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Guido Kuijper

Abstract: This study presents the design of a robust estimator C to apply on biometric data analysis
involving facial recognition. This functional estimates the covariance matrix of a multivariate Gaussian
distribution by seperately estimating the matrix elements. It is first mathematically derived, then classified
by means of its efficiency at Gaussian distributions and finally applied to both synthetic and real biometric
data. The synthetic experiments show the C-estimator performs in between the sample covariance and the
MCD estimator. The test with the real data shows clear improvement of the robust C-estimator as it was
able to link two faces for which the sample covariance estimator was not able to.

1 Introduction

Nowadays one of the fields that employ statistical
methods the most is the field of biometrics. This
application is referred to as biostatistics and within
biometrics, biostatistics is often applied to genetical
data to model the influence of groups of genes. [1]
Another application of biostatistics is in the field of
computer vision and in particular the field of facial
recognition. This paper complements the method
presented in Spreeuwers [2] and improved in Spreeuw-
ers [3]. These papers use a classifier based distinction
between the classes and class members, where it is
assumed both the classes and members of a class are
normal distributed.

The covariance matrices of these multivariate dis-
tributions are estimated, which are then used in a
LDA-based classification. The estimation of covari-
ance matrices is notoriously susceptible to outlier
interference [4]. To solve this problem, one can turn
to robust statistics. This branch deals with outliers
and corrupted data. Robust estimation has seen a
good amount of mathematical development start-
ing from Hampel [5], who defined the concept of
robustness from the influence function, called the
influence curve back then, and some measures that
can be derived from it. A public start on the ro-
bust estimation of covariance matrices was made by
Gnanadesiken and Kettenring [6]. Maronna [7] was
the first to formulate robust M-estimators in this con-
text. Subsequently many approaches to this problem
were described, including the minimum determinant
covariance (MCD) [8], projection methods [9] and
computing the smallest volume ellipsoid over the set
of data [10].

Overview : This paper starts with a short overview
of important definitions in robust statistics in section
2, the description of the often-used MCD estimator in
section 3 and in section 4 the design of the C-estimator
is presented. Then in section 5 experiments are done
with synthetic data that model often occuring con-
taminations in facial datasets. A score evaluation of
real facial data can be found in section 6. The paper
ends with a discussion of the results in section 7.

2 Robust Statistics

This section was written as a summary of Hampel
et al [11], with the intention of introducing some im-
portant concepts that are going to be discussed in
this paper. One of the most important definitions
in robust statistics is the definition of the influence
function (IF).

Definition : The influence function of functional T
at distribution F is given by:

[F(2;T, F) = lim T((1—t)F +tA,) — T(F)

t—0 t

The influence function is therefore a directional direc-
tive from T at F to T at A, with the latter denoting
the probability measure that puts mass 1 at the point
x. Heuristically, the interpretation of the influence
function is that it is a quantity of how much the
estimator T becomes corrupted when sample x is con-
tamined with A,.

The influence function is chiefly a heuristic tool. It
also is at the basis of a few other statistical tools and
quantities, such as the gross-error sensitivity:
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Definition : The gross-error sensitivity v of a fune- 3 M CD Estimator
tional T at distribution F is given by:
Definition: Consider a set of data X = [z, ..., 4]

Y(T,F) =sup|IF(x;T, F)|

If this quantity is finite, we call the estimator B-robust
at F. Intuitively, this means no contamination at any
sample results in an unbounded error in the estima-
tion. It is a desirable property for an estimator to be
B-robust.

Theorem :
equals:

The asymptotic variance of T at F

V(T,F) = /IF(:E;T, F)2dF(z)

This gives a way to quantify the variance of the es-
timator in the asymptotic domain, which relies on
the notion of the influence function. The asymptotic
variance is bounded by the inverse of the Fisher infor-
mation. The Fisher information is defined as:

Definition : The Fisher information at Fy equals:

2
F(fx,0) /fxe (3ln];);9( )) dx

It provides a measure of how much information a
random variable carries of a parameter 6 that its dis-
tribution depends on.

The fundamental bound of the asymptotic variance is
given by the Cramer-Rao inequality:

_1
Ir(fx,0)

Using this bound, we can define the asymptotic effi-
ciency of an estimator:

V (T, F) >

Definition : The asymptotic efficiency of an estima-
tor T of a parameter 6 at distribution F is given by:
Eff = (V(T,F)Ir(fx,0) "

Lastly we have an independent quantity named the
maximum breakdown point (p). This is the maximum
amount of observations before the estimation can go
arbitrarily wrong. Intuitively it makes sense that p
can never be greater than 0.5, as in that case the
outliers would be considered the data.

with each z; consisting of p different observations.
Therefore X is a n x p matrix. Using this dataset we
can derived the Malahanobis distance [12] which is
defined to be the set of p-dimensional points which
satisfy:

MD(z)=+/(z —2)IS~(z —7) = \/X,Q),o7975

Where Z is the sample mean and S the sample co-
variance. With x2 the a-quantile of the chi-squared
distribution is meant.

The MCD has a parameter h. For the h observa-
tions that minimize the determinant of the sample
covariance matrix S, we can derive two estimates:

1. fip is the sample mean of these h observations.

2. % is the corresponding covariance matrix (mul-
tiplied with a scalar to be consistent).

These estimates yield another distance metric:

4 = /(@ — )55 (z — fio)

This distance d; is then used to find the MCD esti-
mates for location and scatter:

Z?:1 W(df)m,

ﬂMCD = n

S W(d3)
. 1 — . R
YMcp = e Z; W (d3)(z; — fiiep) (zi — fvep)’

The constant c is for consistency.
W is a weighting function and is defaulted to

W(d2) =1 (d2 < 1/X;2;,0,975> in MATLAB [8].

Properties : The MCD estimator was shown to be
B-robust [13]. In addition, the maximal breakdown
value is (n-p+2)/2 Vh, (n+p)/2 <h < (n+p+1)/2.
A common issue with robust estimators is the trade-off
between asymptotic variance/efficiency and robust-
ness [11]. In the case of the MCD estimator this issue
manifests in the choice for h. By denoting the mass
of the data not determining the MCD by 0 < 8 < 1,
Croux and Haesbroeck [13] demonstrated that the
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efficiency for Gaussian distribution decreases if 3 in-
creased. However, for increasing amounts of observa-
tions p, the efficiency rises. They proved for the MCD
estimator:
lim Eff(Synep,i;, @) =1-8 Vi>1,j<p
pP—>0
In addition, it was shown that a class of estimators,
which include Sniep, have asymptotically the same
properties as [14]. Lastly, the FAST-MCD algorithm
was developped by Rosseeuw and Van Driessen [15].
This theoretical clarity and application support of the
MCD estimator make it an attractive choice.

4 (-Estimator

A second choice for a robust estimator of covariance
is the C-estimator. This estimator was proposed by
Gnanadesikan and Kettenring [6]. They propose to
estimate each seperate element in the covariance ma-
trix based on the following identity, valid for random
variables X and Y:

Cov(X,Y) = % (var(X +Y) —var(X - Y))

By plugging in a robust estimator of scale, denoted
by S(X), we can estimate each covariance by:

C(X,Y) = i (S(X+Y)? - S(X -Y)?)

This estimator has some problems:

e A covariance matrix is necessarily positive-
semidefinite [16].  However this estimator
does not automatically produce a positive-
semidefinite matrix. Therefore the shape el-
lipsoid may be hyperboloid.

e As far as the author knows, no robustness prop-
erties have been derived for this estimator.

The rest of this section is devoted to solving these
problems:

Conditioning the C-estimator : A covariance ma-
trix is only positive semi-definite if one of the random
variables is linearly dependent on another. Therefore,
for data where one does not expect linear dependence
between samples, we will introduce a scheme to en-
force a positive definite (PD) covariance matrix. We
use the following theorem, by Sylvester [17]:

Theorem 1. : A matriz M € R™™™ is PD if and only
if all of its principle minors are PD and det(M) > 0.

This theorem is also called Sylvester’s criterion. This
criterion is used to build the matrix in a way that
resembles mathematical induction:

Theorem 2. : A matriz M € R'™! is PD if and only
if det(M) > 0.

The covariance matrix of a single variable X is given
by the variance of X or cov(X,X). As cov(X,X) > 0,
a covariance matrix of one variable is always PD.

Now suppose we have n variables and the covari-
ance matrix of p variables with p < n is given by
A, € RP*P and det(A,) > 0. We have then that the
covariance matrix of p+1 variables has the following
form: 1 B

EP = |:BT D:|
With 3, the sample covariance matrix of p41 vari-
ables. B is given by C(X;, X,41) Vi <p+1 and B
is given by C’(XPH, Xp+1), T denoting the transpose.
Notice that if det(3,) > 0, the estimated covariance
matrix will be PD.
For the determinant of a matrix M, the following
identity is the case:

A B

det {C D

} = (D +1)-det(A) — det(A + BC)

For C = BT we have an expression for det(3,). An-
other determinant identity, also by Sylvester [18], is
as follows:

det(A + BC) = det(A) - det(I,,, + C- A~ - B)
For C' = BT we substitute this identity in 4, obtaining:
A B}

det (i}p) BT D

= det(A) ((D+1) —det(I,, + BA™'B))

det [

We require det(3,) > 0. Therefore the following in-
equality needs to hold:

det(A) (D +1) > det(A)det(I,, + BTA™1B)
As det(A) # 0, we can divide over it to obtain.
(D +1) > det(I,, + BTA™'B)
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As B is a row vector and B” a column vector, we are
taking the determinant over a number, which is the
number itself:

(D+1)>1+BTA"'B—-D>BTA"'B

Therefore if we multiple D with a scalar ¢, we can
enforce our estimated matrix to be PD. We lose unbi-
asedness for the diagonal elements of the however. By
minimizing c, this problem can be partially circum-
vented.

Robustness properties of the C-estimator To
establish robustness properties, as suitable candidate
for the robust scale estimator S(x) has to be defined
first. An attractive candidate is the @Q),, estimator, as
described by Rosseeuw and Croux [19].

Qn = d(‘.’bz —{Ej‘;’i < ])(k)

Where z;,z; are samples , (k) denotes the k-th order
statistic and d is a consistency factor equal to 2.2219
at Gaussian distributions.

This estimator was shown to have a breakdown
point of 50% of the samples. Additionally, it has an
efficiency at Gaussian distributions of 82.27%. The
functional of this estimator at a distribution F is
given by:

Q(F) = inf <s > 0;/F(t +d7s)dF(t) > 5/8)

The influence function of the estimator at distribution
F is given by:

1/4—F(x+d )+ F(x —d 1)

IF(z;Q,F)=d [ fly+d=)f(y)dy

With f the density of F.
This jnﬂuence function describes a smooth curve. Now
the C-estimator can be defined as follows:

C(X,Y) = i (@ (X +7)* ~Qu (X ~7)?)

To establish robustness properties of the C’—estimator,
we will need to establish its influence function. The es-
timator is dependent on two different variables, which
means that we have to determine the partial influence
functions instead, denoted by PIF(x; T, F). These

partial influence functions were introduced by Hampel
et al [11] in the form of influence functions for tests.
Partial influence functions in their current form were
defined by Pires and Branco [20] However, the partial
influence functions PIF(x;Q,,F) and PIF (yv;Q.,.F) are
hard to directly evaluate, as @,, is not linear. There-
fore we will perform a change of variables: let Z = X
+ Y and W = X - Y. The C-estimator now reads as
follows:

(X, Y) = 1 (QuZ(X.Y))? - Qu(W(X,Y)))

Notice Z and W are normally distributed.
If X, Y ~N(0,1), Z~ N(0,04) and Z ~ N(0,0_).

Here 0. = /2+2-cov(X,Y). As the influence
function is special case of a Gateaux derivative [21],
we are allowed to use the chain rule if the influence
function is continuous. Therefore:

1

5 'Q(Fz)'IF(Z;anFz)

' Q(Fw) : IF('LU; an Fw)

PIF(zC,F,) =
. 1
PIF(w;C, F,) = —3

Where Q(F) denotes the estimator functional acting
on a distribution F.

Both partial influence functions are B-robust, as the
gross-error sensitivity is finite.

Theorem 3. : v(C,®) = sup, |PIF(z;C,®)| and
~(C,®) = sup, | PI1F (y; C,®)| are finite.

Proof. : As z = x4y is normally distributed, ﬁ
is distributed N(0,1), therefore PIF(%;C’,@) =

PIF(z; C,F,). As the latter is a bounded function,
set x =0ory=0. O

Intuitively this is correct, since PIF(z;C’,FZ) con-
sists of possible point contaminations in x or y, but
any point contamination will be the same as a point
contamination in z.

Asymptotic Properties : As we aim to evaluate
the C-estimator for the standard normal distribution
®, we need a change of variables. In a way analogous
to the proof of 3, it can be seen that ﬁ and - are

both distributed N(0,1).
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Using this change of variables, we obtain:

PIF (z;é@) = %-Q(@-IF (Z;Qn,<1>>
o4+ o+
PIF (w_;éxb) = —%-Q@) IF (;i;@n,@>

Note that Q(®) = 1 so it is no longer considered in
the derivation.

We use the definition of asymptotic variance as given
by Pires and Branco [20] which is to be evaluated for
the C-estimator at a standard normal distribution for
X and Y, with the additional case that we have as
many samples for X as for Y:

V(e;C,01,®5) = 2-Vi(c;C, 0y, 0y)
+2 - Va(cov; C, @1, @)

Where the partial asymptotic variances V; are given
by:

Vi(; O, By, By) = / IFi(1;C, @, ®,)2d%; (x)

We end up with the following expression for the asymp-
totic variance:

2
V(ie;C, @y, ®y) = 1/11? (Z;é, <I>> dd (Z)
2 lo oy
1 W A 2 w
() ()
2 o_ o_
V can now be evaluated with help of numerical integra-
tion. Notice that V in fact depends on the covariance
that is being estimated. Therefore we now have to
plot V versus the covariance. This plot can be found

in figure 1. By a probatilistic corollary of the Cauchy-
Swartz inequality, we have:

|Cov(X,Y)|? < Var(X) - Var(Y)

Since we are seeking the variance at ®, the variances
of X and Y are 1 and —1 < Cov(X,Y) < 1.

The asymptotic variance appears to be almost con-
stant over the whole covariance spectrum. The value
is about 0.6089, which is very close to the asymptotic
variance of @,, as reported by Croux and Rosseeuw
[19].

0.608930635

0.608930634

0.608930633

0.608930632 K

Variance

- 0.608930631 [
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0.60893063 1

0.608930629 ﬂ N ) |

0.608930628
-1

-0.5 0 0.5 1

Covariance

Figure 1: Asymptotic Variance versus Covariance

To evaluate the efficiency at Gaussian distributions, a
different kind of Fisher information is required: the
joint Fisher information [22]. This quantity is depen-
dent on the joint density function fx y(z,y) and the
parameter ©. It is defined to be:

Jln 2
In(fxe) = | /X Y (W) dndy

In our case, the parameter © is given by Cov(X,Y).
Note that Cov(X,Y) = Cov(Y,X). Since the Fisher in-
formation gives a score of the amount of information a
random value carries about an unknown parameter ©,
an observable value in this case carries twice as much
information since it has a score on Cov(X,Y) and on
Cov(Y,X). The efficiency at Gaussian distributions is
then given as follows:

Eff(¢; C, ®, ®) = L .
(QIF(fX,Y,cov(X,Y))V(C§ C, oy, ¢’2))
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Figure 2: Gaussian Efficiency versus Covariance

This can be numerically solved as well and figure 2
is obtained. We see that the C-estimator has a high
efficiency for low covariance (82.11% at the peak) but
quickly loses efficiency when estimating higher covari-
ances. 82.11% is very close to the Gaussian efficiency
of the @Q,, estimator, which sits at 82.27%. By remov-
ing the strange peaks from figure 1, we get a peak
efficiency of 82.28%.

5 Sample Asymptotic Variance

In the context of facial recognition, we would like
to find out the performance of the MCD- and C-
estimators in comparison to the normal sample co-
variance matrix S. To obtain this knowledge, various
experiments with synthetic data have been performed.
In lieu of the synthetic data portraying as actual facial
data, the PD-enforcing scheme has not been utilised.
This has four reasons:

1. Facial data often contains pixels that are lin-
early dependent on their neighbour pixel, espe-
cially at the edges of the pictures. This results
in the actual covariance matrix being positive
semi-definite instead of positive definite. A PD-
enforcing scheme could therefore distort the es-
timation quite heavily.

2. Facial data generating positive semi-definite ma-
trices result in determinants of zero, which there
is no inverse, which is needed for the scheme.

This can be circumvented by taking Moore-
Penrose pseudo-inverses [23], however when the
author attempted this work-around, the matrix
remained singular to working precision.

3. The scheme requires more processing time.

4. Lastly, in none of the synthetic datasets that pa-
rameters were estimated from, did it occur that
the diagonal elements had to be changed. No
case was noted where the C-estimator did not
generate a positive (semi)-definite covariance
matrix.

In this experiment, we attempt to simulate possible
dataset errors. The first of these is simply a collec-
tion of random outliers, which happen if for example
a rogue picture finds its way in the database. The
second kind of error that is simulated is an different
distribution that is mixed through the data that is to
be estimated. This happens if for example a series of
pictures is taken with bad lighting.

We ask the following questions that we hope to an-
swer with the two fprms of simulations of database
contamination:

1. Will the C-estimator perform worse under
higher covariance? Figure 2 predicts worse re-
sults if the covariance is higher. To test this, we
will use 100 datapoints and 10 outliers. The out-
liers are there because the the sample covariance
is optimal otherwise and we are interested in
robust estimation. We will subsequently higher
the covariance from 0 to 0.5 to 0.99.

2. Will the MCD estimator perform worse under
influence of more outliers, as predicted by Croux
and Haesbroeck [13]. We use the outlier distri-
bution to answer the question, as in reality, one
is more likely to encounter a large amount of
similarly contaminated samples than encounter
a database with many single outliers.

3. Which estimator deals the best with very con-
taminated samples? For this, we use the single
outliers set-up and increase the radius of the
circle on which the outliers are placed, thus
steadily making the outliers worse and worse.
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5.1 Single Outliers Set-Up Table 9: Syvep Average Table 10: Syep Variance
The first synthetic test was with n randomly gener- 1.15 | -0.03 0.05 | 0.02
ated data following a normal distribution N(0,1) with -0.03 | 1.17 0.02 | 0.04

covariance 0. Then out outliers were added to the
total data, the outliers were generated as points on a
circle with radius R. Then the covariance matrix was Table 11: C' Average Table 12: ¢ Variance

determined in three different ways:
1.50 | -0.04 0.06 | 0.03

1. The sample covariance S 004 | 1.34 0.03 | 0.04
2. The MCD covariance EMCD

3. The C-estimator covariance C. Values: n =100, R = 30 and out = 10.
This process was repeated 100 times, every time with
new random data and new outliers. The average of
the covariance matrix elements are shown below, as 46.27 | -0.004 0.02 | 0.01

are their variances. -0.004 ‘ 38.05 0.01 | 0.02

Table 13: S Average Table 14: S Variance

Values: n = 100, R = 10 and out = 10.
Table 15: ilMCD Average Table 16: ilMCD Variance

Table 1: S Average Table 2: S Variance 1.18 | 0.00 0.05 | 0.02
0.02 | 5.02 0.01 | 0.02

Table 17: C Average Table 18: C' Variance

Table 3: f]MCD Average Table 4: flMCD Variance 1.54 | 0.01 0.05 | 0.03
0.01 | 1.32 0.03 | 0.05
1.15 | 0.03 0.05 | 0.02
0.03 | 1.12 0.02 | 0.05

Then the non-diagonal elements of the actual covari-
ance are varied to 0.5 and then to 0.99, since 1 will
give a singular matrix. Values: n = 100, x = 0,

Table 5: C' Average Table 6: C' Variance o {015 015], out = 10.
1.44 | 0.03 0.05 | 0.02
0.03 | 1.32 0.02 | 0.06 Table 19: S Average Table 20: S Variance
5.96 | 0.47 0.02 | 0.01
Values: n = 100, R = 20, out = 10. 0.47 | 5.08 0.01 | 0.02
Table 7: S Average Table 8: S Variance Table 21: fJMCD Average Table 22: f)MCD Variance
21.06 | -0.02 0.02 | 0.01 1.16 | 0.59 0.05 | 0.03
-0.02 | 17.44 0.01 | 0.01 0.59 | 1.18 0.03 | 0.05
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Table 23: C Average Table 24: C' Variance Table 35: C Average Table 36: C' Variance
1.47 | 0.73 0.05 | 0.03 1.47 | 0.23 0.05 | 0.02
0.73 | 1.38 0.03 | 0.06 0.23 | 1.44 0.02 | 0.05
Values: n = 100, 4 = 0, ¥ = [019 0?9], out = Values: n = 100, fiou; = (5,5), Xour = [(1) ﬂa out
10. = 20.
Table 25: S Average Table 26: S Variance Table 37: S Average Table 38: S Variance
5.95 | 0.90 0.02 | 0.02 4.54 | 3.52 0.17 | 0.06
0.90 | 5.04 0.02 | 0.02 3.52 | 4.51 0.06 | 0.18

Table 27: XA)MCD Average Table 28: ﬁ)MCD Variance Table 39: f]MCD Average Table 40: f]MCD Variance

1.16 | 1.15 0.05 | 0.05 1.31 | -0.01 0.05 | 0.02
1.15 | 1.16 0.05 | 0.05 -0.01 | 1.33 0.02 | 0.07
Table 29: C' Average Table 30: C' Variance Table 41: C' Average Table 42: C' Variance
1.45 | 1.40 0.06 | 0.06 1.98 | 0.49 0.09 | 0.03
1.40 | 1.37 0.06 | 0.06 0.49 | 2.01 0.03 | 0.10
5.2 Outlier Distribution Set-Up Values: n = 100, pout = (5,5), Sour = (1) ﬂ, out

To simulate contamination of the database with an- = 40.
other set of data, we will once again vary the amount
of outliers, but this time they are distributed following
N(/J/outa Eout)-

1 0

Values: n = 100, pour = (5,5), Tout = {0 1], out 6.12 | 5.13 0.11 | 0.06
—10. 5.13 | 6.11 0.06 | 0.15

Table 43: S Average Table 44: S Variance

Table 31: S Average Table 32: S Variance Table 45: i]MCD Average Table 46: f)MCD Variance
3.07 | 2.11 0.11 | 0.05 1.74 | 0.01 0.08 | 0.04
2.11 | 3.11 0.05 | 0.08 0.01 | 1.73 0.04 | 0.08

Table 33: EMCD Average Table 34: EMCD Variance Table 47: C Average Table 48: C' Variance

1.14 | 0.00 0.04 | 0.01 3.07 | 1.04 0.18 | 0.05
0.00 | 1.14 0.01 | 0.04 1.04 | 3.06 0.05 | 0.15
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6 Real Data Test

Spreeuwers [3] designed a classifier to decide if a probe
sample X belongs to the same class c¢; as a gallery
sample Y. This classifier uses linear discriminant
analyses (LDA) [24] as well as principle component
analysis (PCA). The classifier needs a within-class-
MEAN [y, & total-mean py and a within-class and total
covariance matrix respectively denoted as C,, and Cj.
From these matrices and vectors, a statistic is derived
that assigns a value to the samples X and Y. It is also
possible to enter more probe samples or more gallery
samples or both. If the statistic has a value above 1,
the chance that the samples are from the same class
is higher than the opposite and vice-versa for a value
below 1. If the statistic assigns 1, the chance that the
samples are from the same class is just as high as the
chance that they are not.

The test: 100 pictures were taken from a database,
of which 1 was an obvious outlier. These pictures had
87x75=6525 pixels ranging from 0 to 255 depending
on their black-white scale. These 100 pictures were
used to determine two covariance matrices to estimate
Cy, one normal sample covariance matrix and the
other the matrix generated by the robust C-estimator.
Remark: it took 8 hours to process the robust estima-
tor. There exists a faster algorithm for the estimation
of @, made by Croux and Rosseeuw [25]. The author
recommends using this version, it improves the time
from O(n?) to O(n log(n)). Remark 2: The MCD-
estimator was not used here as the code required too
many samples.

Then a selection of 20 pictures was made, 19 of which
belonged to the same person and 1 obvious outlier.
These 20 pictures were used to estimate Cy,. Similarly
to estimating C}, there were a robust version and a
non-robust version of this covariance matrix too. In
addition, anywhere where a location estimate was
needed, the median was used.

Subsequently, 2 pictures of the same person were fed
to the classifier, one as the probe and one as the
gallery. The classifier first assigned a score on basis
of the non-robust covariance matrices, then assigned
a score on basis of the robust covariance matrices.
Result: The score, using non-robust matrices:
0.00459. Using robust matrices: 1015.98.

7 Discussion

The theoretical part of the paper had 4 main results:
1. Conditioning the estimate to become PD;
2. Proving the C-estimator is B-robust;

3. Evaluating the asymptotic variance of the C-
estimator at Gaussian distributions;

4. Evaluating the Gaussian efficiency of C-
estimator.

The first result does not carry a lot of importance:
as discussed in section 5, it is not very useful in the
context of facial recognition. However the result is
still valid for possible other cases where an estimate
has to be PD and the statistician is willing to let go
of unbiasedness for the diagonal elements.

The second result is necessary to even consider using
the C-estimator. Without robustness properties, we
shall not consider it as a candidate. What this result
is still lacking however is a concrete value for the
gross-error sensitivity to see exactly how well the
estimator resists point mass contaminations. This is
still an open question.

The third result is in agreement with the findings of
Croux and Rosseeuw. We can conclude that we can
build a robust estimator that achieves a V(C, ®) of
0.6089 for every covariance and not only for variance
alone. It is worthwhile to research further applications
of this estimator. The small peaks are a bit strange,
the author suspects numerical computing errors, but
for a flatlined asymptotic variance, the results fully
agree with Croux and Rosseeuw.

The fourth result has room for interpretation. For un-
correlated random variables X and Y, the C-estimator
is virtually the same as @),, as it can estimate their
variances with the same high efficiency. However, as
soon as X and Y become correlated, the efficiency
drops heftily and the estimator becomes fairly weak.
This partially has to do with very high values for
the Fisher information on covariances that go to 1
or -1. On the topic of the Fisher information, it
turned out we had to consider Cov(X,Y) but also
Cov(Y,X). It evokes a question if we have to consider
all parameters ©; that have the same value when
evaluating the (joint) Fisher infomation.

The experimental part of the paper asked 3 ques-
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tions, which can now be answered qualitatively. The Tolerance ellipse (97.5%)
C-estimator did not perform worse when the covari- ‘ ‘ ‘ ‘
ance was increased. From tables 6, 24 and 30, we can
see that the variance only marginally increased. In
fact, increasing the covariance did not make any of
the three estimators perform worse than they already
did.

X2

The MCD estimator indeed showed an increase in ol

variance when the amount of outliers was increased.

However, the other two estimators performed far 2t

worse and had a much larger increase in variance.

It makes sense that all estimators suffer from an 4r

increase in contamination, but the relation between 4 2 0 2 4 6

the data-outlier ratio has not been considered for the
C-estimator in the theoretical section and could make
an interesting follow-up research.

Then from tables 1 to 18, we can clearly see that the
MCD-estimator performs best under progressively
worse outliers. Even for R = 30, the average covari- )
ance matrix did almost not differ from the previous
two averages. The sample covariance matrix becomes I o °
no longer a valid choice while the C-estimator does

not suffer much but permanently starts too high. Fig- X 2
ure 3 and those above it show a visual representation L
of the ellips described by the different estimators for or
the covariance. 1F

2l
Lastly a very important conclusion must be drawn: 3t ‘
from this paper we can conclude that robust esti- 2 0 1 2 4 6
mation helps in the facial recognition branch of the
biometrics. Whilst the author was unable to im-
plement the MCD-estimator for the LDA-classifier Tolerance ellipse (97.5%)
test, the implementation of the C-estimator shows 7F ‘ ‘ ‘ e
immediately a positive result. The author however is 6l
aware that in practical cases, the test is ran multiple sl ©
times for many pairs of faces, same class or not. He al c
recommends starting here for future testing of robust . °© "o
estimates. o
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Figure 3: 97.5% confidence ellipses for (top to bot) S,
¢, MCD
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