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Abstract

Embedded systems process fast and complex algorithms these days. Within these embedded
systems, memory becomes a major part. Large (amount of bytes), small (in terms of area), fast
and energy efficient memories are needed not only in battery operated devices but also in High
Performance Computing systems to reduce the power consumption of the total system.

Many systems implement their algorithm in software, usually implying a sequential execution. The
more complex the algorithm, the more instructions are executed and therefore the execution time
and power consumption increases accordingly. Parallel execution can be used to compensate for the
increase in execution time introduced by the sequential software. For parallel execution of regular,
structured algorithms, hardware solutions, like an FPGA, can be used. Only the physical boundaries
of FPGAs limits the amount of parallelism.

In this thesis a comparison is made between two systems. The first system is using the Hybrid
Memory Cube memory architecture. The processing element in this system is an FPGA. The sec-
ond system is a common of the shelf graphical card, containing GDDR5 memory with a GPU as
processing unit.

The Hybrid Memory Cube memory architecture is used to give an answer to the main research
question: ”How does the efficiency of the Hybrid Memory Cube compare to GDDR5 memory?”. The
energy efficiency and the performance, in terms of speed, are compared to a common of the shelf
graphical card. Both systems provide the user with a massively parallel architecture.

Two benchmarks are implemented to measure the performance of both systems. The first is the
data transfer benchmark between the host system and the device under test and the second is the
data transfer benchmark between the GPU and the GDDR5 memory (AMD Radeon HD7970) or the
FPGA and the HMC memory. The benchmark results show an average speed performance gain of
approximately 5.5× in favour of the HMC system.

Due to defective HMC hardware, only power measurements are compared when both the graphical
card and HMC system were in the Idle state. This resulted that the HMC system is approximately
34.75% more energy efficient than the graphical card.
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Chapter 1

Introduction

1.1 Context

Many embedded systems are using fast and complex algorithms to perform the designated task
these days. The execution of these algorithms commonly requires a Central Processing Unit (CPU),
memory and storage. Nowadays, memory becomes a major part of these embedded systems. The
demand for larger memory sizes in increasingly smaller and faster devices requires a memory archi-
tecture that occupies less area, performs at higher speeds and uses less power consumption. Not
only in battery operated devices the power consumption is a key feature, also in High Performance
Computing (HPC) systems the total power consumption is important. For example, a smartphone
user wants to use the phone for many hours without the need of recharging the smartphone or like the
HPC systems used for the international Square Kilometre Array (SKA) telescope [4] by one of its part-
ners ASTRON [5], where the energy consumption is becoming a major concern as well. This HPC
system consist of the Central Signal Processor (CSP) [6] and the Science Data Processor (SDP) [7]
elements and many more. These elements consume multiple megawatts of power. Reducing the
power consumption in these systems is as important as in mobile, battery powered devices.

To reduce the amount of energy used by a system, a new kind of memory architecture, like the
Hybrid Memory Cube (HMC) [8], can be used. Despite the reduction in area and energy usage
and the increase in speed, the rest of the system still uses the same computer architecture as the
general purpose systems and therefore the system is not fully optimised for the execution of the same
algorithms. Introducing an FPGA, to create optimised Digital Signal Processing (DSP) blocks, can
also reduce the amount of energy and time needed for the complex tasks. The FPGA is a specialised
Integrated Circuit (IC) containing predefined configurable hardware resources, like logic blocks and
DSPs. By configuring the FPGA, any arbitrary digital circuit can by made.

The computational power needed depends on the complexity of the executed algorithm. Using a
general purpose CPU needs the algorithm to be described in software. This software is made up out
of separate instructions which are usually executed in sequence. The more complex the algorithm,
the more instructions needed for the execution, hence the execution time increases.

Parallel execution can be used to compensate for the increase in execution time introduced by the
sequential software. For parallel execution of regular, structured algorithms hardware solutions, like
an FPGA, are ideal. For parallel computations the physical boundaries of FPGAs limit the amount of
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parallelism. More complex algorithms can require more resources than available in the FPGA. If a
full parallel implementation does not fit in the FPGAs area, pipelining1 can be used to execute parts
of the algorithm sequentially over time. The trade-off between resource usage and execution time is
made by the developer.

The use of an FPGA can be seen as the trade-off between area and time as an FPGA can be
configured specifically for the application it is used for. In the field of radio astronomy, like in other
applications, many algorithms similar to image processing are seen. Image processing algorithms
are very suitable for implementation on an FPGA due to the following properties:

• The algorithms are computationally complex
• Computations can potentially be performed in parallel
• Execution time can be guaranteed due to deterministic behaviour of the FPGA

As mentioned before image processing is essential in many applications, including astrophysics,
surveillance, image compression and transmission, medical imaging and astronomy, just to name a
few. Images in just one dimension are called signals. In two dimensions images are in the planar field
and in three dimensions volumetric images are created, like Magnetic Resonance Imaging (MRI).
These images can be coloured (vector-valued functions) or in gray-scale (single-value functions).
Many types of imperfections, like noise and blur, in the acquired data often degrade the image.
Before any feature extraction and further analysis is done, the images have to be first pre-processed.

In this research on energy efficiency of the HMC architecture, image denoising will be used. The
technique used is the Median filter. Because this image processing algorithm, like most image pro-
cessing algorithms, is highly complex and is executed on a fast amount of data, the combination of
the HMC technology and FPGAs seems a logical choice.

The configuration of an FPGA can be done with a Hardware Description Language (HDL). Due to
the possible parallelism in the hardware and the lower clock frequency of the FPGA in comparison
to a CPU, in combination with HMC memory, a much lower energy consumption and execution time
can possibly be obtained. To describe the hardware architecture, languages like VHSIC (Very High
Speed Integrated Circuit) Hardware Description Language (VHDL) and Verilog are used. The manual
work required is cumbersome.

Another framework is Open Computing Language (OpenCL). OpenCL is a framework for writing
programs that execute across heterogeneous platforms consisting of CPUs, GPUs, DSPs, FPGAs
and other processors or hardware accelerators. OpenCL specifies a programming language (based
on C99) for programming these devices and Application Programming Interfaces (APIs) to control
the platform and execute programs on the compute devices. OpenCL provides a standard interface
for parallel computing using task-based and data-based parallelism.

1A pipeline is a set of processing elements connected in series, where the output of one element is the input of the next.
The elements of a pipeline are often executed in parallel or in time-sliced fashion. In that case of time-slicing, some amount of
buffer storage is often inserted between the elements.
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1.2 Problem statement

To evaluate the efficiency of the HMC, it is necessary to use a benchmark which can also run on
other memory architectures, like GDDR5. The benchmark will provide the following metrics:

• Achievable throughput/latency (performance);
• Achievable average power consumption.

This research will attempt to answer the following questions:

• What is the average power consumption and performance of the HMC?
• How does the power consumption of the HMC compare to GDDR5 memory?
• How does the performance of the HMC compare to GDDR5 memory?
• What are the bottlenecks and (how) can this be improved?

Realising a hardware solution for mathematically complex and memory intensive algorithms has
potential advantages in terms of energy and speed. To analyse these advantages, a solution on
an FPGA driven Hybrid Memory Cube architecture is realised and compared to a similar OpenCL
software solution on a GPU. The means to answer the research questions are summarised into the
following statements:

• How to realise a feasible image denoising implementation on an FPGA and HMC?
• How to realise a feasible image denoising implementation on a GPU?
• How to realise a feasible benchmark to compare the GPU with the FPGA and HMC?
• Does the FPGA and HMC implementation have the potential to be more energy and perfor-

mance efficient compared to the GPU solution?

1.3 Approach and outline

Image denoising can be solved in different ways. To realise one solution that fits on both the
FPGA/HMC and the GPU this solution must first be determined. This one solution must be imple-
mented in Hardware Description Language (HDL) and in software. CλaSH is suitable for formulating
complex mathematical problems and transforming this formulation into VHDL or Verilog HDL, but
OpenCL is also supported for both the HMC and GPU architectures.

Part I - Background, contains the information on the different topics used in the research. Chapter
3 describes the different memory architectures of the memory modules used. Chapter 4 introduces
the basic concepts regarding memory and CPU/GPU/FPGA benchmarking.

Part II - Realisation and results, shows the realised solutions and the results found.

Part III - Conclusions and future work are given.
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Background
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Chapter 2

Related Work

Since the Hybrid Memory Cube is a fairly new memory technology, little has been studied on the
impact on performance and energy efficiency. As an HMC I/O interface can achieve an external
bandwidth up to 480GB/s, using high-speed serial links, this comes at a cost. The static power of
the off-chip links is largely dominating the total energy consumption of the HMC. As proposed by
Ahn et al. [9] the use of dynamic power management for the off-chip links can result in an average
energy consumption reduction of 51%.
Another study by Wang et al. [10] proposes to deactivate the least used HMCs and using erasure
codes to compensate for the relatively long wake-up time of over 2µs.

In 2014 Rosenfeld [11] defended his PhD thesis on the performance exploration of the Hybrid
Memory Cube (HMC). For his research he used only simulations of the HMC architecture.

Finally, a paper by Zhu, et al. [12], discusses that GPUs are widely used to accelerate data-
intensive applications. To improve the performance of data-intensive applications, higher GPU mem-
ory bandwidth is desirable. Traditional Double Data Rate Synchronous Graphics Random Access
Memory (GDDR) memories achieve higher bandwidth by increasing frequency, which leads to exces-
sive power consumption. Recently, a new memory technology called High Bandwidth Memory (HBM)
based on 3D die-stacking technology has been used in the latest generation of GPUs developed by
AMD, which can provide both high bandwidth and low power consumption with in-package stacked
DRAM memory, offering > 3× the bandwidth per watt of GDDR51. However, the capacity of inte-
grated in-packaged stacked memory is limited (e.g. only 4GB for the state-of-the-art HBM-enabled
GPU, AMD Radeon Fury X [13], [14]). In his paper, Zhu et al. implement two representative data-
intensive applications, Convolutional Neural Network (CNN) and Breadth-First Search (BFS) on an
HBM-enabled GPU to evaluate the improvement brought by the adoption of the HBM, and investigate
techniques to fully unleash the benefits of such HBM-enabled GPU. Based on his evaluation results,
Zhu et al. first propose a software pipeline to alleviate the capacity limitation of the HBM for CNN.
They then designed two programming techniques to improve the utilisation of memory bandwidth
for the BFS application. Experiment results demonstrate that the pipelined CNN training achieves
a 1.63x speed-up on an HBM enabled GPU compared with the best high-performance GPU on the

1Testing conducted by AMD engineering on the AMD Radeon R9 290X GPU vs. an HBM-based device. Data obtained
through isolated direct measurement of GDDR5 and HBM power delivery rails at full memory utilisation. Power efficiency
calculated as GB/s of bandwidth delivered per watt of power consumed. AMD Radeon R9 290X (10.66GB/s bandwidth per
watt) and HBM-based device (35 + GB/s bandwidth per watt), AMD FX-8350, Gigabyte GA-990FX-UD5, 8GB DDR3-1866,
Windows 8.1 x64 Professional, AMD Catalyst 15.20 Beta. HBM-1
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market, and the two, combined optimisation techniques for the BFS algorithm makes it at most 24.5x
(9.8x and 2.5x for each technique, respectively) faster than conventional implementations.

At the time of writing this report, the Hybrid Memory Cube technology is, as far as known, only
used in two applications. The first implementation is the HMC produced by Micron (formerly Pico-
Computing) [15], [16], see figure 2.1. This module is used for the experiments in order to get the
performance and power measurements, which are discussed in the rest of this thesis.

Figure 2.1: HMC module: AC510 board

The second product known of using HMC, 3D stacking, technology is Intel’s Knights Landing prod-
ucts [17], [18].
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Chapter 3

Memory architectures

It was predicted by computer pioneers that computer systems and programmers would want un-
limited amounts of fast memory. A memory hierarchy is an economical solution to that desire, which
takes advantage of trade-offs and locality in the cost-performance of current memory technologies.
Most programs do not access all code or data uniformly, as stated by the Principle of Locality. Local-
ity occurs in space (spatial locality ) and in time (temporal locality ). Moreover, for a given technology
and power budget smaller hardware can be made faster, led to hierarchies based on memories of
different sizes and speeds.

3.1 Principle of Locality

When executing a program on a computer, this program tends to use instructions and read or write
data with addresses near or equal to those used recently by that program. The Principle of Locality,
also known as the Locality of Reference, is the phenomenon of the same value or related storage
locations being frequently accessed. There are two types of locality:

• Temporal locality: refers to the reuse of specific data and/or resources within relatively small
time durations.

Figure 3.1: Temporal locality: Refer to block again

• Spatial locality: refers to the use of data elements within relatively close storage locations.
Sequential locality, a special case of spatial locality, occurs when data elements are arranged
and accessed linearly, e.g. traversing the elements in a one-dimensional array.

Figure 3.2: Spatial locality: Refer nearby block

For example, when exhibiting spatial locality of reference, a program accesses consecutive mem-
ory locations and during temporal locality of reference a program repeatedly accesses the same
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memory location during a short time period. Both forms of locality occur in the following code snip-
pet:

sum = 0;
f o r ( i = 0 ; i < n ; i ++)

sum += a [ i ] ;
r e t u r n sum;

In the above code snippet, the variable i is referenced several times in the for loop where i is
compared against n, to see if the loop is complete, and also incremented by one at the end of the
loop. This shows temporal locality of reference in action since the CPU accesses i at different points
in time over a short period of time.

This code snippet also exhibits spatial locality of reference. The loop itself adds the elements of
array a to variable sum. Assuming C++ stores elements of array a into consecutive memory locations,
then on each iteration the CPU accesses adjacent memory locations.

3.2 RAM memory cell

SRAM is a type of semiconductor memory that uses flip-flops to store a single bit. SRAM exhibits
data remanence (keeping its state after writing or reading from the cell) [19], but it is still volatile.
Data is eventually lost when the memory is powered off.

The term static differentiates SRAM from DRAM which must be periodically refreshed. SRAM
is faster but more expensive than DRAM, hence it is commonly used for CPU cache while DRAM is
typically used for main memory. The advantages of SRAM over DRAM are lower power consumption,
simplicity (no refresh circuitry is needed) and reliability. There are also some disadvantages: a higher
price and lower capacity (amount of bits). The latter disadvantage is due to the design of an SRAM
cell.

A typical SRAM cell is made up of six Metal-Oxide-Semiconductor Field-Effect Transistors (MOS-
FETs). Each bit in an SRAM (see figure 3.3) is stored on four transistors (M1, M2, M3 and M4). This
cell has two stable states which are used to denote 0 and 1. Two additional transistors (M5 and M6)
are used to control the access to that cell during read and write operations.

Figure 3.3: Six transistor SRAM cell
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A four transistor (4T) SRAM (see figure 3.4) is quite common in standalone devices, which is
implemented in special processes with an extra layer of poly-silicon, allowing for very high-resistance
pull-up resistors. The main disadvantage of using 4T SRAM is the increased static power due to the
constant current flow through one of the pull-down transistors.

Figure 3.4: Four transistor SRAM cell

Generally, the fewer transistors needed per cell, the smaller each cell. Since the cost of processing
a silicon wafer is relatively fixed, therefore using smaller cells and so packing more bits on a single
wafer reduces the cost per bit. In figure 3.5a the layout of a 6T cell with dimensions 5×PMetal by 2×
PMetal is shown. A 4T cell, as can be seen in figure 3.5b, has only a dimension of 5×PMetal by 1.5×
PMetal. PMetal denote the Metal Pitch used by the manufacturing process. The pitch is the centre to
centre distance between the metals, having minimal width and minimal spacing.

(a) (b)

Figure 3.5: SRAM cell layout: (a) A six transistor cell; (b) A four transistor cell

To access the memory cell (see figure 3.3) the word line (WL) gives access to transistors M5
and M6 which, in turn, control whether the cell (cross-coupled inverters) should be connected to the
bit lines (BL). These bit lines are used for both write and read operations. Although it is not strictly
necessary to have two bit lines, the two signals (BL andBL) are typically provided in order to improve
noise margins.

Figure 3.6: One transistor, one capacitor DRAM cell
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Opposed the the static SRAM, there is the dynamic DRAM cell (see figure 3.6). In this type of
memory cell the data is stored in a separate capacitor within the IC. A charged capacitor denotes
a 1 and discharged denotes a 0. However, a non-conducting transistor will always leak a small
amount, discharging the capacitor, and the information in the memory cell eventually fades unless
the capacitors charge is refreshed periodically, hence Dynamic in the name. The DRAM cell layout
is even smaller as can be seen in figure 3.7

Figure 3.7: One transistor, one capacitor cell

The structural simplicity is DRAMs advantage. Compared to the four or even six transistors re-
quired in SRAM, just one transistor and one capacitor is required per bit in DRAM. This allows for
very high densities, billions of these 1T cells can fit on a single chip. On the other hand, due to its
dynamic nature, DRAM consumes relatively large amounts of power.

3.3 Principles of operation

Both types of RAM architectures have three main operations:

SRAM DRAM

Standby No Operation
Reading
Writing

Table 3.1: RAM main operations

Due to the volatile nature of the DRAM architecture there is a fourth main operation, called Refresh

An SRAM cell has three different states: standby (the circuit is idle), reading (the data has been
requested) or writing (updating the contents). SRAM operating in read mode and write modes should
have readability and write stability, respectively. Assuming a six transistor implementation, the three
different operations work as follows:

3.3.1 SRAM - Standby

If the word line is not asserted, the transistors M5 and M6 disconnect the cell (M1, M2, M3 and
M4) from the bit lines. The two cross-coupled inverters in the cell will continue to reinforce each other
as long as they are connected to the supply Vdd.
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3.3.2 SRAM - Reading

In theory, reading only requires asserting the word line and reading the SRAM cell state by a single
access transistor and bit line, e.g. M6/BL and M5/BL. Nevertheless, bit lines are relatively long and
have large parasitic capacitance. To speed up reading, a more complex process is used in practice:

1. Pre-charge both bit lines BL and BL, that is, driving both lines to a threshold voltage midrange
between a logic 1 and 0 by an external circuitry (not shown in figure 3.3).

2. Assert the word line WL to enable both transistors M5 and M6. This causes the BL voltage to
either slightly rise (nMOS1 transistor M3 is OFF and pMOS2 transistor M4 is ON) or drop (M3
if ON and M4 OFF ). Note that if BL rises, BL drops and vice versa.

3. A sense amplifier will sense the voltage difference between BL and BL to determine which
line has the higher voltage and thus which logic value (0 or 1) is stored. A more sensitive sense
amplifier speeds up the read operation.

3.3.3 SRAM - Writing

To write to SRAM the following two steps are needed:

1. Apply the value to be written to the bit lines. If writing a 1, BL = 1 and BL = 0.
2. Assert the word line WL to latch in the value to be stored.

This operation works, because the bit line input-drivers are designed to be much stronger than
the relatively weak transistors in the cell itself so they can easily override the previous state of the
cross-coupled inverters. In practice, the nMOS transistors M5 and M6 have to be stronger than
either bottom nMOS (M1/M3) or top pMOS (M2/M4) transistors. This is easily obtained as pMOS
transistors are much weaker than nMOS when same sized. Consequently when one transistor pair
(e.g. M3/M4) is only slightly overridden by the write process, the opposite transistors pair (M1/M2)
gate voltage is also changed. This means that the M1 and M2 transistors can be easier overridden,
and so on. Thus, cross-coupled inverters magnify the writing process.

3.3.4 DRAM - Refresh

Due to the charge leaking away out of the capacitor over time, this charge on the individual cells
must be refreshed periodically. The frequency with which this refresh must occur depends on the
silicon technology used to manufacture the memory chip and the design of the memory cell itself.

Each cell must be accessed and restored during a refresh interval. In most cases, refresh cycles
involve restoring the charge along an entire row. Over the period of the entire interval, every cell in a
row is accessed and restored. At the end of the interval, this process begins again.

Memory designers have a lot of freedom in designing and implementing memory refresh. One
choice is to fit the refresh cycles between normal read and write cycles, another is to run refresh
cycles on a fixed schedule, forcing the system to queue read/write operations when they conflict with
the refresh requirements.

1n-type MOSFET. The channel in the MOSFET contains electrons
2p-type MOSFET. The channel in the MOSFET contains holes
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Three common refresh options are briefly described below:

• RAS Only Refresh (ROR)3

Normally, DRAMs are refreshed one row at a time. The refresh cycles are distributed across
the refresh interval so that all rows are refreshed within the required time period. Refreshing
one row of DRAM cells using ROR, occurs in the following steps:

– The address of the row to be refreshed is applied at the address pins
– RAS is switched from High to Low. CAS4 must remain High
– At the end of the, by specification, required amount of time, RAS is switch to High

• CAS Before RAS (CBR)
Like RAS Only Refresh, CBR refreshes one row at a time. Refreshing a row using CAS Before
RAS, occur in the following steps:

– CAS is switched from High to Low
– WE5 is be switched to High (Read).
– After a specified required amount of time, RAS is switch to Low
– An internal counter determines the row to be refreshed
– After a specified required amount of time, CAS is switch to High
– After a specified required amount of time, RAS is switch to High

The main difference between CBR and ROR is the way for keeping track of the row address,
respectively an internal counter or externally supplied.

• Self Refresh (SR)
Also known as Sleep Mode or Auto Refresh. SR is a unique method of refresh. It uses an
on-chip oscillator to determine the refresh rate and, like the CBR method, an internal counter
to keep track of the row address. This method is frequently used for battery-powered mobile
applications or applications that uses a battery for backup power.
The timing required to initiate SR is a CBR cycle with RAS active for a minimum amount of time
as specified by the manufacturer. The length of time that a device can be left in sleep mode is
limited by the power source used. To exit, RAS and CAS are asserted High.

3.3.5 DRAM - Reading

To read from DRAM the following eight steps are needed:

1. Disconnect the sense amplifiers
2. Pre-charge the bit lines (differential pair) to exactly equal voltages that are midrange between

logical High and Low. (E.g. 0.5V in the case of ’0’= 0V and ’1’= 1V)
3. Turn off the pre-charge circuitry. The parasitic capacitance of the ”long” bit lines will maintain

the charge for a brief moment
4. Assert a logic 1 at the word line WL of the desired row. This causes the transistor to conduct,

enabling the transfer of charge to or from the capacitor. Since the capacitance of the bit line
is typically much larger than the capacitance of the capacitor, the voltage on the bit line will
slightly decrease or increase. (E.g. 0.45V=’0’ or 0.55V=’1’). As the other bit line will stay at
0.5V there is a small difference between the two bit lines

3RAS: Row Address Select
4CAS: Column Address Select
5WE: Write Enable
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5. Reconnect the sense amplifiers to the bit lines. Due to the positive feedback from the cross-
connected inverters in the sense amplifiers, one of the bit lines in the pair will be at the lowest
voltage possible and the other will be at the maximum high voltage. At this point the row is open
(the data is available)

6. All cells in the open row are now sensed simultaneously, and the sense amplifier outputs are
latched. A column address selects which latch bit to connect to the external data bus. Read-
ing different columns in the same (open) row can be performed without a row opening delay
because, for the open row, all data has already been sensed and latched

7. While reading columns in an open row is occurring, current is flowing back up the bit-lines from
the output of the sense amplifiers and recharging the cells. This reinforces (”refreshes”) the
charge in the cells by increasing the voltage in the capacitor (if it was charged to begin with), or
by keeping it discharged (if it was empty).
Note that, due to the length of the bit lines, there is a fairly long propagation delay for the charge
to be transferred back to the cells capacitor. This takes significant time past the end of sense
amplification and thus overlaps with one or more column reads

8. When done with reading all the columns in the current open row, the word line is switched Off
to disconnect the cell capacitors (the row is ”closed”) from the bit lines. The sense amplifier is
switched Off, and the bit lines are pre-charged again (Next read starts from item 3).

3.3.6 DRAM - Writing

To store data, a row is opened and a given column sense amplifier is temporarily forced to the
desired Low or High voltage, thus causing the bit line to discharge or charge the cells capacitor to
the desired value. Due to the sense amplifiers positive feedback configuration, it will hold a bit line
at a stable voltage even after the forcing voltage is removed. During a write to a particular cell, all
the columns in that row are sensed simultaneously (just as during reading), so although only a single
columns cell capacitor charge is changed, the entire row is refreshed.

3.4 Dual In-Line Memory Module

Figure 3.8: Dual In-Line Memory Module memory subsystem organisation

Nowadays, CPU architectures have integrated memory controllers. The controller connects to the
top of the memory subsystem through a channel (see figure 3.8). On the other end of the channel
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are one or more DIMMs (see figure 3.9). The DIMM contains the actual DRAM chips that provide 4
or 8 bits of data per chip.

Figure 3.9: DIMM Channels

Current CPUs support triple or even quadruple channels. These multiple, independent channels
increase data transfer rates due to the concurrent access of multiple DIMMs. Due to interleaving,
latency is reduced when operating in triple-channel or in quad-channel mode. The memory controller
distributes the data amongst the DIMMs in an alternating pattern, allowing the memory controller to
access each DIMM for smaller bits of data instead of accessing a single DIMM for the entire chunk of
data. This provides the memory controller more bandwidth for accessing the same amount of data
across channels instead of traversing a single channel when it stores all data in one DIMM.

The Dual Inline of the DIMM refers to the DRAM chips on both sides of the module. The ”group” of
chips on one side of the DIMMis called a Rank (see figure 3.10). Both Ranks on the DIMM can be
accessed simultaneously by the memory controller. Within a single memory cycle 64 bits of data is
accessed. These 64 bits may come from the 8 or 16 DRAM chips, depending on the data width of a
single chip (see figure 3.11).

Figure 3.10: DIMM Ranks

Figure 3.11: DIMM Rank breakdown

DIMMs come in three rank configurations: single-rank, dual-rank or quad-rank configuration. Ranks
are denoted as (xR). Together the DRAM chips grouped into a rank contain 64 bit of data. If a DIMM
contains DRAM chips on just one side of the PCB, containing a single 64-bit chunk of data, it is
referred to as a single-rank (1R) module. A dual rank (2R) module contains at least two 64 bit chunks
of data, one chunk on each side of the PCB. Quad ranked DIMMs (4R) contains four 64 bit chunks,
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two chunks on each side. To increase capacity, combine the ranks with the largest DRAM chips. A
quad-ranked DIMM with 4Gb chips equals 16GB DIMM (4Gb×8 chips×4 ranks/8 bits).

Figure 3.12: DIMM Chip

Finally, the DRAM chip is made up of several banks (see figure 3.12). These banks are indepen-
dent memory arrays which are organised in rows and columns (see figure 3.13).

Figure 3.13: DIMM Bank Rows and Columns

For example, a DRAM chip with 13 address bits for Row selection, 10 address bits for Column
selection, 8 Banks and 8 bits per addressable location, this chip has a total density of 2Rows · 2Cols ·
Banks ·BitsAddressable = 213 · 210 · 8 · 8 = 512Mbit (64M x 8 bits).

3.5 Double Data Rate type 5 Synchronous Graphics Random
Access Memory

GDDR5 is the most commonly used type of Synchronous Graphics Random Access Memory
(SGRAM) at the moment of writing this thesis. This type of memory has a high bandwidth (Double
Data Rate SDRAM (DDR)) interface for use in HPC and graphics cards.

This SGRAM is a specialised form of Synchronous Dynamic Random Access Memory (SDRAM),
based on DDR3 SDRAM. Functions like bit masking, i.e. writing a specified set of bits without
affecting other bits of the same address, and block write, i.e. filling a block of memory with one single
value. Although SGRAM is single ported, it can open two memory pages at once, simulating the dual
ported nature of other video RAM technology.
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GDDR5 uses a DDR3 interface and an 8n-prefetch architecture (see figures 3.14a and 3.14b) to
achieve high performance operations. The prefetch buffer depth (8n) can also be thought of as the
ratio between the core memory frequency and the Input/Output (I/O) frequency. In an 8n-prefetch
architecture, the I/Os will operate 8× faster than the memory core (each memory access results in
a burst of 8 datawords on the I/Os). Thus a 200MHz memory core is combined with I/Os that each
operate eight times faster (1600 megabits per second). If the memory has 16 I/Os, the total read
bandwidth would be 200MHz × 8datawords/access × 16I/Os = 25.6Gbit/s, or 3.2GB/s. At Power-
up, the device is configured in x32 mode or in x16 clamshell mode, where the 32-bit I/O, instead of
being connected to one IC, is split between two ICs (one on each side of the PCB), allowing for a
doubling of the memory capacity.

Just by adding additional DIMMs to the memory channels is the traditional way of increasing mem-
ory density in PC and server applications. However, this dual-rank configuration can lead to perfor-
mance degradation resulting from the dual-load signal topology (The databus is share by both ranks).
GDDR5 uses a single-loaded or Point-To-Point (P2P) data bus for the best performance.

GDDR5 devices are always directly soldered on the PCB and are not mounted on a DIMM. In x16
mode, the data bus is split into two 16-bit wide buses that are routed separately to each device (see
figure 3.14d). The Address and Command pins are shared between the two devices to preserve
the total I/O pin count at the controller. However, this Point-To-Two-Point (P22P) topology does not
decrease system performance because of the lower data rates of the address or command bus.

(a) 8n-prefetch READ (b) 8n-prefetch WRITE

(c) Normal (x32) mode (d) Clamshell (x16) mode

Figure 3.14: Double Data Rate type 5 Synchronous Graphics Random Access Memory (GDDR5)

GDDR5 operates with two different clock types. A differential Command Clock (CK) as a reference
for address and command inputs, and a forwarded differential Write Clock (WCK) as a reference for
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data reads and writes, that runs at twice the CK frequency. A Delay Locked Loop (DLL) circuit is
driven from the clock inputs and output timing for read operations is synchronised to the input clock.
Being more precise, the GDDR5 SGRAM uses a total of three clocks:

1. Two write clocks associated with two bytes: WCK01 and WCK23
2. One Command Clock (CK)

Over the GDDR5 interface 64-bits of data (two 32-bit wide data words) per WCK can be transferred.
Corresponding to the 8n-prefetch, a single write or read access consists of a 256-bit wide two CK
clock cycle data transfer at the internal memory core and eight corresponding 32-bit wide one-half
WCK clock cycle data transfers at the I/O pins.

Taking a GDDR5 with 5Gbit/s data rate per pin as an example, the CK runs with 1.25GHz and
both WCK clocks at 2.5GHz. The CK and WCKs are phase aligned during the initialisation and
training sequence. This alignment allows read and write access with minimum latency.

3.6 Hybrid Memory Cube

As written in [20] the Hybrid Memory Cube combines several stacked DRAM dies on top of a
Complementary Metal Oxide Semiconductor (CMOS) logic layer forming a so called cube. The
combination of both DRAM technology and CMOS technology dies makes this a hybrid chip, hence
the name Hybrid Memory Cube. The dies in the 3D stack are connected by means of a dense
interconnect mesh of Through Silicon Vias (TSVs), which are metal connections extending vertically
through the entire stack (see figures 3.15 and 3.16).

Figure 3.15: Cross Sectional Photo of HMC Die Stack Including TSV Detail (Inset) [1]

Figure 3.16: HMC Layers [2]

19



Unlike conventional DDR3 DIMM which has the electrical connection through the pressure of the
pins in the connector, the TSVs form a permanent connection between all the layers in the stack.
The TSV connections provide a very short (less then a mm up to a few mm) with less capacitance
than the long PCB trace buses which can extent to many cm, hence data can be transmitted at a
reasonable high data rate through the HMC stack without the use of power hungry and expensive I/O
drivers [21].

Within each HMC [3], memory is vertically organised. A partition of each memory die is combined
into a vault (see figure 3.17). Each vault is operationally and functionally independent. The base
of a vault contains a vault controller located in the CMOS die. The role of the vault controller is like
a traditional memory controller in that it sends DRAM commands to the memory partitions in the
vault and keeps track of the memory timing constraints. The communication is through the TSVs. A
vault is more or less equivalent to a conventional DDR3 channel. However, unlike traditional DDR3
memory, the TSV connections are much shorter than the conventional bus traces on a motherboard
and therefore have much better electrical properties. An illustration of the architecture can be seen
in figure 3.17.

Figure 3.17: Example HMC Organisation [3]

The vault controller, by definition, may have a queue to buffer references inside that vaults memory.
The execution of the references within the queue may be based on need rather than the order of ar-
rival. Therefore the response from the vault to the external serial I/O links will be out of order. When
no queue is implemented and two successive packets have to be executed on the same bank, the
vault controller must wait for the bank to finish its operation, before the next packet can be executed,
potentially blocking packet executions to other banks inside that vault. The queue can potentially
optimise the memory bus usage.
Requests from a single external serial link to the same vault/bank address will be executed in order
of arrival. Requests from different external serial links to the same vault/bank address are not guar-
anteed to be executed in order. Therefore the requests must be managed by the host controller (e.g.
an FPGA or CPU).
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The functions managed by the logic base of the HMC are:

• All HMC I/O, implemented as multiple serialised, full duplex links
• Memory control for each vault; Data routing and buffering between I/O links and vaults
• Consolidated functions removed from the memory die to the controller
• Mode and configuration registers
• BIST for the memory and logic layer
• Test access port compliant to JTAG IEEE 1149.1-2001, 1149.6
• Some spare resources enabling field recovery from some internal hard faults.

A block diagram example for an implementation of a 4-link HMC configuration is shown in figure
3.18.

Figure 3.18: HMC Block Diagram Example Implementation [3]

Commands and data are transmitted in both directions across the link using a packet based proto-
col where the packets consist of 128-bit Flow Units (FLITs). These FLITs are serialised, transmitted
across the physical lanes of the link, then re-assembled at the receiving end of the link. Three con-
ceptual layers handle packet transfers:

• The physical layer handles serialisation, transmission, and de-serialisation
• The link layer provides the low-level handling of the packets at each end of the link.
• The transaction layer provides the definition of the packets, the fields within the packets, and

the packet verification and retry functions of the link.

Two logical blocks exist within the link layer and transaction layer (see figure 3.19):

• The Link Master (LM), is the logical source of the link where the packets are generated and the
transmission of the FLITs is initiated.

• The Link Slave (LS), is the logical destination of the link where the FLITs of the packets are
received, parsed, evaluated, and then forwarded internally.
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The nomenclature below is used throughout this report to distinguish the direction of transmission
between devices on opposite ends of a link. These terms are applicable to both host-to-cube and
cube-to-cube configurations.
Requester: Represents either a host processor or an HMC link configured as a pass-through link. A
requester transmits packets downstream to the responder.
Responder: Represents an HMC link configured as a host link (See figure 3.20 through figure 3.23).
A responder transmits packets upstream to the requester.

Figure 3.19: Link Data Transmission Example Implementation [3]

Multiple HMC devices may be chained together to increase the total memory capacity available
to a host. A network of up to eight HMC devices and 4 host source links is supported, as will be
explained in the next paragraphs. Each HMC in the network is identified through the value in its CUB
field, located within the request packet header. The host processor must load routing configuration
information into each HMC. This routing information enables each HMC to use the CUB field to route
request packets to their destination.

Each HMC link in the cube network is configured as either a host link or a pass-through link,
depending upon its position within the topology. See figure 3.20 through figure 3.23 for illustrations.

A host link uses its Link Slave to receive request packets and its Link Master to transmit response
packets. After receiving a request packet, the host link will either propagate the packet to its own
internal vault destination (if the value in the CUB field matches its programmed cube ID) or forward
it towards its destination in another HMC via a link configured as a pass-through link. In the case
of a malformed request packet whereby the CUB field of the packet does not indicate an existing
CUBE ID number in the chain, the request will not be executed, and a response will be returned (if
not posted) indicating an error.

A pass-through link uses its Link Master to transmit the request packet towards its destination
cube, and its Link Slave to receive response packets destined for the host processor.

22



Figure 3.20: Example of a Chained Topology [3]

Figure 3.21: Example of a Star Topology [3]
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Figure 3.22: Example of a Multi-Host Topology [3]

Figure 3.23: Example of a Two-Host Expanded Star Topology [3]
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An HMC link connected directly to the host processor must be configured as a host link in source
mode. The Link Slave of the host link in source mode has the responsibility to generate and insert
a unique value into the Source Link Identifier (SLID) field within the tail of each request packet.
The unique SLID value is used to identify the source link for response routing. The SLID value
does not serve any function within the request packet other than to traverse the cube network to its
destination vault where it is then inserted into the header of the corresponding response packet. The
host processor must load routing configuration information into each HMC. This routing information
enables each HMC to use the SLID value to route response packets to their destination. Only a
host link in source mode will generate an SLID for each request packet. On the opposite side of a
pass-through link is a host link that is not in source mode. This host link operates with the same
characteristics as the host link in source mode except that it does not generate and insert a new
value into the SLID field within a request packet. All LSs in pass-through mode use the SLID value
generated by the host link in source mode for response routing purposes only. The SLID fields
within the request packet tail and the response packet header are considered Don’t Care” by the host
processor. See figure 3.20 through figure 3.23 for illustrations for supported multi-cube topologies.

3.6.1 HMC Bandwidth and Parallelism

As mentioned in the previous section, a high bandwidth connection within each vault is available
by using the TSVs to interconnect the 3D stack of dies. The combination of the number of TSVs (the
density per cube can be in the thousands) and the high frequency at which data can be transferred
provides a high bandwidth.

Because of the number of independent vaults in an HMC, each build up out of one or more banks
(as in DDR3 systems), a high level of parallelism inside the HMC is achieved. Since each vault
is roughly equivalent to a DDR3 channel and with 16 or more vaults per HMC, a single HMC can
support an order of magnitude more parallelism within a single package. Furthermore, by stacking
more dies inside a device, a greater number of banks per package can be achieved, which in turn is
beneficial to parallelism.

The overall build up of the HMC, depending on the cubes configuration, can deliver an aggregate
bandwidth of up to 480GB/s (see figure 3.24).

(a) (b)

Figure 3.24: HMC implementation: (a) 2 Links; (b) 32 Lanes (Full width link)
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The available total bandwidth on an 8 Links, Full width HMC implementation is calculated as fol-
lows:

• 15 Gb/s per Lane
• 32 Lanes = 4 Bytes
• 8 Links / Cube = 480 GB/s / Cube

For the AC-510 [16] UltraScale-based SuperProcessor with HMC, providing 2 half width links, the
total available bandwidth is equal to 15Gb/s× 2× 2 = 60GB/s

3.6.2 GDDR5 versus HMC

To reduce the power consumption of GDDR5 many techniques have been employed. A POD
signalling scheme, combined with an On-Die Termination (ODT) resistor [22] will only consume static
power when driving LOW as can be seen in figure 3.25.

Lowering the supply voltage (≈ 1.5V ) of the memory, Dynamic Voltage/Frequency Scaling (DVFS)
and the usage of independent ODT strength control of the command, address and data lines, are
some of the other techniques used in GDDR5 memory. The DVFS [23] technique reduces power by
adapting the voltage and/or the frequency of the memory interface while satisfying the throughput
requirements of the application. However, this reduction in power results in the degradation of the
throughput.

Using all these techniques, to get a maximum throughput or bandwidth of 6.0Gbps a relatively high
clock frequency is needed. For example, the memory clock of the AMD Radeon(tm) HD 7970 GHz
edition GPU is equal to 1500MHz.

Figure 3.25: GDDR5 - Pseudo Open Drain (POD)

The architecture of the HMC, in contrast to GDDR5, uses some different techniques to reduce the
power consumption. The supply voltage is reduced even more to only 1.2V , and the clock frequency
is reduced to only 125MHz, which is 12 times lower then that of the GDDR5 memory. To keep the
throughput equal (or even greater) to that of GDDR5 the HMC package uses multiple high speed
links to transfer data to and from the device. These links are all connected to the I/O of the HMC
package, resulting in a package with 896 pins in total (GDDR5 packages only have 170 pins).
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The above optimisations result in the following comparison. Note that in table 3.2 6 not only GDDR5
and HMC memory, but also other memory architectures are included. The claim of the Hybrid Mem-
ory Cube (HMC) consortium [8] that the HMC memory is ≈ 66.5% more energy efficient per bit than
DDR3 memory, is concluded from this table. However, comparing the energy efficiency of the HMC
to GDDR5 memory, the HMC is only ≈ 17.6% more energy efficient per bit.

Technology
VDD IDD Data rate Bandwidth Power Energy
(V) (A) (MT/s)7 (GB/s) (W) pJ/Byte pJ/bit

SDRAM PC133 1GB Module 3.3 1.50 133 1.06 4.95 4652.26 581.53
DDR-333 1GB Module 2.5 2.19 333 2.66 5.48 2055.18 256.90

DDRII-667 2GB Module 1.8 2.88 667 5.34 5.18 971.51 121.44
GDDR5 - 3GB Module 1.5 18.48 33000 264.00 27.72 105.00 13.13

DDR3-1333 1GB Module 1.5 1.84 1333 10.66 2.76 258.81 32.35
DDR4-2667 4GB Module 1.2 5.50 2667 21.34 6.60 309.34 38.67

HMC, 4 DRAM 1Gb w/ logic 1.2 9.23 16000 128.00 11.08 86.53 10.82

Table 3.2: Memory energy comparison

In table 3.2 the relation between the data rate and the bandwidth is:

bandwidth = DDR clock rate× bits transferred per clock cycle/8

Memory modules currently used are 64-bit devices. This means that 64 bits of data are transferred
at each transfer cycle. Therefore, 64 will be used as bits transferred per clock cycle in the above
formula. Thus, the above formula can be simplified even further:

bandwidth = DDR clock rate× 8

6The values for VDD , IDD and Data rate can be found in the datasheets of the given memories.
7Megatransfers per second
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Chapter 4

Benchmarking

In order to compare GDDR5 and HMC memory, it is important to look at the performance and
power consumption of these memory types. Because, in a complete system, not only the GDDR5 or
HMC will be used, but also a GPU or FPGA, the comparison is made on a graphical card versus the
HMC system [15] (see figure 4.1).

Figure 4.1: Functional block diagram of test system
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In the next sections a description of some of the key performance characteristics of a HMC and
GDDR5 are given. This should give insight into the relative merits of using either an FPGA in combi-
nation with the HMC memory or a GPU in combination with the GDDR5 memory.

There is a vast array of benchmarks to choose from, but for this comparison this is narrowed down
to three tests1, e.g. there will be no gaming and virtual reality benchmarking needed (see figure 4.1):

• How fast can data be transferred between the Personal Computer (PC) (host) and the graphical
card (device 2) or HMC card (device 2)?

• How fast can the FPGA or GPU read and write data from HMC or GDDR5 respectively?
• How fast can the FPGA or GPU read data from, do computations and write the result to HMC

or GDDR5 respectively?

In these benchmarks, each test is repeated up-to a hundred times to allow for other activities going
on on the host and/or to eliminate the first-call overheads. During the repetition of the tests the
overall minimum execution time per benchmark is kept as result, because external factors can only
ever slow down execution. In the end this results in a maximum bandwidth. In order to get as close
to an absolute performance measurement, it is important the host system execute as little tasks as
possible.

4.1 Device transfer performance

This test measures how quickly the host can send data to and read data from the device (either
HMC or GDDR5) (see figure 4.1). Since the device is plugged into the PCIe bus, the performance
is largely dependent on the PCIe bus revision (see table 4.1) and how many other devices are con-
nected to the PCIe bus. However, there is also some overhead that is included in the measurements,
particularly the function call overhead and the array allocation time. Since these are present in any
”real world” use of the device, it is reasonable to include these overheads.

Note that the PCIe rev 3.0, is used in the test equipment, it has a theoretical bandwidth of 1.0GB/s

per lane. For the 16-lane slots (PCIe x16) used by the devices a maximum theoretical bandwidth of
16GB/s is given. Although an x16 slot is used, most of the devices only use 8 lanes and therefore
the maximum theoretical bandwidth is only 8GB/s.

PCI Express Transfer Throughput
version rate2 x1 x4 x8 x16

1.0 2.5 GT/s 250 MB/s 1 GB/s 2 GB/s 4 GB/s
2.0 5 GT/s 500 MB/s 2 GB/s 4 GB/s 8 GB/s
3.0 8 GT/s 984.6 MB/s 3.938 GB/s 7.877 GB/s 15.754 GB/s
4.0 (expected 2017) 16 GT/s 1.969 GB/s 7.877 GB/s 15.754 GB/s 31.508 GB/s
5.0 (far future) 25/32 GT/s 3.9/3.08 GB/s 15.8/12.3 GB/s 31.5/24.6 GB/s 63.0/49.2 GB/s

Table 4.1: PCIe link performance

1For all performance tests, also power consumption will be measured.
2Gigatransfers per second
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4.2 Memory transfer performance

While not all data is sent-to or read-from the PCIe bus, but can be processed ’locally’ using a GPU
or FPGA (see figure 4.1), a separate test for measuring the Memory transfer performance should
be executed. As many operations performed will do little computation with each data element of an
array, these operations are therefore dominated by the time taken to fetch the data from memory or
write it back to memory. Simple operators like plus (+) or minus (-) do very little computation per
element that they are bound only by the memory access speed.

To know whether the obtained memory transfer benchmark figures are fast or not, the benchmark
is compared with the same code running on a CPU reading and writing data to the main DDR3
memory. Note, however, that a CPU has several levels of caching and some oddities like ”read
before write” that can make the results look a little odd. The theoretical bandwidth of main memory
is the product of:

• Base DRAM clock frequency. (2133MHz)
• Number of data transfers per clock. (2)
• Memory bus (interface) width. (64bits)
• Number of channels. (1)

For the used test equipment the theoretical bandwidth (or burst size) is 2133 · 106 × 2 × 64 × 1 =

273024000000 (273.024 billion) bits per second or in bytes 34.128GB/s, so anything above this is likely
to be due to efficient caching.

4.3 Computational performance

For operations where computation dominates, the memory speed is not very important. In this
case, how fast the computations are performed is the interesting part of the benchmark. A good test
of computational performance is a matrix-matrix multiplication. As above, this operation is timed on
both the CPU, GPU and the FPGA to see their relative processing power.

Another computation dominated operation is the removal of impulse noise [24], also known as salt-
and-pepper noise, from an image. For the removal of this noise a Median Filter can be used. The
advantage of this type of filter on an image is that there are no Floating or Fixed Point operations
involved. Therefore, the FPGA implementation is much more straight forward, needs less area in
the FPGA and can designed and implemented quicker, keeping in mind the time constraints of this
project.

4.3.1 Median Filter

In signal processing, it is often desirable to be able to perform some kind of noise reduction on
an image or signal. The median filter is a non-linear digital filtering technique, often used to remove
noise. Such noise reduction is a typical pre-processing step to improve the results of later processing
(see figure 4.2).
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The main idea of the median filter is to run through the signal entry by entry, replacing each entry
with the median of neighbouring entries. The pattern of neighbours is called the window, which slides,
entry by entry, over the entire signal. For one dimensional signals, the most obvious window is just the
first few preceding and following entries, whereas for two dimensional (or higher-dimensional) signals
such as images, more complex window patterns are possible (such as box or cross patterns). Note
that if the window has an odd number of entries, then the median is simple to define: it is just the
middle value after all the entries in the window are sorted numerically. For an even number of entries,
there is more than one possible median. Therefore, most median filters use a window with an odd
number of entries.

The median filter is an order statistics filter (see Appendix A), where the filtered output image
f̂ [x, y] depends on the ordering of the pixel values of the input image g in the window S[x,y]. The
Median Filter output is the 50% ranking of the ordered values:

f̂ [x, y] = median
{
g[s, t], [s, t] ∈ S[x,y]

}

For example, a 3×3 Median Filter gS[x,y]
=

 1 5 20

200 5 25

25 9 100

, the values are first ordered as follows:

1, 5, 5, 9, 20, 25, 25, 100, 200. The 50% ranking (in this case the 5th value) is 20, thus f̂ [x, y] = 20.

The Median Filter (see Algorithm 1) introduces even less blurring then other filters of the same
window size. This filter can be used for Salt noise, Pepper noise or Salt-and-pepper noise. The
Median Filter is a non-linear filter. A simple 2D median filter algorithm could look like algorithm 1.

Algorithm 1: 2D median filter pseudo code
Input:

f : Noisy input image with dimensions N ×M
w: Window size of the median filter

Output:
f̂ : Denoised output image with dimensions N ×M

Initialisation:
edgex = bS/2c x offset due to filter window size
edgey = bS/2c y offset due to filter window size

for x=edgex:N do
for y=edgey:M do

for fx=0:w-1 do
for fy=0:w-1 do

S(fy · w + fx) = f [x+ fx− edgex][y + fy − edgey] % Fill median filter
window

end
end
Sort entries in S
f̂(x, y) = S(dw × w/2e) % Store filtered output pixel

end
end
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Note that this algorithm processes one colour channel only without boundaries.

(a) (b) (c)

Figure 4.2: Denoising example: (a) Original; (b) Impulse noise; (c) Denoised (3× 3 window)
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Chapter 5

Power and Energy by using Current
Measurements

Power consumption and energy efficiency is becoming more and more important in modern,
smaller-sized electronics systems with increasing functionality. The equations for Power (Equation
5.1) and Energy (Equation 5.2) are as follows:

P [t]LOAD = V [t]LOAD × I[t]LOAD (5.1)

E =

T∑
i=1

P
[
t(i)
]
×
[
t(i)− t(i− 1)

]
(5.2)

As can be seen in Equation 5.1, to calculate the (instantaneous) power the instantaneous voltage
over the load and the instantaneous current through the load must be measured. While the voltage
can be easily measured without almost no effect on the load, this is not the case for the measurement
of the current through the load. Correctly picking the method to monitor the current for the given
system is critical in measuring system efficiency. First the correct method must be decided on, that
is whether to use direct or indirect techniques (see table 5.1 at the end of the section).

Indirect current sensing is based on Maxwell’s 3rd (Faraday’s law [25]) and 4th (Ampere’s law [26])
equations. The basic principle is that as a current flows through a wire, a magnetic field is produced
proportional to the current level. By measuring the strength of this magnetic field (and knowing the
materials properties), the value of the load current can be calculated.

The sensing elements are commonly called Hall-effect sensors [27]. This non-invasive method is
inherently isolated from the load.

Indirect current measurement does not cause any loss of power into the load. It can be used
in systems with only a few milliamperes of load up to high currents (> 1000A), up to high voltages
(> 1000V), dynamic loads and any area requiring isolation. Using indirect sensing is typically more
expensive due to the sensors required and historically these sensors required a fairly large footprint,
but nowadays these sensors are available in chip-size up to many tens of amperes, e.g. the ACS715
[28].
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On the other hand direct sensing is based on Ohm’s law (Eq.5.3). This law simply states that
the current flowing though a resistor is directly proportional to the ratio of the voltage across the
resistor and it’s value. This so called shunt resistor is placed in series with the load. This can be
either between the supply and the load (high side) or between the load and ground (low side). This
resistor adds power dissipation to the system and therefore this method is invasive. Both isolated
and non-isolated variants are available.

ILOAD =
VLOAD
RLOAD

(5.3)

For currents and voltages less than 100A and 100V , direct sensing offers a low-cost method.
However, the system must be able to tolerate a small loss in power due to the shunt resistor.

Due to the invasiveness of this measurement technique, the main design goal is to minimise the
amount of load the measurement system adds to the system. To achieve this goal, the sense-element
or shunt resistor must be very small. The typical shunt resistor has a value of less then 50mΩ and in
some cases even less then 1mΩ. The small value of the shunt resistor results in a fairly small voltage
drop, hence signal conditioning is required.

To amplify the small signal measured on the shunt resistor to usable levels, a differential amplifier
should be used. There are four main differential amplifier configurations that can be used (see table
5.1) to measure the current:

• Operational Amplifier
• Differential Amplifier
• Instrumentation Amplifier
• Current-Sense Amplifier

The Operational Amplifier (Op-amp) is the most basic implementation. To set the gain and preci-
sion levels, the Op-amp relies on external discrete components, hence the Op-amp is only used in
low accuracy, low cost systems. The Op-amp requires a feedback path, the input is single-ended
and can only be applied in low-side configurations. Because the Op-amp is single-ended, it becomes
susceptible to parasitic impedance errors. To increase the precision of the Op-amp high-accuracy
components can be used which will increase the cost of the system.

Differential Amplifiers are special Op-amps that integrate gain networks. Differential Amplifiers
are used to eliminate parasitic impedance errors. However, the Differential Amplifier is designed to
convert large differential signals to large single-ended signals, typically with unity gain. The very small
input signals delivered by the shunt resistor requires high gain amplifiers, therefore the Differential
Amplifiers architecture isn’t suitable for most current-sensing systems. Since these amplifiers have a
very high Common-mode Voltage (CMV) range on the inputs, these amplifiers can be used as buffer
stages.

An Instrumentation Amplifier is a special three-stage device. This amplifier has two buffers, one on
each input of the Differential Amplifier. This architecture creates a high input impedance, resulting
in a device for measuring very small currents (actually the voltage drop over the shunt resistor is
measured). The Instrumentation Amplifier also eliminates the parasitic impedance error of the Op-
erational Amplifier. The limitation of this amplifier is that the Common-mode Voltage must fall within
the supply voltage range.
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The last device to measure currents is the Current-sense Amplifier, also called a current-shunt
amplifier or current-shunt monitor, that features a unique input stage (Figure 5.1), with:

VO = (VSHUNT + VP )×
(

1 +
RF
RG

)

Figure 5.1: Current Sense Amplifier

The amplifier can be exposed to significantly higher Common-mode Voltage than the supply volt-
age, thanks to its topology. The higher CMV range is obtained by attenuating the non-inverting input
by a factor of x times, using a resistor divider network. On the inverting input, the resistors are
chosen such that both sides of the amplifier are in balance. The noise gain of the circuit is thereby
providing unity gain for differential input voltages. Laser wafer trimming of the thin film resistors yields
a minimum Common-mode Rejection (CMR).

Additionally, the low-drift, high precision gain network integration maximises measurement accu-
racy. For current-sense amplifiers, the input architecture of these amplifiers limits the ILOAD to a
minimum of approximately 10µA. Through the input circuitry an input bias current will be flowing
introducing a great uncertainty in the measurement.

To determine which implementation to choose, several questions must be answered:

• Will the measurement be on the high or low side?
• What is the Common-mode Voltage to be measured?
• What is the current range to be measured?
• Is the current bidirectional or unidirectional?
• How will the current value be used?

A low-side implementation has the shunt resistor between the load and the system ground, like
in figure 5.1. This is the most common method for current monitoring, because the Common-mode
Voltage is near ground. However, the shunt resistor disturbs the ground seen by the load and this
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prevents special circuitry in the load to detect any shorts-to-ground. On the other hand, a high-
side implementation allows for good system grounding, but the shunt resistor is placed between the
supply and the load. This results in the Common-mode Voltage being near the load supply voltage.
In certain cases this will be well above the amplifiers supply rail making this a no-go.

In the case of a PCIe card, direct sensing will have too much impact on the proper operation of the
digital hardware. Therefore, indirect sensing will be applied.

Indirect
Direct amplifier alternatives

Operational Difference Instrumentation Current Sense

Current
mA→ kA mA→ A mA→ A nA→ kA mA→ A

Range

CMV
kV +Vcc → −Vcc � Vcc →�= Vcc +Vcc → −Vcc > Vcc →≤ Vcc

Range

Strengths
No insertion Low cost High side, high High-precision

loss Ease of use common-mode Very low currents low and high side
Isolated range high gain

Challenges
Higher cost

Accuracy
Low gain requires Common-mode range Low current

Larger footprint � VSHUNT limited to volts limitations

Table 5.1: Current sensing techniques

38



Chapter 6

Power Estimations

According to Bircher, et. al [29], there is a correlation between the operating systems performance
counters of the different sub systems in a system and the power used by the different sub systems in a
system. It is shown that using well known performance events within the CPU, such as Direct Memory
Access (DMA) transactions and cache misses, are highly correlated to the power consumption of
subsystems outside the CPU. Their models are shown to have an average error of less than 9% per
subsystem across the considered workloads.

For the main memory in a system it is possible to estimate the power consumption by using the
number of read or write cycles and the percentage of time the operation is within the precharge,
active or idle state [30]. Since these performance events are not directly visible to the CPU, an
estimation is done by using the performance events of the memory bus accesses by the CPU and
other subsystems. It is also necessary to account for memory utilisation caused by subsystems other
than the CPU, namely I/O devices performing DMA accesses.

For the power estimation of the Chipset1 and I/O-devices in the system, the specific disk and
memory system metrics are not used. The estimation is done by using metrics of the number of
Interrupts, DMA and uncacheable accesses in the system.

I/O and Chipset subsystems are composed of rather homogeneous structures and the estimation
of their power is done by traditional CMOS power models. These models divide power consumption
into static and dynamic power. The static power represents current leakage, while dynamic power
accounts for the switching currents of CMOS transistors. Since the static power does not vary in a
system, due to a relatively constant Vcc and temperature, only the dynamic power is estimated in the
I/O and Chipset subsystems.

Power consumption of a system is divided into two components: Static and Dynamic power, as
shown in equation 6.1. The static power is determined by the used chip technology, chip layout and
the operating temperature. The dynamic power is determined by events during runtime, mainly the
switching overhead in the transistors in the chip.

PSystem = PDynamic + PStatic (6.1)
1A chipset is a set of electronic components in an IC that manages the data flow between the processor, memory and

peripherals. It is usually found on the motherboard. Because the chipset controls the communication between the processor
and external devices, the chipset plays a crucial role in determining system performance.
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An empirical method to build a power model is proposed by Isci and Martonosi [31]. Equation 6.2
shows their Counter-based Component power Estimation model. They use the component access
rates to weight component power numbers. In particular, they use the access rates as weighting fac-
tors to multiply against each components maximum power value along with a scaling strategy that is
based on micro-architectural and structural properties. In general, all the component power estima-
tions are based on Equation 6.2, whereMaxPower andNonGatedClockPower are estimated empir-
ically during implementation. The Ci in the equation are the hardware components, like ALUinteger,
ALUFP , Register File and Instruction Fetch Unit. The total system power (PSystem) is equal to the
summation of the power all individual components.

PSystem =

n∑
i=0

[
AccessRate(Ci)×ArchitecturalScaling(Ci)

×MaxPower(Ci) +NonGatedClockPower(Ci)
]

+ IdlePower (6.2)

6.1 Power Consumption Model for AMD GPU (GCN)

Basically, the power consumption of a GPU is divided in the same way into two components: Static
and Dynamic power, as shown in equation 6.3. The dynamic power is build up out of the dynamic
power of the individual components in the GPU, as shown in equation 6.4. The architecture (Graphics
Core Next) of the tested GPU is shown in appendix E.

PGPU = PDynamic + PStatic (6.3)

PDynamic =

n∑
i=0

(PComponent)i = PGCNs + PMemory (6.4)

To model the dynamic power of a single GCNs, the GCN is decomposed into the main physical
components as shown in equation 6.5.

PGCN = PALUInt
+ PALUFP

+ PCacheTexture

+ PCacheConst
+ PMemoryGlobal

+ PRegisters (6.5)

+ PFDS + PGCNConst

PGCNs = NumberGCN ×
n∑
i=0

(PGCN )i (6.6)

However, as Hong [32] states that, like equation 6.2, the equation 6.5 can be changed into the
equation 6.7 , since GPUs do not have any speculative execution. Therefore the estimated hardware
access rates are based on the number of instructions and the execution time.

PGCN = MaxPowerComponent ×AccessRateComponent (6.7)
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AccessRateComponent =
DynamicInstructionsComponent ×WavefrontsGCN

CyclesExecution/4
(6.8)

DynamicInstructionsComponent =

n∑
i=0

Instructions per Wavefronti(Component) (6.9)

WavefrontsGCN =

(
#ThreadsSIMD-V U

#ThreadsWavefront
× #SIMD-V U

#GCNActive

)
(6.10)

6.2 Power Consumption Model for HMC and FPGA

Similar to the power model for the GPU, a model can be specified for the AC-510 (HMC and FPGA)
module.

PAC510 = PDynamic + PStatic (6.11)

PStatic = PHMCStatic
+ PFPGAStatic

(6.12)

PDynamic = PHMCDynamic
+ PFPGADynamic

(6.13)

To model the dynamic power of the FPGA, the FPGA is decomposed into the main physical com-
ponents as shown in equation 6.14.

PFPGADynamic
= PClock + PLogic + PBRAM + PDSP + PPLL + PMMCM

+ PIPs + PI/O + POthers (6.14)

PClock is all dynamic power in the different clock trees, PDSP is all dynamic power of all used
DSPs, PPLL is all dynamic power of the Phase Locked Loops (PLLs), PMMCM is all dynamic power
of the Clock Manager, and PGTH is all the dynamic power of the used GTH transceivers in the FPGA
implementation.

PLogic = PRegisters + PLUTs (6.15)

PLUTs = PCombinatorial + PShiftRegisters + PDistributedRAMs (6.16)

PI/O = POn−chipI/O + POff−chipI/O (6.17)

41



POn−chipI/O = PLogicI/O + PBufferI/O + POther/IO (6.18)

PBRAM = PRAMB18 + PRAMB36 (6.19)

POther = PSY SMON + PConfig + PeFUSE (6.20)

To model the dynamic power of the HMC, the HMC is decomposed into the main physical compo-
nents as shown in equation 6.21.

PHMCDynamic
= PLinks + PV ault + PNetworkOnChip + PMemory

+ PBIST + PMaintenacePort (6.21)

PLinks =

N∑
i=1

(PLink)i where N ∈ [1, 8] (Number of Links used) (6.22)

PV aults =

N∑
i=0

(PV ault)i where N ∈ [0, 31] (Number of Vaults in HMC) (6.23)
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Part II

Realisation and results
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Chapter 7

MATLAB Model and Simulation
Results

7.1 Realisation

7.1.1 Image Filtering

Before creating the image processing kernel in software and hardware a simulation in MATLAB is
created. First the algorithm described in section 4.3.1 is extended in order to process the boundaries
as well. When filtering pixels at the boundary of an image the filter requires also the neighbouring
pixels and some of these pixels will be outside the boundary of the image as shown in figure 7.1a.

Trying to filter the pixel at the (x, y)-coordinate (0, 0) using a 3 × 3 filtering window would need 5
pixels outside of the image array (see figure 7.1a). These ’pixels’ will not have a valid value and when
trying to read these values from memory using a program will definitely result in a runtime error. A
solution to this problem is to extend the input image with extra rows and columns on the outside. The
number of rows and columns needed is calculated as follows: Window = m ×m → Pixelsextra =

m − 1. Hence, for a 3 × 3 window, there will be two extra rows and two extra columns; one on each
side of the image. The value of the extra pixels is set to zero (see figure 7.1b).

After adding the extra rows and columns to the image the first pixel (0, 0) in the original image is
shifted to coordinate

((m−1)
/2,

(m−1) /2
)
.

(a) (b)

Figure 7.1: Median Filtering: (a) Boundary exceptions; (b) No Boundary exceptions
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This intermediate image is larger than the original size, but depending on the original image size
and the widow size, the intermediate image is using approximately the same amount of memory or
uses a lot more (see table 7.1). This should be taken into account when designing the hardware or
software solution.

Window Size Image size Difference (Colour image)
(m×m) (original) (extended) (pixels) (Bytes)
3× 3 128× 128 130× 130 516 1.548

5× 5 128× 128 132× 132 1.040 3.120

7× 7 128× 128 134× 134 1.572 4.716

9× 9 128× 128 136× 136 2.112 6.336

17× 17 128× 128 144× 144 4.352 13.056

19× 19 128× 128 146× 146 4.932 14.796

25× 25 128× 128 152× 152 6.720 20.160

Table 7.1: Median Filter Image Sizes

7.2 Results

The algorithm presented in section 4.3.1 results in MATLAB code to filter an image (see Appendix
I). First an image is read and some Impulse Noise is added to this image. Afterwards, the Median
Filtering is applied to the noisy image with a window size from 3 up to 25, resulting in an denoised
image.

7.2.1 MATLAB results

Running the simulation results in the following filtered images. A result of the median filter is that
the larger the window size the more blur is introduced into the filtered image (see figure 7.2).

(a) (b) (c)

(d)

Figure 7.2: MATLAB Simulation: (a) Original; (b) Impulse Noise; (c) Filtered (3x3); (d) Filtered (25x25)
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Chapter 8

Current Measuring Hardware

In order to measure the power consumption of the HMC [16] and GDDR5 memory it is necessary
to measure the voltages and currents supplied to the memory chips in the system. This is a cum-
bersome task because the individual memory chips are not easily accessible for measuring voltages
and currents.
Also extra hardware is always needed to use the memory. This extra hardware is already included
on the graphics card (power management, PCIe interfaces, and video interfaces) or on the HMC
backplane (power management, PCIe interface, and FPGA) [33]. Therefore, measuring the voltages
and currents on the PCIe connector, instead of measuring the voltages and currents on the individual
memory chips, will be more easy during the project.

To measure the needed signals, a special PCIe riser card [34] needs to be developed. On the card
the signals to be measured are made easily accessible. (see Appendix D)

8.1 Realisation

The function of the riser card is to make the power lines on the PCIe interface available. All the
other signals will just pass through to the other end of the card. This is shown in figure 8.1.

Figure 8.1: Riser card block diagram

The complete schematic (see appendix F) results in a riser card of dimensions 99.80 × 22.00mm
which can be placed in a PCIe slot of a main board. In turn, the device to be measured, can be
inserted on top of this card.
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8.2 Results

Figures 8.2a and 8.2b show the test set-up and a close-up of the riser card. The connectors J1

and J2 are connected to the ACS715 [28] Hall sensor (see figure 8.3).

(a) (b)

Figure 8.2: Test set-up: (a) Overview; (b) Riser card Printed Circuit Board (PCB) - with HMC Backplane inserted

Figure 8.3: Hall Sensor board ACS715 - Current Sensing

The Hall sensor used in this experiment is susceptible to external magnetic influences. Therefore,
it is necessary the create a baseline measurement before measuring currents on the HMC and GPU
systems. This baseline will be used to correct the measurements on the different systems. All
measurements are collected using an Arduino Nano micro controller [35] (see figure 8.4).

Figure 8.4: Arduino Nano with an ATmega328p AVR
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Measuring the voltage from the Hall sensor and converting it to currents is actually not as simple
as doing the math. First of all the measured voltage is converted to a digital value using an Analog to
Digital Converter (ADC). The digital value is then divided by the maximum ADC value and multiplied
by the supply voltage.

V oltage =
ADCV alue

1023
× Vdd

This surely looks straight forward. The Arduino Nano is plugged into the USB, which, by definition,
supplies 5V . However, this depends on the load of the USB port and therefore the 5V is a rough
approximation. Even using an external, more accurate and stable power supply, it is necessary to
know the supply voltage at the moment of measurement, to make more accurate readings.

Measuring the 5V connection on the Arduino while plugged in to the USB and connected to the
Hall sensors is actually reading 4.35V . That makes a big difference to the results of the conversion
from ADC to voltage value. And it fluctuates. Sometimes its 4.35V , sometimes its 4.63V . So, the
supply voltage must be known at the time of reading the ADC value.

However, having a known precise voltage for measurement using the ADC, it is possible to calcu-
late the supply voltage. Fortunately, the AVR chip used on the Arduino Nano has just such a voltage
available (Vref ), and can be measured with the ADC.

Using the above for a more accurate voltage reading resulted in the Arduino firmware as can been
seen in Appendix B.

The results of reading the voltage outputs of the Hall sensors, when the complete system under
test is switched off, are shown in figure 8.5. For each sensor the average current is calculated over
a period of approximately 60 seconds. These averages are subtracted from the measured current
during the other experiments. This results in an average offset shown in table 8.1. Due to the fact
that the Hall sensor functions on the magnetic field created by the current flow through the sensor,
when no current flows the sensor still picks up the magnetic field of the surroundings. Hence, these
errors are present.

Hall Sensor Avg Current (mA)
PCIe Main connector (12V ) 28.038

PCIe Main connector (3.3V ) 7.469

PCIe connector (pin 1) (12V ) 32.309

PCIe connector (pin 2) (12V ) 7.419

PCIe connector (pin 3) (12V ) 20.622

Table 8.1: AC715 Hall sensors average current - Power off
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Figure 8.5: AC715 Hall sensors readout - Power off
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Chapter 9

GPU Technology Efficiency

In this chapter the results on performance and energy efficiency for the Graphics Processing Unit
(GPU) system in combination with GDDR5 memory are presented.

9.1 Realisation

The benchmark performs the following tests:

• Host⇔ GPU system transfer performance test.
• GPU system local memory (GDDR5) transfer performance test.
• GPU system energy efficiency test.

9.1.1 Host/GPU system transfer performance

As described in section 4.1, this test measures how quickly data can be sent-to and read-from the
GPU. The maximum theoretical bandwidth is 8GB/s. For retrieving the actual bandwidth an OpenCL
program according to algorithm 2 is executed. The complete benchmark program code is found in
appendix G.

Algorithm 2: Bandwidth calculation based on Bandwidth = SendBytes/Sendtime

Output:
Bandwidth: Calculated bandwidth array with length 15

for S=212:226 do
Allocate host buffer D(S) % Host array with dimension S
Allocate device buffer H(S) % Device array with dimension S
repeat

Reset and Start Counter
H = D % Copy host array to device array
Stop Counter and Retrieve TimeElapsed
if TimeElapsed < TimeStored then

Store TimeElapsed
end

until D is copied 100×;
Calculate Bandwidth(S)

end
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9.1.2 GPU system local memory (GDDR5) transfer performance

This test is for the memory transfer bandwidth between the GPU and the GDDR5, because the
data is only sent once over the PCIe bus before using this data ’locally’, and afterwards is only read
once over the PCIe bus. As many operations performed will do only little computation with each data
element of an array, these operations are therefore dominated by the time taken to fetch the data
from memory or write it back to memory. A simple operator, plus (+), is used while it does a little
computation per element that it is bounded only by the memory access speed.

For retrieving the actual bandwidth an OpenCL program according to algorithm 3 is executed.
In this algorithm the instruction EnqueueKernel indicates that a specific OpenCL kernel is loaded,
initialised and executed. The complete benchmark code, including the OpenCL kernel, is found in
appendix G.

Algorithm 3: Calculate local Bandwidth = SendBytes/Sendtime

Input:
N : Number of OpenCL kernels

Output:
Bandwidth: Calculated bandwidth array with length 15

for S=212:226 do
Allocate host buffer D(S) % Input array with dimension S
Allocate device buffer H(S) % Output array with dimension S
repeat

Reset and Start Counter
EnqueueKernel(H, N ) % OpenCL function to copy arrays
Stop Counter and Retrieve TimeElapsed
if TimeElapsed < TimeStored then

Store TimeElapsed
end

until D is copied 100×;
Calculate Bandwidth(S)

end

9.1.3 GPU energy efficiency test

This test is used for measuring the GDDR5 memory energy consumption. To perform a more com-
putationally complex operation, the OpenCL kernel used in the local memory transfer performance
measurement in the previous section, is replaced with a kernel which removes the impulse noise
(salt-and-pepper noise) from an image, by implementing a median filter (see Appendix A).

For measuring the actual power usage, an OpenCL program according to algorithm 3 is executed.
The OpenCL kernel is found in appendix H.
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9.2 Results

This section presents the results on performance and power for the GPU system.

9.2.1 Host/GPU transfer performance

The benchmark (see Algorithm 2) will transfer data of different sizes from the host to the GPU.
After executing the Host/GPU transfer benchmark, the following results are gathered with a peak
bandwidth of ≈ 2.7GB/s (see table 9.1). The same data is shown in figure 9.1.

Figure 9.1: Host to GPU Bandwidth

Data size Bandwidth1

(B) GB/s
4,096 (4kB) 0.0853333

8,192 (8kB) 0.1706670

16,384 (16kB) 0.3413330

32,768 (32kB) 0.6553600

65,536 (64kB) 1.2365300

131,072 (128kB) 1.8995900

262,144 (256kB) 2.1312500

524,288 (512kB) 2.3510700

1,048,576 (1MB) 1.3671100

2,097,152 (2MB) 1.8001300

4,194,304 (4MB) 1.6933000

8,388,608 (8MB) 1.7392900

16,777,216 (16MB) 1.5964600

33,554,432 (32MB) 2.3405700

67,108,864 (64MB) 2.7112500

Table 9.1: Host to GPU Bandwidth

1The circled values indicates the peak value.
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In this benchmark the data is basically transferred through the CPU caches. When accessing
some memory that is not in any cache, it triggers a cache line load from the closest cache, L1, which
will cascade through the L2 and L3 caches, until main memory is reached. At this point an L3 cache
line sized chunk of data from main memory is fetched to fill the L3 cache. Then an L2 cache line
sized chunk of data from the L3 cache is fetched to fill the L2 cache, and a similar fetch from the L2
cache to fill the L1 cache.

The program can now resume processing of the memory location that triggered the cache miss.
The next few iterations of copying data to GDDR5 memory will proceed with data from the L1 cache,
because a cache line size is larger than the data size that is accessed in each iteration. After some
small number of iterations, the L1 cache line end is reached, and this triggers another cache miss.
This may or may not go all the way out to main memory again, depending on the cache line sizes of
the L2 and L3 caches.

The L1, L2 and L3 total cache sizes in the test system are: 384KiB2 (2-3 clock cycle access),
1536KiB (≈ 10 clock cycle access) and 15MiB3 (≈ 20-30 clock cycle access) respectively.

The drop in bandwidth at a data size of 1MB, seen in table 9.1 and figure 9.1, is caused by the
first cache miss in the L2 cache. At this point the L2 cache needs to retrieve data from the much
slower L3 cache, which causes the data transfer towards the GDDR5 memory.

9.2.2 GPU/GDDR5 transfer performance

With the execution of the Local memory transfer benchmark (algorithm 3), the following results
are gathered with a peak bandwidth of ≈ 3.74GB/s and ≈ 169.125GB/s using a single kernel or
128 kernels respectively (see table 9.2). The same data is shown in figure 9.2. As expected the
GDDR5 bandwidth is much larger compared to the PCIe bandwidth. Furthermore, a design that is
more focused on the GPU and GDDR5 memory also gives a more constant rise in bandwidth over
the total range measured.

Figure 9.2: GPU Local memory Bandwidth

21 kilobyte (kB) is 1000 bytes. 1 kilobyte (KB) is 1024 bytes. To address the confusion between kB and KB, 1024 bytes are
called a kibibyte (i.e., kilo binary byte) or 1 KiB. [36]

31.048.576 bytes are called a Mebibyte (i.e., Mega binary byte) or 1 MiB. [36]
4The circled values indicates the peak value.

54



Data size Bandwidth (GB/s)4

(B) 1 kernel 128 kernels
4,096 1.24878 2.13334

8,192 1.89630 4.45218

16,384 2.54410 7.72830

32,768 2.97891 12.22686

65,536 3.33009 25.20613

131,072 3.42404 51.20000

262,144 3.55788 77.10113

524,288 3.60186 104.02538

1,048,576 3.68128 123.65288

2,097,152 3.69088 139.43875

4,194,304 3.71375 151.96750

8,388,608 3.72516 159.11625

16,777,216 3.73076 163.71250

33,554,432 3.73423 168.14250

67,108,864 3.73591 169.12500

Table 9.2: GPU Local memory Bandwidth

9.2.3 GDDR5 energy efficiency results

The initial measurements taken are those for the idle power used by the tested GPU (Radeon
HD7970). For a timespan of approximately 65 seconds, the currents towards the GPU are measured,
using the AC715 Hall sensors [28]. This results in a static power of approximately 15.05J/s, as shown
in figure 9.3.

Figure 9.3: GPU Idle Power

A benchmark program is created using the pseudo code for the median filter presented in section
4.3.1. This benchmark applies a 3× 3 median filter to an image with dimensions 5208× 3476 (width
× height). This results in the following metrics:
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Description Value

Image Width 5208 pixels
Image Height 3476 pixels
Total # pixels 18.103.008 pixels

# Colour channels 3 (RGB)
# Memory Loads per pixel 9 (3× 3 window size)
# Memory Stores per pixel 1

Table 9.3: GPU Median Filter Metrics

The execution time of the denoising kernel on the AMD Radeon HD7970 GPU is approximately
522.85ms. Running the kernel repeatedly for 120× results in a power measurement running for ap-
proximately 62.74 seconds. The resulting power measurement is shown in figure 9.4. The average
power is equal to 21.5J/s.

Figure 9.4: GPU Benchmark Power

Performing the fairly simple task of denoising the given image on the test set-up results in an extra
power usage, defined as the difference of the average benchmark power (see figure 9.4) and the
average Idle power (see figure 9.3), of approximately ≈ 21.5J/s− ≈ 15.05J/s ≈ 6.45J/s.
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Chapter 10

Hybrid Memory Cube Technology
Efficiency

In this chapter the results on performance and energy efficiency for the Hybrid Memory Cube
(HMC) system, i.e. an FPGA (see Appendix C) in combination with HMC memory, are presented.

10.1 Realisation

In contrast to the GPU system with the GDDR5 memory, for the HMC system it is fairly easy to
measure the power usage and throughput. During the implementation of the memory controller it
became clear that the read latency of the HMC memory itself could also be measured. By adding
performance counters inside the memory controller these measurements are not very difficult al-
though these measurements are not part of the initial set of criteria.

For the measurement of the read latency the memory controller provided by Micron will be ex-
tended with the HPC challenge (HPCC) RandomAccess benchmark [37].

10.1.1 Memory Controller Timing Measurements

The structure of the provided memory controller makes it possible to include Application Specific
Integrated Circuit (ASIC) like hardware inside the controller.

Inside the user wrapper of the provided controller, 9 User Modules are implemented (see figure
10.1). The top level of a single User Module implements the HPCC RandomAccess benchmark [37].
This benchmark is typically reported in terms of Giga-Updates Per Second (GUPS), so this User
Module is referred to as the GUPS module.

This User Module comprises 3 main pieces:

• gups reader: if enabled, this generates read requests to the memory. This takes care to not
generate a new request if there is no available tag1.

1Read request packets are uniquely identified with a tag field embedded in the packet. Tag fields in packets are 11 bits
long, which is enough space for 2048 tags. The tag range is independent for each host link.
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• gups writer: if enabled, this generates write requests to the memory. This also creates some
write data to send to the memory. If reads are also enabled, this waits until a read completes
before sending a write to the recently completed read address. If reads are not enabled, then
this just writes to the memory as fast as possible.

• gups arbiter: this is a passive observer that measures what’s happening in the system. This
measures things like the number of reads and writes (which we can convert to bandwidth) and
latency for reads.

Most of the setup of the GUPS modules is done in software. The software is using the PicoBus,
which is part of the Pico Framework by Micron [38]. This includes giving the gups reader the amount
of tags to use, resetting the user module, enabling reads versus writes, etc. The software also
passively monitors the performance of the system by reading counters and status registers via the
PicoBus.

A feature of the HMC interface is that the user can select inside the FPGA whichever clock they
want to run on, e.g. the HMC TX, HMC RX or the slower PicoBus clock. In this case, the HMCs TX
clock is selected. Being able to select the HMCs interface clock has the advantage to avoid having
to cross back and forth into the memory clock domain, in the case of using the slower PicoBus clock,
and run into problems with the synchronisation of the two clock domains.

Figure 10.1: Hybrid Memory Cube Memory Controller - User Module Top Level

The HMC memory controller, with the included GUPS User Modules, is used to perform the follow-
ing test:

• Host⇔ Device transfer performance test.
• Device local memory transfer performance test.
• Device energy efficiency test.

10.1.1.1 User Module - Reader

This module handles the issuing of read requests to the memory (see figure 10.2). It takes care to
not issue a read if it does not have a free tag for the request. Tags are managed by the tag manager.
When the read data comes back, the tag is used to identify which read the data corresponds to. This
is because reads may come back out of order. An Linear Feedback Shift Register (LFSR) in the
address generator is used to generate a random read addresses.
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When the read completes, the write datapath is provided the address that is just used for the read
(if performing a read-modify-write). This is done to write back to the same address. Therefore a
memory is used to store the read address. This memory is indexed by tag. When the read data
comes back, the tag is used to look up the original read address. That original read address is
asserted on the completed address signal.

Figure 10.2: User Module - Reader

10.1.1.2 User Module - Writer

This module handles the issuing of write requests to the memory (see figure 10.3). By using posted
writes, there is no need to worry about a response for each write. Therefore the same tag can be
used for each write request. In order to parallel the design of the GUPS Reader , a tag manager is
instantiated, but ONLY 1 tag is loaded into the tag manager. In this way, there will always be another
tag available for the next write request, and this tag for the write requests will always be 0.

In the event that the module is in write-only mode, an LFSR is used to generate a random write
addresses. If in read-modify-write mode, the module waits for an address on the rd_addr input before
sending out the next write request.

In a true GUPS, the read data is accepted and than XOR some value into that read data before
writing it back to the memory. This is viewed as being (performance-wise) equivalent to just writing
some new data to that same address in memory. Therefore 2 64-bit LFSRs are used to cook up the
write data.

Figure 10.3: User Module - Writer
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10.1.1.3 User Module - Arbiter

This is a passive observer that measures the following things:

• number of read or write requests
• number of read or write data
• minimum and maximum read latency
• sum of all read latencies

There is also the ability to bring the entire system to a screeching halt using the stop output.
Currently this feature is not used (stop = 0), but this feature can be added in the future.

Note that care is taken to not affect the timing on any of the HMC communication channels. This
is done by registering all inputs before observing them.

10.1.2 Memory Controller Energy Measurements

For the measurements of the energy consumption of the HMC device a DSP application should
be created like the image processing kernel used for the GPU system (see Appendix G). For this
the Micron OpenCL accelerator framework can be used to simply convert the used GPU kernel into
Verilog HDL.

From one moment to the other, the HMC hardware stopped functioning. It became impossible to
program the FPGA. Together with the manufacturer, Micron, the complete system was debugged.
After two weeks of troubleshooting , Micron shipped a replacement EX-750 backplane and AC-510
HMC module. Unfortunately, these replacement parts exhibited similar behaviour. After an additional
2 weeks of troubleshooting, no solution was found to solve the problem with the hardware.

At that moment, the same problem arose with similar hardware used by Micron, and a decision
was made to stop troubleshooting and just to finish without the power measurements on the HMC.
Fortunately, before the malfunction of the HMC hardware, timing measurements and an idle power
measurement were taken .

10.2 Results

10.2.1 HMC performance results

Using the extended HMC memory controller, using all 9 user modules, read, write and read-write
operations per second are measured. The test is performed repeatedly to average out one time
anomalies during the measurements. Finally this results in the number of GUPS. As expected, it
takes longer to transfer data to or from the memory, when the packet size2 increases. This is clearly
shown figure 10.4.

2Number of bytes transferred in a single read or write request.
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Figure 10.4: Hybrid Memory Cube Giga-Updates Per Second

Although the number of operations decreases as the packet size increases, the throughput or
bandwidth increases as the packet size increases. This is calculated using the following equation:

BandwidthMax = GUPSMax × PacketSize × 109

This results in the maximum bandwidth as shown in table 10.1 and figure 10.5. It is clear that the
measured bandwidth of approximately 20GB/s is only 1/3 of the theoretical maximum of 60GB/s.

Data size Bandwidth (GB/s)
(B) HMC Read HMC Write HMC Read/Write

16 7.06 11.72 4.53

32 11.64 15.54 10.60

48 14.23 17.16 12.99

64 18.48 18.66 12.76

80 18.15 15.95 15.40

96 19.30 18.45 17.26

112 20.36 19.90 17.45

128 21.36 19.83 18.33

Table 10.1: Hybrid Memory Cube Bandwidth (9 user modules)
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Figure 10.5: Hybrid Memory Cube Bandwidth (9 user modules)

The bandwidth of a single user module HMC system is shown figure 10.6.

Figure 10.6: Hybrid Memory Cube versus DDR3 Bandwidth

It is clearly shown that the HMC system performs better when utilising the HMC features to the full
extent, that is, using the maximum data bus width of 128 bits and using the parallelism by creating
multiple User Modules in the FPGA.

Another extra feature measured is the minimum and maximum latency for reading from the HMC
memory. The latency is measured in number of clock cycles and can be easily converted into sec-
onds. The results are shown in figure 10.7.
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Figure 10.7: Hybrid Memory Cube Read Latency

10.2.2 HMC energy efficiency results

Due to the failure of the hardware and not being able to resolve the issue after four weeks, there
are no results for the dynamic power of the HMC system.

However, just before the failure an idle measurement was performed and this resulted in a static
power usage of approximately 9.82J/s as shown in figure 10.8.

Figure 10.8: HMC Idle Power
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Part III

Conclusions and future work
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Chapter 11

Conclusions

The problem statement of this thesis is formulated in the introduction (Section 1.2) as follows:

To evaluate the efficiency of the HMC, it is necessary to use a benchmark which can also run on
other memory architectures, like GDDR5. The benchmark will provide the following metrics:

• Achievable throughput/latency (performance);
• Achievable average power consumption.

This research will attempt to answer the following questions:

• What is the average power consumption and performance of the HMC?
• How does the power consumption of the HMC compare to GDDR5 memory?
• How does the performance of the HMC compare to GDDR5 memory?
• What are the bottlenecks and (how) can this be improved?

11.1 General Conclusions

What is the average power consumption and performance of the HMC? For the used HMC
memory - a 2, half width, link memory chip - the measured average performance of the HMC is
≈ 20.595GB/s (see section 11.2). The average power consumption could not be measure because
the HMC hardware stopped functioning (see section 11.3).

How does the power consumption of the HMC compare to GDDR5 memory? A comparison of
the idle power usage of the HMC system compared to the GPU system resulted in a ≈ 34.75% more
energy efficient system in favour of the HMC (see section 11.3).

How does the performance of the HMC compare to GDDR5 memory? The performance of the
HMC system with a bandwidth of ≈ 20.595GB/s is approximately 5.5× better compared to for the
GPU system (see section 11.2).

What are the bottlenecks and (how) can this be improved? The main bottleneck is to create
a high performance, energy efficient DSP and memory controller in the FPGA fabric to connect the
HMC memory to the rest of the system. Using the OpenCL ability of the Xilinx FPGA it is more easy
to create such a DSP (see section 11.4).
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11.2 HMC performance

The Hybrid Memory Cube (HMC) consortium [8] claims that the performance of HMC memory can
be 15× better than DDR3 memory. This claim is, approximately, supported by the given theoretical
bandwidth for the HMC and DDR3 memories, 128GB/s and 10.66GB/s respectively (see table 3.2;
section 3.6.2), which indicates that the HMC is ≈ 12× faster. Comparing the performance of GDDR5
memory to the used HMC memory, using the numbers from table 3.2, 264GB/s and 128GB/s respec-
tively, GDDR5 memory is ≈ 2.06× faster. Replacing the HMC memory from table 3.2 by an HMC
memory with 8, full lane links (480GB/s), the HMC has a theoretical performance gain of ≈ 1.8×
compared to GDDR5.

The experiments in this thesis show that a single Hybrid Memory Cube can provide a higher per-
formance than GDDR5 memory, by comparing the maximum GPU local memory bandwidth (see
Table 9.2) to the maximum HMC bandwidth (see Table 10.1). Taking the average bandwidth (see
Table 11.1) of the HMCs read and write maximum bandwidths and compare this with the maximum
bandwidth of the GPU, the HMC has a performance gain of approximately 5.5× compared to GDDR5.

Bandwidth (GB/s)
Gain (X)HMC1

GPU2

Read Write Average
21.36 19.83 20.595 3.73423 5.515

Table 11.1: Memory Bandwidth Gain

The difference in theoretical (1.8×) and measured (5.5×) performance of 5.5/1.8 ≈ 3.1× is caused
by the experimental set-up. Not only the memory is tested, but the complete system around the
memory is taken into account, that is the complete graphical card for the GDDR5 memory and the
FPGA for the HMC memory. The extra performance gain is a result of a better performance of the
DSP application created specifically for the task performed.

11.3 HMC power consumption

Based on the data-sheets, using the data rate and the supply voltage and current3, the average
energy per bit can be calculated. The energy per bit for HMC, GDDR5 and DDR3 is 10.82pJ/bit,
13.13pJ/bit and 32.35pJ/bit respectively. This results in the HMC being ≈ 66.553% and ≈ 17.593%

more energy efficient than DDR3 and GDDR5 respectively.

Unfortunately, the available HMC hardware stopped functioning before dynamic power measure-
ments could be done. The malfunction of the HMC hardware could not be resolved, even with help
from Micron, in a reasonable time. It was not possible to provide a new bitstream to the Xilinx FPGA.
Although the HMC Linux kernel driver recognised the hardware, it was impossible to stream the new

1Values from Table 10.1
2Values from Table 9.2
3Operation Burst Test (IDD4): one bank activated; continuous read/write burst with 50% data toggle on each data transfer;

random bank and column addresses
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bitstream. After reinstalling the complete system from scratch with Ubuntu 14.04.2 (with kernel ver-
sion 3.13), the hardware was still not functioning. Even a replacement of the complete HMC hardware
did not result in a functioning set-up.

Due to the malfunctioning hardware, no energy measurements other than an idle power measure-
ment is performed on the HMC system. A comparison of the idle power usage of the EX-750/AC-510
HMC system (≈ 9.82J/s (see figure 10.8)) compared to the AMD Radeon HD 7970 GPU system
(≈ 15.05J/s (see figure 9.3)) resulted in a ≈ 34.75% more energy efficient system in favour of the
HMC.

11.4 HMC improvements

Due to the fact that the HMC hardware stopped functioning, it becomes hard to provide any
solid improvements to the HMC memory controller. Nevertheless, it seems useful to develop an
application-specific, ASIC-like memory controller (such as the GUPS User Modules) and include this
controller into the HMC die, to get the best performance on the HMC architecture for the specific task
to perform. Using the OpenCL ability of the Xilinx FPGA it is more easy to create such a DSP.

Another issue is the Pico Framework [38] provided by Micron. The framework release 5.6.0.0 is
only supported on Ubuntu 14.04.2 (with kernel version 3.13) or CentOS 6.7. Both operating systems
have an End Of Life (EOL) date set on August 2016 and May 2017 respectively. This may cause
problems with the HMC or other hardware in the future, while developing new applications with the
HMC.
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Chapter 12

Future work

12.1 General future work

As mentioned in this thesis, the Hybrid Memory Cube (HMC) system failed to function and therefore
no dynamic power measurements could be retrieved. To really finalise the evaluation and make a fair
comparison between GDDR5 and HMC memory, the dynamic power must be measured.

12.2 Hybrid Memory Cube Dynamic power

Due to the fact that the HMC system failed, no further development is done to create the image
processing hardware in the FPGA implementation of the memory controller. Micron also provides an
OpenCL accelerator to implement any OpenCL kernel into the FPGA. By using this accelerator it will
be fairly easy to implement the same image processing kernel, used by the GPU system, into the
FPGA.

12.3 Approximate or Inexact Computing

Another interesting field to explore the usage of the HMC architecture, is the research area of
inexact or approximate computing [39]. The main research question would be how well an HMC
device performs when lowering the supply voltage while keeping the frequency fixed.

12.4 Memory Modelling

There is an open source framework (DRAMPower [40]) to model DDR3 memory. The tool is based
on the DRAM power model developed jointly by the Computer Engineering Research Group at TU
Delft and the Electronic Systems Group at TU Eindhoven and verified by the Microelectronic System
Design Research Group at TU Kaiserslautern with equivalent circuit-level simulations.

This model could be extended to model the HMC and GDDR5 memory as well. By modelling these
other memory architectures, not only a more complete design space exploration can be made in the
design phase of a project, but also the final implementation can be validated.

Although the DDR3 model is provided, extending this model will be a complete project on it’s own.
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Appendix A

Mathematical Image Processing

A.1 Image Restoration

Image restoration is the process of recovering an image that has been degraded, using a-priori
knowledge of the degradation process.

Lets assume for the degradation model that: f(x, y) is the true ideal image to be recovered and
g[x, y] its degraded version. One relation that links the images f and g is the degradation model:

g[x, y] = H [f ] [x, y] + n[x, y]

where H is the degradation operator (e.g. blur) and n is the additive noise.

Inverse problem: Knowing the degradation operator H and statistics of the noise n, find a good
estimate f̂ of f .

A.1.1 Denoising

In order to only deal with noise in the image, the assumption is made that the degradation operator
is the identity. The linear degradation model becomes g[x, y] = f [x, y] + n[x, y]1.

A.1.1.1 Random noise

The assumption is made that the noise intensity levels are seen as a random variable, with asso-
ciated histogram or Probability Density Function (PDF) [41] denotes as p(r). It is also assumed that
the noise n is independent of the image f and independent of the spatial coordinates [x, y].

The most common types of noise are:

• Gaussian noise [42] (additive) with associated PDF p(r) = 1√
2πσ

e−(r−µ)
2/2σ2

, where µ is the
mean and σ is the standard deviation.

• Uniform noise2 [43] (additive) with associated PDF p(r) =

 1
B−A if A ≤ r ≤ B

0 otherwise

1Not all types of noise are additive.
2Also known as White noise
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• Impulse noise3 [24] (not additive) with associated PDF p(r) =


pA if r = A

pB if r = B

0 otherwise

There are several filters for removing random noise. Assume g to be the noisy input image and f̂
the denoised output image. Let S[x,y] be a neighbourhood of the pixel [x, y] defined by:

S[x,y] = {[x+ s, y + t],−a ≤ s ≤ a,−b ≤ t ≤ b}

, of size mn, where m = 2a+ 1 and n = 2b+ 1 are positive integers.

1. Arithmetic Mean Filter
f̂ [x, y] =

1

mn

∑
[s,t]∈S[x,y]

g[s, t]

This filter is used for removing Gaussian or uniform noise. Although removing the noise it
introduces blur into the output image.

2. Geometric Mean Filter

f̂ [x, y] =

 ∏
[s,t]∈S[x,y]

g[s, t]

1/mn

This filter also introduces blurring as compared to the Gaussian Mean Filter, but tends to lose
less detail in the image.

3. Contra-harmonic Mean Filter of order Q

f̂ [x, y] =

∑
[s,t]∈S[x,y]

g[s, t]Q+1∑
[s,t]∈S[x,y]

g[s, t]Q

Here the parameter Q gives the order of the filter.
Q = 0 reduces the filter to the Arithmetic Mean Filter.
Q = −1 is the Harmonic Mean Filter. It works well for Gaussian and Salt noise, but fails for
Pepper noise.
Q > 0 is used for removing Pepper noise
Q < 0 is used for removing Salt noise.
As seen above, this filter cannot remove Salt noise and Pepper noise simultaneously.

4. Median Filter is an order statistics filter, where f̂ [x, y] depends on the ordering of the pixel
values of g in the window S[x,y]. The Median Filter output is the 50% ranking of the ordered
values:

f̂ [x, y] = median
{
g[s, t], [s, t] ∈ S[x,y]

}

For example, a 3 × 3 Median Filter gS[x,y]
=

 1 5 20

200 5 25

25 9 100

, the values are first ordered as

follows: 1, 5, 5, 9, 20, 25, 25, 100, 200. The 50% ranking (in this case the 5th value) is 20, thus
f̂ [x, y] = 20.
The Median Filter introduces even less blurring then other filters of the same window size. This
filter can be used for Salt noise, Pepper noise or Salt-and-pepper noise. The Median Filter is a
non-linear filter.

3Also known as Salt-and-pepper, or Bipolar noise
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5. Midpoint Filter

f̂ [x, y] =
1

2

[
max

[s,t]∈S[x,y]

{g[s, t]}+ min
[s,t]∈S[x,y]

{g[s, t]}
]

This filter is useful for Gaussian or Uniform noise.

6. Alpha-trimmed Mean Filter
Let {d ∈ N | 0 ≤ d ≤ mn− 1}. First the mn pixel values of the input image in the window S[x,y]

are ordered and then the lowest d/2 and the largest d/2 are removed. The remaining mn − d
values are denotes by gr.

f̂ [x, y] =
1

mn− d
∑

[s,t]∈S[x,y]

gr[s, t]

With d = 0 it is reduced to a Arithmetic Mean Filter and with d = mn−1
2 it is reduced to a Median

Filter.
This filter is useful for the reduction of all the above mentioned noises. When the noise is
stronger, the use of a larger window S[x,y] is required. However, this will introduce more blurring.
There are adaptive, more complex in design, filters that will produce less blurring. For example
the Adaptive Median Filter and the Adaptive, Local Noise Reduction Filter [44].
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Appendix B

Arduino Current Measure Firmware

double I n t V r e f = 1 . 1 ;
double vPow = 4.35 ;
i n t re ference ;
double Vcc ;
bool c a l i b r a t e d = f a l s e ;
unsigned i n t ADCValue0 ;
unsigned i n t ADCValue1 ;
unsigned i n t ADCValue2 ;
unsigned i n t ADCValue3 ;
unsigned i n t ADCValue4 ;
unsigned long msec = 0;

vo id setup ( ) {
S e r i a l . begin (128000) ;
S e r i a l . p r i n t l n ( ”CLEARDATA” ) ;
S e r i a l . p r i n t l n ( ”LABEL, Time , Timer , Cal , Vref , Vcc ,ADC12V,ADC3V3,ADC12V1,ADC12V2,

↪→→ ADC12V3, Time ” ) ;
S e r i a l . p r i n t l n ( ”RESETTIMER” ) ;
}

vo id loop ( ) {
/ / Read 1.1V reference aga ins t AVcc

ADMUX = BV (REFS0) | BV (MUX3) | BV (MUX2) | BV (MUX1) ;
delay ( 2 ) ; / / Wait f o r Vref to s e t t l e
ADCSRA |= BV (ADSC) ; / / Convert
wh i le ( b i t i s s e t (ADCSRA,ADSC) ) ;
re ference = ADCL;
re ference |= ADCH<<8;

Vcc = ( I n t V r e f / re ference ) * 1023;

S e r i a l . p r i n t ( ”DATA, TIME , TIMER, ” ) ;
S e r i a l . p r i n t ( c a l i b r a t e d ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( I n tV re f , 4 ) ; S e r i a l . p r i n t ( ” , ” ) ;

i f ( not c a l i b r a t e d ) {
i f ( ( i n t ) ( Vcc * 100) != (vPow * 100) ) {
I n t V r e f = ( I n t V r e f * vPow) / Vcc ;
} else {
c a l i b r a t e d = t rue ;
}
}
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msec = micros ( ) ;
ADCValue0 = analogRead ( 0 ) ; delay ( 0 . 0 5 ) ;
ADCValue0 = analogRead ( 0 ) ; delay ( 0 . 0 5 ) ;

ADCValue1 = analogRead ( 1 ) ; delay ( 0 . 0 5 ) ;
ADCValue1 = analogRead ( 1 ) ; delay ( 0 . 0 5 ) ;

ADCValue2 = analogRead ( 2 ) ; delay ( 0 . 0 5 ) ;
ADCValue2 = analogRead ( 2 ) ; delay ( 0 . 0 5 ) ;

ADCValue3 = analogRead ( 3 ) ; delay ( 0 . 0 5 ) ;
ADCValue3 = analogRead ( 3 ) ; delay ( 0 . 0 5 ) ;

ADCValue4 = analogRead ( 4 ) ; delay ( 0 . 0 5 ) ;
ADCValue4 = analogRead ( 4 ) ; delay ( 0 . 0 5 ) ;

S e r i a l . p r i n t ( Vcc , 6 ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( ADCValue0 ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( ADCValue1 ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( ADCValue2 ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( ADCValue3 ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t ( ADCValue4 ) ; S e r i a l . p r i n t ( ” , ” ) ;
S e r i a l . p r i n t l n (msec ) ;
}
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Appendix C

Field Programmable Gate Array

The FPGA used in the Micron AC-510 HMC Module [16] is a Xilinx Kintex Ultrascale 060 of type
FFVA1156.

Figure C.1: XCKU060 Banks

Figure C.2: XCKU060 Banks in FFVA1156 Package
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Figure C.3: FFVA1156 PackageXCKU060 I/O Bank Diagram
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Figure C.4: FFVA1156 PackageXCKU060 Configuration/Power Diagram
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KU060
System Logic Cells 725,550
CLB Flip-Flops 663,360
CLB LUTs 331,680
Maximum Distributed RAM (Mb) 9.1
Block RAM Blocks 1,080
Block RAM (Mb) 38.0
CMTs (1 MMCM, 2 PLLs) 12
I/O DLLs 48
Maximum HP I/Os1 520
Maximum HR I/Os2 104
DSP Slices 2,760
System Monitor 1
PCIe Gen3 x8 3
150G Interlaken 0
100G Ethernet 0
GTH 16.3Gb/s Transceivers3 32
GTY 16.3Gb/s Transceivers4 0
Transceiver Fractional PLLs 0

Table C.1: Kintex UltraScale FPGA Feature Summary

Package
Package KU060

dimensions HR HP GTH
FFVA1156 35x35 104 416 28

Table C.2: Kintex UltraScale Device-Package Combinations and Maximum I/Os

1HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
2HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.
3GTH [45] transceivers in SF/FB packages support data rates up to 12.5Gb/s. See table C.2.
4GTY [45] transceivers in Kintex UltraScale devices support data rates up to 16.3Gb/s. See table C.2.
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Appendix D

Test Set-up

The complete test set-up can schematically depicted by figure D.1.

Figure D.1: Test Set-up block diagram

The Device Under Test (DUT) is either an Hybrid Memory Cube (HMC) or a Graphics Processing
Unit (GPU). To measure the currents non-intrusively on the custom PCIe riser card the use of Hall
Effect-Based Linear Current Sensor ICs [46] is needed. The DUT and the riser card are place inside
an industrial PC.

The Data Acquisition Board can consist of many different compositions, i.e.:

• Custom ADC board + Raspberry PI;
• Arduino Nano + PC.

The first can give a higher resolution on the ADC part, but will result in more hardware development
during the project. The latter provides an 8 channel 10-bits ADC included in the Micro Controller
Unit (MCU) which is already available, but the resolution is limited.

Finally, the Measurement Set-up will be a common desktop PC or laptop in order to communicate
with both the Industrial PC to execute the experiments and to read measurement data from the Data
Acquisition Board
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Appendix E

Graphics Processing Unit

The architecture of the AMD Radeon HD 7900 GPU is schematically depicted by figure E.1.

Figure E.1: AMD Radeon HD 7900-Series Architecture

The architecture of the GCN is schematically depicted by figure E.2.

Figure E.2: AMD Radeon HD 7900-Series GCN
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Appendix F

Riser Card

Figure F.1: Riser card block diagram

Figure F.2: Riser card schematic - Current Sensing section
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Figure F.3: Riser card schematic - Peripheral Component Interconnect Express (PCIe) Input section
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Figure F.4: Riser card schematic - Peripheral Component Interconnect Express (PCIe) Output section
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Appendix G

Benchmark C++/OpenCL Code

First the C++ program code.

/ * =========================================================================
Copyr ight (C) 2017 Dinas Software B.V . A l l r i g h t s reserved

* /

# de f ine DEFAULT NUM THREADS 1

# inc lude <s t d i o . h>
# inc lude <s t d l i b . h>
# inc lude <iostream>

# inc lude <fstream>

# inc lude <c s t d i n t>
# inc lude <s t r i n g . h>
# inc lude <cmath>
# inc lude <vector>
# inc lude ”CL / c l . h ”
# inc lude ” t imer . h ”
# inc lude <p icodrv . h>
# inc lude <p i c o e r r o r s . h>
# inc lude ” gups reg . h ”

using std : : cout ;
using std : : ce r r ;
using std : : endl ;
using std : : s t r i n g ;
using std : : vec to r ;
using std : : i f s t r eam ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / MACROS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
# de f ine FREE( p t r , f r e e v a l ) \
i f ( p t r != f r e e v a l ) \
{ \
f r ee ( p t r ) ; \
p t r = f r e e v a l ; \
}

/ / we use these macros to make our l i f e a l i t t l e eas ie r and our code a
/ / l i t t l e c leaner some of these macros requ i re c e r t a i n v a r i a b l e s to be
/ / p rev ious l y declared i n the code where the macro i s used e . g . must dec lare
/ / u32 as a u i n t 3 2 t wherever wr ( ) , rd ( ) , or pr ( ) are used .
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# def ine wr ( addr , va l ) {u32=( va l ) ; i f ( ( e r rP ico=pico−>WriteDeviceAbsolute ( ( addr )
↪→→ ,&u32 , 4 ) ) !=4 ) { f p r i n t f ( s tde r r , ”WRITE ERROR4 0x%x : 0x%x(%d ) \n ” , ( addr ) ,
↪→→ u32 , e r rP ico ) ;}}

# def ine wl ( addr , va l ) {u64=( va l ) ; i f ( ( e r rP ico=pico−>WriteDeviceAbsolute ( ( addr )
↪→→ ,&u64 , 8 ) ) !=8 ) { f p r i n t f ( s tde r r , ”WRITE ERROR8 0x%x : 0x%l x (%d ) \n ” , ( addr ) ,
↪→→ u64 , e r rP ico ) ;}}

# def ine rd ( addr ) { i f (0>pico−>ReadDeviceAbsolute ( addr ,&u32 , 4 ) ) { f p r i n t f ( s tde r r
↪→→ , ”READ ERROR\n ” ) ;}}

# def ine pr ( addr ,msg) { i f ( ( e r rP ico=pico−>ReadDeviceAbsolute ( addr ,&u32 , 4 ) ) ==4)
↪→→ { p r i n t f ( ”%20s : 0x%x\n ” , (msg) , u32 ) ;} else{ f p r i n t f ( s tde r r , ”READ ERROR4,
↪→→ %s : 0x%x(%d ) \n ” , (msg) , ( addr ) , e r rP ico ) ;}}

# def ine p l ( addr ,msg) { i f ( ( e r rP ico=pico−>ReadDeviceAbsolute ( addr ,&u64 , 8 ) ) ==8)
↪→→ { p r i n t f ( ”%20s : 0x%l x \n ” , (msg) , u64 ) ;} else{ f p r i n t f ( s tde r r , ”READ ERROR8
↪→→ , %s : 0x%x(%d ) \n ” , (msg) , ( addr ) , e r rP ico ) ;}}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / GLOBALS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
s t r u c t h o s t B u f f e r S t r u c t
{

c l u i n t * pInputImage = NULL ;
c l u i n t * pOutputImage = NULL ;

} hos tBu f fe rs ;

s t r u c t o c l B u f f e r S t r u c t
{

cl mem pInputCL = NULL ;
cl mem pOutputCL = NULL ;

} o c l B u f f e r s ;

s t r u c t oc lHand leSt ruc t
{

c l c o n t e x t con tex t = NULL ;
c l d e v i c e i d * devices = NULL ;
cl command queue queue = NULL ;
c l program program = NULL;
vector<c l k e r n e l> kerne l ;
c l e v e n t events [ 1 ] ;

} oclHandles ;

s t r u c t t i m e r S t r u c t
{

double dCpuTime ;
double dDeviceTotal ;
double dDeviceKernel ;
CPerfCounter counter ;

} t imers ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / MAX ELEMENT
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
double max element ( double * a , u i n t 3 2 t num)
{

double r e t = 0 . 0 ;

f o r ( u i n t 8 t aa = 0; aa < num; aa++)
a [ aa ] > r e t ? r e t = a [ aa ] : r e t = r e t ;

r e t u r n r e t ;
}
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / UTILITIES
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
s t r i n g F i l eTo S t r i ng ( const s t r i n g f i leName )
{

i f s t r eam f ( f i leName . c s t r ( ) , i f s t r eam : : i n | i f s t r eam : : b inary ) ;

t r y
{

s i z e t s ize ;
char * s t r ;
s t r i n g s ;

i f ( f . is open ( ) )
{

s i z e t f i l e S i z e ;
f . seekg (0 , i f s t r eam : : end ) ;
s i ze = f i l e S i z e = f . t e l l g ( ) ;
f . seekg (0 , i f s t r eam : : beg ) ;

s t r = new char [ s i ze + 1 ] ;
i f ( ! s t r ) throw ( s t r i n g ( ” Could not a l l o c a t e memory . (

↪→→ F i l eToS t r i n g ) ” ) ) ;

f . read ( s t r , f i l e S i z e ) ;
f . c lose ( ) ;
s t r [ s i ze ] = ’ \0 ’ ;

s = s t r ;
de le te [ ] s t r ;
r e t u r n s ;

}
}
catch ( s td : : s t r i n g msg)
{

ce r r << ” Except ion caught i n F i l eToS t r i n g ( ) : ” << msg << endl ;
i f ( f . is open ( ) )
f . c lose ( ) ;

}
catch ( . . . )
{

ce r r << ” Except ion caught i n F i l eToS t r i n g ( ) . ” << endl ;
i f ( f . is open ( ) )
f . c lose ( ) ;

}
throw ( s t r i n g ( ” F i l eToS t r i ng ( ) : : E r ro r : Unable to open f i l e ” +f i leName ) ) ;

}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / INITIALIZE AND SHUTDOWN OPENCL
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / Creates Context , Device L i s t and Command Queue
/ / Loads adn compiles CL f i l e , L ink CL Source
/ / Bu i lds Program and Kernel Objects
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
vo id I n i t C L ( )
{

c l i n t errCL ;
s i z e t dev i ceL i s tS i ze ;
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / FIND PLATFORMS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
c l u i n t numPlatforms ;
c l p l a t f o r m i d t a r g e t P l a t f o r m = NULL;

errCL = c lGetP la t fo rmIDs (0 , NULL, &numPlatforms ) ;
i f ( errCL != CL SUCCESS)

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing number o f p la t fo rms . (
↪→→ c lGetP la t fo rmIDs ) ” ) ) ;

i f ( ! ( numPlatforms > 0) )
throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : No p la t fo rms found . (

↪→→ c lGetP la t fo rmIDs ) ” ) ) ;

c l p l a t f o r m i d * a l l P l a t f o r m s = ( c l p l a t f o r m i d * ) mal loc ( numPlatforms *
↪→→ s i z e o f ( c l p l a t f o r m i d ) ) ;

errCL = c lGetP la t fo rmIDs ( numPlatforms , a l l P l a t f o r m s , NULL) ;
i f ( errCL != CL SUCCESS)

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing p la t fo rm IDs . (
↪→→ c lGetP la t fo rmIDs ) ” ) ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / SELECT PLATFORM. ( d e f a u l t : f i r s t p la t f o rm )
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
t a r g e t P l a t f o r m = a l l P l a t f o r m s [ 0 ] ;

f o r ( unsigned i n t i = 0 ; i < numPlatforms ; i ++)
{

char b u f f [ 1 2 8 ] ;
errCL = c lGe tP la t f o rm In fo ( a l l P l a t f o r m s [ i ] , CL PLATFORM VENDOR,

↪→→ s i z e o f ( b u f f ) , bu f f , NULL) ;
i f ( errCL != CL SUCCESS)

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing p la t fo rm i n f o . (
↪→→ c lGe tP la t f o rm In fo ) ” ) ) ;

i f ( ! strcmp ( bu f f , ” Advanced Micro Devices , Inc . ” ) )
{

t a r g e t P l a t f o r m = a l l P l a t f o r m s [ i ] ;
break ;

}
}

FREE( a l l P l a t f o r m s , NULL) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / CREATE OPENCL CONTEXT
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
c l c o n t e x t p r o p e r t i e s con tex t p rops [ 3 ] = { CL CONTEXT PLATFORM, (

↪→→ c l c o n t e x t p r o p e r t i e s ) ta rge tP la t f o rm , 0 } ;
oclHandles . con tex t = clCreateContextFromType ( context props ,

↪→→ CL DEVICE TYPE GPU , NULL, NULL, &errCL ) ;
i f ( ( errCL != CL SUCCESS) | | ( oclHandles . con tex t == NULL) )

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Creat ing contex t . (
↪→→ clCreateContextFromType ) ” ) ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / DETECT OPENCL DEVICES
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
errCL = c lGe tCon tex t In fo ( oclHandles . context , CL CONTEXT DEVICES, 0 , NULL

↪→→ , &dev i ceL i s tS i ze ) ;
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i f ( errCL != CL SUCCESS)
throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing contex t i n f o . (

↪→→ c lGetCon tex t In fo ) ” ) ) ;
i f ( dev i ceL i s tS i ze == 0)

throw ( s t r i n g ( ” I n i t C L : : E r ro r : No devices found . ” ) ) ;

oclHandles . devices = ( c l d e v i c e i d * ) mal loc ( dev i ceL i s tS i ze ) ;
i f ( oclHandles . devices == 0)

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Could not a l l o c a t e memory . ” ) ) ;

errCL = c lGe tCon tex t In fo ( oclHandles . context , CL CONTEXT DEVICES,
↪→→ dev iceL is tS ize , oclHandles . devices , NULL) ;

i f ( errCL != CL SUCCESS)
throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing device l i s t . (

↪→→ c lGetCon tex t In fo ) ” ) ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / CREATE OPENCL COMMAND QUEUE
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
oclHandles . queue = clCreateCommandQueue ( oclHandles . context , oclHandles .

↪→→ devices [ 0 ] , 0 , &errCL ) ;
i f ( ( errCL != CL SUCCESS) | | ( oclHandles . queue == NULL) )

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Creat ing Command queue . (
↪→→ clCreateCommandQueue ) ” ) ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / LOAD OPENCL FILE
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
s td : : s t r i n g sourceStr = F i l eToS t r i ng ( ” ke rne l . c l ” ) ;
const char * source = sourceStr . c s t r ( ) ;
s i z e t sourceSize [ ] = { s t r l e n ( source ) } ;

oclHandles . program = clCreateProgramWithSource ( oclHandles . context , 1 , &
↪→→ source , sourceSize , &errCL ) ;

i f ( ( errCL != CL SUCCESS) | | ( oclHandles . program == NULL) )
throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Loading kerne l i n t o program . (

↪→→ clCreateProgramWithSource ) ” ) ) ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / BUILD OPENCL PROGRAM
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
errCL = clBui ldProgram ( oclHandles . program , 1 , oclHandles . devices , NULL,

↪→→ NULL, NULL) ;
i f ( ( errCL != CL SUCCESS) | | ( oclHandles . program == NULL) )
{

ce r r << ” I n i t C L ( ) : : E r ro r : c lBui ldProgram . ” << endl ;

s i z e t leng th ;
errCL = c lGetProgramBui ld In fo ( oclHandles . program , oclHandles . devices

↪→→ [ 0 ] , CL PROGRAM BUILD LOG, 0 , NULL, &leng th ) ;
i f ( errCL != CL SUCCESS)

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing Program b u i l d i n f o . (
↪→→ c lGetProgramBui ld In fo ) ” ) ) ;

char * b u f f = ( char * ) mal loc ( leng th ) ;
errCL = c lGetProgramBui ld In fo ( oclHandles . program , oclHandles . devices

↪→→ [ 0 ] , CL PROGRAM BUILD LOG, length , bu f f , NULL) ;
i f ( errCL != CL SUCCESS)

throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Get t ing Program b u i l d i n f o . (
↪→→ c lGetProgramBui ld In fo ) ” ) ) ;
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ce r r << b u f f << endl ;
f r ee ( b u f f ) ;
throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Bu i l d i ng Program . ( c lBui ldProgram ) ” )

↪→→ ) ;
}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / CREATE OPENCL KERNEL OBJECT
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
f o r ( i n t iKe rne l = 0 ; iKe rne l < 1; iKe rne l ++)
{

c l k e r n e l ke rne l = c lCreateKerne l ( oclHandles . program , ” PlusOne ” , &
↪→→ errCL ) ;

i f ( errCL != CL SUCCESS)
throw ( s t r i n g ( ” I n i t C L ( ) : : E r ro r : Creat ing Kernel . ( c lCreateKerne l

↪→→ ) ” ) ) ;

oclHandles . ke rne l . push back ( kerne l ) ;
}

}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / SET OPENCL KERNEL ARGUMENTS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
vo id SetKernelArgs ( i n t iKe rne l )
{

c l i n t errCL ;

errCL = c lSetKerne lArg ( oclHandles . ke rne l [ iKe rne l ] , 0 , s i z e o f ( cl mem ) , (
↪→→ vo id * )&o c l B u f f e r s . pInputCL ) ;

i f ( errCL != CL SUCCESS)
throw ( s t r i n g ( ” SetKernelArgs ( ) : : E r ro r : Se t t i ng kerne l argument (

↪→→ i npu t image ) ” ) ) ;
}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / ENQUEUE OPENCL KERNEL
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
vo id EnqueueKernel ( i n t iKerne l , const s i z e t globalNDWorkSize , const s i z e t

↪→→ localNDWorkSize , bool bBlocking = f a l s e )
{

c l i n t errCL ;

errCL = clEnqueueNDRangeKernel ( oclHandles . queue , oclHandles . ke rne l [
↪→→ i Ke rne l ] , 1 , NULL, &globalNDWorkSize , &localNDWorkSize , 0 , NULL,
↪→→ &oclHandles . events [ 0 ] ) ;

i f ( errCL != CL SUCCESS)
throw ( s t r i n g ( ” EnqueueKernel ( ) : : E r ro r : Enqueueing kerne l onto

↪→→ command queue . ( clEnqueueNDRangeKernel ) ” ) ) ;

i f ( bBlocking )
{

errCL = clWai tForEvents (1 , &oclHandles . events [ 0 ] ) ;
i f ( errCL != CL SUCCESS)

throw ( s t r i n g ( ” EnqueueKernel ( ) : : E r ro r : Wai t ing f o r ke rne l run to
↪→→ f i n i s h . ( c lWai tForEvents ) ” ) ) ;

}
}
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/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / MAIN
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
i n t main ( i n t argc , char * argv [ ] )
{

t r y
{

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / GLOBALS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
c l i n t errCL ;

PicoDrv * p ico ;
i n t e r rP ico ;

const u i n t 8 t samples = 15;
const u i n t 8 t star tSample = 12;

u i n t 3 2 t s izes [ samples ] ;
i n t repeats = 10;

double sendGPUTimes [ samples ] ;
double sendHMCTimes [ samples ] ;
double memoryTimesGPU [ samples ] ;
double memoryTimesHost [ samples ] ;
double memoryTimesHMC [ samples ] ;

double sendGPUBandwidth [ samples ] ;
double sendHMCBandwidth [ samples ] ;
double memoryBandwidthGPU [ samples ] ;
double memoryBandwidthHost [ samples ] ;
double memoryBandwidthHMC [ samples ] ;

I n i t C L ( ) ;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

s izes [ i i ] = ( u i n t 3 2 t )pow( 2 . 0 , ( s tar tSample + i i ) ) ;
sendGPUTimes [ i i ] = 9999999999.0;
sendHMCTimes [ i i ] = 9999999999.0;
memoryTimesHost [ i i ] = 9999999999.0;
memoryTimesGPU [ i i ] = 9999999999.0;
memoryTimesHMC [ i i ] = 9999999999.0;

}

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / RUN HOST TO GPU BENCHMARK
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
cout << ”%% Test Host /GPU Bandwidth ( ” << repeats << ” ) ” << endl ;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

u i n t 8 t * data = ( u i n t 8 t * ) mal loc ( s izes [ i i ] * s i z e o f ( u i n t 8 t ) ) ;

f o r ( i n t t t = 0 ; t t < ( i n t ) s izes [ i i ] ; t t ++)
data [ t t ] = rand ( ) % 256;

o c l B u f f e r s . pInputCL = c lC rea teBu f fe r ( oclHandles . context ,
↪→→ CL MEM READ WRITE, s izes [ i i ] * s i z e o f ( u i n t 8 t ) , NULL, &
↪→→ errCL ) ;
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i f ( ( errCL != CL SUCCESS) | | ( o c l B u f f e r s . pInputCL == NULL) )
throw ( s t r i n g ( ” I n i t C L B u f f e r s ( ) : : E r ro r : Could not create

↪→→ o c l B u f f e r s . pInputCL . ( c lC rea teBu f fe r ) ” ) ) ;

f o r ( i n t r r = 0 ; r r < repeats ; r r ++)
{

t imers . counter . Reset ( ) ;
t imers . counter . S t a r t ( ) ;

errCL = clEnqueueWri teBuf fer ( oclHandles . queue , o c l B u f f e r s .
↪→→ pInputCL , CL TRUE, 0 , s izes [ i i ] * s i z e o f ( u i n t 8 t ) ,
↪→→ data , 0 , NULL, NULL) ;

errCL = c lF lush ( oclHandles . queue ) ;
errCL = c l F i n i s h ( oclHandles . queue ) ;

t imers . counter . Stop ( ) ;
sendGPUTimes [ i i ] = min ( sendGPUTimes [ i i ] , t imers . counter .

↪→→ GetElapsedTime ( ) ) ;
}
sendGPUBandwidth [ i i ] = ( s izes [ i i ] / sendGPUTimes [ i i ] ) /

↪→→ 1000000000;

i f ( o c l B u f f e r s . pInputCL != NULL)
{

errCL = clReleaseMemObject ( o c l B u f f e r s . pInputCL ) ;
i f ( errCL != CL SUCCESS)

ce r r << ” ReleaseCLBuffers ( ) : : E r ro r : o c l B u f f e r s . pInputCL .
↪→→ ( clReleaseMemObject ) ” << endl ;

o c l B u f f e r s . pInputCL = NULL ;
}

FREE( data , NULL) ;
}

cout << ” sendGPUBandwidth = [ ” ;
f o r ( i n t aa = 0; aa < samples ; aa++)

cout << sendGPUBandwidth [ aa ] << ” ” ;
cout << ” ] ; ” << endl ;

cout << ”% Peak GPU send speed i s ” << max element ( sendGPUBandwidth ,
↪→→ samples ) << ” GB/ s ” << endl ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / RUN HOST TO HMC BENCHMARK
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
cout << ”%% Test Host /HMC Bandwidth ( ” << repeats << ” ) ” << endl ;

const char * bi tF i leName = ” ˜ / hmc / hmc benchmark / hmc benchmark /
↪→→ f i rmware / hmc benchmark . b i t ” ;

e r rP ico = RunBi tF i le ( bi tFi leName , &pico ) ;
i f ( e r rP ico < 0) e x i t ( 1 ) ;

i n t myStream = pico−>CreateStream (116) ;
i f ( myStream < 0) e x i t ( 1 ) ;

unsigned char * data = ( unsigned char * ) mal loc ( s izes [ samples − 1] *
↪→→ s i z e o f ( unsigned char ) ) ;

f o r ( i n t t t = 0 ; t t < ( i n t ) s izes [ samples − 1 ] ; t t ++)
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data [ t t ] = rand ( ) % 256;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

cout << ”% Sending ” << s izes [ i i ] << endl ;
f o r ( i n t r r = 0 ; r r < repeats ; r r ++)
{

t imers . counter . Reset ( ) ;
t imers . counter . S t a r t ( ) ;
i f ( ( e r rP ico = pico−>WriteStream ( myStream , data , s izes [ i i ] ) )

↪→→ < 0)
throw ( s t r i n g ( ” WriteStream : ” + e r rP ico ) ) ;

t imers . counter . Stop ( ) ;
sendHMCTimes [ i i ] = min (sendHMCTimes [ i i ] , t imers . counter .

↪→→ GetElapsedTime ( ) ) ;
}
sendHMCBandwidth [ i i ] = ( s izes [ i i ] / sendHMCTimes [ i i ] ) /

↪→→ 1000000000;
}

FREE( data , NULL) ;

cout << ” sendHMCBandwidth = [ ” ;
f o r ( i n t aa = 0; aa < samples ; aa++)

cout << sendHMCBandwidth [ aa ] << ” ” ;
cout << ” ] ; ” << endl ;

cout << ”% Peak HMC send speed i s ” << max element ( sendHMCBandwidth ,
↪→→ samples ) << ” GB/ s ” << endl ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / RUN HMC BENCHMARK / Memory−I n t e n s i ve Operat ions
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
cout << ”%% Test HMC Bandwidth ( ” << repeats << ” ) ” << endl ;

const u i n t 8 t sizeOfDouble = 8;
const u i n t 8 t readWritesPerElement = 2 ;

u i n t 3 2 t u32 ;
u i n t 3 2 t gups base = REG GUPS BASE ADDR( 1 ) ;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

cout << ” sending ” << s izes [ i i ] << ” bytes ” << endl ;

f o r ( i n t r r = 0 ; r r < repeats ; r r ++)
{

wr (REG GUPS BANDWIDTH EN( gups base ) , 0) ;
wr (REG GUPS RD BW COUNTER( gups base ) , s izes [ i i ] ) ;
wr (REG GUPS WR BW COUNTER( gups base ) , s izes [ i i ] ) ;
wr (REG GUPS BANDWIDTH EN( gups base ) , 1) ;

do
{

rd (REG GUPS BANDWIDTH EN( gups base ) ) ;
} whi le ( u32 == 1) ;

rd (REG GUPS BW TICKS( gups base ) ) ;
cout << ”% Ticks : ” << u32 << endl ;
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memoryTimesHMC [ i i ] = min (memoryTimesHMC [ i i ] , u32 ) ;
}

double tmpMemTimeHMC = memoryTimesHMC [ i i ] / 0.0000000008;
memoryBandwidthHMC [ i i ] = readWritesPerElement * ( s izes [ i i ] /

↪→→ tmpMemTimeHMC) / 1000000000;
}

cout << ” memoryBandwidthHMC = [ ” ;
f o r ( i n t aa = 0; aa < samples ; aa++)

cout << memoryBandwidthHMC [ aa ] << ” ” ;
cout << ” ] ; ” << endl ;

cout << ”% Peak read / w r i t e speed on the HMC i s ” << max element (
↪→→ memoryBandwidthHMC , samples ) << ” GB/ s ” << endl ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / RUN GPU BENCHMARK / Memory−I n t e n s i ve Operat ions − 1 Kernel
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
cout << endl << ”%% Test GPU Bandwidth − Sing le Kernel ( ” << repeats

↪→→ << ” ) ” << endl ;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

i n t numElements = s izes [ i i ] ; / / / s izeOfDouble ;
i n t numOfKernels = 1 ;

u i n t 8 t * data = ( u i n t 8 t * ) c a l l o c ( numElements , s i z e o f ( double ) ) ;
o c l B u f f e r s . pInputCL = c lC rea teBu f fe r ( oclHandles . context ,

↪→→ CL MEM READ WRITE | CL MEM COPY HOST PTR, numElements *
↪→→ s i z e o f ( double ) , data , &errCL ) ;

i f ( ( errCL != CL SUCCESS) | | ( o c l B u f f e r s . pInputCL == NULL) )
throw ( s t r i n g ( ” I n i t C L B u f f e r s ( ) : : E r ro r : Could not create

↪→→ o c l B u f f e r s . pInputCL . ( c lC rea teBu f fe r ) ” ) ) ;

f o r ( i n t r r = 0 ; r r < repeats ; r r ++)
{

errCL = clEnqueueReadBuffer ( oclHandles . queue , o c l B u f f e r s .
↪→→ pInputCL , CL TRUE, 0 , numElements * s i z e o f ( double ) ,
↪→→ data , 0 , NULL, NULL) ;

errCL = c lF lush ( oclHandles . queue ) ;
errCL = c l F i n i s h ( oclHandles . queue ) ;

SetKernelArgs ( 0 ) ;
c l F i n i s h ( oclHandles . queue ) ;

t imers . counter . Reset ( ) ;
t imers . counter . S t a r t ( ) ;

EnqueueKernel (0 , numElements , numOfKernels , t r ue ) ;
c l F i n i s h ( oclHandles . queue ) ;

t imers . counter . Stop ( ) ;
memoryTimesGPU [ i i ] = min (memoryTimesGPU [ i i ] , ( t imers . counter

↪→→ . GetElapsedTime ( ) / 100) ) ;

errCL = clEnqueueWri teBuf fer ( oclHandles . queue , o c l B u f f e r s .
↪→→ pInputCL , CL TRUE, 0 , numElements * s i z e o f ( double ) ,
↪→→ data , 0 , NULL, NULL) ;

errCL = c lF lush ( oclHandles . queue ) ;
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errCL = c l F i n i s h ( oclHandles . queue ) ;
}
memoryBandwidthGPU [ i i ] = readWritesPerElement * ( s izes [ i i ] /

↪→→ memoryTimesGPU [ i i ] ) / 1000000000;

i f ( o c l B u f f e r s . pInputCL != NULL)
{

errCL = clReleaseMemObject ( o c l B u f f e r s . pInputCL ) ;
i f ( errCL != CL SUCCESS)

ce r r << ” ReleaseCLBuffers ( ) : : E r ro r : o c l B u f f e r s . pInputCL .
↪→→ ( clReleaseMemObject ) ” << endl ;

o c l B u f f e r s . pInputCL = NULL ;
}

FREE( data , NULL) ;
}

cout << ” memoryBandwidthGPU1 = [ ” ;
f o r ( i n t aa = 0; aa < samples ; aa++)

cout << memoryBandwidthGPU [ aa ] << ” ” ;
cout << ” ] ; ” << endl ;

cout << ”% Peak read / w r i t e speed on the GPU1 i s ” << max element (
↪→→ memoryBandwidthGPU , samples ) << ” GB/ s ” << endl ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / RUN GPU BENCHMARK / Memory−I n t e n s i ve Operat ions − 128 Kernels
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
cout << endl << ”%% Test GPU Bandwidth − 128 Kernels ( ” << repeats

↪→→ << ” ) ” << endl ;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

i n t numElements = s izes [ i i ] ;
i n t numOfKernels = 128;

u i n t 8 t * data = ( u i n t 8 t * ) c a l l o c ( numElements , s i z e o f ( double ) ) ;
o c l B u f f e r s . pInputCL = c lC rea teBu f fe r ( oclHandles . context ,

↪→→ CL MEM READ WRITE | CL MEM COPY HOST PTR, numElements *
↪→→ s i z e o f ( double ) , data , &errCL ) ;

i f ( ( errCL != CL SUCCESS) | | ( o c l B u f f e r s . pInputCL == NULL) )
throw ( s t r i n g ( ” I n i t C L B u f f e r s ( ) : : E r ro r : Could not create

↪→→ o c l B u f f e r s . pInputCL . ( c lC rea teBu f fe r ) ” ) ) ;

f o r ( i n t r r = 0 ; r r < repeats ; r r ++)
{

errCL = clEnqueueReadBuffer ( oclHandles . queue , o c l B u f f e r s .
↪→→ pInputCL , CL TRUE, 0 , numElements * s i z e o f ( double ) ,
↪→→ data , 0 , NULL, NULL) ;

errCL = c lF lush ( oclHandles . queue ) ;
errCL = c l F i n i s h ( oclHandles . queue ) ;

SetKernelArgs ( 0 ) ;
c l F i n i s h ( oclHandles . queue ) ;

t imers . counter . Reset ( ) ;
t imers . counter . S t a r t ( ) ;

EnqueueKernel (0 , numElements , numOfKernels , t r ue ) ;
c l F i n i s h ( oclHandles . queue ) ;
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t imers . counter . Stop ( ) ;
memoryTimesGPU [ i i ] = min (memoryTimesGPU [ i i ] , ( t imers . counter

↪→→ . GetElapsedTime ( ) / 100) ) ;

errCL = clEnqueueWri teBuf fer ( oclHandles . queue , o c l B u f f e r s .
↪→→ pInputCL , CL TRUE, 0 , numElements * s i z e o f ( double ) ,
↪→→ data , 0 , NULL, NULL) ;

errCL = c lF lush ( oclHandles . queue ) ;
errCL = c l F i n i s h ( oclHandles . queue ) ;

}
memoryBandwidthGPU [ i i ] = readWritesPerElement * ( s izes [ i i ] /

↪→→ memoryTimesGPU [ i i ] ) / 1000000000;

i f ( o c l B u f f e r s . pInputCL != NULL)
{

errCL = clReleaseMemObject ( o c l B u f f e r s . pInputCL ) ;
i f ( errCL != CL SUCCESS)

ce r r << ” ReleaseCLBuffers ( ) : : E r ro r : o c l B u f f e r s . pInputCL .
↪→→ ( clReleaseMemObject ) ” << endl ;

o c l B u f f e r s . pInputCL = NULL ;
}

FREE( data , NULL) ;
}

cout << ” memoryBandwidthGPU128 = [ ” ;
f o r ( i n t aa = 0; aa < samples ; aa++)

cout << memoryBandwidthGPU [ aa ] << ” ” ;
cout << ” ] ; ” << endl ;

cout << ”% Peak read / w r i t e speed on the GPU128 i s ” << max element (
↪→→ memoryBandwidthGPU , samples ) << ” GB/ s ” << endl ;

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / RUN CPU BENCHMARK
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
cout << endl << ”%% Test Host Bandwidth ( ” << repeats << ” ) ” << endl

↪→→ ;

f o r ( i n t i i = 0 ; i i < samples ; i i ++)
{

i n t numElements = s izes [ i i ] ;

f o r ( i n t r r = 0 ; r r < repeats ; r r ++)
{

u i n t 8 t * hostData = ( u i n t 8 t * ) c a l l o c ( numElements , s i z e o f (
↪→→ double ) ) ;

t imers . counter . Reset ( ) ;
t imers . counter . S t a r t ( ) ;

f o r ( i n t j j = 0 ; j j < 100; j j ++)
{

f o r ( i n t l l = 0 ; l l < numElements ; l l ++)
hostData [ l l ] += 1 ;

}

t imers . counter . Stop ( ) ;
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memoryTimesHost [ i i ] = min ( memoryTimesHost [ i i ] , ( t imers .
↪→→ counter . GetElapsedTime ( ) / 100) ) ;

FREE( hostData , NULL) ;
}
memoryBandwidthHost [ i i ] = readWritesPerElement * ( s izes [ i i ] /

↪→→ memoryTimesHost [ i i ] ) / 1000000000;
}

cout << ” memoryBandwidthHost = [ ” ;
f o r ( i n t aa = 0; aa < samples ; aa++)

cout << memoryBandwidthHost [ aa ] << ” ” ;
cout << ” ] ; ” << endl ;

cout << ”% Peak w r i t e speed on the host i s ” << max element (
↪→→ memoryBandwidthHost , samples ) << ” GB/ s ” << endl ;

}
catch ( s td : : s t r i n g msg)
{

ce r r << ” Except ion caught i n main ( ) : ” << msg << endl ;
r e t u r n EXIT FAILURE ;

}
catch ( . . . )
{

ce r r << ” Except ion caught i n main ( ) ” << endl ;
r e t u r n EXIT FAILURE ;

}

r e t u r n EXIT SUCCESS ;
}

Finally the OpenCL kernel program code.

/ / KERNEL SIMPLE

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / PLUS
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /

k e r n e l vo id PlusOne ( g l o b a l u i n t * p Input )
{

const i n t nX = g e t g l o b a l i d ( 0 ) ;

f o r ( i n t j j = 0 ; j j < 100; j j ++)
{

pInput [ nX ] += 1;
}

}
/ / KERNEL SIMPLE
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Appendix H

Image Denoising OpenCL Code

OpenCL kernel code for removing Impulse noise from an image.

/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
/ / MEDIAN FILTER SORT
/ / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / /
vo id medSort ( u i n t * a , u i n t * b )
{

i f ( * a > *b )
{

u i n t temp = *b ;

*b = *a ;

*a = temp ;
}

}

k e r n e l vo id Med ianF i l t e r ( const g l o b a l u i n t * pInput , g l o b a l u i n t *
↪→→ pOutput , const i n t MaskWidth )

{
const i n t nWidth = g e t g l o b a l s i z e ( 0 ) ;
const i n t nHeight = g e t g l o b a l s i z e ( 1 ) ;
const i n t xOut = g e t g l o b a l i d ( 0 ) ;
const i n t yOut = g e t g l o b a l i d ( 1 ) ;
const i n t y InTopLef t = yOut ;
const i n t x InTopLef t = xOut ;

i n t mask = 0xFF ;
i n t r e s u l t = 0 ;

f o r ( i n t channel = 0 ; channel < 3; channel ++)
{

i n t i [ 9 ] ;

f o r ( i n t r = 0 ; r < MaskWidth ; r ++)
{

i n t idxFtmp = r * MaskWidth ;
i n t y In = yInTopLef t + r ;
i n t idx In tmp = yIn * ( nWidth + MaskWidth − 1) + xInTopLef t ;

f o r ( i n t c = 0 ; c < MaskWidth ; c++)
{

i n t i d x I n = idxIn tmp + c ;
i [ idxFtmp + c ] = pInput [ i d x I n ] & mask ;

}
}
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/ / Median Sor t
medSort (& i [ 1 ] , & i [ 2 ] ) ;
medSort (& i [ 4 ] , & i [ 5 ] ) ;
medSort (& i [ 7 ] , & i [ 8 ] ) ;
medSort (& i [ 0 ] , & i [ 1 ] ) ;
medSort (& i [ 3 ] , & i [ 4 ] ) ;
medSort (& i [ 6 ] , & i [ 7 ] ) ;
medSort (& i [ 1 ] , & i [ 2 ] ) ;
medSort (& i [ 4 ] , & i [ 5 ] ) ;
medSort (& i [ 7 ] , & i [ 8 ] ) ;
medSort (& i [ 0 ] , & i [ 3 ] ) ;
medSort (& i [ 5 ] , & i [ 8 ] ) ;
medSort (& i [ 4 ] , & i [ 7 ] ) ;
medSort (& i [ 3 ] , & i [ 6 ] ) ;
medSort (& i [ 1 ] , & i [ 4 ] ) ;
medSort (& i [ 2 ] , & i [ 5 ] ) ;
medSort (& i [ 4 ] , & i [ 7 ] ) ;
medSort (& i [ 4 ] , & i [ 2 ] ) ;
medSort (& i [ 6 ] , & i [ 4 ] ) ;
medSort (& i [ 4 ] , & i [ 2 ] ) ;

/ / r e s u l t i s i 4
r e s u l t |= i [ 4 ] ;
mask <<= 8;

}

const i n t idxOut = yOut * nWidth + xOut ;
pOutput [ idxOut ] = r e s u l t ;

}
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Appendix I

MATLAB Denoise Code

MATLAB code for removing Impulse noise from an image.

%% Denoise Function

function denoise

% filter windows size from 3x3 to 25x25

% odd sizes only

window = 3:2:25;

I = imread('hawk.bmp');
J = imnoise(I,'salt & pepper ' ,0.2);

for ii=1: numel(window)

% filter each channel separately

r = medfilt2(J(:,:,1), [window(ii) window(ii)]);

g = medfilt2(J(:,:,2), [window(ii) window(ii)]);

b = medfilt2(J(:,:,3), [window(ii) window(ii)]);

% reconstruct the image from r,g,b channels

K = cat(3, r, g, b);

end
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