the

game, which makes the game also comply with the Lens of Chance. Additionally, this is also a reason

why a multiplayer version of the game is desirable. If the game exists in a multiplayer version, players

47

will get the opportunity to surprise each other. This will be done by removing gates and obstacles

that are hit by one player from the game, which prevents other players from colliding with these

specific gates and obstacles as well. This way, a player can prevent his/her fellow players from, for

example, skiing through a gate by skiing through the gate himself/herself just before the fellow

players can perform this action.

Additionally, an interesting lens that has been included in the requirements analysis that was

described in section 5.2 is the Lens of Fairness. It must be noted that a multiplayer game, which is an

envisioned option for the skiing game, may not always be fair. One player could clearly be better

skilled at skiing than another player, simply because they differ in skiing experience. The Lens of

Fairness offers a possible solution for this problem, which is the implementation of an asymmetrical

game. In symmetrical games every player gets equal resources and powers assigned, whereas in

asymmetrical games players get different resources and powers [14]. In the skiing game this could be

done by giving players that are far ahead of their opponents, which clearly indicates they are

performing better in the game, more points deduction for colliding with obstacles, and less points

added to their score for successfully skiing through a gate. This way, players with different skill levels

can still compete against each other.

Another lens that could be interesting for the skiing game is the Lens of Triangularity, which was also

included in the requirements analysis in section 5.2. Triangularity is the situation where the player

has to choose between a low risk/low reward option and a high risk/high reward option. Overall,

triangularity makes games and the decisions made in games more interesting for the players. If time

allows, triangularity could be added to the game by rewarding more points for gates that were

difficult to reach, for example because they are placed very close to an obstacle. Obviously this

means that gates that are easy to reach, because they are not near any obstacles, deliver less points.

The final lens that is important for the skiing game is the Lens of the Elemental Tetrad. According to

Schell [14], the elemental tetrad contains the four basic elements that form a game, which are

mechanics, story, aesthetics, and technology. The game mechanics are the procedures and rules of

the game, including the goal of the game and how it can be reached. The story of the game is the

collection of events that happen in the game. Aesthetics are the look and feel of the game, including

audio, feel, and taste. Technology are the materials and interactions that make the game possible to

exist. According to Schell, all four elements of the elemental tetrad are equally important to the

design of the game. Figure 5.4 gives a depiction of the elemental tetrad. As is shown in Figure 5.4,

aesthetics are said to be the most visible to the players, technology the least visible, and mechanics

and story are in between those two.

Figure 5.4: The elemental tetrad, containing the four basic elements that form a game.

48

The elemental tetrad of the skiing game is not in perfect harmony. However, this is not seen as

problematic. Three elements are clearly present in the game, which are aesthetics, mechanics, and

technology. Aesthetics are attempted to be achieved by the three-dimensional modeling and

colouring of the gates and obstacles, and the accompanying sounds that are played as a form of

feedback when the player collides with either one of them. The mechanics of the game are present in

its clear procedures, rules, and goal, which can be summarized as follows: try to gain as many points

as possible by skiing through the blue gates and avoiding the red obstacles. The technology of the

game, enabling the game to exist, is reached through the use of the Unity 3D Game Engine, which

allows for augmented reality development. The element that is missing, however, is the story. The

game does not contain a story. Nonetheless, this is not seen as a problem, since the lack of the story

adds to the simplicity of the skiing game, which is expected to be desired by people who want to play

a game for the sole purpose of skiing.

49

Chapter 6 – Product Realisation

This chapter describes the realisation process of the skiing game that was specified in the previous

chapter. Product realisation was done based on the requirements that were set and the game design

that was explained in the previous chapter. First, the architecture of the system will be discussed in

section 6.1. The system architecture described here served as a basis for the implementation process

that was carried out in this project, which will be discussed in section 6.2.

6.1 System Architecture
This section describes the system architecture of the skiing game, which served as a basis for the

implementation process described in section 6.2. The system basically consists of three physical

components, which are the player, the augmented reality glasses (head-mounted display), and the

game application. Figure 6.1 shows a schematic representation of the system architecture, describing

it inputs and outputs and the communication between the different physical components. Since it is

decided to make the game a multiplayer game, two players are shown in Figure 6.1 to indicate the

principle.

Figure 6.1: Simple system architecture of the skiing game.

Both players influence the game by their movements in the physical world. The head-mounted

display (HMD) of each player communicates their movements in the physical world to the game

Player 1

HMD 2

HMD 1

Player 2

Game

Application

Movement in

physical world

Movement in

physical world

AR view

AR view

Position

player 1

Position

player 2

Player 1

AR view

Player 2

AR view

Player 1:

Position in

game, score,

speed

Player 2:

Position in

game, score,

speed

50

application. The game application determines for every player their position in the game, their

scored points, and their speed. This information is used to build an augmented reality view for every

individual player, which is communicated to their head-mounted displays. Through the head-

mounted displays, the players are presented to the augmented reality view and they can try to

influence it with their movements in the physical world. This process continues until the game has

ended.

6.2 Implementation
This section describes the implementation process of the specified product. Implementation was

done based on the system architecture that was described in section 6.1. The implementation

process was a thorough process that took four to five weeks time in total. The goal of this section is

to describe the implementation process per implementation activity. It must be noted that most of

the implementation activities were spread out over the course of implementation and were not

completed at once. A synchronous overview of which steps were taken in the process can be found

in Appendix B: Realisation Timeline.

6.2.1 Software

The software that was chosen to make the final prototype of the skiing game with is Unity3D. Since

augmented reality uses three-dimensional objects to overlay the physical world, Unity3D can be seen

as a suitable engine for creating this. Also, there are several augmented reality plugins available for

Unity, such as Vuforia [41], Tango [44], and ARToolKit [45], which suggests that the Unity engine is a

proper tool for the development of augmented reality applications. The Unity game engine is often

used by game designers and developers, which made it a community that has a great quantity of

documentation. The community and documentation make it easier to learn something in the system

and to get extra support from fellow game developers when needed. Besides that, Unity is a

multiplatform engine [46], meaning that development in Unity can be targeted at several devices.

Some of the most frequently used platforms that Unity can be used to build for are iOS, Android, and

Windows. Multiplatform development is an important and beneficial aspect to this research project,

as it provides the possibility to develop for almost all augmented reality devices that are in existence,

which makes the outcome of this project more relevant and useful in further development. Apart

from support for augmented reality development in Unity, multiplatform support is the main reason

why Unity3D was the chosen software to build the skiing game prototype with.

Unity3D provides the option to make scenes, which can be seen as a level in the game. Game objects

can be added to the scenes and can be given properties and behaviours in the editor and through

scripts [47]. Unity provides the option to write scripts in JavaScript or C#, the latter being the

preferred choice nowadays.

6.2.2 Development for Augmented Reality

The settings that one should work with in Unity to develop for augmented reality differ per

augmented reality device that the development is target at. When a new scene is created in Unity,

there is by default a main camera object present in the scene. The main camera is the first enabled

camera, which means that what is seen through the main camera in the Unity editor is what will also

be presented to the player of the game once the game is exported to a certain device. This is

important information for development in augmented reality, since this means that the main camera

51

object determines what the player can see. The main camera provides the view of the player, so the

position of the main camera is also the position that the player of the augmented reality game will

feel he/she is at while playing the game.

When developing for smartphones, the physical camera of the smartphone is used as a viewing

window to see the physical world. In Unity, this is done by placing a plane game object in front of the

Unity camera (in other words, placing a plane in front of what the player is seeing). The plane gets

the texture of the physical camera assigned, which means that what can be seen through the camera

of the device is displayed on the plane. Doing this on a laptop in the Unity editor shows what can be

seen through the webcam of the laptop in the Unity scene. When this is exported to a smartphone,

the physical camera of the smartphone will be used and the player can see the real world in the

application. In an augmented reality application, the three-dimensional objects are placed over the

view of the camera that can be seen when running the application. Figure 6.2 gives a visual

representation of an augmented reality application on a smartphone. When using a smartphone as

the augmented reality device, the smartphone can be placed in a Google Cardboard or a similar

product, as long as the area in front of the camera is free.

Figure 6.2: An augmented reality application on a smartphone.

Development for augmented reality glasses differs from what is described in the section above. Some

augmented reality glasses have a built-in camera, such as the Epson BT-300 [48]. The same

application as the one described above can be used on these glasses. However, the representation of

the physical world looks strange because the re-projected view of the physical camera is overlaying

the direct see-through view of the augmented reality device. Besides that, it is not needed to use the

physical camera since the glasses already provide a see-through to see the physical world. Because of

this, and because not all augmented reality glasses have a built-in camera, it was decided to not use

the physical camera of the device in the application. Instead, Unity provides the option to turn the

background colour of the environment black, which means that every three-dimensional object in

the application will be seen in front of a black background. The black Unity background looks

transparent on most augmented reality glasses. When three-dimensional objects are present in the

scene, the person wearing the augmented reality glasses sees the three-dimensional objects

overlaying the physical world.

6.2.3 Placing Game Objects

A first crucial step in the development process of the skiing game was the creation and placement of

52

game objects in the scene. The most important game objects that had to be added to the game were

gates and obstacles, which cause a gain or loss in points respectively when the player hits them.

Simple three-dimensional objects, as can be seen in Figure 6.3, were created in the animation and

modeling software program Maya and imported in the Unity project of the game. The gate is

coloured blue, to indicate that it has a positive effect on the player. The obstacle got red assigned as

colour, to indicate that it has a negative effect on the player. This is done because people often

associate blue with health, while red is associated with intensity and anger [40].

Figure 6.3: The three-dimensional objects created in the Maya software and used in the game as

gates (left) and obstacles (right).

A second choice that had to be made here was about the movement in the game. The player of the

game is not substantially moving forward in the physical world, as the revolving ski slope prevents

the skier from actually going forward. When thinking of the situation on the revolving ski slope to be

like a coordinate system, the x-axis, y-axis, and z-axis can be identified as is shown in Figure 6.4. The

skier will mostly move along the x-axis. These physical movements along the x-axis influence the

game, allowing the player to hit or avoid game objects. The skier has the possibility to slightly move

along the z-axis. However, it is decided that the physical movement along the z-axis will be ignored

inside the game, since it does not correspond to the player’s feeling of going forward while skiing on

the revolving ski slope.

Figure 6.4: The situation on the revolving ski slope with the corresponding axes.

Y-axis

Z-axis

X-axis

53

The feeling of going forward has to be created in the game, allowing the player to actually see three-

dimensional objects coming his/her way while skiing on the revolving ski slope. In the game this can

be done in two ways. One way is to give the player game object a certain speed along the z-axis in

the game, making the player move forward in the direction of the placed gates and obstacles.

Another way to do this is to give the game objects a certain speed along the z-axis in the direction of

the player and keep the player game object at the same place along the z-axis, which means that the

game objects move towards the player. The first option was chosen, as it allows different players to

move through the game at different speeds, which is used in the multiplayer version of the game.

Why this was needed in the multiplayer version of the game is explained under section 6.2.6

Networking.

To prevent the game causing a memory overload on the targeted device that the game will be played

on, it was decided to not create all the game objects at once. Instead, it was decided to let the game

create game objects during runtime. This means that the game creates a new game object every

specified time period. For the same reason it was decided that the game also destroys an existing

game object every specified time period. Game objects can only be destroyed when they are out of

reach and sight of the player.

Based on the choices that are described above, it was decided how game objects should be placed in

the game. The decisions made are as follows:

• Every specified time period a game object must be created.

• Every game object has to be destroyed when it is in existence for a specified time period.

• Game objects must be placed along the z-axis, in front of the player. The placement along

the x-axis can be random, as longs as it is within the bounds of the width of the physical ski-

slope. The placement along the y-axis must correspond with the location of the slope, so that

gates and obstacles are placed on the surface of the slope.

In the code this was implemented by taking the starting position of the player as a starting point for

the game objects. A global variable was made to specify the distance from the player at which game

objects can be created. Every frame it is checked if the z-position of the last created game object is

smaller than the specified distance to the player plus the z-position of the player. This check ensures

that game objects will only be created within a set distance from the player, preventing all game

objects to be created at once. Creation of the game objects was done using Unity’s instantiate

function, which makes a clone of a specified game object every time it is called. The position that the

game object should be created at is given as a parameter to the instantiate function. For the x-

position, a random number between two specified numbers is chosen every time a game object is

intantiated. The specified numbers can be manually adjusted to the width of the slope. For the z-

position the z-position of the last instantiated game object plus a specified distance between game

objects was taken. The choice for the y-position is made based on the slope that the game will be

played at, which is explained under 6.2.5 Adding a Slope. Once a game object is created, it will be

destroyed using Unity’s destroy function, which takes the game object to be destroyed and the time

after which it should be destroyed as parameters. The code explained above can be found in

Appendix C: Spawner Script.

6.2.4 Detecting Collisions

Once the player hits one of the game objects, points must be added to or subtracted from the total

number of gained points. Collisions between the player and the game objects are detected by giving

54

both the player and the game objects a collision box in Unity. A collision is detected when the

collision boxes of two different game objects hit each other. Collision detection is done using Unity’s

OnTriggerEnter function on the player game object, which can detect collisions between itself and

other game objects. The other game objects carry tags based on what they are. The gate game

objects carry the tag “arc”, and the obstacle game objects carry the tag “obstacle”. When the

OnTriggerEnter function detects a collision, the tag of the game object that collided with the player

game object is checked. If the game object is tagged “arc”, one hundred points are added to the

player’s total number of points. In the other case, if the game object is tagged “obstacle”, one

hundred points are subtracted from the player’s total number of points and the player’s movement is

slowed down for five seconds. The code explained above can be found in Appendix D: Camera

Collider Script.

6.2.5 Adding a Slope

Because the game will be played on a ski slope, a slope had to be added to the game to ensure that

the game objects are placed on the slope in a naturally appearing way. Figure 6.5 gives a visual

representation of how the game objects should be placed along the slope and approach the player in

this case. It must be noted that the ski slope and the skier are present in the physical world, and that

the gates and obstacles are only present in the virtual world which is presented to the player on the

augmented reality glasses.

Figure 6.5: Placement of the game objects along the ski slope.

The most important part of adding a slope to the game is placing the game objects along the slope.

To do so, the y-position of the game objects is calculated based on the angle of inclination and the z-

position of the game object. A global variable was made to store the angle of inclination, which can

manually be inserted in the game. The angle of inclination can be inserted in degrees, and is

converted to radians. The z-position of the game objects that will be placed in the game is

determined based on the z-position of the previous game object of the same kind plus a set distance

between game objects, as was described in section 6.2.3 Placing Game Objects. The y-position of the

next game object to be created is calculated by subtracting the tangent of the radians of inclination

multiplied with the distance between two game objects (which is a value on the z-axis) from the y-

55

position of the last created game object. Figure 6.6 gives a representation of this for the obstacle

game objects. The code explained above can be found in Appendix C: Spawner Script.

Figure 6.6: Placement of the game objects along the slope and the associated calculations.

6.2.6 Networking

To make the skiing game a multiplayer game, Unity Networking was used. Unity offers its own

Network Manager as a tool to implement networking in a game. To use this tool, the Network

Manager component must be added to an empty game object, preferably called “network manager”

to indicate its function, in the scene. The Unity Network Manager manages the network state of a

multiplayer game [49]. Using the Network Manager, a mode can be chosen for the game to run in.

The modes that can be chosen are client, server, or host. In networking terms, the client requests a

service and the server provides a service [50], which means that the client is dependent on the server

and cannot do anything without the server. A typical model for the client-server relation is depicted

in Figure 6.7. A host is a server and client at the same time. In a networked Unity project, the server

and the clients are executing the same code at the same game objects at the same time [49].

Figure 6.7: The client-server model.

Y-axis

Z-axis

Angle of

inclination

Y-position

object 1

Z-position

object 1

Y-position

object 2

Z-position

object 2

Set distance

ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑠𝑒𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ tan (𝑎𝑛𝑔𝑙𝑒 𝑜𝑓 𝑖𝑛𝑐𝑙𝑖𝑛𝑎𝑡𝑖𝑜𝑛)

𝑌 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 2 = 𝑌 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 𝑜𝑏𝑗𝑒𝑐𝑡 1 − ℎ𝑒𝑖𝑔ℎ𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

Server

Client 1 Client 2 Client n-1 Client n Client 3

56

Running a multiplayer game basically means that the player game object is created as many times as

there are clients in the game, as every client needs a player game object to be able to control the

game. The player game object must get a network identity assigned with local player authority. A

network identity makes the networking system aware of the game object and the local player

authority ensures that the game object can be controlled by the client that owns it [51]. Since a

player comes with its own camera, which is needed to provide the player in augmented reality with

its own view of the game, a multiplayer version of the game asks for identifying which camera

belongs to which player. By default, Unity takes the most recently created camera to be the camera

that the player is looking through. This means that if two or more players are present in the game, all

of them will see the view of the player that entered the game most recently. This problem was solved

by checking if a player is the local player, which is the player that the client has authority over. For

every client, the camera of the players that are not the local player are disabled. This part of the code

can be found in Appendix E: Player Manager Script. The same principle is applied to the score of each

individual player, so that every player will only influence its own score. That part of the code can be

found in Appendix D: Camera Collider Script.

Besides networking the player game object, a networked game also asks for networking other game

objects. Networking the game objects ensures that all players see the same game objects at the

same location in the game. It was decided that all players must be presented to the same set up of

game objects to make the game more fair and to enhance the multiplayer aspect of the game. This

principle makes the game more fair because one player cannot have an advantage over the other if

they are presented to the exact same set up. Besides that, this principle is expected to enhance the

multiplayer aspect of the game because a player becomes more aware of his/her opponent if the

opponent is trying to reach or avoid the same game objects. Also, when one player hits or avoids a

game object, the game object is destroyed, preventing another player to hit or avoid it as well.

Creating the same game objects at the same locations on all clients of the game is done using Unity’s

spawn function. Every game object is given a network identity and added to the list of “Registered

Spawnable Prefabs” in the Network Manager. Once this is done, game objects can be spawned on

the server, meaning that the game objects will be created on all clients connected to the server [52].

Spawning game objects is done at the positions that were explained under 6.2.3 Placing Game

Objects. The code explained above can be found in Appendix C: Spawner Script.

Having two or more players in the scene raised another problem concerning how players can be able

to see each other. To make the game a fair game, players start at the same z-position and get the

same speed assigned so that they have to travel the same distance to the end of the game. This

causes a problem, because if every player stays at the same z-position as his/her opponents, they will

not be able to see one another. If players cannot see each other, they will not notice that they are

playing a multiplayer game. Two options were considered to solve this problem. The first option was

to add another screen in the game, where a player can see a map that shows his/her own location

and the location of the opponents. However, this options was not considered to be a good solution

as it is expected that adding an extra screen to the game will distract the player from the goal of the

game, which is to avoid the obstacles and ski through the gates, and cause an overload of

information on the player. The second option was to apply changes in speed between different

players, based on how well they are performing in the game. A difference in speed between players

will cause one player to overtake the other, allowing the player that falls behind to see the opponent

in front of him/her. The second option was considered fair and feasible, and it was implemented by

slightly decreasing the speed of the player for five seconds when an obstacle is hit. The speed is only

decreased for a small amount of time and then reset to the original speed to give a player that fell

57

behind the option to overtake the player in front of him. The code explained above can be found in

Appendix D: Camera Collider Script.

6.2.7 Hardware

The hardware device that was chosen to be used for this project is the Microsoft Hololens. The main

reason why it was decided to use the Hololens in this project is because the Hololens is capable of

spatial mapping. The Hololens uses four environment understanding cameras, a depth camera, an

ambient light sensor, and a 2MP photo/HD video camera to obtain information about its

surroundings [53], which is used to build a three-dimensional model of it. As the Hololens is capable

of building a three-dimensional model of its surroundings, it is also capable of knowing its own

position in the environment. This means that, when wearing the Hololens, one can simply move

through an augmented reality environment by moving in the physical world. Stated differently, no

extra tracking of the skiers position is needed when the Hololens is used on the ski slope, as it will

know its own position on the ski slope and update the augmented reality environment that is

displayed on it accordingly. If another augmented reality head-mounted display would be chosen to

do a similar project, the problem of tracking needs to be solved.

Using the Hololens caused some problems in the development process of the skiing game. The first

and most severe problem was the movement of the player through the augmented reality

environment. As is explained above, the Hololens is capable of keeping track of a user’s position. It

continuously updates the position of the user relative to the user’s starting position in the mapped

physical environment. As is explained in section 6.2.3 Placing Game Objects, it was decided to give

the player of the game a certain speed along the z-axis so that he/she can move through the

augmented reality environment without having to move forward on the ski slope. In the Unity

project, the Unity camera provides the view of the player and, in case of the Hololens, decides the

movements of the player. However, giving the Unity camera a certain speed along the z-axis did not

deliver the desired result, as the player did not move in the z-direction automatically. The Unity

camera continuously updated its position relative to the starting position of the application in the

physical world, which means that one could only move forward in the game by moving in the physical

world. This problem was solved by giving the Unity camera a parent game object, which got the

Player Manager script assigned that makes it move along the z-axis at a certain speed. However,

collisions still had to be detected on the Unity camera object, which was done by assigning a collider

script to the Unity camera object. Collisions must be detected on the Unity camera object because

the parent of the camera is not capable of moving along the x-axis according to movements with the

Hololens in the physical world. This makes sense, because the parent of the Unity camera is not the

Unity camera itself, and therefore does not get influenced by the movements that the Hololens

tracks in the physical world (which is also the reason why the parent is capable of moving forward

along the z-axis, and the Unity camera object is not). The Unity camera object, however, is still

assigning itself positions based on what the Hololens tracks in the physical world, which means that

movement along the x-axis is applied on the Unity camera and not on its parent game object.

Therefore, the parent game object is not capable of colliding with obstacles or gates, while the

camera is. The principle described above is visualised in Figure 6.8. As can be seen in Figure 6.8, the

camera can move based on the movement that is detected by the Hololens in the physical world. The

parent moves based the code in the Player Manager script that is attached to it, and drags the

camera game object along with it. In the limited time that was allocated for the realisation of the

skiing game, no solution was found to assign the Unity camera’s x-position to its parent.

58

Figure 6.8: The parent-child relationship for the parent of the Unity camera and the Unity camera.

A second problem that was found during implementation on the Hololens is the positioning of the

canvas in Unity. The canvas is a user interface (UI) element that is the parent of all other UI elements.

It provides the space that the UI elements are drawn on. Unity offers two different modes for

rendering the canvas, which are screen space and world space. With screen space rendering, the

canvas will be rendered as an overlay on the screen. This means that wherever the Unity camera is

located in the scene, the canvas will always be visible since it is overlaying the screen. World space

rendering means that the canvas is present somewhere in the scene as a three-dimensional object,

which means that it is only visible if the camera is placed right in front of it. The Hololens only offers

the option to display the canvas if it is in world space. Because of this, one cannot simply set the

canvas to screen space and expect to see all the UI elements. Instead, the canvas had to be set to

world space and be placed in front of the Unity camera. Since the Unity camera is moving in the

game, as is explained in the section above, the canvas has to move with it. This is done by assigning

the Unity camera’s position and rotation to the canvas, in the Canvas Position script which can be

found in Appendix F: Canvas Position Script.

A third problem that was discovered while developing for the Hololens is the processing power of the

Hololens. When the Hololens has to render a number of game objects at one time, it becomes slow

and updates are not at the desired frame rate anymore. The Hololens comes with an Intel 32 bit

processor and has 2GB RAM and 64GB Flash [53]. The problem was solved by limiting the number of

game objects in the scene, which was done in the Spawner script that can be found in Appendix C:

Spawner Script. The Spawner scripts handles this problem by only creating game objects within a

certain distance of the player and destroying the game objects after a set time

6.2.8 Scripts and Structure

In the above sections most of the scripts that were used in this project are already mentioned. This

section aims to provide an overview of the used scripts in the project and the communication

0, 0

Y-axis

X-axis

Z-axis

Parent

= Movement of

parent,

 based on Player

 Manager script

= Movement of

camera,

 based on movement

 in physical world

59

between the different scripts. Table 6.1 provides an overview of the scripts that are used in the

project and their main functionality.

Table 6.1: Overview of the scripts and their functionality

Script Functionality

Camera Collider script
Appendix D

Detecting collisions between the player, who is wearing the camera,
and other game objects. When a collision is detected, the score and
speed of the player are adjusted accordingly.

Canvas Position script
Appendix F

Positions the canvas in front of the player so that the player can see
the UI elements while playing the game.

Floating script
Appendix G

Makes the finish float.

Game Manager script
Appendix H

Sets the UI elements of the game, which are the number of points
during the game and the score overview at the end of the game.

Network Manager script
Appendix I

This is not the Network Manager script by Unity, but a new script that
was made for this project. This script calls the startHost function on
the application on the Hololens, which starts the game as a host. This
is done to prevent the player from having to navigate through a
graphical user interface (GUI) in order to start the game.

Obstacle script
Appendix J

Makes the obstacles spin to get the player’s attention.

Player Manager script
Appendix E

Decides which camera belongs to the player. Makes the player move
at a certain speed along the z-axis on a slope with a certain angle of
inclination.

Ski Rotation script
Appendix K

Rotates the skies of the player game object according to the slope.

Spawner script
Appendix C

Initiates and spawns all game objects, which are gates, obstacles,
trees, and snow.

Some of the scripts communicate values to other scripts. An overview of the communication

between scripts is presented in Figure 6.9. As can be seen, the Floating script, Network Manager

script, and Obstacle script do not send or receive values from other scripts. All the other scripts do.

When the game starts, the Player Manager script sends the initial speed of the player to the Camera

Collider script. The Camera Collider script detects collisions and determines the new speed based on

collisions with obstacles. The Camera Collider script sends the updated speed value to the Player

Manager script, where the value is applied to the actual speed of the player. The Camera Collider

script also communicates the score of the player to the Player Manager script, which makes sure that

all players’ scores are updated. Furthermore, the Camera Collider script sends the score, a boolean

that determines the end of the game, and a boolean that determines that the score overview should

be made visible to the Game Manager script, which handles the display of all the associated

information in the UI elements. The Player Manager script sends the value of the angle of the slope

to three other scripts, which are the Canvas Position script, the Ski Rotation script, and the Spawner

script. All of these scripts use the value of the angle of the slope to determine the rotation and

placement of, respectively, the canvas, the skies of the player, and the spawned game objects. To

determine the position of the canvas, the Player Manager script also send the position values of the

camera to the Canvas Position script, which uses the values to place the canvas in front of the

camera. For the placement of the spawned game objects the Player Manager script also sends the z-

60

position of the player and the end position that the player is moving towards to the Spawner script.

The Spawner script can use these values to determine when and where a game object should be

spawned and when to stop spawning.

Figure 6.9: A schematic overview of the communication between the scripts of the project.

6.2.9 Result

All the sections that are described above explained the different steps that had to be taken to

implement the skiing game. Figure 6.10 shows what the final result looks like from the perspective of

the player. It must be noted that Figure 6.10 shows the game while it is running on a PC. On a

Hololens or similar pair of augmented reality glasses the black background will be transparent,

enabling the player to see his/her normal surroundings underneath the thee-dimensional objects.

Figure 6.11A and Figure 6.11B show the placement of the player and the other game objects while

the game is being played in the Unity editor.

Network Manager script

Camera Collider script

Canvas Position script

Floating script

Game Manager script

Obstacle script

Player Manager script

Ski Rotation script

Spawner script

Score

End of game (boolean)

Score overview (boolean)
Initial

speed

Updated speed

Score

Angle of slope

Camera position isLocalPlayer

(boolean)

Z position player

End position player

Angle of slope

Angle of slope

61

Figure 6.10: The game from the perspective of the player.

Figure 6.11A: Placement of the player and the game objects while the game is being played in the

Unity editor.

62

Figure 6.11B: Placement of the player and the game objects while the game is being played in the

Unity editor.

63

Chapter 7 – Evaluation

This chapter contains the results of the evaluation phase of this project. The evaluation phase was

two-fold, as it consisted of a functional evaluation and a user evaluation of the product that resulted

from the realisation phase. Section 7.1 contains the functional evaluation of the skiing game, where

it is determined if the final prototype meets its functional requirements. Section 7.2 contains the

user evaluation of the skiing game, which was executed in two rounds. In the first round, users could

interact with the prototype and give their opinions about it. Based on the results from the first

round, an updated version of the prototype was made. The updated version was tested in a second

round of user tests, which again allowed the participants to interact with the product and giving their

opinions about it. Finally, in section 7.3 a conclusion will be draw upon the test results that are

presented in this chapter.

7.1 Functional evaluation
This section contains the functional evaluation of the skiing game that resulted from the realisation

phase that is described in Chapter 6. Functional evaluation was done based on the functional

requirements that were determined in the specification phase that is described in Chapter 5. For

every requirement, except for the won’t have requirements, it is determined if the requirement is

met in the final product that resulted from the realisation phase. Table 7.1 provides an overview of

the product requirements and their assessment.

Table 7.1: Evaluation of the product requirements.

Requirements Prioritization
level

Fulfilled

The application must contain an augmented reality environment that
can be displayed on a pair of augmented reality glasses.

Must Yes

The application must offer the ability to play a game in the
augmented reality environment.

Must Yes

The application must track a user’s motion in the physical world and
determine the user’s placement in the augmented reality
environment based on it.

Must Yes

The application must move the user forward in the augmented
reality environment, without the user having to move forward in the
physical world (since that will not occur on the revolving ski slope).

Must Yes

The application must present three-dimensional objects that serve as
gates in the augmented reality environment.

Must Yes

The application must allocate the user points when he/she skies
through a gate.

Must Yes

The application should present three-dimensional objects that serve
as obstacles in the augmented reality environment.

Should Yes

The application should subtract points from the user’s total number
of points when he/she collides with an obstacle.

Should Yes

64

The application should provide multimodal feedback to the user,
which includes audio feedback, visual feedback, and if possible
haptic feedback.

Should Partially

Sub-requirements The application should play a low tone when
the user hits an obstacle.

Yes

The application should play a high tone when
the user passes through a gate.

Yes

The application should assign red colours to
the obstacles.

Yes

The application should assign blue colours to
the gates.

Yes

The application should give a heavy buzz when
the user hits an obstacle.

No

The application should give a small buzz when
the user passes through a gate.

No

The application should show a ranking based on the number of
points per user, to show the user how well he/she is doing compared
to others.

Should Partially

The application could offer the option to play the game with multiple
people (multiplayer).

Could Yes

The application could display three-dimensional objects that are
related to physical skiing environments, such as trees and snow.

Could Yes

The application could be an asymmetrical game, in which not every
player gets the same resources and powers assigned. This could
solve the issue of one player being abundantly better at the game
than another.

Could No

The application could be a game with triangularity, in which the user
is presented to high risk/high reward and low risk/low reward
options.

Could No

The application won’t present a visual representation of a human
skeleton that is skiing in front of the user and demonstrates
movements that should be mimicked.

Won’t

The application won’t have several levels. Won’t

The application won’t offer a training part, where people can
practice their skiing skills before they participate in the game.

Won’t

The application won’t offer the option for the teacher to give input
to the game (such as determining its difficulty, speed, slope, or
duration) through a second device that has its own interface.

Won’t

The application won’t contain summary feedback that give an
outline of the parts of the game where the player performed well,
and the parts where the player did not perform so well.

Won’t

Based on the result of the functional evaluation that is presented in Table 7.1 it can be concluded

that all must have-requirements of the product are fulfilled for the prototype that resulted from this

project. Additionally, most of the should have-requirements were fulfilled as well. The should have-

requirement of haptic feedback was only partially fulfilled, since no buzz was added to the game. The

Hololens did not provide a way to do this except for making the head-mounted display itself buzz,

which is seen as an undesirable thing to do during skiing. Another should have-requirement that was

only fulfilled partially was the requirement of displaying an overall ranking containing the player’s

points and the points of his/her opponents. A ranking was made, but only two players were included

65

in it and the information it provided was not right. The information displayed in the ranking was the

score of the player himself, and an imaginary score of the opponent which was not the actual score

of the opponent. Finally, two of the could have-requirements were not met. The requirements that

were not met are the requirement of the game being an asymmetrical game, and having triangularity

in the game. These features were not added to the game due to the limited time that was allocated

to this project.

7.2 User evaluation
This section describes the user evaluation that was carried out through a number of user tests. There

were two rounds of user tests. In the first round the game that resulted from the realisation process,

as described in Chapter 6, was tested by different users. Based on the results from these tests, a

small change was made to the design of the game. The second round of user tests was executed to

evaluate the changed game.

7.2.1 First Round of User Tests
This section describes the first round of user tests that were executed with the game that was the

end result from Chapter 6. First a description of the test participants will be given. This will be

followed by an explanation of the test setup. Finally, the results of the first round of user tests will be

given.

7.2.1.1 Participants

The first round of user tests was executed with a total of 17 test participants, of whom 10 were male

and 7 were female. Among the test participants were 15 students and 2 employees of the University

of Twente. Test participants had to indicate their level of skiing experience. For indicating this, they

could choose from “not so experienced”, “moderately experienced”, “experienced”, and “very

experienced”. Out of the 17 test participants, 5 had moderate skiing experience, 6 indicated to be

experienced skiers, and 6 indicated to be very experienced skiers. Figure 7.1 shows the mentioned

characteristics of the group of test participants in pie charts.

Figure 7.1: Pie charts containing the characteristics of the test participants of the first round of user

tests.

10

7

Male/female
distribution

Male Female

15

2

Student/employee
distribution

Student Employee

5

6

6

Level of skiing
experience

Moderately experienced

Experienced

Very experienced

66

7.2.1.2 Test Setup

Every test had the same setup and followed the same steps. During a test session the participant was

asked to ski on the revolving ski slope while wearing the Hololens with the skiing game on it. The

revolving ski slope was set on speed two out of ten, to be able to execute the test on people with

different levels of experience. Before putting the Hololens on, the participant had the option to

practice on the revolving ski slope. Once the participant was wearing the Hololens, he/she got the

simple instruction to play the game according to his/her own insights of what must be done in the

game in order to achieve a good result. Every participant got the same version of the game, in which

they had to ski through gates and avoid obstacles for three minutes. After that time period, a finish

line was shown and the game ended with a score overview. When the skiing experience was over,

the test participant was asked to fill out a list with questions about perceived cyber sickness

symptoms, intrinsic motivation while playing the game, and some extra questions about the

multiplayer aspect of the game and using the game as a tool for learning how to ski. The

questionnaire that the participants were presented to can be found in Appendix L: Questionnaire

First Round of User Tests.

7.2.1.3 Results

The results from the first round of user tests can be divided into four different categories: cyber

sickness, intrinsic motivation, multiplayer, and the skiing game as learning tool. For every category,

the results from the user tests will be given and explained. Apart from the results from the

categories, options for possible improvements that can be made to the skiing game that were

mentioned by the participants during the test are included in this section.

Cyber sickness

The cyber sickness category of the test results consisted of the answers that were given to the

questions from the Simulator Sickness Questionnaire [16], which was already explained in Chapter 2,

under section 2.2.6.2. Participants were asked to indicate how much the symptoms listed in Figure

7.2 were affecting them directly after the augmented reality skiing experiment. They could choose

from “none”, “slight”, “moderate”, and “severe”. In Figure 7.2, “none” equals 1, “slight” equals 2,

“moderate” equals 3, and “severe” equals 4. Since a score of 1 is equal to “none”, it is decided that

the horizontal axis of Figure 7.2 starts at 1. The symptoms listed in Figure 7.2 are divided over the

categories oculomotor, disorientation, and nausea, based on how they affect people. For every

symptom, the mean score is calculated and given in Figure 7.2. Based on the scores it can be seen

that the test participants were barely affected by cyber sickness symptoms directly after the

experiment, as most of the mean scores lie around 1 (not affected by the symptom) and none of the

mean scores reaches 2 (slightly affected by the symptom). The symptom that received the highest

mean score is sweating. However, since the test participants had to deliver physical efforts during the

experiment it seems safe to argue that this is the cause, instead of sweating being a symptom of

cyber sickness.

67

Figure 7.2: Means and standard deviation of participants’ perceived cyber sickness symptoms.

Intrinsic motivation

Test participants’ intrinsic motivation while playing the game was measured using questions from the

Intrinsic Motivation Inventory (IMI) mentioned by Van Delden [17], which was explained in Chapter

2, under section 2.2.6.2. The questions that were included in the test measured participants’ effort

put in the game and perceived importance of the game, perceived competence, and their interest

and enjoyment in the game. Participants were presented to statements about their experience while

playing the game. They could rate the statements from one (not true at all) to seven (very true),

where four is the middle and therefore neutral. As was already explained in Chapter two, participants

had the option to indicate their answers on a scale from one to seven because the IMI test uses that

scale as a standard, which makes the calculation of the scores based on the standard procedure

described in [18] easier. Besides that, a scale with seven points gives people the option to indicate

how certain or uncertain they are about their answers, because it allows them to say that a

statement is slightly or very true/not true, instead of only offering the option to say something is true

or not true. The means of the answers given to the questions form the bar graph that is presented in

1,47

1,41

1,12

1,12

1,06

1,06

1,06

1,06

1,00

1,24

1,06

1,06

1,06

1,18

1,47

1,00

1,76

1,00

1,06

1,00

1,00

1,00 1,50 2,00 2,50 3,00 3,50 4,00

General discomfort

Fatigue

Headache

Eye strain

Difficulty focussing

Difficulty concentrating

Blurred vision

Difficulty focussing

Nausea

Fullness of the head

Blurred vision

Dizziness with eyes open

Dizziness with eyes closed

Vertigo

General discomfort

Salivation increasing

Sweating

Nausea

Difficulty concentrating

Stomach awareness

Burping

Effect of the symptom
1 = None, 2 = Slight, 3 = Moderate, 4 = Severe

Sy
m

p
to

m
s

Perceived Cyber Sickness Symptoms

Oculomotor

Disorientation

Nausea

68

Figure 7.3. In Figure 7.3, all questions are written down per category (effort/importance, perceived

competence, interest/enjoyment), with the result that some questions are listed twice.

Figure 7.3: Overall scores for the questions about intrinsic motivation, divided in the categories

effort/importance, perceived competence, and interest/enjoyment.

From the overview of mean scores that is presented in Figure 7.3 the mean IMI scores per category

were calculated and visualized. The mean IMI scores per category can be seen in Figure 7.4. As is

explained in Chapter 2 under section 2.2.6.2, some of the statements are “reversed statements”,

which means that the scores for these statements had to be reversed by subtracting its score from

eight. For more information about this, see section 2.2.6.2. After the IMI values of the reversed

statements were computed, the mean score for every category was determined. With four being the

neutral score, it can be seen that all the categories were rated higher than neutral. The category

interest/enjoyment was rated the highest, indicating that people enjoyed the skiing game very much.

This category is followed by effort/importance, which suggests that people put effort in the skiing

5,94

5,94

1,35

1,76

5,35

5,94

4,41

4,12

3,94

4,71

4,76

4

3

4,88

2

4,88

4,41

2,65

0 1 2 3 4 5 6 7

I enjoyed playing the game very much

Playing the game was a fun activity to do

I thought playing the game was a boring activity

The game did not hold my attention at all

I would describe playing the game as very interesting

I thought the game was quite enjoyable

While I was playing the game, I was thinking about how
much I enjoyed it

I think I am pretty good at this game

I think I did pretty well at this game, compared to others

After playing this game for a while, I felt pretty competent

I am satisfied with my performance at this game

I was pretty skilled at this game

This was a game that I couldn't play very well

I put a lot of effort into this game

I didn't try very hard to do well at this game

I tried very hard on this game

It was important to me to do well at this game

I didn't put much energy into this game

Rate
1 = Not true at all, 7 = Very true

Intrinsic Motivation
Effort/importance, perceived competence, and interest/enjoyment

Effort/importance

Perceived competence

Interest/enjoyment

69

game and found it important to do that. The category that was rated lowest is the category of

perceived competence, which means that the test participants did not think they were performing

very well in the game. The perceived competence category only received a mean score that is slightly

larger than the score for neutral.

Figure 7.4: Average IMI scores per category (interest/enjoyment, perceived competence,

effort/importance) over the whole population.

It was expected that the level of skiing experience of the participants can influence the participants’

interest/enjoyment in the game, perceived competence while playing the game, and

effort/importance put into the game. Therefore, the mean IMI scores per category were also

visualized per level of skiing experience, as can be seen in Figure 7.5. The differences per user group

(moderately experienced, experienced, or very experienced) are rather small and the meaning of

these differences is probably not significant. Every user group shows the same pattern:

interest/enjoyment has the highest score, followed by effort/importance, and then perceived

competence. However, a remarkable difference in the mean scores per user group is that the group

of experienced skiers shows the lowest perceived competence, while this would be expected for the

group of moderately experienced skiers instead. Also, it can be seen that the group of experienced

skiers has given the lowest score for all three categories. However, since every user group only

consisted of five to six participants, no statistical significance can be derived from these results which

means that no conclusions can be drawn for the different user groups.

5,78

4,42

5,10

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

IM
I S

co
re

IMI Category

Average IMI Scores

Interest/enjoyment

Perceived competence

Effort/importance

70

Figure 7.5: Average IMI scores per category (interest/enjoyment, perceived competence,

effort/importance) per level of experience.

Multiplayer

The multiplayer aspect of the game and how it is perceived by players was also tested in the user

evaluation. Test participants were presented to three statements about the multiplayer aspect of the

game, which are included in Figure 7.6. The statements could be rated from one (not true at all) to

seven (very true) again, with four being neutral. The mean scores per statement can be seen in

Figure 7.6. It must be noted that the multiplayer version of the game only worked in eight out of the

seventeen tests, due to the bad quality of the internet connection at the location of the test sessions.

Therefore the results from this part of the test are less reliable than the results from other parts of

the test.

As can be seen in Figure 7.6, the mean scores for the multiplayer aspect are centred around neutral,

which suggests that people do not have a strong opinion about it. Out of the eight test participants

that had a fellow player in their game, three did not even notice the fellow player. The five other

players did notice the fellow player, which explains the mean score given to the statement “I did not

notice the fellow player”. Since the people who did not notice the fellow player cannot say anything

about if they liked the fellow player or if the multiplayer aspect of the game motivated them, a

second visualization was made for these statements. In the second visualisation, which can be seen

in Figure 7.7, only the scores given by the people that noticed the fellow player are given. Therefore,

Figure 7.7 contains the scores given by a total of five test participants. However, it can be seen that

the test participants who were aware of the fellow player liked the fellow player and felt motivated

by its presence. Again, because of the limited size of the test group that gave this judgement about

the multiplayer aspect of the game, no formal conclusions can be drawn from it.

5,86 5,45 6,174,83 4,08 4,835,72 4,67 5,33

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Moderately experienced Experienced Very experienced

IM
I S

co
re

Level of experience

Average IMI Scores per Level of Experience

Interest/enjoyment

Perceived competence

Effort/importance

71

Figure 7.6: Mean scores of the multiplayer statements in the test.

Figure 7.7: Mean scores of the multiplayer statements in the test for people who noticed the fellow

player.

Game as Learning Tool

The last part of the test measured participants’ view on the use of the game as a tool to learn how to

ski. The participants were asked if they thought the game is useful for teaching people how to ski,

and if they though that playing the game more often would help them improve their own skiing skills.

Because it was expected that, especially for the last statement, the answers differ per user group

(moderately experienced, experienced, very experienced), the scores were visualized per user group

and for the total population. The visualization of these scores can be seen in Figure 7.8. It can be

seen that every group thinks that the game is a useful tool for teaching people how to ski. Again, the

group of experienced skiers gave the lowest score, as was also the case for the IMI scores. The

moderately experienced group indicated that they think that playing the game more regularly would

help them improve their skiing skills. The experienced skiers and the very experienced skiers do not

think this is the case for them. Some of the participants from these two groups mentioned this is

because the test was at a very low pace, which does not challenge them enough to learn something

new from it. They added to it that if the pace of the revolving ski slope and the game would be

increased, they might be able to improve their skills by playing the skiing game.

4,375

4,375

3,5

0 1 2 3 4 5 6 7

The multiplayer aspect of the game motivated me

I liked the fellow player

I did not notice the fellow player

Score

St
at

em
en

t

Multiplayer Statements

5,4

5,4

0 1 2 3 4 5 6 7

The multiplayer aspect of the game motivated me

I liked the fellow player

Score

St
at

em
en

t

Mutliplayer Statements for Participants who Noticed the
Fellow Player

72

Figure 7.8: Participants’ appreciation of the skiing game as a learning tool.

Suggestions for Improvement

At the end of the test, participants were asked to give suggestions for improvements that could be

made to the game. Most suggestions could be summarized into three categories: speed, multiplayer,

and feedback.

With regard to speed, most experienced and very experienced skiers suggested to increase the speed

of the revolving ski slope and the game. They said that skiing becomes easier with increased speed,

because that allows them to ski parallel instead of having to ski in snowplough position all the time,

which makes manoeuvring on the ski slope easier. Some of them also mentioned adding speed

differences to the game based on performance. The latter was already included in the game by

decreasing a player’s speed when there is a collision with an obstacle. However, this was clearly not

noticed by all participants.

In the category multiplayer it was suggested to give a player the option to decide the level of the

fellow player and to make the fellow player more clearly present in the game. The latter was mainly

suggested by players who discovered there was a fellow player in the game only after they ended the

experiment. No suggestions were made on how the presence of the fellow player could be made

more clear.

For the third category, feedback, it was mainly the case that people did not realize that the red

blocks are obstacles that actually cause a loss in points. Most people thought that points could be

earned by skiing through the blue gates and also by picking up the red blocks. They assumed that the

game only offered the option to gain points and that there was no threat of losing points in the

game.

7.2.2 Second Round of User Tests
After the first round of user tests, a second round was held. For the second round, two alterations

were made to the skiing game based on the comments about what could be changed to the game

5,80 4,67 5,50 5,245,40 2,83 3,17 3,65

0,00

1,00

2,00

3,00

4,00

5,00

6,00

7,00

Moderately
experienced

Experienced Very experienced Overall

Sc
o

re
 p

er
 s

ta
te

m
en

t

Level of experience

Skiing Game as a Learning Tool

This game is useful
for teaching people
how to ski

I think playing this
game more regularly
would help me
improve my skiing
skills

73

that were received from the participants of the first round. Based on these comments, it was decided

that the feedback system of the game could be improved. Most test participants did not realize that

the red blocks were obstacles that cause a loss in points when being hit. On the contrary, they

thought that colliding with the red blocks also delivered them points. Two solutions were found to

solve this problem and to provide the player with better feedback with regard to what should and

what should not be done in the game. The first solution was to change the appearance of the red

blocks. Their colour remains red, because red is often associated with intensity and anger [40].

Therefore, red seems to be the right colour to indicate a loss in points. The shape of the obstacles

was changed into a dangerously looking ball with spikes on it, as can be seen in Figure 7.9. The shape

was changed to a spiky object because it was expected that this will indicate that the object is

dangerous and that colliding with it causes a negative result.

Figure 7.9: The updated appearance of the obstacle game object.

The second solution was to provide extra feedback once an obstacle is hit. In the first version of the

game, this was only done by a sound that was perceived as negative. For the second version of the

game it was decided to add a red glow to the screen when the obstacle is hit. The red glow appears

at the moment the player collides with the obstacle and fades away one second later. This means

that when the player collides with the obstacle, the player sees the red glow, hears the negative

sound, and sees the number of points decrease with one hundred.

The expectation was that the updated shape of the obstacle and the red glow after collisions with

obstacles provide the player with enough feedback to realize that colliding with the obstacles has

negative consequences. This hypothesis was tested in the second round of user tests, which is

described in this section.

7.2.2.1 Participants

The second round of user tests was executed with four participants in total. All of the four

participants had participated in the first round of user tests as well, which means that they had

already played the game before. All the participants were male. Two of them indicated themselves to

be experienced skiers, the other two said they were very experienced skiers. Among the four test

participants were three students and one employee of the University of Twente. Figure 7.10 shows

the mentioned characteristics of the group of test participants in pie charts.

74

Figure 7.10: Pie charts containing the characteristics of the test participants of the first round of user

tests.

7.2.2.2 Test Setup

During the second round of user tests, the same test setup was used as during the first round. This

test setup is explained under 7.2.1.2. The only difference was that the participants were presented to

a changed version of the game and another questionnaire that had to be filled out after the

experiment, which can be found in Appendix M: Questionnaire Second Round of User Tests.

7.2.2.3 Results

The results from the second round of user tests can be divided into two categories: cyber sickness

and feedback. In this section the results of the user tests will be discussed per category.

Cyber Sickness

In the second round of user tests the same questions were asked regarding cyber sickness that were

asked in the first round of user tests. This was done because it was expected that the addition of the

red glow to the game could possibly increase the cyber sickness symptoms, as it is very bright and

appears rather abruptly. Figure 7.11 gives an overview of the mean scores for how much the

participants in test round two were affected by the listed cyber sickness symptoms. Again,

participants could indicate how much they were affected by certain symptoms by choosing from

“none”, “slight”, “moderate”, and “severe”. Because 1 equals “none” again, it was decided that the

horizontal axis of Figure 7.11 starts at 1. Additionally, the cyber sickness symptoms are divided in the

categories nausea, disorientation, and oculomotor again, based on how people are affected by them.

The results from the second round of user tests with regard to participants’ perceived cyber sickness

are very similar to the results from the first round of user tests, which can be seen in Figure 7.2.

Based on this test it can be concluded that the addition of the red glow to the skiing game has no

effect on a user’s perceived cyber sickness symptoms.

4

0

Male/female
distribution

Male Female

3

1

Student/employee
distribution

Student Employee

22

Level of skiing
experience

Moderately experienced

Experienced

Very experienced

75

Figure 7.11: Means and standard deviation of participants’ perceived cyber sickness symptoms.

Feedback

Participants of the second round of user tests were asked to rate a few questions that are related to

the feedback provided by the game. The questions and the mean scores that were given to them by

the test participants are shown in Figure 7.12. All four participants agreed that the updated version

of the game made them more aware of their mistakes in the game. One of them even thought that

the game had changed in such a way, that the obstacles and the subsequent subtraction of points

when an obstacle it hit were added to this version of the game. When this person was asked further

about this, it became clear that this person was certainly not aware of the obstacles being obstacles

in the first version of the game. Besides this, one of the participants said that the game also made

him more aware of the things he did right in the game, while the other participants said it did not.

Based on the results displayed in Figure 7.12, it can be said that the updated version of the game

1,25

1

1

1

1,25

1

1,5

1,25

1

1

1,5

1

1

1,25

1,25

1

1,75

1

1

1

1

1 1,5 2 2,5 3 3,5 4

General discomfort

Fatigue

Headache

Eye strain

Difficulty focussing

Difficulty concentrating

Blurred vision

Difficulty focussing

Nausea

Fullness of the head

Blurred vision

Dizziness with eyes open

Dizziness with eyes closed

Vertigo

General discomfort

Salivation increasing

Sweating

Nausea

Difficulty concentrating

Stomach awareness

Burping

Effect of the symptom
1 = None, 2= Slight, 3 = Moderate, 4 = Severe

Sy
m

tp
o

m
s

Perceived Cyber Sickness Symptoms

Nausea

Disorientation

Oculomotor

76

makes players more aware of their mistakes, does not influence player’s perceptions of what they do

right in the game, does not distract people, and is more clear than the previous version of the game.

Apart from the results that are shown in Figure 7.12, all test participants indicated that they

preferred the updated version of the game over the previous version.

Figure 7.12: Mean scores for statements related to feedback, given during the second round of user

tests.

7.3 Conclusion and Discussion of Test Results
This section contains the conclusion and discussion of the test results that were gathered throughout

the evaluation phase of this project. This conclusion and discussion is divided in three different

sections, which represent the three different parts of the evaluation phase. Section 7.3.1 contains

the conclusion and discussion for the functional evaluation, section 7.3.2 for the first round of user

tests, and section 7.3.3 for the second round of user tests.

7.3.1 Functional Evaluation

The functional evaluation showed that all must have-requirements were met by the prototype of the

skiing game. All should have-requirements were met, except for the requirement of multimodal

feedback since no haptic feedback was included in the prototype. Finally, the could have-

requirements were only partially met, due to the limited time available for the development of the

prototype. The could have-requirements that were not met were the ranking, triangularity in the

game, and the game being an asymmetrical game. Based on the functional evaluation it was

concluded that the prototype functions well enough for people to use it as a skiing game.

7.3.2 First Round of User Tests

In the first round of user tests, the participants’ perceived cyber sickness symptoms, the participants’

6 4 2 5

0

1

2

3

4

5

6

7

8

This version of the
game made me more
aware of my mistakes

This version of the
game made me more
aware of the things I

did right

In this version of the
game I felt more

distracted

This version of the
game was more clear

to me

Sc
o

re

Statements

Feedback

77

intrinsic motivation, the multiplayer aspect of the game, and the learning aspect of the game were

investigated for the first version of the skiing game.

With regard to perceived cyber sickness it can be concluded that the augmented reality skiing game

does not evoke cyber sickness symptoms. This confirms the theory by Rebenitsch and Owen [32] that

inclusion of the real world in an application, which is done in augmented reality, can prevent cyber

sickness. However, it must be noted that this was only tested on a small group of seventeen

participants, which means that no statistical significance can be derived from these results. Besides

that, it could be the case that the exposure did not last long enough for participants to be affected by

cyber sickness symptoms. According to research by Bruck and Watters [30], cyber sickness symptoms

were only increased after six to ten minutes of exposure, while the experiment lasted only three

minutes.

The intrinsic motivation scores that were obtained from the test were divided into the categories

interest/enjoyment, perceived competence, and effort/importance. The categories

interest/enjoyment and effort/importance were rated higher than neutral. Based on these results, it

can be concluded that the participants felt interested and enjoyed while playing the skiing game and

that the test participants put effort into the skiing game and found it important. The category

perceived competence scored lower, only slightly above neutral. However, this is not seen as a

negative score since perceived competence should not be too high, as being very competent in the

skiing game already might cause boredom for the players. Again, these results were obtained out of a

group of seventeen test participants, which means that they are not statistically valid.

With respect to the multiplayer aspect of the game, only eight out of seventeen test participants

were presented to the multiplayer version of the game since the connection failed in the other cases.

Out of the eight participants who played the multiplayer version of the game, only five noticed the

fellow player. The five participants who noticed the fellow player indicated that they liked the fellow

player and that its presence motivated them. However, no statistical significance can be derived from

these results since they were generated by such a small group.

Finally, the learning aspect of the game was evaluated very positively. The test participants indicated

that they think that the skiing game is a useful tool for learning how to ski. The test participants who

were moderately experienced at skiing also indicated that playing the game more regularly would

help them increase their own skiing skills. The other two groups of test participants, the experienced

skiers and the very experienced skiers, said that they did not think they can learn anything from the

game. Some of them indicated that this was mainly due to the low pace that the game is being

played at and that they might be able to increase their skiing skills by playing the game if the speed

of the game would be increased. Again, these results do not have any statistical relevance since they

are generated by a group of seventeen test participants.

7.3.3 Second Round of User Tests

The second round of user tests was executed with only four participants, who also participated in the

first round of user tests. Therefore the conclusions drawn in this section are not statistically valid.

Because the test participants had already participated in the experiment, their judgement about the

skiing game could be biased. The goal of the second round of user tests was to investigate if the

feedback system of the game had improved.

It can be concluded that the improved version of the game did not cause any cyber sickness

symptoms, as was also the case for the first version of the game. Additionally, the feedback that was

78

given in the improved version of the game made the test participants more aware of the things they

did wrong in the game. All four test participants preferred the improved version of the skiing game

over the first version.

79

Chapter 8 – Discussion and Conclusion

This chapter gives the conclusions and discussion of this research. Section 8.1 provides the

conclusions, which answer the research questions that were posed in Chapter 1. Additionally, section

8.2 provides a discussion that places this project and its relevance in a broader perspective.

8.1 Conclusions
In Chapter 1, four research questions were proposed to be investigated throughout this project. The

main research question of this project was: “How to design a game in augmented reality that

supports the ski-learning process?”. Besides the main research question, three sub-questions were

formulated to guide this project in a certain direction. The first sub-question was: “What is the added

value of a game in augmented reality for skiing classes on a revolving ski slope?”. The second sub-

question was: “How do people perceive a game in augmented reality that is meant to support the ski-

learning process?”. Finally, the third sub-question was: “Does the augmented reality skiing game

prototype that resulted from this project cause its players to suffer from cyber sickness symptoms?”.

This section first provides the answers to the three sub-questions, after which the main research

question will be answered.

With respect to the added value of a game in augmented reality for skiing classes on a revolving ski

slope it can be concluded that the game that was developed over the course of this project adds

value through its multiplayer aspect and its entertaining factor. From the background research that

was done at the beginning of this project, it became clear that multiplayer games offer competition,

enhance the replayability of games, and add a social aspect to games. These three factors add to the

motivation of players to play the game. These findings were confirmed in the user evaluation, in

which the participants of the experiment stated that they liked the fellow player and that its

presence motivated them. This can be seen as added value offered by the augmented reality skiing

game, since skiing together or against each other is not easily possible during regular ski classes on a

revolving ski slope. The augmented reality skiing game makes it very easy to ski together, even when

people are not physically present at the same location, by making a connection over the internet.

Secondly, the augmented reality skiing game adds value to skiing classes on a revolving ski slope by

its entertaining factor. The results from the background research indicated that games are seen as

entertaining, which makes learning through games a fun activity to do. These findings were also

confirmed during the user evaluation. The test participants gave high values for their perceived

enjoyment while playing the game and their interest in playing the game. Based on these results, it

can be concluded that an augmented reality skiing game adds entertainment to skiing classes on a

revolving ski slope.

Regarding the way people perceive a game in augmented reality that is meant to support the ski-

learning process it can be concluded that people perceive the game as interesting, enjoying,

something to put effort into, important, and suitable for learning purposes. These conclusions are

based on the user evaluation that was carried out during the evaluation phase of this project. As was

already mentioned in the previous section, people gave high values for their perceived enjoyment

while playing the skiing game and thought that it was an interesting thing to do. Apart from these

results, people rated the effort they put into the skiing game and the importance they attached to it

slightly less high, but still convincingly high to conclude a positive result. The test participants did not

80

necessarily think they were good at playing the game, since they rated their perceived competence

around neutral. However, this might add to the challenge that is offered by the game and prevent

boredom while playing it, as people do not perceive the skiing game as too easy or too difficult.

During the user evaluation, the participants were confident that the skiing game that was developed

throughout this project is a useful tool for teaching people how to ski. However, only the least skilled

group of test participants thought that the skiing game could help them improve their own skiing

skills.

Additionally, it can be concluded that the skiing game in augmented reality does not cause its players

to suffer from cyber sickness symptoms. This conclusion is based on the results from the user tests

that were carried out during the evaluation phase of this project, in which the participants indicated

that they were not or only slightly affected by the different cyber sickness symptoms that were listed

in the test. These results indicate that people were affected by cyber sickness symptoms to the most

minimal and even negligible extent.

Finally, the main research question of this project can be answered. From the background research

that was carried out at the beginning of this project it became clear that games can be seen as a

useful tool for teaching purposes since they keep the players motivated, provide them with

feedback, and create a learning effect. Games can create a learning effect by offering the player clear

tasks and explanations, by addressing their prior knowledge, by using rules to clarify the game, and

by decreasing the guidance that is offered in the game. Based on this background knowledge, an

ideation phase was started to generate ideas about possible implementations of an augmented

reality game that is meant to support the ski-learning process. Some of the ideas that were

generated during the ideation phase were taken into further consideration in the specification phase.

Based on the specified requirements that the skiing game should fulfil, an augmented reality

application was made for the Microsoft Hololens. To do so, three-dimensional models were made in

order to be used as the game objects that had to be placed in the game. A total of nine scripts were

written for the game to function. Based on the combination of these nine scripts, a working

prototype was made. The scripts that were used in the prototype of the skiing game fulfilled the

following purposes: the detection of collisions between the player and the game objects, the

positioning of the UI elements, updating the information that is displayed in the UI elements, the

representation of a finish line, the network settings, the identification of the camera per player, the

rotation of the skies of the player game object, and the initiation and spawning of the game objects.

In the final phase of this project, the evaluation phase, it was discovered that the players of the game

did not understand that the obstacles in the game were meant as obstacles and caused a decrease in

points. Therefore, a design iteration was made to improve the feedback system of the game. The

final version of the working prototype of the skiing game was changed in such a way that the

obstacles appeared more dangerously looking and that a red glow is shown when an obstacle is hit.

The test participants indicated that they preferred this version of the game over the first version.

8.2 Discussion
Besides the research questions that were answered in the conclusion section, this research can be

viewed in a broader perspective. This section provides the discussion of this research, which puts the

research in a wider context and highlights certain other directions that could have been or

potentially can be chosen for this project.

First of all, one of the main things that could have been changed to the skiing game is the device that

the game has been built for. The current version of the game works on the Microsoft Hololens, which

81

enables the tracking of the player’s movements and position in the physical world and uses that as

input to determine the accompanying view that the user is presented to in the application. However,

the Hololens might not be the most suitable or desirable device that the skiing game could have been

built for, since it is a rather big and heavy device, and the overarching strap that tights the Hololens

around a person’s head sometimes reduces the field of view of the person, especially at the top and

the sides. Additionally, the Hololens comes with a certain price tag that cannot be categorized under

consumer good’s prices, which makes the device inaccessible to the general public. A more

lightweight and affordable device, like the Moverio Epson BT-300 or a device that was already

designed as skiing goggles, is desired. It is expected that such a device fits better during the activity of

skiing and makes the skiing game accessible to the general public. The game could even be

implemented on smartphones that can be placed in a cardboard holder, which is probably the

cheapest but not the most ergonomically optimal option. However, if the game would be

implemented on another augmented reality device, it means that the issue of tracking the user’s

movements and positions and the communication of the tracked information to the game should be

solved.

Second, it must be noted that the skiing game prototype that resulted from this project serves as a

proof of concept, not as an end product. The game can be extended in a number of ways to make it

more fun and interesting to use. The current version of the game consists of one level, which served

well during the user tests of this project. However, this is not desirable for a final version. In order to

keep the game interesting for its players, the game’s levels and possibly its reward system should be

extended. The question remains if a graphical user interface should be added to the game, because it

is doubtful whether this option is desirable. When people are skiing on the ski slope, it has proven to

be very difficult for them to navigate through a graphical user interface at the same time. However, if

the skiing game would be extended, some form of a graphical user interface is probably needed to

allow the user to navigate himself/herself through the different options that are offered by the

game.

Third, the multiplayer aspect of the game seemed to be not very clearly present to the players. Out

of the eight test participants who were presented to the multiplayer version of the game, three

participants did not even recognize the fellow player. This could be partially due to the fact that they

did not know they were competing against someone else. However, it also indicates that the fellow

player’s presence might be too subtle in the current version of the skiing game.

Fourth, the skiing game is made to support the ski-learning process, while no skiing teachers are

involved in the design of the current version of the game. A design option was considered that

included the teacher in the system of the skiing game through a second device with its own interface

that could be used to influence the parameters of the game. However, due to the limited timeline of

this project, that design option was categorized under the won’t have-requirements of this project.

The current version of the game can be used by skiing teachers to allow their pupils to practice on

their own and to compete against each other. However, it is desirable to develop a version of the

skiing game that allows for interventions by the teacher.

Finally, the question remains why this project could not have been executed on a virtual reality

device, such as the HTC Vive. The HTC Vive offers reliable tracking in the physical world, which is used

in its applications to determine where the user is present in the virtual environment. Apart from the

tracking possibilities, virtual reality can be argued to be more immersive and provide the user with a

better skiing experience than augmented reality. However, the outcomes of this research

demonstrate that the use of the HTC Vive or a comparable virtual reality head-mounted display to

82

play the skiing game on is highly inadequate and undesirable. The main reason is that a virtual reality

head-mounted display prevents the user from being able to see his/her normal surroundings in the

real world, which causes dangerous situations on the revolving ski slope because users do not get

sufficient visual clues that suggest that they have to correct their movements to prevent accidents.

However, even if a way would be found to make the situation on the ski slope safer, virtual reality

still remains an insufficient technology for this project since the risk for cyber sickness symptoms is

significantly higher with such devices. This project has proven that the use of an augmented reality

device prevents cyber sickness symptoms from occurring, which is a valuable insight that is strongly

advised to be adhered to.

83

Chapter 9 – Future Work

Based on the research that was carried out throughout this project, some recommendations for

further research can be made. This section provides an overview of possible future work that can be

done for this project.

First of all, it is recommended to make the skiing game applicable for multiple augmented reality

devices. By doing so, the skiing game becomes suitable for low-end devices as well (such as

smartphones that can be placed in a cardboard holder), which makes the product available to a

greater audience. In order to do so, further research must be done with regard to the possibilities for

tracking a user’s position and movements in the physical world.

Second, it is recommended to do further research with regard to the representation of the fellow

player in the game. With respect to the fellow player, two problems are recommended to be solved.

The first problem is the problem of the fellow player not being clearly present to the other players of

the game. The second problem is the positioning of the representation of the fellow player in the

game during gameplay, which is not correct along the x-axis in the current version of the game.

Third, further research could be done to create a correct ranking at the end of the skiing game, which

provides the players with summary feedback. In order to do so, it must be investigated how an

overview of the players’ names and the scores that they achieved in the game can be created.

Fourth, it is advised to extend the skiing game’s levels and reward system. The current version of the

skiing game consists of one level only and with regard to the reward system only points can be

earned. The skiing game can be made more interesting and can stay interesting for longer if it would

be expanded with extra levels and a more elaborate reward system. Other options and

functionalities that could be added to the skiing game include, for example, the option to make a

player profile, the option to choose the level of difficulty of the game, and the option to make a

group of players that can play together and keep relevant statistics of their played matches.

Additionally, it is recommended to add a graphical user interface to the game once its functionality

expands, to allow users to navigate themselves through the different options that the skiing game

has to offer. If this option would be implemented, appropriate ways of presenting users to a

graphical user interface while they are skiing on the ski slope should be researched.

Fifth, the game can be extended to a version where teachers are involved as well, by allowing them

to influence certain parameters in the game through a second device, such as the speed or the

placement of obstacles and gates. This idea was already listed under the won’t have-requirements of

this project, because of the limited timeline of this project. However, it is advisable and desirable to

include skiing teachers in a future version of the skiing game. By including teachers, the option of

non-experienced skiers using the skiing game can be explored again. Additionally, the inclusion of

teachers can enhance the teaching possibilities of the skiing game.

A final recommendation for future work is to make the options for inserting parameters into the

skiing game more dynamic. In the current version of the game, values can be set for, among others,

the width of the slope, the speed of the game, and the angle of inclination. Once the values are set

and the game is built into an application that can run on the augmented reality device, there is no

option to change the parameters again. However, it is desirable to include this option to prevent

having to build the application several times in order to set the appropriate values. This option could

for example be implemented in the graphical user interface that the player is presented to, where

84

he/she can indicate the desired speed, the width, and the angle of inclination of the slope that the

skiing game is being played at. Additionally, it would be desirable to make a version of the game that

can measure the speed of the slope in the real world, and adjusts the speed of the game accordingly.

Having this option in the game would only require the simple action of turning the speed knob that

comes with the revolving ski slope to set the desired speed for the skiing game.

85

Appendix

Appendix A. Code Markerless Augmented Reality Prototype
The code that was used for the markerless augmented reality prototype is taken from [42] and

consists of three different scripts: Webcam Script, Collision Script, and Enemy Script.

A.1 Webcam Script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.UI;

public class webCamScript : MonoBehaviour {

 public GameObject webCameraPlane;
 public Button fireButton;

 void Start () {
 if (Application.isMobilePlatform) {
 GameObject cameraParent = new GameObject ("camParent");
 cameraParent.transform.position = this.transform.position;
 this.transform.parent = cameraParent.transform;
 cameraParent.transform.Rotate (Vector3.right, 90);
 }

 Input.gyro.enabled = true;

 fireButton.onClick.AddListener (OnButtonDown);

 WebCamTexture webCameraTexture = new WebCamTexture ();
 webCameraPlane.GetComponent<MeshRenderer> ().material.mainTexture = webCameraTexture;
 webCameraTexture.Play ();
 }

 void OnButtonDown(){
 GameObject bullet = Instantiate(Resources.Load("bullet", typeof(GameObject))) as GameObject;
 Rigidbody rb = bullet.GetComponent<Rigidbody>();
 bullet.transform.rotation = Camera.main.transform.rotation;
 bullet.transform.position = Camera.main.transform.position;
 rb.AddForce(Camera.main.transform.forward * 500f);
 Destroy (bullet, 3);
 GetComponent<AudioSource> ().Play ();
 }

 void Update () {
 Quaternion cameraRotation = new Quaternion (Input.gyro.attitude.x, Input.gyro.attitude.y, -
 Input.gyro.attitude.z, -Input.gyro.attitude.w);
 this.transform.localRotation = cameraRotation;
 }
}

A.2 Collision Script

using UnityEngine;
using System.Collections;

public class collisionScript : MonoBehaviour {

 void Start () {
 }

 void Update () {
 }

86

 //for this to work both need colliders, one must have rigid body (spaceship) the other must have is
 trigger checked.
 void OnTriggerEnter (Collider col)
 {
 GameObject explosion = Instantiate(Resources.Load("FlareMobile", typeof(GameObject))) as
 GameObject;
 explosion.transform.position = transform.position;
 Destroy(col.gameObject);
 Destroy (explosion, 2);

 if (GameObject.FindGameObjectsWithTag("Player").Length == 0){
 GameObject enemy = Instantiate(Resources.Load("enemy", typeof(GameObject))) as GameObject;
 GameObject enemy1 = Instantiate(Resources.Load("enemy1", typeof(GameObject))) as GameObject;
 GameObject enemy2 = Instantiate(Resources.Load("enemy2", typeof(GameObject))) as GameObject;
 GameObject enemy3 = Instantiate(Resources.Load("enemy3", typeof(GameObject))) as GameObject;
 }
 Destroy (gameObject);
 }
}

A.3 Enemy Script

using UnityEngine;
using System.Collections;

public class enemyScript : MonoBehaviour {

 void Start () {
 StartCoroutine ("Move");
 }

 void Update () {
 transform.Translate(Vector3.forward * 3f * Time.deltaTime);
 }

 IEnumerator Move() {
 while (true) {
 yield return new WaitForSeconds (3.5f);
 transform.eulerAngles += new Vector3 (0, 180f, 0);
 }
 }
}

87

Week 1:
First Version

Appendix B. Realisation Timeline

Y =

distanceCreated *

tan(degreesRotation)

Week 2:
Multiplayer

88

Week 3: Multiplayer &

Hololens Implementation

Week 4:
Completion

89

Appendix C. Spawner Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.Networking;

public class Spawner : NetworkBehaviour {

 public GameObject obstaclePrefab;

 public GameObject arcPrefab;

 public GameObject treePrefab;

 public GameObject finishPrefab;

 public GameObject snowPrefab;

 public GameObject obstacles;

 public GameObject arcs;

 public GameObject trees;

 public GameObject snows;

 private GameObject obstacle; //to store the created obstacles in

 private GameObject arc; //to store the created arcs in

 private GameObject treeleft; //to store the created trees in

 private GameObject treeright;

 private GameObject finish;

 private GameObject snow;

 public float timeToDestroy; //the time after which obstacle/arc is destroyed

 public float timeToDestroyTree; //the time after which trees are destoryed

 public int minX; //the left boundary of the obstacles and arcs

 public int maxX; //the right boundary of the obstacles and arcs

 public int minXTree; //the minimum distance of the trees from the center of the game area

 public int maxXTree; //the maximum distance of the trees from the center of the game area

 public int minDistanceBetweenObjects; //an integer that stores the minimal distance from the player

 at which the obstacle/arc is created

 public int maxDistanceBetweenObjects; //an integer that stores the maximum distance from the player

 at which the obstacle/arc is created

 public int distanceCreated; //the distance from the player at which prefabs are spawned

 private static float radRotation; //variable that stores the radians that the slope is tilted

 private int distanceBetweenObjects; //variable to store the distance at which the obstacle/arc is

 created from the player

 private int positionX; //the x position of the arcs and obstacles

 private float posYObj; //the y position where the objects will be placed

 private float posYTree; //the y position where the trees will be placed

 private Vector3 playerPosition; //store the position of the player for the first obstacle and arc

 that will be placed

 void Start () {

 if(isServer){ //only the server can invoke obstacles, arcs, and trees

 Invoke("PlaceFirstObstacle", Random.Range(2,4)); //place the first obstacle

 Invoke("PlaceFirstArc", Random.Range(1,2)); //place the first arc

 Invoke("PlaceFirstTreeLeft", Random.Range(1,1)); //place the first tree on the left side

 Invoke("PlaceFirstTreeRight", Random.Range(1,1)); //place the first tree on the right side

 Invoke("PlaceFirstSnow", Random.Range(1,1)); //place the first snow

 }

 }

 void Update () {

 //keep checking if more trees are needed

 if (treeright.transform.position.z <= PlayerManager.positionZ + distanceCreated) {

 Invoke ("PlaceTreesRight", 0);

 } else if (treeleft.transform.position.z <= PlayerManager.positionZ + distanceCreated) {

 Invoke ("PlaceTreesLeft", 0);

 } else if (obstacle.transform.position.z <= PlayerManager.positionZ + distanceCreated) {

 Invoke ("PlaceObstacles", 0);

 } else if (arc.transform.position.z <= PlayerManager.positionZ + distanceCreated) {

90

 Invoke ("PlaceArcs", 0);

 }

 }

 // Place the first obstalce, then place all the other obstalces based on the first obstacle's

 position

 void PlaceFirstObstacle(){

 playerPosition = new Vector3 (100, 0, 0);

 distanceBetweenObjects = 35;

 radRotation = PlayerManager.radRotation;

 obstacle = (GameObject)Instantiate(obstaclePrefab, new Vector3(playerPosition.x,

 -1.5f - (distanceBetweenObjects * Mathf.Tan(radRotation)), distanceBetweenObjects +

 playerPosition.z), Quaternion.identity);

 Invoke("PlaceObstacles", 0); //take 1-3 seconds to call PlaceObstacles()

 }

 // Place the first arc, then place all the other arcs based on the first arc's position

 void PlaceFirstArc(){

 playerPosition = new Vector3 (-1, 0, 0);

 distanceBetweenObjects = 35;

 radRotation = PlayerManager.radRotation;

 arc = (GameObject)Instantiate(arcPrefab, new Vector3(playerPosition.x,

 -2- (distanceBetweenObjects * Mathf.Tan(radRotation)), distanceBetweenObjects +

 playerPosition.z), Quaternion.identity);

 Invoke("PlaceArcs", 0); //take 1-2 seconds to call PlaceArcs()

 }

 // Place the first tree on the left side, then place all the other trees based on the first tree's

 position

 void PlaceFirstTreeLeft(){

 playerPosition = new Vector3 (-1, 0, 0);

 distanceBetweenObjects = 20;

 radRotation = PlayerManager.radRotation;

 treeleft = (GameObject)Instantiate(treePrefab, new Vector3(playerPosition.x-4,

 -2- (distanceBetweenObjects * Mathf.Tan(radRotation)), distanceBetweenObjects +

 playerPosition.z), Quaternion.identity);

 Invoke("PlaceTreesLeft", Random.Range(0,1)); //take 0-1 seconds to call PlaceTreesLeft()

 }

 // Place the first tree on the right side, then place all the other trees based on the first tree's

 position

 void PlaceFirstTreeRight(){

 playerPosition = new Vector3 (-1, 0, 0);

 distanceBetweenObjects = 20;

 radRotation = PlayerManager.radRotation;

 treeright = (GameObject)Instantiate(treePrefab, new Vector3(playerPosition.x+4,

 -2- (distanceBetweenObjects * Mathf.Tan(radRotation)), distanceBetweenObjects +

 playerPosition.z), Quaternion.identity);

 Invoke("PlaceTreesRight", Random.Range(0,1)); //take 0-1 seconds to call PlaceTreesRight()

 }

 // Place the first snow, then place all the other snows based on the first snow's position

 void PlaceFirstSnow(){

 playerPosition = new Vector3 (0, 0, 0);

 distanceBetweenObjects = 20;

 radRotation = PlayerManager.radRotation;

 snow = (GameObject)Instantiate(snowPrefab, new Vector3(playerPosition.x,

 5-(distanceBetweenObjects * Mathf.Tan(radRotation)), distanceBetweenObjects +

 playerPosition.z), Quaternion.identity);

 Invoke("PlaceSnow", Random.Range(0,1)); //take 0-1 seconds to call PlaceSnow()

 }

91

 void PlaceObstacles(){

 if (obstacle.transform.position.z <= PlayerManager.endPosZ-80) {

 //only create Obstacles within a set distance (distanceCreated) from the player
 while (obstacle.transform.position.z <= PlayerManager.positionZ + distanceCreated) {
 positionX = Random.Range (minX, maxX); //calculate a random x position
 //calculate a random distance from the player
 distanceBetweenObjects = Random.Range (minDistanceBetweenObjects, maxDistanceBetweenObjects);
 posYObj = obstacle.transform.position.y - (distanceBetweenObjects * Mathf.Tan (radRotation));

 var spawnPosition = new Vector3 (positionX, posYObj, distanceBetweenObjects +
 obstacle.transform.position.z);
 obstacle = (GameObject)Instantiate (obstaclePrefab, spawnPosition, Quaternion.identity);
 NetworkServer.Spawn (obstacle);

 obstacle.transform.parent = obstacles.transform; //make the new obstacles children of the
 parent Obstacles object
 Destroy (obstacle, timeToDestroy); //destroy an obstacle after timeToDestroy seconds
 Invoke ("PlaceObstacles", 0); //do again after 3 to 5 seconds
 }
 }
 }

 void PlaceArcs(){
 if (arc.transform.position.z <= PlayerManager.endPosZ-80) {
 //only create Arcs within a set distance (distanceCreated) from the player
 while(arc.transform.position.z <= PlayerManager.positionZ + distanceCreated) {
 positionX = Random.Range (minX, maxX);
 distanceBetweenObjects = Random.Range (minDistanceBetweenObjects, maxDistanceBetweenObjects);
 posYObj = arc.transform.position.y - (distanceBetweenObjects * Mathf.Tan (radRotation));

 var spawnPosition = new Vector3 (positionX, posYObj, distanceBetweenObjects +
 arc.transform.position.z);
 arc = (GameObject)Instantiate (arcPrefab, spawnPosition, Quaternion.identity);
 NetworkServer.Spawn (arc);

 arc.transform.parent = arcs.transform; //make the new arcs children of the parent Arcs object
 Destroy (arc, timeToDestroy); //destroy an arc after timeToDestroy seconds
 Invoke ("PlaceArcs", Random.Range(0,1)); //do again after 3 to 5 seconds
 }
 }
 else {
 positionX = 0;
 distanceBetweenObjects = 5; // have the finish line a little before the end
 posYObj = arc.transform.position.y - (distanceBetweenObjects * Mathf.Tan (radRotation));

 var spawnPosition = new Vector3 (positionX, posYObj, distanceBetweenObjects +
 arc.transform.position.z);
 finish = (GameObject)Instantiate (finishPrefab, spawnPosition, Quaternion.identity);
 NetworkServer.Spawn (finish);
 }
 }

 void PlaceTreesLeft(){
 //only make trees until the position where the player is moving to
 while (treeleft.transform.position.z <= PlayerManager.positionZ + distanceCreated) {
 positionX = Random.Range (-minXTree, -maxXTree);
 distanceBetweenObjects = 10;
 posYTree = treeleft.transform.position.y - (distanceBetweenObjects*Mathf.Tan (radRotation));

 var spawnPosition = new Vector3 (positionX, posYTree, distanceBetweenObjects +
 treeleft.transform.position.z);
 treeleft = (GameObject)Instantiate (treePrefab, spawnPosition, Quaternion.identity);
 NetworkServer.Spawn (treeleft);
 treeleft.transform.parent = trees.transform; //make the new trees children of the parent
 Trees object
 Destroy (treeleft, timeToDestroyTree); //destroy a tree after timeToDestroyTree seconds
 Invoke ("PlaceTreesLeft", Random.Range (0, 1)); //do again after 0 to 1 seconds
 }
 }

 void PlaceTreesRight(){

92

 //only make trees until the position where the player is moving to
 while (treeright.transform.position.z <= PlayerManager.positionZ + distanceCreated) {
 positionX = Random.Range (minXTree, maxXTree);
 distanceBetweenObjects = 5;
 posYTree = treeright.transform.position.y - (distanceBetweenObjects*Mathf.Tan (radRotation));

 var spawnPosition = new Vector3 (positionX, posYTree, distanceBetweenObjects +
 treeright.transform.position.z);
 treeright = (GameObject)Instantiate (treePrefab, spawnPosition, Quaternion.identity);
 NetworkServer.Spawn (treeright);
 treeright.transform.parent = trees.transform; //make the new trees children of the parent
 Trees object
 Destroy (treeright, timeToDestroyTree); //destroy a tree after timeToDestroyTree seconds
 Invoke ("PlaceTreesRight", Random.Range (0, 1)); //do again after 0 to 1 seconds
 }
 }

 void PlaceSnow(){
 //only make snow until the position where the player is moving to
 while (snow.transform.position.z <= PlayerManager.endPosZ + distanceCreated) {
 positionX = 0;
 distanceBetweenObjects = 10;
 posYObj = snow.transform.position.y - (distanceBetweenObjects * Mathf.Tan (radRotation));

 var spawnPosition = new Vector3 (positionX, posYObj, distanceBetweenObjects +
 snow.transform.position.z);
 snow = (GameObject)Instantiate (snowPrefab, spawnPosition, Quaternion.identity);
 NetworkServer.Spawn (snow);
 snow.transform.parent = snows.transform; //make the new snows children of the parent
 Snow object
 Invoke ("PlaceSnow", Random.Range (0, 1)); //do again after 0 to 1 seconds
 }
 }
}

93

Appendix D. Camera Collider Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.Networking;

public class CameraCollider : NetworkBehaviour {

 public static int count; //variable to count the score

 public static Vector3 colliderPos; //variable to store the position of the collider box

 public static bool endGame; //a boolean to determine if the end of the game is reached

 public static bool scoreOverview; //a boolean to determine when the scoreOverview can be shown

 public static int score; //new variable to communicate the counted score

 //colors and camera for extra feedback if obstacle is hit

 public Color red = Color.red;

 public Color black = Color.black;

 Camera cm;

 private float tColor;

 private float fadeTime;

 private bool obstacleHit; //a bool to communicate that an obstacle is hit and that the background

 should turn red and fade back to black

 //audio

 AudioSource correctAudio;

 AudioSource errorAudio;

 AudioSource gameEnded;

 AudioListener audiolistener;

 private bool isLocP; //boolean to store the 'isLocalPlayer' value from the parent

 public static float speed; //speed that will be changed and communicated to the playermanager

 script

 void Start () {

 count = 0;

 //get isLocalPlayer from parent

 isLocP = gameObject.transform.parent.gameObject.GetComponent<NetworkIdentity> ().isLocalPlayer;

 endGame = false; //we are not at the end of the game yet

 scoreOverview = false; //we do not show the scores yet

 speed = PlayerManager.pmSpeed;

 cm = GetComponent<Camera> ();

 AudioSource[] audios = GetComponents<AudioSource>();

 correctAudio = audios[0];

 errorAudio = audios[1];

 gameEnded = audios [2];

 tColor = 0;

 fadeTime = 1;

 obstacleHit = false;

 }

 void Update () {

 colliderPos = GetComponent<Collider>().transform.position;

 //background fade when obstacle is hit

 if (obstacleHit == true){

 tColor += Time.deltaTime / fadeTime; //count t for the fade effect

 if (tColor <= 0.75f) { //as long as the 0.75 seconds haven't passed...

 cm.backgroundColor = Color.Lerp (red, black, tColor); //... lerp the color in 0.75 sec

 } else { // if 0.75 seconds have passed...

 tColor = 0; //... reset the values so that we can lerp again when the new obstacle

94

 gets hit

 cm.backgroundColor = black;

 obstacleHit = false;

 }

 }

 }

 public IEnumerator OnTriggerEnter(Collider other){

 //collision between player and obstacle

 if (other.gameObject.CompareTag ("Obstacle")) {

 Destroy (other.gameObject); //destory an obstacle when it is hit

 if (endGame) {

 count = count; //do nothing to the score anymore when a player has reached the

 finish

 } else if (isLocP) {

 obstacleHit = true; //set obstacleHit to true so that the code for background fade

 can be executed in update()

 count = count - 100; //decrease count

 errorAudio.Play ();

 speed = speed - 1; //decrease speed

 if (speed <= 0) { //prevent standing still

 speed = 1;

 } else {

 yield return new WaitForSeconds (5); //wait 5 seconds

 speed = speed + 1; //set speed back to old value

 }

 }

 }

 //collision between player and arc

 else if (other.gameObject.CompareTag ("Arc")) {

 Destroy (other.gameObject); //destory an arc when it is hit

 if (endGame) {

 count = count; //do nothing to the score anymore when a player has reached the

 finish

 } else if (isLocP) {

 count = count + 100; //increase count

 correctAudio.Play (); }

 } //if the finish is reached

 else if (other.gameObject.CompareTag ("Finish")) {

 endGame = true; //game has ended

 gameEnded.Play ();

 yield return new WaitForSeconds (5); //wait 5 seconds

 scoreOverview = true; //show score overview

 }

 }

}

95

Appendix E. Player Manager Script

using System.Collections;

using UnityEngine.UI;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.Networking;

public class PlayerManager : NetworkBehaviour {

 public GameObject player;

 public Camera cam;

 public static float radRotation;

 //variables to store the position of the camera (player)

 //are used to place the canvas in front of the player

 public static float camPositionX;

 public static float camPositionY;

 public static float camPositionZ;

 public static float camRotationX;

 public static float camRotationY;

 public static float camRotationZ;

 public static float camRotationW;

 public static float degRotation; //to communicate the degrees rotation to SkiRotation script

 public static bool isLocalP; // a boolean that is set to true if this is the local player,

 is communicated to the game manager

 //variables to know how much trees can be made and when they should be destroyed

 public static int endPosZ;

 public static float positionZ;

 public float speed; //variable to store the speed at which the player moves forward (on the z-axis)

 public static float pmSpeed; //variable to bring the speed over to the camera script and back

 public int degreesRotation; //integer that stores the degrees that the slope is tilted

 public int endPositionZ; //z position that the player is moving towards

 private float endPositionY; //the y position that the player is moving towards

 void Start ()

 {

 transform.Translate(CameraCollider.colliderPos.x, 0, 0); //set the player at the right position

 to start

 posZ = 0f;

 pmSpeed = speed;

 degRotation = degreesRotation; //set degRotation so that it can be communicated to SkiRotation

 script

 }

 void Update(){

 if (!isLocalPlayer) {

 cam.enabled = false;

 (cam.GetComponent(typeof(AudioListener)) as AudioListener).enabled = false; // to prevent

 having 2 audiolisteners in the scene

 return;

 }

 endPosZ = endPositionZ; //make the endPosZ equal to the position that the player is moving to

 so that the value can be passed on to the spawner script

 positionZ = transform.position.z; //make positionZ equal to the position of the player so that

 we know when trees can be destroyed

 //move the player with arrows, for players on the PC

 var x = Input.GetAxis("Horizontal") * Time.deltaTime * 3.0f;

 transform.Translate(x, 0, 0);

96

 //move the player forwards at a constant speed

 transform.position = Vector3.MoveTowards(transform.position,

 new Vector3(player.transform.position.x, endPositionY, endPositionZ), speed*Time.deltaTime);

 if (isLocalPlayer) {

 isLocalP = true; //to communicate to game manager that this is the local player

 }

 radRotation = degreesRotation * Mathf.Deg2Rad; //transfer rotational degrees to radians

 endPositionY = -(endPositionZ * Mathf.Tan(radRotation)); //compute the y position that the

 player should move towards

 //store the positions and rotations of the camera for the canvas position script

 camPositionX = cam.transform.position.x;

 camPositionY = cam.transform.position.y;

 camPositionZ = cam.transform.position.z;

 camRotationX = cam.transform.rotation.x;

 camRotationY = cam.transform.rotation.y;

 camRotationZ = cam.transform.rotation.z;

 camRotationW = cam.transform.rotation.w;

 count = CameraCollider.count; //communicate the score from camera collider to here

 speed = CameraCollider.speed; //update the speed with the changes from cameracollider script

 }

}

97

Appendix F. Canvas Position Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.Networking;

using UnityEngine.UI;

public class CanvasPosition : NetworkBehaviour {

 //variables to store the x, y and z position of the player, so that the canvas can also take that

 position

 private static float positionX;

 private static float positionY;

 private static float positionZ;

 private static float rotationX;

 private static float rotationY;

 private static float rotationZ;

 private static float rotationW;

 //variables to store the position of the canvas

 private float positionXCanvas;

 private float positionYCanvas;

 private float positionZCanvas;

 private float rotationXCanvas;

 private float rotationYCanvas;

 private float rotationZCanvas;

 private float rotationWCanvas;

 private float radRotation; //variable to store the rotation of the slope

 void Start () {

 GetComponent<RectTransform> ().localPosition = new Vector3 (0, 0, 0);

 GetComponent<RectTransform> ().localRotation = new Quaternion (0, 0, 0, 0);

 }

 void Update () {

 radRotation = PlayerManager.radRotation; // get the radians that the slope is tilted

 //set the position of the canvas equal to the position of the camera (player) so that score

 will be visible at all times

 positionXCanvas = PlayerManager.camPositionX;

 positionYCanvas = PlayerManager.camPositionY - (3 * Mathf.Tan (radRotation)); //take into

 account the rotation of the slope

 positionZCanvas = PlayerManager.camPositionZ + 3; //+3 so that the canvas is a bit in front of

 the player (instead of on the player)

 GetComponent<RectTransform> ().localPosition = new Vector3 (positionXCanvas, positionYCanvas,

 positionZCanvas);

 }

}

98

Appendix G. Floating Script

using UnityEngine;
using System.Collections;

public class Floating : MonoBehaviour {

 public float amplitude = 0.5f;
 public float frequency = 1f;

 //variables to store the position
 Vector3 positionOffset = new Vector3 ();
 Vector3 tempPosition = new Vector3 ();

 // Use this for initialization
 void Start () {
 //store the starting position
 positionOffset = transform.position;
 }

 void Update () {
 //use a sinus to float
 tempPosition = positionOffset;
 tempPosition.y += Mathf.Sin (Time.fixedTime * Mathf.PI * frequency) * amplitude;
 transform.position = tempPosition;
 }
 }

99

Appendix H. Game Manager Script

using System.Collections;

using System.Collections.Generic;

using UnityEngine;

using UnityEngine.UI;

using UnityEngine.Networking;

public class GameManager : NetworkBehaviour {

 //Text variables

 public Text countText; // the text that displays the amount of points earned

 public Text winText; // the text that will be displayed at the end of the game

 public Text scoreOverviewText; // the text taht will be displayed at the end of the game in a score

 overview

 public Text you; // the text that says "you"

 public Text opponent; // the text that says "opponent"

 public Text opponentScore; // the text that holds the opponents score

 public Text title; // the text that says "score overview" in the score overview

 //Image variables

 public Image image; // the background for the score overview

 public Image youIsWinner; // the image that will be displayed when you win

 public Image opponentIsWinner; // the image that will be displayed when opponent wins

 private bool isLocalP;

 public int score;

 void Start () {

 //set both of the texts equal to nothing on the first frame

 SetText();

 winText.text = "";

 }

 public void Update () {

 score = CameraCollider.count; //take the countshare variable from the camera to see how much

 the score is

 SetText (); //set the count text

 isLocalP = PlayerManager.isLocalP; //get isLocalP from playermanager script

 }

 public void SetText(){

 countText.text = "Points: " + score;

 if (CameraCollider.endGame) {

 winText.text = "Game ended";

 print ("you: " + score);

 print ("opponent: " + score);

 } else {

 winText.text = "";

 }

 if (CameraCollider.scoreOverview) {

 scoreOverviewText.text = score + " points";

 image.enabled = true;

 title.enabled = true;

 you.enabled = true;

 opponent.enabled = true;

 opponentScore.enabled = true;

 //fake score overview where opponent has reached 700 points

 if (score > 700) {

 scoreOverviewText.color = new Color (0, 255, 0); //make green if he is the winner

 you.color = new Color (0, 255, 0); //make green if he is the winner

 youIsWinner.enabled = true;

 } else {

 opponent.color = new Color (0, 255, 0); //make opponent green if he is the winner

100

 opponentScore.color = new Color (0, 255, 0); //make opponent green if he is the winner

 opponentIsWinner.enabled = true;

 }

 //if no score overview can be shown, disable all its elements

 } else {

 scoreOverviewText.text = "";

 image.enabled = false;

 title.enabled = false;

 you.enabled = false;

 opponent.enabled = false;

 opponentScore.enabled = false;

 youIsWinner.enabled = false;

 opponentIsWinner.enabled = false;

 }

 }

}

101

Appendix I. Network Manager Script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;
using UnityEngine.Networking;
using UnityEngine.Networking.Match;

public class NwManager : NetworkBehaviour {

 NetworkMatch matchMaker;
 public NetworkManager nwManager;

 void Start () {
 nwManager.StartHost (); //if you want the device to be the host
 //nwManager.StartClient(); //if you want the device to be the client
 }

}

102

Appendix J. Obstacle Script

using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class ObstacleScript : MonoBehaviour {

 public float speed;
 public GameObject obstacle;

 void Start () {
 }

 void Update () {
 transform.Rotate (new Vector3 (15, 30, 45) * Time.deltaTime); //rotates the obstacle
 }
}

103

Appendix K. Ski Rotation Script
using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class SkiRotation : MonoBehaviour {

 public float rotationX;

 void Start () {
 rotationX = PlayerManager.degRotation; //get the rotation of the slope
 transform.Rotate (-rotationX, 0, 0); //rotate the skies along with the slope, so that it looks
 like they’re placed on the slope
 }

 void Update () {
 }
}

104

Appendix L. Questionnaire First Round of User Tests

Gender: □ Male □ Female

Age:

Skiing experience: □ Moderate □ Experienced □ Very experienced

Circle how much each symptom below is affecting you right now

General discomfort

None Slight Moderate Severe

Fatigue

None Slight Moderate Severe

Headache

None Slight Moderate Severe

Eye strain

None Slight Moderate Severe

Difficulty focussing

None Slight Moderate Severe

Salivation increasing

None Slight Moderate Severe

Sweating

None Slight Moderate Severe

Nausea

None Slight Moderate Severe

Difficulty concentrating

None Slight Moderate Severe

Fullness of the head

None Slight Moderate Severe

Blurred vision

None Slight Moderate Severe

Dizziness with eyes open

None Slight Moderate Severe

Dizziness with eyes closed

None Slight Moderate Severe

* Vertigo

None Slight Moderate Severe

** Stomach awareness

None Slight Moderate Severe

Burping

None Slight Moderate Severe

* Vertigo is experienced as loss of orientation

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of nausea

105

For each of the following statements, please indicate how true it is for you

 Not at
all true Somewhat

true Very
true

I enjoyed playing the game very much □ □ □ □ □ □ □

Playing the game was a fun activity to do. □ □ □ □ □ □ □

I thought playing the game was a boring activity.

□ □ □ □ □ □ □

The game did not hold my attention at all.

□ □ □ □ □ □ □

I would describe playing this game as very
interesting.

□ □ □ □ □ □ □

I thought the game was quite enjoyable.

□ □ □ □ □ □ □

While I was playing the game, I was thinking
about how much I enjoyed it.

□ □ □ □ □ □ □

I think I am pretty good at this game. □ □ □ □ □ □ □

I think I did pretty well at this game, compared to
others.

□ □ □ □ □ □ □

After playing this game for a while, I felt pretty
competent.

□ □ □ □ □ □ □

I am satisfied with my performance at this game. □ □ □ □ □ □ □

I was pretty skilled at this game. □ □ □ □ □ □ □

106

This was an game that I couldn’t play very well. □ □ □ □ □ □ □

I put a lot of effort into this game. □ □ □ □ □ □ □

I didn’t try very hard to do well at this game. □ □ □ □ □ □ □

I tried very hard on this game. □ □ □ □ □ □ □

It was important to me to do well at this game. □ □ □ □ □ □ □

I didn’t put much energy into this game. □ □ □ □ □ □ □

The actions I performed in the physical world had
influence on the game.

□ □ □ □ □ □ □

There was no real correlation between my
actions in the physical world and the game.

□ □ □ □ □ □ □

The multiplayer aspect of the game motivated
me.

□ □ □ □ □ □ □

I liked the fellow player. □ □ □ □ □ □ □

I did not notice the fellow player. □ □ □ □ □ □ □

I would like to play this game again. □ □ □ □ □ □ □

This game is useful for teaching people how to
ski.

□ □ □ □ □ □ □

I think playing this game more regularly would
help me improve my skiing skills.

□ □ □ □ □ □ □

107

Is there anything you missed in the game?

If you could choose anything, what would you like to add or change to the game? (you are

allowed to give multiple answers)

108

Appendix M. Questionnaire Second Round of User Tests

Gender: □ Male □ Female

Age:

Skiing experience: □ Not so
experienced

□ Moderate □ Experienced □ Very
experienced

Circle how much each symptom below is affecting you right now

General discomfort

None Slight Moderate Severe

Fatigue

None Slight Moderate Severe

Headache

None Slight Moderate Severe

Eye strain

None Slight Moderate Severe

Difficulty focussing

None Slight Moderate Severe

Salivation increasing

None Slight Moderate Severe

Sweating

None Slight Moderate Severe

Nausea

None Slight Moderate Severe

Difficulty concentrating

None Slight Moderate Severe

Fullness of the head

None Slight Moderate Severe

Blurred vision

None Slight Moderate Severe

Dizziness with eyes open

None Slight Moderate Severe

Dizziness with eyes closed

None Slight Moderate Severe

* Vertigo

None Slight Moderate Severe

** Stomach awareness

None Slight Moderate Severe

Burping None Slight Moderate Severe

 * Vertigo is experienced as loss of orientation

** Stomach awareness is usually used to indicate a feeling of discomfort which is just short of nausea

109

 For each of the following statements, please indicate how true it is for you

 Not at
all true

 Somewhat Very
true

true

I prefer last week’s version of the game over this
week’s version.

□ □ □ □ □ □ □

I did not notice any difference between the two
versions of the game.

□ □ □ □ □ □ □

I prefer this week’s version of the game over last
week’s version.

□ □ □ □ □ □ □

This version of the game made me more aware of
my mistakes.

□ □ □ □ □ □ □

This version of the game made me more aware of
the things I did right.

□

□

□

□

□

□

□

In this version of the game I felt more distracted.

□ □ □ □ □ □ □

This version of the game was more clear to me

□ □ □ □ □ □ □

Were there differences between this version of the game and the version you played last

week? If yes, please list the differences.

110

Which version of the game do you prefer, and why?

 What would you still like to change or add to the game?

111

References

[1] R. Baptista, A. Coelho, and C. V. de Carvalho, “Relationship Between Game Categories and
Skills Development: Contributions for Serious Game Design,” Proc. Eur. Conf. Games-based
Learn., vol. 2015–Janua, no. October, pp. 656–663, 2015.

[2] S. Göbel, S. Hardy, V. Wendel, F. Mehm, and R. Steinmetz, “Serious games for health,” Proc.
Int. Conf. Multimed. - MM ’10, no. October, p. 1663, 2010.

[3] F. Ke, “Designing and integrating purposeful learning in game play: a systematic review,”
Educ. Technol. Res. Dev., vol. 64, no. 2, pp. 219–244, 2016.

[4] H. Tannous, D. Istrate, M. C. Ho Ba Tho, and T. T. Dao, “Serious game and functional
rehabilitation for the lower limbs,” Eur. Res. Telemed. / La Rech. Eur. en Télémédecine, vol. 5,
no. 2, pp. 65–69, 2016.

[5] S. Hardy, T. Dutz, J. Wiemeyer, S. Göbel, and R. Steinmetz, “Framework for personalized and
adaptive game-based training programs in health sport,” Multimed. Tools Appl., pp. 5289–
5311, 2014.

[6] W. B. Cieślńiski, J. Sobecki, P. A. Piepiora, Z. N. Piepiora, and K. Witkowski, “Application of the
Augmented Reality in prototyping the educational simulator in sport - the example of judo,” J.
Phys. Conf. Ser., vol. 710, p. 12016, 2016.

[7] J. Westlin and T. H. Laine, “Calory Battle AR: an Extensible Mobile Augmented Reality
Platform,” IEEE World Forum Internet Things, pp. 171–172, 2014.

[8] A. Mader and W. Eggink, “A Design Process for Creative Technology,” no. September, 2014.

[9] H. Sharp, A. Finkelstein, and G. Galal, “Stakeholder Identification in the Requirements
Engineering Process,” pp. 1–5.

[10] K. Eason, Information Technology and Organisational Change. Taylor & Francis, 1987.

[11] C. Wilson, Brainstorming and beyond : a user-centered design method. Morgan Kaufmann,
2013.

[12] “Use-cases - An approach to capturing and describing software requirements and basis for
use-case driven development,” 2014. [Online]. Available:
http://www.comp.dit.ie/rlawlor/Soft_Eng/UML/Use-cases.pdf. [Accessed: 28-Apr-2017].

[13] A. Cockburn, “Writing Effective Use Cases,” Work, vol. 26, no. 1, p. 94, 2001.

[14] Jesse Schell, The art of game design, vol. 1. 2008.

[15] K. Waters, “Prioritization using MoSCoW,” 2009. [Online]. Available:
https://cs.anu.edu.au/courses/comp3120/local_docs/readings/Prioritization_using_MoSCoW
_AllAboutAgile.pdf. [Accessed: 26-Apr-2017].

[16] R. S. Kennedy, N. E. Lane, K. S. Berbaum, and M. G. Lilienthal, “Simulator Sickness
Questionnaire: An Enhanced Method for Quantifying Simulator Sickness,” Int. J. Aviat.
Psychol., vol. 3, no. 3, pp. 203–220, 1993.

[17] R. van Delden, “(Steering) Interactive Play Behavior,” University of Twente, 2017.

[18] “Intrinsic Motivation Inventory (IMI),” no. Imi, 1994.

[19] A. Whitehead, H. Johnston, N. Nixon, and J. Welch, “Exergame effectiveness: what the
numbers can tell us,” Proc. 5th ACM SIGGRAPH Symp. Video Games - Sandbox ’10, no.
October, pp. 55–62, 2010.

112

[20] R. W. Lindeman, G. Lee, L. Beattie, H. Gamper, R. Pathinarupothi, and A. Akhilesh, “GeoBoids:
A mobile AR application for exergaming,” 11th IEEE Int. Symp. Mix. Augment. Real. 2012 -
Arts, Media, Humanit. Pap. ISMAR-AMH 2012, pp. 93–94, 2012.

[21] F. Anderson, T. Grossman, J. Matejka, and G. Fitzmaurice, “YouMove: Enhancing Movement
Training with an Augmented Reality Mirror,” Proc. 26th Annu. ACM Symp. User interface
Softw. Technol. - UIST ’13, pp. 311–320, 2013.

[22] D. Reidsma, E. Dehling, and H. Welbergen, “Leading and following with a virtual trainer,” 4th
Int. Work. Whole Body Interact. Games Entertain., p. 4, 2011.

[23] M. S. Hossain, S. Hardy, A. Alamri, A. Alelaiwi, V. Hardy, and C. Wilhelm, “AR-based serious
game framework for post-stroke rehabilitation,” Multimed. Syst., vol. 22, no. 6, pp. 659–674,
2016.

[24] N. Iten and D. Petko, “Learning with serious games: Is fun playing the game a predictor of
learning success?,” Br. J. Educ. Technol., vol. 47, no. 1, pp. 151–163, 2016.

[25] Z. Z. Li, Y. B. Cheng, and C. C. Liu, “A constructionism framework for designing game-like
learning systems: Its effect on different learners,” Br. J. Educ. Technol., vol. 44, no. 2, pp. 208–
224, 2013.

[26] M. C. Swartz and E. J. Lyons, “Whats’s the Point?: A Review of Reward Systems Implemented,”
vol. 5, no. 2, 2016.

[27] D. H. Goh, E. P. P. Pe-than, and C. S. Lee, “Perceptions of virtual reward systems in
crowdsourcing games,” Comput. Human Behav., vol. 70, pp. 365–374, 2017.

[28] C. Cruz, M. D. Hanus, and J. Fox, “The need to achieve: Players â€TM perceptions and uses of
extrinsic meta-game reward systems for video game consoles,” Comput. Human Behav., vol.
71, pp. 516–524, 2017.

[29] E. L. Deci and R. M. Ryan, “Self-Determination Theory : A Macrotheory of Human Motivation ,
Development , and Health,” vol. 49, no. 3, pp. 182–185, 2008.

[30] S. Bruck and P. A. Watters, “The factor structure of cybersickness,” Displays, vol. 32, no. 4, pp.
153–158, 2011.

[31] H. B. Duh, D. E. Parker, and T. A. Furness, “An ‘ Independent Visual Background ’ Reduced
Balance Disturbance Evoked by Visual Scene Motion : Implication for Alleviating Simulator
Sickness,” pp. 3–8, 2001.

[32] L. Rebenitsch and C. Owen, “Review on cybersickness in applications and visual displays,”
Virtual Real., vol. 20, no. 2, pp. 101–125, 2016.

[33] P. Milgram, “Perceptual Issues in Augmented Reality,” no. December, 2013.

[34] G. E. Riccio and T. A. Stoffregen, “An Ecological Theory of Motion Sickness and Postural
Instability,” no. September, 1991.

[35] S. M. Ebenholtz, “Motion sickness and oculomotor systems in virtual environments,” Presence
Teleoperators Virtual Environ., vol. 1, no. 3, pp. 302–305, 1992.

[36] R. S. Kennedy and J. E. Fowlkes, “What does it mean when we say that ‘simulator sickness is
polygenic and polysymptomatic’?,” IMAGE V Conf., 1990.

[37] “Infinite Slope - Indoor Ski USA,” 2017. [Online]. Available:
http://www.indoorskiusa.com/start/our-solutions/infinite-slope. [Accessed: 30-May-2017].

[38] A. Seth, J. M. Vance, and J. H. Oliver, “Virtual reality for assembly methods prototyping : a
review,” 2010.

113

[39] C. Cruz-neira, D. J. Sandin, and T. A. Defanti, “Surround-Screen Projection-Based Virtual
Reality : The Design and Implementation of the CAVE,” pp. 135–142, 1993.

[40] Z. O’Connor, “Colour psychology and colour therapy: Caveat emptor,” Color Res. Appl., vol. 36,
no. 3, pp. 229–234, 2011.

[41] Vuforia, “Vuforia SDK.” [Online]. Available: https://developer.vuforia.com/downloads/sdk.
[Accessed: 25-Apr-2017].

[42] M. Hallberg, “How To MARKERLESS Augmented Reality App Tutorial for Beginners with Unity
3D,” 2016. [Online]. Available: https://www.youtube.com/watch?v=T6bd_MQ2ass. [Accessed:
01-May-2017].

[43] Unity Technologies, “Unity Learn - Multiplayer Networking.” [Online]. Available:
https://unity3d.com/learn/tutorials/topics/multiplayer-networking. [Accessed: 16-May-2017].

[44] Tango, “Tango Developer Overview,” 2017. [Online]. Available:
https://developers.google.com/tango/apis/unity/unity-simple-ar.

[45] ARToolKit, “ARToolKit for Unity,” 2016. [Online]. Available:
https://artoolkit.org/documentation/doku.php?id=6_Unity:unity_about. [Accessed: 25-Apr-
2017].

[46] Unity Technologies, “Unity.” [Online]. Available: https://unity3d.com/unity. [Accessed: 25-
Apr-2017].

[47] Unity Technologies, “Unity Manual - GameObjects,” 2017. [Online]. Available:
https://docs.unity3d.com/Manual/GameObjects.html. [Accessed: 25-Apr-2017].

[48] Epson, “Moverio BT-300 Smart Glasses - Developer Network.” [Online]. Available:
https://tech.moverio.epson.com/en/bt-300/index.html. [Accessed: 20-Apr-2017].

[49] Unity Technologies, “Unity Manual - Using the Network Manager,” 2017. [Online]. Available:
https://docs.unity3d.com/Manual/UNetManager.html. [Accessed: 08-May-2017].

[50] H. S. Oluwatosin, “Client-Server Model,” IOSR J. Comput. Eng., vol. 16, no. 1, pp. 57–71, 2014.

[51] Unity Technologies, “Unity Manual - Multiplayer and Networking - NetworkIdentity,” 2017.
[Online]. Available: https://docs.unity3d.com/Manual/class-
NetworkIdentity.html?_ga=2.109135237.1469161793.1497193659-790851949.1487956469.
[Accessed: 08-May-2017].

[52] Unity Technologies, “Unity Manual - Multiplayer and Networking - Object Spawning,” 2017.
[Online]. Available: https://docs.unity3d.com/Manual/UNetSpawning.html. [Accessed: 12-
May-2017].

[53] Microsoft, “Hololens hardware details.” [Online]. Available:
https://developer.microsoft.com/en-us/windows/mixed-
reality/hololens_hardware_details#what_you_need_to_develop. [Accessed: 18-May-2017].

