
1

Faculty of Electrical Engineering,
Mathematics & Computer Science

Minimizing expected passenger
travel time by optimal buffer
allocation in train networks

Henri Pieter Arwyn Goos
M.Sc. Thesis
August 2017

Supervisors:
dr. J. Goseling (UT)

J. van t Wout (NS)
Prof. dr. Dennis Huisman (NS)

Stochastic Operations Research
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

The Netherlands

Abstract

This project considers railway timetable development where the expected passenger travel
time is minimized. Buffers are placed in the network to absorb delays and an optimization
model is formulated to choose these buffers optimally to minimize expected passenger travel
time. A new way of modeling so called ”excess journey time” has been proposed. Given this
optimization model, a piecewise-linear approximation of the problem is formulated, where
error bounds in terms of the objective function are given. In the model and literature regarding
this subject a simplification of reality is made, by dividing the train network into independent
parts, to get analytical expressions for the goal function. A model where this simplification
is not made is developed and it is found that the simplification causes a severe decrease in
solution quality. However, in this research a heuristic is proposed which results in solutions
that are very close to optimality. The model is applied to the Dutch intercity network where
it is concluded that the model is able to generate timetables meeting the demands necessary
for the Dutch network.

Keywords Railway timetabling, expected passenger travel time, piecewise-linearization, mixed
integer programming.

2

Preface

This report is the result of the graduation project I have been working on for the past couple of
months. I really enjoyed the combination of both theoretical mathematical analysis and practical
applicability of such an import part every everybody’s life, the railway network. I would like to
thank a few people in particular for their help and support during the project.

First of all, I would like to thank Dr. Jasper Goseling for his supervision of the project. I
really enjoyed our collaboration and especially that he made me look at the broader mathematical
picture at hand, of the sometimes quite practical problems of railway timetabling. Furthermore,
he gave the right amount of guidance when needed, while at the same time giving me the oppor-
tunity to explore my own ideas.

Next I would like to thank Joël van t Wout for my supervision at NS. He especially gave me
insight into the complications, and beauty of railway timetabling problems. Furthermore, he
really helped me and gave good advice on the programming implementations of the models devel-
oped.

I would like to thank Prof. Dr. Dennis Huisman for allowing me to do my graduation thesis
at NS and the guidance he provided during the formulation of the research goals. I would also
like to thank the rest of the department PI for their discussions and insights.

Thanks Tjeerd, Leon, Valerie, Manon and Rory for the great time we had as the board of the
internship association at NS. The events organized really gave insight into the diverse activities
that NS is engaged in. The trip to the Operational Control Center Rail (OCCR) showed me the
relevance of this project as the importance of robust, though speedy timetables was strongly em-
phasized by OCCR employees. Furthermore, the trip to Frankfurt we organized was an absolute
highlight.

Last, thanks to all my friends and family for their support during the time I was working on
this project. I hope you enjoy reading this thesis.

Arwyn Goos,
Juli 2017, Utrecht

3

Contents

1 Introduction 7

1.1 Company background . 7

1.2 Planning process and requirements . 7

1.3 Problem motivation . 8

1.4 Research goal . 9

1.5 Outline . 10

2 Literature review 11

2.1 Train scheduling . 11

2.2 Delay distributions . 13

2.3 Buffer allocation . 16

2.4 Stochastic Programming . 17

2.4.1 Scenario construction . 17

2.4.2 Sample Average Approximation . 18

3 Expected Passenger Travel Time 20

3.1 Action expressions . 21

3.1.1 Depart action . 21

3.1.2 Dwell action . 22

3.1.3 Transfer action . 23

3.2 Excess journey time . 26

3.2.1 Deriving excess journey time expressions . 26

3.2.2 Modeling in previous research . 28

3.2.3 New way of modeling . 29

3.3 Objective . 33

3.4 Constraints . 33

4

4 Piecewise linearization 37

4.1 Piecewise linearizing a function . 37

4.1.1 In the context of optimization . 37

4.1.2 Algorithm . 39

4.2 Numerical integration . 40

4.2.1 Simpson’s integration rule . 40

4.2.2 Monte-Carlo integration . 41

4.2.3 Integrate linearized function . 43

4.3 Error bounds for piecewise linear approximation 44

4.3.1 Error bounds for Weibull goal function . 44

4.3.2 Determining Lipschitz constants . 46

4.3.3 Criteria for the integral of absolute difference 49

4.3.4 Criteria for integral of squared difference . 50

4.3.5 Multivariate case . 51

5 Model without independence assumption 53

5.1 Goal function . 55

5.1.1 Departing cost . 55

5.1.2 Riding cost . 55

5.1.3 Transfer cost . 56

5.2 Applying to goal function . 56

5.3 Implementing as a linear program . 57

5.3.1 Linearizing a max function . 57

5.3.2 Linearizing an indicator function . 59

5.3.3 Goal function . 60

5.3.4 General sized networks . 60

5.4 Heuristic . 61

5

6 Results 63

6.1 Results for the independent model . 63

6.1.1 Comparing the newly developed spreading method to the model in literature 64

6.1.2 Threshold analysis . 67

6.1.3 Analyzing the solution in terms of inter arrival times 69

6.1.4 Computational analysis . 70

6.1.5 Error bounds . 71

6.1.6 Some remarks regarding the TRANS toedeler 72

6.2 Result independence assumption . 73

7 Conclusions and future research 77

Appendices 81

A Goal function 81

A.1 Depart action . 81

A.1.1 Exponential distribution . 81

A.1.2 Weibull distribution . 82

A.2 Transfer Action . 83

A.2.1 Exponential distribution . 83

A.2.2 Weibull distribution . 84

B Convexity of goal function 84

C Piecewise linearization algorithm 84

6

1 Introduction

1.1 Company background

Netherlands Railways (NS) is the largest railway transport provider of The Netherlands. Founded
in 1937, as a result of a merge of several different railway providers, NS has operated the entire
Dutch network until the 90’s. From then on, a few small providers have made their appearance
on mostly small lines. The Dutch railway network is used every day by on average 1.1 million
passengers. Next to passenger transport, there is freight train transport, which uses the same
infrastructure as passenger trains. I have been doing research at the department PI (Process
quality and Innovation). PI is mainly a research department which focuses on developing decision
support tools which are being used in other departments of NS. Operations Research is used to give
a better understanding and improve decision making in various areas such as Crew Scheduling,
Rolling Stock Scheduling and Train Timetabling. In 2008, the department won the Franz Edelman
Award for Achievement in Operations Research and the Management Sciences awarded by the
Institute for Operations Research and the Management Sciences with their paper, [1] on the use
of Operations Research in developing timetables, rolling stock schedules and crew schedules for
the Dutch network.

1.2 Planning process and requirements

This section will provide insight in the necessary decisions to be made before a railway network
can be taken into operation. In general, there are 5 consecutive phases of decision making when
developing a railway system:

1. Passenger Estimation. In order to generate an operating system, it is of great importance to
know, or have an estimation of, the amount of passengers traveling from a specific origin to
destination. Depending on those numbers decisions can be made about the quality, frequency
and size of trains in specific sections. For every Origin-Destination pair, the amount of
passengers traveling from that specific Origin to the Destination is estimated, resulting in
the so called OD-Matrix.

2. Line Planning. After the OD-matrix is determined, a line plan should be determined. The
line plan is the collection of all train lines. Each line has an origin and destination; a
frequency and a certain stopping pattern, indicating the stations where the train halts.
The line plan problem determines how to cover the railway network with lines best, when
considering traffic demand, operating costs and many more.

3. Timetabling. After the line plan is determined, a train timetable can be constructed. For
every train it is known at which station it halts. The timetabling part assigns specific mo-
ments for the arrival time and departure time of each train at every station. Here various
factors are taken into consideration. The minimum ride time between stations should be
taken into account. The time between specific trains should not be too big, making pas-
sengers wait long at a transfer station. Also there are a lot of safety constraints. There
are specific requirements on for example the time between trains using the same piece of
infrastructure. Usually a minimum time between such trains is demanded to avoid collisions.
So a lot of factors play a role in timetabling and these factors possibly influence each other.
Furthermore, the timetable is commonly cyclic, meaning that the timetable repeats itself
after a certain amount of time. This is done with the aim of customer clarity.

7

4. Rolling Stock Planning. After the timetable is constructed, the next problem is assigning
train units to train lines in the timetable. NS owns a lot of different type of rolling stock,
for example single deck and double deck trains. For every train line it should be determined
which rolling stock is operated. Note that rolling stock does not need to be assigned to a
train line for the entire day but can be used on different train lines throughout. Also during
peak hours, usually more rolling stock is used compared to off-peak hours. The rolling stock
plan describes for every piece of rolling stock when and where it is used throughout the day.

5. Crew Planning. In order to operate the system, drivers and conductors are necessary on
trains. There are some challenging aspects that need to be taken into account here. First
of all, crew should start and end the day at their home station, as it is undesired that a
employee finishes it’s day on the other side of the country. Furthermore, there are some
specific demands on the hours of employees. There are constraints on the amount of time an
employee is allowed to work uninterrupted. Also a big issue is variation in the work of drivers
and conductors. It is undesired by drivers and conductors to work on the same line during
the entire day. They want to be employed on a diverse set of train lines. All these factors
and many more need to be taken into account when making a crew planning, specifying for
every employee on which rolling stock it should be at a specific moment during the day.

The phases described above are executed consecutively. Note however that optimal decision mak-
ing in a certain phase is dependent on the decision making in a later phase. For example during
passenger estimation, passenger flows are distributed over the network. But in practice how
passengers move is dependent on the timetable, which is determined in a later phase. So the
distribution of passenger flows is dependent on the timetable, which is in turn dependent on the
passenger flow. In theory all the phases should be executed at the same time. Though there is a
lot of research going on on how to integrate these different phases, for example [2], [3], [4], at the
moment this is too hard a problem. This report will focus on the timetabling part, assuming the
line plan development and passenger estimations have already been performed. The rolling stock
and crew planning problem will not be considered.

1.3 Problem motivation

There is a great need to provide fast and quality service for passengers. The railway network is
owned by the Dutch government, so the government decides which companies can provide service
on which pieces of infrastructure. The NS has the right to continue operating at least until 2025
on the current net. However, the Dutch government has demanded that the NS meets a set of per-
formance measures, otherwise they will consider giving other railway companies the opportunity
to operate on the net currently used by NS. These performance measures are called KPI’s (Key
Performance Indicator), which are among others quality of transfers, transport capacity during
rush hour and punctuality.

To meet these demands it is of vital importance that the railway timetable is of best quality
possible from the viewpoint of passengers. After all, the motto of NS is ”The passenger on 1,2,
and 3”. The timetable should be such that it performs good when operations are going as planned,
but also that it is robust against unexpected events. A tool used by NS to generate timetables is
the module CADANS. CADANS is a solver which finds a solution to the Periodic Event Schedul-
ing Problem (PESP). PESP will be discussed later on in this report. CADANS finds a feasible
schedule, meaning the schedule meets all the safety and minimum ride time constraints. However,
as it is just a feasibility problem, it gives no judgment about the quality of the timetable. Ideally
a goal function should be added to get the best quality schedule possible, for a certain definition of
quality. For this research, the quality of a schedule will be determined by the expected passenger
travel time. Here expected refers to the possibility of delays occurring in the network, implicating

8

the travel time of a passenger is a stochastic variable. By taking the expected travel time as goal
function we will take into account both efficiency and robustness, as a trade off is being made by
the two in the goal function.

1.4 Research goal

The goal of this research is to develop a way to construct feasible timetables which A) minimize
expected travel time and B) can be applied to large networks. There has been previous research, [5],
which developed expressions for expected travel time and used this as a goal function to develop
train schedules. Here expected travel time was minimized by placing time buffers in the network,
allowing to absorb delays occurring during operation. In this research a similar approach will be
used where several extensions will be made to meet the specific demands of the Dutch network.
Very generally speaking we have the problem of minimizing the expectation of a certain function,
where the buffers D are the decision variables. The goal function is dependent on the decision
variable D and a set of stochastic variables X, which represents the delays. There are also
constraints on the decision variables D, resulting in a feasible set P . So the problem will be of the
following form:

min
D∈P

E[f(D,X)].

One of the main considerations when constructing a train schedule is to spread alternative train
routes. Different train routes between two stations should be spread out as much as possible to
minimize the waiting time until the first mode of transport for passengers arriving randomly at
the station. This also gives passengers flexibility to choose their moment of departure. Previous
research suggested it is computationally very hard to take this spreading into account. For the
Dutch network however, it is of utmost importance for trains to be spread as good as possible. The
goal is to examine if there are ways to take into account spreading which is still computationally
feasible.

Based on previous research it will most likely be necessary to approximate the goal function by a
piecewise linear approximation because of computation time considerations. It is desired that this
approximation approximates the original problem as good as possible. We will determine if error
bounds between the approximated and original problem, in terms of the goal function values of
the solutions found, can be formulated.

Last, in the literature regarding minimizing expected passenger travel time a simplification of
the problem is made by dividing the network into independent parts. This will be explained later
on in the report. In doing so, analytical expressions for the goal function can be found, which is
not possible if this simplification is not made. However, the effect of the simplification on solution
quality has not yet been examined in literature. We will develop a model which does not divide
the network into independent parts and compare it with the model developed in literature to see
if the simplification made is justified.

Summarizing, the main research goals are the following:

1. Develop expressions for the expected passenger travel time depending on the delay charac-
teristics of the Dutch network.

2. Construct a new way of modeling the spreading of trains which is numerically applicable to
large train networks.

3. Determine error bounds between the original and piecewise approximated problem in terms
of goal function for the solutions found.

9

4. Develop a model which does not divide the network into independent parts to conclude if
the simplification made in literature is justified.

1.5 Outline

The structure of the report is as follows. Chapter 2 gives a literature review of several subjects used
in this research. In Chapter 3, the optimization problem will be formulated, where the goal function
and constraints will be defined. In Chapter 4 piecewise linearization is discussed. Algorithms are
described and performance bounds are given. In Chapter 5 a model will be developed in order to
check simplifications made in the model of Chapter 3. Chapter 6 describes the numerical results
of the models. Chapter 7 closes with a conclusion and recommendations for future research.

10

2 Literature review

This chapter gives an overview of research already performed on subjects relevant for this project.
First, a mathematical formulation of finding timetables will be examined. Then, the distribution
of delays based on real life data will be considered. Afterwards research regarding buffer allocation
will be discussed. Last, mathematical techniques to solve stochastic programs are examined.

2.1 Train scheduling

Graph representation

We will now focus on how to convert the problem of finding a timetable into a mathematical
problem. In order to do so, we will first show how a train network can be represented as a graph,
based on for example [6], [5] and in particular for the Dutch network, [7]. Using this graph, a
mathematical formulation of the problem will be given.

A train network can be represented by a directed graph G(V,E) where V is the set of vertices and
E is the set of edges. The vertices represent stations and the edges represent actions. At a station
i, a train j has to arrive and depart. Both are modeled as a vertex V i,jArr and V i,jDep. The total vertex

set is the union of all the trains and all the stations it traverses, so V =
⋃
i

⋃
j

[
V i,jArr ∪ V

i,j
Dep

]
.

Furthermore the edges represent interactions between nodes. There are different kind of edges
connecting nodes:

1. Ride edge. A train j can make a ride action, where it is riding from a station k to station l.
This is modeled as an edge between V k,jDep and V l,jArr.

2. Dwell edge. For every train j, halting at station i, there is a dwell edge, where the train is
waiting to allow passengers to enter the train, between vertices V i,jArr and V i,jDep.

3. Transfer edge. This is an action from the viewpoint of the passenger. If a passenger needs
to make a transfer at a station k, transferring from train i to train j, we construct an edge
between the corresponding nodes. An edge will be constructed between V k,iarr and V k,jDep.

4. Headway edge. A headway edge models the relation between trains who should have a certain
minimum headway from eachother for safety considerations. This means that two trains at
a certain station should be scheduled a minimum time apart. Commonly, such constraints
occur when the trains use the exact same piece of infrastructure. Suppose we have a headway
constraint between two trains i and j at a station k. These constraints can either be on the
arrival part or the departing part. This interaction is modeled as an edge between V k,iArr and

V k,jarr or V k,iDep and V k,jDep.

These are all the interactions that happen between nodes. So to represent a network, the graph
G(V,E) defined as above provides us with all the information that is required to translate the
problem into a mathematical formulation, which will be done in the following paragraph. An
example of a graph representation of a train network is given in the following picture:

11

Figure 1: Graph representation of a train network

Here a black edge is a ride activity of a train, a blue edge is a dwell activity of a train and the red
edges are passenger transfer actions. The black boxes are train stations. A headway edge looks
like the following:

Figure 2: Example of headway edges

Here the two trains use the same piece of infrastructure after leaving the station, so a headway
constraint is necessary. The green edges are the headway edges.

Periodic Event Scheduling Problem

The Periodic Event Scheduling Problem (PESP), introduced in [8], deals with finding a feasible
solution to an Periodic Event Scheduling Problem, or to conclude that such a solution does not
exist. A periodic timetable means that the timetable repeats itself after the timetable period T .
So an event taking place at time b, will also take place at time b + nT , with n ∈ Z. A periodic
timetable is desired to give passengers more ease to remember the train schedule and get used to
it. Usually, a timetable of period T = 60 minutes is desired. From a more general perspective,
PESP is a framework to assign time values to periodic events, when there are constraints on the
time between specific events. Applied to train scheduling, PESP needs, among others, the graph
representation of a train network, described in the previous paragraph. PESP assumes that for
every edge e = (i, j) ∈ E, connecting the vertices i and j, there is a minimum time le and maxi-
mum time ue allowed for this specific action. PESP answers the following question:

Question: Given a directed graph G = (V,E), the vectors l,u and an integer T . Does there

12

exist a vector b such that the following holds:

(bj − bi − le) mod T ≤ ue − le, ∀e = (i, j) ∈ E.

Note that every bk is the time of a specific node in the graph formulation. So for every v ∈ V =⋃
i

⋃
j

[
V i,jArr ∪ V

i,j
Dep

]
a time value bk is assigned, for some k. In essence, PESP is a feasibility

problem. Another way of representing PESP is the following by [6]:

Find (b, n)

s.t. le ≤ bj − bi + neT ≤ ue ∀e = (i, j) ∈ E
0 ≤ bi < T ∀i ∈ N
ne ∈ Z, ∀e = (i, j) ∈ E

Notice that PESP is a Mixed Integer Linear Program (MILP). A possible extension to the model
is to add the constraint that the time an event takes place is a natural number, i.e. bi ∈ N ∀i,
as timetables communicated to passengers usually have a precision in minutes. This would make
the problem an Integer Linear Program (ILP). By [9] it can be shown that if l, u are integer,
and there exists an solution to the problem, then also an integer solution exists to the problem.
Furthermore, [9] showed that for T ≥ 3, PESP is a NP-hard problem, by making a reduction from
the k-Vertex Colorability Problem.

In [10] a description of how PESP is solved at NS is given. The solver is called CADANS,
which was developed in collaboration with ORTEC, and has several modules. First a solution to
the PESP problem is found. In order to do so, a lot of preprocessing is used to remove redundant
constraints. After a feasible schedule is found, the next module does post optimization. Event
times are moved around such that for example trains driving with a frequency bigger than two are
spread as evenly as possible over the cycle period. If no solution is found, CADANS outputs the
set of constraints causing the infeasibility and gives suggestions on how to adjust the constraints
such that a feasible schedule is possible.

Another recent promising approach is to reformulate PESP as a SAT problem and solve the
problem using SAT solvers, described in [11].

2.2 Delay distributions

PESP does not have a goal function. This means any solution is of equal quality in the eyes of
PESP. However, in practice this might not be the case. In this research a goal function will be
added to the PESP problem. We will develop expressions for the expected travel time and use
this as an objective in the model. The travel time of a passenger is a stochastic variable, because
there are stochastic delays occurring during operation. To develop expressions for expected travel
time, we first need to determine how delays are distributed. There have been several researches
on the distribution of delays, which will be analyzed and conclusions about the delay distributions
to be used are made.

The research of [12] considers data in the Eindhoven area regarding train delays. An entire week,
consisting of 1846 trains were considered. It was concluded that departure delays at stations are
best modeled by a negative exponential distribution.

In [13], delay data was analyzed which was gathered during 9 months at 24 UK train stations,
resulting in nearly one million recorded delay times. To fit the data, an exponential and q-
exponential distribution were considered. It was concluded that the q-exponential distribution fits
the data best, however the exponential distribution is also a good fit.

13

The Dutch The Hague station was examined by [14]. It was concluded that the Weibull dis-
tribution fits the data best, where the shape parameter of the Weibull distribution tends to be
smaller than 1 for arrival and departure actions and bigger than 1 for dwell actions.

Lastly, [15] considered the Indian railway network. Over a period of 30 days, delays were recorded
at 26 stations resulting on around 10000 delay recordings. It was concluded that a Weibull distri-
bution fits the data best for arrival delays and a log-normal distribution is best to model departure
delays.

The general trend in the researches seems to be that a Weibull distribution or exponential distri-
bution is a good choice for modeling delay distributions. Since the exponential distribution is a
specific case of the Weibull distribution, it is convenient to consider Weibull distributions. NS also
has internal data regarding train delays. The general conclusion was that either an exponential
or a gamma distribution were best fits, though it is not clear whether Weibull distributions were
also considered. The advantage of using a Weibull distribution comes from the fact that a Weibull
distribution is more flexible in terms of the shapes it can take than the exponential distribution.
The exponential distribution is a strictly decreasing function, whereas the Weibull distribution is
not monotonically increasing or monotonically decreasing. Consider the following figure:

Figure 3: Dataset 1 Figure 4: Dataset 2

These are datasets recorded by the NS at a specific station. For the first dataset an exponential
distribution would be a good fit. For the second dataset however an exponential distribution would
not be a good fit, as it can not model the increasing trend shown at the beginning of the dataset.
A Weibull distribution would be suited to model the second dataset properly. In this research we
will consider both exponential and Weibull distributed delays.

Parameter estimation

After deciding the exponential distribution and the Weibull distribution are the distributions to be
used in this research, we need to determine a way to estimate distribution parameters, given a set
of data. The estimator attempts to approximate the parameters of certain measurements. Various
criteria and corresponding algorithms have been developed which all have a different criterium for
being a ”good fit”. The most famous techniques are Maximum Likelihood Estimation, Method of
Moments and Minimum Squared Error Estimation, as described in for example [16]. Maximum
Likelihood Estimation is generally the most used technique. This is the method we will explain
here.

The principle of Maximum Likelihood Estimation is that the parameters should be chosen in

14

such a way, that the likelihood of the observations that were made is maximal. Suppose there
are n independent and identically distributed observations x1, ..., xn, coming from a distribution
function f(x, θ). Here θ is a vector of parameters. As the samples were independent, the joint
density is just the product of the individual density functions. Let L(θ;x1, ..., xn) be the likelihood
function. It follows that the likelihood of doing the observations that we made is the following:

L(θ;x1, ..., xn) = f(x1, ..., xn|θ) =

n∏
i=1

f(xi|θ).

This function should be maximized with respect to the parameter vector θ to find the maximum
likelihood estimator for the observations. Now we will see what this means in practice, when using
an exponential and Weibull distribution.

Exponential distribution

Suppose there is a set of delay observations x1, ..., xn on which an exponential distribution should
be fitted. The exponential distribution has f(x) = λe−λx as distribution function. The likelihood
function for the exponential distribution is the following:

L(λ;x1, ..., xn) =

n∏
i=1

λe−λxi = λne−λ
∑n
i=1 xi .

This expressions should be maximized over λ i.e. we should solve d
dλL(λ;x1, ..., xn) = 0. Because

ln(x) is a monotonically increasing function, this is equivalent with solving d
dλ ln(L(λ;x1, ..., xn)) =

0. We get:

d

dλ
ln(L(λ;x1, ..., xn)) =

d

dλ

[
ln(λn) + ln

(
e−λ

∑n
i=1 xi

)]
=

d

dλ

[
nln(λ)− λ

n∑
i=1

xi

]

=
n

λ
−

n∑
i=1

xi = 0.

This results in λ = n∑n
i=1 xi

.

Weibull distribution

The Weibull distribution function is f(x) = k
λ

(
x
λ

)k−1
e−(xλ)

k

. The likelihood function for the
Weibull distribution given the observations x1, ..., xn is the following:

L(k, λ;x1, ..., xn) =

n∏
i=1

k

λ

(xi
λ

)k−1

e−(xiλ)
k

.

To find the best k and λ we should find the maximum of the likelihood function. It is again
convenient to take the logarithm of the likelihood function. This results in:

ln(L(k, λ;x1, ..., xn)) = ln

((
k

λk

)n)
+ ln

(
n∏
i=1

xk−1
i

)
+ ln

(
n∏
i=1

e−(xiλ)
k

)

= nln (k)− nkln(λ) + (k − 1)

n∑
i=1

ln (xi)−
n∑
i=1

(xi
λ

)k
.

15

Now the following system of equation should be solved:

d

dλ
ln(L(k, λ;x1, ..., xn)) = −nk 1

λ
+ k

n∑
i=1

xki
1

λk+1
= 0

d

dk
ln(L(k, λ;x1, ..., xn)) =

n

k
− nln(λ) +

n∑
i=1

xi −
n∑
i=1

ln
(xi
λ

)
ekln(xiλ) = 0

When solving this system of equations, we get by [17] the following expressions for λ and k.

k =

[∑N
i=1 x

k
i ln(xi)∑N

i=1 x
k
i

− 1

N

N∑
i=1

ln(xi)

]−1

λ =

[
1

N

N∑
i=1

xki

] 1
k

Note that the expression for k is not explicit, but can easily be determined with numerical methods
such as the Newton-Raphson method [18].

2.3 Buffer allocation

We have seen how train scheduling can be translated into a mathematical problem and how train
delays are distributed. The main focus of this research is on buffer allocation. Buffers can be
placed in the train network to absorb delays occurring during operation. We will now consider
what is already known in literature about buffer allocation in train networks.

The research of [19] considers a train network for which an expression for expected travel time
is developed. Depending on the delay distributions, expressions for different kind of actions that
passengers can take are developed. The model is applied to a small subnetwork of the Belgian net-
work. When comparing the solution of the timetable determined by the model with the timetable
in use at that time in the Belgian railway network, a significant improvement was made.

The model of [19] was expanded in [5]. In [19] there were quite some simplifications made on
the objective terms. [5] considers the same concept but with less simplifications. A model is devel-
oped to determine passenger flows, in order to properly weigh different kind of actions and thus
making an analysis of the importance of specific actions/segments. The model is applied to all the
Belgium hourly train network and has shown to be able to find feasible solutions, while also taking
into account all kinds of safety constraints. A piecewise linearization using two linear segments of
the goal function was made.

The model in [20] was developed by NS and the so-called SOM module used at NS resulted
from this research. The model considers train lines and aims, by allocation of buffers, to minimize
the delay that a train experiences. This is a significant difference with [5] and [19], as in those
researches a minimization of passenger travel time is sought after. A further difference is that
in [20], the train network is not divided into independent parts, which does happen in [5] and [19].
In this problem, a finite predetermined amount of buffer should be distributed over the different
sections of the line. The results were put in practice at a, at the time, problematic line in terms
of delays. A significant increase in performance was achieved afterwards.

16

2.4 Stochastic Programming

Later on in the report we will have a specific kind of minimization problem, for which the the-
oretical groundwork is explained here. The general form of the problem, using the notation of
literature used, is minx∈X E[f(x, ξ)] with ξ being a stochastic variable. For the problem later on
in the report specifically, an expression for the expectation of f is not possible, but f itself is. In
this section, literature and techniques useful for solving this kind of problem will be elaborated on.

Stochastic Programming is a framework for modeling optimization problems where uncertainty
is involved. Uncertainty can be apparent in different aspects, in the constraints, goal function
and there are several criteria possible for when a solution is found. Stochastic Programs can be
”Multi-Stage”, meaning that the solution of the first stage program is dependent on the solution
of the second stage problem. The two stage program is most commonly studied in stochastic
programming literature, for example in [21] and has the following general form:

min
x∈X

cTx+ E[f(x, ξ)]

s.t. Ax = b

x ≥ 0

Here ξ is random, but follows a known probability distribution. f(x, ξ) again is defined as follows:

f(x, ξ) = min
y
q(ξ)T y

s.t. T (ξ)x+W (ξ)y ≤ h(ξ)

y ≥ 0

In this formulation x ∈ R can be seen as a first-stage decision variable and y ∈ R as the second
stage decision variable.

For our problem, we do not need to take a second decision based on the realizations of ξ (modeled
by the second stage program), just on the expected travel time function. Also, as will be shown
when the model for this project is actually developed, there are no constraints on the uncertain
realizations of ξ. So for this problem, a first stage problem of the following form is what is desired:

min E[f(x, ξ)]

s.t. Ax = b

x ≥ 0

In the following sections, we will consider two techniques to solve these kind of problems, when
E[f(x, ξ)] can not be analytically determined, but where f(x, ξ) is known.

2.4.1 Scenario construction

Suppose that the probability distribution of the stochastic vector ξ can be well approximated by
a discrete distribution with known probability pi for every scenario ξi. Then [22] and [23] write
that the Stochastic Program can be transformed into a equivalent linear program of the following
form:

min

N∑
i=1

pif(x, ξi)

s.t. Ax = b

x ≥ 0

17

This program can be solved by standard methods, as it is just a deterministic program. However,
the size of the linear program can become very big very fast. This makes the problem hard to
solve numerically. Let the vector ξ be of length n. Furthermore, suppose that for every element ξj
in ξ we allow m possibilities with corresponding probabilities p1, ..., pm. Then the total outcome
space is of size mn.

2.4.2 Sample Average Approximation

As we saw, we can expect quite some computational issues when we use scenario construction to
solve our stochastic program. Sample Average Approximation (SAA) has a similar approach, but
does not have the same outcome space problems.

Let x∗ be the optimal solution to our stochastic program, and let z∗ be it’s corresponding function
value, i.e. z∗ = minx∈X E[f(x, ξ)] = E[f(x∗, ξ)]. SAA approximates the problem by sampling n
samples ξ1, ..., ξn, drawn from the distribution of ξ. Using these samples an approximation x∗n of
x∗ and an approximation z∗n of z∗ is sought. These approximations are determined by considering
the following problem:

min
1

n

n∑
j=1

f(x, ξj)

s.t. Ax = b

x ≥ 0

Here x∗n is the optimal solution to the above problem and z∗n is its corresponding objective value,
i.e.:

z∗n = min
x∈X

 1

n

n∑
j=1

f(x, ξj)

 =
1

n

n∑
j=1

f(x∗n, ξ
j).

In essence, a Monte-Carlo approximation of the goal function is minimized when using SAA. In
the following some properties of SAA regarding bias and convergence of z∗n to z∗ will be shown,
by [24].

Bias

It will now be shown whether or not the estimator z∗n is biased. z∗n is unbiased if E (z∗n) = z∗. We
get:

E(z∗n) = E

min
x∈X

1

n

n∑
j=1

f(x, ξj)

 ≤ min
x∈X

E

 1

n

n∑
j=1

f(x, ξj)

 = min
x∈X

E[f(x, ξ)] = z.

Here the inequality follows because the minimum of an expectation in bigger than the expectation
of the minimum. The estimator is a negatively biased estimator. However, this does not mean that
z∗n does not converge to z∗. In fact it does. We will show the estimator is a consistent estimator
in the following section.

18

Consistency

We know fn(x∗n) ≤ fn(x∗), as x∗n is the optimal value when these specific n samples are considered.
So for n samples, x∗ is not necessarily the optimal solution, but x∗n is. On the other hand we
have E[f(x∗, ξ)] ≤ E[f(x∗n, ξ)], as x∗ is the optimal solution to the overall problem. Using these
inequalities we get:

|z∗n − z∗| = |fn(x∗n)− E[f(x∗, ξ)]|
= max{fn(x∗n)− E[f(x∗, ξ)],E[f(x∗, ξ)]− fn(x∗n)}
≤ max{fn(x∗)− E[f(x∗, ξ)],E[f(x∗n, ξ)]− fn(x∗n)}
≤ max{|fn(x∗)− E[f(x∗, ξ)]|, |E[f(x∗n, ξ)]− fn(x∗n)|}
≤ sup
x∈X
|fn(x)− E[f(x, ξ)]| .

Because limn→∞ |fn(x)− E[f(x, ξ)]| = 0 with probability one, we get that z∗n converges to z∗ with
probability one.

19

3 Expected Passenger Travel Time

The following chapter will develop a framework for minimizing expected passenger travel time.
The same approach as in [5] is used. However, there are several new contributions. First of all, the
expressions developed in [5] and [19] were not very formal, meaning no precise expressions for the
stochastic variables were stated. By reasoning and analyzing cases expressions were found. We
will give a formal description of the problem. Furthermore, we allow to use Weibull distributed
delays as opposed to just exponential delays and give expressions for the goal function. Lastly a
new way of modeling excess journey time is developed.

As stated before, buffers are placed in the network to absorb delays. These buffers should not be
too small, such that they cannot absorb any practical delay, nor should they be too big, causing
passengers to wait unnecessarily long. A trade-off should be made between the two and this is done
by considering the expected passenger travel time. Note that the model is not aimed to be robust
against any delay. We consider relatively small high frequency delays and not low frequency big
delays as a consequence of for example a train having a collision with a pedestrian. High frequency
small delays are for example delays as a consequence of leaf on the rail, crowded trains during
boarding etc. We allow buffers to be placed after dwell or transfer actions, making them absorb
the delay which has occurred starting from the previous buffer in the system. Making the buffers
absorb only the delays that have occurred since the last buffer is a simplification, as there might
still be delay left in the network not entirely absorbed by the previous buffer. This will be treated
in Chapter 5. The following picture shows the idea on a subnetwork at a station:

Figure 5: Example of buffer placement

We use the notation of [5], where D is the size of the buffer, not to be confused with delay. Delays
occur on the black, blue and red edges according to some known distribution function. The big
question is what the size of these buffers should be and that is exactly the model we will build to
answer this question.

We are looking for an expression for the total expected passenger travel time. This will be done
by first determining the expected travel time for a route of a passenger. To get the expected pas-
senger travel time for a certain route, we will decompose the route a passenger takes into different

20

actions. For these actions, expressions for the expected travel time will be developed, after which
the total expression for the travel time of that route can be determined, by simply summing over
the travel cost of the actions used. An action consists of all the activities between two buffers
that a passenger comes by when traversing the network. The possible actions will now be explained.

First a passenger has to take a departing action to board the train. When the passenger has
boarded the train and arrives at the next station, it can either stay in the train, which is a dwell
action, or it can make transfer to an other train, which is a transfer action. Every destination
can be reached by a finite amount of these actions. Because of the structure of the network and
allowed buffer places, an action will always consist of a ride together with a dwell or transfer edge.
Depending on the distribution of the delays at these edges and the buffers chosen, we want to
know the expected passenger travel time. This will be done for every action possible.

The travel time in practice consists of the minimum travel time, which is the travel time when no
delays were to occur, plus the travel time as a consequence of these delays. The first part however
is a constant. There are certain minimum travel times for every action, independent from the
timetable chosen. We will leave this out of the model, as there is no use in optimizing this. We
will focus on minimizing the journey time on top of the technical minimum journey time.

3.1 Action expressions

For every possible action, the expected travel time will be determined in the following parts.

3.1.1 Depart action

When travelling from an origin to a destination, a passenger first has to depart at the station.
Consider the following illustration:

Figure 6: Depart action

Departing passengers arrive at the node the big black arrow is pointing to. After the blue edge,
a buffer is placed that can absorb the delays that have occurred since the last buffer, a delay X
during the ride activity and a delay Y during the dwell activity. If the cumulative delay is bigger
than the buffer, the train will arrive late and the passenger has to wait. In this case, the passenger
has to wait for a time X + Y −D, where D is the size of the buffer. In case the cumulative delay
of the previous part is smaller then the buffer, a departing passenger does not have to wait, as
the delay is entirely absorbed by the buffer and thus the train arrives on time. So the stochastic
variable CDepart, representing the travel time for a depart action, is the following:

CDepart(D) = max{0, X + Y −D}.

21

As we are interested in the expectation, let fDepart be defined as fDepart = E
(
CDepart(D)

)
. By

definition, fDepart is determined as follows:

fDepart = E
(
CDepart(D)

)
= E (max{0, X + Y −D})

=

∫ ∞
0

∫ ∞
0

max{0, x+ y −D}fx(x)fy(y)dxdy.

Here fx(x) and fy(y) are the distribution functions of X and Y . As we have seen that delays can
be best modeled by exponential and Weibull distributed variables, we will apply this to the above
expression.

Lemma 1. When using an exponential distribution, fDepart is as follows:

fDepart(D) =
λx

λy(λx − λy)

(
e−λyD − e−λxD

)
+

1

λx
e−λxD +

1

λy
e−λxD.

Proof. See Appendix A.1.1

Lemma 2. When using a Weibull distribution, fDepart is as follows:

fDepart(D) =

(
λyΓ

(
1 +

1

ky

)
−D

)
e−(D

λx
)
kx

+ λxΓ

(
1 +

1

kx
,

(
D

λx

)kx)

+

∫ D

0

[
(x−D)e

−
(
D−x
λy

)ky
+ λyΓ

(
1 +

1

ky
,

(
D − x
λy

)ky)]
fx(x)dx.

Proof. See Appendix A.1.2

Theorem 1. For an exponential distribution, fDepart is a convex function in D

Proof. See Appendix B.1

3.1.2 Dwell action

Suppose that a passenger has already boarded the train and it does not leave or transfer at the
next station. So the passenger is using a dwell action. What are the travel costs when a buffer
D is placed for this passenger? In any case, the passenger needs to wait a time D. However, if
the cumulative delays occurring during riding X and dwelling Y are bigger than this buffer, the
passenger needs to wait for an additional time of X + Y −D. Concluding, the dwell travel time
is given by the following stochastic variable:

CDwell(D) = D + max{0, X + Y −D}.

We are interested in the expectation of this variable, so define fDwell as fDwell = E
(
CDwell(D)

)
.

By taking the expectation, we get the following expression:

fDwell(D) = E
(
CDwell(D)

)
= D + E (max{0, X + Y −D})

= D +

∫ ∞
0

∫ ∞
0

max{0, x+ y −D}fx(x)fy(y)dxdy.

22

Lemma 3. When using an exponential distribution, fDepart is as follows:

fDwell(D) = D +
λx

λy(λx − λy)

(
e−λyD − e−λxD

)
+

1

λx
e−λxD +

1

λy
e−λxD.

Proof. Since fDwell(D) = D+ fDepart(D) and fDepart was shown above, the result follows imme-
diately.

Lemma 4. When using a Weibull distribution, fDepart is as follows:

fDwell(D) = D +

(
λyΓ

(
1 +

1

ky

)
−D

)
e−(D

λx
)
kx

+ λxΓ

(
1 +

1

kx
,

(
D

λx

)kx)

+

∫ D

0

[
(x−D)e

−
(
D−x
λy

)ky
+ λyΓ

(
1 +

1

ky
,

(
D − x
λy

)ky)]
fx(x)dx.

Proof. Since fDwell(D) = D+ fDepart(D) and fDepart was shown above, the result follows imme-
diately.

Theorem 2. For an exponential distribution, fDwell is a convex function in D

Proof. The sum of two convex functions is convex. Since fDwell(D) = D + fDepart(D) and
by Theorem 1, fDepart is a convex function and D is also a convex function, the result follows
immediately.

Note that for every buffer placed after a dwell edge, we have an fDepart(D) function as well as an
fDwell(D) function depending on the same buffer D.

3.1.3 Transfer action

Now suppose that a passenger is making a transfer action. For a transfer action, we model expected
transfer time as a consequence of the possibility of missing the train the passenger is transferring
to. A passenger misses its transfer when he arrives later than the scheduled time of departure of
the train it is transferring to. So it is assumed that the train that is being transferred to leaves
on time. This is a simplification of reality. If we use this definition, a passenger misses its train
if the sum of the delays acquired during the ride and transfer action is bigger than the buffer D.
If a passenger misses its train, we assume that a passenger takes the exact same train, but one
frequency later. This is a conservative assumption, because there might be other travel routes
to the passenger’s destination that make use of other lines, which arrive earlier than the next
frequency of the train that is missed. If we let the passenger take the next frequency train, the
waiting cost for missing a transfer is T

m , where T is the timetable period and m the frequency of
the train transferring to. In either case, a passenger needs to wait for a time D. This gives us the
following stochastic variable for the travel time:

CTransfer(D) = D + 1{X + Y > D} T
m
.

Here Y is the stochastic delay a passenger experiences when walking from a train to another train
in a station. Furthermore, 1{X+Y > D} is an indicator variable, taking value 1 when X+Y > D

23

and taking value 0 if X + Y ≤ D:

1{X + Y > D} =

{
1 if X + Y > D

0 if X + Y ≤ D

We are interested in taking the expectation. This gives us the following expression for fDepart:

fTrans(D) = E
(
CTrans(D)

)
= D + E

(
1{X + Y > D} T

m

)
= D +

∫ ∞
0

∫ ∞
0

1{X + Y > D} T
m
fx(x)fy(y)dxdy.

Lemma 5. For an exponential distribution, fTrans is as follows:

fTrans = D +
T

m

λye
−Dλx − λxe−Dλy
λy − λx

.

Proof. See Appendix A.3.1

Lemma 6. For an Weibull distribution, fTrans is as follows:

fTrans = D +
T

m

∫ ∞
0

fx(x)e
−
(
D−x
λy

)ky
dx+ e−(D

λx
)
kx

.

Proof. See Appendix A.3.1

The transfer objective function is not convex, as the following picture illustrates for λx = 1.9 and
λy = 0.6.

0 1 2 3 4 5 6 7 8 9 10
D

10

15

20

25

30

f(
D

)

Figure 7: Transfer goal function with λx = 1.9 and λy = 0.6

The goal functions of the three actions will be shown and analyzed on their behavior. For λx = 0.64
and λy = 1, the goal function for the actions looks as follows:

24

0 5 10 15 20 25 30
D

0

0.5

1

1.5

2

2.5

f(
D

)

Depart action, λx = 0.64 and λy = 1

0 5 10 15 20 25 30
D

5

10

15

20

25

30

f(
D

)

Dwell action, λx = 0.64 and λy = 1

0 5 10 15 20 25 30
D

10

15

20

25

30

f(
D

)

Transfer action, λx = 0.64 and λy = 1

The departure action is a strictly decreasing function. The bigger the buffer, the lower expected
travel time for a departing passenger. This is to be expected. A leaving passenger is basically
minimizing the expected travel time as a consequence of the train arriving late. A buffer as big
as possible is desired to make sure the train is on time. For the parameters used, a buffer bigger
than 10 does not have a significant effect anymore, the train is basically guaranteed to arrive on
time, so no additional travel time is to be expected.

For a dwell action, the graph is a strictly increasing function, so a buffer as small as possible
is desirable. A passenger already in a train has no advantage of buffer placement. Introducing
buffers only increases the probability that the train has to wait unnecessary, for example when
the previous delays are smaller than the buffer. This is why for a dwelling passenger, a buffer of
zero is optimal.

For a transfer action, we see the function has an obvious minimum. If the buffer chosen is too
small, the train to which the passenger is traveling to will most likely be missed. When the buffer
is chosen too big, the transfer to the next train will almost certainly never be missed, however the
passenger does need to wait for an unnecessary long time. The optimal solution is somewhere in
between.

As was stated before, for every buffer placed after a dwell edge, both the fDepart and the fDwell

function use the same value of the buffer D as input. So actually the travel time as a consequence
of a buffer D equals fDepart(D) + fDwell(D), when we consider one passenger departing and one
passenger departing. The sum of both functions is convex and as a consequence has a unique
minimum, as can be seen in the following figure:

25

0 5 10 15 20 25 30
D

5

10

15

20

25

30

f D
ep

(D
)+

f D
w

el
l(D

)

Figure 11: fDepart + fDwell

3.2 Excess journey time

The objective functions developed in the previous sections described the travel time of a passenger
starting from the moment that the train the passenger takes should arrive, until the passenger
leaves the network. This objective function, however, does not describe the time a passenger waits
for its transport when the passenger arrives randomly at the station. Those are passengers that
arrive at the station independently of the actual train timetable. Think for example of passengers
who go the the station immediately after their last appointment at work is done, which might be
any time. The time that passengers have to wait until the scheduled moment of their first form
of transport is called excess journey time. This excess journey time will be added to the objective
function. By adding this to the objective function, as a result, alternative routes between origin
destination pairs will be more spread in time. Of course not every passenger arrives randomly or
independent of the timetable. For a certain fraction of passengers, the excess journey time will be
added.

We do enforce that trains with a frequency bigger than 1 in the timetable period T are spread
perfectly. Meaning that if a train has a frequency m > 1, then the inter arrival times of those
trains are enforced to be T

m . This is because of customer clarity. By adding the objective function
described above we will spread trains of different series as good as possible.

Previous research, [5], has also researched adding the excess journey time to the objective function.
Although expressions for the excess journey time are easy to achieve, the numerical implementa-
tion got quite problematic, as massive computation times prohibited solutions with a satisfactional
optimality gap. This was caused by the unknown order of trains during scheduling, to be explained
in the following sections, where a lot of constraints had to be added to model this unknown order.

In this section first we will derive expressions for the excess journey time. Afterwards, we will
discuss how the problem was modeled in the research of [5]. Last we will introduce a new way of
taking into account excess journey time, which is expected to have better computation time.

3.2.1 Deriving excess journey time expressions

We are interested in finding the expected waiting time when a passenger arrives randomly at the
station. The expression for excess journey time has been well documented in the literature. In the
literature however a stochastic inter arrival time is assumed with known distribution function. For
our case the interarrival times are not stochastic as we are considering the time between planned
arrivals of trains. However we will see that an analogy can be made by considering the approach

26

in literature where stochastic inter arrival times are assumed, and our approach where inter ar-
rival times are deterministic. First we will derive the expected waiting time when considering the
deterministic arrival times, afterwards we will derive the way shown in literature and show how
the two are connected.

Suppose we have a set of N trains serving the same origin and destination. Suppose that these
trains are scheduled at times b1, ..., bN , with bi ≤ bi+1 ∀i and 0 ≤ bi ≤ T ∀i. Now define si as the
inter arrival time between bi and bi+1, so si = bi+1 − bi ∀i = 1...N − 1 and sN = b0 − bN + T .
Given these headway times, the waiting time when arriving at a time t, 0 ≤ t ≤ T is characterized
by a sawtooth function Y (t). The following figure expresses this:

Figure 12: Sawtooth function Y (t) characterizing excess journey time

In this example, the interarrival times are 20, 10 and 30 minutes respectively. The sawtooth
function Y (t) states for a given t the waiting time if a passenger were to arrive at time t. Let f(t)
be the distribution function of the arrival time of a passenger. Then the expected waiting time

is given as E(w) =
∫ T

0
Y (t)f(t)dt. We assume that passengers arrive uniformly over the interval,

so we have f(t) = 1
T as distribution function. The expected waiting time now is given by the

following expression: E(w) =
∫ T
0
Y (t)dt

T . Let si be the distance between the zero’s of the sawtooth
function. Naturally, the sum of interarrival times sum up to T . This gives us the following:

E(w) =

∫ T
0
Y (t)dt

T
=

∑N
i=1

1
2s

2
i

T
=

1

2T

N∑
i=1

s2
i .

This is the expression that we are going to add in the objective function, for every OD pair where
multiple transportation possibilities are possible. Now we will take a look at how expected waiting
time is determined in the literature, for example [25]. The general approach is to get an expression
for E(w) using the following:

E(w) =
Expected total passenger waiting time per vehicle departure

Expected passengers per vehicle departure
.

It is assumed that the interarrival times between two consecutive forms of transport is stochastic
with a distribution function g(h). Furthermore let n(h) be the amount of passengers arriving in a
headway of length h and let w(h) be the mean waiting time for passengers arriving in a headway
of length h. Then E(w) can be expressed in the following way:

E(w) =

∫∞
0
n(h)w(h)g(h)dh∫∞
0
n(h)g(h)dh

.

27

Let the arrival rate of passengers be λ, then n(h) = λh. Furthermore, the mean waiting time
when arriving in a headway of length h is w(h) = h

2 , if uniform arrival of passengers is assumed.
Plugging in these expressions we get:

E(w) =

∫∞
0
λh

2

2 g(h)dh∫∞
0
λhg(h)dh

=
1

2

∫∞
0
h2g(h)dh∫∞

0
hg(h)dh

=
1

2

E(h2)

E(h)
.

Note that this expression is the same as the expected residual service time in an M/G/1 queue.
Also an analogy with the limit of the expectation of residual life in a renewal process can be made.
The headway times in our model basically are a sequence of numbers, of which, according to the
above, we want the second and first moment. Let the second moment of [s1, ..., sN] be defined as
1
N

∑N
i=1 s

2
i and the first moment as 1

N

∑N
i=1 si. Then we get the following:

E(w) =
1

2

1
N

∑N
i=1 s

2
i

1
N

∑N
i=1 si

.

Because we know
∑N
i=1 si = T , we get E(w) 1

2T

∑N
i=1 s

2
i , which is exactly the same expression as

already determined before.

The problem with implementing the expressions developed above is the yet unknown order of
trains during optimization. The si used in the goal function are determined by taking the time
difference between two consecutive trains. However, since a timetable is still being constructed, it
is unknown which trains are consecutive trains at the station considered. As a consequence, it is
unclear how the si used in the goal function should be defined. This is the core of the problem.
First the modeling of the unknown order problem in [5] will be explained, afterwards a new way
of modeling the unknown order of trains is introduced.

3.2.2 Modeling in previous research

Consider a randomly arriving passenger at a station and suppose there are N possible trains the
passenger can take in the cycle period to get to its destination. Let b1, ..., bN be the time of arrival
of trains 1, .., N . In order to determine the subsequent order of b1, ..., bN , which are not yet
ordered, a new set of variables b̂i, using the same values as bi are introduced. Here the modulo
T values of the starting times, such that 0 ≤ bi ≤ T , are taken. To enforce ordering, b̂i ≤ b̂i+1

is added as a constraint. Since the values used in b̂i are the same as in bi, a permutation matrix
p ∈ NN×N is introduced to enforce the increasing order. This is done by adding the following
constraints:

∀i :

b̂i ≤ b̂i+1

b̂i =
∑N
j=1 pijbj

pij ∈ {0, 1} ∀j∑N
j=1 pij = 1∑N
j=1 pji = 1

Now that b̂i is of increasing order, si can be determined as follows:

si = b̂i+1 − b̂i i = 1...N − 1

sN = b̂N − b̂1 + T

Furthermore, because the terms pijbj are nonlinear, as both pij and bj are undetermined variables,
all the terms pijbj are linearized using an big-M method to get a linear model. The expression

28

b̂i =
∑N
j=1 pijbj in the constraints is replaced by b̂i =

∑N
j=1 hij , where the following constraints

on hij are added:

−T (1− pij) ≤ hij − bj ≤ T (1− pij)
0 ≤ hij ≤ Tpij

Using these constraints has the effect that hij = pijbj ∀i, j. So if pij = 0 then hij = 0 and likewise
if pij = 1 then hij = bj . However we now only use linear constraints.

As we can see a lot of constraints and binary variables have to be introduced to model the
unknown order of trains. This is one of the reasons of the significant increase in computation
time. The way of modeling is summarized below:

min
1

2T

N∑
i=1

s2
i

s.t. b̂i ≤ b̂i+1 ∀i = 1, ..., N

0 ≤ bi ≤ T ∀i = 1, ..., N

pi,j ∈ {0, 1} ∀i = 1, ..., N, j = 1, ..., N

N∑
j=1

pi,j = 1 ∀i = 1, ..., N

N∑
j=1

pj,i = 1 ∀i = 1, ..., N

b̂i =

N∑
j=1

hij ∀i = 1, ..., N

si = b̂i+1 − b̂i ∀i = 1, ..., N

− T (1− pij) ≤ hij − bj ≤ T (1− pij) ∀i = 1, ..., N, j = 1, ..., N

0 ≤ hij ≤ Tpij ∀i = 1, ..., N, j = 1, ..., N

3.2.3 New way of modeling

After taking a considerate look at the modeling of excess journey time in [5], the main problem
is expected to be caused by introducing the permutation matrix p. If there are N trains, N2

binary variables have to be introduced. Furthermore, if N trains are considered, 2N constraints
on the binary variables introduced in the permutation matrix have to be introduced to make
sure that the sum over the rows and columns equals 1, making p an actual permutation matrix.
Lastly, for every element pij , linearization constraints have to be added to linearize the expression

b̂i =
∑N
j=1 pijbj . For every pij , four constraints are needed, resulting in 4N2 binary constraints.

So in total 4N2 + 2N binary constraints are needed. As can be seen, even for relatively low N ,
already a lot of extra variables and constraints have to be introduced. This is probably the main
cause of the excessive computation times in [5].

The newly proposed method uses the so called cyclic order of trains. [6] defines the cyclic or-
der of a set of trains as the following:

Definition 1. The events 1,...,k, scheduled at times b1, ..., bk are said to be cyclically sequenced
in the order 1→ ...→ k if:

0 ≤ (b2 − b1)mod T ≤ ... ≤ (bk − b1)mod T.

29

By considering the cyclic order of trains, we take the periodic nature of the timetable into account.
For example, in a cyclic timetable, the order of trains 1,2,3 is exactly the same as the order 2,3,1
and 3,1,2 because the timetable repeats itself. The cyclic order basically stores all these possible
equivalent orders into 1 order, namely the cyclic order 1→ 2→ 3.

We will now take a look at the amount of cyclic orders possible when there are N trains. This
will be necessary in the new way of modeling the unknown order of trains.

Theorem 3. If there are N trains, then there are (N − 1)! cyclic orders of trains.

Proof. Proof by induction.

Basis. Suppose we have two trains, then the sequence 1,2 is obviously equivalent with the se-
quence 2,1, leaving 1 cyclic order. So the base case holds.

Induction step. Assume the induction hypothesis holds for N = k, i.e. k trains have (k − 1)!
different cyclic orders. Now we have to show that k + 1 trains can be scheduled in k! ways. Con-
sider the k trains, which can be scheduled in (k−1)! ways. Now we have to determine in how many
ways we can add the last k+ 1th train. The k+ 1th train can be placed before the 1st, 2nd, ..., kth

train and after the kth train. Leaving us k + 1 possibilities. However, since placing the train
before the 1st train is equivalent with placing the train after the kth train, we actually have k
possibilities to place the last train. In total we have (k−1)! k = k! possibilities, as was to be shown.

It can be concluded by induction that N trains can be scheduled in (N − 1)! different cyclic
orders.

The new way of modeling is based on the observation that if there are N trains, we basically have
to choose between (N − 1)! cyclic orders. When a cyclic order is chosen, this determines how the
si used in the goal function are determined. Our decision problem will now consist of which order,
out of the (N − 1)! possibilities is chosen. We introduce (N − 1)! binary variables w1, ..., w(N−1)!,
where every binary variable indicates whether or not that specific cyclic order is chosen. As we
should select exactly 1 order, we have the following constraint:

(N−1)!∑
i=1

wi = 1, with wi ∈ {0, 1} ∀i.

Now that a specific order of trains is enforced, we should make sure that the correct inter-arrival
times are used in the goal function for the chosen order. Let the vector gi represent the beginning
times of the trains chosen in the ith order. So gi = {b1i , ..., bNi}. For example, when 3 trains
need to be spreaded, according to theorem 3, there are 2 cyclic orders, namely the cyclic order
1 → 2 → 3 and the cyclic order 1 → 3 → 2. For this example we get g1 = {b1, b2, b3} and
g2 = {b1, b3, b2}. Now the interarrival times between trains for order i is the time difference
between bij+1 and bij ∀j. However, because the interarrival times are of course between 0 and T ,

the modulo of the time difference between bij+1 and bij is taken by defining gij,j+1 = bi+1− bi +nT

with n an integer and 0 ≤ gij,j+1 ≤ T . So just like in the previous research a modulo operation is

needed. Let s1, ..., sN be the variables used in the objective function. If the ith order of trains is
chosen, the sj should be equal to the order chosen in gi. So s1 = gi1,2, ..., sj = gij,j+1, ..., sN = giN,1.
However, this only has to hold in the case that we actually choose this order i. In total we get the

30

following constraints:

(N−1)!∑
i=1

wi = 1, wi ∈ {0, 1},∀i

(sk − gik,k+1)wi = 0 k = 1...N, i = 1, ..., (N − 1)!

By multiplying the expression (sk − gik,k+1) with wi we make sure that only in case order i is
chosen the variables sk used in the goal function are determined by the order i, so the other
possible orders have no influence in this case. We now have introduced (N − 1)! binary variables
and (N − 1)!N binary constraints. To give a better understanding, an example will be treated
below.

Example 1. Suppose we need to spread 3 trains. Then according to Theorem 3, there are 2 cyclic
orders of these trains, namely the order 1→ 2→ 3 and the order 1→ 3→ 2. Let w1 be the binary
variable indicating whether or not cyclic order 1 → 2 → 3 is chosen and let w2 indicate if the
cyclic order 1 → 3 → 2 is chosen. Now gi is the following: g1 = {b1, b2, b3} and g2 = {b1, b3, b2}.
It follows that gij,j+1 is as follows:

g1
1,2 = b2 − b1 + n1T g2

1,2 = b3 − b1 + n4T

g1
2,3 = b3 − b2 + n2T g2

1,2 = b2 − b3 + n5T

g1
3,1 = b1 − b3 + n3T g2

1,2 = b1 − b2 + n6T

The constraints used are the following:

w1 + w2 = 1

(s1 − g1
1,2)w1 = 0 (s1 − g2

1,2)w2 = 0

(s2 − g1
2,3)w1 = 0 (s2 − g2

2,3)w2 = 0

(s3 − g1
3,1)w1 = 0 (s3 − g2

3,1)w2 = 0

Note that if w1 = 1, the values of si will be chosen according to the cyclic order g1 and if w2 = 1,
the values of si will be chosen according to the cyclic order g2.

Note that in the expression above, (sk− gik,k+1)wi are nonlinear terms, as undetermined variables
are multiplied. A linearization technique is used to replace these nonlinear terms by linear terms,
by adding extra constraints.

To do so we are going to introduce a variable zk,i. The goal is to replace the nonlinear con-
straint (sk − gik,k+1)wi = 0 by zk,i = 0. However, zk,i should of course take the exact same values

as (sk − gik,k+1)wi. This is enforced by adding the following constraints:

LB · wi ≤ zk,i ≤ UB · wi
(si − gik,k+1)− UB(1− wi) ≤ zk,i ≤ (si − gik,k+1) + (1− wi)LB

Here UB and LB are upper and lower bounds of (sk − gik,k+1)wi. As both we have 0 ≤ sk ≤ T

and 0 ≤ gik,k+1 ≤ T , the lowerbound LB can be chosen as −T and the upper bound as T . The

31

constraints enforce that if wi = 1, then zk,i = sk − gik,k+1. On the other hand if wi = 0, then
zk,i = 0.

The goal function and their constraints now look like the following, if we have to spread N trains:

min
1

2T

N∑
i=1

s2
i

s.t.

(N−1)!∑
i=1

wi = 1,

wi ∈ {0, 1} i = 1, ..., (N − 1)!

zk,i = 0, k = 1, ..., N, i = 1, ..., (N − 1)!

− Twi ≤ zk,i ≤ Twi k = 1, ..., N, i = 1, ..., (N − 1)!

(si − gik,k+1)− T (1− wi) ≤ zk,i ≤ (si − gik,k+1)− T (1− wi) k = 1, ..., N, i = 1, ..., (N − 1)!

0 ≤ gij,j+1 ≤ T j = 1, ..., N, i = 1, ..., (N − 1)!

gij,j+1 = bij+1 − bij + nT j = 1, ..., N, i = 1, ..., (N − 1)!

For both models integer variables are needed to make sure the expressions are modulo T , so
between 0 and T , using the same amount of constraints. The amount of binary variables and
constraints needed in both models will now be compared, as the amount of binary variables and
constraints are expected to have the most significant influence on computation time compared to
continuous variables. As was shown before, the model of [5] needs to introduce N2 binary variables
and 4N2 + 2N binary constraints. The newly proposed model needs (N − 1)! binary variables
to consider the possible cyclic orders. (N − 1)!N = N ! constraints are needed to make sure the
right interarrival times is chosen, corresponding to the chosen order of trains. Every one of these
constraints is linearized, using 4 inequality constraints, resulting in 4N ! constraints. 1 additional
constraint is necessary to make sure that exactly 1 order is chosen. This results in the following
table:

N = 2 N = 3 N = 4
Sels Variables=N2 4 9 16

Constraints=4N2 + 2N 20 42 72
Arwyn Variables=(N − 1)! 1 2 6

Constraints=4N ! +1 9 25 97

Table 1: Amount of binary variables and constraints for both models

For N = 2 and N = 3 the new model is expected to perform faster, it is unclear which model is
expected to perform better for N = 4. The older model has a lot more binary variables, but needs
less constraints. Note that needing less binary variables and constraints does not guarantee for
better computation times. However, using the newly proposed model, the same solution space is
described with less variables. This means there are less branches to be examined by a solver using
a branch and bound approach, which is expected to have positive effects om computation times. A
branch and bound algorithm is the standard solution methods for Mixed Integer Programs, which
will be elaborated on in the results section.

32

3.3 Objective

Now all expressions needed for the goal function have been derived, so the total goal function can
be composed. First an expression for the expected travel time without excess journey time will be
explained. Afterwards the excess journey time will be added. Every passenger traverses a certain
route when traveling from his origin to destination. Every routes consists of a set of consecutive
actions, described in the previous section. The total travel time is the sum of the travel time on
these actions. Let a route t be a set of actions, so t = {t1, ..., tn}, where every ti is a dwell, transfer
or depart action. For a passenger following a route t, its expected travel time is:

E
(
Rt
)

=

|t|∑
i=1

f ti(Dti).

Here |t| is the size of the vector t, so the amount of actions needed for route t. Suppose that
an amount op wt follow a route t. Then the total cost of route t is wt multiplied by the above
expression. Furthermore, we want to consider all possible routes and sum over them. Let RT be
the set of all possible routes. This results in the following expression for the Total Traveltime TT :

E(TT) =
∑
t∈RT

wtE
(
Rt
)

=
∑
t∈T

|t|∑
i=1

wtf
ti(Dti).

The excess journey time has not been incorporated in the expression for TT yet. Let SP be the
total set of train pairs that should be spreaded where an element p = ([p1, ..., pN], wp) ∈ SP is a
tuple storing the specific trains, p1, ..., pN that should be spreaded and the amount of passengers
using these trains, wp. Furthermore, we assume a fraction a, 0 ≤ a ≤ 1, of all passengers arrive
randomly, so for these passengers the excess journey time should be added to the goal function. A
fraction 1− a of the passengers adjust their arrival time at the station according to the timetable,
so no excess journey time should be modeled for these passengers. We get the following:

E(TT) =
∑
t∈RT

|t|∑
i=1

wtf
ti(Dti) + a

∑
p∈SP

pN∑
i=1

wp
1

2T
s2
i .

3.4 Constraints

Several constraints need to be taken into account to get an operational feasible schedule. In order
to do so, we need to get expressions for the time that every event, or node in the graph formula-
tion, takes place. Depending on the buffers D chosen, expressions for the time of the events can
be determined. The constraints necessary to guarantee an operational feasible schedule are with
regards to those event times.

Let us first consider edges regarding train activities. The length, or time, of an edge connect-
ing two events or nodes, is the time difference between these events. Every edge or activity has a
minimum time me, for example the technical minimum time that is necessary for a train to travel
between two consecutive stations. On top that, for a dwell edge, there is a buffer De. Let be be
the starting time of edge e and let ee be the ending time of edge e. Then the following constraints
are added to the model:

∀e ∈ ERide : be +me = ee

∀e ∈ EDwell : be +me +De = ee.

Suppose we have an edge e1 and an edge e2, for which the ending node of e1 is the same as
the beginning node of e2. Let the function q(e) give the starting node of a directed edge e and

33

the function r(e) give the ending node of a directed edge e. So in the case described, we have
q(e2) = r(e1). For these cases it obviously holds that ee1 = be2 . .

Now transfer edge constraints will be considered. A transfer edge is an edge giving a passen-
ger the possibility to transfer from train A to train B. On these edges also a buffer is chosen.
Since train A and train B also occur an arbitrary multiple of the timetable period, the following
constraints are added:

∀e ∈ ETransfer : be +me +De + neT = ee, with ne ∈ N. (1)

Also a very trivial constraint is that we enforce every D to be positive and smaller or equal to the
timetable period:

∀e : 0 ≤ De ≤ T.

Now let us consider the headway constraints. A headway constraint is a safety constraint, making
sure that two trains are scheduled a minimum time apart from eachother if they use the same
piece of infrastructure. This has the goal that there will be no collisions between trains. NS has a
dataset indicating which pair of trains have headway constraints with eachother, at what station
and what the corresponding minimum headway time is. Suppose that two trains have a headway
constraint h ∈ H between two nodes. Where H is the total set of headway pair constraints. Let
bh1

be the time of this node for train 1 and let bh2
be the time of the node for train 2. Furthermore,

let hMin be the minimum time demanded between the two trains. We are going to construct two
directed edges, one from node 1 to node 2, and one from node 2 to node 1. For both edges we
model a supplement time sh1 and sh2 , which is the time between the events. Furthermore, because
of the cyclic nature of the timetable, we also have to take into account periodicity. This results in
the following constraints:

∀h ∈ H :

bh1
+ sh1

+ nh1
T = bh2

bh2
+ sh2

+ nh2
T = bh1

hMin ≤ sh1 ≤ T − hMin

hMin ≤ sh2 ≤ T − hMin

nh1
, nh2

∈ N

When these constraints are met, the trains are scheduled at least a time hMin apart from each
other. The constraints explained so far are all mandatory to get a timetable which meets all
demands. Furthermore, previous research has shown that by introducing additional constraints,
computation time will decrease. This will be treated in the following.

[5] showed that using results from [9], we can narrow down the search space of the integer variables
for transfer actions, so the integers used in equation 1. This is the case when two transfers together
form an hourglass. An hourglass is defined as a set of dwell and transfer edges which together
have the following form:

34

Figure 13: Example of an hourglass construction

It was shown that for those cases specific constraints on the integer variables can be added. It was
shown that a scheduling problem has a solution if and only if these constraints hold. So adding
these constraints does not reduce the solution space. Let HG be the set of hourglass cycles. Then
the following constraints can be added:

∀hg ∈ HG : −1 ≤ nhg1 + nhg2 ≤ 1.

Here nhg1 is the integer variable modeling the periodicity of a transfer action of edge hg1 and sim-
ilarly for nhg2 . Adding these constraints reduces the search space, hopefully positively influencing
computation time, but does not affect the quality of the solution.

Concluding, we have the following mandatory constraints:

∀e ∈ ERide : be +me = ee

∀e ∈ EDwell : be +me +De = ee

∀e ∈ ETransfer : be +me +De + neT = ee, with ne ∈ N

∀h ∈ H :

bh1
+ sh1

+ nh1
T = bh2

bh2
+ sh2

+ nh2
T = bh1

hMin ≤ sh1
≤ T − hMin

hMin ≤ sh2 ≤ T − hMin

nh1 , nh2 ∈ N
∀e : 0 ≤ De ≤ T
∀e ∈ E : be ≥ 0

∀(e1, e2) ∈ E × E such that r(e1) = q(e2) : ee1 = be2 ,

and the following optional constraints to speed up computation

∀hg ∈ HG : −1 ≤ nhg1 + nhg2 ≤ 1.

Connection with PESP

In the beginning if this report, PESP was introduced as the common way to mathematically
formulate timetabling problems. Though the constraints used in this model are quite similar,

35

there are also some differences. First of all the time of an event is not forced to be between 0
and T , it can be anything bigger or equal to 0. In doing so, it is not necessary to model integer
constraints in the form of be + me + neT = ee for edges concerning train activities i.e. dwell
and ride edges, resulting in less integer constraints. Only for transfer edges integer variables are
used to model periodicity. Furthermore, PESP assumes a certain given lower bound and an upper
bound for the duration of every specific activity. For this model, we do have a lower bound, the
technical minimum time, but the upper bound is not specific for every edge. This is because on
an edge we allow the buffer to be maximally T . So for every edge the lower bound is me and the
upper bound is me + T . Because of taking the expected passenger travel time as a goal function,
the buffers used will not become very large and thus a tighter upper bound is not necessary. Of
course if desired, tighter upper bounds could be added.

36

4 Piecewise linearization

In the previous chapter, the optimization model has been formulated. To be able to solve the
model on large networks, the problem will be approximated by a piecewise linear problem, reducing
computation time. First a piecewise linearization algorithm will be described. Afterwards it will
be shown how the goal function when Weibull distributed delays are assumed can still be used
in the optimization problem by making use of numerical integration. Last, error bounds of the
approximated problem with respect to the original problem will be given.

4.1 Piecewise linearizing a function

In the previous sections we have explained what the total goal function is and what the required
constraints are. Now we want to solve this optimization problem. There a several things to con-
sider. First, we have a Mixed Integer Program (MIP) to be solved. MIP are known to be far
more difficult to solve than regular Linear Programs (LP), as they are generally NP-hard prob-
lems. Furthermore, the goal function is nonlinear and the transfer action part of the objective
function is non-convex. All these aspects together raises the question whether or not this problem
is numerically solvable, and if so in acceptable time.

One common technique when solving problems which have a non-linear objective function is
to make a piecewise-linear approximation of the goal function. This way, computation time is
reduced as the problem can be formulated as a Mixed Integer Linear Program (MILP), but the
approximated goal function can still resemble the actual goal function quite good.

Piecewise linearization is a technique that is used in a wide variety of fields. For example im-
age processing, data fitting and economics. Several algorithms have been developed to determine
a piecewise-linear approximation of a known non-linear function f(x). Most of these algorithms
use a criterium of the quality of the linearized function compared to the original function. Several
criteria can be thought of:

1. Minimize the squared error between the original function and the approximation

2. Minimize the maximum difference between original function and the approximation

3. Minimize the integral of the difference between the original function and the approximation

4. Minimize the integral of the squared difference between the original function and the ap-
proximation

5. Equal distribution of curvature between line segments in the approximation

Commonly the optimality criterium used is dependent on the nature of the problem considered. As
we are considering an optimization problem, we will consider if a logical criterium can be thought
of when making a piecewise-linear approximation used for an optimization problem.

4.1.1 In the context of optimization

Suppose we have a non-linear smooth function f(x) defined on the interval [a, b], which needs
to be piecewise-linearized to be used in linear programming solvers. A piecewise-linear function

37

is a collection of linear functions, all defined at a subinterval of the interval [a, b]. A piecewise
linear function consists of n linear segments with corresponding breakpoints a1, ..., an+1. Let the
ith linear segment be given by the function fi(x). Mathematically speaking a piecewise-linear
function fLin consisting of n linear segments can be defined as follows:

fLin(x) =

n∑
i=1

fi(x)1{x ∈ [ai, ai+1]}.

As we are using the piecewise linear approximation in the context of optimization, the definition
of a ”good” approximation should be chosen accordingly. We wish to choose a piecewise linear
approximation for which the solution of the linearized problem is as close as possible to the actual
solution of the problem. Suppose we have the following problem:

min
x

f(x)

s.t. Ax = b

x ≥ 0

This problem has some optimal solution x̂. Suppose that we need to piecewise linearize f(x) into
some fLin(x) for this problem. We should chose a piecewise linear approximation algorithm such
that the norm of the difference between the value of the approximated and original problem is
minimized. Suppose we have a set of linearization techniques {Lin1, ..., Linn}. Then we wish to
determine the linearization technique as follows:

min
Lini

|f(x̂)−min
x
fLini(x)|

s.t. Ax = b

x ≥ 0

Now consider the following example, suppose we wish to solve the following problem:

min
x

f(x)

s.t. x ≥ −2

Where f(x) is plotted in the picture below.

Figure 14: Example of linearization

Then according to definition, any of the red piecewise linear approximations are equally good and
actually optimal. This is because the optimum is at x̂ = 0 for every piecewise linear approxima-
tion. However, for other constraints, for example x ≥ 1, the quality of the approximations differ

38

significantly between the different piecewise approximations.

Suppose for the train buffer allocating problem we have to chose n buffers to minimize the ex-
pected travel time. So we have a function f(Dn) : Rn → R. As we have seen before, f(Dn) is a

separable function, meaning it can be written as f(Dn) =
∑n
i=1 f̂i(Di). However it is not neces-

sarily true that opt Dn = ∪ni=1 arg minDi f̂i(Di), because of the possible constraints on D. This

means that it is important that the approximations f̂Lini (Di) of f̂i(Di) should also be ”good” for

Di 6= arg min f̂(Di). As it is not directly clear what the search space resulting from the constraints
will be, the approximation should be good everywhere along the curve. We can conclude that we
need an approximation technique which is as close as possible to f everywhere on [a, b].

4.1.2 Algorithm

We will now consider an piecewise linearization algorithm described in [26]. The goal of the al-
gorithm is to choose, for a given amount of linear segments, the breakpoints between segments
such that the squared error between the original function and the piecewise-linear approximation
is minimized.

We are going to represent f(x) by a finite point set P = {p1, ..., pn} = {(x1, y1), ..., (xn, yn)} =
{(x1, f(x1)), ..., (xn, f(xn))}. If the interval of f is [a, b], then (xi+1 − xi) = b−a

n , so the points
are at regular distances in x direction from eachother. Given this pointset, we need to choose a
set of T < n lines to approximate the data points. The piecewise linearization is characterized
by the breakpoints {l1, ..., lT+1} ⊂ P . We want to minimize the squared difference between the
original pointset P and the piecewise approximation. Let the ith linear segment be described by
fLini (x) = aix+ bi, where fi(x) connects the points li with li+1 in a piecewise linearization. Note
that there can be points between li and li+1, namely li, pj , ..., pk,li+1 for some j and k. So the
squared error for the ith line segment connecting the points li and li+1 is as follows:

li+1∑
k=li

[f(xk)− fLini (xk)]2 =

li+1∑
k=li

[fi(xk)− aixk − bi]2.

As we want to choose the breakpoints such that the entire squared difference along all segments
is minimized, we have the following problem

min
l1,...,lT+1

T∑
i=1

li+1∑
k=li

[f(xk)− fLini (xk)]2.

To solve this problem, a dynamic programming approach is used. To do so, let F (j, t) be the
minimum value of the expression described above to approximate the points {p1, ..., pj} with
exactly t line segments. Furthermore, let E(i, j) be the minimum squared error of approximating
{pi, ..., pj} with exactly 1 segment. Now it can be shown that the following dynamic programming
relation yields the minimum squared error approximation:

F (j, t) = min
t≤i≤j

F (i, t− 1) + E(i, j).

A full description of the algorithm in pseudo code can be found in Appendix C.

Next we will show some results of what a piecewise-linear approximation looks like when us-
ing the algorithm described above when different amounts of segments are allowed to model a
transfer action.

39

0 5 10 15 20 25 30
D

10

15

20

25

30

f(
D

)

Figure 15: Using 3 segments

0 5 10 15 20 25 30
D

10

15

20

25

30

f(
D

)

Figure 16: Using 6 segments

0 5 10 15 20 25 30
D

10

15

20

25

30

f(
D

)

Figure 17: Using 12 segments

The more segments allowed, the better the approximation is.

4.2 Numerical integration

In the Chapter 3 we found expressions for the expected delay of certain actions where both expo-
nential and Weibull distributed disturbances were considered. For the exponential distributions,
closed form expressions were found. For the Weibull distribution however, we found expressions
which were not analytically integrable, for example the depart action:

fDepart(D) =

(
λyΓ

(
1 +

1

ky

)
−D

)
e−(D

λx
)
kx

+ λxΓ

(
1 +

1

kx
,

(
D

λx

)kx)

+

∫ D

0

[
(x−D)e

−
(
D−x
λy

)ky
+ λyΓ

(
1 +

1

ky
,

(
D − x
λy

)ky)]
fx(x)dx.

Using these expressions as a goal function in the current form is not possible. However, we can
work our way around this problem. In the previous chapter it was explained that the goal function
needs to be piecewise linearized, and to do so we need to know the value of f(x) in a finite set of
points P = {(x1, y1), ..., (xn, yn)}. In other words, it is not necessary to know f(x) for every x, just
for the set x1, ..., xn. This gives us the possibility to find, by numerical integration, expressions for
f(xi), i = 1, ..., n when the delays are Weibull distributed. This way, we can still use the Weibull
goal function during optimization. Our goal is now to find algorithms to numerically integrate
functions in order to determine f(xi).

4.2.1 Simpson’s integration rule

One of the most common approaches to numerically integrate a function is to use Simpsons’s rule.

The idea of Simpsons rule is quite simple. We need to determine some integral
∫ b
a
f(x)dx. The

40

interval [a, b] is divided into n subintervals of length b−a
n , with n being an even number. Let f(xi)

be the values of f at the bounds of these subintervals. Furthermore, for every subinterval, we
also store its midpoint value i.e. f(xi+xi+1

2). Now for every subinterval, a 2nd order polynomial

is fitted on the points f(xi), f(xi+xi+1

2) and f(xi+1). For a 2nd order polynomial it is very easy
to determine it’s integral. If we now take the sum of the integrals of these subintervals, we get an
approximation of the interval over the interval [a, b]. This results in the following formula:∫ b

a

f(x)dx ≈ h

3

f(x0) + 2

n/2−1∑
j=1

f(x2j) + 4

n/2∑
j=1

f(x2j−1) + f(xn)

 .
The bigger the amount of different subintervals considered, the better the approximation will be-

come. The absolute error for the composite Simpsons rule is bounded by h4

180 (b−a) maxξ∈[a,b]

∣∣f (4)(ξ)
∣∣,

see for example [27].

4.2.2 Monte-Carlo integration

An other common approach is Monte-Carlo integration. The idea of Monte-Carlo integration is
that if we evaluate the to be integrated function at enough random points and taking the average,
we will end up with the value of the integral. Again we want to determine an integral of the form∫ b
a
f(x)dx. Now the Monte-Carlo estimate z of

∫ b
a
f(x)dx is defined as follows:

z =
b− a
N

N∑
i=1

f(xi).

Here xi are samples, drawn from the Uniform(a, b) distribution. A Uniform(a, b) distribution

has 1
b−a as distribution function. We will now show that the expectation of z is

∫ b
a
f(x)dx:

E(z) = E

(
b− a
N

N∑
i=1

f(xi)

)

=
b− a
N

N∑
i=1

E(f(xi))

=
b− a
N

∑
i=1

∫ b

a

f(x)
1

b− a
dx

=
1

N

N∑
i=1

∫ b

a

f(x)dx

=

∫ b

a

f(x)dx.

As is shown, z is an consistent estimator of the integral. We can improve the above technique
however. In the above, samples were drawn from a uniform distribution. It might be better take
more samples from an area that is more ”important” to get more detailed information about it.
This results in a technique called Importance Sampling.

Importance Sampling

Now instead of sampling our samples xi from a uniform distribution, we choose to sample the
samples from a certain distribution q(x), with x ∈ [a, b]. Now the Monte-Carlo estimate of the

41

integral is as follows:

z =
1

N

N∑
i=1

f(xi)

q(xi)
.

We will again show that the expectation of z is equal to the integral:

E(z) = E

(
1

N

N∑
i=1

f(xi)

q(xi)

)

=
1

N

N∑
i=1

E
(
f(xi)

q(xi)

)

=
1

N

N∑
i=1

∫ b

a

f(x)

q(x)
q(x)dx

=
1

N

N∑
i=1

∫ b

a

f(x)dx

=

∫ b

a

f(x)dx.

So also the estimator when using importance sampling is consistent. Note that if we took q(x) to
be the uniform distribution function, we would end up with exactly the expression stated at the
beginning of the Monte-Carlo integration section. A proper choice for the function q(x) for our
example would be to sample according to the given Weibull distribution. Importance Sampling
has been proven to have lower variance between the actual value and the approximation than
using uniform sampling.

Comparing Simpson’s rule with Monte-Carlo integration

We will now use the Simpson algorithm and the Monte-Carlo importance sampling algorithm to
use of the Weibull distributed delays fDepart function. For the Monte-Carlo importance sampling,
samples are generated by generating Weibull distributed samples. Both solutions are graphed in
the following figure:

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Buffer

0.5

1

1.5

2

2.5

3

f(
D

ep
ar

t)

Figure 18: Monte-Carlo integration and integration using Simpson’s rule with λx = 2, λy = 1, kx =
1.1, ky = 1.7

42

Both the Monte-Carlo integration and Simpsons integration give similar results and at first sight,
there is no difference between the graph of the two. However, when zooming in on the solution,
we see the following.

1.72 1.74 1.76 1.78 1.8 1.82 1.84 1.86 1.88 1.9
Buffer

1.55

1.6

1.65

1.7

f(
D

ep
ar

t)

Figure 19: Zoomed in on figure 18, blue line is Simpson’s solution, orange line is Monte-Carlo
solution

As can be seen, the Monte-Carlo solution has quite some variation between consecutive points
and seems to center around the Simpsons’s rule solution. Also, the Monte-Carlo solution was
computationally much heavier. We conclude that for this case, Simpsons rule is the best choice
for numerical integration. Monte-Carlo is especially useful when multidimensional integrals are
considered. Here Simpsons rule suffers from the curse of dimensionality.

4.2.3 Integrate linearized function

In the previous sections the approaches were as follows. We need to piecewise-linearize the ex-
pectation of a certain function, however determining the expectation was not possible because no
analytical solution could be found. The approach was to numerically integrate the function at
a certain set of points, after which a piecewise-linearization could be made. An other approach
could be the first linearize the function to be integrated. That way, an integral of a piecewise-linear
function should be determined, which is an easy problem.

Suppose we want to get an expression for
∫D

0
g(x)dx and suppose that g(x) was linearized into

gLin(x) using a piecewise-linearization algorithm. This means that gLin(x) can be represented by

a set of points {(x0, y0), ..., (xn, yn)}. Then
∫D

0
g(x)dx ≈

∫D
0
gLin(x)dx. For xj ≤ D ≤ xj+1 we

get the following:∫ D

0

gLin(x)dx =

j−1∑
i=0

1
2 (yi+1 + yi)

xi+1 − xi
+

D − xj
xj+1 − xj

yj+1 +

(
1− D − xj

xj+1 − xj

)
yj .

The summation describes the integral over the interval [0, xj], the last two terms are the integral
over the area [xj , D]. This integral expression is again a piecewise linear function. Note that this
way, no numerical integration was performed. So this could be an interesting way to linearize an
integral that is not analytically determinable. However, for our problem we need to determine an

integral of the form
∫D

0
g(x,D)dx instead of

∫D
0
g(x)dx. As a consequence, it is quite hard to find

43

a piecewise linearization of g(x,D) as it is dependent on 2 variables instead of 1. The technique
described above could be very useful for other problems.

4.3 Error bounds for piecewise linear approximation

In the previous chapters, it was shown that we make a piecewise-linear approximation of the goal
function because of computational considerations. Since the new problem is an approximation
of the original problem, the solution to the problem will of course also be an approximation. In
this chapter we will determine if we can give give bounds on the derivation between the original
problem and the approximated problem in terms of the goal function.

We will use the following theorem by [28].

Theorem 4. Let x̂ be the optimal solution to the problem min f(x), s.t. x ∈ X, where X is a
nonempty set. Furthermore, let x∗ be the optimal solution to the piecewise-linear approximation
of the problem min fLin(x), s.t. x ∈ X, where possibly x̂ 6= x∗. If |f(x) − fLin(x)|≤ ε, ∀x ∈ X,
then |f(x̂)− fLin(x∗)|≤ ε.

Proof. Suppose |f(x)− fLin(x)|≤ ε, ∀x ∈ X. This can also be written as:

fLin(x)− ε ≤ f(x) ≤ fLin(x) + ε , ∀x ∈ X.

1). Consider the first inequality i.e. f(x) ≥ fLin(x) − ε, ∀x ∈ X. Then in particular f(x̂) ≥
fLin(x̂)−ε. Because x∗ is the optimal solution of fLin, we have f(x̂) ≥ fLin(x̂)−ε ≥ fLin(x∗)−ε.

2). Consider the second inequality i.e. f(x) ≤ fLin(x) + ε, ∀x ∈ X. Then in particular f(x∗) ≤
fLin(x∗) + ε. Because x̂ is the optimal solution of f(x), we have f(x̂) ≤ f(x∗) ≤ fLin(x∗) + ε

So we have fLin(x∗)− ε ≤ f(x̂) ≤ fLin(x∗) + ε, which can also be written as |f(x̂)− fLin(x∗)|≤
ε.

4.3.1 Error bounds for Weibull goal function

Given this theorem, a simple check to determine bounds on the difference between the original
problem and the approximated problem is possible. For a given linearization fLin and original
function f , determine maxx∈X |f(x)− fLin(x)|, then this is the maximum difference between the
two optimal solutions. However, in the case that we use a Weibull distribution, fLin(x) is not
known for all x ∈ X. Because we have to numerically integrate, we only know fLin(x) at a
finite set of points {x1, ..., xn}. So maxx∈X |f(x)− fLin(x)| can also not be determined. Suppose
|f(xi) − fLin(xi)|≤ ε, ∀i and some ε. Then we can not conclude that |f(x̂) − fLin(x∗)|≤ ε, as
|f(x)−fLin(x)| can in theory be arbitrarily big (in the points where the value of f(x) is unknown),
and thus possibly also the difference between the two optimal solutions. However, by making use
of the Lipschitz continuity of the function f , we will give bounds on the difference between the
two solutions.

Theorem 5. Let fLin be a piecewise-linear approximation of f , defined on the interval [a, b]. Let
the value of f be known at a finite set {x1, ..., xn}, where the distance between consecutive xi
is regular with distance q and x1 = a and xn = b. Suppose that f is Lipschitz continuous with
Lipschitz constant K. Let x̂ be the optimal solution of minx∈X f(x) and x∗ the optimal solution
of minx∈X f

Lin(x). Then the following holds:

|f(x̂)− fLin(x∗)|≤ max
xi∈{x1,...,xn}

|f(xi)− fLin(xi)|+K · q.

44

Proof. By theorem 4, we are looking for the maximum difference between f(x) and fLin(x). Let
us consider two consecutive known points of f , some xi and xi+1. We will first consider if we
can determine the maximum difference between f and fLin, when x ∈ [xi, xi+1]. The following
illustration shows the approach used in the proof:

Figure 20: Illustration of maximum difference

The distance between f and fLin is the distance of V + W . Here f̂ is a linear line connecting
f(xi) and f(xi+1). We will get expressions for both V and W .

V is the distance between fLin and f̂ . Since both functions are linear lines, the maximum value
will be attained at the boundaries of the interval, so either at xi or xi+1. So V is maximally
max{|f(xi)− fLin(xi)|, |f(xi+1)− fLin(xi+1)|}.

For the distance W we will make use of the Lipschitz continuity of f . First notice that W =
maxx{|f(x)− f̂(x)|} ≤ max{|f(x)− f̂(xi)|, |f(x)− f̂(xi+1)|}, because f̂(x) is a linear function. A
function f is Lipschitz continuous if ∃K such that |f(x)− f(y)|≤ K|x− y| ∀x, y. By making use
of Lipschitz continuity, we can say the following:

|f(x)− f̂(xi)| = |f(x)− f(xi)|
≤ K|x− xi|
≤ K|xi − xi+1|
= K · q.

A similar argument can be made to show |f(x)− f̂(xi+1)|≤ K · q. So the distance between f and

f̂ is bounded by K · q.

The above was determined by considering only the interval between two consecutive points xi
and xi+1 with [xi, xi+1] ⊂ [a, b]. We are of course interested in the interval [a, b]. The bound

of W between f and f̂ holds for every two consecutive points xi and xi+1, so this bound stays
the same when considering the interval [a, b]. As we saw, the distance V for a specific xi and
xi+1 was bounded by max{|f(xi)− fLin(xi)|, f(xi+1)− fLin(xi+1)|}, so for the whole interval it
will be bounded by maxxi∈{x1,...,xn} |f(xi)− fLin(xi)|. This means that |f(x)− fLin(x)| has the
following bound:

|f(x)− fLin(x)|≤ max
xi∈{x1,...,xn}

|f(xi)− fLin(xi)|+K · q.

45

By making use of Theorem 4, we can say that also the following holds:

|f(x̂)− fLin(x∗)|≤ max
xi∈{x1,...,xn}

|f(xi)− fLin(xi)|+K · q.

4.3.2 Determining Lipschitz constants

In the following parts, Lipschitz constants will be determined for the depart, dwell and transfer
actions. The Lipschitz constant is defined as follows:

K = sup
D

∣∣∣∣ ddDf(D)

∣∣∣∣ .
If such a K exists, then by definition of a Lipschitz continuous function, we have:

|f(x)− f(y)|
|x− y|

≤ K.

In the following parts, the Lipschitz constants for the possible actions will be determined. To do
so, we will make use of the Leibniz integral rule, which states the following:

Theorem 6. Let f(x, t) be a function such that both f(x, t) and its partial derivative d
dxf(x, t)

are continuous in a(x) ≤ t ≤ b(x) . Suppose the functions a(x) and b(x) are continuous and have
continuous derivatives. Then:

d

dx

∫ b(x)

a(x)

f(x, t)dt = f(x, b(x))
d

dx
b(x)− f(x, a(x))

d

dx
a(x) +

∫ b(x)

a(x)

d

dx
f(x, t)dt.

And in particular:

d

dx

∫ b

a

f(x, t)dt =

∫ b

a

d

dx
f(x, t)dt.

Furthermore, [29] explains the theorem can be extended to the case where we are integrating over
an infinite region, resulting in the following theorem:

Theorem 7. If in addition to the conditions of Theorem 6, there is a positive function g(x, t)
that is integrable with respect to t and

∣∣ d
dxf(x, t)

∣∣ ≤ g(x, t), then the following holds:

d

dx

∫ ∞
a

f(x, t)dt =

∫ ∞
a

d

dx
f(x, t)dt.

Using this theorem, the following lemmas will be proved.

Lemma 7. The Lipschitz constant of fDepart equals 1.

Proof. It will first be shown that fDepart(D) is a decreasing function in D. Suppose D1 ≤ D2.

fDepart(D1) = E(max{0, X + Y −D1})

=

∫ ∞
0

∫ ∞
0

max{0, x+ y −D1}fx(x)fy(y)dxdy

≥
∫ ∞

0

∫ ∞
0

max{0, x+ y −D2}fx(x)fy(y)dxdy

= E(max{0, x+ y −D1}) = fDepart(D2).

46

This implicates that d
dDf

Depart(D) ≤ 0. Now let us show d
dDf

Depart(D) ≥ −1:

d

dD
fDepart(D) =

d

dD
E(max{0, X + Y −D})

=
d

dD

∫ ∞
0

∫ ∞
0

max{0, x+ y −D}fx(x)fy(y)dxdy

=
d

dD

∫ D

0

∫ ∞
D−x

(x+ y −D)fx(x)fy(y)dydx

+
d

dD

∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx.

We will now show that we can interchange the differentiation and integration operators in the
above. To do so, it needs to be shown that the function x + y − D satisfies the conditions of
Theorem 6 and Theorem 7.

The derivative of x + y − D with respect to D is continuous, because d
dD (x + y − D) = −1.

Furthermore, there is an integrable function g(x, y,D) such that
∣∣ d
dD (x+ y −D)

∣∣ ≤ g(x, y,D),
take for example g(x, y,D) = 1. The conditions for the theorem apply, so the result can be used
and the order of differentiation and integration can be interchanged. We get the following:

d

dD
fDepart(D) =

d

dD

∫ D

0

∫ ∞
D−x

(x+ y −D)fx(x)fy(y)dydx

+
d

dD

∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx.

=

∫ D

0

∫ ∞
D−x

d

dD
(x+ y −D)fx(x)fy(y)dydx

+

∫ ∞
D

∫ ∞
0

d

dD
(x+ y −D)fx(x)fy(y)dydx.

≥ −1

So −1 ≤ d
dDf

Depart(D) ≤ 0. This means that the Lipschitz constant for fDepart is 1.

Lemma 8. The Lipschitz constant of fDwell equals 1.

Proof. fDwell(D) is found by determining the following expectation:

fDwell(D) = E(D + max{0, X + Y −D}) = D + E(max{0, X + Y −D}).

Since d
dDE(max{0, X + Y − D}) ≥ −1, as was shown in the previous lemma, and d

dDD = 1, it

follows that d
dDf

Dwell ≥ 0. It will now be shown that d
dDf

Dwell ≤ 1:

d

dD
fDwell(D) =

d

dD
(D + Emax{0, X + Y −D})

= 1 +
d

dD
E(max{0, X + Y −D}).

We have already shown that x+ y −D satisfies the conditions of theorem 6, allowing us to make

47

the following statement:

d

dD
E(max{0, X + Y −D}) =

d

dD

∫ ∞
0

∫ ∞
0

max{0, x+ y −D}fx(x)fy(y)dxdy

=

∫ D

0

∫ ∞
D−x

d

dD
(x+ y −D)fx(x)fy(y)dydx

+

∫ ∞
D

∫ ∞
0

d

dD
(x+ y −D)fx(x)fy(y)dydx.

≤ 0

This implies that 0 ≤ d
dDf

Dwell(D) ≤ 1. It follows that the Lipschitz constant of fDwell equals
1.

Lemma 9. The derivative of a transfer action is given by 1− fX+Y (D) Tm , where fX+Y (D) is the
cumulative distribution function of the stochastic variables X and Y .

Proof. The cost of a transfer action is determined by evaluating the following expectation:

fTrans(D) = E
(
D + 1{X + Y > D} T

m

)
.

Here T is the timetable period and m the frequency of the train a passenger is transferring to. So
T
m is the cost of missing a transfer. To determine the Lipschitz constant, we need to determine
the derivative:

d

dD
fTrans(D) =

d

dD
E
(
D + 1{X + Y > D} T

m

)
= 1 +

d

dD
P (X + Y > D)

T

m

= 1 +
d

dD
(1− P (X + Y ≤ D))

T

m

= 1− d

dD
FX+Y (D)

T

m

= 1− fX+Y (D)
T

m
.

Here FX+Y (D) is the cumulative distribution function of the sum of two random variables X and
Y , and fX+Y (D) the distribution function of the sum of X and Y . For the Weibull distribution
no closed form solution of the distribution of the sum of two Weibull random variables is known.
A numerical approach could be pursued to determine the Lipschitz constant for a transfer action.
The cumulative distribution function of X+Y is by definition the convolution of the distributions
of X and Y , fx(x) and fy(y):

fX+Y (z) =

∫ ∞
−∞

fx(t)fy(z − t)dt.

By numerical integration we can find the distribution function fX+Y (z). This results in the
following figures:

48

0 2 4 6 8 10
z

0

0.05

0.1

0.15

0.2

f(
z)

Convolution of Weibull distributed variables

Figure 21: Convolution using λx = 4.3, kx =
2, λy = 0.2, ky = 1.7

0 2 4 6 8 10
z

0

0.1

0.2

0.3

f(
z)

Convolution of Weibull distributed variables

Figure 22: Convolution using λx = 2.3, kx =
1.1, λy = 0.6, ky = 1.3

Using these figures, the value of the Lipschitz constant can easily be determined.

4.3.3 Criteria for the integral of absolute difference

Using Theorem 4, we have a performance bound when we use a max norm to describe the quality
of the approximation fLin of f . Of course other norms could also be considered. For example the
integral of the difference between fLin and f . This is exactly what [30] considered. They showed
conditions on the integral of the difference between fLin and f that guarantee an ε-optimal
solution i.e. |f(x̂) − fLin(x)|≤ ε. We will consider conditions on the integral of the squared
difference between fLin and f to guarantee ε-optimality. This is done to give the piecewise-
linearization algorithm, which minimizes the squared error between functions, a criterium after
which the linearization is ”good enough”. Whereas now a fixed amount of segments are to be
chosen, the algorithm could use the amount of segments needed for ε-optimality. To do so, we will
first consider the proof of [30] to understand the structure of the proof, after which we will apply
it to the squared error case. Suppose we want to solve the following program:

min
x

f(x)

s.t. x ∈ [a, b]

As f : [a, b] → R is nonlinear, we linearize the function f into fLin. The optimal solution of f
is x̂ and the optimal solution of fLin is x∗. We are interested in the difference between the two
objectives i.e. |f(x̂)− fLin(x∗)|. [30] defines the following error function:

E =

∫ b

a

|f(x)− fLin(x)|dx.

Let us proof the following theorem:

Theorem 8. ∀x ∈ [a, b] and ε > 0 with ε� b− a, the following holds:

fLin(x)− E

ε
≤ f(x) ≤ fLin(x) +

E

ε
.

Proof. First consider the case where x ∈ [a, b). Then ∃ε1 > 0 such that [x, x + ε1] ⊆ [a, b)
∀x ∈ [a, b]. This means the following:∫ x+ε1

x

|f(x)− fLin(x)|dx ≤
∫ b

a

|f(x)− fLin(x)|dx = E.

49

If ε1 � b − a, the first term can be approximated by ε1|f(x) − fLin(x)|. Basically the claim is

that for every x, with ε � b − a then, ε|f(x) − fLin(x)|≤
∫ b
a
|f(x) − fLin(x)|. This is illustrated

by the following figure:

Figure 23: Illustration of ε argument

So ∀x ∃ε > 0 such that the integral over the shaded area is smaller than the total area under the
function from a to b. When using this result, this gives |f(x)− fLin(x)|≤ E

ε1
. Now suppose x = b.

Then ∃ε2 such that [x− ε2, x] ⊆ [a, b]. This means:∫ x

x−ε2
|f(x)− fLin(x)|dx ≤

∫ b

a

|f(x)− fLin(x)|dx = E

In the same way, the first term can be approximated by ε2|f(x) − fLin(x)|, which gives |f(x) −
fLin(x)|≤ E

ε2
.

Concluding from the above, if we take ε ≤ max{ε1, ε2}, then fLin(x)− E
ε ≤ f(x) ≤ fLin(x) + E

ε
∀x.

Using the above, we can proof the following theorem:

Theorem 9. If the conditions of the above theorem hold and if E ≤ ε2, then |f(x̂)−fLin(x∗)|≤ ε.

Proof. We showed fLin(x) − E
ε ≤ f(x) ≤ fLin(x) + E

ε ∀x, which is equivalent with |f(x) −
fLin(x)|≤ E

ε . If we take E ≤ ε2, then |f(x) − fLin(x)|≤ ε. Using Theorem 4 it follows that
|f(x̂)− fLin(x∗)|≤ ε.

We will now provide similar conditions when the integral of the squared difference is used as the
error function E.

4.3.4 Criteria for integral of squared difference

Let the error function be defined as follows:

E =

∫ b

a

[f(x)− fLin(x)]2dx.

Now we can proof the following theorem:

50

Theorem 10. ∀x ∈ [a, b] and ε > 0 with ε� b− a, the following holds:

fLin(x)−
√
E

ε
≤ f(x) ≤ fLin(x) +

√
E

ε
.

Proof. ∀x ∈ [a, b) ∃ε1 > 0 such that [x, x+ ε1] ⊆ [a, b). Which means:∫ x+ε1

x

[
f(x)− fLin(x)

]2
dx ≤

∫ b

a

[
f(x)− fLin(x)

]2
dx = E.

Again if ε1 small enough, we can conclude
[
f(x)− fLin(x)

]2 ≤ E
ε1

.

Now take x = b, then ∃ε2 > 0 such that [x− ε2, x] ⊆ [a, b]. This means:∫ x

x−ε2

[
f(x)− fLin(x)

]2
dx ≤

∫ b

a

[
f(x)− fLin(x)

]2
dx = E.

From the above, we can say
[
f(x)− fLin(x)

]2 ≤ E
ε , or:

fLin(x)−
√
E

ε
≤ f(x) ≤ fLin(x) +

√
E

ε
, ∀x ∈ [a, b].

In a similar way as the previous section, we can proof the following:

Theorem 11. If E ≤ ε3, with E =
∫ b
a

[f(x)− fLin(x)]2dx, then |f(x̂)− fLin(x∗)|≤ ε.

Proof. From the previous theorem it can be concluded that if E =
∫ b
a

[f(x) − fLin(x)]2dx, then

|f(x) − fLin(x)|≤
√

E
ε . If we take E ≤ ε3, then |f(x) − fLin(x)|≤ ε. Using Theorem 4, we can

conclude that |f(x̂)− fLin(x∗)|≤ ε.

We will now make the connection with the piecewise linearization algorithm. The piecewise-
linearization algorithm minimizes the following error:

∑N
i=1[f(xi)−fLin(xi)]

2, which is equivalent

with minimizing 1
N

∑N
i=1[f(xi) − fLin(xi)]

2 . If f is a smooth enough function then the sum
approximates the integral of the difference between the two functions well. So:

1

N

N∑
i=1

[f(xi)− fLin(xi)]
2 ≈

∫ b

a

[f(x)− fLin(x)]2dx.

The criterium for the squared error was E ≤ ε3. It can be concluded that if
∑N
i=1[f(xi) −

fLin(xi)]
2 . ε3, we can guarantee ε-optimality. This criterium could be used during piecewise

linearization.

4.3.5 Multivariate case

The goal function derived in Chapter 3.3 is a multivariate expression. Also, the goal function
is separable, meaning it can be written as a sum of univariate functions. Theorem 4 showed
that to conclude |f(x̂) − fLin(x∗)|≤ ε, it is sufficient to show |f(x) − fLin(x)|≤ ε holds. We can

51

make a similar argument when considering functions which are multivariate, but also separable.
A function f(x), f : Rn → R is separable if it can be written as follows:

f(x) =

n∑
i=1

fi(xi),

for some fi(xi). Consider two separable functions f(x) and its piecewise linear approximation
fLin(x). We can bound the maximum difference as follows:

|f(x)− fLin(x)|=

∣∣∣∣∣
n∑
i=1

fi(xi)−
n∑
i=1

fLini (xi)

∣∣∣∣∣ ≤
n∑
i=1

∣∣fi(xi)− fLini (xi)
∣∣ .

So for a multivariate separable function, if
∑n
i=1

∣∣fi(xi)− fLini (xi)
∣∣ ≤ ε, then also |f(x̂)−fLin(x∗)|≤

ε. This result will be used to analyze the quality of approximations in the results section.

52

5 Model without independence assumption

The following chapter considers an assumption that has implicitly been made in the previous
chapters and also in the literature that tries to minimize expected travel time. The simplification
will be explained and an approach will be developed to test if the solution of the model which
uses this simplification is close to the model which does not make this simplification. The model
described here is a more realistic way of minimizing expected passenger travel time. The basic
idea is similar to [20], though applying to expected passenger travel time has not been developed
before in literature.

In the previous sections we managed to get an expression for the expected travel time and also
ways to formulate the problem as an MILP. However, we implicitly did make some assumptions
when constructing the model. We basically splitted a travel route into independent actions, with
each action having a certain expected cost. Then the total travel time was just the sum of the
travel time along these specific actions. This is however not exactly what happens in reality. When
determining the expressions for the actions, we assumed the only delay came from the ride activity
X and the dwell or transfer activity Y , so the delay that has occurred since the last buffer. This
does not take onto account the delay that is still present in the system because of delays from
previous actions, which were not entirely absorbed by previous buffers. Let the model developed
so far be called the independent model (IM). The independent model states that a train which is
on its nth action has a delay of max{0, Xn + Yn −Dn} on this action. The total delay TD of the
train up to action n is as follows:

TDn
IM =

n∑
i=1

max{0, Xn + Yn −Dn}.

However, for example [20], where the Stochastic Optimization Model used at NS to determine
buffer sizes is based on, a different relation is used. The total delay up to action n is dependent on
the total delay acquired up to action n− 1 and should be added to the delays X and Y . Let this
model be called the dependent model (DM). The dependent model gives the following expression
for the delay up to action n:

TDn
DM = max{0, TDn−1

DM +Xn + Yn −Dn}.

Note that this is a recursive formula, which if expanded would look like this:

TDn
DM = max{0, TDn−1

DM +Xn + Yn −Dn}
= max{0, Xn + Yn −Dn + max{0, Xn−1 + Yn−1 −Dn−1 + ...+ max{0, X1 + Y1 −D1}...}}.

An example for a specific instance will be given to show the difference of the relations defined in
the independent model and the dependent model.

Example 2. Consider a train line consisting of 2 pairs of ride and dwell actions. Let the delay
of the first ride action be X1, the first dwell action Y1 and the first buffer D1. X2, Y2 and D2 are
defined similarly for the second pair. Consider the following realization of the random delays and
the chosen buffers.

x1 = 2 x2 = 0.5

y1 = 1.5 y2 = 1

D1 = 3 D2 = 2

Now the independent model gives the following total delay:

TD2
IM = max{0, x1 + y1 −D1}+ max{0, x2 + y2 −D2}

= 0.5 + 0 = 0.5.

53

The dependent model would give the following:

TD2
DM = max{0, x2 + y2 −D2 + max{0, x1 + y1 −D1}}

= max{0,−0.5 + max{0, 0.5}}
= 0.

The essential difference is the following. For both models a delay of 0.5 is achieved after the first
ride dwell pair. However for the dependent model, the delay gathered in the first pair is compen-
sated by the buffer of the second pair. This is possible because not all of the second buffer is used
to absorb the delays of the second ride dwell pair. The IM does not allow this to happen and as
a consequence has a delay of 0.5. In real life the behavior of the DM is observed.

Though the expression for the IM might seem quite different from the expression developed for the
dependent model, there are quite some similarities. Basically the independent model assumes that
the pre-delay, the delay acquired from previous actions, which were not absorbed by buffers, is
non existent or negligible. The justification for this assumption in the literature is that the whole
goal of placing these buffers is to avoid delays. So this pre-delay, if it is present, will not be of such
a size that it will have a significant influence. This assumption however has nowhere been justified.

We can give an expectation of what the difference between the two models will be. There are
two main differences to be expected:

1. IM will have lower buffer values. Consider a passenger making a depart action at some
station n. The independent model assumes a delay of Xn+Yn at station n before the buffer.
The dependent model assumes a delay of Xn +Yn +TDn−1

DM . Although the value of TDn−1
DM

might be zero, it can also have a positive value. As the dependent model assumes delays at
least as big (and possibly bigger) then the independent model, it is to be expected that the
buffers of the dependent model are at least as big (and possibly bigger) than the independent
model.

2. IM will have a bigger objective function value. The independent model assumes that the total
delay is the sum of delays at the individual actions. However, in reality it might be that
delays acquired at the beginning of the route can be absorbed later on. As Example 2 showed,
this is the case when at the beginning a big delay occurs, which is not entirely absorbed by
the corresponding buffer. Suppose that at the next action, a small delay occurs, for which
not all the buffer is needed to absorb this delay. Then this buffer will (at least) partially
absorb the delay that remained from the beginning. This kind of absorption is exactly what
the nested max function of the DM describes. The IM does not allow absorption of delays
later on, so it is expected that the goal function of the IM will be bigger than the DM, when
using the exact same solution.

So as we have seen the DM will describe reality more accurately than the independent model. So
why did we even put effort into this IM? It turns out determining a goal function for the DM is
quite hard to do analytically. To determine the expected travel time, one of the things necessary
would be an expression for the expected delay E (TDn

DM). This expression can be written as:

E (TDn
DM) = E

(
max{0, TDn−1

DM +Xn + Yn −Dn}
)

=

∫
Ω

max{0, xn + yn −Dn + max{0, xn−1 + ...+ max{0, x1 + y1 −D1}...}}fx(x)fy(y)dxdy.

Note that the integral is an 2n dimensional integral and that fx(x) is the distribution function for
the vector x ∈ Rn, defined as fx(x) =

∏n
i=1 fi(xi) and dx =

∏n
i=1 dxi. A similar relation holds for

54

fy(y) and dy. We have not been able to find an expression for this integral. An analytical goal
function for the DM will probably not be possible. This is one of the main reasons why the IM is
developed.

Ideally we would want to check if the solution of the IM is close to the solution of the DM.
As was explained in Chapter 2.4, it is possible to get an arbitrarily close approximation of the
solution of the problem using for example the Sample Average Approximation technique. Using
this, we can compare the two models and decide whether or not the IM is a good enough approxi-
mation of the actual problem, the DM. In order to do so, we need to explicitly determine the goal
function of the DM, but in terms of the stochastic variable travel time instead of the expectation
of the travel time, which we have seen is not possible. The goal function in terms of the stochastic
variable travel time will be needed to minimize the expected value of this goal function by SAA.
At this point we just need an expression for the stochastic travel time. Note that in theory we can
get an arbitrarily close solution, but as will be seen, this will be computationally very difficult. It
is very unlikely that the model to be explained will be applicable to large scale networks.

5.1 Goal function

We want to determine an expression for the travel time, using the relation TDn
DM for the delay of

a train. What remains the same with respect to the IM, is that we need expressions for departing,
riding and transferring actions. However, they will be defined in a different way. One assumption
that we make is that a train leaves on time at its very first station, after a turn around action, so
at the beginning of the line. As usually quite big supplements are planned at turn around stations,
this is a reasonable assumption.

To get expressions for the travel time we need to make a slight generalization to the relation
TDn

DM . This is because TDn
DM describes the total delay when starting from the very first station,

station 1. For our model we need slightly general expressions, we need to have expressions for
the delay starting from station i until station j, with i < j. The total delay from station i until
station j will be represented as TDi,j

DM , which is defined as follows:

TDi,j
DM = max{0, TDi,j−1

DM +Xj + Yj −Dj}.

Here TDii
DM = 0. This relation will be used in the following sections.

5.1.1 Departing cost

Suppose that a passenger wants to travel from station i to a station j. The passenger enters the
train at station i. However, it could be the case that the train arriving at station i is delayed. The
amount of time the train is delayed is the additional travel time for our passenger. The amount
of time a train is delayed, is the delay the train has gathered starting from station 1 until station
i. This is given by the following expression:

fDepart1,i = TD1,i
DM

= max{0, Xi + Yi −Di + max{0, Xi−1 + ...+ max{0, X1 + Y1 −D1}...}}.

5.1.2 Riding cost

Now that we have an expression for the waiting time as a consequence of a train arriving late, we
will determine the travel time of actually traveling from station i to station j. The total delay

55

when traveling from station i to station j was defined as TDi,j
DM . On top of the delay, we for sure

at every station need to wait for a time equal to the buffer. TDi,j
DM is just the expression for delay

on top of the buffer waiting time, so the total travel time will be the sum of the two:

fDwelli,j =

j∑
n=i

Dn + TDi,j
DM

=

j∑
n=i

Dn + max{0, Xj + Yj −Dj + max{0, Xj−1 + ...+ max{0, Xi + Yi −Di}...}}.

5.1.3 Transfer cost

The last cost to be determined is the transfer cost, this is the cost as a consequence of missing a
transfer. A transfer is missed if, similarly to the IM, the delay up to that point is bigger than the
buffer. For a transfer action, we have incorporated a buffer DTrans. This buffer time is added to
the travel time no matter what. On top of that we possibly have to wait for the next train. Let
T be the timetable period and m be the frequency of the train we are transferring to. Then the
cost of missing a transfer is T

m . Suppose we want to make a transfer at a station i. The total
delay that the train has acquired is the following:

QTransi = max{0, TD1,i−1
DM +Xi + YTrans}

= max{0, Xi + YTrans + max{0, Xi−1 + Yi−1 + ...+ max{0, X1 + Y1 −D1}}}.

Note that here we cannot use Yi, as that is a dwell action at station i, which the passenger does
not use. This is why we cannot simply take TD1,i

DM but need to use a slightly adapted definition,
involving the delay a passenger experiences when traveling at the station from one train to another,
YTrans. Now the transfer cost is the following:

fTransferi = DTrans + 1{QTransi > DTrans}
T

m
.

Total travel time of a passenger following a certain route is now just the sum of combinations of
these actions.

5.2 Applying to goal function

We will now apply Sample Average Approximation (SAA) to the goal function determined for the
DM, as SAA seems to be the most promising technique. Lets consider a passenger taking a route
from station i in network 1, to station j in network 2, having a transfer at station k. First this
network consisting of a total of two lines will be explained, after which at the end of this chapter
a generalization to an arbitrary sized network will be made. The total delay of this passenger is
the following stochastic variable:

TD = fDepart1,i + fDwelli,k + fTransferk + f̂Dwellk,j .

Here f̂Dwellk,j corresponds to the second network and fRidei,k to the first network. To use SAA, we
need to take samples for the random variables. Suppose we take N samples of the stochastic
variables, according to their corresponding distribution. Let fDepart1,i (l) be the lth realization of

fDepart1,i , i.e.:

fDepart1,i (l) = TD1,i
DM (l)

= max{0, xli + yli −Di + max{0, xli−1 + ...+ max{0, xl1 + yl1 −D1}...}}.

56

Here xli is the lth realization of Xi. Similarly we can get expressions for the other actions. The
expressions for the actions are entirely the same as in the previous chapter, however now we have
the dependency on lth realization of a stochastic variable instead of the stochastic variable itself.

fDwelli,k (l) =

k∑
n=i

Dn + TDi,k
DM (l)

=

k∑
n=i

Dn + max{0, xlk + ylk −Dk + max{0, xlk−1 + ...+ max{0, xli + yli −Di}...}}

fTransferk (l) = DTrans + 1{QTransk (l) > DTrans}
T

m

QTransk (l) = max{0, TD1,k−1
DM (l) + xlk + yTrans(l)}

= max{0, xlk + ylTrans + max{0, xlk−1 + ylk−1 + ...+ max{0, xl1 + yl1 −D1}}}

f̂Dwellk,j (l) =

j∑
n=k

D̂n + T̂Dk,j
DM (l)

=

j∑
n=k

D̂n + max{0, x̂lj + ŷlj − D̂j + max{0, x̂lj−1 + ...+ max{0, x̂lk + ŷlk − D̂k}...}}.

Here, if a variable has a hat, it means that we take the variable in the second train network,
instead of the first one. Now the SAA approximation of the goal function, if we take N samples,
is the following:

TD∗ =
1

N

N∑
l=1

[
fDepart1,i (l) + fDwelli,k (l) + fTransferk (l) + f̂Dwellk,j (l)

]
. (2)

This is the goal function that is to be optimized in the SAA scheme. TD∗ is an approximation
of TD, which was defined as an integral which we could not analytically determine. However,
because we know the SAA technique converges to the optimal solution, we know that TD∗ will
also converge to the optimal solution, as the sample size grows to infinity.

5.3 Implementing as a linear program

From the previous paragraph, we now have a goal function to be optimized. However, it is not yet
in such a way that in can be written as a linear program. This is caused by two reasons. First we
have nested max functions in the goal function. Furthermore we also have an indicator function
in the goal function. In the following we will transform the above goal function to an actual linear
goal function, by adding constraints in a certain way.

5.3.1 Linearizing a max function

Suppose we have to minimize a max function, for example the very simple case:

min
x

max{0, x}

s.t. Ax = b

57

We can make an equivalent linear program of the following form:

min
x

t

s.t. Ax = b

t ≥ x
t ≥ 0

This is equivalent as we are considering a minimization problem. If x < 0, t will be chosen to be
0. If x > 0, t will be chosen to be x. This is exactly the same as a max function would do. Let us
now take a look at how a nested max function should be linearized. Consider the following example:

Example 3.

min
D

max{0, x1 + y1 −D1}.

By first linearizing max{0, x1 + y1 −D1}, we get the following equivalent program:

min
D

max{0, x2 + y2 −D2 + t1}

s.t. t1 ≥ 0

t1 ≥ x1 + y1 −D1

Using the same steps as before, this leads to the following linear program:

min
D

t2

s.t. t1 ≥ 0

t1 ≥ x1 + y1 −D1

t2 ≥ 0

t2 ≥ x2 + y2 −D2 + t1

Let us now take a look at how a nested function of general length:

min
D

max{0, xj + yj −Dj + max{0, xj−1 + ...+ max{0, xi + yi −Di}...}}.

This expression indicates the delay a passenger experiences if he boards the train at station i
and leaves the train at station j. Using the same approach used in the example, would give the
following linearization:

min tij

s.t. ti,q ≥ 0 q = i+ 1...j

ti,q ≥ xq + yq −Dq − ti,q−1 q = i+ 1...j

Now for example fDepart1,i (l) will be linearized as follows:

min tl1,i

s.t. tlp,q ≥ 0 p = 1...i, q = p+ 1...i, l = 1...N

tp,q ≥ xlq + ylq −Dq − tlp,q−1 p = 1...i, q = p+ 1...i, l = 1...N

58

5.3.2 Linearizing an indicator function

Now we will consider how to linearize an indicator function. Suppose we have a problem which
has some indicator function 1{A > x} in the goal function. We can replace this indicator variable
by a binary variable when introducing some additional constraints. This results in the following:

min z

s.t. z ∈ {0, 1}
A− x
M

≤ z ≤ 1 +
A− x
M

Here M is some big number, or if A has an upper bound, it can be chosen to be slightly bigger then
this upper bound. Why is this an equivalent representation? Suppose A > x. Then the indicator
value should have value 1. If A > x, this implies that ε = A−x

M > 0 and 1 = ε = 1 + A−x
M > 1.

This results in the following equality: ε < z < 1 + ε with 0 < ε < 1. As z ∈ {0, 1}, z is forced to
take value 1. Now suppose that A < x. This means that the indicator value should have value
0, and thus that our variable z should also take value 0. If A < x, we have ε = A−x

M < 0 and

1 + ε = 1 + A−x
M < 1. We get the following inequality: −ε < z < 1− ε with 0 < ε < 1. This forces

z to take value 0. Last suppose A = x. Then we get the inequality 0 ≤ z ≤ 1, so z can take either
value 0 or 1. However, since we are considering a minimization problem, z will take value 0, which
is exactly what needs to happen.

Now concerning the indicator variable in our goal function, we have an indicator expression
1{QTransk (l) > DTrans} Tm in our goal function, where QTransk (l) is defined as follows:

QTransk (l) = max{0, xlk + ylTrans + max{0, xlk−1 + ylk−1 + ...+ max{0, xl1 + yl1 −D1}}}.

Now we replace the function 1{QTransk (l) > DTrans} Tm with:

zl
T

m

s.t.
QTransk (l)−DTrans

M
≤ zl ≤ 1 +

QTransk (l)−DTrans

M
∀l = 1...N

zl ∈ {0, 1} ∀l = 1...N

59

5.3.3 Goal function

We have now seen techniques to linearize max functions and indicator functions. By applying
these techniques to equation 2 we get the following linear program:

min
1

N

N∑
l=1

[
tl1,i + tli,k + zl

T

m
+ t̂lk,j

]
+

k∑
p=i

Dp +

j∑
p=k

D̂p+ DTrans

s.t. tlp,q ≥ 0 l = 1, ..., N, p = 1, ..., k − 1, q = p+ 1, ..., k

tlp,q ≥ xlq + ylq −Dq + tlp,q−1 l = 1, ..., N, p = 1, ..., k − 1, q = p+ 1, ..., k

t̂lp,q ≥ 0 l = 1, ..., N, p = 1, ..., j − 1, q = p+ 1, ..., j

t̂lp,q ≥ x̂lq + ŷlq − D̂q + t̂lp,q−1 l = 1, ..., N, p = 1, ..., j − 1, q = p+ 1, ..., j

QTransk (l)−DTrans

M
≤ zl ≤ 1 +

QTransk (l)−DTrans

M
l = 1, ..., N

zl ∈ {0, 1} l = 1, ..., N

QTransk (l) ≥ 0 l = 1, ..., N

QTransk (l) ≥ xlk + ylTrans + tl1,k−1 l = 1, ..., N

Note that the matrix tlp,q for fixed l is a strict upper triangular matrix, where the value of tlp,q states

the delay when traveling from station p to station q with p < q in the lth realization. The above
expression is the travel time of a single passenger traveling from station i in network 1 to station
j in network 2, by making a transfer at station k. The goal function to be used in optimization
sums over all different OD pairs, multiplied with their respective amount of passengers using this
route, just like the IM. This results in the following goal function:

∑
i

∑
j

wij

 1

N

N∑
l=1

[
tl1,i + tli,k + zl

T

m
+ t̂lk,j

]
+

k∑
p=i

Dp +

j∑
p=k

D̂p +DTrans

 .

Here wij is the amount of passengers traveling from route i to j. Note that the definition of the
first and second network, indicated by f having a hat or not, is dependent on the passenger and
should be adapted accordingly. Of course it is also possible that a passenger does not need a
transfer to get from i to j. For these passengers, the following goal function will be used:

∑
i

∑
j

wij

[1

N

N∑
l=1

tl1,i + tli,j

]
+

j∑
p=i

Dp

 .

5.3.4 General sized networks

The above expressions were developed for a network consisting of two trains lines with exactly
1 transfer station. However a more general formulation of the problem is useful. Let Route
be the total possible route set of a network with an arbitrary number of train lines, where p ∈
Route is a specific route. A route p consists of a list of stations to be traveled through, so
p = {p1, p2, ..., pn−1, pn}, where p1 is the starting station, p2, ..., pn−1 are transferring stations and
pn is the end station. We introduce the notation tli,j(q). This indicates the travel time from station

i to j in the qth train network for sample number l. For the route p ∈ Route we can determine

60

for every station pi which network it is in. Let the index i of pi be the number of the network it
is in. Then the transfer stations, pi with i = 2, ..., n− 1 are all in network i, but also in network
i− 1. The station p1 is of course in network 1 and the station pn is in network n− 1. Using this
notation we get the following expression for travel time for a general network:

∑
p∈Route

wp

[
1

N

N∑
l=1

(
tl1,p1(1) +

n−1∑
q=1

tlpq,pq+1
(q) +

n−1∑
q=2

zlpq (q − 1)
T

m

)

+

n−1∑
q=2

DTrans(q) +

n−1∑
q=1

pq+1∑
i=pq

Di(q)

 .
The expression explained before for a network of size 2 with 1 transfer station is a special case
of the above formula. Note that for every possible transfer between lines, N binary variables are
needed to model these transfers. This makes it numerically significantly harder to apply the model
to large scale networks, as N , the amount of samples considered, should ideally be quite big to
get a higher accuracy approximation of the problem.

5.4 Heuristic

As explained before, the solution of the DM will most likely have bigger buffer values than the IM.
This is because a boarding passenger at station n in the DM experiences a delay of max{0, Xn +
Yn −Dn + PD}, where PD ≥ 0 is the delay that is still left in the system after the last buffer.
However, for the IM a boarding passenger experiences a delay of max{0, Xn + Yn − Dn}. As a
consequence, the buffer in the DM should be bigger to compensate for the predelay PD, which is
not taken into account in the IM. We can develop a heuristic to compensate for the predelay not
taken into account. Basically the delays for independent model are too small. We could adjust
the delay parameters such that in expectation the total delay equals the delay when also PD is
taken into account. More specifically we could do the following:

1. Compute solution using IM. First we compute a solution using the original parameters for
the independent model. We store the solution.

2. Plug solution into DM. We want to know what the predelay is that we do not take into
account using the IM. To determine this predelay, we plug the solution found at the first
stem into the DM. If we do so, we can determine the average value of the predelay PD. As
the solution or timetable is fixed, this step is basically a Monte-Carlo simulation to determine
PD for the solution found in step 1.

3. Update parameters in IM. We want to adjust the parameters in the IM such that we somehow
take into account the predelay PD that we have found in the previous step. For every
stochastic variable Xi and Yi in the original problem, we define two new variables X̂i and
Ŷi. We will now choose the parameters of X̂i and Ŷi such that the expectation of X̂i + Ŷi
equals the expectation of Xi + Yi + PD. We choose a factor b and define λ̂xi = bλxi and

λ̂yi = bλyi such that E
(
X̂i + Ŷi

)
= 1

bλxi
+ 1

bλyi
= 1

λxi
+ 1

λyi
+ PD = E(Xi + Yi + PD).

Using these parameters a new solution will be found using the IM.

4. Plug solution into DM. We have now found a solution of the IM using the updated param-
eters. In theory, the solution should now more resemble the solution of the actual solution
of the DM, because we have now compensated for the predelay, which was not taken into
account before. If we plug in the solution to the DM, we can see if we are closer to the actual
optimal solution.

61

This heuristic could make the solution of the IM close to the solution of the DM, since the
experienced delays in the IM are by this heuristic more similar to the delays experienced by the
DM.

62

6 Results

In this section the models explained in the previous chapters will be applied to train networks.
The first part are the results of applying the independent model developed in Chapter 3 and 4
to the Dutch intercity network. The second part are the results of checking the independence
assumption, using the model developed in Chapter 5, on a small network.

In order to apply the models to the train networks, we need to know the amount of passen-
gers following specific routes. NS has developed a model distributing passengers over the network
in the case that the timetable is not known yet and also when the timetable is known. The model
is called ”TRANS toedeler” and makes a distribution of passengers over the network depending
on the OD-Matrix, amount of transfers needed for a certain route, financial cost of a route etc.
This will be used as input for our model. Of course the results from the TRANS toedeler are
estimates of passenger numbers, especially in the case no timetable is known yet.

The experiments were run using CPLEX 12.6.2 on an Intel Xeon CPU E5-1650 3.6 GHz pro-
cessor with 16 GB RAM.

6.1 Results for the independent model

The model will be applied to the Dutch intercity network, pictured below.

Figure 24: The Dutch intercity network

63

The network consists of 34 lines where every line consists of a forward connection and a backward
connection. For every edge in the graph formulation of the network, a technical minimum time
is known. We will only consider delays that are exponentially distributed and not Weibull dis-
tributed, to save us the effort of numerically integrating the goal function prior to linearization.
For such a big network, this would take a lot of time. The distribution parameters used are de-
pendent on the technical minimum activity time. To set the parameters of the delay distribution,
we assume the expected delay is a certain percentage of the technical minimum time, as longer
routes tend to have bigger delays. Taking a certain percentage of the technical minimum time is
a standard approach in literature. Let this delay factor by a and suppose we have a minimum
activity time of me on edge e. The expected delay for this edge will be mea. Since the expectation
of an exponential distributed variable is given by 1

λe
for an edge e, the distribution parameter

will be determined as λe = 1
mea

. Unless stated otherwise, the delay factor used is 0.09. When
we consider all possible transfer generated by the TRANS toedeler, we get 561 transfers. For
a transfer edge we assume a minimum activity time of 2 minutes and a delay parameter of 2.
Furthermore, there are 710 headway constraints. Since every intercity train has a frequency of
exactly 2 in a cycle period of 60 minutes and frequencies of the same train should be spreaded
perfectly i.e. 30 minutes, the problem is equivalent with considering a network with a cycle time
of 30 minutes, where we only consider the first frequency. Unless stated otherwise, the piece-
wise linearization of the goal function will consist of 5 linear segments. Later on in the report
the effect of increasing and decreasing the amount of segments on computation time will be shown.

First we will consider if, and for what cases, the newly developed model for the spreading of
trains is better than the model developed in [5]. The TRANS toedeler determines if there are
multiple possible routes connecting an origin and destination. We will use this as input for the
model and add these pairs to the spread objective function. The amount of spread pairs generated
by the TRANS toedeler is stated in the following table:

#Instances
2 pairs 93
3 pairs 46
4 pairs 25
5 pairs 5
6 pairs 11
7 pairs 1
8 pairs 0

Table 2: Total spreading set showing the amount of occurrences of a specific amount of trains to
be spreaded

Since we are considering a timetable with a cycle time of 30 minutes, it can be debated how much
for example spreading 6 trains pairs adds in comparison to spreading 5 train pairs. Especially since
computation time is expected to rise severely as the number of pairs increases, it might be better
for those cases to only consider a subset of the total train set to be spread. For the pairs which
have more than 4 trains to be spread, we will only take 4 trains into account during optimization.

6.1.1 Comparing the newly developed spreading method to the model in literature

In Chapter 3.2 the hypothesis was made that the newly developed model will perform better when
there are 2 or 3 trains to be spread and it was unclear which model would perform better when 4
or more trains need to be spread. This hypothesis will be tested in the following. For 2,3 and 4
alternative spread pairs, both models will be given the same amount of solver time. The goal is to

64

determine if there are significant differences in performance between the two. Next to spreading,
transfers also have a big influence on computation time since integer variables are necessary to
model transfers. To really measure the differences in spreading, we impose a transfer threshold, as
it is found that when no transfer threshold is considered, the computation time is dominated by
the transfer constraints and objective. If the number of passengers using this transfer is smaller
than the threshold, the transfer will not be taken into account in the constraints and goal func-
tion. For a different reason a spreading threshold is necessary. If we do not impose a spreading
threshold, the solver is not able to find a feasible solution. The two methods will be compared in
terms of MIP gap and objective function found. The concept of MIP gap will be briefly discussed
here.

The common way to solve an MIP is by using a so called branch and bound algorithm. A
relaxation of the problem is formulated, where the integers variables are not needed to be integer
anymore, but can be real numbers. This problem is solvable in polynomial time and the solution
to this relaxed problem gives information about the optimal solution, because the search space
is reduced. The algorithm recursively splits the search space into smaller spaces, where the goal
function is minimized on these smaller spaces. This splitting process is called branching. Using
these branches, lower bounds on the optimal objective value can be determined. The lower bound
is updated during optimization, for a minimization problem the best lower bounds will be in in-
creasing sequence. In case the best solution found so far has the same value as the theoretical lower
bound, optimality of the solution is proved. However, as MIP problems are generally NP-hard, an
actual optimal solution is not always found. The MIP gap is defined as the procentual difference
between the best found solution and the theoretical lower bound:

Gap =
Best solution− Best lower bound

Best lower bound
· 100

So if a solution has for example an MIP gap of 20%, this means that the solution is maximally
20% off of the actual optimal solution. However, it might also be for example 5% off of the optimal
solution. The MIP Gap states the maximum difference between the two.

The results of comparing the two spreading methods are represented in the following. The first
table gives the result for 600 seconds of computation time, where it is assumed that every passen-
ger arrives randomly so every passenger experiences excess journey time. The second table shows
the results for 2400 seconds of computation time, where it is assumed that only 20% of passengers
arrive randomly, so only for these passengers the excess journey time will be added to the goal
function. Furthermore, the amount of binary variables, general variables and Special Ordered Sets
(SOS) stated by CPLEX after presolve are stated.

Pair size Spr. Thres. Tr. Thres. #Instances Model #Bin #Gen #SOS Gap Obj
2 600 1000 29 New 0 1528 698 5.61 2215147

Old 42 1532 812 9.60 2305833
3 400 1000 23 New 38 1672 728 14.83 2341767

Old 342 1562 842 18.57 2455034
4 400 1000 4 New 24 1496 630 12.06 1446454

Old 64 1460 630 11.27 1423384

Results for 600 seconds of computation time, 100% of passengers arriving randomly

65

Pair size Spr. Thres. Tr. Thres. #Instances. Model #Bin #Gen #SOS Gap Obj.
2 600 1000 29 New 0 1528 698 5.51 1456698

Old 42 1532 812 8.77 1505818
3 400 1000 23 New 38 1672 728 10.51 1491910

Old 342 1562 842 15.06 1566617
4 400 1000 4 New 24 1496 630 12.14 1375055

Old 64 1460 630 4.08 1258859

Table 4: Results for 2400 seconds of computation time, 20% of passengers arriving randomly

As can be seen, when 2 or 3 trains need to be spreaded, the newly developed model achieves a
better optimality gap and a better objective function than the model described in literature. If 4
trains needed to be spreaded, the new model performs worse than the old model. Concluding, the
best way to take into account spreading is to use the newly developed model when 2 of 3 trains
need to be spreaded and use the model already developed in literature in case 4 trains need to
be spreaded. The results from now on are generated using this ”mixed model”. One of the main
questions of this research was if a new way of spreading alternative train routes can be developed,
which can give a satisfactional optimality gap when applied to large networks. The results of this
previous research, [5], are stated in the first table where the Belgium network was considered. The
second table states the results of applying the mixed model to the Dutch intercity network.

Spread Threshold 900 800 700 600 500 400
Spreading instances 14 16 22 24 30 31

Gap 13.2 14.3 17.13 - - -
Computation time 1200 1200 1200 2400 2400 2400

Table 5: Previous research with a transfer threshold of 2000, 26 lines and 2 linear segments

Spread Threshold 1000 800 600 400 200 0
Spreading instances 43 48 52 67 79 164

Gap 20.56 19.71 20.47 20.78 29.75 -
Computation time 2400 2400 2400 2400 2400 2400

Table 6: Results of new model with a transfer threshold of 700, 34 lines and 5 linear segments

For the previous research, when 24 train lines needed to be spreaded, no solution could be found
in 2400 seconds. The new model applied to the Dutch network performs significantly better.
Spreading up to 79 trains is possible in 2400 seconds with an quite acceptable optimality gap.
This suggests that the newly developed model performs significantly better. However another
explanation could be a difference in network structure or an inferior implementation in the previous
research. To draw a definite conclusion, the model already developed in literature will be compared
to the newly developed mixed model on the same instances, namely the Dutch networks with
different values for the transfer and spreading thresholds. This results in the following table:

66

Transfer Threshold
0 0 100 100 300 300

Mixed Old Mixed Old Mixed Old
S

p
re

a
d

in
g

T
h

re
sh

o
ld 200 Gap - - - - - -

Obj - - - - - -
400 Gap - - 32.72 - 35.58 36.88

Obj - - 4056433 - 3441572 3875430
600 Gap 37.07 - 37.06 42.93 31.74 32.96

Obj 4304657 - 4238497 4593576 3614792 3605577
800 Gap 37.92 - 34.46 38.73 30.40 33.99

Obj 4363728 - 4075983 4267258 3503657 3631924

Table 7: Comparing the newly proposed mixed model with the old model already developed in
literature

The mixed model always performs better in terms of optimality gap achieved and performs better
in terms of objective function in all but one case. Furthermore there are 3 instances where the
mixed model was able to find a solution, whereas the old model could not. In the case that
both models find a solution the mixed model tends to perform better, but not extremely better.
Important to notice is that the old model performs significantly better than was reported in
previous research. This can be caused by various reasons, for example it could be that the network
used in previous research considered more sets where 4 trains are spreaded compared to this test
case. Spreading 4 trains is found for both models to be significantly harder than spreading 2 or
3 trains. Other reasons could be thought of like different network structures or implementation.
The conclusion can be made that significant better results are achieved in terms of spreading than
previous research and that the newly developed model is slightly superior to the model already
developed.

6.1.2 Threshold analysis

As was stated before both a transfer threshold as well as a spreading threshold have been in-
troduced to actually find feasible solutions. The following table shows for the mixed model the
results for different threshold combinations. In parentheses, the percentage of passengers taken
into account for a certain threshold are stated.

Transfer Threshold
0 (100%) 100 (96.7%) 300 (82.8%) 500 (66.9%) 700(46.8%)

S
p

re
ad

in
g

T
h

re
sh

ol
d

200 (65.1%) Gap - - - - 29.75
Obj - - - - 2885772

400 (49.35%) Gap - 32.72 34.58 31.58 20.78
Obj - 4056433 3841572 3313979 2487416

600 (38.8%) Gap 37.07 37.06 31.74 28.25 20.47
Obj 4304657 4238497 3614792 3094823 2437618

800 (31.4%) Gap 37.92 34.46 30.40 27.03 19.71
Obj 4363728 4075983 3503657 3076353 2380011

1000 (25.6%) Gap 35.50 33.96 30.96 27.85 20.56
Obj 4148878 3980864 3495965 3026566 2374210

Table 8: MIP gap and objective function found after 2400 seconds of computing

67

The general trend, as to be expected, is that a lower thresholds results in a bigger MIP gap. An
interesting question is what the influence of not taking all passengers into account is on those
passengers. By not taking these passengers into account by the imposed thresholds, it might be
that their transfer and spreading times are very bad. On the other hand, it might be the case that
imposing these thresholds does not affect these passengers too much. In the following, a solution
with relatively high transfer and spreading thresholds of 700 and 1200 will be generated and the
average transfer and excess journey time will be computed. Then using the exact same solution,
the average transfer and excess journey time will be computed when the thresholds are lowered.
This results in the following figures:

0 100 200 300 400 500 600 700
Transfer Threshold

0

5

10

15

A
ve

ra
ge

 T
ra

ns
fe

r
T

im
e

0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e

C
on

si
de

re
d

Figure 25: Average transfer time for different transfer thresholds, using solution computed with a
threshold of 700

0 200 400 600 800 1000 1200
Spread Threshold

0

2

4

6

8

A
ve

ra
ge

 S
pr

ea
d

T
im

e

0

0.2

0.4

0.6

0.8

1
P

er
ce

nt
ag

e
C

on
si

de
re

d

Figure 26: Average excess journey time for different spreading thresholds, using solution computed
with a threshold of 1200

For the average transfer time, an increase is observed when lowering the transfer threshold. How-
ever this increase is not dramatically big. For the spreading threshold, no notable change is
recorded. This can be explained by the following. Consider 3 consecutive stations. Suppose the
introduced spreading thresholds results in the spreading of station 2 not taken into account. As
station 1 and station 3 are taken into account, the trains will be spread as best as possible at those

68

stations. It would be very unlikely that the trains at station 2 will now be spread very badly.
Both figures give rise to the conclusion that imposing these transfer and spreading thresholds does
not affect solution quality too much, especially if the spreading sets resulting from the imposed
threshold are distributed rather uniformly over the network.

6.1.3 Analyzing the solution in terms of inter arrival times

Now the solution with regards to spreading on a specific instance will be analyzed. A transfer
threshold of 500 and a spreading threshold of 600 are considered. A solution is computed when
all passengers are assumed to be arriving randomly and a solution is computed when 50% of
passengers are assumed to arrive randomly. Both solutions will be compared in terms of the
interarrival times determined by the solver. The results are in the figures below, where the left
column is the solution of the case where 100% of passengers experience excess journey time, the
middle column is the solution where 50% of passengers experience excess journey time and the
right column states the inter arrival times in a schedule developed by NS. This schedule was the
result of a study by NS where a schedule was developed that could have 6 hourly trains between
Utrecht and Amsterdam, but has not been put to practice. Both solutions were computed using 1
hour of computation time. The horizontal line indicates the value if the trains were to be spreaded
perfectly.

0 10 20 30 40 50
of pair

0

10

20

30

In
te

ra
rr

iv
al

 ti
m

es

Figure 27: Spreading 2 trains,
100% random arrivals

0 10 20 30 40 50
of pair

0

10

20

30

In
te

ra
rr

iv
al

 ti
m

es

Figure 28: Spreading 2 trains,
50% random arrivals

0 10 20 30 40 50
of pair

5

10

15

20

25

In
te

ra
rr

iv
al

 ti
m

es

Figure 29: Spreading 2 trains,
schedule by NS

0 5 10 15 20 25 30
of pair

0

10

20

30

In
te

ra
rr

iv
al

 ti
m

es

Figure 30: Spreading 3 trains,
100% random arrivals

0 5 10 15 20 25 30
of pair

0

10

20

30

In
te

ra
rr

iv
al

 ti
m

es

Figure 31: Spreading 3 trains,
50% random arrivals

0 5 10 15 20 25 30
of pair

0

10

20

30

In
te

ra
rr

iv
al

 ti
m

es

Figure 32: Spreading 3 trains,
schedule by NS

1 1.5 2 2.5 3 3.5 4
of pair

0

5

10

15

In
te

ra
rr

iv
al

 ti
m

es

Figure 33: Spreading 4 trains,
100% random arrivals

1 1.5 2 2.5 3 3.5 4
of pair

0

10

20

30

In
te

ra
rr

iv
al

 ti
m

es

Figure 34: Spreading 4 trains,
50% random arrivals

1 1.5 2 2.5 3 3.5 4
of pair

0

5

10

15

In
te

ra
rr

iv
al

 ti
m

es

Figure 35: Spreading 4 trains,
schedule by NS

As can be seen, the value of the interarrival times for the solution where all passengers experience
excess journey time are generally closer to the optimum spreading value than the inter arrival

69

times for the solution where 50% experience excess journey time. Because more passengers arrive
randomly in the first case, more weight will be put on the spreading of trains. There are some
interesting conclusions to be made from these figures. First, even when all passengers are assumed
to be arriving randomly, trains are not perfectly spread in the solution. Consider the following
example. Suppose at a certain station a passenger can take train 1 and train 2, to get to its
destination. The inter arrival times between these 2 trains are added to the goal function and
have an optimum at 15 minutes. Suppose there is a second passenger at the exact same station
which can take train 1,2 and 3 to get to it’s destination. These trains are tried to be spread 10
minutes apart. As a consequence train 1 and train 2 can not be spreaded perfectly in both cases.
So a trade-off will be made between spreading them as close as possible to 15 and spreading them
as close as possible to 10. Another explanation could be that spreading trains perfectly might have
negative effects on other passengers. For example a perfectly spreaded train pair might induce a
bad transfer possibility for an other passenger. Again a tradeoff is going to be made. This effect is
exactly what we see in the results. For the case of every passenger arriving randomly, an average
transfer time of 12.44 is found in the solution and an average excess journey time of 7.15 minutes
per passenger. In case 50% of passengers arriving randomly, the average transfer time is 12.07
and the average excess journey time is 7.97. So the average transfer time declines, whereas the
average excess journey time rises. Concluding, there is a tradeoff between having well spreaded
trains and providing fast transfers.

Comparing the solutions with the timetable developed by NS, we can see that generally NS spreads
trains more evenly, especially in the case where 3 trains need to be spreaded. In current scheduling,
NS attaches great importance to spreading trains perfectly. The found interarrival times by the
model in this research suggest that it is not necessarily best to do this. These solutions suggest
that, in terms of expected passenger travel time, NS is overspreading trains. As spreading trains
perfectly affects other passengers negatively, a tradeoff between the two should be made. This
model is a way of making this tradeoff.

6.1.4 Computational analysis

We will now analyze some computational aspects. First, the influence of the amount of lin-
ear segments used in the goal function on the solution found is discussed. The results below
state for different amounts of linear segments used the optimality gap after 1 hour of computing.
Furthermore, the goal function of the solution using the linearized goal function as well as the
non-linearized goal function are stated.

Numpiece 2 5 8 10 15 40
Gap 18.99 19.51 18.30 20.84 21.99 22.22

Objective 2640484 2285103 2217306 2279591 2294381 2261771
Non-linearized objective 2355440 2255644 2207290 2273046 2291840 2261770

Table 9: Number of linear segments used compared to the optimality gap achieved, Transfer
Threshold=700, Spreading Threshold=1200

The general trend for the optimality gap is that the bigger the amount of segments used, the bigger
the optimality gap. However, for the cases considered, the optimality gap is not very sensitive to
the amount of segments used. Though this could also be explained by the relatively high thresh-
olds used, making the problem ”easy” for any amount of linear segments. Throughout this report,
5 linear segments have been used to compute solutions. For this case, the difference between the
approximated goal function and the non-linearized goal function is 1.306%. So there is not a big
difference between the approximated goal function and the actual goal function. This suggests

70

that using 5 linear segments approximates the original function reasonably well.

An interesting observation is the value of the non-linearized goal function for different amounts of
segments used. There seems to be a trade-off between having a more inaccurate approximation
of the goal function, which is easier to optimize and on the other hand, having a very accurate
goal function, which is more difficult to optimize. The optimal amounts of segments in terms of
non-linearized goal function, for this case, is somewhere in the middle of the two, at 8 segments.

The last aspect that will be considered is the progress of the best found solution and the biggest
lower bound during optimization. It is quite interesting to consider how these develop during
optimization. For example it might be that the value of best solution found is decreasing steadily
over time or rapidly at specific moments. The same holds for the lower bounds. For a specific
instance the following graph illustrates the development of these factors, where the solver had
26000 seconds of computation time, or a little more than 7 hours.

0 0.5 1 1.5 2 2.5 3
Time in seconds 104

1.8

2

2.2

2.4

2.6

2.8

3

3.2
106

Figure 36: Biggest lower bound and best solution found over time

The top line is the value of the best solution found. The bottom line is the value of the best upper
bound. The value of both have been recorded since the first solution was found. Two observations
can be made. First, after around an hour of computation time, the solution is not improved
anymore. Second, the lower bound increases very subtle and not clearly visible in the graph. This
might be caused by the non-convexity of the goal function. Because of this non-convexity, the
solver can not conclude if a local minimum of a global minimum is found. This possibly explains
the behavior of the lower bound. It might be the case that the solution is of quite a good quality,
but due to this non-convexity it can not be proved that it is of good quality, because of the lower
bound that is not increasing. Before a first solution was found, the lower bound did increase
significantly.

6.1.5 Error bounds

As was mentioned before, unless stated otherwise, 5 linear segments have been used in the piecewise
linear approximation of the goal function. In Chapter 4 error bounds were shown between the
original problem and its piecewise linear approximation. From [28], we found that if max|f(x)−
fLin(x)|≤ ε, then also |f(x̂) − fLin(x∗)|≤ ε, for a univariate function. In Chapter 4.3.5 error

71

bounds when using a multivariate separable goal function have been formulated. The maximum
error found was

∑n
i=1

∣∣fi(xi)− fLini (xi)
∣∣. For the case of using 5 linear segments, we ideally would

like to compute this sum. However, because we would have to determine the maximum difference
for every function used in the optimization problem, this is impractical. We will give a general
indication of the maximum error by considering a single passenger following a certain route. When
using 5 linear segments, for a certain set of delay parameters, the maximum difference between the
linearized goal function with the spread, dwell, departure and transfer functions are determined.
This results in 0.145, 0.014, 0.011 and 0.249 respectively. So when considering a single passenger
following a route which consists of for example a spread action, a departure action, 3 consecutive
dwell actions, a transfer action and last 4 consecutive dwell actions, the maximum difference
between the value of the actual optimum and the solution of the approximated problem is as
follows: 0.145 + 0.011 + 3 · 0.014 + 0.249 + 4 · 0.014 = 0.503. This is just the maximum difference in
terms of goal function for a single passenger following a specific route. Ideally we would determine
the maximum difference for every single passenger and take the sum to get the total maximum
difference between the optimal solutions. Considering a single passenger gives a general indication
of the quality of approximation when having 5 linear segments.

6.1.6 Some remarks regarding the TRANS toedeler

Because the order of trains is not yet known, the TRANS toedeler made some distributions of
passengers which would not be realistic in an actual timetable. Consider for example a passenger
traveling from origin to destination where he needs to make a transfer at a certain station. Suppose
there are two trains where the passenger can start from, and two trains to where the passenger can
transfer to. Then the TRANS toedeler distributes passengers over all possible transfer combination
of trains because it is unknown which train comes after which train. The following figure explains
this:

Figure 37: Transfers generated by TRANS
toedeler when no order of trains is known

Figure 38: Example of transfers happening
in reality

In reality when a timetable is given, passengers would make use of a single connection, namely to
the train which arrives first at the transfer station, for example as shown in Figure 39. However,
this is an inevitable problem. It can not be implemented in the TRANS toedeler because it is
unknown to which train passengers are actually traveling, because of the unknown order of trains.
Fixing the order of trains, for example after a first schedule has been found, could solve this
problem.

72

6.2 Result independence assumption

We will now consider if the solution of the independent model is a good approximation of the
solution of the dependent model. To do so we will consider a small train network consisting of the
intercity between Enschede and Hoofddorp and the sprinter between Utrecht and Zwolle, shown
in the figure below.

Figure 39: The intercity between Enschede and Hoofddorp and the sprinter between Utrecht and
Zwolle

We will compute a solution to this network using both the independent model and the dependent
model. Since we think the dependent model is a more accurate description of reality, we will plug
the solution of the independent model into the dependent model and determine the value of the
goal function. Then we will compare the difference in goal function between the two solutions.
Ideally the goal function of the solution of the independent model plugged into the dependent
model is close to the goalfunction of the solution using the dependent model. In that case we can
conclude, at least for this network, that splitting the network in several independent parts is not
a bad approach.

Of course when comparing the two, we need to keep in mind that we are only considering a
small network. The results found for this network may not hold for a bigger network, like the
entire intercity network. Because of computational considerations for the dependent model, a
small network was chosen as a test case.

For several values of the delay factor a, the models will be compared. Also the case where there are
no transfers, so the two networks can be viewed as two independent networks, will be examined.
For the independent model, 50 piecewise linear segments will be used. For the dependent model,
200 samples were used in the goal function. This results in the following figures:

73

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Delay factor

0

1

2

3

4

5

6

F
un

ct
io

n
va

lu
e

105

Figure 40: With transfers, top line independent model, bottom line dependent model

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Delay factor

0

0.5

1

1.5

2

2.5

F
un

ct
io

n
va

lu
e

105

Figure 41: Without transfers, top line independent model, bottom line dependent model

As we can see, there is quite a difference between the goal function for the two models. The
objective function of the solution of the independent model plugged in to the dependent model is
roughly 25% bigger than the solution of the dependent model. The main difference between the
solution of the two models is that the buffers in the dependent model are in general slightly bigger
than the buffers generated by the dependent model. For a delayfactor of a = 0.09 the buffers of
the two models are stated below.

IM Forward 15.922 0.28 0.971 9.88 1.88 0.62 1.71 0.68
Backward 0.42 0.39 1.57 0.82 12.5 0.34 0.97 0

DM Forward 2.92 0.47 1.49 8.89 1.23 1.32 2.92 0.85
Backward 0.83 0.65 3.73 1.53 11.9 0.37 1.31 0

Table 10: Buffers Intercity Enschede-Hoofddorp

IM Forward 0.10 0.10 0.04 0.84 0.08 0 0.22 0.15 0.28 0.27 0.22 0.10 0.08
Backward 0.18 0.31 0.19 0.58 0.21 0.10 0.28 0 0.35 0.51 0.08 0.08 0.08

DM Forward 0.12 0.31 0.30 1.04 0.09 0 0.47 0.23 0.43 0.43 0.27 0.23 0.14
Backward 0.33 0.69 0.80 1.08 0.39 0.22 0.71 0 0.69 0.93 0.14 0.18 0.12

Table 11: Buffers Sprinter Utrecht-Zwolle

Some buffers in the solution are really big and some buffers are zero. This is explained by the

74

datasets used. The first buffer is really big, because the very first station is a rolling stock repos-
itory. This station is not a station where passengers can board a train. The train will have no
passengers boarded when arriving at the second station, which is why a big buffer is chosen there.
There is a similar explanation for the buffers which are chosen to be 0. Some stations are not
known in the OD-matrix, as they did not exist yet at that time. The line plan used in optimiza-
tion does traverse through these stations. Because the station is not known in the OD-matrix,
no passengers will be boarding the train here, but there are already passengers in the train from
previous stations. This is why these buffers are chosen to be 0.

As can be seen the buffers of the dependent model are generally bigger than the buffers of the
independent model. This is what we expected beforehand because apparently the predelay, which
the independent model assumed to be (close to) 0, is not zero. Where the independent model
assumes a delay of max{0, xn+yn−Dn} at edge n, in reality there is a preadelay PD > 0 at edge
n. So the actual delay is max{0, PD + xn + yn −Dn} at edge n.

Apparently, the assumption of the independent model that the predelay tends to be (close to)
0 is not right. As we can see, not taking into account this predelay has severe negative effects on
the quality of the solution. The heuristic explained in Chapter 5.4 to cope with this problem has
been applied to the same network. This results in the following figures, where the middle line is
the solution of the problem using the heuristic and the top and bottom line are the exact same
solutions we found already.

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Delay factor

0

0.5

1

1.5

2

2.5

F
un

ct
io

n
va

lu
e

105

Figure 42: Without transfers

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
Delay factor

0

1

2

3

4

5

6

F
un

ct
io

n
va

lu
e

105

Figure 43: With transfers

75

As we can see the solutions are far closer to the actual optimal solution than before. Especially for
the model without transfers this is the case. The difference between the actual optimal solution
and the solution as a result of the scheme is now generally between 5 and 10 percent. This is a
big improvement. This result suggests that the independent model can be a close resemblance of
reality, however a parameter update scheme is necessary.

76

7 Conclusions and future research

Conclusions

We have developed expressions for the expected passenger travel time for both exponential and
Weibull distributed delays. For a Weibull distribution however, no analytical expressions are pos-
sible. By numerical integration Weibull distributed delays are still applicable to the problem. A
new way of modeling excess journey time has been developed. By considering the cyclic order
of trains, for certain cases, less additional variables and constraints were necessary to take into
account the yet unknown order of trains than previous research has provided. The goal function
was approximated by a piecewise linear function. Several criteria have been given to guarantee
a certain performance of the approximation with respect to the original function. Furthermore,
the simplification of viewing a passenger route as a set of consecutive independent actions was
considered. A model has been derived to solve the problem without making this simplification.

It is found that the new model for spreading trains has significantly better results in both compu-
tation time as well as optimality gap than previous research of the subject. However, it is found
that the approach used in previous research also works quite well on the instances provided in
this report, though not as good as the newly developed model. It is unclear why the previously
developed model works significantly better on the Dutch network than on the network described
in [5]. A possible explanation is that in the research of [5] a lot more spreading instances where
more than 3 trains have to be spread were considered. These have shown to increase computation
time dramatically compared to spreading 2 or 3 trains. In any case, for the instances to be consid-
ered for the Dutch network, quite satisfactional results have been found. It was also shown that
the thresholds needed in order to find a feasible solution do not affect the travel time of the pas-
sengers not taken into account as a consequence that much. We can confidently implement these
buffers, though they should of course not be extremely big. One of the main research questions
was if the model can be applied to large scale networks. The model is able to find solutions for
the entire Dutch intercity network which, depending on the thresholds chosen, results in a quite
acceptable optimality gap. An interesting follow up question would be if the model is able to find
solutions for the entire Dutch network, including so called ”sprinters”. This has not been tried,
but it is suspected to be quite a bit more difficult than considering just the intercity network.
This is because the Dutch network is very dense in the sense of trains using the same pieces of
infrastructure.This is especially the case in the Randstad. Adding these sprinters could make it
much more difficult to even find a feasible solution, let alone an optimal one.

An interesting conclusion was made when comparing the distribution of inter arrival times of
the solutions found with the schedule provided by NS. The interarrival times of the schedule of
NS were generally closer to the theoretical optimal inter arrival times. However, spreading trains
very well can have negative effects on the quality of transfers. This is exactly what was noticed
when comparing two solutions of the model, where a trade off was observed between the spreading
of trains and the quality of transfers. As consequence, NS might emphasize perfect spreading too
much at the moment and could profit, in terms of expected passenger travel time, from relaxing
the need for perfect spreading and thus create an overall better schedule.

Lastly it was found that considering a passenger route as a set of independent action has a
significant negative impact on the quality of the solution. Because of not taking into account
the delay still in the network as a result of previous delays, the buffers generated were generally
too small. A heuristic has been developed which has made impressive results on the test case
described. However, we should be careful with drawing rushed conclusions on these results, as no
mathematical explanation has been found to show this is a technique that is guaranteed to work.

77

Future research

Several directions for future research can be given. An interesting approach would be to somehow
fix the order of trains. If the order of trains is fixed, the problem of the spreading of trains becomes
much easier. No additional binary variables have to be added to model this unknown order of
trains and this is expected to reduce computation time. The order of trains can for example be
fixed by running the model described to get an initial timetable. This order could be fixed in the
next computation. As explained, passengers can more accurately be distributed by the TRANS
toedeler when the order of trains is fixed.

We have seen that it was necessary to introduce thresholds for both transfers as well as spread
instances. If a spread instance was not used by enough passengers then it was not taken into
account in the goal function. The spreading instances taken into account in optimization could
be selected in a different way. As was explained before, if trains are spreaded well at station 1
and 3, it is unlikely they are very badly spread at station 2. By selecting the spreading instances
depending on the structure of the network, we could implicitly also spread trains at stations not
considered in the goal function.

Another aspect to be researched is the independence assumption. It was shown that dividing
the network up into several independent parts has a severely negative effect on the solution qual-
ity. A scheme was developed to adjust parameters to compensate for the predelay not taken into
account. For the network considered this resulted in significant improvement in solution quality.
It would be interesting to see if the same holds for bigger networks because now only a fairly small
network of two lines was considered. Also other approaches than the one explained of updating
the parameters could be considered. Furthermore, a mathematical analysis could be made to show
whether or not the scheme can be guaranteed to work on arbitrary networks.

Lastly some computational suggestions may be taken into account in future research. Firstly,
the spreading objective, in which functions of the form s2

i were added to the goal function, can
possibly be modeled more efficiently. This is a quadratic programming problem with a positive
definite goal function. Positive definite quadratic programs are known to be solvable in polyno-
mial time, see for example [31]. In the model used however, the goal function is approximated
by a piecewise linear function just like the other goal functions. This is not necessarily solvable
in polynomial time, so explicitly implementing the s2

i terms as a quadratic program might re-
duce solution time. Another computational consideration is the following. As we have seen the
transfer action is not convex. The very start of the graph tends to have a slight kink, causing
the non-convexity. As a consequence, it might be that the solver uses an entire different solving
technique than would be used for a convex function. As a consequence, solver time might increase
significantly because of this, as it can not be guaranteed that a global optimum has been found
instead of just a local optimum. This might also explain why the solver has a hard time updating
the biggest lower bound found during computation. This kink however is very slight. One could
choose to just ignore the kink and make an approximation that is actually convex. Now convex
solver techniques can be applied. It might even be the case that a piecewise linear approximation
of the goal function is not necessary as interior-point algorithms can give quite good results for
convex problems, though not every convex problem is solvable in polynomial time. The solution
space stays non-convex in any case because of the integer constraints.

78

References

[1] Leo Kroon, Dennis Huisman, Erwin Abbink, Pieter-Jan Fioole, Matteo Fischetti, Gábor
Maroti, Lex Schrijver, Adri Steenbeek, and Roelof Ybema. The new dutch timetable: The or
revolution. 2008.

[2] Sofie Burggraeve, Simon Henry Bull, Richard Martin Lusby, and Pieter Vansteenwegen. In-
tegrating robust timetabling in line plan optimization for railway systems. TU Management
Engineering, 2016.

[3] Lukas Back, Twan Dollevoet, and Dennis Huisman. Integrating Timetabling and Crew
Scheduling at a Freight Railway Operator. Econometric Institute Report, 2014.

[4] Luis Cadarso and Angel Marin. Integration of timetable planning and rolling stock in rapid
transit networks. 2011.

[5] Peter Sels. Large-scale, passenger oriented, cyclic railway timetabling and station platforming
and routing. 2016.

[6] Leon W. P. Peeters. Cyclic railway timetable optimization. 2003.

[7] A. Schrijver and A. Steenbeek. Spoorwegdienstregelingontwikkeling. 1993.

[8] P. Serafini and W. Ukovich. A mathematical model for periodic scheduling problems. SIAM
Journal on Discrete Mathematics, page 550–581, 1989.

[9] Odijk. Construction of periodic timetables; part i: A cutting plane algorithm. Tech. Rep.,
1994.

[10] Gert-Jaap Polinder. Resolving infeasibilities in the pesp model of the dutch railway
timetabling problem. 2015.

[11] Steffen Hölldobler, Norbert Manthey, and Peter Steinke. Solving periodic event scheduling
problems with sat. 2012.

[12] Rob Goverde, Ingo Hansen, Gerard Hooghiemstra, and Hendrik Lopuhaa. Delay distribution
is railway stations. 2001.

[13] Mark Harris. Analysis and modelling of train delay data. 2006.

[14] J. Yuan. Stochastic modelling of train delays and delay propagation in stations. 2006.

[15] Kannemadugu Reddikrishna. Study on delay distribution of trains. 2015.

[16] Ryan Martin. Lectore notes on statistical theory. 2015.

[17] Felix Noyanim Nwobi and Chukwudi Anderson Ugomma. A comparison of methods for the
estimation of weibull distribution parameters. 2014.

[18] Paritosh Bhattacharya. Weibull distribution for estimating the parameters. 2011.

[19] P. Vansteenwegen and D. van Oudheusden. Developing railway timetables which guarantee
a better service. European Journal of Operations Research, 2004.

[20] Leo G. Kroon, Rommert Dekker, and Michiel J.C.M. Vromans. Cyclic railway timetabling:
a stochastic optimization approach. 2005.

[21] John R Birge and Francois Louveaux. Introduction to Stochastic Programming. Springer,
1997.

79

[22] Stochastic linear programming. https://neos-guide.org/content/

stochastic-linear-programming. Accessed: 10-02-2017.

[23] Andrew Schaefer. An overview of an overview of sampling methods in sampling methods in
stochastic stochastic programming programmin. http://egon.cheme.cmu.edu/ewo/docs/

SPSeminarSchaefer_October16.pdf. Accessed: 10-02-2017.

[24] Sample Average Approximation (SAA) for Stochastic Programs with an eye towards com-
putational saa. https://www.ima.umn.edu/materials/2015-2016/ND8.1-12.16/25374/

morton_ima.pdf. Accessed: 10-02-2017.

[25] Mark A. Turnquist. A model for investigating the effects of service frequency and reliability
on bus passenger waiting times. 1978.

[26] Aduardo Camponogara and Luiz Fernando Nazari. Models and algorithms for optimal
piecewise-linear function approximation. Hindawi, 15, 2015.

[27] Nenad Ujevic. New error vounds for the simpson’s quadrature rule and applications. Elsevier,
2006.

[28] Arthur M. Geoffrion. Objective function approximations in mathematical programming. 1977.

[29] Rob Harron. The leibniz rule. http://math.hawaii.edu/~rharron/teaching/MAT203/

LeibnizRule.pdf. Accessed: 18-07-2017.

[30] A. M. Vaziri nd A.V. Kamyad, A. Jajarmi, and S. Effati. A global linearization approach to
solve nonlinear nonsmooth constrained programming problems. 2011.

[31] Paul Tseng. A simple polynomial-time algorithm for convex quadratic programming. 1988.

80

https://neos-guide.org/content/stochastic-linear-programming
https://neos-guide.org/content/stochastic-linear-programming
http://egon.cheme.cmu.edu/ewo/docs/SPSeminarSchaefer_October16.pdf
http://egon.cheme.cmu.edu/ewo/docs/SPSeminarSchaefer_October16.pdf
https://www.ima.umn.edu/materials/2015-2016/ND8.1-12.16/25374/morton_ima.pdf
https://www.ima.umn.edu/materials/2015-2016/ND8.1-12.16/25374/morton_ima.pdf
http://math.hawaii.edu/~rharron/teaching/MAT203/LeibnizRule.pdf
http://math.hawaii.edu/~rharron/teaching/MAT203/LeibnizRule.pdf

Appendices

A Goal function

A.1 Depart action

A.1.1 Exponential distribution

fDepart(D) = E
(
CDepart(D)

)
=

∫ ∞
0

∫ ∞
0

max{0, x+ y −D}fx(x)fy(y)dydx

=

∫ D

0

∫ ∞
D−x

(x+ y −D)fx(x)fy(y)dydx

+

∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx.

∫ D

0

∫ ∞
D−x

(x+ y −D)fx(x)fy(y)dydx =

∫ D

0

fx(x)

∫ ∞
D−x

(x+ y −D)fy(y)dydx

=

∫ D

0

[
(x−D)e−λy(x−D) +

∫ ∞
D−x

yf(y)dy

]
fx(x)dx

=

∫ D

0

[
(x−D)e−λy(D−x) +

(λy(D − x) + 1)e−λy(D−x)

λy

]
fx(x)dx

=

∫ D

0

fx(x)
1

λy
e−λy(D−x)dx

=
1

λy
e−λyD

λx
λy(λx − λy)

(
1− eD(λx−λy)

λx − λy

)
=

λx
λy(λx − λy)

(
e−λyD − e−λxD

)
.

∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx =

∫ ∞
D

fx(x)

[∫ ∞
0

(x−D)fy(y)dy +

∫ ∞
0

yfy(y)dy

]
dx

=

∫ ∞
D

[
x−D +

1

λy

]
fx(x)dx

=

∫ ∞
D

(
1

λy
−D

)
fx(x)dx+

∫ ∞
D

xfx(x)dx

=

(
1

λy
−D

)
e−λxD +De−λxD +

1

λx
e−λxD

=
1

λy
e−λxD +

1

λx
e−λxD.

So we have:

fDepart(D) =
λx

λy(λx − λy)

(
e−λyD − e−λxD

)
+

1

λy
e−λxD +

1

λx
e−λxD.

81

A.1.2 Weibull distribution

The distribution of a Weibull distributed variable is f(x) = k
λ

(
x
λ

)k−1
e−(xλ)

k

, the cumulative

distribution is F (x) = 1− e−(xλ)
k

. Furthermore the expectation is as follows: E(X) = λΓ(1 + 1
k),

with Γ(z) =
∫∞

0
xz−1e−xdx.

fDepart(D) = E
(
CDepart(D)

)
=

∫ ∞
0

∫ ∞
0

max{0, x+ y −D}fx(x)fy(y)dydx

=

∫ D

0

∫ ∞
D−x

(x+ y −D)fx(x)fy(y)dydx

+

∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx.

Let us first consider the second integral in the last expression:∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx =

∫ ∞
D

fx(x)

∫ ∞
0

(x−D + y)fy(y)dydx

=

∫ ∞
D

(∫ ∞
0

(x−D)fy(y)dy +

∫ ∞
0

yfy(y)dy

)
dx

=

∫ ∞
D

(
x−D + λyΓ

(
1 +

1

ky

))
fx(x)dx

=

∫ ∞
D

(
λyΓ

(
1 +

1

ky

)
−D

)
fx(x)dx+

∫ ∞
D

xfx(x)dx

=

(
λyΓ

(
1 +

1

ky

)
−D

)
e−(D

λx
)
kx

+

∫ ∞
D

kx

λkxx
xkxe−(x

λx
)
kx

dx.

Consider this last integral,
∫∞
D

kx
λkxx

xkxe−(x
λx

)
kx

dx = kx
λkxx

∫∞
D
xkxe−(x

λx
)
kx

dx. By substituting u =(
x
λx

)kx+1

and du
dx = (kx + 1)

(
x
λx

)kx
, we get:∫ ∞

D

xkxe
−xkx
λx dx =

λkx+1
x

kx + 1

∫ ∞
(D
λx

)
kx+1

e−u
kx
kx+1

du

=
λkx+1
x

kx + 1

− (kx + 1)Γ
(

1 + 1
kx
, u

kx
kx+1

)
kx

u=∞

u=(D
λx

)
kx+1

=
λkx+1
x

kx
Γ

1 +
1

kx
,

((
D

λx

)kx+1
) kx
kx+1

= λxΓ

(
1 +

1

kx
,

(
D

λx

)kx)
.

Where the third equality follows because Γ(a, b) is defined as
∫∞
b
ta−1e−tdt, so Γ(a,∞) = 0, and

thus −
(kx+1)Γ

(
1+ 1

kx
,u

kx
kx+1

)
kx

∣∣∣∣∣∣
u=∞

= 0. Now in total we have:

∫ ∞
D

∫ ∞
0

(x+ y −D)fx(x)fy(y)dydx =

(
λyΓ

(
1 +

1

ky

)
−D

)
e−(D

λx
)
kx

+ λxΓ

(
1 +

1

kx
,

(
D

λx

)kx)
.

82

By making the same substitution as shown above and making use of the known cumulative dis-
tribution function, we get the expression for the remaining integral:∫ D

0

∫ ∞
D−x

(x+ y −D)fx(x)fy(y)dydx =

∫ D

0

fx(x)

(∫ ∞
D−x

(x−D)fy(y)dy +

∫ ∞
D−x

yfy(y)dy

)
dx

=

∫ D

0

fx(x)

(
(x−D)e

−
(
D−x
λy

)ky
+

ky

λ
ky
y

∫ ∞
D−x

ykye
−
(
y
λy

)ky
dy

)
dx

=

∫ D

0

[
(x−D)e

−
(
D−x
λy

)ky
+ λyΓ

(
1 +

1

ky
,

(
D − x
λy

)ky)]
fx(x)dx.

Because of the dependency of the gamma function on x, it is unlikely an analytical expression can
be found for the above integral. Now fDepart is as follows:

fDepart(D) =

(
λyΓ

(
1 +

1

ky

)
−D

)
e−(D

λx
)
kx

+ λxΓ

(
1 +

1

kx
,

(
D

λx

)kx)

+

∫ D

0

[
(x−D)e

−
(
D−x
λy

)ky
+ λyΓ

(
1 +

1

ky
,

(
D − x
λy

)ky)]
fx(x)dx.

A.2 Transfer Action

A.2.1 Exponential distribution

fDepart(D) = D +

∫ ∞
0

∫ ∞
0

1{X + Y > D} T
m
fx(x)fy(y)dxdy

= D +
T

m

[∫ D

0

∫ ∞
D−x

fx(x)fy(y)dydx+

∫ ∞
D

∫ ∞
0

fx(x)fy(y)dydx

]
.

Consider the first integral:∫ D

0

∫ ∞
D−x

fx(x)fy(y)dydx =

∫ D

0

fx(x)

[∫ ∞
D−x

fy(y)dy

]
dx

=

∫ D

0

fx(x)e−(D−x)λy

=
λx

λy − λx
(
e−Dλx − e−Dλy

)
.

Consider the second integral:∫ ∞
D

∫ ∞
0

fx(x)fy(y)dydx =

∫ ∞
D

fx(x)dx

= e−Dλx .

So in total we get:

fDepart(D) = D +
T

m

[
e−Dλx +

λx
λ− y − λx

(
e−Dλx − e−Dλy

)]
= D +

T

m

[
(λy − λx) e−Dλx

λy − λx
+
λx
(
e−Dλx − e−Dλy

)
λy − λx

]

= D +
T

m

λye
−Dλx − λxe−Dλy
λy − λx

.

83

A.2.2 Weibull distribution

fDepart(D) = D +
T

m

[∫ D

0

∫ ∞
D−x

fx(x)fy(y)dydx+

∫ ∞
D

∫ ∞
0

fx(x)fy(y)dydx

]
.

Consider the first integral:∫ D

0

∫ ∞
D−x

fx(x)fy(y)dydx =

∫ D

0

fx(x)

[∫ ∞
D−x

fy(y)dy

]
dx

=

∫ D

0

e

(
D−x
λy

)ky
fx(x)dx.

This is not further integrable. Consider the second intergral:∫ ∞
D

∫ ∞
0

fx(x)fy(y)dydx =

∫ ∞
D

fx(x)dx

= e−(D
λx

)
kx

.

So in total we have:

fDepart(D) = D +
T

m

∫ D

0

e

(
D−x
λy

)ky
fx(x)dx+ e−(D

λx
)
kx

.

B Convexity of goal function

We will prove fDepart is a convex function by showing the second derivative is bigger than 0.

E (C(D))) =
λx

λy(λx − λy)

(
e−λyD − e−λxD

)
+

1

λx
e−λxD +

1

λy
e−λxD

d

dD
E(C(D)) =

λx
λy(λx − λy)

(
λxe
−λxD − λye−λyD

)
− λx
λy
e−λxD − e−λxD

d2

dD2
E(C(D)) =

−λ3
xe
−λxD + λxλ

2
ye
−λyD

λy(λx − λy)
+
λ2
x

λy
e−λxD + λxe

−λxD

=
−λ3

x + λ2
x(λx − λy) + λxλy(λx − λy)

λy(λx − λy)
e−λxD +

λxλ
2
y

λy(λx − λy)
e−λyD

=
λxλy

(
e−λyD − e−λxD

)
λx − λy

.

If λx ≥ λy, then e−λyD − e−λxD ≥ 0 and λx − λy ≥ 0. If λx < λy then e−λyD − e−λxD < 0 and
λx − λy < 0. So the second derivative is strictly positive, so the function is convex.

C Piecewise linearization algorithm

Now the matrix I determined by the algorithm determines the break points resulting in the smallest
squared error.

84

Algorithm 1 Algorithm used to generate piecewise linearization

1: for i = 1 to n do
2: E(i, i) =∞
3: for j = i+ 1 to n do

4: ai,j =
(j−i−1)

∑j
k=1 xkyk−(

∑j
k=1 xk)(

∑j
k=1 yk)

(j−i−1)
∑j
k=1 x

2
k−(

∑j
k=i xk)

2

5: bi,j =
∑j
k=i yk−ai,j

∑j
k=i xk

j−i+1
6: Ai,j = ai,j , Bi,j = bi,j
7: E(i, j) =

∑j
k=1(yk − ai,jxk − bi,j)2

8: end for
9: end for

10:

11: for j = 1 to n do
12: for t = j to T do
13: F (j, t) =∞, I(j, t) = 0; , Xj,t

14: end for
15: F (j, 1) = E(1, j)
16: I(j, 1) = 1
17: X(j, 1) = 0
18: for t = 2 to min{j − 1, , T} do
19: F (j, t) =∞, I(j, t) = 0, X(j, 1) = 0
20: for i = t to j − 1 do
21: k = I(i, t− 1)
22: if k 6= 0 and A(k, i) 6= A(i, j) then

23: x = B(k,i)−B(i,j)
A(i,j)−A(k,i)

24: if xmax{1,i−1} ≤ x ≤ xmin{n,i+1} and F (j, t) > F (i, t− 1) + E(i, j) then
25: F (j, t) = F (i, t− 1) + E(i, j)
26: I(j, t) = i
27: X(j, t) = x
28: end if
29: end if
30: end for
31: end for
32: end for

85

	Introduction
	Company background
	Planning process and requirements
	Problem motivation
	Research goal
	Outline

	Literature review
	Train scheduling
	Delay distributions
	Buffer allocation
	Stochastic Programming
	Scenario construction
	Sample Average Approximation

	Expected Passenger Travel Time
	Action expressions
	Depart action
	Dwell action
	Transfer action

	Excess journey time
	Deriving excess journey time expressions
	Modeling in previous research
	New way of modeling

	Objective
	Constraints

	Piecewise linearization
	Piecewise linearizing a function
	In the context of optimization
	Algorithm

	Numerical integration
	Simpson's integration rule
	Monte-Carlo integration
	Integrate linearized function

	Error bounds for piecewise linear approximation
	Error bounds for Weibull goal function
	Determining Lipschitz constants
	Criteria for the integral of absolute difference
	Criteria for integral of squared difference
	Multivariate case

	Model without independence assumption
	Goal function
	Departing cost
	Riding cost
	Transfer cost

	Applying to goal function
	Implementing as a linear program
	Linearizing a max function
	Linearizing an indicator function
	Goal function
	General sized networks

	Heuristic

	Results
	Results for the independent model
	Comparing the newly developed spreading method to the model in literature
	Threshold analysis
	Analyzing the solution in terms of inter arrival times
	Computational analysis
	Error bounds
	Some remarks regarding the TRANS toedeler

	Result independence assumption

	Conclusions and future research
	Appendices
	Goal function
	Depart action
	Exponential distribution
	Weibull distribution

	Transfer Action
	Exponential distribution
	Weibull distribution

	Convexity of goal function
	Piecewise linearization algorithm

