
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Tracking of moving objects
using mathematical imaging

Jesse Zwienenberg
B.Sc. Thesis

July 2017

Supervisor:
Leonie Zeune

Applied Analysis group
Department of Applied Mathematics

Faculty of Electrical Engineering,
Mathematics and Computer Science

University of Twente
P.O. Box 217

7500 AE Enschede
The Netherlands

Abstract

Estimating the motion of objects in image sequences is a problem which arises in
several research areas like image processing, bio-medical imaging and machine vi-
sion. The motion induced on the image plane by the objects is called the optical
flow and in this work we compute this using two vastly different methods. Firstly we
look at variational models which use the image derivatives in the setting of convex
energy functional minimization to compute the optical flow between images. The
second method that we discuss is known as deep learning and revolves around the
usage of convolutional neural networks. To compare the performance of both meth-
ods we implemented the variational models from scratch and for the deep learning
approach we use a publicly available pre-trained model.

iii

iv

Contents

Abstract iii

1 Introduction 1
1.1 Overview . 1
1.2 Outline . 2

2 Optical Flow 3
2.1 Optical flow constraint . 3
2.2 Difficulties . 5
2.3 Representing flow fields . 6
2.4 Benchmarks . 7

3 Variational Methods 9
3.1 Variational models . 9

3.1.1 Data terms . 10
3.1.2 Regularization terms . 11

3.2 Numerical realization . 13
3.2.1 Implementation . 14

4 Deep Learning 19
4.1 How deep learning works . 19

4.1.1 Activation functions . 20
4.1.2 Learning . 20
4.1.3 Convolutional neural networks 22

4.2 FlowNet 2.0 . 23

5 Testing 25
5.1 Error measures . 25
5.2 Variational Methods . 26

5.2.1 The effect of alpha . 26
5.3 Deep Learning . 27

5.3.1 Components . 27

v

VI CONTENTS

5.3.2 Performance . 28
5.3.3 Robustness against noise . 29

5.4 Comparison . 31
5.4.1 Performance . 31
5.4.2 Robustness against noise . 33

6 Conclusions and recommendations 35
6.1 Conclusions . 35
6.2 Recommendations . 35

References 37

Appendices

A Appendix A 39
A.1 MATLAB implementation of variational models 39

Chapter 1

Introduction

1.1 Overview

The analysis of image motion plays a big role in computer vision. This is a field
which aims to give computers the ability to understand images and videos on a high
level. Application wise there is a very wide range of areas in which the analysis and
estimation of image motion is useful. These applications range from recognizing
human activity in the recordings of video surveillance systems to tracking biological
cells in microscopic videos. Other notable examples of applications are motion com-
pensation for video compression and estimating the 3D scene layout from 2D video
footage.

In this paper we are specifically interested in determining the underlying 2D mo-
tion of objects in image sequences. This is what is called the optical flow. So given
any two consecutive frames in a sequence of images we are looking to create a field
of vectors such that every vector represents how the object at that specific position
is moving in between the two frames. This is called a flow field and an example
of what this looks like, is shown in Fig. 1.3. This field represents the optical flow
between two images from the ’Hamburg Taxi’ sequence [1].

Figure 1.1: Image 1 [1] Figure 1.2: Image 2 [1] Figure 1.3: Flow field

1

2 CHAPTER 1. INTRODUCTION

The first method for computing the optical flow that we look at is the variational
method. This method follows from the mathematical formulation of basic assump-
tions about image motion. We solve the minimization problem that follows from
these assumptions using a primal-dual algorithm.

The second method is the deep learning method, which uses very large con-
volutional neural networks. These networks extract abstract image-features and
compute the optical flow based on these features. The models are trained on data
of which the underlying motion is known. Through this training the models learn
how they should extract and combine the image-features to accurately compute the
optical flow.

Variational methods are driven by theory and have been around in image analy-
sis for a long time. On the other hand deep learning methods are data-driven and
only recently gained popularity. Since there is such a big difference between the ap-
proaches of both methods it is interesting to see how their performances compare
with each other.

1.2 Outline

In this work we review two different approaches to optical flow computation. We start
by taking a closer look at the optical flow and describing it in a mathematical way in
Chapter 2. We describe problems that come up which make computing the optical
flow a difficult task.
Then in Chapter 3 we discuss variational methods for optical flow computation, the
first of the two approaches that we discuss. After introducing the general concept of
variational methods we explore and compare different possibilities inside this frame-
work. After this we look at a numerical implementation of these methods.
In Chapter 4 we look at a totally different approach known as deep learning. We
show what convolutional neural networks look like and how they can be used to
compute the optical flow.
In Chapter 5 we put the discussed methods in practice. We show how they perform
on several datasets and compare aspects of their performance.
Finally we present the drawn conclusions and suggestions for further research in
Chapter 6.

Chapter 2

Optical Flow

Finding the optical flow comes down to recognizing corresponding objects between
two images. So for any object X from the first image we are given the task of finding
an object Y in the second image which corresponds to object X. If we are able
to find such an object Y , we can estimate the optical flow with the vector between
the position of X and the position of Y (scaled according to the time between the
images). For this task of finding corresponding objects we can use the assumption
that if we make sure the time between two images is small enough, the object will
look the same in both images, the only difference being that it might be slightly
translated across the axes of the image. There are several obvious cases in which
this assumption fails, examples are objects which become occluded or inconstant
lighting casting shadows on the scene which change the appearance of moving
objects over time. These things are points of attention, but in most cases the majority
of objects in a scene will look approximately the same in consecutive images, so this
assumption is a reasonable starting point.

2.1 Optical flow constraint

Let us introduce some notation to turn this assumption into an equation. Let x =

(x1, x2)ᵀ ∈ R2 denote a spatial position and t ∈ [0, T] a certain point in time. Now let
u(x, t) be a representation of the appearance of the pixel at position x on the image
taken at time t. This representation can have multiple dimensions, for example
the RGB-values of the pixel. In this work however we use u(x, t) to denote the
brightness, the simplest representation of the pixel.

3

4 CHAPTER 2. OPTICAL FLOW

Consider an object X which is located at position x on the image taken at time
t. Let’s denote the displacement of X between this image and the next one by
the vector ∆x and the time between the images by the scalar ∆t. We expect the
brightness of object X to be the same in both images so now we can formulate the
following brightness constancy constraint :

u(x, t) = u(x+ ∆x, t+ ∆t) . (2.1)

We can rewrite the right-hand side as a Taylor Series at the point (x, t) and under
the condition that both ∆x and ∆t are small we can can ignore the higher order
terms.

u(x+ ∆x, t+ ∆t) ≈ u(x, t) +
∂u

∂x1

∆x1 +
∂u

∂x2

∆x2 +
∂u

∂t
∆t .

When it comes to determining optical flow the displacement ∆x is unknown and the
displacement per time unit ∆x

∆t
is what we actually want to compute. So the next

step is canceling out the common term u(x, t) and dividing everything by ∆t, which
yields:

0 =
∂u

∂x1

∆x1

∆t
+

∂u

∂x2

∆x2

∆t
+
∂u

∂t
.

In the literature this is often written in a slightly cleaner way by using ut to denote
∂u
∂t

and ∇u to denote the gradient of the image data, a vector containing the two

spatial derivatives of the image,
(
∂u
∂x1
, ∂u
∂x2

)ᵀ
. Also v = (vx, vy)

ᵀ is used to denote the

estimation of the optical flow ∆x
∆t

=
(

∆x1
∆t
, ∆x2

∆t

)ᵀ, yielding:

∇u · v + ut = 0 . (2.2)

This equation is generally known as the optical flow constraint. It is used in the
variational framework introduced in Chapter 3.

2.2. DIFFICULTIES 5

2.2 Difficulties

The optical flow constraint exposes some inherent problems of motion perception.
The constraint forms a linear system with n linear equations, where n is the num-
ber of dimensions of u(x, t). This system has a unique solution if there are two
independent equations since there are two unknowns, vx and vy. The brightness is
one-dimensional so in our case the system consists of only a single equation, hence
this system does not yield a unique solution. Only the component in the direction of
the image derivatives (ux, uy)

ᵀ can be determined. We can not say anything about
the component in the direction perpendicular to these derivatives, based on this
system. Furthermore when all image derivatives are zero the optical flow constraint
gives us no information about the motion at all. This occurs in the interior of uniform
regions, where any v would satisfy the optical flow constraint.

This problem of an underdetermined system as a result of the optical flow constraint
is known as the aperture problem. This problem tells us that certain combinations
of motions of objects can cause identical looking images. As a consequence there
will be cases in which there is no way to uniquely determine the underlying motion
based on the image data alone. This means that if we want to use the optical flow
constraint to compute the optical flow at locations like this we need extra constraints
to obtain unique solutions.

In the previous section we mentioned a couple of occasions where the constancy
assumption (equation 2.1) is not fulfilled at all. Apart from these situations we need
to take into account that image data is not perfect and consequently the brightness
constancy constraint will not hold perfectly most of the time. First of all the data is
a discretization of the reality, this can cause objects to be displayed slightly different
between images especially when the resolutions of the images are low. Secondly,
noise in the data can cause disturbances in the fulfillment of the optical flow con-
straint.

Furthermore we need to keep in mind that to arrive at the optical flow constraint we
assumed ∆x and ∆t to be small. When ∆x is too big we will not be able to find
the correct corresponding object using the optical flow constraint. This comes from
the fact that the optical flow constraint at location x only uses the image derivatives
at location x. These derivatives only describe the local environment so image in-
formation far away from x is completely ignored. On the other hand when ∆t is too
large the assumption that any found displacement between corresponding objects
represents the actual optical flow is not reasonable anymore. Objects might as well
have traveled across the whole image and back again in the meantime.

6 CHAPTER 2. OPTICAL FLOW

For an in-depth analysis of other basic problems and concepts related to optical flow
estimation we refer to [2].

2.3 Representing flow fields

Representing the flow field with arrows is difficult to interpret in some cases, so often
the motion is indicated by a color coding instead. In Fig. 2.4 we see how the flow
field from Fig. 2.3 can be represented using colors. The color indicates the direction
of the vector and the intensity goes up as the absolute value of the vector gets larger,
which indicates a higher velocity. This is visualized by the colorwheel in Fig. 2.5.

Figure 2.1: Image 1 [1] Figure 2.2: Image 2 [1]

Figure 2.3: Arrows Figure 2.4: Color-coding

Figure 2.5: Colorwheel

2.3. REPRESENTING FLOW FIELDS 7

2.4 Benchmarks

The Middlebury database [5] is often used as a bench-
mark to assess the relative performances of optical flow
algorithms. It is a small dataset of image sequences of
which the ground-truth flow is determined through dif-
ferent measurements. This dataset addresses different
challenging aspects of flow estimation and it introduced
an online evaluation and ranking for optical flow algo-
rithms.

Some more image sequences and their ground-truth
flows are presented by the KITTI database [6]. This data
base includes the frames of videos recorded by the cam-
era on top of a driving car. The ground truth flow is deter-
mined using a laserscanner which is also located on top
of the car. This dataset contains realistic data of outdoor
scenes, however the ground-truth flow is sparse since
the movement of the sky can not be captured using the
laser scanner.

Another commonly used benchmark is the MPI Sintel
dataset [7]. This dataset consist of rendered scenes of
an animated movie. Since the scenes are artificial the
ground-truth can be easily determined. This dataset is
the largest of the three and contains over a thousand im-
age pairs.

Examples of image pairs and their ground-truths from
each of these datasets are displayed in Fig. 2.6, 2.7 and
2.8.

Figure 2.6: Middlebury

Figure 2.7: KITTI

Figure 2.8: MPI Sintel

8 CHAPTER 2. OPTICAL FLOW

Chapter 3

Variational Methods

The first implementation of a variational method for optical flow computation was
the Horn-Schunk method [8] constructed by Horn and Schunk in 1981. Since then
better and more complex methods have been developed (e.g. [3]), but the essence of
variational methods has remained the same. As mentioned earlier most variational
methods for optical flow estimation use the optical flow constraint as a foundation.
The main problem of this constraint is its possible ambiguity due to the aperture
problem. To overcome this problem and to get to a unique result, an additional
constraint is added. This constraint should impose some kind of structure on the
solution that we would expect actual flow fields to have.

The additional constraint that the Horn-Schunk method used was based on the
assumption that flow fields vary smoothly almost everywhere. For the interior areas
of objects this assumption makes a lot of sense, in these areas we can expect
neighboring points to have similar velocities. However, for points on the edges of
objects it is different. At the edges of objects neighboring points can belong to
entirely different objects which can have entirely different velocities so discontinuities
can be expected. This means that methods using a smoothness constraint are likely
to have difficulties determining the correct flow around the edges of objects.

3.1 Variational models

The basic idea of variational models for optical flow computation is to use a sec-
ondary constraint alongside with the optical flow constraint to find a solution which
agrees with both of them as well as possible. This is done through the usage of
energy functionals. For a given image sequence u we want to assign a certain mea-
sure of ’energy’ to any possible flow field v, this energy serves to indicate how well
both constraints are met. When the constraints are fulfilled this energy gets very
small and violations of the constraints lead to higher energies. Through minimizing

9

10 CHAPTER 3. VARIATIONAL METHODS

this energy we wish to find a v with a very low energy, indicating it fits our constraints
well. In general these variational models are of the form:

min
v

D(u, v) + αR(v) . (3.1)

Here,D(u, v) is called the data term, it takes as input the image data u and a possible
solution v. To make sure the optimal solution v̂ of the expression (3.1) does not
violate the optical flow constraint too much, this function is defined in such a way
that the output gets bigger as v obeys the optical flow constraint less strictly.

The other termR(v), called the regularization term, does not use the image data.
The purpose of this term is basically to measure how likely it is for any particular v
to be an actual flow field, regardless of the image sequence. As mentioned before
a way of doing this is by looking at the smoothness of the field v. In general this is
what most regularization terms do, they get very small when v is smooth and larger
when the smoothness constraint is violated.

The α is a scalar deciding the relative importance between the two terms. Choos-
ing the appropriate α comes down to deciding how well we expect the actual flow
field to agree with the optical flow constraint. For noisy images we need to set α
to a higher value. Due to the noise, the actual flow field violates the optical flow
constraint by some amount, so we really need the regularization term to enforce
smoothness even if that means the optical flow constraint gets violated more. For
’cleaner’ images we do not really need the regularization term to force the smooth-
ness as much. In this case its task is better described as picking the most smooth
field out of the possible solutions v that agree with the optical flow constraint really
well. For this task it is better to set α to a lower value.

3.1.1 Data terms

We mentioned that we want the data term to give a certain ’punishment’ to possible
solutions v for violating the optical flow constraint. We define such a function by
calculating how much it violates the optical flow constraint for every position x and
then take a norm. Conventional choices for this norm are either the L1 norm or the
squared L2 norm, yielding:

DL1(u, v) := ‖∇u · v + ut‖1 and

DL2(u, v) :=
1

2
‖∇u · v + ut‖2

2 .

The squared L2 norm takes the least squares approach to get to a solution, which
is a method commonly used for approximating solutions of overdetermined sys-
tems. The Horn-Schunk method [8] is using this as its data term. One property

3.1. VARIATIONAL MODELS 11

of this squared L2 norm is that outliers do have a huge impact on its value, so this
method does not allow the solution to violate the optical flow constraint by a very
large amount. This is not always preferable. In this respect the L1 norm handles
outliers in a more robust way. Here, outliers in the data are less destructive to the
solution.

3.1.2 Regularization terms

The regularization terms that we mention here serve to give some measure of
smoothness to the flow fields. This can be done by looking at the gradient of the
flow field ∇v, which you want to be close to 0 most of the time if you expect the flow
field to be smooth. Two standard choices for the regularization term are:

RTV (v) := ‖∇v‖1 and

RL2(v) :=
1

2
‖∇v‖2

2 .

The Horn-Schunk method [8] uses the last option of the two, here the L2 norm
is used to punish possible solutions v for having a gradient which is not close to
0 at several positions. Just like with the L2 data term, the L2 regularization term
is punishing outliers really heavily. This will generally lead to solutions which do
not have any of these outliers, meaning it is likely to be a completely smooth field.
Again, this might not always be what we want, flow fields need not to be smooth
everywhere. In fact most of the time we want the field to have sharp edges instead
of smooth transitions at the very edge of the objects. The total variation (TV) of v
is a regularization term which generally allows these sharp edges to exist, since the
punishment for outliers is not as extreme in this case. Also where the L2 term has
very low punishment for small deviations from 0, the TV term enforces this constraint
linearly. So when minimizing the TV term, there is still a relatively big incentive to
push small deviations from 0 even closer to 0. This will generally result in solutions
which are approximately constant everywhere except at the edges of objects where
sharp edges occur.

Extended regularization terms

We can choose between RL2 and RTV to either create a smooth solution or a so-
lution with sharp edges. However in practice we want the solution to have both
properties. An attempt to combine these properties is described in [4], where an

12 CHAPTER 3. VARIATIONAL METHODS

extension of the following form is proposed:

R(v) = inf
w

α0

2∑
i=1

‖∇vi − w‖1 + α1S(w) . (3.2)

Here, a new variable w is introduced to shift the derivatives of v, and a function S(w)

which forces this w to be small. The usage of the L1 norm in ‖∇vi − w‖1 is supposed
to create the sharp edges and we need w to facilitate the general smoothness of v.
Also instead of a single value for α we will have two parameters. Here α0 has a
role similar to that of α in the standard regularization terms, it determines the weight
of the smoothness constraint relative to the optical flow constraint. Now α1 can be
chosen in proportion to α0. When α0

α1
is chosen to be large this indicates that the

piece-wise constant parts outweigh the smooth parts and the opposite when α0

α1
is

small.
We can achieve the smoothness in the solution by using the squared L2 norm

of w as S(w). Doing this makes sure w will be small and does not contain outliers,
which enforces a certain smoothness on w. We expect ∇vi − w to be piece-wise
constant, since we use the L1 norm. If we then add the small smooth field w we can
expect ∇v to be piece-wise smooth, which is what we wanted.

Another way of achieving smoothness is by minimizing higher order derivatives
of v. If we define S(w) to be the L1 norm of ∇w we achieve something similar to this
since the first part of the extended regularization term leads to w being close to ∇v.
Effectively we are minimizing something which is close to ∇2v. By letting this part of
the regularization term work alongside the first part we want to generate solutions
which are smooth and contain sharp edges

This gives us the following definitions for the extended regularization terms:

RTV/L2(v) := inf
w

α0

2∑
i=1

‖∇vi − w‖1 +
α1

2
‖w‖2

2 and

RTV/TV (v) := inf
w

α0

2∑
i=1

‖∇vi − w‖1 + α1 ‖∇w‖1 .

3.2. NUMERICAL REALIZATION 13

3.2 Numerical realization

The optical flow constraint at a certain pixel is only dependent on the solution v at
that pixel. However, this is not the case for the regularization terms. Changes at
a certain position in v will cause changes in ∇v in an area around this position.
This means we can not divide the problem into independent parts and to solve the
minimization problem we need an efficient method which solves problems of the
form:

min
v

D(u, v) + αR(v) .

A commonly used method for solving minimization problems is gradient descent.
This method uses the partial derivatives of the objective function to determine where
the minimum is located. This minimum is iteratively approached by taking steps in
the direction of the negative of the gradient. One of the requirements of this methods
is that the objective function needs to be differentiable. The regularization terms that
we mentioned are non-smooth and hence not differentiable. For this reason basic
minimization schemes like gradient descent do not work.

A minimization scheme that does work for this problem is the first-order primal dual
algorithm described in [9]. This algorithm converges to a solution at the rate O(1/N)

and applies to problems of the form:

min
x

F (Kx) +G(x) . (3.3)

Where F and G are proper, convex1, lower semi-continuous2 functions and K is a
continuous, linear operator.

The algorithm acts on a so-called primal-dual problem which follows from the primal
problem (3.3). This primal-dual problem is of the form:

min
x

max
y

〈Kx, y〉+G(v)− F ∗(y) . (3.4)

The algorithm iteratively approaches the solution x̂, ŷ of the primal-dual problem
(3.4). In every iteration the value x and y are approximated as a function of the x

and y of the previous iteration. How this iterative scheme is defined can be seen in
Fig. 3.1.

1f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y) ∀θ ∈ [0, 1]
2lim inf

x→x0

f(x) ≥ f(x0)

14 CHAPTER 3. VARIATIONAL METHODS

Primal-dual algorithm [9]
Choose: τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈ X × Y, x̄0 = x0

yn+1 = (I + σ∂F ∗)−1 (yn + σKx̄n)

xn+1 = (I + τ∂G)−1 (xn − τK∗yn+1
)

x̄n+1 = xn+1 + θ
(
xn+1 − xn

)
Where:

(I + τ∂F)−1 (y) = arg min
x

{
‖x− y‖2

2τ
+ F (x)

}

Figure 3.1: Scheme showing how variables are updated in the algorithm [9]

Here, F ∗ is used to denote the convex conjugate of F . The parts which are essential
for the efficiency of this algorithm are the operators (I + τ∂F ∗)−1 and (I + σ∂G)−1

which are called the proximal operators. The algorithm will be efficient when these
can be solved efficiently.

3.2.1 Implementation

To implement the models discussed in section 3.1 we need to convert the data- and
regularization terms to functions F and G, determine suitable operators K and K∗

and find a way to compute the proximal operators. To make sure that the algorithm
is efficient we need to formulate our problem (3.1) in such a way that the proximal
operators can be solved efficiently. The proximal operators for the data terms can
be solved efficiently as a function of v, so we can use D as our function G. However
for the regularization terms this is not the case. The gradients used in these terms
makes them complicated to invert. To overcome this problem we can put the gradient
inside the operator K. In the scheme of the algorithm we can see that we do not
need to invert this operator, we only need to determine the adjoint of this operator.
The adjoint operator of the gradient is just the negative divergence, so we can use
the operator K = ∇ without a problem. Now we can treat R as a function of ∇v
instead of just v, which leaves us with a proximal operator which can be solved
efficiently. For the extended regularization terms slightly different operators for K

3.2. NUMERICAL REALIZATION 15

can be used to make the algorithm work.

Implementation of the data terms

For the data terms we do not need the linear operator K so they can be transformed
to G straight up. The data term DL1 leads to:

G(v) = ‖v · ∇u+ ut‖1

and the term DL2 yields:

G(v) =
1

2
‖v · ∇u+ ut‖2

2 .

In case we use the regularization termRTV/L2 we will change this function G slightly.

Implementation of the regularization terms

For the regularization terms we will need the operator K to act on v and possibly
on w. For both the standard terms RTV and RL2 we can define K = ∇ as a linear
operator and K∗ = −∇· as its adjoint operator. For RTV we get:

F (Kv) = α ‖Kv‖1 = α ‖∇v‖1

and for RL2 we get:

F (Kv) =
α

2
‖Kv‖2

2 =
α

2
‖∇v‖2

2 .

For the extended regularization terms the variable w comes into play. Our primal
variable will change from v to (v, w). In the case of RTV/L2 we want our F to be a

function of ∇v − w, so we get: K =
[
∇ −I

]
and K∗ =

[
−∇· −I

]ᵀ
.

Now F can be defined as:

F (K(v, w)) = α0 ‖K(v, w)‖1 = α0 ‖∇v − w‖1 .

We want to add the last part of this regularization term RTV/L2 to the function G so
depending on the data term this becomes:

G(v, w) = ‖v · ∇u+ ut‖1 +
α1

2
‖w‖2

2 or

G(v, w) =
1

2
‖v · ∇u+ ut‖2

2 +
α1

2
‖w‖2

2 .

For the extended regularization term RTV/TV we do not need to make changes
to the original function G and we want F to be a function of (∇v − w,∇w) which we
get using the following operator and its adjoint:

K =

[
∇ −I
0 ∇

]
, K∗ =

[
−∇· 0

−I −∇·

]
.

Now F can be defined as:

F (K(v, w)) = α0 ‖∇v − w‖1 + α1 ‖∇w‖1

16 CHAPTER 3. VARIATIONAL METHODS

Calculating the proximal operators

We are left with the task of computing the proximal operators. For any combination
of the terms that we discussed, these will be efficiently solvable, there is even a
closed form representation for all of them.

For the function G we have the following possibilities:

G(v) = ‖v · ∇u+ ut‖1

G(v) =
1

2
‖v · ∇u+ ut‖2

2

G(v, w) = ‖v · ∇u+ ut‖1 +
α1

2
‖w‖2

2

G(v, w) =
1

2
‖v · ∇u+ ut‖2

2 +
α1

2
‖w‖2

2 .

The first option which comes from the usage of DL1 leads to:

v = (I + σ∂G)−1 (ṽ) = ṽ +

−τ∇u if ρ(ṽ) < −τ (∇u)2

τ∇u if ρ(ṽ) > τ (∇u)2

ρ(ṽ)
∇u if |ρ(ṽ)| ≤ τ (∇u)2

(3.5)

where ρ(v) = ∇u · v + ut .

The second option for G comes from the usage of DL2 and leads to a proximal
operator which is representable as:

v = (I + σ∂G)−1 (ṽ) =

(
a3b1 − a2b2

a1a3 − a2
2

,
a1b2 − a2b1

a1a3 − a2
2

)
(3.6)

for:

a1 = 1 + τuxux b1 = ṽ1 − τuxut
a2 = τuxuy b2 = ṽ2 − τuyut
a3 = 1 + τuyuy .

For the last two instances of G where the variable w plays a role due to the usage of
the regularization term RTV/L2 we will get a solution of the form (v, w) where w can
be computed seperately. We can calculate v in the same way as we just did in (3.5)
and (3.6), where there was no w.

(I + σ∂G)−1 (ṽ, w̃) = (v, w)

where

w =
w̃

1 + τα1

(3.7)

3.2. NUMERICAL REALIZATION 17

For the function F we have the following possibilities:

F (Kv) = α ‖Kv‖1

F (Kv) =
α

2
‖Kv‖2

2

F (K(v, w)) = α0 ‖K(v, w)‖1

F (K(v, w)) = α0 ‖∇v − w‖1 + α1 ‖∇w‖1 .

For the last instance we can calculate its solution (I + τ∂F ∗)−1 (p̃, q̃) = (p, q) sep-
arately for p and q as functions of respectively p̃ and q̃ where (p̃, q̃) = K(v, w) =

(∇v − w,∇w). So all we need to do is to find the proximal operators of the convex
conjugate of the following functions:

F (p) = α ‖p‖1 and

F (p) = α ‖p‖2
2 .

In case we choose the regularization term RTV or RTV/L2 we want to compute
the proximal operator using the convex conjugate of F (p) = α ‖p‖1 and for RTV/TV

we want to do this twice, for p and for q. First we determine the convex conjugate F ∗

which is:

F ∗(p) = αδB(L∞)

(p
α

)
where δB(L∞)

(p
α

)
:=

0 for ‖p‖∞ ≤ 1

∞ otherwise
.

Using this, the proximal operator can be determined which results in:

p = (I + τ∂F ∗)−1 (p̃) = min (α,max (−α, p̃)) . (3.8)

For the regularization term RL2 we want to compute the convex conjugate of
F (p) = α ‖p‖2

2 which is:

F ∗(p) =
1

2α
‖p‖2

2 .

Using this leads to the following proximal operator:

p = (I + τ∂F ∗)−1 (p̃) =
α

α + σ
p̃ . (3.9)

Rigorous proofs of all these claims can be found in [10] .

18 CHAPTER 3. VARIATIONAL METHODS

Chapter 4

Deep Learning

Recently deep learning methods have become popular in several fields, including
computer vision. An example of an interesting application is described in [11]. Orig-
inally these methods were only used for tasks like classification which is vastly dif-
ferent from computing the optical flow in the sense that the latter requires a per-pixel
solution. With recent progress in areas which do require per-pixel solutions like se-
mantic segmentation and depth estimation it has become increasingly interesting to
approach the optical flow problem using deep learning methods.

4.1 How deep learning works

A deep learning model is in essence a function with a very large amount of pa-
rameters, which predicts the ’label’ of the input. What this label is depends on the
application, in our case it would be the optical flow of the input images. A general
deep learning model could be described as:

ŷ = f(x ; θ) .

Here ŷ is the prediction of the label of input x using parameters θ. This function
f is described by a large artificial neural network which consists of many neurons
in a layered structure. You typically have an input layer which receives the input
x = x0 and gives x1 as output using the parameters θ1. This output is then used as
input for the next layer. The layers after the input layer, the so-called hidden layers,
sequentially determine x2, x3, · · · according to their parameters:

xi = fi(xi−1 ; θi) .

Finally the last layer, the output layer, takes the output of the last hidden layer and
determines the prediction ŷ..

ŷ = fn(xn−1 ; θn) = fn(fn−1(xn−2 ; θn−1) ; θn) = · · · .

19

20 CHAPTER 4. DEEP LEARNING

The layers consist of a certain amount of neurons and some ’activation functions’.
Every neuron in layer i has connections to neurons from the previous layer i − 1

through which it receives its inputs xi−1. Each connection has a certain weight, the
weights of all the neurons in a single layer form θi. The neuron uses these weights
to take a weighted sum of its inputs and pass it through the activation function.
The outputs of all these neurons form xi, which is given as input to the next layer.
The purpose of the neural network is to grasp certain abstract features of the input
and make a prediction for the solution based on these features. The depth cre-
ated through the use of multiple layers enables the network to model more complex
behavior.

4.1.1 Activation functions

If we were to choose linear activation functions we would just get a linear transfor-
mation of the input at every layer. This would defeat the whole purpose of having
many layers since it would result in an output which is just a linear combination of the
inputs. We want the network to be able to catch more interesting non-linear behav-
ior so that is why it is important to choose nonlinear activation functions. Common
choices are either the sigmoid function:

φ(x) =
1

1 + e−x
, (4.1)

or a rectified linear unit(ReLU):

φ(x) =

x x > 0

0 otherwise
. (4.2)

4.1.2 Learning

The architecture of the neural network facilitates the extraction of features but de-
ciding which features are important to the solution and how these features should
be extracted is something which is done by the weights of the connections. We
could try to set these parameters manually, but except for the fact that the amount
of weights gets enormous we also do not know how abstract features contribute to
our solution most of the time. Instead of manually doing this, the parameters will
be decided through supervised learning. This means that we use data of which we
know the correct solution to train the network so it learns how it can make accurate
predictions. So given data x1, x2, · · · of which we know the correct labels y1, y2, · · ·
we want to change the parameters θ in such a way that for all i:

f(xi ; θ) = ŷi ≈ yi

4.1. HOW DEEP LEARNING WORKS 21

To achieve this, the parameters will be adjusted through a process which is known as
backpropagation. Backpropagation uses a stochastic variant of the gradient descent
method to determine how it should adjust the parameters that it wants to train. The
objective function which we want to minimize will be some measure of how well the
network is predicting the solution:

L(θ) =
∑
i

` (yi, ŷi) =
∑
i

` (yi, f(xi ; θ)) .

Here the loss function ` determines how good the prediction ŷi is. A typical choice
for this function ` is the Euclidean loss:

` (yi, ŷi) = ‖yi − ŷi‖2
2 .

To minimize L(θ) we iteratively adjust θ and move it in the direction of steepest
descent:

θi+1 = θi − λ∇θL(x ; θ)

Here λ denotes the stepsize, which is called the learning rate in this context. To
compute the direction of steepest descent −∇θL(x ; θ) we need to calculate the
partial derivatives of the objective function L with respect to the parameters θ. The
last layer directly influences the output of the network so the partial derivatives with
respect to the parameters of this layer can easily be calculated as:

dL

dθn
=
dL

dŷ

dŷ

dθn
.

Given that the activation functions are differentiable we can now calculate the partial
derivatives in the previous layer using the chain rule for differentiation:

dL

dθn−1

=
dL

dŷ

dŷ

dxn−1

dxn−1

dθn−1

,

dL

dθn−2

=
dL

dŷ

dŷ

dxn−1

dxn−1

dxn−2

dxn−2

dθn−2

,

· · · .

This can be extended all the way to the beginning of the network. For the partial
derivatives with respect to weights in the start of the network we get a really long
chain of partial derivatives. The derivative of the sigmoid function has at most an
absolute value of 0.25, so if we would use the sigmoid function (4.1) as activation
function for every layer, the partial derivatives at the beginning get exponentially
smaller with the number of layers. This vanishing derivative makes it hard to train
the parameters at the start of the network. ReLU activation functions (4.2) have

22 CHAPTER 4. DEEP LEARNING

a derivative of 1 for positive inputs preventing the gradient from vanishing, for this
reason variants of ReLU are used more often recently.

The stochastic variant of the gradient descent method differs from regular gra-
dient descent in that it approximates the gradient using only a small and randomly
chosen batch B of the training data at each iteration:

∇θL(x ; θ) ≈ ∇θLB(x ; θ)

where

LB(θ) =
∑
i∈B

` (yi, f(xi ; θ)) .

This stochastic variant has two major upsides. Firstly this makes computing the
gradient much less time consuming, especially since networks are generally trained
on extremely large data sets. Secondly it adds a certain amount of randomness to
the updates of the weights, which serves to avoid situations where the network gets
stuck at a local minimum.

One problem which naturally comes up when systems with a large amount of
parameters are optimized, is overfitting. This occurs when the system represents
meaningless properties which are very specific to the training data instead of rep-
resenting general features which still make sense for data outside the training set.
This is also a serious problem in deep learning, but this can be easily solved by the
dropout technique described in [15]. During training several neurons get ignored
randomly to prevent the system from getting too reliant on a very small set of neu-
rons.

4.1.3 Convolutional neural networks

For tasks related to computer vision, convolutional neural networks (CNNs) are the
method of choice. These networks use several convolutional layers instead of regu-
lar ones. A convolutional layer applies a convolution with a couple of different kernels
on its input to create several new images. By stacking the new images created by
the different kernels on top of each other we can look at it as a 3D volume. The sizes
of the new images remain approximately the same when convolutions are applied,
but the depth of the 3D volume gets exponentially bigger depending on the amount
of kernels used. To stop this from getting out of hand and at the same time pre-
vent overfitting, pooling layers are used. The purpose of these pooling layers is to
downsample the images. A common way of doing this is by completely dividing the
images in 2x2 regions and taking the maximum of the values in each region creating
an image which is 4 times smaller.

4.2. FLOWNET 2.0 23

In Fig. 4.1 an example of a convolutional neural network is shown. Instead of
using pooling layers this network sometimes performs the convolutions with a stride
of 2, meaning it does not place a kernel centered at every pixel of the image only at
every other pixel, in both the x and y direction that is. Also a ReLU (4.2) nonlineartity
is performed after each layer.

Figure 4.1: The architecture of FlowNetSimple [13]

The basic idea behind convolutional neural networks in general is to extract low
level features from the image by passing it through a layer of neurons. The output of
these neurons which contains low level feature information gets fed to the following
layer of neurons. These neurons effectively look for the existence of certain com-
binations of lower level features, yielding an output which represents more abstract
higher level features. This will repeat itself a number of times depending on the
depth of the network, hierarchically extracting features of different levels of abstrac-
tion. At the end of the network the features are combined into a prediction for the
solution.

The advantage of using convolutional layers is that we can detect the interesting
features without the size of the network getting out of control. For detecting low
level features it is not interesting to compare pixels which are far apart, so by using
convolutions we take advantage of the 2D-structure of the data.

4.2 FlowNet 2.0

There are several different frameworks availible for deep learning implementations.
Caffe [12] is one of these and the model we will be using is built on this framework.
This model is called FlowNet2.0 [14] and it is an extension of FlowNetSimple [13],
the model displayed in Fig. 4.1 and even uses this as one of its components. Fig. 4.2
shows the architecture of FlowNet2.0, here FlowNetS is short for FlowNetSimple.

As seen in the architecture, FlowNet2.0 uses a network of networks to com-
pute the optical flow. The top half is responsible for the large displacements, here
FlowNetC gives an approximation of the optical flow which is then used to warp the
second image and passed into an instance of FlowNetS. Again the resulting flow is

24 CHAPTER 4. DEEP LEARNING

Figure 4.2: The architecture of FlowNet2.0 [14]

used to warp the second image and a new flow estimation is produced. Since these
implementations have shown to be unreliable when it comes to estimating fine mo-
tions, another network, FlowNet-SD, is used to estimate the small displacements.
Together they will be combined into the final flow estimation. A more extensive ex-
planation of how each part works can be found in [14].

The training schedule is something which is just as important as the design of the
architecture. For this network it has shown to be advantageous to not train it end-to-
end but to train each component separately, so this is what has been done. Realistic
training data for optical flow is hard to come by since it is difficult to determine the
ground truth flow. The datasets we mentioned in section 2.4 are too small to train
networks as large as these. So for the training of this network the FlyingChairs
dataset [13] was created. This dataset took publicly available images from Flickr
and placed some 3D models of chairs in front of it. Both the background and the
chairs are moved slightly in between each image pair. An example of an image pair
from the FlyingChairs dataset is displayed in Fig. 4.3.

Figure 4.3: Image pair from FlyingChairs with ground-truth flow [13]

Chapter 5

Testing

Figure 5.1: Ground-truth

Now we will put the discussed models to use in
order to evaluate different aspects of their per-
formance. We will show several examples of so-
lutions that the methods give us under certain
circumstances. We performed the test on differ-
ent image pairs but the examples shown here
will all be of the RubberWhale image pair from
the Middlebury dataset [5], displayed earlier in
Fig. 2.6. The results should come close to the
ground-truth displayed in Fig. 5.1.

5.1 Error measures

To rate the performance of a method we will use two different error measures, the
absolute endpoint error (AEE) and the angular error (AE).

The absolute endpoint error measures the Euclidean distance between the pre-
dicted flow-vector v and the ground-truth flow-vector vgt for all position in the image
plane and takes the average value of this. So for an image with P pixels we have:

AEE =
1

P

P∑
i=1

‖v(i)− vgt(i)‖2 .

The angular error measures the angle between the predicted flow-vector and the
ground-truth flow-vector for all positions in the image plane and takes the average
value of this. The error is calculated using the normalized vectors v̂ and v̂gt:

AE =
1

P

P∑
i=1

arccos (v̂(i) · v̂gt(i)) .

25

26 CHAPTER 5. TESTING

5.2 Variational Methods

For the variational part of the testing we implemented the models of section 3.1 in
MATLAB, the code can be found in Appendix A.

5.2.1 The effect of alpha

We explained that α determines how much smoothness is enforced on the solution.
To see the effect of α we calculated solutions using different values of α. In Fig. 5.2
an example of this is shown where the L1-TV method is used to compute solutions.

α:0.001α:0.001

AEE: 1.0979 AE: 0.4579

0.010.01

AEE: 0.8065 AE: 0.3136

0.0250.025

AEE: 0.6596 AE: 0.2421

0.050.05

AEE: 0.6113 AE: 0.2185

0.0750.075

AEE: 0.6002 AE: 0.2132

0.10.1

AEE: 0.5987 AE: 0.2130

0.1250.125

AEE: 0.5987 AE: 0.2131

0.150.15

AEE: 0.6148 AE: 0.2205

0.1750.175

AEE: 0.6233 AE: 0.2243

0.20.2

AEE: 0.6424 AE: 0.2335

0.2250.225

AEE: 0.6431 AE: 0.2338

0.250.25

AEE: 0.6612 AE: 0.2427

0.30.3

AEE: 0.6868 AE: 0.2558

0.50.5

AEE: 0.7824 AE: 0.3080

11

AEE: 0.9468 AE: 0.3992

1010

AEE: 1.019 AE: 0.4410

Figure 5.2: L1-TV method for different values of α.

We can see that for very small values of α the solutions show very fine details
which are not realistic at all. As the parameter α is set higher, the solution gets better

5.3. DEEP LEARNING 27

and better. When α is set to some value around 0.1 we can see that it produces a
result which is very similar to the ground-truth flow in Fig. 5.1 and the error measures
also indicate that this α performs best. When we set α to an even higher value
we see that the enforced smoothness is starting to ruin the solution. The optimal
value for α differs depending on the image sequence as well as the used data- and
regularization term.

5.3 Deep Learning

5.3.1 Components

AEE: 0.1873 AE: 0.0717

Figure 5.3: FlowNet2.0

An example of a solution given by the deep learning
method can be seen in Fig. 5.3. We can see that it
comes pretty close to the ground truth by just looking
at it, but the error measures indicate this as well.

Since the architecture of FlowNet2.0 (Fig. 4.2)
contains multiple components which all individually
compute the optical flow as well we can look at the in-
termediate results after each component. The output
of FlowNet2.0 is a direct combination of two different
components, one responsible for the large displace-
ments and one for the short displacements. The
component responsible for large displacements is a
chain of smaller components is indicated by FlowNet-CSS (Fig. 5.4) and the other
component which is responsible for the smaller displacements is called FlowNet-SD
(Fig. 5.5). We can see that these components also produce a pretty decent result if
we let them work on their own.

AEE: 0.2899 AE: 0.1120

Figure 5.4: FlowNet-CSS

AEE: 0.2408 AE: 0.0906

Figure 5.5: FlowNet-SD

What is interesting is that when we further extract FlowNet-CSS in its smaller
components FlowNet-C (Fig. 5.6) and FlowNet-S (Fig. 5.7) we see that the results

28 CHAPTER 5. TESTING

they produce come nowhere near the ground-truth.

AEE: 0.8617 AE: 0.3343

Figure 5.6: FlowNet-C

AEE: 0.8759 AE: 0.3521

Figure 5.7: FlowNet-S

However using two of these components, which perfrom really badly on their
own, in succession gives us already pretty decent results as can be seen in the
following figures (Fig. 5.8 and Fig. 5.9). The FlowNet-ss network from Fig. 5.9 even
uses two components FlowNetS which were reduced in size by a factor 3

8
.

AEE: 0.3430 AE: 0.1401

Figure 5.8: FlowNet-CS

AEE: 0.5301 AE: 0.2089

Figure 5.9: FlowNet-ss

5.3.2 Performance

We tested the FlowNet2.0 model on the Middlebury dataset [5] containing 8 image
pairs and a subset of the Sintel dataset [7]. This dataset contains 23 scenes, we
tested the FlowNet2.0 model on the first image pair of every scene. The results of
these tests can be seen in Table 5.1. The difference between the clean and final
version of Sintel is that in the final version effects like fog and motion blur are added.

AEE AE
Middlebury 0.3556 0.0526
Sintel clean 1.5312 0.0602
Sintel final 2.5728 0.1058

Table 5.1: Performance of FlowNet2.0

5.3. DEEP LEARNING 29

5.3.3 Robustness against noise

In order to test how robust the FlowNet2.0 model is we tested it on some images
to which some gaussian noise was added. In Fig. 5.10 can be seen how the
deep learning model of FlowNet2.0 performed on the RubberWhale image pair.

σ:0σ:0

AEE: 0.1873 AE: 0.0717

0.0250.025

AEE: 0.1991 AE: 0.0758

0.050.05

AEE: 0.2425 AE: 0.0933

0.10.1

AEE: 0.3340 AE: 0.1237

0.150.15

AEE: 0.3976 AE: 0.1434

0.20.2

AEE: 0.5736 AE: 0.2233

0.250.25

AEE: 0.8210 AE: 0.3424

0.30.3

AEE: 0.8259 AE: 0.3498

0.350.35

AEE: 1.0564 AE: 0.4614

0.40.4

AEE: 1.0906 AE: 0.4816

0.50.5

AEE: 1.0694 AE: 0.4680

0.60.6

AEE: 1.1551 AE: 0.5187

Figure 5.10: The output of FlowNet2.0 for image pairs to which gaussian noise was
added with different values for the variance σ.

Figure 5.11: Image for σ = 0.2.

We see that the FlowNet2.0 model handles
small levels of noise really well. Even for a noise
level of 0.2 the solution is not that bad consid-
ering how noisy the image in Fig. 5.11 is. One
of the reasons why this model can handle small
amounts of noise really well is that the train-
ing data of the model is augmented with ran-
dom amounts of gaussian noise. Because of this
noisy training data, the model has learned how
to deal with noise.

30 CHAPTER 5. TESTING

In Table 5.2 the FlowNet2.0 model is tested on the same datasets as in Table 5.1
but with a certain amount of added gaussian noise.

Middlebury Sintel clean Sintel final
σ AEE AE AEE AE AEE AE
0 0.356 0.053 1.531 0.060 2.573 0.106
0.025 0.385 0.056 1.510 0.069 2.413 0.112
0.05 0.435 0.064 1.434 0.075 2.3876 0.107

Table 5.2: Performance of FlowNet2.0 on data with noise.

One thing which stands out in Table 5.2 is that for both the Sintel datasets the
AEE gets smaller as noise is added. This is mostly due to one particular image pair
in the dataset, this image pair is displayed in Fig. 5.12.

Figure 5.12: Image pair [7].

The computation of the optical flow of the uniform region in the bottom of this image
pair is difficult. This results in solutions which are very different from the ground-truth
as can be seen in Fig. 5.13. As we add noise, the errors at the bottom of the image
get less extreme and hence the error measures get smaller.

GTGT

Ground-Truth flow.

σ:0σ:0

AEE: 10.926 AE: 0.2085

0.0250.025

AEE: 9.3077 AE: 0.2188

0.050.05

AEE: 5.6519 AE: 0.2986

Figure 5.13: The output of FlowNet2.0 for the image pair from Fig. 5.12 to which
gaussian noise was added with different values for the variance σ.

5.4. COMPARISON 31

The error measures displayed in Fig. 5.11 are also really large compared to the
average of the dataset, so it was skewing the average performance as well. When
we leave the image pair from Fig. 5.12, the only extreme outlier, out of the evaluation,
we get the following results:

Sintel clean Sintel final
σ AEE AE AEE AE
0 1.104 0.053 2.069 0.085
0.025 1.156 0.063 2.177 0.096
0.05 1.243 0.065 2.272 0.101

Table 5.3: Performance of FlowNet2.0 on data with noise.

In Table 5.3 we can see that the FlowNet2.0 handles small levels of noise pretty
well. Also if we compare the errors on the Sintel clean dataset to the errors on the
Sintel final dataset, we see that the model apparently has more difficulties handling
the effects added in Sintel final than small levels of noise.

5.4 Comparison

To compare the different approaches somewhat fairly we made some changes to
the data sets to compensate for the limitations of our variational models. They were
all turned into grayscale images, since our implementation of the variational models
can not handle color. Also to compensate for the fact that our variational models
do not account for large displacements, we scaled the ground-truth flow down to a
maximum magnitude of 1. Using this downscaled ground-truth flow v̂gt we created a
new image pair through bilinear interpolation. The data from the first image u(x, 1)

remained the same and for the second image we used the interpolation of u(x+v̂gt, 1)

instead of u(x, 2).

5.4.1 Performance

In Fig. 5.14 we can see how well the different models perform on the interpolated
dataset we just described. We can see that of all our variational implementations
the L1-TV/TV model performs the best on the RubberWhale image pair, just barely
beating the error measures of L1-TV. If we compare the variational models to the
deep learning models, we see that the deep learning models outperform every single
one of our variational implementations.

32 CHAPTER 5. TESTING

L1-TVL1-TV

AEE: 0.2098 AE: 0.1033

L1-L2L1-L2

AEE: 0.2339 AE: 0.1148

L1-TV/L2L1-TV/L2

AEE: 0.2467 AE: 0.1206

L1-TV/TVL1-TV/TV

AEE: 0.2095 AE: 0.1032

L2-TVL2-TV

AEE: 0.2216 AE: 0.1086

L2-L2L2-L2

AEE: 0.2510 AE: 0.1230

L2-TV/L2L2-TV/L2

AEE: 0.3396 AE: 0.1674

L2-TV/TVL2-TV/TV

AEE: 0.2989 AE: 0.1469

FN2.0FN2.0

AEE: 0.1353 AE: 0.0701

FN-CSSFN-CSS

AEE: 0.1685 AE: 0.0869

FN-SDFN-SD

AEE: 0.2061 AE: 0.1043

Figure 5.14: Comparison of the performance between the different models.

5.4. COMPARISON 33

5.4.2 Robustness against noise

In Table 5.4 we compared the robustness of the deep learning implementation with
that of the variational models.

Middlebury
0 0.025 0.05
AEE AE AEE AE AEE AE

FlowNet2.0 0.178 0.085 0.216 0.102 0.267 0.125
L1-TV 0.473 0.221 0.630 0.305 0.760 0.380
L1-L2 0.489 0.232 0.643 0.313 0.762 0.383
L2-TV 0.330 0.146 0.742 0.363 1.056 0.511
L2-L2 0.343 0.152 0.747 0.375 0.932 0.479
L1-TV/L2 0.450 0.212 0.625 0.302 0.758 0.380
L1-TV/TV 0.541 0.263 0.678 0.338 0.789 0.403
L2-TV/L2 0.697 0.269 1.769 0.602 2.124 0.664
L2-TV/TV 0.949 0.364 1.791 0.609 2.140 0.667

Table 5.4: Middlebury

In Table 5.4 we again see that the variational models perform very poorly compared
to the deep learning method. Although the deep learning methods are definitely out-
performing the variational models, there are two factors which skew these results.
Firstly the stopping condition of the algorithm was set at a relatively low amount,
namely maximum 1000 iterations. Most of the time the algorithm is not fully con-
verged by this time, but to keep the total runtime of the test at a reasonable limit, we
could not set it much higher. We see that the L2-TV model is the best performing
variational implementation, but its low error measures could also just indicate that it
converges the fastest. Secondly, the parameter α was not as optimized as it could
have been. We ran some tests on one image pair, and used the best performing α’s
on the whole dataset. For the images with noise we set α to a slightly higher value
in the hope of getting better results.

Another thing which stands out, is that the models with a L2 data term handle
noise significantly worse than the ones with a L1 data term. This is what we ex-
pected. As we mentioned in subsection 3.1.1, the L1 data term is more robust to
noise.

34 CHAPTER 5. TESTING

Chapter 6

Conclusions and recommendations

6.1 Conclusions

An upside of variational models is its theoretical foundation. This theoretical founda-
tion makes it easier to understand the performance of these models. One example
of this is that we know that the L2 dataterm is not that robust against noise, so we
know what needs to be changed to improve this. Comparing this to deep learning
methods we see that this does not happen as often for these methods. These mod-
els can generally only be improved through just trying several things and see which
works best. The lack of theoretical foundation for deep learning methods makes it
hard to predict which choices will work well and which will not.

On the other hand deep learning methods perform impressively well, the deep
learning implementation of FlowNet2.0 [14] outperforms our implementations of vari-
ational methods by a large margin. It is especially surprising that the training data
apparently does not need to be highly realistic, artificial image data which is created
in a fairly simple way, is already enough to get really accurate solutions. Another
upside of deep learning is that it computes the solution really fast. Where the varia-
tional models take minutes to converge, the FlowNet2.0 model can give the solutions
in under a second. The computation time is traded in for a lot of training time, which
does require a lot of GPU-power.

6.2 Recommendations

For the variational approach we used an implementation which is definitely not repre-
sentative of the state-of-the-art variational methods. Our implementation has several
weaknesses.

Firstly our implementation can not handle large displacements. We mentioned
in section 2.2 how the displacement needs to be small if we wanted the optical flow

35

36 CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS

constraint to work. This problem could be solved by a strategy mentioned in [4],
which involves computing the flow on several scaled down versions of the images
and formation of image pyramids, which is mentioned in [4]. The top of the pyramid
contains the images which are scaled down the most and the original images are
at the bottom. Then starting at the top we can compute the optical flow and use
it to warp the second image in the next layer. The warping compensates for the
larger displacements detected in the previous layer, so after the warping only small
displacements should remain. This can be repeated until finally the optical flow of
the original image can be computed.

Moreover we could have used the color instead of the brightness of the pixels.
Through using the brightness instead of the color we lose a lot of information as we
only use one channel per pixel instead of three.

Bibliography

[1] [Online]. Available: http://i21www.ira.uka.de/image sequences/

[2] F. Becker, S. Petra, and C. Schnörr, “Optical flow,” in Handbook of Mathematical
Methods in Imaging, 2015.

[3] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/kanade meets horn/schunck:
Combining local and global optic flow methods,” International Journal of Com-
puter Vision, vol. 61, pp. 211–231, 2005.

[4] M. Burger, H. Dirks, and L. Frerking, “On optical flow models for variational
motion estimation,” CoRR, vol. abs/1512.00298, 2015.

[5] S. Baker, D. Scharstein, J. P. Lewis, S. Roth, M. J. Black, and R. Szeliski, “A
database and evaluation methodology for optical flow,” Int J Comput Vis, vol. 92,
pp. 1–31, 2011.

[6] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti
dataset,” International Journal of Robotics Research (IJRR), 2013.

[7] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black, “A naturalistic open
source movie for optical flow evaluation,” in European Conf. on Computer Vision
(ECCV), ser. Part IV, LNCS 7577, A. Fitzgibbon et al. (Eds.), Ed. Springer-
Verlag, Oct. 2012, pp. 611–625.

[8] B. K. Horn and B. G. Schunck, “Determining optical flow,” Artificial
Intelligence, vol. 17, no. 1, pp. 185 – 203, 1981. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/0004370281900242

[9] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex prob-
lems with applications to imaging,” Journal of Mathematical Imaging and Vision,
vol. 40, pp. 120–145, 2011.

[10] L. Frerking, “Variational methods for direct and indirect tracking in dynamic
imaging,” 2016.

37

http://i21www.ira.uka.de/image_sequences/
http://www.sciencedirect.com/science/article/pii/0004370281900242

38 BIBLIOGRAPHY

[11] N. Huttinga, “Insights into deep learning methods with application to cancer
imaging,” 2017.

[12] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadar-
rama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embed-
ding,” arXiv preprint arXiv:1408.5093, 2014.

[13] A. Dosovitskiy, P. Fischer, E. Ilg, P. Häusser, C. Hazirbas, V. Golkov, P. van der
Smagt, D. Cremers, and T. Brox, “Flownet: Learning optical flow with convo-
lutional networks,” 2015 IEEE International Conference on Computer Vision
(ICCV), pp. 2758–2766, 2015.

[14] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and T. Brox, “Flownet 2.0:
Evolution of optical flow estimation with deep networks,” in IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Jul 2017. [Online].
Available: http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17

[15] N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: a simple way to prevent neural networks from overfitting,” Journal of
Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

http://lmb.informatik.uni-freiburg.de//Publications/2017/IMKDB17

Appendix A

Appendix A

A.1 MATLAB implementation of variational models

1 f u n c t i o n [v] = Opt ica lF low (image1 , image2 , alpha , data , reg ,
max i te ra t i ons , to le rance , theta , x s t a r t , y s t a r t)

2 %Image s ize
3 [y , x] = s ize (image1) ;
4 xy = x ∗ y ;
5

6 %Nabla
7 %(i +1) − (i −1)
8 [d1x , d1y] = Grad ientMat r ix1 (x , y) ;
9 %(i +1) − (i)

10 [d2x , d2y] = Grad ientMat r ix2 (x , y) ;
11

12 %Image Der i va t i ves
13 uy = d1x∗ image1 (:) ;
14 ux = d1y∗ image1 (:) ;
15 ut = image2 (:)−image1 (:) ;
16

17 %a square
18 a s = ux . ˆ2+ uy . ˆ2+1e−8;
19

20 %Matr ices f o r b u i l d i n g opera tor K
21 O = sparse (xy , xy) ;
22 I = speye (xy , xy) ;
23

24 %Data−term

39

40 APPENDIX A. APPENDIX A

25 da ta op t ions = { ’ L2 ’ , ’ L1 ’ } ;
26 swi tch data
27 case da ta op t ions (1)
28 %Data−term : L2
29 proxG = @(x , tau) prox L2 data (x , tau) ;
30

31 case da ta op t ions (2)
32 %Data−term : L1
33 proxG = @(x , tau) prox L1 data (x , tau) ;
34

35 otherwise
36 disp (’ E r ro r : i n v a l i d Data−term ’)
37 end
38

39 %Regu la r i za t ion−term
40 reg op t i ons = { ’ L2 ’ , ’TV ’ , ’TV / L2 ’ , ’TV /TV ’ } ;
41 swi tch reg
42 case reg op t ions (1)
43 %Regu la r i za t ion−term : L2
44 x s i ze = 2;
45 y s i ze = 4;
46 proxFS = @(y , sigma) prox L2 S (y , sigma) ;
47 K = [d2x O;
48 d2y O;
49 O d2x ;
50 O d2y] ;
51 Ks = K ’ ;
52

53 case reg op t ions (2)
54 %Regu la r i za t ion−term : TV
55 x s i ze = 2;
56 y s i ze = 4;
57 proxFS = @(y , sigma) prox TV S (y , sigma) ;
58 K = [d2x O;
59 d2y O;
60 O d2x ;
61 O d2y] ;
62

63 Ks = K ’ ;

A.1. MATLAB IMPLEMENTATION OF VARIATIONAL MODELS 41

64

65 case reg op t ions (3)
66 %Regu la r i za t ion−term : TV / L2
67 x s i ze = 4;
68 y s i ze = 4;
69 proxFS = @(y , sigma) prox TV S (y , sigma) ;
70 K = [d2x O − I O;
71 d2y O − I O;
72 O d2x O − I ;
73 O d2y O − I] ;
74 Ks = K ’ ;
75 w extension = t rue ;
76

77 case reg op t ions (4)
78 %Regu la r i za t ion−term : TV /TV
79 x s i ze = 4;
80 y s i ze = 8;
81 proxFS = @(y , sigma) prox TV S (y , sigma) ;
82 K = [d2x O − I O;
83 d2y O − I O;
84 O d2x O − I ;
85 O d2y O − I ;
86 O O d2x O;
87 O O d2y O;
88 O O O d2x ;
89 O O O d2y] ;
90 Ks = K ’ ;
91 w extension = f a l s e ;
92

93 otherwise
94 disp (’ E r ro r : I n v a l i d Regu la r i za t i on Term ’)
95 end
96

97 %Other Parameters
98 i f x s ize>2
99 sigma = 0 . 5 ;

100 tau = 0 .25 ;
101 else
102 sigma = 1 / 3 ;

42 APPENDIX A. APPENDIX A

103 tau = 0 . 2 ;
104 end
105

106 %I n i t i a l Values
107 i f nargin>8
108 x = x s t a r t ;
109 else
110 x = zeros (x s i ze ∗xy , 1) ;
111 end
112 i f nargin>9
113 y = y s t a r t ;
114 else
115 y = zeros (y s i ze ∗xy , 1) ;
116 end
117 x bar = x ;
118 dx = I n f ;
119 i t e r a t i o n s = 0;
120

121 %Main Loop
122 whi le i t e r a t i o n s <m ax i t e ra t i o ns && dx>t o le rance
123 x o ld = x ;
124

125 y = proxFS (y + sigma∗K∗x bar , sigma) ;
126 x = proxG (x − tau ∗ Ks ∗ y , tau) ;
127 x bar = x + the ta ∗ (x − x o ld) ;
128

129 dx = sum(abs (x (1 :2∗ xy) − x o ld (1 :2∗ xy))) / xy ;
130 i t e r a t i o n s = i t e r a t i o n s + 1;
131 end
132

133 %Resize x
134 v = reshape (x (1 :2∗ xy) , [s i ze (image1) , 2]) ;
135

136 %Funct ions
137 f u n c t i o n [x] = prox L1 data (xhat , tau)
138 rho = ut + ux .∗ xhat (1 : xy) + uy .∗ xhat (xy +1:2∗ xy) ;
139

140 cond1 = rho < −tau ∗ a s ;
141 va l1 = tau ∗ [ux ; uy] ;

A.1. MATLAB IMPLEMENTATION OF VARIATIONAL MODELS 43

142 cond2 = rho > tau ∗ a s ;
143 va l2 = −va l1 ;
144 cond3 = 1−cond1−cond2 ;
145 va l3 = −[rho ; rho] .∗ [ux . / a s ; uy . / a s] ;
146

147 x = xhat (1 :2∗ xy) + va l1 .∗ [cond1 ; cond1] + va l2 .∗ [
cond2 ; cond2] + va l3 .∗ [cond3 ; cond3] ;

148 i f (x s ize >2)
149 i f w extension
150 w = (xhat (2∗ xy +1:end)) / (1+ tau ∗alpha (2)) ;
151 x = [x ;w] ;
152 else
153 x = [x ; xhat (2∗ xy +1:end)] ;
154 end
155 end
156 end
157 f u n c t i o n [x] = prox L2 data (xhat , tau)
158 a1 = 1 + tau ∗ux .∗ ux ;
159 a2 = tau ∗ ux .∗ uy ;
160 a3 = 1 + tau ∗uy .∗ uy ;
161 b1 = xhat (1 : xy) − tau ∗ux .∗ ut ;
162 b2 = xhat (xy +1:2∗ xy) − tau ∗uy .∗ ut ;
163

164 v1 = (a3 .∗b1−a2 .∗ b2) . / (a1 .∗a3−a2 . ˆ2+1e−8) ;
165 v2 = (a1 .∗b2−a2 .∗ b1) . / (a1 .∗a3−a2 . ˆ2+1e−8) ;
166 x = [v1 ; v2] ;
167 i f (x s ize >2)
168 i f w extension
169 w = (xhat (2∗ xy +1:end)) / (1+ tau ∗alpha (2)) ;
170 x = [x ;w] ;
171 else
172 x = [x ; xhat (2∗ xy +1:end)] ;
173 end
174 end
175 end
176 f u n c t i o n [x] = prox TV S (xhat , ˜)
177 i s o t r o p i c = t rue ;
178 i f x s ize>2
179 alpha = alpha (1) ;

44 APPENDIX A. APPENDIX A

180 else
181 alpha = alpha ;
182 end
183 i f ˜ i s o t r o p i c
184 %An iso t rop i c
185 x = max(−alpha , (min (alpha , xhat (1 :4∗ xy)))) ;
186 else
187 %I s o t r o p i c
188 xnorm = reshape (xhat (1 :4∗ xy) , [xy , 4]) ;
189 xnorm1 = (sum(xnorm (: , 1 : 2) . ˆ 2 , 2)) . ˆ 0 . 5 ;
190 xnorm2 = (sum(xnorm (: , 3 : 4) . ˆ 2 , 2)) . ˆ 0 . 5 ;
191 xnorm = [xnorm1 ; xnorm1 ; xnorm2 ; xnorm2] ;
192 x = xhat (1 :4∗ xy) . / (max(1 , xnorm / a lpha)) ;
193 end
194 i f y s ize>4
195 alpha = alpha (2) ;
196 i f ˜ i s o t r o p i c
197 %An iso t rop i c
198 w = max(−alpha , (min (alpha , xhat (4∗ xy +1:end)

))) ;
199 else
200 %I s o t r o p i c
201 xnorm = reshape (xhat (4∗ xy +1:end) , [xy , 4]) ;
202 xnorm1 = (sum(xnorm (: , 1 : 2) . ˆ 2 , 2)) . ˆ 0 . 5 ;
203 xnorm2 = (sum(xnorm (: , 3 : 4) . ˆ 2 , 2)) . ˆ 0 . 5 ;
204 xnorm = [xnorm1 ; xnorm1 ; xnorm2 ; xnorm2] ;
205 w = xhat (4∗ xy +1:end) . / (max(1 , xnorm / a lpha)) ;
206 end
207 x = [x ;w] ;
208 end
209 end
210 f u n c t i o n [x] = prox L2 S (xhat , tau)
211 x = xhat / (1+ tau / alpha) ;
212 end
213 end

	Abstract
	Introduction
	Overview
	Outline

	Optical Flow
	Optical flow constraint
	Difficulties
	Representing flow fields
	Benchmarks

	Variational Methods
	Variational models
	Data terms
	Regularization terms

	Numerical realization
	Implementation

	Deep Learning
	How deep learning works
	Activation functions
	Learning
	Convolutional neural networks

	FlowNet 2.0

	Testing
	Error measures
	Variational Methods
	The effect of alpha

	Deep Learning
	Components
	Performance
	Robustness against noise

	Comparison
	Performance
	Robustness against noise

	Conclusions and recommendations
	Conclusions
	Recommendations

	References
	Appendix A
	MATLAB implementation of variational models

