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Abstract

Several NP-hard problems, e.g. 𝑘-means clustering, are solved very quickly and near optimality
for practical instances, even though there are known worst-cases from a theoretical perspective.
These worst-cases do not seem to appear in practice. There even is a saying; “Clustering is either
easy or pointless”, indicating that the difficulty of these problems is only a theoretical concern.
Several approaches to formalize this saying, by assuming that instances have a natural stability
property in practice, recently proved to be successful in closing the gap between theory and
practice.

In this thesis we look at the facility location problem, which is NP-hard. We add the 𝛾-perturbation
resilience assumption, which requires that the instance must allow small perturbations of all
costs in the instance without changing its optimal solution. Many instances in practice likely
already satisfy this assumption, so we focus on the theoretical impact of this assumption. We
found several consequences this assumption; local search algorithms will always result in the
optimal solution, for 𝛾 ≥ 3, and may not give the optimal solution for all 𝛾 < 3. We also show
that several greedy algorithms do not work either to solve the facility location problem with the
𝛾-perturbation resilience assumption, even for high 𝛾. A relation between this assumption and
approximation algorithms seems obvious, but we prove that this relation is false. Finally, we show
that, for small 𝛾, the existence of an efficient algorithm to solve the facility location problem with
the 𝛾-perturbation resilience assumption implies that RP = NP.
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1. Introduction

1 Introduction

In this thesis we look at the facility location problem. This is a hard problem, as further explained
in subsection 1.1, but the theoretical results for this problem show it to be more difficult than is
observed in practice [17]. To solve this contrast between the theoretical and practical difficulty,
we introduce the 𝛾-perturbation resilience assumption for the facility location problem (see
subsection 1.2): 𝛾-perturbation resilient instances of the facility location problem do not have
different optimal solutions when perturbed with small amounts. This assumption is somewhat
natural: we think that many instances already have this property in practice, yet it makes the
problem easier from the theoretical perspective. We will look into the consequences of making
this assumption. In the following two subsections we will go into more detail about the facility
location problem and the difference between NP-hardness in theory and practice, and we will
detail the contributions made in this thesis in the final subsection.

1.1 The facility location problem

In the facility location problem we have a finite set of customers and a finite set of locations
where we can open a facility. The goal of the facility location problem is to serve all customers
while minimizing the total cost. This requires that each customer is connected to exactly one
facility, which must be open. Thus, the key choice is which facilities to open and the secondary
choice is which customer connects to which open facility. For every customer-location pair we
have an associated cost, which we must pay if we we open a facility on that location and let the
facility serve that customer. We also have associated costs for every location, which we must pay
if we open a facility at that location. Thus, there is a tradeoff between opening many facilities
such that the customer-location costs stay low and opening few facilities such that the facility
costs are low. A common application of the facility location problem is determining where to
build e.g. warehouses or hospitals. For more details on the facility location problem, see Krarup
and Pruzan [20] or Melo et al. [25].

A lot of variants of this simple problem exist. For example, the uncapacitated facility location
problem, as described above, allows an arbitrary number of customers to connect to an open
facility. Thus, facilities must be very flexible, but this is not realistic for all application. The
capacitated facility location problem limits the number of customers to connect to an open facility.
This way you could, for example, limit a warehouse capacity to five customers. If the capacity
is reached, another facility needs to be opened to serve the remaining customers, either at the
same location or at another location. The metric facility location problem requires the customer-
location costs to be metric, making them behave like distances. This variant is suitable when
the distance or time used in a road network is important. The non-metric facility problem does
not restrict the customer-location costs, making it more suited for optimizing other types of
resources. Some facility location problem variants have per-customers demands and per-unit
customer-location prices, instead of just a single customer-location cost. This may not seem
useful on its own, but is useful when combined with e.g. the metric facility location problem, as
the demand and unit price formulation of the facility location problem allows more instances
when these prices must be metric. And, of course, these variants can usually be combined for
even more variants of the facility location problem [25, 32].

The facility location problem can also be seen as a variant of the 𝑘-means problem, but with
variable amount of cluster centers to open and costs depending on which cluster center you
open [11, 12, 24].

Even the simplest of the facility location problem variants – the uncapacitated metric facility
location problem, which we use in this thesis – is NP-hard, which implies there is no proof yet
that deterministic polynomial time algorithms exist for solving all possible instances [20, 25].
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The uncapacitated non-metric facility location problem is even NP-hard to approximate within a
factor 𝑂(log |𝐷|), where |𝐷| is the number of customers [28, 32], so even guaranteeing a good
solution is a hard problem.

The uncapacitated metric facility location problem, which we use in this thesis, is NP-hard to
approximate within a factor 1.463 [16]. On the other hand, there are approximation algorithms
that guarantee a solution within a factor 1.5 of the optimal solution [10].

1.2 NP-hardness in practice

Problems in computer science, e.g. the shortest path problem or the traveling salesman problem,
can be classified depending on how fast they can be solved, for the fastest algorithm which solves
them. So even if a problem A has a very slow algorithm, there could also be faster algorithms, so
A does not need to be classified corresponding with the slow algorithm. The most well known
complexity classes are P, meaning Polynomial, and NP, meaning Nondeterministic Polynomial.
If a problem A is in P, there is an algorithm that solves A in polynomial time, for any possible
instance of A. Problems in NP can be solved in non-deterministic polynomial time or, equivalently,
solutions to problems in NP can be verified in polynomial time given a proof of the solution [15,
27]. We often say a problem A in P is easy or that it has an efficient algorithm. On the other
hand, we call call a problem A hard or say that it has only inefficient known algorithms if A is
in NP. Other complexity classes also exist, for example we use complexity class RP, meaning
Randomized Polynomial, in this thesis. Algorithms for problems in RP can use random numbers,
so their output is not necessarily deterministic. An algorithm for some problem A in RP must
always answer no if the given instance of A has no as answer, and the algorithm must answer yes
with probability at least 1

2 if the answer is yes. [27].

Proving that a problem is at least as hard as other problems is usually done with reductions. A
reduction transforms instances of some problem B to an instance of some problem A such that the
answer to the instance of problem B is identical to the answer of transformed instance. This way,
if you have algorithm which can solve A, you can solve B by first running the transformation and
then solving the resulting instance of problem A. Thus, a reduction proves that problem B is at
least as hard as problem A [15, 27].

Cook showed that every problem in NP can be reduced to the boolean satisfiability problem [13],
making it the first so-called NP-complete problem. If you prove that an NP-complete problem is
in P, you have proved that P = NP. Likewise if you prove that an NP-complete problem is not in
P, you have proved that P ≠ NP. Thus, NP-complete problems can be seen as a characterization
of NP. Using a reduction from an NP-complete problem B to some other problem A in NP proves
that A also is NP-complete. Examples of NP-complete problems are the SAT, clique, traveling
salesman and knapsack problems [19]. The facility location problem is also NP-complete [20].

Despite all the research being done on those problems, to date no algorithms have been found to
solve these problems in deterministic polynomial time; the question “P = NP or P ≠ NP?” is
still open. For optimization problems, where the goal is to find the optimal solution, this is even
worse: some problems of approximation, where the goal is to find a solution with value within a
certain factor of the optimal solution, are still NP-hard, e.g. for the facility location problem and
traveling salesman problem [14, 16].

In practice these theoretical problems have turned out to be less important: heuristics and local
search algorithms often yield good results, even though they have worst cases on which they do
not give good results or take exponential time [30]. This even gave rise to the saying “Clustering is
either easy or pointless” [8]. Further examples are 2-OPT for the traveling salesman problem [18]
and the simplex algorithm [30]. It seems as if those difficult, worst-case instances do not appear
in practice, either because these instances are very rare or because practical instances have some
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inherent properties making them easier. The first of those reasons gave rise to smoothed analysis,
in which small random perturbations are applied to instances. The idea in smoothed analysis is
that the difficult instances are so specific that nearly all similar instances are not very difficult.
This has been successfully applied to e.g. the simplex algorithm [30] and the 2-OPT heuristic for
the traveling salesman problem [22].

Another approach to better understand and analyze NP-hard problems is to constrain which
instances are allowed. Examples of this approach are looking only at planar graphs instead of all
graphs, or looking at the traveling salesman problem with metric distances. This yields useful
results, but is generally not applicable in practice since real-world instances do not have those
properties. A more recent approach is to choose a assumption on the allowed instances which
is true, close to true or often true in practice [9]. An example where this approach was used is
for MAX-CUT, where instances which are stable under perturbation can be solved efficiently [8].
Graph coloring is efficiently solvable if you assume that adding a couple of edges at arbitrary
places in the graph does not increase its chromatic number [21]. The traveling salesman problem
becomes easier if its optimal solution is some factor better than non-optimal solutions [26]. The
most research with these kinds of assumptions has been done on the (𝑘-means) clustering problem,
with several approaches [1, 4, 5, 6, 7, 29].

In the 𝑘-means clustering problem you have a set of points which you have to divide into 𝑘
clusters. Equivalently, you can choose 𝑘 cluster centers, as these directly correspond to clusters,
and vice versa. The goal is to find clusters that minimize the sum of distances from point to its
assigned cluster center. Awasthi et al. looked at 𝛾-perturbation stability for clustering: if you
assume that the 𝑘-means instance has the same optimal solution after arbitrary perturbations of
at most a factor 𝛾, then finding this solution is relatively easy [4].

As the facility location problem can be seen as a variant of the 𝑘-means clustering problem, we
will use a 𝛾-perturbation resilience assumption similar to Awasthi et al. in this thesis. It seems
likely that many real-world instances already satisfy this 𝛾-perturbation resilience, for small 𝛾. In
this thesis we will see how the 𝛾-perturbation resilience assumption makes the facility location
problem easier.

1.3 Contributions made in this thesis

In this thesis we first look at the facility location problem in general, before adding the
𝛾-perturbation resilience assumption and seeing what basic consequences this has (Section 2).

Then we look at several reasons why the facility location problem becomes somewhat easier with
𝛾-perturbation resilience. The first such reason is that local search algorithms will always find the
optimal solution for 𝛾-perturbation resilient instances with 𝛾 ≥ 3. On the flip side, there exist
(3 − 𝜀)-perturbation resilient instances that have local minima not equal to the optimal solution
(Section 3). Several greedy algorithms have similar problems for small 𝛾, as we will show: these
greedy algorithms make mistakes while determining the solution, even for 𝛾-perturbation resilient
instances with relatively high 𝛾 (Section 4). This turns out to happen even for one of the currently
best performing approximation algorithms, the Jain-Mahdian-Saberi algorithm [17]. This is a
surprise, since a connection between 𝛾-perturbation resilience and approximation algorithms
seems obvious. We prove that this connection is unfounded with a counterexample (Section 5).

We also look at how hard the facility location problem is with 𝛾-perturbation resilience, and
found that if the ability to solve the perturbation resilient facility location problem for small 𝛾
exists, it implies that RP = NP (Section 6).
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2 The facility location problem

The facility location problem has several variants. The variant we use in this thesis is usually
called the uncapacitated metric facility location problem:

Definition. The uncapacitated metric facility location problem (referred to as the facility location
problem or the FLP in this thesis) is the following optimization problem.

Instance: an instance (𝐹 , 𝐷, 𝑓, 𝑐) of the FLP consists of a finite set of locations 𝐹, a finite set
of customers 𝐷, facility costs 𝑓𝑖 ≥ 0 for all 𝑖 ∈ 𝐹 and service costs 𝑐𝑖𝑗 ≥ 0 for all 𝑖 ∈ 𝐹 , 𝑗 ∈ 𝐷.
The service costs are metric, i.e. 𝑐𝑖𝑗 ≤ 𝑐𝑖′𝑗 + 𝑐𝑖′𝑗′ + 𝑐𝑖𝑗′ for all 𝑖, 𝑖′ ∈ 𝐹, 𝑗, 𝑗′ ∈ 𝐷.

Solutions: a solution (𝑋, 𝜎) for an instance (𝐹 , 𝐷, 𝑓, 𝑐) of the FLP consists of a nonempty set
of open facilities 𝑋 ⊆ 𝐹 and a customer assignment 𝜎 ∶ 𝐷 → 𝑋 to open facilities.

Objective: The cost of a solution is 𝑐(𝑋, 𝜎) = ∑𝑖∈𝑋 𝑓𝑖+∑𝑗∈𝐷 𝑐𝜎(𝑗)𝑗. The objective is to minimize
𝑐(𝑋, 𝜎).

This variant is called uncapacitated since all facilities can handle an arbitrary number of customers
and it is called metric because the service costs satisfy an extension of the triangle inequality.

The optimal solution to an FLP instance is usually denoted as (𝑋∗, 𝜎∗). The solution costs of the
FLP, 𝑐(𝑋, 𝜎), can be split into two parts: the facility costs 𝑐𝐹(𝑋) = ∑𝑖∈𝑋 𝑓𝑖 and service costs
𝑐𝑆(𝑋, 𝜎) = ∑𝑗∈𝐷 𝑐𝜎(𝑗)𝑗. Additionally, given an instance of the FLP and a set of open facilities 𝑋,
it is easy to compute an optimal corresponding customer assignment 𝜎: 𝜎(𝑗) = arg min𝑖∈𝑋 𝑐𝑖𝑗,
breaking ties arbitrarily. Thus, the customer assignment is often dropped in the cost notations,
which implies that an optimal assignment is used.

Besides the metric FLP, as defined above, we sometimes use the non-metric version of the FLP in
this thesis:
Definition. The uncapacitated facility location problem (referred to as the non-metric FLP in
this thesis) is identical to the FLP except for one detail: an instance (𝐹 , 𝐷, 𝑓, 𝑐) of the non-metric
FLP has service costs which need not be metric, i.e. 𝑐𝑖𝑗 ≰ 𝑐𝑖′𝑗 + 𝑐𝑖′𝑗′ + 𝑐𝑖𝑗′ is allowed.

Thus, an instance of the FLP is also an instance of the non-metric FLP.

2.1 Results on the facility location problem

There is a decision variant of the FLP, where for a given instance (𝐹 , 𝐷, 𝑓, 𝑐) and bound 𝐿 the
question is whether the optimal solution 𝑋∗ has cost 𝑐(𝑋∗) ≤ 𝐿. This decision variant of the
FLP is NP-complete, as we will show in the following theorem and proof (for more information,
see Krarup et al. [20]).

Theorem 1. The decision variant of the FLP is NP-complete.

Proof. First, we show that the decision variant of the FLP is in NP. For an arbitrary given
instance (𝐹 , 𝐷, 𝑓, 𝑐) and bound 𝐿, choose an arbitrary nonempty set 𝑋 ⊆ 𝐹 nondeterministically.
Now check if the cost 𝑐(𝑋) ≤ 𝐿. If so, output “yes”, otherwise, output “no”.

If the instance has 𝑐(𝑋∗) ≤ 𝐿, this will output “yes”, since 𝑋∗ ⊆ 𝐹 and 𝑋∗ is nonempty, so
it will be one of the nondeterministic choices. If the instance has 𝑐(𝑋∗) > 𝐿, then because
𝑐(𝑋) ≥ 𝑐(𝑋∗) > 𝐿 no nondeterministic choice 𝑋 can yield “yes”, so the answer will be “no”.
Thus, the decision variant of the FLP is in NP.
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Now, to show that the decision variant of the FLP is NP-hard, we reduce the set-covering problem
to the FLP. Because the decision variant of the set-covering problem is NP-complete [19], this
will prove that the decision variant of the FLP is NP-hard.

The instances (𝑈, 𝑆) of the set-covering problem consist of the universe 𝑈 and a collection of
subsets 𝑆 = ⋃ 𝑆𝑖, where each 𝑆𝑖 is a subset of 𝑈. The goal of the set-covering problem is to find
the minimum cardinality set 𝐶 ⊆ 𝑆 that covers 𝑈, i.e. {𝑥 ∣ 𝑥 ∈ 𝑆𝑖, 𝑆𝑖 ∈ 𝐶 for some 𝑖} = 𝑈.

Given an instance (𝑈, 𝑆) and bound 𝑘, construct the following FLP instance and bound:

𝐹 = 𝑆,
𝐷 = 𝑈,
𝑓𝑖 = 1,

𝑐𝑖𝑗 = {
𝑘 if 𝑗 ∈ 𝑖, and
3𝑘 otherwise,

𝐿 = 𝑘 + 𝑘|𝐷|.

Clearly, if (𝑈, 𝑆) is a yes-instance, so is (𝐹 , 𝐷, 𝑓, 𝑐), by opening facilities 𝑋 = 𝐶, yielding
𝑐(𝑋) = |𝐶|+𝑘|𝐷| ≤ 𝑘+𝑘|𝐷| = 𝐿. If (𝐹 , 𝐷, 𝑓, 𝑐) is a yes-instance, some 𝑋 has 𝑐(𝑋) ≤ 𝐿 = 𝑘+𝑘|𝐷|,
so 𝑐𝜎(𝑗)𝑗 = 𝑘 for every 𝑗 ∈ 𝐷. Thus, 𝐶 = 𝑋 is a set cover with |𝐶| = 𝑐(𝑋) − 𝑘|𝐷| ≤ 𝑘 and (𝑈, 𝑆)
is a yes-instance. As a result, this is a valid reduction, proving that the decision variant of the
FLP is NP-hard.

As a consequence of this theorem, the (search variant of the) FLP is NP-hard.

NP-hard optimization problems often still have approximation algorithms which run in determin-
istic polynomial time, which give a solution with cost at most a factor 𝛼 > 1 times the optimal
cost. Depending on the problem, there may be a lower bound for 𝛼, below which the problem
is still NP-hard. The following three theorems show the current best approximation hardness
results for the FLP.
Theorem 2 (Guha and Kuller 1999 [16]). Approximating the FLP within a factor 𝛼 = 1.463
is NP-hard.
Theorem 3 (Byrka and Aardal 2010 [10]). The FLP can be approximated within a factor
𝛼 = 1.5 by a deterministic polynomial time algorithm.
Theorem 4 (Li 2013 [23]). The FLP can be approximated with a expected factor 𝛼 = 1.488 by
a randomized polynomial time algorithm, i.e. for any possible instance, the algorithm computes
solutions 𝑋 such that 𝔼[𝑐(𝑋)] ≤ 1.488𝑐(𝑋∗).
These results are not particularly promising if you want to find a good solution to your FLP
instance, since solutions 50% more expensive than the optimal solution does not seem very
attractive. However, in practice several of the best approximation algorithms do a lot better. For
example, the Jain-Mahdian-Saberi algorithm, with an approximation ratio 𝛼 = 1.61, achieves
a ratio of 1.03 on average on real-world instances [17]. This difference between the observed
performance and guaranteed performance leads us to making an assumption about real-world
instances, as we show in the next subsection.

2.2 Perturbation resilience

Seeing how the FLP is an NP-hard problem [20], it is only natural to look for conditions on
the instances which make the problem easier. Based on ideas by Bilu et al. [8] and Balcan et
al. [5], we want to make an assumption which many real-world instances already satisfy. The

6



2. The facility location problem

perturbation resilience assumption for clustering problems by Awasthi et al. [4], adapted to the
FLP, looks like a good choice. First, we need to define what it means to perturb an FLP instance.

Definition. An instance (𝐹 , 𝐷, 𝑓 ′, 𝑐′) of the non-metric FLP is a γ-perturbation of instance
(𝐹 , 𝐷, 𝑓, 𝑐) of the FLP, with 𝛾 ≥ 1, iff 𝑓𝑖 ≤ 𝑓 ′

𝑖 ≤ 𝛾𝑓𝑖 for all 𝑖 ∈ 𝐹 and 𝑐𝑖𝑗 ≤ 𝑐′
𝑖𝑗 ≤ 𝛾𝑐𝑖𝑗 for all

𝑖 ∈ 𝐹 , 𝑗 ∈ 𝐷. If it is clear from the context which 𝐹 and 𝐷 are used, a 𝛾-perturbed instance can
also be denoted as (𝑓 ′, 𝑐′).

A 𝛾-perturbed instance is any instance that is a 𝛾-perturbation of some FLP instance.

Note that a 𝛾-perturbed instance might or might not be metric. This definition only allows
greater costs than the original instance, which might seem weird for a perturbation, but this
is simply a matter of scaling. An FLP instance remains equivalent under scaling all costs with
the same value, so an equivalent definition of 𝛾-perturbation also allowing lower costs would, for
instance, be: 𝑓𝑖 ≤ √𝛾𝑓 ′

𝑖 ≤ 𝛾𝑓𝑖 and similar for the service costs.

Using this definition, we can define 𝛾-perturbation resilience for the FLP.

Definition. An instance (𝐹 , 𝐷, 𝑓, 𝑐) of the FLP is γ-perturbation resilient with 𝛾 ≥ 1 iff all
𝛾-perturbations (𝑓 ′, 𝑐′) of (𝐹 , 𝐷, 𝑓, 𝑐) have the same unique optimal solution (𝑋∗, 𝜎∗).

For small 𝛾 (i.e. 𝛾 < 1.05 or similar), it seems likely that many real-world instances satisfy this
assumption, since stability of solutions makes a lot of sense: if an instance is very sensitive to
perturbations, then it means that the exact solution probably does not matter much. For small 𝛾,
it also implies that the instance is resilient in the face of small changes to the costs. In practice,
this often happens too: you are not going to change the location of your warehouse if it is 3%
farther away than previously estimated. Nevertheless, we will consider all values 𝛾 in this thesis.
In the conclusion (section 7) we will come back to the results and see if they are applicable in
practice.

If costs of 𝛾-perturbed instances are compared, the notation of the perturbed costs follow from
the names given to the perturbed instances. So, for example, if (𝑓 ′, 𝑐′) is a 𝛾-perturbed instance,
then 𝑐′(𝑋) denotes the cost of solution 𝑋 in the perturbed instance.

Any 𝛾-perturbation resilient instance of the FLP is a valid 𝛾-perturbation of itself, so 𝛾-perturbation
resilience implies that the original instance has the same optimal solution as any of its perturbations.
Note that, since 𝛾-perturbation resilience requires an unique solution, there are instances of the
FLP which are not 𝛾-perturbation resilient for any 𝛾, namely exactly those instances with multiple
optimal solutions.

The definition of 𝛾-perturbation resilience, although intuitive, is somewhat hard to work with
since it requires checking the optimal solution for all 𝛾-perturbations of an FLP instance. The
following theorem introduces an equivalent but easier to check definition.

Theorem 5. Consider, for some instance (𝐹 , 𝐷, 𝑓, 𝑐) of the FLP with optimal solution 𝑋∗,
customer assignment 𝜎∗ and nonzero optimal cost 𝑐(𝑋∗), the following 𝛾-perturbation:

𝑓 ′
𝑖 = {

𝛾𝑓𝑖 if 𝑖 ∈ 𝑋∗, and
𝑓𝑖 otherwise,

𝑐′
𝑖𝑗 = {

𝛾𝑐𝑖𝑗 if 𝜎∗(𝑗) = 𝑖, and
𝑐𝑖𝑗 otherwise.

This 𝛾-perturbed instance (𝐹 , 𝐷, 𝑓 ′, 𝑐′) has the same optimal solution 𝑋∗ and customer assignment
𝜎∗ iff the instance (𝐹 , 𝐷, 𝑓, 𝑐) is 𝛾-perturbation resilient. If so, the solution (𝑋∗, 𝜎∗) is unique for
both (𝐹 , 𝐷, 𝑓, 𝑐) and (𝐹 , 𝐷, 𝑓 ′, 𝑐′).
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Proof. If the instance is 𝛾-perturbation resilient, then the given 𝛾-perturbation has the same
unique optimal solution, by definition of 𝛾-perturbation resilience.

Thus, assume that the solution (𝑋∗, 𝜎∗) is also the solution to the given (𝐹 , 𝐷, 𝑓 ′, 𝑐′) instance.
Consider all possible 𝛾-perturbations ( ̃𝑓, ̃𝑐) of the (𝐹 , 𝐷, 𝑓, 𝑐) instance and construct the following
𝛾-perturbation:

̃𝑓 ′
𝑖 = {

̃𝑓𝑖 if 𝑖 ∈ 𝑋∗, and
𝑓𝑖 otherwise,

̃𝑐′
𝑖𝑗 = {

̃𝑐𝑖𝑗 if 𝜎∗(𝑗) = 𝑖, and
𝑐𝑖𝑗 otherwise.

By construction, it holds that ̃𝑐(𝑋∗, 𝜎∗) = ̃𝑐′(𝑋∗, 𝜎∗) and ̃𝑐′(𝑋, 𝜎) ≤ ̃𝑐(𝑋, 𝜎) for all nonempty
open facility sets 𝑋 ⊆ 𝐹 and customer assignments 𝜎 ∶ 𝐷 → 𝑋. Now relate 𝑐′(𝑋∗, 𝜎∗) to ̃𝑐′(𝑋∗, 𝜎∗)
and 𝑐′(𝑋, 𝜎) to ̃𝑐′(𝑋, 𝜎):

𝑐′(𝑋∗, 𝜎∗) = ̃𝑐′(𝑋∗, 𝜎∗) + ∑
𝑖∈𝑋∗

𝛾𝑓𝑖 − ̃𝑓𝑖 + ∑
𝑗∈𝐷

𝛾𝑐𝜎∗(𝑗)𝑗 − ̃𝑐𝜎∗(𝑗)𝑗, (1)

𝑐′(𝑋, 𝜎) = ̃𝑐′(𝑋, 𝜎) + ∑
𝑖∈𝑋∩𝑋∗

𝛾𝑓𝑖 − ̃𝑓𝑖 + ∑
𝑗∈𝐷

𝜎(𝑗)=𝜎∗(𝑗)

𝛾𝑐𝜎∗(𝑗)𝑗 − ̃𝑐𝜎∗(𝑗)𝑗. (2)

By assumption 𝑐′(𝑋∗, 𝜎∗) < 𝑐′(𝑋, 𝜎). So ̃𝑐′(𝑋∗, 𝜎∗) < ̃𝑐′(𝑋, 𝜎), because the sum terms in
equation (1) are at most the sum terms in equation (2). As noted above, by construction it
follows that ̃𝑐(𝑋∗) < ̃𝑐(𝑋).

This holds for all 𝛾-perturbations ( ̃𝑓, ̃𝑐) of (𝐹 , 𝐷, 𝑓, 𝑐) and all solutions (𝑋, 𝜎). Because 𝑐(𝑋∗) ≠ 0
the solution is unique, proving that the instance (𝐹 , 𝐷, 𝑓, 𝑐) is 𝛾-perturbation resilient.

We now have two equivalent definitions for 𝛾-perturbation resilience, so it is useful to know for
which range of 𝛾 𝛾-perturbation resilient instances exist. FLP instances need to be metric, so this
is not a trivial fact. The following two theorems establish that 𝛾-perturbation resilient instances
exist for all 𝛾 ≥ 1.

Theorem 6. If an FLP instance (𝐹 , 𝐷, 𝑓, 𝑐) is 𝛾-perturbation resilient, it also is 𝛾′-perturbation
resilient for all 𝛾′ ∈ ℝ which satisfy 1 ≤ 𝛾′ ≤ 𝛾.

Proof. Let (𝐹 , 𝐷, 𝑓, 𝑐) be any possible 𝛾-perturbation resilient FLP instance, and 𝛾′ ∈ ℝ be
an arbitrary number which satisfies 1 ≤ 𝛾′ ≤ 𝛾. Now consider all 𝛾′ perturbations (𝑓 ′, 𝑐′)
of (𝐹 , 𝐷, 𝑓, 𝑐). Since 𝛾′ ≤ 𝛾, (𝑓 ′, 𝑐′) is a valid 𝛾-perturbation of (𝐹 , 𝐷, 𝑓, 𝑐). By definition of
𝛾-perturbation resilience, this implies that the same solution is the unique optimal solution to
both (𝐹 , 𝐷, 𝑓, 𝑐) and (𝑓 ′, 𝑐′).

This satisfies the requirement for 𝛾′-perturbation resilience, proving the theorem.

Theorem 7. For all 𝑥 ∈ ℝ, there exist 𝛾-perturbation resilient instances of the FLP with 𝛾 > 𝑥.

Proof. Assume to the contrary that there is some 𝑥 such that all instances of the FLP are
𝛾-perturbation resilient with 𝛾 < 𝑥. Assume that 𝑥 > 1, which can be done without loss of
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generality. Now consider the following instance (see Figure 1):

𝐹 = {1𝑓, 2𝑓},
𝐷 = {1𝑑, 2𝑑},
𝑓𝑖 = 0,

𝑐𝑖𝑗 = {
1 if 𝑖 = 𝑘𝑓, 𝑗 = 𝑘𝑑 for some 𝑘, and
2𝑥 otherwise.

1𝑓

2𝑓

1𝑑 2𝑑

𝑐1𝑓1𝑑
= 1 𝑐1𝑓2𝑑 = 2𝑥

𝑐2𝑓1𝑑 = 2𝑥 𝑐2𝑓2𝑑
= 1

𝑓1𝑓
= 0

𝑓2𝑓
= 0

Figure 1: Example of Theorem 7

This instance has three possible solutions, with the following costs:

𝑐({1𝑓}) = 2𝑥 + 1,
𝑐({2𝑓}) = 2𝑥 + 1,

𝑐({1𝑓, 2𝑓}) = 2.

Since all 𝛾-perturbations increase the cost of a solution 𝑋 at most by a factor 𝛾, a trivial
lower bound for the perturbation resilience 𝛾′ of this instance can be calculated as follows:
𝛾′ = 2𝑥+1

2 = 𝑥 + 1
2 . This is a contradiction to the assumption that all instances of the FLP are

𝛾-perturbation resilient with 𝛾 < 𝑥, since 𝛾′ > 𝑥.

For most NP-hard problems, it is trivial to find the optimal solution to an instance once you
have an algorithm that solves the decision variant of the problem (i.e. “is the cost of the optimal
solution below a given bound?”). The following theorem looks at the decision variant of the FLP
for 𝛾-perturbation resilient instances.

Theorem 8. Assume a deterministic algorithm A exists that decides 𝑔(|𝐹 |, |𝐷|)-perturbation
resilient FLP instances (𝐹 , 𝐷, 𝑓, 𝑐) in polynomial time, for some function 𝑔. Then a deterministic
algorithm exists that finds the optimal solution 𝑋∗ for 𝛾′-perturbation resilience FLP instances
(𝐹 , 𝐷, 𝑓, 𝑐) with 𝛾′ > 𝑔(|𝐹 |, |𝐷|) in polynomial time.
This theorem implies that, like for many other NP-hard problems, discovering the value of
a 𝛾-perturbation resilient instance is not more difficult than finding the corresponding solu-
tion. The only exception, where this may or may not be true, is the border case of exactly
𝑔(|𝐹 |, |𝐷|)-perturbation resilient instances. Although a theorem like this for general FLP can
easily be proven using self-reducibility, this is not true here. Self-reducibility can destroy the
𝛾-perturbation resilience of an instance, and as result the assumed existing algorithm cannot be
applied to the resulting instances.

Proof. Assume algorithm A exists for some function 𝑔. Now, take an arbitrary 𝛾′-perturbation
resilient instance (𝐹 , 𝐷, 𝑓, 𝑐) with 𝛾′ > 𝑔(|𝐹 |, |𝐷|). First, calculate the exact optimal cost 𝑐(𝑋∗)
using algorithm A, which can be done in polynomial time using a binary search with calls to A.
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Because 𝛾′ > 𝑔(|𝐹 |, |𝐷|), it is possible to 𝛾′

𝑔(|𝐹 |,|𝐷|) -perturb the instance (𝐹 , 𝐷, 𝑓, 𝑐) to some instance
(𝐹 , 𝐷, 𝑓 ′, 𝑐′). Because this is a valid 𝛾′-perturbation, both instances yield the same optimal
solution 𝑋∗ and customer assignment 𝜎∗. Note that all 𝑔(|𝐹 |, |𝐷|)-perturbations of instance
(𝐹 , 𝐷, 𝑓 ′, 𝑐′) are valid 𝛾′-perturbations of (𝐹 , 𝐷, 𝑓, 𝑐). Thus, algorithm A can be used on all such
instances (𝐹 , 𝐷, 𝑓 ′, 𝑐′), since they are 𝑔(|𝐹 |, |𝐷|)-perturbation resilient, and use the same optimal
solution 𝑋∗ to decide if it is a yes- or no-instance.

So, consider the following 𝛾′

𝑔(|𝐹 |,|𝐷|) -perturbation, for some fixed facility 𝑖′ ∈ 𝐹, which will be
chosen later:

𝑓 ′
𝑖 = {

𝛾′

𝑔(|𝐹 |,|𝐷|) 𝑓𝑖 if 𝑖 = 𝑖′, and
𝑓𝑖 otherwise.

This perturbed instance (𝐹 , 𝐷, 𝑓 ′, 𝑐) has cost 𝑐′(𝑋∗) = 𝑐(𝑋∗) iff 𝑖′ ∉ 𝑋∗. So by running algorithm
A on instance (𝐹 , 𝐷, 𝑓 ′, 𝑐) with threshold 𝑐(𝑋∗), a part of the optimal solution 𝑋∗ is discovered,
if 𝑓𝑖′ = 0. If 𝑓𝑖′ = 0, we know that including 𝑖′ in 𝑋∗ never results in a higher cost. Doing this
for all facilities 𝑖′ ∈ 𝐹 yields the optimal solution 𝑋∗.

All parts of this algorithm run in polynomial time and use algorithm A a polynomial number of
times, which completes the proof.
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3 Local search

Local search techniques are a common way to solve problems. In a local search algorithm, we
always start from some initial solution, like a trivial solution (e.g. 𝑋 = 𝐹 for the FLP) or a
solution computed by a heuristic. From there, local search tries to improve its current solution.
It does that by computing the neighbourhood of the current solution, a set of solutions which
are similar to the current solution. What this neighbourhood is differs per problem and can be
chosen by the creator of the local search algorithm. The local search algorithm now computes the
cost of each solution in the neighbourhood. If at least one is better than the current solution, it
updates its current solution to one of the better solutions. If none are, the local search algorithm
terminates. All solutions which are at least as good as all their neighbouring solutions are called
local minima.

Local search techniques are commonly used in practice, since they are easy to implement: they
only require you to define a neighbourhood, which is quite simple. Additionally, real-world
problems often have extra constraints on the solution, which do not correspond to the theoretical
problems. An example for the FLP would be that there are a few facilities that, when open, must
have exactly three assigned customers. These extra constraints are not difficult to add in a local
search algorithm.

In this section we look at local minima and local search algorithms in general, and see how
𝛾-perturbation resilient instances impact them.

3.1 Existence of local minima

In this subsection we will show that 3-perturbation resilient instances do not have local minima
except for the global minimum. We also show that there are (3−𝜀)-perturbation resilient instances
for which this is not true, i.e. that there are local minima unequal to the optimal solution. To do
so, we first define what a local minimum is for the FLP.

Definition. A solution 𝑋 to an instance of the FLP is a local minimum iff

• 𝑐(𝑋 ⧵ {𝑖}) ≥ 𝑐(𝑋) for all 𝑖 ∈ 𝑋 with |𝑋| ≥ 2 (dropping a facility), and

• 𝑐(𝑋 ∪ {𝑖}) ≥ 𝑐(𝑋) for all 𝑖 ∈ 𝐹 ⧵ 𝑋 (adding a facility), and

• 𝑐(𝑋 ⧵ {𝑖} ∪ {𝑗}) ≥ 𝑐(𝑋) for all 𝑖 ∈ 𝑋, 𝑗 ∈ 𝐹 ⧵ 𝑋 (swapping a facility).

This definition means that the local minimum 𝑋 cannot be improved by opening a new facility,
closing an open facility or switching between an open and closed facility.

The following theorem is a result for local search algorithms on any FLP instance.

Theorem 9 (Arya et al. 2004 [3]). All local minima 𝑋 for an instance of the FLP satisfy
𝑐𝐹(𝑋) ≤ 𝑐𝐹(𝑋∗) + 2𝑐𝑆(𝑋∗) and 𝑐𝑆(𝑋) ≤ 𝑐𝐹(𝑋∗) + 𝑐𝑆(𝑋∗), where 𝑋∗ is the optimal solution for
the instance. Combined, this yields 𝑐(𝑋) ≤ 3𝑐(𝑋∗).

This theorem will be used to show that there are no local minima except for the optimal solution
for 3-perturbation resilient FLP instances (Theorem 11). To prove this, we first need an extra
result from the following lemma. This lemma means that, if some 𝛾-perturbation resilient instance
exists, then also such a 𝛾-perturbation resilient instance with more restrictions exists: you can
see this as removing everything from an instance that is not needed to remain 𝛾-perturbation
resilient or have a local minimum 𝑋 besides the optimal solution.
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Lemma 10. Assume a 𝛾-perturbation resilient instance (𝐹 , 𝐷, 𝑓, 𝑐) of the FLP exists with a local
minimum (𝑋, 𝜎) not equal to the optimal solution (𝑋∗, 𝜎∗).

Then an instance (𝐹 ′, 𝐷′, 𝑓 ′, 𝑐′) of the FLP exists with the following properties:

• the instance (𝐹 ′, 𝐷′, 𝑓 ′, 𝑐′) is 𝛾-perturbation resilient, and

• the instance (𝐹 ′, 𝐷′, 𝑓 ′, 𝑐′) has a local minimum (𝑋′, 𝜎′) not equal to the optimal solution
(𝑋′∗, 𝜎′∗), and

• 𝐹 ′ = 𝑋′ ∪ 𝑋′∗, and

• 𝑓 ′
𝑖 = 0 for all 𝑖 ∈ 𝑋′ ∩ 𝑋′∗, and

• for all 𝑗 ∈ 𝐷′, (𝜎′(𝑗) ∉ 𝑋′ ∩ 𝑋′∗ or 𝜎′∗(𝑗) ∉ 𝑋′ ∩ 𝑋′∗).

Note that the optimal solution (𝑋∗, 𝜎∗) to any instance is always a local minimum, so this is
explicitly excluded in the lemma.

Proof. Take any such instance (𝐹 , 𝐷, 𝑓, 𝑐). We transform the instance (𝐹 ′, 𝐷′, 𝑓 ′, 𝑐′) using the
following steps. We apply each step until its conditions are satisfied for all local minima 𝑋 ≠ 𝑋∗,
possibly applying earlier steps again in the process if their conditions are not valid any more after
applying a later step. Thus, at the beginning of every step, the conditions of all previous steps
are satisfied.

Step 1. Condition to satisfy: 𝐹 = 𝑋 ∪ 𝑋∗.
Drop all facilities not in 𝑋 or 𝑋∗, i.e. 𝐹 ′ = 𝑋 ∪ 𝑋∗. All customer assignments of 𝜎 and 𝜎∗ remain
valid and the costs 𝑐(𝑋) and 𝑐(𝑋∗) are unchanged. Thus, the resulting instance (𝐹 ′, 𝐷, 𝑓, 𝑐) is
still 𝛾-perturbation resilient with optimal solution 𝑋∗. Because all subsets of 𝐹 ′ also are a subset
of 𝐹, 𝑋 ≠ 𝑋∗ is still a local minimum. After doing this, the conditions of step 1 are satisfied.

Step 2. Condition to satisfy: 𝑓𝑖 = 0 for all 𝑖 ∈ 𝑋 ∩ 𝑋∗.
Change the facility costs to the following:

̃𝑓𝑖 = {
0 if 𝑖 ∈ 𝑋 ∩ 𝑋∗, and
𝑓𝑖 otherwise.

Note that the resulting instance (𝐹 , 𝐷, ̃𝑓, 𝑐) still has 𝑋 as a local minimum, since the cost of
adding a facility to 𝑋 is identical, compared to instance (𝐹 , 𝐷, 𝑓, 𝑐), and the cost of dropping or
swapping a facility from 𝑋 is the equal or higher, as compared to instance (𝐹 , 𝐷, 𝑓, 𝑐). To show
that the instance (𝐹 , 𝐷, ̃𝑓, 𝑐) is 𝛾-perturbation resilient with optimal solution 𝑋∗, consider all
nonempty sets of open facilities 𝑌 ⊆ 𝐹 and customer assignments 𝜎′ in all perturbations of costs
𝑓 ′

𝑖 and 𝑐′
𝑖𝑗 and equivalent perturbations of ̃𝑓𝑖 and 𝑐𝑖𝑗:

𝑐′(𝑋∗, 𝜎∗) = 𝑐′
𝐹(𝑋∗) + 𝑐′

𝑆(𝑋∗, 𝜎∗)

= ∑
𝑖∈𝑋∗⧵𝑋

𝑓 ′
𝑖 + ∑

𝑖∈𝑋∩𝑋∗
𝑓 ′

𝑖 + 𝑐′
𝑆(𝑋∗, 𝜎∗)

= ̃𝑐′(𝑋∗, 𝜎∗) + ∑
𝑖∈𝑋∩𝑋∗

𝑓 ′
𝑖 ,

𝑐′(𝑌 , 𝜎′) = 𝑐′
𝐹(𝑌 ) + 𝑐′

𝑆(𝑌 , 𝜎′)

= ∑
𝑖∈𝑌⧵(𝑋∩𝑋∗)

𝑓 ′
𝑖 + ∑

𝑖∈𝑌 ∩𝑋∩𝑋∗
𝑓 ′

𝑖 + 𝑐′
𝑆(𝑌 , 𝜎′)

= ̃𝑐′(𝑌 , 𝜎′) + ∑
𝑖∈𝑌 ∩𝑋∩𝑋∗

𝑓 ′
𝑖 .
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This implies that

̃𝑐′(𝑋∗, 𝜎∗) + ∑
𝑖∈𝑋∩𝑋∗

𝑓 ′
𝑖 ≤ ̃𝑐′(𝑌 , 𝜎′) + ∑

𝑖∈𝑌 ∩𝑋∩𝑋∗
𝑓 ′

𝑖 ,

̃𝑐′(𝑋∗, 𝜎∗) + ∑
𝑖∈(𝑋∩𝑋∗)⧵𝑌

𝑓 ′
𝑖 ≤ ̃𝑐′(𝑌 , 𝜎′),

̃𝑐′(𝑋∗, 𝜎∗) ≤ ̃𝑐′(𝑌 , 𝜎′).

So the instance (𝐹 , 𝐷, ̃𝑓, 𝑐) is indeed still 𝛾-perturbation resilient. This satisfies the conditions
for step 2.

Step 3. Condition to satisfy: for all 𝑗 ∈ 𝐷, (𝜎(𝑗) ∉ 𝑋 ∩ 𝑋∗ or 𝜎∗(𝑗) ∉ 𝑋 ∩ 𝑋∗) must be true.
Choose an arbitrary 𝑗 ∈ 𝐷 with 𝜎(𝑗) ∈ 𝑋 ∩ 𝑋∗ and 𝜎∗(𝑗) ∈ 𝑋 ∩ 𝑋∗. By the definition of
𝛾-perturbation resilience, 𝑗 cannot be assigned to any other facility in 𝑋∗ in all of the 𝛾-perturbed
costs 𝑐′. Thus 𝑐𝜎∗(𝑗)𝑗 < 𝛾𝑐𝑖𝑗 for all 𝑖 ∈ 𝑋∗ ⧵ {𝜎∗(𝑗)}. Also, because 𝐹 = 𝑋 ∩ 𝑋∗ and 𝑋 is a local
minimum, 𝑐𝜎(𝑗)𝑗 ≤ 𝑐𝑖𝑗 for 𝑖 ∈ 𝐹 ⧵ 𝑋∗ = 𝑋 ⧵ 𝑋∗. Thus, the assignment 𝜎(𝑗) = 𝜎∗(𝑗) is the best
possible assignment in 𝐹.

Let ̃𝑐 denote the costs in instance (𝐹 , 𝐷′, 𝑓, 𝑐).

The new instance (𝐹 , 𝐷′, 𝑓, 𝑐) is created by removing customer 𝑗, i.e. 𝐷′ = 𝐷 ⧵ {𝑗}. As a result,
𝑋 still is a local minimum in (𝐹 , 𝐷′, 𝑓, 𝑐):

• Dropping a facility 𝑖 ∈ 𝑋 (if |𝑋| > 2); If 𝑖 = 𝜎(𝑗), 𝑓𝑖 = 0, so ̃𝑐(𝑋 ⧵ {𝑖}) ≥ ̃𝑐(𝑋). If 𝑖 ≠ 𝜎(𝑗),
then customer 𝑗 is not connected to facility 𝑖, so ̃𝑐(𝑋) − ̃𝑐(𝑋 ⧵ {𝑖}) = 𝑐(𝑋) − 𝑐(𝑋 ⧵ {𝑖}) ≥ 0.
Thus, dropping facility 𝑖 ∈ 𝑋 does not result in a better solution.

• Adding a facility 𝑖 ∈ 𝐹 ⧵ 𝑋; Removing customer 𝑗 does not change the cost of adding a
facility, since 𝜎∗(𝑗) = 𝜎(𝑗) and 𝑐𝜎(𝑗)𝑗 ≤ 𝑐𝑖𝑗: ̃𝑐(𝑋) − ̃𝑐(𝑋 ∪ {𝑖}) = 𝑐(𝑋) − 𝑐(𝑋 ∪ {𝑖}) ≥ 0.
Thus, adding facility 𝑖 ∈ 𝐹 ⧵ 𝑋 does not result in a better solution.

• Swapping an open facility 𝑖 ∈ 𝑋 with closed facility 𝑖′ ∈ 𝐹 ⧵ 𝑋; If 𝑖 ≠ 𝜎(𝑗), the same
reasoning as in adding a facility holds. If 𝑖 = 𝜎(𝑗), 𝑓𝑖 = 0 and this swap is not better than
just adding facility 𝑖′, which did not improve the cost either. Thus, swapping open facility
𝑖 ∈ 𝑋 with closed facility 𝑖′ ∈ 𝐹 ⧵ 𝑋 does not result in a better solution.

To show that the new instance is 𝛾-perturbation resilient with optimal solution (𝑋∗, 𝜎∗), consider
all 𝑌 ⊆ 𝐹 and 𝛾-perturbations (𝑓 ′, 𝑐′). Let 𝑌 ′ = 𝑌 ∪ (𝑋 ∩ 𝑋∗) with optimal assignment (i.e.
𝜎′(𝑥) = arg min𝑖∈𝑌 ′ 𝑐′

𝑖𝑥) and note that 𝑐′(𝑌 ′) ≤ 𝑐′(𝑌 ) since 𝑓 ′
𝑖 = 0 for all 𝑖 ∈ 𝑋 ∩ 𝑋∗, even in the

new instance (𝐹 , 𝐷, 𝑓 ′, 𝑐′). Let ̃𝑐′ denote the costs in instance (𝐹 , 𝐷′, 𝑓 ′, 𝑐′). Thus:

𝑐′(𝑋∗, 𝜎∗) = 𝑐′
𝐹(𝑋∗) + 𝑐′

𝑆(𝑋∗, 𝜎∗)

= 𝑐′
𝐹(𝑋∗) + 𝑐′

𝜎∗(𝑗)𝑗 + ∑
𝑥∈𝐷′

𝑐′
𝜎∗(𝑥)𝑥

= ̃𝑐′(𝑋∗) + 𝑐′
𝜎∗(𝑗)𝑗, (3)

𝑐′(𝑌 ′, 𝜎′) = 𝑐′
𝐹(𝑌 ′) + 𝑐′

𝑆(𝑌 ′, 𝜎′)

= 𝑐′
𝐹(𝑌 ′) + 𝑐′

𝜎′(𝑗)𝑗 + ∑
𝑥∈𝐷′

𝑐′
𝜎′(𝑥)𝑥

= ̃𝑐′(𝑌 ′, 𝜎) + 𝑐′
𝜎′(𝑗)𝑗. (4)

Note that because 𝜎∗(𝑗) ∈ 𝑌 ′, 𝑐′
𝜎′(𝑗)𝑗 ≤ 𝑐′

𝜎∗(𝑗)𝑗. This and inequalities (3) and (4) imply

̃𝑐′(𝑋∗, 𝜎∗) + 𝑐′
𝜎∗(𝑗)𝑗 ≤ ̃𝑐′(𝑌 ′, 𝜎′) + 𝑐′

𝜎′(𝑗)𝑗,

̃𝑐′(𝑋∗, 𝜎∗) ≤ ̃𝑐′(𝑌 ′, 𝜎′) ≤ ̃𝑐′(𝑌 ),
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so even after removal of customer 𝑗, the instance (𝐹 , 𝐷′, 𝑓, 𝑐) is 𝛾-perturbation resilient with
optimal solution 𝑋∗. After doing this a couple of times, the condition for step 3 is satisfied.

After step 3, all conditions required for the lemma are satisfied. Note that all steps make the
instance smaller in some way (less facilities, less facilities with nonzero cost, less customers), so
this process terminates eventually.

This lemma can be interpreted as removing complications from the instance, except those which
are necessary for either 𝛾-perturbation resilience or the existence of the local minimum 𝑋. The
following theorem uses Lemma 10 to show that any local minimum of 3-perturbation resilient
FLP instances always is the global minimum.

Theorem 11. All local minima (𝑋, 𝜎) of a 𝛾-perturbation resilient instance (𝐹 , 𝐷, 𝑓, 𝑐) of the
FLP with 𝛾 ≥ 3 are equal to the optimal solution (𝑋∗, 𝜎∗) of the instance.

Proof. Assume the contrary and use Lemma 10 to get an instance (𝐹 , 𝐷, 𝑓, 𝑐) with 𝐹 = 𝑋 ∪ 𝑋∗,
𝑓𝑖 = 0 for 𝑖 ∈ 𝑋 ∩ 𝑋∗ and, for all 𝑗 ∈ 𝐷, (𝜎(𝑗) ∉ 𝑋 ∩ 𝑋∗ or 𝜎∗(𝑗) ∉ 𝑋 ∩ 𝑋∗). Here (𝑋∗, 𝜎∗) is the
optimal solution and (𝑋, 𝜎) ≠ (𝑋∗, 𝜎∗) the local minimum.

We perturb the costs as follows:

𝑓 ′
𝑖 =

⎧{
⎨{⎩

0 if 𝑖 ∈ 𝑋 ∩ 𝑋∗, and
3𝑓𝑖 if 𝑖 ∈ 𝑋∗ ⧵ 𝑋, and
𝑓𝑖 otherwise,

𝑐′
𝑖𝑗 = {

3𝑐𝑖𝑗 if 𝜎∗(𝑗) = 𝑖, and
𝑐𝑖𝑗 otherwise.

This is a valid 𝛾-perturbation. Because the instance (𝐹 , 𝐷, 𝑓, 𝑐) is 𝛾-perturbation resilient, the
following holds:

𝑐′(𝑋∗, 𝜎∗) = 𝑐′
𝐹(𝑋∗) + 𝑐′

𝑆(𝑋∗, 𝜎∗)

= ∑
𝑖∈𝑋∗⧵𝑋

3𝑓𝑖 + ∑
𝑗∈𝐷

3𝑐𝜎∗(𝑗)𝑗 (by choice of 𝑓 ′
𝑖 and 𝑐′

𝑖𝑗)

= 3𝑐(𝑋∗, 𝜎∗),
𝑐′(𝑋, 𝜎) = 𝑐𝐹(𝑋) + 𝑐𝑆(𝑋, 𝜎)

= ∑
𝑖∈𝑋⧵𝑋∗

𝑓𝑖 + ∑
𝑗∈𝐷

𝑐𝜎(𝑗)𝑗, (by the properties of (𝐹 , 𝐷, 𝑓, 𝑐), 𝑓 ′
𝑖 and 𝑐′

𝑖𝑗)

= 𝑐(𝑋, 𝜎),
so

3𝑐(𝑋∗, 𝜎∗) < 𝑐(𝑋, 𝜎).

By Theorem 9, 𝑐(𝑋, 𝜎) ≤ 3𝑐(𝑋∗, 𝜎∗), so 3𝑐(𝑋∗) < 3𝑐(𝑋∗) which is a contradiction. Thus, for
𝛾-perturbation resilient instances of the FLP with 𝛾 ≥ 3, no local minima exist except for the
global optimum.

As a result of Theorem 11, there is an unique local, and thus global, minimum for all 𝛾-perturbation
resilient instances with 𝛾 ≥ 3. Theorem 11 cannot be improved upon, as we will show in the
following theorem.

Theorem 12. There exist 𝛾-perturbation resilient instances of the FLP for all 𝛾 < 3 with local
minima 𝑋 ≠ 𝑋∗.
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3. Local search

Note that the local minimum 𝑋 = 𝑋∗ always exists, as it is the global minimum.

Proof. The following example, inspired by Arya et al. [3], proves the theorem (see also Figure 2).
Choose a 𝑘 ∈ ℕ, whose value will be specified later.

𝐹 = {0𝑓, 1𝑓, … , (𝑘 − 1)𝑓, 𝑘𝑓, 𝜉𝑓},
𝐷 = {0𝑑, … , 𝑘𝑑},

𝑓𝑖 = {
2𝑘 if 𝑖 = 𝜉𝑓, and
1
𝑘 otherwise,

𝑐𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝜉𝑓, and
1 if 𝑖 = 𝑘𝑓, 𝑗 = 𝑘𝑑 for some 𝑘, and
3 otherwise.

facilities

customers

0𝑓

1𝑓

⋮

(𝑘 − 1)𝑓

𝑘𝑓

𝑓0𝑓
= 1

𝑘

𝑓1𝑓
= 1

𝑘

𝑓(𝑘−1)𝑓
= 1

𝑘

𝑓𝑘𝑓
= 1

𝑘

0𝑑

1𝑑

⋮

(𝑘 − 1)𝑑

𝑘𝑑

𝜉𝑓

𝑓𝜉𝑓
= 2𝑘

𝑐0𝑓0𝑑 = 1

𝑐1𝑓1𝑑 = 1

𝑐(𝑘−1)𝑓(𝑘−1)𝑑
= 1

𝑐𝑘𝑓𝑘𝑑 = 1

𝑐𝜉
𝑓 0

𝑑 =
1

𝑐𝜉𝑓 1𝑑 = 1

𝑐𝜉𝑓(𝑘−1)𝑑
= 1

𝑐 𝜉 𝑓
𝑘 𝑑

=
1

𝑋∗ 𝑋

Figure 2: Example used in Theorem 12 (indirect service costs not shown)

The optimal solution 𝑋∗ is {0𝑓, … , 𝑘𝑓}, with 𝑐(𝑋∗, 𝜎∗) = (𝑘 + 1)(1 + 1
𝑘 ). This instance is

3𝑘
(𝑘+1)(1+1/𝑘) -perturbation resilient, as we will show by comparing all solutions 𝑋 ≠ 𝑋∗ with 𝑋∗

for all 𝛾-perturbations (𝐹 , 𝐷, 𝑓 ′, 𝑐′). By letting 𝑘 go to infinity, the perturbation resilience comes
arbitrarily close to 3, as required by the theorem.

Consider two cases: 𝜉𝑓 ∈ 𝑋 and 𝜉𝑓 ∉ 𝑋. For the first case, assume 𝜉𝑓 ∈ 𝑋. If so, 𝑐(𝑋, 𝜎) ≥ 3𝑘 + 1.
Thus, 𝑐′(𝑋∗, 𝜎∗) ≤ 3𝑘 < 3𝑘 + 1 ≤ 𝑐′(𝑋, 𝜎), completing the first case.

The second case is when 𝜉𝑓 ∉ 𝑋. Without loss of generality, let 𝑋 = {0𝑓, … , (|𝑋| − 1)𝑓}. Since
𝑐′

𝑖𝑓𝑖𝑑
< 3 ≤ 𝑐′

𝑖′𝑖𝑑
for 𝑖 ∈ {0, … |𝑋| − 1}, 𝑖′ ∈ 𝐹 ⧵ {𝑖𝑓}, all customers {0𝑑, … , (|𝑋| − 1)𝑑} are assigned
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to the same facility in both 𝑋∗ and 𝑋, i.e. 𝜎∗(𝑖𝑑) = 𝜎(𝑖𝑑) = 𝑖𝑓. For the other customers 𝑗𝑑 with
𝑗 ∈ {|𝑋|, … , 𝑘}, look at the following quantity:

−𝑓 ′
𝑗𝑓

+ 𝑐′
𝜎(𝑗𝑑)𝑗𝑑

− 𝑐′
𝜎∗(𝑗𝑑)𝑗𝑑

≥ − 3
(𝑘 + 1)(1 + 1

𝑘 )
+ 3 − 3𝑘

(𝑘 + 1)(1 + 1
𝑘 )

= 3
𝑘 + 1

> 0.

Using this quantity, it is possible to bound the difference between 𝑐′(𝑋∗, 𝜎∗) and 𝑐′(𝑋, 𝜎):

𝑐′(𝑋, 𝜎) − 𝑐′(𝑋∗, 𝜎∗) =
𝑘

∑
𝑗=|𝑋|

𝑐′
𝜎(𝑗𝑑)𝑗𝑑

− 𝑐′
𝜎∗(𝑗𝑑)𝑗𝑑

− 𝑓 ′
𝑗𝑓

> 0,

so 𝑐′(𝑋∗, 𝜎∗) < 𝑐′(𝑋, 𝜎), completing the second case.

For both cases it holds that 𝑐′(𝑋∗, 𝜎∗) < 𝑐′(𝑋, 𝜎), for all solutions 𝑋 ≠ 𝑋∗, so instance (𝐹 , 𝐷, 𝑓, 𝑐)
is 3𝑘

(𝑘+1)(1+1/𝑘) -perturbation resilient. Also, 𝑋 = {𝜉𝑓} ≠ 𝑋∗ is a local minimum, completing the
proof.

Note that the example used in this theorem has a local minimum 𝑋 = {𝜉𝑓} with cost 𝑐(𝑋) which
converges to 3𝑐(𝑋∗) as 𝑘 goes to infinity. This shows that the 3-approximation bound of local
search for FLP in general, as shown in Theorem 9, is tight.

3.2 Subsets of local minima

Knowing something about local minima, it is useful to relate other solutions to local minima.
In the following theorem we show that solutions which are subsets of the local minima 𝑋 can
always be augmented with extra facilities without increasing the solution’s cost. If the solution is
a subset of the optimal solution 𝑋∗ for a 𝛾-perturbation resilient instance, then any addition of
facilities in 𝑋∗ but not in the solution will decrease the solution’s cost.

Theorem 13. For all instances (𝐹 , 𝐷, 𝑓, 𝑐) of the FLP, with any possible local minimum (𝑋, 𝜎𝑋),
for all solutions 𝑌, where 𝑌 is a strict subset of 𝑋, the following holds:

• For any added facility 𝑖 ∈ 𝑋 ⧵ 𝑌, the costs can only get lower, i.e. 𝑐(𝑌 ) ≥ 𝑐(𝑌 ∪ {𝑖}), and

• If 𝑐(𝑌 ) ≠ 𝑐(𝑋), at least one facility 𝑖 ∈ 𝑋 ⧵ 𝑌 has 𝑐(𝑌 ) > 𝑐(𝑌 ∪ {𝑖}).

Additionally, if the instance is 𝛾-perturbation resilient, all facilities 𝑖 ∈ 𝑋∗ ⧵ 𝑌 have 𝑐(𝑌 ) >
𝑐(𝑌 ∪ {𝑖}).

Proof. Because 𝑋 is a local minimum, dropping facility 𝑖 ∈ 𝑋 ⧵ 𝑌 leads to equal or higher costs.
Thus

0 ≤ −𝑓𝑖 + ∑
𝑗∈𝐷

𝜎𝑋(𝑗)=𝑖

min
𝑖′∈𝑋⧵{𝑖}

𝑐𝑖′𝑗 − 𝑐𝑖𝑗 (5)

≤ −𝑓𝑖 + ∑
𝑗∈𝐷

𝜎𝑋(𝑗)=𝑖

𝑐𝜎𝑌(𝑗)𝑗 − 𝑐𝑖𝑗

≤ −𝑓𝑖 + ∑
𝑗∈𝐷

max{𝑐𝜎𝑌(𝑗)𝑗 − 𝑐𝑖𝑗, 0}

= 𝑐(𝑌 ) − 𝑐(𝑌 ∪ {𝑖}),
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3. Local search

so 𝑐(𝑌 ) ≥ 𝑐(𝑌 ∪ {𝑖}) for all 𝑖 ∈ 𝑋 ⧵ 𝑌, and 𝑐(𝑌 ) > 𝑐(𝑌 ∪ {𝑖}) if 𝑋 = 𝑋∗ and (𝐹 , 𝐷, 𝑓, 𝑐) is a
𝛾-perturbation resilient instance, since inequality (5) is strict for 𝛾-perturbation resilient instances
and optimal solution 𝑋∗.

Now, assume 𝑐(𝑌 ) ≠ 𝑐(𝑋) and define 𝑔(𝑖) = −𝑓𝑖 + ∑𝑗∈𝐷,𝜎𝑋(𝑗)=𝑖 𝑐𝜎(𝑗)𝑗 − 𝑐𝑖𝑗. Because of the above
inequalities, 0 ≤ 𝑔(𝑖) ≤ 𝑐(𝑌 ) − 𝑐(𝑌 ∪ {𝑖}) for all facilities 𝑖 ∈ 𝑋 ⧵ 𝑌. Combining this for all such
facilities:

∑
𝑖∈𝑋⧵𝑌

𝑔(𝑖) = − ∑
𝑖∈𝑋⧵𝑌

𝑓𝑖 + ∑
𝑗∈𝐷

𝜎𝑌(𝑗)∈𝑋⧵𝑌

𝑐𝜎𝑌(𝑗)𝑗 − 𝑐𝜎𝑋(𝑗)𝑗

= − ∑
𝑖∈𝑋⧵𝑌

𝑓𝑖 + ∑
𝑗∈𝐷

𝑐𝜎𝑌(𝑗)𝑗 − 𝑐𝜎𝑋(𝑗)𝑗

= 𝑐(𝑌 ) − 𝑐(𝑋)
> 0.

So at least one 𝑖 ∈ 𝑋 ⧵ 𝑌 has 𝑔(𝑖) > 0 and thus 𝑐(𝑌 ) > 𝑐(𝑌 ∪ {𝑖}).

Thus, if you have a solution that is a subset of a local minimum, you can also end up in that
local minimum by adding facilities while that improves the cost.
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4. Greedy algorithms

4 Greedy algorithms

In this section we will consider several greedy algorithms for 𝛾-perturbation resilient instances.
Greedy algorithms have the advantage of being efficient but they do not always give the optimal
solution to an instance. The chosen greedy algorithms, greedy facility addition and greedy facility
deletion, are an obvious choice for a greedy FLP algorithm because of their simplicity. These
generally do not result in the optimal solution for the FLP, and we will show that this remains
true for the 𝛾-perturbation resilient FLP, even for high 𝛾.

4.1 Greedy facility addition

One of the simplest greedy algorithms is greedy facility addition. In this algorithm, you start from
some initial set of facilities 𝑋 (potentially empty) and greedily add facilities until some condition is
met. Here, we add the facility with maximum cost reduction (i.e. −𝑓𝑖 +∑𝑗∈𝐷 max{𝑐𝜎(𝑗)𝑗 −𝑐𝑖𝑗, 0}),
as long as that remains positive. This greedy algorithm seems promising, based on the results of
Theorem 13.

The following ( 7
2 − 𝜀)-perturbation resilient FLP instance is a counterexample that shows this

does not always yield the optimal solution:

𝐹 = {1𝑓, 2𝑓, 3𝑓, 4𝑓},
𝐷 = {1𝑑, 2𝑑, 3𝑑},
𝑓 = (0, 0, 0, 1) ,

𝑐 =
⎛⎜⎜⎜
⎝

1 50 50
52 1 7
52 7 1
54 3 3

⎞⎟⎟⎟
⎠

,

𝑋 = {1𝑓},
𝑋∗ = {1𝑓, 2𝑓, 3𝑓}.

1𝑓

2𝑓

3𝑓

4𝑓1𝑑

2𝑑

3𝑑

𝑐1𝑓1𝑑 = 1

𝑐1𝑓2𝑑
= 50

𝑐1𝑓 3𝑑 = 50

𝑐2𝑓2𝑑 = 1

𝑐3𝑓3𝑑 = 1

𝑐4𝑓 2𝑑 = 3

𝑐4𝑓3𝑑
= 3

𝑓1𝑓
= 0

𝑓2𝑓
= 0

𝑓3𝑓
= 0

𝑓4𝑓
= 1

Figure 3: Counterexample to greedy facility addition (indirect service costs not shown)

In this example, the optimal solution is 𝑋∗ = {1𝑓, 2𝑓, 3𝑓}, since out of all solutions, 𝑋∗ has both
minimal facility cost 𝑐𝐹(𝑋∗) = 0 and minimal service cost 𝑐𝑆(𝑋∗) = 3. To show that greedy
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facility addition does not yield 𝑋∗ with this example, we start from 𝑋 = {1𝑓}. This may not
seem reasonable, but just adding a lot of copies of customer 1𝑑 to the example makes this a good
choice when starting from the empty set. In the next step, several facilities can be added, with
the following cost reduction:

𝑐({1𝑓}) − 𝑐({1𝑓, 2𝑓}) = 92,
𝑐({1𝑓}) − 𝑐({1𝑓, 3𝑓}) = 92,
𝑐({1𝑓}) − 𝑐({1𝑓, 4𝑓}) = 93.

So the greedy algorithm chooses to open facility 4𝑓 and update 𝑋 to {1𝑓, 4𝑓}, even though this is
not optimal.

The example is ( 7
2 − 𝜀)-perturbation resilient, as switching from the optimal solution 𝑋∗ =

{1𝑓, 2𝑓, 3𝑓} only starts making sense once both customer 2𝑑 and 3𝑑 switching to facility 4𝑓 is
advantageous enough, which happens when you have a 7

2 -perturbation of this example.

4.2 Greedy facility deletion

Another greedy algorithm is greedy facility deletion. In this algorithm, you start from some initial
set of facilities 𝑋, e.g. 𝑋 = 𝐹, and greedily drop facilities until some condition is met. Here, we
drop the facility with maximum cost reduction (i.e. 𝑓𝑖 + ∑𝑗∈𝐷 𝑐𝜎(𝑗)𝑗 − min𝑖′∈𝑋⧵{𝑖} 𝑐𝑖′𝑗), as long as
that remains positive.

The following FLP instance, using 𝑘 ∈ ℕ, 𝑘 ≥ 4, is a counterexample that shows this does
not always yield the optimal solution. When 𝑘 converges to infinity, the instance converges to
3-perturbation resilience.

𝐹 = {0𝑓, 1𝑓, … , 𝑘𝑓},
𝐷 = {1𝑑, … , 𝑘𝑑},

𝑓𝑖 =
⎧{
⎨{⎩

3𝑘 − 2
𝑘 − 2 if 𝑖 = 0𝑓, and

3𝑘 − 3
𝑘 − 2 otherwise,

𝑐𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 0𝑓, and
1 if 𝑖 = 𝑘𝑓, 𝑗 = 𝑘𝑑 for some 𝑘, and
3 otherwise,

𝑋∗ = {0𝑓}.

The optimal solution is 𝑋∗ = {0𝑓}, since opening less facilities always reduces 𝑐𝐹(𝑋) in this
example, and letting 0𝑓 stay open makes sure that the service costs 𝑐𝑆(𝑋∗) stay minimal. However,
greedy facility deletion, when starting with 𝑋 = 𝐹, drops facility 0𝑓 first. This is because it is the
most expensive facility and the service costs do not increase in the first deletion, no matter which
facility in 𝑋 you close.

For 𝑘 ≥ 4, 𝑋∗ remains the optimal solution even when the instance is 𝛾-perturbed with 𝛾
converging to 3 when 𝑘 goes to infinity, since there are a lot of facilities 1𝑓, … , 𝑘𝑓 and only one 0𝑓.
At 𝛾 = 3 the costs of the more expensive facility 0𝑓 cannot be offset by the service costs, since
connecting all customers to e.g. 1𝑓 has lower costs in that case.
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5 Relation to approximation algorithms

In this section we will show one of the best approximation algorithms for the FLP, the Jain-
Mahdian-Saberi algorithm [17], with approximation ratio 1.61. As approximation algorithms
guarantee a solution 𝑋 with cost 𝑐(𝑋) ≤ 𝛼𝑐(𝑋∗), with 𝛼 depending on the algorithm, it seems
obvious that these algorithms should give the optimal solution to 𝛾-perturbation resilient instances,
if 𝛾 ≥ 𝛼. After all, with 𝛾-perturbation resilience you can multiply the costs of the optimal
solution with 𝛾 and it is still the optimal solution. We will show that this conjecture is not true,
even for a good algorithm like the Jain-Mahdian-Saberi algorithm.

5.1 The Jain-Mahdian-Saberi algorithm

To understand the Jain-Mahdian-Saberi algorithm, it is useful to first look at the integer linear
program (LP) formulation of the facility location problem:

min ∑
𝑖∈𝐹

𝑓𝑖𝑦𝑖 + ∑
𝑖∈𝐹

∑
𝑗∈𝐷

𝑐𝑖𝑗𝑥𝑖𝑗

s.t. 𝑥𝑖𝑗 ≤ 𝑦𝑖 for all 𝑖 ∈ 𝐹 , 𝑗 ∈ 𝐷,

∑
𝑖∈𝐹

𝑥𝑖𝑗 = 1 for all 𝑗 ∈ 𝐷,

𝑥𝑖𝑗 ∈ {0, 1} for all 𝑖 ∈ 𝐹 , 𝑗 ∈ 𝐷,
𝑦𝑖 ∈ {0, 1} for all 𝑖 ∈ 𝐹.

Of course, solving this LP is not simpler than solving the FLP. But if you relax the integer
variables such that 𝑥𝑖𝑗 ∈ [0, 1] and 𝑦𝑖 ∈ [0, 1], it is possible to solve the LP in polynomial time.
This is the basis of LP-rounding algorithms, which calculate a FLP solution from the relaxed
LP solution, which typically is not an integer solution. Better algorithms can be derived by also
using the dual of the relaxed LP and the resulting complementary slackness. These algorithms
are called primal-dual algorithms. Of course, the difficulty in this process is somehow getting a
integral solution.
Definition. The Jain-Mahdian-Saberi algorithm [17] is a primal-dual algorithm for the FLP.

For every customer 𝑗 and facility 𝑖, variables 𝑤𝑖𝑗 and 𝑣𝑗 are introduced. Every customer starts
unconnected and every facility starts closed. The algorithm starts by maintaining 𝑣𝑗 = 𝑡 and
processes the following events while increasing 𝑡:

• 𝑣𝑗 = 𝑐𝑖𝑗 for some unconnected customer 𝑗 and closed facility 𝑖. Start increasing 𝑤𝑖𝑗 such
that 𝑐𝑖𝑗 + 𝑤𝑖𝑗 = 𝑣𝑗.

• ∑𝑗∈𝐷 𝑤𝑖𝑗 = 𝑓𝑖 for some closed facility 𝑖. Open facility 𝑖 and, for all customers 𝑗 with
𝑤𝑖𝑗 > 0, stop increasing 𝑣𝑗 and set 𝑤𝑖′𝑗 = max{0, 𝑐𝑖𝑗 −𝑐𝑖′𝑗} for all 𝑖′ ∈ 𝐹 and mark customer
𝑗 as connected.

• 𝑣𝑗 = 𝑐𝑖𝑗 for some unconnected customer 𝑗 and open facility 𝑖. Stop increasing 𝑣𝑗 and set
𝑤𝑖′𝑗 = max{0, 𝑐𝑖𝑗 − 𝑐𝑖′𝑗} for all 𝑖′ ∈ 𝐹 and mark customer 𝑗 as connected.

Ties between events, when occurring at the same 𝑡, are broken arbitrarily. When there are no
more events to be processed, the algorithm will have connected all customers and yields a set of
open facilities.
Intuitively, the Jain-Mahdian-Saberi algorithm lets customers pay for facilities to open, and
lets cheap connections pay more than expensive connections. The solution of the algorithm
has several approximation guarantees 𝑐(𝑋) ≤ 𝛼𝑐𝐹(𝑋∗) + 𝛽𝑐𝑆(𝑋∗) as a result from its so-called
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factor-revealing LP [17]. Examples of these guarantees are (𝛼 = 1, 𝛽 = 2), (𝛼 = 1.11, 𝛽 = 1.78)
and (𝛼 = 1.61, 𝛽 = 1.61). This means that the solution of the Jain-Mahdian-Saberi algorithm
satisfies all of these guarantees, you do not have to choose.

Note that better algorithms exist for the FLP (e.g. the 1.5-approximation algorithm by Byrka
and Aardal [10]) and that the difference in approximation guarantee for the service costs 𝑐𝑆(𝑋∗)
and facility costs 𝑐𝐹(𝑋∗) can be exploited to yield better approximation ratios (see Charikar and
Guha [11], yielding a ratio of 1.51 when used with the Jain-Mahdian-Saberi algorithm).

5.2 Perturbation resilience and solutions of approximation algorithms

Since the 𝛾-perturbation resilience property is almost equivalent to saying that the optimal
solution stays unique and optimal even when its costs are multiplied by 𝛾, it seems there must
be some kind of relation to approximation algorithms for the FLP. After all, if some calculated
solution cannot be worse than 𝛼 times the optimum, then it likely must imply that it either is
equal to the optimum or, if not, that 𝛾 < 𝛼, for 𝛾-perturbation resilient instances. This reasoning
is wrong however, as we will show with the following example.

Define the following instance (see Figure 4):

𝐹 = {1𝑓, 2𝑓},
𝐷 = {1𝑑, 2𝑑},
𝑓 = (3, 1),

𝑐𝑖𝑗 = ( 9 4
20 7) .

1𝑓

2𝑓

1𝑑 2𝑑

𝑐1𝑓1𝑑
= 9 𝑐1𝑓2𝑑 = 4

𝑐2𝑓1𝑑 = 20 𝑐2𝑓2𝑑
= 7

𝑓1𝑓
= 3

𝑓2𝑓
= 1

Figure 4: An 𝛼-perturbation resilient instance which has an 𝛼-approximate solution 𝑋 ≠ 𝑋∗

This example has ( 7
4 − 𝜀)-perturbation resilience. This can be seen by considering the cost of

all solutions under the 𝛾-perturbation defined in Theorem 5, where the following costs already
assume that 𝛾 < 7

4 :

𝑐′(𝑋∗) = 𝑐′({1𝑓}) = 16𝛾,
𝑐′({2𝑓}) = 28,

𝑐′({2𝑓, 3𝑓}) = 1 + 16𝛾.

So 𝑐′(𝑋∗) < 𝑐′(𝑋) for all solutions 𝑋 ≠ 𝑋∗ iff 𝛾 < 7
4 , so the instance is ( 7

4 − 𝜀)-perturbation
resilient.

The Jain-Mahdian-Saberi algorithm has an approximation ratio of 1.61, which is smaller than
7
4 , and approximates within a ratio of 1.03 on average for instances in practice [17]. When
this algorithm is ran on the given example with pessimistic breaking of ties, the solution is
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𝑋 = {1𝑓, 2𝑓} ≠ 𝑋∗. So this example shows that 𝛼-approximation algorithms do not guarantee
optimal solutions for 𝛾-perturbation resilient instances with 𝛾 ≥ 𝛼.

Looking at the example, it is clear what causes this mismatch between the two concepts: adding
a cheap facility (facility 2𝑓 in the example) does not hurt the solution so much that it invalidates
the approximation ratio. However, the solution is not optimal, since the original solution is
extremely good, even after some perturbation.
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6 Complexity of the perturbation resilient FLP

In this section we will look into the complexity of the perturbation resilient FLP. The FLP itself
is NP-hard, so it is interesting to find out if the perturbation resilient FLP is as difficult as the
FLP or easier. Here we look into the lower bound of the hardness of the perturbation resilient
FLP.

6.1 Relation to complexity class RP

In this section we will show that the perturbation resilient FLP has a relation to the complexity
class RP. First, let us define RP.
Definition. A problem is contained in the complexity class RP iff a polynomial time algorithm for
the problem exists which, given a source of random numbers, accepts an instance with probability
at least 1

2 if it is a yes-instance and always rejects if it is a no-instance.

It is relatively easy to prove that P ⊆ RP ⊆ NP. An open question is if any of these inclusions
are strict. A way of looking at a problem in RP is that, out of all its computation paths (as
defined by every usage of a random number), at least half accept for a yes-instance. A problem in
NP however, only requires one accepting computation path for a yes-instance. Thus, intuitively,
problems in RP should be easier than problems in NP. This idea can be formalized, by changing all
points where a random number is read in an algorithm for a problem in RP to an non-deterministic
choice of numbers, which results in an algorithm with at least one accepting path for every
yes-instance and no accepting path for every no-instance, showing that the problem is in NP too.
An example of a problem in RP (but later proven to also be in P) is the primality problem [2].

In the following definition and theorem we shed some more light on the relation between RP and
NP. First, we need the definition of Unambiguous-SAT, which is used in the Valiant–Vazirani
theorem, upon which our proof for the relation between RP and NP is based.
Definition. Unambiguous-SAT is a variant of 3-SAT. In Unambiguous-SAT we are given a
3-SAT instance, consisting of a boolean formula in 3-conjunctive normal form, with the promise
that this instance has exactly one satisfying solution.

If the promise holds for the given instance, the output of an algorithm for Unambiguous-SAT
should be the solution for the instance. If not, the output can be anything, the algorithm is not
even required to terminate.

Theorem 14 (Valiant–Vazirani [31]). If a polynomial-time deterministic algorithm exists that
gives a solution for all instances of Unambiguous-SAT (and can do anything on other instances
of 3-SAT), then RP = NP.

A similar relation between RP and NP can be found using the perturbation resilient FLP, as we
will show below. First, a refinement of Theorem 8 is needed, since we need to solve 𝛾-perturbation
resilient FLP instances with arbitrarily small 𝛾 in Theorem 16, which relates the perturbation
resilient FLP to RP = NP.

Lemma 15. Assume a polynomial time deterministic algorithm A exists that decides FLP for
all 𝑔(|𝐹 |, |𝐷|)-perturbation resilient instances (𝐹 , 𝐷, 𝑓, 𝑐), where 𝑔 is a function monotonically
decreasing in |𝐹 |, i.e. 𝑓(|𝐹 |, |𝐷|) > 𝑓(|𝐹 ′|, |𝐷|) if |𝐹 ′| > |𝐹 |.

Then a polynomial time deterministic algorithm exists that finds the unique optimal solution 𝑋∗

for those instances.
This lemma implies that if we have such an algorithm A, we can use it to find solutions to all
𝑔(|𝐹 |, |𝐷|)-perturbation resilient instances.
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Proof. Assume algorithm A exists. Take any possible 𝛾-perturbation resilient FLP instance
(𝐹 , 𝐷, 𝑓, 𝑐), with 𝛾 = 𝑔(|𝐹 |, |𝐷|), and modify it as follows:

𝐹 ′ = 𝐹 ∪ {𝜉},

𝑓 ′
𝑖 = {

𝑓𝑖 if 𝑖 ∈ 𝐹, and
1 otherwise,

𝑐′
𝑖𝑗 = {

𝑐𝑖𝑗 if 𝑖 ∈ 𝐹, and
𝑀 otherwise,

where 𝑀 satisfies 𝑀 > ∑𝑗∈𝐷 max𝑖∈𝐹 𝛾(𝑓𝑖 +𝑐𝑖𝑗), i.e. it is so large that no customer will be assigned
to facility 𝜉 in the optimal solution to (𝐹 ′, 𝐷, 𝑓 ′, 𝑐′) or any of its 𝛾-perturbed instances.

This modified instance (𝐹 ′, 𝐷, 𝑓 ′, 𝑐′) also is 𝛾-perturbation resilient, since the optimal solution
𝑋′∗ trivially is 𝑋∗. The optimal solution has cost 𝑐(𝑋′∗) = 𝑐(𝑋∗). Opening 𝜉 is never a good
idea, meaning all customers assignments and facilities to open are the same as in 𝑋∗.

Since |𝐹 ′| > |𝐹 |, 𝛾 = 𝑔(|𝐹 |, |𝐷|) > 𝑔(|𝐹 ′|, |𝐷|). Using this and the assumption about the existence
of A, Theorem 8 implies that a deterministic polynomial time algorithm exists that finds the
optimal solution 𝑋′∗ to instance (𝐹 ′, 𝐷, 𝑓 ′, 𝑐′). Because 𝑋′∗ = 𝑋∗, finding the optimal solution
𝑋′∗ means we found the optimal solution to instance (𝐹 , 𝐷, 𝑓, 𝑐).

Thus, a polynomial time deterministic algorithm exists that finds the optimal solution 𝑋∗ for all
𝑔(|𝐹 |, |𝐷|)-perturbation resilient FLP instances.

With this lemma we have all the tools we need for proving that, if an algorithm exists that
solves (1 + 2

2|𝐷|+|𝐹| )-perturbation resilient FLP instances in deterministic polynomial time, then
RP = NP.

Theorem 16. If a polynomial time deterministic algorithm A exists that decides FLP for
(1 + 2

2|𝐷|+|𝐹| )-perturbation resilient instances, then RP = NP.

So if RP ≠ NP – which, while unproven, is not an uncommon belief – then no such algorithm A
exists.

Proof. Assume algorithm A exists. By Lemma 15, a polynomial time deterministic algorithm A
exists which finds the solution of (1 + 2

2|𝐷|+|𝐹| )-perturbation resilient FLP instances.

By transforming an instance of Unambiguous-SAT to a FLP instance and running algorithm A, a
solution can be found for the Unambiguous-SAT instance. Then transform this solution back to
the Unambiguous-SAT instance. By the Valiant–Vazirani theorem this will prove that RP = NP.

Let (𝐶, 𝑌 ) be an instance of Unambiguous-SAT, with 𝑌 = {𝑥1, … , 𝑥𝑛} and 𝐶 = 𝑐1 ∧ … ∧ 𝑐𝑚,
in which 𝑐𝑘 = (𝑐𝑘,1 ∨ 𝑐𝑘,2 ∨ 𝑐𝑘,3) and 𝑐𝑘,𝑙 = 𝑥𝑖 or 𝑐𝑘,𝑙 = ̄𝑥𝑖 for some 𝑥𝑖 ∈ 𝑌. Now we define the
following FLP instance:

𝐹 = {𝑥1, ̄𝑥1, … , 𝑥𝑛, ̄𝑥𝑛},
𝐷 = {𝑥1, … 𝑥𝑛} ∪ {𝑐1, … , 𝑐𝑚},
𝑓 = 1,

𝑐 =
⎧{
⎨{⎩

1 if 𝑗 = 𝑥𝑘 for some 𝑘 and 𝑖 = 𝑥𝑘 or 𝑖 = ̄𝑥𝑘, and
1 if 𝑗 = 𝑐𝑘 for some 𝑘 and 𝑖 ∈ {𝑐𝑘,1, 𝑐𝑘,2, 𝑐𝑘,3}, and
3 otherwise.

The optimal solution 𝑋∗ to this instance will never have a customer 𝑗 connected to a facility
𝑖 with 𝑐𝑖𝑗 = 3, since there always is some facility 𝑖′ (potentially unopened) such that 𝑐𝑖′𝑗 = 1.
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Opening this facility 𝑖′, with facility cost 𝑓𝑖′ = 1, will lower the total cost, so 𝑐𝜎∗(𝑗)𝑗 = 1 and
𝑐𝑆(𝑋∗) = 𝑛 + 𝑚.

Since 𝑐𝜎∗(𝑗)𝑗 = 1 for 𝑗 = 𝑥𝑘 ∈ {𝑥1, … , 𝑥𝑛}, either 𝑥𝑘 ∈ 𝑋∗ or ̄𝑥𝑘 ∈ 𝑋∗. Thus, |𝑋∗| ≥ 𝑛 and
𝑐𝐹(𝑋∗) ≥ 𝑛.

Now suppose that 𝑐(𝑋) = 2𝑛 + 𝑚 for some solution 𝑋. By the above inequalities, 𝑐(𝑋) = 𝑐(𝑋∗)
and exactly one of (𝑥𝑘 ∈ 𝑋), ( ̄𝑥𝑘 ∈ 𝑋) is true for every 𝑥𝑘 ∈ 𝑌. This is a assignment for the
boolean formula in Unambiguous-SAT. Also because of the above inequalities, every clause 𝑐𝑘
is connected to an open facility with cost 1. By construction, this means the clause is satisfied.
Thus, 𝑋 induces the solution for Unambiguous-SAT.

Going in the reverse direction, the unique solution for Unambiguous-SAT induces an optimal
solution to the FLP instance, by adding 𝑥𝑘 to 𝑋∗ if 𝑥𝑘 = 1 and adding ̄𝑥𝑘 if 𝑥𝑘 = 0. This solution
has cost 𝑐(𝑋∗) = 2𝑛 + 𝑚.

Thus, the constructed instance has an unique optimal solution 𝑋∗ with 𝑐(𝑋∗) = 2𝑛 + 𝑚. If
another solution 𝑋 would exist, a corresponding solution would exist for the Unambiguous-SAT
instance too, which cannot happen.

Since all costs are integer, all solutions 𝑋 ≠ 𝑋∗ have 𝑐(𝑋) ≥ 2𝑛 + 𝑚 + 1, making the instance
(1 + 2

2|𝐷|+|𝐹| − 𝜀)-perturbation resilient. If, as by assumption, an algorithm exists which can
solve these instances in deterministic polynomial time, then all Unambiguous-SAT instances
can be solved in deterministic polynomial time. By the Valiant–Vazirani theorem this means
RP = NP.

6.2 Hardness for constant 𝜸

Although Theorem 16 shows some hardness-related results for the perturbation resilient FLP, it
only shows it for sub-constant 𝛾-perturbation resilience. Proving that FLP with 𝛾-perturbation
resilient instances is NP-hard or something similar for small but constant 𝛾 seems to be difficult.
The first reason is that uniqueness of the solution is difficult to achieve in a reduction, since that
usually requires the original instance to be unique. This problem can be worked around by using
RP instead of only trying to prove NP-hardness, as was done in the previous section.

The second reason is that 𝛾-perturbation resilient requires the unique solution to have costs a
factor 𝛾 lower than other solutions, if you use the obvious approach. A reduction thus must
introduce a gap between the optimal solution and other solutions, without knowing the solution.
The trivial 𝛾-perturbation resilience is, in that case, the cost of the second-best solution divided
by cost of the optimal solution. The requirement that instances are metric makes sure that
distances cannot differ too much, making this hard to achieve.

Despite the above indications that proving NP-hardness for small but constant 𝛾 is difficult,
there also is an indication that it might be possible: Awasthi et al. have proven that 𝑘-means
clustering, with an assumption similar to 𝛾-perturbation resilience, is NP-hard when 𝛾 < 3, and
they give a polynomial time algorithm for solving instances with 𝛾 ≥ 3 [4]. This cannot be
directly translated to the FLP however, since the freedom of number of facilities and facility costs
are hard to incorporate into their core assumption. This does however indicate that the FLP with
perturbation resilience may be NP-hard for some small 𝛾, despite the difficulty in proving that.
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7. Conclusion

7 Conclusion

In this thesis we introduced the 𝛾-perturbation resilience assumption for the facility location
problem. It seems likely that many instances in practice already satisfy or come close to this
assumption, at least for small 𝛾. An equivalent but less intuitive definition was also given, as
that definition is easier to use in some proofs. Using the decision variant of the facility location
problem is enough to solve the search variant even with 𝛾-perturbation resilience, as is also true
for the normal FLP.

Local search algorithms are guaranteed to produce the optimal solution for 𝛾-perturbation resilient
instances with 𝛾 ≥ 3. For all 𝛾 < 3 there are 𝛾-perturbation resilient instances which will not
result in the optimal solution when using a local search algorithm. We also showed that several
greedy algorithms can also give non-optimal solutions for 𝛾-perturbation resilient instances with
high 𝛾.

The same happened with a well-performing approximation algorithm, the Jain-Mahdian-Saberi
algorithm. This algorithm failed on 𝛾-perturbation resilient instances with moderately high 𝛾. This
was surprising, since there seemed to be an obvious relation between approximation algorithms
and the 𝛾-perturbation resilience property. The counterexample for the Jain-Mahdian-Saberi
algorithm shows that this conjecture is false.

Finally, we also showed that, if an efficient algorithm for solving 𝛾-perturbation resilient instances
with low 𝛾 exists, then RP = NP.

In conclusion, it looks as if the 𝛾-perturbation resilience assumption does not make the facility
location problem much easier. All results indicate that a relatively high 𝛾 for 𝛾-perturbation
resilient instances is needed to make the problem easier to solve, whereas such instances are not
likely to appear in practice.

To make further progress on solving the facility location problem using this assumption, we
recommend looking into custom algorithms exploiting the 𝛾-perturbation resilience assumption,
since exploiting the structure inherent in such instances may yield better results than using
existing algorithms. Other natural assumptions can also be used to further analyze the facility
location problem. An obvious example of such an assumption is optimal solution stability under
removal of some (fraction of) customers.

Finally, as the 𝛾-perturbation resilience assumption has already been used successfully for the
𝑘-means clustering problem and MAX-CUT, there may be other problems where this assumption
works well. As an example, the knapsack problem may work well with this assumption.
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