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Cover: Each colour represents one of the seven imaging phenotypes. These colours are superimposed on 
a slice of the FLAIR-MR scans of patients from the SMART-MR cohort. 
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Summary  

Atherosclerosis is a progressive inflammatory artery disease responsible for about 50% of deaths in the 
western world, mainly due to heart disease and stroke [1], [2]. Brain abnormalities that can be seen in 
patients with arterial disease (atherosclerosis) are heterogeneous and are the result of different 
underlying etiologies. The three main groups of brain abnormality etiologies are neurodegenerative 
disease, large vessel disease and small vessel disease. 

The main neuroimaging feature of neurodegenerative disease are localized (hippocampal, temporal, 
frontal and parietal) and global atrophy while large vessel disease (LVD) leads to cortical infarcts. 
Neuroimaging features of cerebral small vessel disease (CSVD) include: recent small subcortical infarcts, 
lacunar infarcts, white matter hyperintensities (WMH), dilated perivascular spaces, cerebral microbleeds 
and possibly even brain atrophy [3]. CSVD results from a complex mix of genetic and cardiovascular risk 
factors [4]. There are several types of CSVD based on etiology (most common are arteriolosclerosis, 
cerebral amyloid angiopathy and genetic SVD)[5]. These different types of CSVD may lead to different 
manifestations of imaging features of CSVD. 

In this thesis we investigated two novel approaches to the analysis of imaging features in patients with 
arterial disease. In the first chapter, we hypothesized that the shape of white matter hyperintensities 
(WMH) may be indicative of the underlying etiology. We assessed possible shape descriptors to study the 
shape of WMH lesions and to provide additional information of the WMH. We identified eccentricity, 
fractal dimension, convexity and solidity as plausible shape descriptors. In the second chapter, we 
hypothesized that different underlying etiologies may lead to different imaging manifestations. We used 
cluster analysis to combine magnetic resonance imaging (MRI) features to identify different imaging 
phenotypes. We identified three distinct groups with different WMH severities and cardiovascular risk 
factors. These three groups were divided further revealing seven distinct brain imaging patterns. Three of 
these patterns are associated with localized arterial disease, two patterns may be caused by different 
types of SVD and one pattern shows signs of LVD. The final group does not show signs of LVD or SVD and 
might have a neurodegenerative etiology.          
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1 Shape feature analysis method for WMH: 
development, description and assessment  
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1.1 Abstract 
 
WMH exhibit large inter-individual variability in terms of regional distribution, severity, rate of 
progression and clinical consequences. We hypothesize that descriptors on WMH morphology can provide 
additional information to describe the large inter-individual variability. Shape descriptors were selected 
based on medical, geological and computer vision literature and their performance was evaluated. This 
resulted in four suitable descriptors: fractal dimension, eccentricity, solidity, and convexity. These four 
descriptors were applied to a dataset with patients with manifest arterial disease. These shape 
descriptors provided additional information about the irregularity of WMH lesions, especially the 
convexity. In conclusion, shape descriptors provide additional information on WMH, however further 
research into its clinical application is necessary.  
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1.2 Introduction 
 

Cerebral small vessel disease (CSVD) is involved in one-third of ischemic strokes and more than 90% of 
intracerebral haemorrhages and contributes significantly to cognitive decline and dementia in the elderly 
[5], [6]. Even though CSVD is a serious healthcare issue, it has only gained more interest over the past 20 
years. 

The pathogenesis of CSVD is still largely unknown [7]. The main mechanism underlying SVD-related brain 
injuries is usually assumed to be ischemia. However, ischemia caused by arteriolar occlusion might be a 
late-stage phenomenon caused by endothelial damage. This damage can lead to passage of plasma 
proteins into the vessel wall, damaged vessel walls [8], leakage of fluid [9], albumin [10], other plasma 
proteins, and inflammatory cells [11] causing damage in the white and deep grey matter. CSVD results 
from a complex mix of genetic and cardiovascular risk factors, the most important of which are age and 
hypertension [4]. Neuroimaging features of CSVD include recent small subcortical infarcts, lacunes of 
presumed vascular origin, white matter hyperintensities (WMH) of vascular origin on T2/FLAIR MRI, 
dilated perivascular spaces cerebral microbleeds and brain atrophy [3], [5] .  

Although WMH are commonly found in healthy elderly people, WMH are commonly related to 
cerebrovascular disease, cardiovascular disease, dementia and psychiatric disorders [12]–[14]. WMH 
exhibit large inter-individual variability in terms of regional distribution, severity, rate of progression and 
clinical consequences [15].  

Currently, the WMH burden is mainly expressed in terms of volume [3] and lacks the potential to explain 
this large inter-individual variability. Shape and localization of WMH are potential discriminating features 
[16]–[18]. For example, cerebral autosomal dominant arteriopathy is associated with WMH located in the 
temporal lobe, whereas cerebral amyloid angiopathy is associated with WMH located in the posterior 
lobe [19]–[21]. WMH can be divided into periventricular (PVWMH) and deep (DWMH) [22] or in three 
subtypes PVWMH, DVWMH and confluent WMH (CWMH) [23], [24]. Differentiation between PVWMH, 
CWMH and DWMH is based on the distance to the lateral ventricles [25]. Post-mortem studies showed 
that PVWMH show signs of non-ischemic damage; discontinuous ependymal, gliosis, loosening of the 
white matter fibres and myelin loss, whereas DWMH show signs of chronic small vessel disease[15], [23], 
[26].  In a review on WMH, Kim et al. [23] concluded that smooth PVWMH are linked to an increase of 
interstitial fluid, whereas irregular PVWMH/CWMH are more likely caused by hypo perfusion and, DWMH 
are more related to small vessel disease.  

It is challenging to assess and quantify WMH shape visually. Therefore, algorithms that can automatically 
assess WMH shape descriptors need to be developed. No studies were found that performed shape 
analysis of WMH of vascular origin. However, in other research fields shape descriptors as eccentricity, 
convexity, solidity, compactness, fractal dimension, curvedness and shape index have been used to 
discriminate between different types of lesions [27]–[33].  

The aim of this study was to assess shape descriptors of WMH lesions that can be used to provide 
additional information on these lesions and to evaluate their potential to discriminate between different 
WMH etiologies.  
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1.3 Methodology 
1.3.1 Requirements 

The requirements imposed on the shape descriptors are: 

1. Independence of volume, volume should not solely influence the outcome. 
2. The outcomes of the shape descriptors should be distributed evenly: 

a. No flooring effect 
b. No ceiling effect 
c. Preferably: Distributed normally, to facilitated statistical analysis 
d. Preferably: The values of the shape ranges between 0 and 1 

3. Robustness, 
a.  Positioning of the lesions should not influence the outcome, shape measures should be: 

i. Rotational invariant 
ii. Scaling invariant 

iii. Translational invariant 
b. Should perform well with limited resolution 

4. Preferably: Interpretation should be straight forward and comprehensible for clinicians.  
 

1.3.2 Shape measures 
The WMH shape descriptors can be divided into area based (surface area, convexity, surface index and 
curvature), dimension/volume based (volume, solidity, complexity, eccentricity and fractal dimension). 
These descriptors are calculated from the binary segmented data.  

Volume is a quantification of a 3D space enclosed by a surface. WMH volume is used to calculate the 
solidity (equation 1.4), complexity (1.12) and compactness (1.13) of the lesions and is used as a parameter 
to express the WMH load. Volume is defined as: 

 

 𝑉𝑜𝑙𝑢𝑚𝑒 =  𝑛 ∙ 𝑥𝑥𝑦𝑧  1.1 

With 𝑛 as the number of voxels and 𝑥𝑥𝑦𝑧 as the voxel size.  

Surface area is the size of the lesion interface so the surface of the enclosed 3D space. The surface area is 
used to calculate the convexity (equation 1.3), complexity (1.12) and compactness (1.13) of the lesions.  
Area is defined as:  

 

𝐴𝑟𝑒𝑎 = (𝑓𝑒𝑥𝑝𝑥𝑦
+ 𝑓𝑒𝑥𝑝−𝑥𝑦

) ∙ 𝑥𝑥𝑦 + (𝑓𝑒𝑥𝑝𝑥𝑧
+ 𝑓𝑒𝑥𝑝−𝑥𝑧

) ∙ 𝑥𝑥𝑧 + (𝑓𝑒𝑥𝑝𝑦𝑧
+ 𝑓𝑒𝑥𝑝−𝑦𝑧

) ∙ 𝑥𝑦𝑧 1.2 

𝑓𝑒𝑥𝑝 is defined as the number of voxel faces exposed in the indicated direction and 𝑥 the voxel size in the 

indicated direction.  

The size and shape of concavities seems different between the WMH of different subjects. An object with 
more concavities has a higher jaggedness of edges. This is a measure for roughness, as the surface has 
more concavities the area increases and volume decrease and therefore the roughness increases.  Solidity 
and convexity describe roughness by the extent to which the shape is convex or concave. A fully convex 
shape has a convexity of 1.  

Even though convexity and solidity have not been used to analyses WMH other field have used these to 
analyses shapes. Lui et al. shows that a combination of solidity and convexity can be used to distinguish 
shapes based on number, shape and size of concavities for volcanic ash analysis [32].The convexity will 
decrease as the shape becomes more concave.  

 
The convexity is defined as:   

 𝐶𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦 =
𝐴𝑟𝑒𝑎 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙

𝐴𝑟𝑒𝑎
  1.3 

 
Solidity is defined as: 

 𝑆𝑜𝑙𝑖𝑑𝑖𝑡𝑦 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑉𝑜𝑙𝑢𝑚𝑒 𝑐𝑜𝑛𝑣𝑒𝑥 ℎ𝑢𝑙𝑙
  1.4 
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A shape or set of points is convex if for any two points that are part of the shape, the whole connecting 
line segment is also part of the shape. The convex hull is the smallest convex set that contains the subset 
or shape. [34] 

The solidity and convexity can be combined using formula 1.5 to obtain the concavity index.  

 

 𝐶𝑜𝑛𝑐𝑎𝑣𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = √(1 − 𝑠𝑜𝑙𝑖𝑑𝑖𝑡𝑦)2 + 2 − 𝑐𝑜𝑛𝑣𝑒𝑥𝑖𝑡𝑦2 1.5 

 
The fractal dimension is not previously used to analyse WMH but is already been used to quantify  grey 
matter [30] and white matter [31] morphometric variability (complexity). Fractal objects are defined as 
scale-invariant (self-similar or self-affine). A fractal is an assemblage of rescaled copies of itself. Self-
similarity occurs when the object is scaled in all direction where self-affinity occurs when scaled 
anisotropic. The fractal dimension measures the textural roughness of an object. The higher the fractal 
dimension the more irregular the object compared to a lower dimension. An object with a fractal 
dimension between 2 and 3 fills more space than a surface but less space than a volume. Box-counting 
was used as it can be applied in any dimension and with or without self-similarity. [35], [36] The fractal 
dimensions is defined as [37]:  

 
𝐹𝑟𝑎𝑐𝑡𝑎𝑙 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 = lim

𝑟→1

log (𝑛𝑟)

log ( 
1
𝑟 )

 
1.6 

With 𝑛 as the number of boxes covered by the pattern and the inverse box size 
1

𝑟
 with 𝑟 = 2𝑝. The value 

of p ranges from the smallest p satisfying equation 1.7  till 0. 

 𝑙𝑒𝑠𝑖𝑜𝑛 𝑠𝑖𝑧𝑒𝑚𝑎𝑥 ≤ 2𝑝 1.7 
 

We hypothesize that more benign WMH caused by oedema around the vessels is more ellipsoid and 
vascular damage more circular shaped. Eccentricity describes the deviation from a circle. The eccentricity 
of a circle is one and the eccentricity of a line is zero. Therefore, the eccentricity of an ellipse will be 
between zero and one. The eccentricity in this study is defined as [28]:   

 

 𝐸𝑐𝑐𝑒𝑛𝑡𝑟𝑖𝑐𝑖𝑡𝑦 =
𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠
  1.8 

The major and minor axis (see figure 2) can be obtained by finding the eigenvector of the pixel coordinate 
values covariance matrix. 

 
A non-singular 3𝑥3 matrix 𝑨 has 3 eigenvalues 𝜆1, 𝜆2, 𝜆3 obtained by solving equation 1.9  

 

 |𝑨 − 𝜆𝑰| = 0 1.9 
With 

 

𝑨 =  [

𝑣𝑎𝑟(𝑥) 𝑐𝑜𝑣(𝑥, 𝑦) 𝑐𝑜𝑣(𝑥, 𝑧)
𝑐𝑜𝑣(𝑥, 𝑦) 𝑣𝑎𝑟(𝑦) 𝑐𝑜𝑣(𝑦, 𝑧)
𝑐𝑜𝑣(𝑥, 𝑧) 𝑐𝑜𝑣(𝑦, 𝑧) 𝑣𝑎𝑟(𝑧)

] 

1.10 

The corresponding eigenvectors 𝒆1, 𝒆2, 𝒆3 are obtained by solving equation 1.11: 

 

 (𝑨 − 𝜆𝑗𝑰)𝒆j = 0 1.11 

 
 

The eigenvector corresponding with the largest eigenvalue is the major axis. The mean pixel value is 
subtracted and the lesions are rotated so that the lesions centre is located in the origin and the x-axis 
corresponds to the major axis. The major axis is variance along the x-axis within 0.2 mm from the axis and 
the minor axis is the variance along the z-axis within 0.2 mm from the axis.  
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Other shape descriptors that were investigated are defined below (equation 1.12-1.15). Such measures 
have previously been used to discriminate between malignant and benign tumours [27]–[29]. The 
roughness of a shape describes the extent of the irregularity of surface area. A regular object will have a 
lower roughness than an irregular object of the same volume, due to an increased area.   

 

 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
4∙𝜋∙𝑉𝑜𝑙𝑢𝑚𝑒

𝐴𝑟𝑒𝑎2   alternatively 𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐴𝑟𝑒𝑎
 1.12 / 1.13 

   
 
 

𝐶𝑜𝑚𝑝𝑎𝑐𝑡𝑛𝑒𝑠𝑠 =
𝑉𝑜𝑙𝑢𝑚𝑒2

𝐴𝑟𝑒𝑎3 /
𝑉𝑜𝑙𝑢𝑚𝑒

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠 ∙𝑆𝑒𝑐𝑜𝑛𝑑 𝑎𝑥𝑖𝑠 ∙𝑀𝑖𝑛𝑜𝑟 𝑎𝑥𝑖𝑠
/

𝑉𝑜𝑙𝑢𝑚𝑒

𝑀𝑎𝑗𝑜𝑟 𝑎𝑥𝑖𝑠3  1.14 / 1.15 / 1.16 

Other roughness based measures that were investigated include the shape index and curvedness. Shape 
index and curvedness are defined as [38]:  

 
𝑆ℎ𝑎𝑝𝑒 𝑖𝑛𝑑𝑒𝑥 =  

2

𝜋
𝑡𝑎𝑛−1

𝒌1 + 𝒌2

𝒌1 − 𝒌2
 

1.17 

 
𝐶𝑢𝑟𝑣𝑒𝑑𝑛𝑒𝑠𝑠 =  √𝒌1

2 + 𝒌2
2 

1.18 

Where 𝒌1 is the maximal curvature and 𝒌2 the minimal curvature (see figure 3), named the principal 
curvatures.  

  

Figure 1. The major axis denotes the 
largest diameter of the lesions in 3D and 
minor axis denotes the smallest diameter 
of the lesions in 3D orthogonal to the 
major axis. 

Figure 2. Example of a surface with 

surface normal 𝑵⃑⃑  and principal 
curvatures 𝒌1 & 𝒌2  
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1.3.3 Descriptor validation 
The performance of the previous described shape descriptors is examined using artificial shapes. Figure 3 
shows six artificially created spheres with various axis lengths and orientations. Figure 4 shows six 
artificially created u-shapes of various sizes, orientations and with and without gaps. Known volume, area, 
axis length and box counts are compared with the outcome of shape descriptors. Finally a line, plane, box 
and cantor dust were created to validate the fractal dimension measurement.  

1.3.4 Descriptor evaluation 
For this experiment a selection of lesions from previously generated WMH probability maps of the 
SMART-MR dataset were used (for more information see page 22). This selection was created in dialogue 
with a radiologist (JB). 

Performance of the shape descriptors was evaluated using a selection of PVWMH, CWMH and DWMH 
lesions (for more information about lesion types see page 23). Lesions with different volumes were 
selected to represent the possible range in shape of the three lesion types. See Appendix A for 
visualization of the shape ranges. Volume dependency was determined by plotting the shape descriptor 
versus the volume (sorted with ascending volume) of the lesions, a linear association was declared 
volume dependent. Spread, flooring and sealing effects were assessed in the same plots. For examination 
of the scale, translation and rotational invariance lesions were rotated, translated or scaled and outcomes 
of the shape parameters for the original shape and the rotated, translated or scaled lesions was 
compared. Comprehensibility of these parameters for clinical practice was determined by a radiologist 
(JB).  

Finally the best performing shape descriptors were applied to all WMH lesions in the SMART-MR cohort to 
investigate the meaning and impact of these descriptors more thorough.    
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Figure 4.3U shapes with varying sizes, 
orientations and with and without gaps. 

Figure 5. Cantor dust in 2D and 3D.  

Figure 3.4Spheres with varying diameters 
and orientations. 
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1.4 Experimental results 
1.4.1 Descriptor validation  

An overview of different results from the descriptor validation can be found in table 1, 2 and 3. All 
measurements of the synthetic lesions correspond to the true measures except for the estimation of the 
fractal dimension. Where a under estimation of the FD is present for the less complex figures (cube, plane 
and line) and a slight overestimation for cantor dust.  

Table 1. Evaluation of area, volume, convex area, convex volume and box count measurements. True value/measured value 

True/measured Area (mm2) Volume 
(mm3) 

Convex Area 
(mm2) 

Convex 
volume (mm3) 

Box count (n) 

Circle A 22/22 5/5 22/22 5/5 [5 3 1] /[5 3 1] 

Circle B 54/54 27/27 54/54 27/27 [26 8 1]/[26 8 1] 

U-shape A 22/22 5/5 22/22 6/6 [5 3 1] /[5 3 1] 

U Shape B 22/22 5/5 22/22 6/6 [5 3 1] /[5 3 1] 

U Shape C 168/168 80/80 192/192 128/128 [80 10 4 1]/ [80 10 4 1] 

U Shape D 168/168 80/80 192/192 128/128 [80 10 4 1]/ [80 10 4 1] 

U Shape E 174/174 77/77 192/192 128/128 [77 10 4 1]/ [77 10 4 1] 

U Shape F 176/176 76/76 192/192 128/128 [76 10 4 1]/ [76 10 4 1] 
 
Table 2. Evaluation of axis length and eccentricity measurements. True value/measured value 

True/ measured First  axis 
(mm) 

Second axis 
(mm) 

Third axis 
(mm) 

Eccentricity 
linear 

Eccentricity 321 

Circle A            3/3 3/3 1/1 0.33/0.33 0.82/0.82 

Circle B       3/3 3/3 3/3 1/1 0/0 

Circle C 19/19 19/19 19/19 1/1 0/0 

Circle D 19/19 19/19 13/13 0.68/0.68 0.56/0.56 

Circle E 19/19 13/13 9/9 0.47/0.47 0.82/0.82 

Circle F 19/19 13/13 9/9 0.47/0.47 0.82/0.82 
 
Table 3. Evaluation of the fractal dimension by using objects with known fractal dimensions. True/measured (% difference) 

Cube Plane Line 2D cantor 3D cantor 

3/2.776 (-7.5%)  2/1.833 (-8.3%) 1/0.951 (-4.9%) 1.678/1.690 (0.7%) 2.485/2.535 (2,0%) 

 

1.4.2 Descriptor evaluation  
The results of the descriptor evaluation are shown in table 4 These scores are based on the results of the 
parameters obtained from the selection of PVWMH, CWMH and DWMH lesions (see appendix B) and 
synthetic lesions (figure 3, 4 and 5).  

Some measures like fractal dimension, complexity and compactness measure similar shape 
characteristics. Because we are interested in unique characteristics of the lesions a comparative 
assessment was made. Even though the fractal dimension is not truly scale invariant this measure is 
chosen over complexity and compactness as these measures show some volume dependency and a more 
selective spread. This volume dependency is mostly caused by the fact that these are variants of the 
surface to volume ratio with is volume dependent. Moreover compactness 2 and 3 make use of the axis 
length obtained from the eccentricity calculation; due to the fact that PVWMH and CWMH are not 
spherical objects these measures are beside the point.  

Solidity and convexity are used in further analysis due to the favourable characteristics. In contrast to 
other roughness measures are they not volume dependent and the spread is sufficient. Second of all, 
research into volcanic ash morphology [32] suggest that combining solidity and convexity can help 
distinguish between small and large concavities which is interesting when analysing PVWMH and CWMH 
lesions.  

For shape index and curvedness measurements the resolution is not sufficient, therefore these measures 
will not be used further on in the clinical data analysis.   

In conclusion, the four shape descriptors that meet most of the requirements and provide unique insights 
into WMH morphology are: solidity, convexity, eccentricity (3/1) and fractal dimension.   
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Table 4. Results from the shape descriptor evaluation. Per shape descriptor the criteria are evaluated and scored.  
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Solidity + - +/- +/- + + + +/- + 

Convexity + - - - + + + + + 

Complexity + - +/- - + + + +/- + 

Compactness 1 + +/- +/- - + + + +/- + 

Compactness 2 + + - - + + + + + 

Compactness 3 + + - - + + + + + 

Eccentricity 3/1 + - - - + + + +/- + 

Eccentricity 321 + - - + + + + - +/- 

Eccentricity 31 + - - + + + + - +/- 

Eccentricity 21 + - - - + + + - +/- 

Fractal dimension + +/- - - + - + + +/- 

Shape index (SI)  

    Mean value - - - +/- - - - - +/- 

    Minimal value - - + - + + + - +/- 

    Maximum value - +/- - + + + + - +/- 

    Standard deviation - - - - - - - - +/- 

Curvedness  

    Mean value - - - - + + + + +/- 

    Minimal value - - + - - - - - +/- 

    Maximum value - - - - + + + + +/- 

    Standard deviation - - - - + + + + +/- 
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1.4.3 Shape descriptors in the SMART-MR cohort 
In the previous section four shape descriptors (fractal dimension, solidity, convexity and eccentricity) 
were selected as they satisfied most of the formulated criteria (see requirements, page 6 and table 4). In 
figure 6 the relation between WMH volume and the different shape descriptors is shown. The WMH 
volume is log transformed to obtain a normal distribution. Normality was conformed with a histogram 
and QQ plot. Fractal dimension and solidity are highly correlated with WMH volume (FD: r (9971) = 0.95, p 
< 0.001 & solidity: r (997) = -0.85, p < 0.001). Convexity and eccentricity have a weak correlation with 
WMH volume (Convexity: r (997) = 0.23, p < 0.001 & Eccentricity: r (632) = -0.24, p < 0.001).  

 
Figure 6. The four selected shape descriptors set out against the log transformed volume. The WMH volume is log 
transformed to obtain a normal distribution. Increased WMH volume leads to an increase in fractal dimension and 
convexity while the solidity decreases. Eccentricity does not increase with volume.   

  

                                                             
1
 Degrees of freedom (n-2). Of the 1003 subjects, 4 did not have any CPWMH and 369 did not have any DWMH 

lesion. This results in 999 subjects with shape for CPWMH lesions and 634 subjects with DWMH lesions.   
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In figure 7 the convexity is plotted against the convexity for all CPWMH lesions to provide further insight 
into these descriptors. Lesions positioned in the left bottom corner are large and rough lesions with a 
large area and small volume compared to their convex hull. The lesions more to the right bottom still have 
a small relative volume, however their relative area decreases. Lesions with a higher solidity have a higher 
relative volume. Resulting in a shape that is more comparable to the convex volume, and therefore 
resulting in a more comparable area. Causing a more concentrated spread in convexity with higher 
solidities compared to low solidities (around Lesions 6, 7 and 8).  

Patients with smaller CPWMH volume can either have a one relatively smooth elongated lesion (right 
bottom corner, e.g. lesion 3), several smaller or somewhat more bulky lesions spread out along the 
ventricles (top left, e.g. lesions 8) or something in between (e.g. lesions 5 and 6). Lesions with a higher 
volume are more often positioned in the left bottom corner (e.g. lesions 1 and 4) as the relative area 
increases due to increased roughness. Interpretation of the convexity without the solidity is complicated 
as in 3D as values of the convexity can range beyond 1. See for example lesion 4, without the sollidity one 
would state that this is not a rough lesion as the convex area and the area are relatively similar.  
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Figure 7. Convexity versus solidity plot with WMH visualization for each lesion at corresponding position. Orange lesions are confluent 
lesions and the periventricular lesions are visualized in blue. Lesions at different positions in the plot are visualized to provide some insight 
into the meaning of the shape descriptor values.  
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Figure 8 shows a plot of the fractal dimension versus the concavity index (a combination of solidity and 
convexity, see equation 1.5). It can be observed that an increase in volume and roughness also increases 
the fractal dimension of the lesions. This is in line with figure 6 in which  a strong corrolation was shown 
between volume and fractal dimension. The concavity index, also a measure of roughness, can be used to 
differentiate between dense and irregular versus elongated and curved WMH. 

 

 
Figure 8. Fractal dimension versus concavity index plot with WMH visualization for each lesions and corresponding 
positions. The orange lesions are confluent lesions and the periventricular lesions are visualized in blue. Lesions at different 
positions in the plot are visualized to provide some insight into the meaning of the shape descriptor values.  
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Figure 9  illustrates shapes of DWMH lesions with increasing eccentricity. Differences in eccentricity are 
difficult to assess visually. Indicating the additional value for shape descriptors in addition to volume and 
visual examination, on the other hand, it is also an indication that small changes in eccentricity may not 
be relevant.  

 
Figure 9. Eccentricity from upper left to right and top to bottom: 0.10, 0.21, 0.31, 0.42, 0.50, 0.61, 0.71, 0.81, 0.91, 0.98. 

  



18 
 

 

1.5 Discussion and conclusion 
In this study we investigated and evaluated possible shape descriptors for WMH lesions. This was done 
with the ultimate aim of providing additional discriminating information on outcome of patients with 
WMH and WMH etiology. First of all, we showed that shape descriptors of WMH can be calculated. When 
comparing area based, dimension/volume based and complex based shape descriptors we found that, 
convexity, solidity, eccentricity and fractal dimension meet most of the requirements outlined in table 4. 
Finally, shape descriptors were applied to WMH lesions of subject of the SMART-MR cohort. Even though 
the shape of the WMH lesions is highly correlated with WMH volume for some shape descriptors, findings 
suggest that shape measures can indeed provide additional information on different types of WMH with 
regard to irregularity. 

During the validation of the shape descriptors we found that we can accurately measure volume, area and 
length of WMH lesions. However, this does not mean that our 3D shape descriptors for WMH are 
completely accurate. For measuring the shape descriptors we are dependent on the voxel size and 
segmentation to obtain a digital representation of the WMH lesion. This limitation is especially of 
influence on the accuracy in the SMART-MR data set as scans were made with an slice thickness of 4 mm. 
Resulting in limited data in the z-direction, the influencing the accuracy and precision of shape descriptor 
values of the smallest lesions the most.  

The accuracy of our box-counting (table 3) method for 3D-FD calculation was good (with an maximal 
difference of 2%) for complex objects (2D and 3D cantor dust) and comparable to other published 
approaches to calculate the FD of the cerebral grey matter (difference 0.1 – 2%)[39]. However, for non-
complex objects (cube, plane and line) the accuracy is low (maximal difference of 8.3%) compared to that 
reported by Esteban et al. [39]. This suggests that the FD for the PWMH and CWMH is thus more reliable 
than the FD for DWMH lesions, which are smaller and more cube or ellipsoid shaped.  

Another possible limitation is that for the eccentricity we assumed that a deep WMH  lesion is oval or 
round and thus the axis length are measured through the centre of the lesion, while in reality not all 
DWMH lesions are truly spherical.  

Some measures can only be obtained using binary data (e.g. fractal dimension); while for other 
descriptors it is also possible to assess the shape descriptors using a mesh. In this study all measures are 
calculated from binary images with the risk of losing the additional information of the probability values 
obtained by kNN classification (see brain segmentation, page 25). Meshes created with the marching cube 
algorithm on the probability maps might provide a more precise representation of the lesion resulting in 
even more reliable shape descriptors.     

Possibilities for future research include assessing the reproducibility of the WMH shape descriptors by 
obtaining two datasets of the same subject within a short timeframe but in different scanning sessions 
using the same MRI scanner and protocol. Additionally it would be interesting to investigate the influence 
of resolution by scanning the same subject with different slice thicknesses. Quantification of the 
variability caused by differences in slice selection, slice thickness and segmentation may increase our 
knowledge of the precision and accuracy of the shape descriptors. Furthermore, the relationship between 
WMH shape and WMH volume can be investigated more accurately. Finally and most importantly, it 
would be interesting to investigate the relation of WMH shape and clinical outcome (i.e. development of 
stroke, cognitive impairment or death).  Like Artero et al. we found that WMH are most often localized in 
the frontal and parietal lobe. It would be interesting to investigate whether the shape of DWMH lesions is 
different per lobe.  

In conclusion, our study suggests that solidity, convexity, concavity index, fractal dimension and 
eccentricity can be used to obtain additional discriminating information on WMH lesions of presumed 
vascular origin. However, further research on the clinical implication of shape descriptors is necessary to 
evaluate their additional value.  
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2 Different brain imaging phenotypes in patients with 
manifest arterial disease; the SMART-MR study 
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2.1 Abstract 
Objective: Brain abnormalities are heterogeneous and are the result of different underlying etiologies. 
These different etiologies can lead to different patterns of brain abnormalities that can be interpreted as 
different brain imaging phenotypes. We examined a cohort of patients with arterial disease and set out to 
identify subgroups with different brain imaging phenotypes using cluster analysis. 

Method: We included 1003 patients with manifest arterial disease from the SMART-MR study. In these 
patients different brain imaging features were determined consisting of grey and white matter tissue 
volumes, presence of different types of brain infarcts and different features of white matter 
hyperintensities (WMH). Hierarchical clustering was used to identify different subgroups based on these 
imaging features. To study the clinical relevance of these subgroups, the between group differences in 
patient characteristics and risk factors for vascular disease were examined. 

Results: By cluster analysis 7 distinct groups of brain imaging phenotypes in patients with manifest arterial 
disease were found consisting of 28, 49, 118,120, 183, 205 and 300 patients. These groups were 
significantly different in brain volumes, presence of different types of brain infarcts and different features 
of WMH (p<0.05). These groups can be interpreted as suffering from: small vessel disease (SVD) combined 
with cerebral atrophy, large vessel disease, intermediate cerebral atrophy and WMH, SVD and three 
relative healthy groups with low to intermediate cerebral atrophy and WMH. Groups were significantly 
different (p<0.05) in age, smoking, hypertension, hyperhomocysteinemia, diabetes, and in primary 
location of the manifest arterial disease. 

Conclusions: Within a group of patients with arterial disease, we identified distinct brain imaging 
phenotypes that were associated with different vascular risk factor profiles. This novel approach enables 
identification of different brain imaging phenotypes possibly associated with different still unknown 
underlying etiologies. 

Keywords: imaging phenotypes, arterial disease, white matter hyperintensities, infarcts, atrophy. 
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2.2 Introduction 
 

Brain changes are heterogeneous and are the result of different underlying etiologies. The most frequent 
brain changes are neurodegenerative diseases, large vessel disease and cerebral small vessel disease. 
These brain changes are quite heterogeneous. CSVD for example has various underlying etiologies, the 
most common being arteriolosclerosis, cerebral amyloid angiopathy and genetic SVD (for example 
CADASIL2 and CARASIL3) [5]. However, even more unknown underlying etiologies might play an important 
role in the development of brain changes on MRI.  

Specific neuroimaging features can reflect different etiologies. For example, subcortical infarcts resulting 
from large-vessel disease (LVD) are indistinguishable from those caused by SVD in the territory of the 
lenticulostriate arteries [40]. Furthermore, WMH are considered a neuroimaging feature of CSVD, but 
might not have an atheromatous etiology [41]. Nowadays research mainly focuses on solitary imaging 
marker resulting in limited explanation of the large inter-individual variability. Artero et al. were the first 
to use hierarchal clustering to find patterns in WMH location and severity. [21] Although this is a new 
approach in WMH research, unsupervised clustering such as hierarchical clustering is widely used in 
genomic research. By hierarchical clustering it is possible to group patients with similar neuroimaging 
features together, thereby identifying imaging phenotypes. Combining neuroimaging features into 
imaging phenotypes can result in the identification of previously unknown distinct diseases with its own 
underlying etiologies and prognosis.  

We examined a cohort of patients with manifest arterial disease and attempted to identify subgroups of 
different brain imaging phenotypes using cluster analysis. The relevance of these subgroups was assessed 
by examining between-group differences in patient characteristics and risk factors for vascular disease.  

                                                             
2
 CADASIL= cerebral autosomal dominant arteriopathy with subcortical ischemic strokes and 

leukoencephalopathy 
3
 CARASIL= cerebral autosomal recessive arteriopathy with subcortical ischemic strokes and 

leukoencephalopathy 
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2.3 Materials and methods 
2.3.1 Study population 

Cross-sectional data was used from the SMART-MR study [42], [43]. The Second Manifestations of 
ARTerial disease (SMART) is a prospective cohort study at the University Medical Centre Utrecht designed 
to establish the prevalence of concomitant arterial diseases and risk factors for atherosclerosis in a high-
risk population. The SMART-MR study is a sub-study of the SMART study, with the aim to investigate risk 
factors and consequences of brain changes on MRI in patients with symptomatic atherosclerotic disease. 
The SMART-MR study is an ongoing prospective cohort study in 1309 middle-aged and older adult 
patients newly referred to the University Medical Centre Utrecht for treatment of symptomatic 
atherosclerotic disease (cerebrovascular disease, peripheral arterial disease, manifest coronary artery 
disease or abdominal aortic aneurysm) enrolled between May 2001 and December 2005 for baseline 
measurements. During a one day visit to the medical centre, a physical examination, blood and urine 
samplings, neuropsychological assessment, ultrasonography of the carotid arteries, and a 1.5T brain MRI 
scan were performed. Questionnaires were used for assessing risk factors and medical history, 
functioning, medication use and demographics.  

A total of 1309 patients were included in the SMART-MR study. Of these 1309 patients, 19 had no MRI, 
225 had no IR or T1 sequence and 14 had no FLAIR sequence. In addition, in 44 patient’s brain volume 
data were missing due to motion or artefacts. MRI scans of four patients were excluded due to severe 
undersegmentation. As a result, MR segmentation data of 1003 participants was available.  

2.3.2 Magnetic resonance imaging protocol 
MR imaging of the brain was performed on a 1.5T whole-body system (Gyroscan ACS-NT, Philips Medical 
Systems, Best, The Netherlands) using a standardized scan protocol. Transversal T1- weighted (repetition 
time (TR) = 235 ms; echo time (TE) = 2 ms), T1-weighted inversion recovery images (TR = 2900 ms; TE = 22 
ms; TI = 410 ms), T2-weighted (TR = 2200 ms; TE = 11 ms) and FLAIR (TR = 6000 ms; TE = 100 ms; inversion 
time (TI) = 2000 ms) were acquired with a voxel size of 0.9 x 0.9 x 4.0 mm3 and 38 contiguous slices.  

2.3.3 Brain MRI markers  

2.3.3.1 Brain segmentation 
Segmentations were obtained using a probabilistic segmentation method [44]. This method segments five 
different brain structures; white matter, grey matter, cerebrospinal fluid without ventricles, ventricles and 
WMH in brain MR imaging. This algorithm uses K-Nearest Neighbour (kNN) classification to generate 
probabilities per voxel for each tissue types. The features for this classification is generated from spatial 
information and voxel intensities from T1-weighted, inversion recovery, proton density-weighted, T2-
weighted and fluid attenuation inversion recovery scans. A threshold can be applied to obtain binary 
segmentations. Automatic segmentations by kNN for all MRI scans were visually checked on the FLAIR 
sequence. All hyperintense lesions on the FLAIR sequence that were visually not consistent with WMH 
were manually removed and replaced by labels of other tissues based on the probability maps from the 
kNN segmentation.  

2.3.3.1.1 Brain Atrophy 
Total brain volume was calculated by summing the volumes of grey and white matter and, if present, 
volumes of the WMH and infarctions. Inter cranial volume (ICV) was calculated by summing the total brain 
volume and volumes of the cerebrospinal fluid. Brain parenchymal fraction (BPF) is defined as the 
percentage of ICV occupied by brain tissue. Cortical grey matter fraction (GMF), white matter fraction 
(WMF) and ventricular fraction (VF) are defined as the percentage of ICV occupied by cortical grey matter 
volume, white matter or ventricles.  

2.3.3.1.2 White matter hyperintensities 
WMH can be visually divided into different types based on their distance to the lateral borders of the 
lateral ventricles. These different types consist of deep punctuate white matter hyperintensities (DWMH), 
periventricular white matter hyperintensities (PVWMH) and confluent white matter hyperintensities 
(CWMH) [23], [24]. Previously generated WMH probability maps were used to obtain WMH lesions. 
Lesions were automatically labelled DWMH, PVWMH or CWMH based on the distance from the ventricles. 
Ventricle segmentation was obtained using the fully automated lateral ventricle delineation (ALVIN) 
toolbox [45] in statistical parametric mapping 8 (SPM8, Wellcome Department of Imaging Neuroscience, 
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Institute of Neurology and the National Hospital for Neurology and Neurosurgery; London, UK; 
http://www.fil.ion.ucl.ac.uk/spm/) running on MATLAB R2015b (Matworks, Natick, MA, USA). The ALVIN 
toolbox uses a T1 scan (registered to the T2-FLAIR) to segment and normalize the cerebrospinal fluid (CSF) 
and then applies the ALVIN mask. The ventricle segmentation was subsequently rewrapped back into 
anatomical space. The obtained automatic assigned labels are manually checked and corrected if 
necessary. Due to their proximity, PVWMH and CWMH were considered as one group (CPWMH). CPWMH 
are defined as lesions less that are located within 3 mm of the ventricles and for DWMH the minimal 
distance from the ventricles is more than 3 mm. 

Shape descriptors 

WMH exhibit large inter-individual variability in terms of regional distribution, severity, rate of 
progression and clinical consequences [15]. Currently, the WMH burden is mainly expressed in terms of 
volume [3] lacking the potential to explain the large inter-individual variability. The shape and distribution 
might describe more of this variability. While shape analysis has been performed in neuroimaging studies 
on WMH of non-vascular origin [27]–[33], no such studies have been performed in WMH of presumed 
vascular origin.  

WMH shape descriptors used in the present study can be subdivided into area based (surface area, 
convexity, surface index and curvature), dimension/volume based (volume, solidity, complexity, 
eccentricity and fractal dimension) shape descritpors, see table 5. All descriptors were calculated from the 
binary data obtained by thresholding the lesion probability map at 10%. Shape descriptors for CPWMH 
lesions (solidity, convexity, concavity index and fractal dimension) were calculated in each patient for 
both hemispheres. As a result, one value for each shape parameter was obtained of all CPWMH lesions in 
each patient. For DWMH lesions, shape descriptors (eccentricity and fractal dimension) were calculated 
for each lesion separately and the mean values of all lesions were calculated for each shape parameter.   

Patients with few WMH have solid and smooth lesions and more round DMWH lesions. With an increased 
WMH volume, patients can either have one relatively smooth elongated lesion (relative low solidity and 
fractal dimension and high convexity) or several smaller and somewhat more bulky and irregular CPWMH 
lesions spread out along the ventricles (relative higher solidity and fractal dimension, lower convexity). 
Lesions with a higher volume are often more irregular with a high fractal dimension and low solidity and 
convexity. 

Table 5. Shape descriptors calculated for the cluster analysis 

Name Description Formula WMH type Reverences 

Convexity (C) Describe the extent to which the shape is 
convex or concave. A fully convex shape 
has a convexity and solidity of 1. The 
solidity will decrease and the convexity 
increase as the shape becomes more 
concave. 

C  =
Convex hull area

Area
 

CWMH 
PVWMH 

[32] 

Solidity (S) 

S  =
Volume

Convex hull volume
 

CWMH 
PVWMH 

[32] 

Concavity index 
(CI) 

The concavity index is a measure of 
roughness and can be used to differentiate 
between dense and irregular or elongated 
and curved WMH. 

CI =  √(2 − C)2 + (1 − S)2 
 

CWMH 
PVWMH 

[32] 

Fractal 
dimension (FD) 

The Minkowski-Bouligand dimension (box-
counting dimension) is a measure for 
textural roughness. 

FD =  lim
𝑟→1

log (𝑛𝑟)

log ( 1𝑟 )
 

With n as the number of boxes and 
r the box size.  

CWMH 
PVWMH 
DWMH 

[30], [31] 

Eccentricity (E) Eccentricity describes the deviation from a 
circle. The eccentricity of a circle is one and 
the eccentricity of a line is zero. 

E =
Minor axis

Major axis
 

The major axis denotes the largest 
diameter of the lesions in 3D and 
minor axis the smallest diameter 
orthogonal to the major axis. 

DWMH [28], [33] 
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2.3.3.2 Infarcts 
The whole brain, including cortex, brainstem, and cerebellum, was visually searched for infarcts by two 
investigators and a neuroradiologist. Rating discrepancies were re-evaluated in a consensus meeting. All 
raters were blinded for the diagnosis and history of the patient. Hyperintensities located in the white 
matter also had to be hypointense on T1-weighted and FLAIR images, in order to distinguish them from 
WML. Infarcts were defined as focal hyperintensities on T2-weighted images of at least 3 mm in diameter. 
Dilated perivascular spaces were distinguished from infarcts on the basis of their location (usually in the 
lower third of the basal ganglia or in the centrum semiovale, along perforating or medullary arteries, 
often symmetrical bilaterally, form (round/oval), and the absence of gliosis [46]. We defined LI as infarcts 
sized 3–15 mm and located in the subcortical white matter, thalamus or basal ganglia. The location, type 
and affected flow territory were scored for every infarct. 

2.3.4 Cardiovascular risk factors 
Height and weight were measured without shoes and heavy clothing and the body mass index was 
calculated (kg/m2). Systolic and diastolic blood pressures (mmHg) were measured with a 
sphygmomanometer. These measurements were done twice and the average between the two 
measurements was calculated. Glucose and lipid levels are determined from an overnight fasting blood 
sample during the patient’s visit to the medical centre. Diabetes mellitus was defined as a glucose level of 
≥7.0 mmol/L or use of oral antidiabetic drugs or insulin.Hyperlipidaemia was defined as total cholesterol > 
5.0 mmol/L, self-reported use of lipid-lowering drugs or low-density lipoprotein cholesterol > 3.2 mmol/L. 
Hyperhomocysteinemia was defined as a homocysteine level ≥ 16.2 μmol/L.  Smoking and drinking habits 
were assessed using questionnaires. Smoking was qualified in pack-years. Alcohol consumption was 
divided into three categories: never, past and current. Patients who quit drinking during the past year 
were assigned to the category current alcohol intake. Ultrasonography was performed to measure the 
intima-media thickness (mm) in the left and right common carotid arteries, represented by the mean 
value of 6 measurements.   

2.3.5 Cluster analysis 
Multidimensional data analysis was used to demonstrate WMH shape patterns independently of 
etiological hypotheses. The input consisted of WMH volume, ventricle, cortical grey matter and white 
matter volume (corrected for intracranial volume), the number of DWMH lesions per lobe, number of 
infarcts (subdivided in number of lacunar and cortical infarcts) and shape parameters (fractal dimension, 
solidity, convexity, eccentricity). Hierarchical clustering (HC) using Ward’s criteria was used to generate 
clusters. The input was based on z-score normalized data for continuous variables and numbers scaled 
between 0 and 2. Thirty cluster evaluation criteria were calculated using the R package NbClust [47] and 
based on the majority rule the number of clusters was determined.  

The stability was analysed using a leave-one-out validation model by repeating the HC analysis 1003 times 
(every subject was left out once).  The average proportion of non-overlap (APN), average distance (AD), 
average distance between means (ADM) and the figure of merit (FOM) were calculated by averaging over 
all the deleted columns. All these measures should be minimized. Additionally, the silhouette width was 
used as measures of internal validity. The clustering validity resulted in; APN: 0.00; AD: 24.5; ADM: 0.00 
and FOM: 0.70. The average silhouette width for 3 clusters was 0.20 (cluster 1: 0.33, cluster 2: 0.07, 
cluster 3 0.09) and for 7 clusters was 0.12 (cluster 1: 0.09, cluster 2: 0.01, cluster 3: 0.00, cluster 4: 0.26, 
cluster 5: 0.17, cluster 6 0.06, cluster 7: 0.26) 

Data analysis was carried out using R version 3.3.2 [48] (witch packages Factoextra [49], NbClust [47], 
clValid [50] and R.Matlab [51]) 

2.3.6 Statistical analysis 
Vascular risk factors between the identified groups were investigated. Histograms and QQ plots were 
assessed to test for non-normal distribution. If applicable, the log transformation was used to obtain a 
normal distribution. Significance testing was carried out in qualitative variables using a 𝜒2 test and for 
quantitative variables analysis of variance (ANOVA).                   

Statistical analyses were carried out using the SPSS (Statistical Package for the Social Sciences) program, 
version 21. A p-value p< 0.05 was considered significant.  
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2.4  Results 
Based on the majority vote of 30 indexes, for determination of the optimal number of clusters in a dataset 
[47], we came to the 3 clusters approach. The three cluster approach makes a distinction primarily based 
on number and severity of brain abnormalities. However, at least seven subtypes of SVD exists [5], as we 
hypothesized that different etiologies lead to different imaging phenotypes we would expect more 
clusters. Based on the dendogram combined with the heatmap in figure 11 we determined that a seven 
cluster approach might be more appropriate.  

Three subgroup approach 
Hierarchal clustering showed a non-random pattern of brain characteristics and was cut to produce three 
distinct clusters of brain imaging features (figure 10) within this cohort of patients with manifest arterial 
disease. Cluster 1 grouped 483 patients (48%), cluster 2 grouped 374 patients (37%) and the final cluster 
grouped 146 patients (15%).  

Brain imaging phenotypes 

Brain imaging characteristics of the three groups are given in table 7. Groups are different in solidity, 
convexity, fractal dimension CPWMH, concavity index, eccentricity, number of DWMH (frontal, parietal, 
temporal and basal ganglia), WMF, GMF, VF, WMHF, lacunar and cortical infarct presence. On the other 
hand, fractal dimension of the DWMH and the number of occipital DWMH are not significantly different 
between groups.  

Group 1 corresponding to patterns in the first clusters was characterized by the least brain atrophy (VF: 
1.54(1.15,2.05), GMF: 37.5 ± 3.1), the lowest number infarcts (Lacunar: 0.4 %(2), Cortical: 0% (0)) and 
relatively small (WMHF: 0.03 (0.02,0.05)), solid and smooth (convexity: 1.00 ± 0.08, solidity: 0.77 ± 0.13, 
FD: 1.10 ± 0.16) CPWMH lesions. Group 2 is showing intermediate brain atrophy (VF: 1.97 (1.58,2.55), 
GMF: 35.6 ± 3.2), highest number of cortical infarcts (24.3 % (93)) and intermediate WMH volume 
(0.11(0.06,0.19)) with convex (convexity: 1.20 ± 0.17) CPWMH lesions. Group 3 has most brain atrophy 
(WMF: 41.8±2.0 vs. 42.7±1.9; p<0.001 & 42.4±2.1; p=0.006, GMF: 33.3±3.1, VF: 3.23 (2.72,3.78)) and the 
highest number of lacunar infarcts (37.0% (54)) and high WMH volume (3.23 (2.72,3.78)) with more 
irregular (concavity index: 1.23±0.13, FD: 1.53±0.18)) CPWMH lesions and less circular (0.45±0.10 vs. 0.51 
±0.17; p<0.001 & 0.48±0.14 ; p=0.08) DWMH lesions than group 1 and 2.  

Between group differences in patient characteristics, vascular risk factors and primary disease location 

The clinical characteristics of the three groups are given in table 6.  Significant differences were found in, 
mean age, sex, smoking, history of hypertension, diabetes, history of cerebral vascular disease, history of 
cardiac disease and history of an abdominal aneurysm were statistically different between groups. On the 
other hand, no significant differences were found in the body mass index, alcohol consumption, 
hyperlipidaemia and history of peripheral vascular diseases. 

Table 6 shows that with an increase of brain abnormalities the age and severity of the cardiovascular risk 
factors also increases. These groups mostly represent the relative healthy and young, intermediate and 
unhealthy and oldest group within the cohort with few, more and most brain abnormalities. 



26 
 

 

Table 6. Demographics and clinical characteristics of the total cohort and clusters identified by cluster analysis.  

 Total (n=1003) Group 1 (n=483) Group 2 (n=374) Group 3 (n=146) P value Post hoc 

Age (years) 59 ± 10 54 ± 9 61 ± 10 67 ± 7 p < 0.001 All 

Gender, % men 79.1 (793) 79.7 (385) 75.9 (284) 84.9 (124) p = 0.07  

Cardiovascular risk factors       

 BMI (kg/m2) 26.8 ± 3.8  26.8 ± 3.8 26.8 ± 3.9  26.4 ± 3.3 p = 0.441  

 Smoking (pack years) 22.4 ± 20.5 21.0 ± 19.6 22.6 ± 20.2 26.6 ± 23.6 p = 0.014
 1≠3 

 Alcohol intake, current % 74.4 % (742) 76.0 (365) 72.0 (276) 75.3 (110) p = 0.694  

 Hypertension, % 51.6 (513) 43.4 (208) 59.8 (222) 57.2 (83) p < 0.001
 
 1≠2,3 

 Hyperlipidaemia, % 79.6 (787) 81.6 (390) 77.0 (281) 79.5 (116) p = 0.259  

 Hyperhomocysteinemia, % 12.0 (120) 7.5 (36) 11.6 (43) 28.3 (41) p < 0.001 All 

 Diabetes mellitus, % 12.0 (120) 14.5 (69) 23.8 (87) 31.5 (45) p < 0.001 All 

 IMT (mm) 0.88 (0.73,1.05) 0.82 (0.70,0.97) 0.92 (0.77,1.08) 0.98 (0.87,1.15) p < 0.001
Θ

 All 

Vascular disease location, n (%)       

 Peripheral arterial disease 22.3 (224) 24.4 (118) 19.0 (71) 24.0 (35) p = 0.272  

 Cerebrovascular disease 22.7 (228) 8.1 (39) 36.6 (137) 35.6 (52) p < 0.001
 
 1≠2,3 

 Coronary artery disease 57.7 (579) 64.6 (312) 53.2 (199) 46.6 (68) p < 0.001
 
 1≠2,3 

 Abdominal aortic aneurysm  9.2 (92) 6.2 (30) 9.1 (34) 19.2 (28) p < 0.001
 
 3≠1,2 

Values are mean ± SD, % (n) or median (25, 75 percentile),  Θ Natural log transformed to obtain normal distribution  
BMI: Body mass index, IMT: Intima-media thickness, all; all groups are significantly different  
 

Table 7. Description of the total cohort and clusters identified by cluster analysis 

 Total (n=1003) Group 1 (n=483) Group 2 (n=374) Group 3 (n=146) P value Post hoc 

Shape features       

 Solidity 0.57 ± 0.25 0.77 ±0.13 0.41 ±0.19 0.29 ±0.11 p < 0.001 All 

 Convexity 1.07 ± 0.16 1.00 ±0.08 1.20 ±0.17 1.00 ±0.14 p < 0.001
  2≠1,3 

Fractal dimension CPWMH 1.24 ± 0.22 1.10 ±0.16 1.31 ±0.14 1.53 ±0.18 p < 0.001 All 

Fractal dimension DWMH 1.45 ± 0.15 1.45 ± 0.21 1.45 ± 0.13 1.46 ±0.10 p = 0.955  

Eccentricity 0.48 ± 0.14 0.51 ± 0.17 0.48 ±0.14 0.45 ±0.10 p = 0.001
 1≠3 

Concavity Index 1.06 ± 0.11 1.04 ± 0.06 1.02 ±0.08 1.23 ±0.13 p < 0.001 3≠1,2 

DWMH present, %       

Frontal 40.3 (404) 19.3 (93) 50.0 (187) 84.9 (124) p < 0.001 All 

Parietal 24.4 (245) 7.5 (36) 29.4 (110) 67.8 (99) p < 0.001 All 

Brain Volumes ( % ICV)       

 White matter fraction  42.4 ± 2.0 42.7 ±1.9 42.4 ±2.1 41.8 ± 2.0 p < 0.001 3≠1,2 

 Cortical grey matter fraction 36.2 ±3.5 37.5 ±3.1 35.6 ±3.2 33.3 ± 3.1 p < 0.001
 

All 

 Total WMH volume fraction 0.06 (0.03,0.17) 0.03 (0.02,0.05) 0.11 (0.06,0.19) 0.58 (0.27,1.01) p < 0.001
Θ 

All 

 Ventricle fraction 1.88 (1.39,2.56) 1.54 (1.15,2.05) 1.97 (1.58,2.55) 3.23 (2.72,3.78) p < 0.001
Θ 

All 

Infarcts, % present       

  Lacunar 18.4 (185) 0.4 (2) 34.5 (129) 37.0 (54) p < 0.001 1≠2,3 

  Cortical 11.3 (113) 0 (0) 24.3 (91) 15.1 (22) p < 0.001 1≠2,3 

Values are mean ± SD,  % (n) or median (25,75 percentile),  Θ Natural log transformed to obtain normal distribution 
CPWMH: Confluent or periventricular white matter hyperintensity, DWMH: Deep white matter hyperintensities, ICV: Inter cranial volume 
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Figure 11. Two CPWMH lesions (red) in two patients (A; 75 year old male, B; 59 year old male) are visualized with 
corresponding convex hulls (blue) and calculated shape parameters.  Both lesions have an approximately similar solidity (i.e. 
the ratio of the lesion volume to the convex hull volume), while lesion A has a higher convexity and fractal dimension 
compared to lesion B. The latter can be visually appreciated by the irregular aspect of lesion A compared to the relatively 
smoother aspect of lesion B.   

 

 
Figure 10. The dendogram combined with a heatmap of the 17 input parameters. To improve visualization the heatmap columns are scaled (for 
version with true values as used for clustering see figure 17 in appendix C) . On the left  colours  in the dendogram represent the 3 cluster approach 
and on the right the 7 cluster approach. In the heatmap the different values of parameters per cluster can be observed. For example the solidity of 
group 1 (dark red) is clearly higher than for group 2 and 3 and group A (7 cluster approach, red) is clearly distinguished by the high WM fraction. 
Also parameters with limited contribution to the clustering can be observed, like FD of the DWMH lesions which shows very limited grouping of 
similar values.  
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Table 8. Demographics and clinical characteristics of seven clusters identified by cluster analysis.  

 

Group 1 Group 2 Group 3 

P value Post hoc 
Group A 
(n=300) 

Group B 
(n=183) 

Group C 
(n=49) 

Group D 
(n=120) 

Group E 
(n=205) 

Group F 
(n=118) 

Group G 
(n=28) 

Age (years) 53±10  56±8 58±11 61±10 61±9 67±8 70±6 p < 0.001   
A≠CDEFG, B≠DEFG, C≠AFG, D≠ABFG, E≠ABFG, 
F≠ABCDE , G≠ABCDE 

Gender, % men 80.3 (241) 78.7 (144) 77.6 (38) 77.5 (93) 74.6 (153) 90.7 (107) 60.7 (17) p = 0.006   E≠F, F≠EG, G≠F; Smocking: A≠F; E≠F, F≠AE 
Cardiovascular risk factors          

 BMI (kg/m2) 27.1±3.9 26.5±3.6 27.0±4.0 26.2±3.8 27.1±3.9 26.6±3.4 25.6±2.6 p = 0.106  

 Smoking (pack years) 19.6±18.8 23.3±20.5 22.9±18.5 25.5±22.6 20.8±18.8 27.9±23.5 22.4±20.5 p = 0.005  

 Alcohol intake, current % 74.5 (222) 78.6 (143) 83.7 (41) 68.3 (82) 71.3 (144) 76.3 (90) 71.4 (20) p = 0.165  

 Hypertension, % 45.5 (135) 40.1 (73) 61.2 (30) 64.2 (77) 56.9 (115) 54.7 (64) 67.9 (19) p < 0.001  A≠FG, C≠FG, E≠FG, B≠EFG, D≠G, F≠ABCE,  G≠ABCDE 

 Hyperlipidaemia, % 82.9 (247) 79.4 (143) 72.9 (35) 74.8 (89) 79.3 (157) 79.7 (94) 78.6 (22) p = 0.541  

 Hyperhomocysteinemia, % 8 (24) 6.6 (12) 2.0 (1) 17.6 (21) 10.3 (21) 23.7 (28) 48.1 (13) p < 0.001  A≠FG, B≠EFG, C≠FG, D≠G, E≠FG, F≠ABCE, G≠ABCDE 
 Diabetes mellitus, % 16.2 (48) 11.7 (21) 18.8 (9) 24.6 (29) 24.5 (49) 33.0 (38) 25.0 (7) p < 0.001  A≠F, B≠F, F≠AB 

 IMT (mm) 
0.83 
(0.70,0.98) 

0.82 
(0.70,0.97) 

0.96 
(0.77,1.23) 

0.93 
(0.80,1.08) 

0.92 
(0.73,1.08) 

1.00 
(0.85,1.15) 

0.97 
(0.93,1.11) p < 0.001Θ  

A≠CDEFG, B≠CDEFG, C≠AB, D≠AB, E≠AB, F≠AB, 
G≠AB 

Vascular disease, n (%)          

 Peripheral arterial disease 23.3 (70) 26.2 (48) 14.3 (7) 13.3 (16) 23.4 (48) 26.3 (31) 14.3 (4) P=0.076  

 Cerebrovascular disease 9.0 (27) 6.6 (12) 77.6 (38) 55.8 (67) 15.6 (32) 31.4 (37) 53.6 (15) p < 0.001  
A≠EDFG, B≠CDG, C≠ABEF, D≠ABEF, E≠ABFG, 
F≠ABCDE, G≠ABE 

 Coronary artery disease 63.7 (191) 66.1 (121) 32.7 (16) 38.3 (46) 66.8 (137) 50.8 (60) 28.6 (8) p < 0.001 A≠CDG, B≠CDG, C≠ABE, D≠ABE, E≠CDG, G≠ABE 
 Abdominal aortic aneurysm  5.3 (16) 7.7 (14) 0.0 (0) 14.2 (17) 8.3 (17) 18.6 (22) 21.4 (6) p < 0.001 A≠DFG, C≠FG, D≠A, F≠AC, G≠AC 
BMI: Body mass index, IMT: Intima-media thickness, AAA: Abdominal aortic aneurysm, Θ Natural log transformed to obtain normal distribution.  
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Table 9. Description of the seven clusters identified by cluster analysis 

 

Group 1 Group 2 Group 3 

P value Post hoc 
Group A 
(n=300) 

Group B 
(n=183) 

Group C 
(n=49) 

Group D 
(n=120) 

Group E 
(n=205) 

Group F 
(n=118) 

Group G 
(n=28) 

Shape features          

 Solidity 0.77±0.14 0.78±0.11 0.60±0.22 0.46±0.20 0.34±0.12 0.31±0.12 0.23±0.04 p < 0.001 
A≠CDEFG, B≠CDEFG, C≠ all, D≠ all, E≠ABCDG, 
F≠ABCD, G≠ ABCDE 

 Convexity 0.99±0.09 1.00±0.06 1.07±0.14 1.13±0.13 1.28±0.15 1.04±0.11 0.81±0.11 p < 0.001 
A≠CDEFG, B≠CDEFG, C≠ABDEG, D≠ all, E≠ all, F≠ 
ABDEG, G≠ all 

Fractal dimension CPWMH 1.08±0.17 1.13±0.12 1.18±0.18 1.32±0.15 1.34±0.11 1.48±0.15 1.74±0.08 p < 0.001 
A≠ all, B≠A DEFG, C≠ ADEFG, D≠ABCFG, E≠ABCFG, 
F≠ all, G≠ all 

Fractal dimension DWMH 1.45±0.23 1.45±0.17 1.42±0.16 1.45±0.14 1.46±0.11 1.46±0.11 1.44±0.06 P=0.860  

Eccentricity 0.50±0.18 0.52±0.16 0.48±0.18 0.45±0.13 0.50±0.13 0.45±0.10 0.43±0.06 p < 0.001 B≠DF, D≠A, F≠B 
Concavity Index 1.04±0.06 1.03±0.05 1.04±0.07 1.05±0.08 0.99±0.07 1.19±0.10 1.41±0.08 p < 0.001 A≠EFG, B≠EFG, C≠EFG, D≠EFG, E≠ all, F≠ all, G≠ all 

DWMH present, % per lobe          

Frontal 18.7 (56) 20.2 (37) 34.7 (17) 61.7 (74) 46.8 (96) 81.4 (96) 100.0 (28) p < 0.001 
A≠ DEFG, B≠DEFG, C≠DFG, D≠ABCFG, E≠ABFG, F≠ 
ABCDE, G≠ ABCDE 

Parietal 6.7 (20) 8.7 (16) 20.4 (10) 33.3 (40) 29.3 (60) 63.6 (75) 85.7 (24) p < 0.001 
A≠ DEFG, B≠DEFG, C≠FG, D≠ABFG, E≠ABFG, F≠ 
ABCDE, G≠ ABCDE 

Volume fraction (% ICV)          

 BPF  80.4 ± 2.5 79.7 ± 2.6 78.5 ±2.5 78.1 ± 2.9 78.7 ± 2.4 76.2 ± 2.8 76.6 ± 2.6 p < 0.001 
A≠CDEFG, B≠CDEFG, C≠ABFG, D≠ABF, E≠ABFG, 
F≠ABCDE, G≠ABCE 

 WM  41.6±1.4 44.4±1.2 42.4±1.7 41.4±2.2 43.0±1.8 42.2±1.7 40.2±2.4 p < 0.001 
A≠BCEFG, B≠ all, C≠ABDG, D≠BCEFF, E≠ABDFG, 
F≠ABDE, G≠ all 

 CGM  38.8±2.7 35.3±2.5 34.3±3.1 36.2±3.3 35.5±3.1 33.2±3.0 34.0±3.1
 

p < 0.001 
A≠ all, B≠AF, C≠ AD, D≠ACFG, E≠ABCFG, F≠ABDE, 
G≠AD 

 WMH  
0.03 
(0.01,0.05) 

0.06 
(0.03,0.17) 

0.05 
(0.03,0.09) 

0.13 
(0.06,0.22) 

0.12 
(0.07,0.19) 

0.40 
(0.23,0.75) 

1.87 
(1.51,2.38) p < 0.001Θ 

A≠ all, B≠ all, C≠ all, D≠ ABCFG, E≠ABCFG, F≠ all, G≠ 
all 

 Ventricle  
1.48 
(1.13,2.04) 

1.88 
(1.39,2.56) 

1.91 
(1.55,2.65) 

2.17 
(1.66,2.86) 

1.92 
(1.56,2.36) 

3.24 
(2.70,3.87) 

3.08 
(2.89,3.84) p < 0.001Θ 

A≠CDEFG, B≠CDEFG, C≠ABFG, D≠ABFG, E≠ABFG, 
F≠ABCDE, G≠ABCDE 

Infarcts, % present          

  Lacunar 0.0 (0) 1.1 (2) 8.2 (4) 95.8 (115) 4.9 (10) 29.7 (35) 67.9 (19) p < 0.001 
A≠CDEFG, B≠DFG, C≠ADG, D≠ all, E≠ADFG, 
F≠ABDEG, G≠ all 

  Cortical 0.0 (0) 0.0 (0) 100.0 (49) 32.5 (39) 1.5 (3) 11.0 (13) 32.1 (9) p < 0.001 
A≠ CDEFG, B≠ CDFG, C≠ all, D≠ABCEF, E≠DFG, F≠ 
ABCDE, G≠ABCE 

Values are mean ± SD,  % (n) or median (25,75 percentile), Θ Natural log transformed to obtain normal distribution 
FD: Fractal dimension, CPWMH: Confluent or periventricular white matter hyperintensities, DWMH: Deep white matter hyperintensities, ICV: Intracranial volume, BPF: Brain parenchymal fraction, WM: White matter, CGM: 
Cortical grey matter 
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Seven subgroup approach 
The obtained dendogram was cut to produce seven distinct clusters of brain imaging features (figure 11) 
within this cohort of patients with manifest arterial disease. Cluster A grouped 300 patients (30%), cluster 
B: 49 (5%), cluster C: 120 (12%), cluster D: 28 (3%), cluster E: 205 (20%), cluster F: 118 (12%) and the final 
cluster (F) grouped 183 patients (18%).  

Brain imaging characteristics of the seven groups are given in table 9. Groups are distinguished based on 
solidity, convexity, fractal dimension CPWMH, concavity index, eccentricity, number of DWMH (frontal, 
parietal, occipital, temporal and basal ganglia), WMF, GMF, VF, WMHF, lacunar and cortical infarct 
presence. On the other hand, the fractal dimension of the DWMH is not significantly different between 
any groups.  

The clinical characteristics of the seven groups are given in table 8. Significant differences were found in, 
mean age, sex, alcohol consumption, smoking, history of hypertension, diabetes, history of cerebral 
vascular disease, history of cardiac disease and history of an abdominal aneurysm were statistically 
different between groups. On the other hand, no significant differences were found in the body mass 
index, hyperlipidaemia and history of peripheral vascular diseases. 

Group A and B have relatively few brain abnormalities and are only significantly different from each other 
in FD of the CPWMH, WM volume, GM volume and WMH volume. Where group A has a high CGM volume 
and group B has a high WM volume. These groups are characterized by the least amount of brain atrophy, 
the lowest number of infarcts (similar to group E) and have relative small (WMH volume: 
0.03(0.01,0.05);p<0.05*BCDEFG & 0.06(0.03,0.17);p<0.05*ACDEFG), solid (solidity: 0.77±0.14;p<0.05*CDEFG & 
0.78±0.11;p<0.05*CDEFG) and smooth (convexity: 0.99±0.09;p<0.05*CDEFG & 1.00±0.06;p<0.05*CDEFG, FD: 
1.08±0.17;p<0.05 & 1.13±0.12;p<0.05*ADEFG) CPWMH lesions. Additionally, group B has the most round 
DWMH lesions (eccentricity: 0.52±0.16;p<0.05*DF). 

Group A and B are the youngest groups (age: 53±10;p<0.05*CDEFG & 56±8;p<0.05*DEFG) with the least 
smokers in group A (pack years: 19.6±18.8;p<0.05*F), relative few people with hypertension 
(45.5(135);p<0.05*D & 40.1(73);p<0.05*DE), diabetes (16.2(48);p<0.05*F & 11.7(21);p<0.05*F) and 
hyperhomocysteinemia (8.0(24);p<0.05*FG & 6.6(24);p<0.05*EFG). These groups also has a relative small 
IMT (0.83(0.70,0.98);p<0.05*CDEFG & 0.82(0.70,0.98);p<0.05*CDEFG) and few patients with a history of AAA 
(5.3(16);p<0.05*DFG & 7.7(14)), cerebrovascular disease (9.0(27);p<0.05*CDFG & 6.6(12);p<0.05*CDG) and 
many patients have coronary artery disease (63.7(191);p<0.05*CDG & 66.1(121);p<0.05*CDG).   

Group C can be considered a large vessel disease group characterized by a small (0.05(0.03,0.09);p<0.05), 
solid (solidity: 0.60±0.22;p<0.05) and smooth WMH (FD of the CPWMH:1.18±0.18;p<0.05*ADEFG, 
convexity:1.07±0.14;p<0.05*ADEFG), intermediate brain atrophy (BPF: 78.5±2.5;p<0.05*AFG), few lacunar 
infarcts (8.2% (4);p<0.05*ADG) and many cortical infarcts (100% (49) );p<0.05). This group, has an 
intermediate age (58±11;p<0.05*AFG), relative high number of patients with hypertension (61.2(30)) and 
few patients with hyperhomocysteinemia (2.0(1);p<0.05*FG). Furthermore, this group has a relative large 
IMT (0.96(0.77,1.23;p<0.05*AB)) especially for these relative young patients. Many patients in this group 
suffer from cerebrovascular disease (77.6(38);p<0.05ABEF) and few suffer from coronary artery disease 
(32.7(16);p<0.05*ABE) or AAA (0.0(0);p<0.05*DG).   

Group D can be considered a lacunar infarct group characterized by WMH with an intermediate volume 
(0.13(0.06,0.22);p<0.05*ABCFD) with increased roughness of the CPWMH lesions compared to group C (FD: 
1.32±0.15;p<0.05*ABCFG, solidity: 0.46±0.20;p<0.05), intermediate brain atrophy (BPF: 78.1±2.9;p<0.05*ABF), 
cortical infarct presence (32.5%(39) );p<0.05*ABCEF and many lacunar infarcts (95.7%(115) );p<0.05) and 
relatively elongated DWMH lesions comparable to group F (0.45±0.13;p<0.05*B). This group, has an 
intermediate age (61±10;p<0.05*ABFG) with relatively heavy smokers (pack years: 25.5±22.6), relative high 
number of patients with hypertension (64.2(77)) and hyperhomocysteinemia (17.6(21);p<0.05*G). This 
group has a relative large IMT (0.96(0.77,1.23;p<0.05*AB)) and many patients in this group have 
cerebrovascular disease (55.8(67);p<0.05ABEF) and AAA (14.2(17);p<0.05*A) and few have coronary artery 
disease (32.7(16);p<0.05*ABE). 

Group E is characterized by more elongated CPWMH around the ventricles (solidity: 
0.34±0.12;p<0.05*ABCDG, convexity: 1.28±0.15;p<0.05, FD: 1.34±0.11;p<0.05*ABCFG), relative few frontal 
DWMH lesions compared to group D with the same volume (46.8%(96) vs. 61.7%(74)), an intermediate 
amount of brain atrophy (BPF: 78.7±2.4;p<0.05*ABFG) and few infarcts (LI: 4.9%(10);p<0.05*ADFG, 
CI:1.5%(3);p<0.05*DFG). This group has an intermediate age (61±9;p<0.05*ABFG) with a relative high number 



31 
 

 

of patients with hypertension (56.9(115);p<0.05*B) and few patients with hyperhomocysteinemia 
(10.3(21);p<0.05*FG). This group has a relative large IMT (0.93(0.80,1.08;p<0.05*AB)) and few patients in 
this group have cerebrovascular disease (15.6(32);p<0.05ABFG) and many have coronary artery disease 
(66.8(137);p<0.05*CDG). 

Group F is characterized by an intermediate burden of WMH (0.40(0.23,0.75);p<0.05) with more irregular 
CPWMH lesions (solidity: 0.31±0.12;p<0.05*ABCDG, FD: 1.48±0.15;p<0.05*ABCDFG and concavity Index: 
1.19±0.10;p<0.05*ABCDFG)  and cerebral atrophy (BPF: 76.2±2.8;p<0.05*ABCDE). This group has a moderate 
number of infarcts (LI: 29.7%(35) ;p<0.05*ABDEG, CI:11.0%(13) ;p<0.05*ABCDE). This group represents older 
individuals of this cohort (age: 67±8;p<0.05*ABCDE) with the heaviest smokers (pack years: 
27.9±23.5;p<0.05*A) and relatively many patients with hyperhomocysteinemia (23.7(28);p<0.05*ABCE), 
diabetes mellitus (33.0(38);p<0.05*AB) and a history of AAA (18.6(22);p<0.05*AC) and an intermediate 
number of patients with cerebrovascular disease (31.4(37);p<0.05*ABCDE). 

Group G can be considered  a group of older individuals with SVD and is characterized by the highest 
burden of WMH (1.87(1.51,2.38);p<0.05), these lesions have the highest textural roughness (solidity: 
0.23±0.04;p<0.05*ABCDE, convexity: 0.81±0.11;p<0.05, FD:1.74±0.08;p<0.05), highest number and most 
elongated DWMH (eccentricity: 0.43±0.06), a relative large amount of cerebral atrophy (BPF: 
76.6±2.6;p<0.05*ABCE) a high prevalence of lacunar infarcts (LI: 67.9%(19) ;p<0.05, CI:32.1%(9) 
;p<0.05*ABCE). This group of older individuals with SVD (age: 70±6;p<0.05*ABCDE) has the most patients with 
hypertension (67.9(19)) and hyperhomocysteinemia (48.1(13);p<0.05*ABCDE). History of cerebrovascular 
(53.6(15);p<0.05*ABE) and AAA (21.4(6);p<0.05*AC) are common and few patients have a history of 
coronary artery disease (28.6(22);p<0.05*ABE).  
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Figure 12. The chance of WMH and BPF presence per cluster in the three cluster approach. Probability of WMH increases 
with cluster number (A). Highest probability of WMH occurs at the anterior horns (caps) and body (bands) of the lateral 
ventricles. An increase in atrophy with an increased lateral ventricle size can be observed with increasing cluster number 
(B).   
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Figure 13. The chance of WMH and BPF presence per cluster in the seven cluster approach. Even though, cluster C has 
a slightly lower WMH volume compared to cluster B, a higher chance of DWMH lesions can be observed (A).  A similar 
observation can be made when comparing the WMH presence in cluster D and E. These clusters have a comparable 
volumes but patients in cluster E the WMH lesions seem to have more evenly distributed WMH around the ventricles 
with less DWMH lesions compared to cluster D. Patients in cluster D especially have increased chance of having WMH 
lesions posterior from the lateral ventricle body. Increased ventricle volume can be observed in cluster C, D and E and 
even more enlarged ventricles in cluster F and G indicating global atrophy (B). The probability images of de BPF are 
again not sensitive enough to visualize localized atrophy.  

 



34 
 

 

2.5 Discussion 
We have introduced an alternative approach to the traditional inferential disease/brain abnormalities 
method by first examining overall patterns of brain abnormalities in a large cohort of patient with 
manifest arterial disease. By cluster analysis 7 distinct groups of brain imaging phenotypes in patients 
with manifest arterial disease were found consisting of a ‘large vessel disease’ group (n=49), a group with 
small vessel disease (n=120), a combined cerebral atrophy and small vessel disease group (n = 28), a 
group with an intermediate amount of cerebral atrophy and WMH (n=118) and three relative healthy 
groups with a low to intermediate amount of cerebral atrophy and WMH (n=300; n=205; n=183). These 
groups were significantly different (p<0.05) in age, vascular risk factor profiles (smoking, hypertension, 
hyperhomocysteinemia, diabetes) and in primary location of the manifest arterial disease. 

To our knowledge we are the first to apply hierarchical clustering to identify different brain imaging 
phenotypes using several brain imaging markers in patients with arterial disease. However, Artero et al. 
took a similar approach to density and distribution of WMH in the aging brain. After applying multiple 
corresponding analyses they applied hierarchical clustering to identify three patterns of WMH distribution 
and severity.  

Cortical infarcts are most likely caused by LVD [52] as group C consisting mainly out of subjects with 
cortical infarctions and absent to mild WMH we can conclude that the brain abnormalities of these 
subjects are most likely caused by LVD or some comparable etiology. Lacunar infarcts and WMH are 
mostly an imaging marker of SVD [5]. The brain imaging phenotype of group D and G is characterized by 
lacunar infarcts and WMH so for these groups SVD may be the underlying cause of the brain 
abnormalities. Potentially group B and G represents a different severity of SVD or it might represent 
different etiologies. Only the cardiovascular risk factors, age and number of patients with 
hyperhomocysteinemia are significantly different between these groups. In group F patients show some 
signs of SVD (moderate WMH volume), but few lacunar infarcts and only few patients show signs of LVD 
(cortical infarcts). However, this group shows the largest amount of brain atrophy so some 
neurodegenerative or different SVD etiology might play a role. Groups A, B and E show few brain 
abnormalities (only low to intermediate cerebral atrophy and WMH) even though they have manifest 
arterial disease. Therefore, the etiology behind this imaging phenotype may be a more mild. 

Our new approach using brain MRI imaging markers revealed some interesting brain MRI patterns. 
However, the underlying mechanism and clinical impactions of these brain imaging phenotypes are as of 
yet unclear. Future research may focus on investigating the underlying mechanism and differences in 
clinical outcome of these imaging phenotypes. Combining neuroimaging features into imaging 
phenotypes can result in the identification of previously unknown distinct diseases with its own 
underlying etiologies and prognosis. 

The strength of our study it the new “bottom up” approach in which we combine several brain imaging 
features to discover brain imaging phenotypes in a large cohort of patients with arterial disease. These 
analyses also included patients without a history of clinically evident cerebrovascular disease.  

Our study revealed groups that differ in imaging characteristics and cardiovascular risk factors however, 
we have still limited understanding about the underlying mechanisms and whether these are truly 
different between groups.   

Strength of our technical approach include automatic segmentation of WMH lesions which enabled us to 
perform shape analysis to provide additional information about WMH. Finally, hierarchical clustering 
using Ward’s criteria enabled us to perform clustering even with some missing values.    

A potential limitation of our approach is the limited resolution of the T2-FLAIR with a slice thickness of 4 
mm. This mainly influenced the shape descriptors, especially for the small lesions, potentially 
underestimating group differences. Differences in group size caused some inhomogeneity’s in the 
variance potentially understating the between group differences, especially for group G. Finally, 
hierarchical clustering is a powerful method as it is not biased by assumptions however; some choices 
such as the number of clusters need to be made by investigators and can be arbitrary. This subjectivity 
was limited by using evaluation measures to objectify choices, like the number of clusters, as much as 
possible.  
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In conclusion, within a group of patients with arterial disease, we identified distinct brain imaging 
phenotypes that were associated with different vascular risk factor profiles. This novel approach enables 
identification of different brain imaging phenotypes possibly associated with different still unknown 
underlying etiologies. 
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Appendix A. Shapes used for descriptor evaluation.  
  

Figure 14. Fifteen confluent lesions (A) and thirteen periventricular lesions (B) used for descriptor validation. Lesions visualized based 
on volume (ascending).  

A 

B 
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Figure 15. Eleven deep lesions used for descriptor validation. Lesions 
visualized based on volume (ascending).  
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Appendix B. Results shape features on shape range.  

  

Figure 16. Shape parameter results based on shape ranges from appendix B. 
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Appendix C. Background and additional results clustering 
 
Data models 
To understand the influence of the shape descriptors three models were created. The first model consists 
only out of all shape descriptors (fractal dimension, solidity, convexity, eccentricity) and white matter 
volume (percentage of intracranial volume). The second model contains all parameters of the first model 
but cortical grey matter, white matter and ventricle volume (percentage of intracranial volume) are 
added. In the third model all elements of the second model are included but now with the number of 
infarcts (subdivided in number of lacunar and cortical infarcts) and number of DWMH. Finally, the fourth 
model consist out of all elements from the second model but here now the DWMH lesions are subdivided 
by lobe. 

 
Data normalization 
The Z-score transformation provides a way of standardizing data across a wide ranges of experiments 
[53]. Resulting in the following data characteristics: the average of all variables is zero and the standard 
deviation is one. The Z-score is calculated using formula C.1. 

𝑍𝑖 = 
𝑥𝑖 − 𝑥̅

𝜎
 

C.1 

With average (𝑥̅) and standard deviation (𝜎). 

 
Different clustering methods 
The function clValid from the R package [50] clValid was used to evaluate different k-means and 
hierarchical clustering (HC)based on internal measures.  These measures include connectivity, silhouette 
width and the Dunn Index. The connectivity indicates the degree of connectedness of the cluster. The 
connectivity has ranges between 0 and infinity and should be minimized. The silhouette with is the 
average of the silhouette values of all the clusters. The silhouette value measures the degree of 
confidence in the clustering assignment of a particular observation. A well clustered observation has a 
value near 1 and poorly clustered observations have values near -1. The average silhouette with should be 
maximized. The Dunn Index is a ratio of the smallest distance between observations of different clusters 
and the largest distance within the cluster. The Dunn Index ranges between 0 and infinity and should be 
maximized.  

 
Different distance measures and linkage criteria 
The first choice to make is to choose linkage criteria. The agglomeration methods that can be chosen are: 
Ward (D and D.2), single, complete, average, McQuitty, median and centroid. Where complete linkage 
and Ward´s methods are most commonly used in proteomics [54]. Ward´s criteria are also used in 
research into asthma, COPD and WMH severity [21], [55], [56]. Based on this literature and dendogram 
comparison ward.D2 (which is the same as ward.D when using the squared distance [57]) was chosen as 
linkage method. The Ward objective is to find those two clusters whose merger gives the minimum 
increase in total within group error sum of squares at each stage. Which is proportional to the squared 
Euclidian distance between the centroids of the merged clusters [58].   
The second important issue is to choose an appropriate distance measure. Possible distance measures 
include: Euclidean, Manhattan, maximum, Canberra, binary, Minkowsky and correlation based distance 
measures like Pearson, Spearman or Kendall. As Ward´s method is limited to Euclidean distances this 
distance measure was used.  The Euclidean distance is the straight-line distance between two points in 
Euclidean space.  
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Number of clusters 
Determination of the number of clusters is relatively arbitrary. There is no strict guideline or measure to 
determine the optimal number of clusters. Common used methods to determine the number of clusters 
are: the elbow, average silhouette and the gap statistic method. Another option is to consider only indices 
that performed best in simulation studies. Miligan and Cooper found that CH index, Duda index, Cindex, 
Gamma and Beale are the top 5 performers in their simulation study [59]. Finally the NbClust [47] package 
in R gathered all indices available in SAS or R packages and also includes indices nog previously 
implemented. Resulting in thirty cluster evaluation criteria. Based on the majority rule the number of 
clusters is determined.  
 

Cluster evaluation 
As the world is not made of distinct classes, arguably there is no correct clustering. However, some 
clusters and classifications may be less useful and informative than others. Internal validation measures as 
described in “Different clustering models” are calculated per model for the chosen number of clusters to 
evaluate the clustering. Finally the stability is evaluated using four stability measures: average proportion 
of non-overlap (APN), average distance (AD), average distance between means (ADM), and the figure of 
merit (FOM). Each measure should be minimized. Clustering is repeated 1003 times, removing each 
column one at the time in all cases the average is taken over all the deleted columns. [50]  
 

Results 
Different clustering methods 
Table 10 shows that HC is more optimal the k-means clustering or Partitioning Around Medoids (PAM).  
Hierarchical clustering is a method to build a cluster tree where each group is linked to two or more 
successor groups. HC can be bottom up (agglomerative) or top down (divisive). In agglomerative 
clustering each subject is a single cluster at the beginning and are merged based on the calculated 
(dis)similarity and the linkage criteria. The pairing continues until all patients are merged into a single 
cluster. 
 
Table 10. Based on connectivity, Dunn index and silhouette width the optimal clustering method is determined. The 
clustering methods hierarchical clustering, k-means clustering and PAM are evaluated.   

Model 1 score Method cluster 

Connectivity 0.79 hierarchical clustering 2 

Dunn Index 0.14 hierarchical clustering 2 

Silhouette width 0.44 k-means 6 

Model 2    

Connectivity 1.88 hierarchical clustering 2 

Dunn Index 0.14 hierarchical clustering 2 

Silhouette width 0.32 hierarchical clustering 3 

Model 3    

Connectivity 8.4 hierarchical clustering 2 

Dunn Index 0.11 hierarchical clustering 2 

Silhouette width 0.27 k-means 3 

Model 4    

Connectivity 147.7 hierarchical clustering 2 

Dunn Index 0.04 hierarchical clustering 3 

Silhouette width 0.21 hierarchical clustering 3 
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Number of clusters     
For most models three clusters produce the most certain clusters with the least overlap. Two clusters is 
for most models a reasonable alternative.  
 
Table 11. Based on 30 evaluation criteria the best number of clusters for each model is determined based on majority.  

Number of 

Model 1 Model 2 Model 3 Model 4 

clusters Criteria clusters clusters clusters criteria clusters criteria 

Majority 3 10 2 8 3 9 3 9 

Second best 2 7 4 8 2 6 2 7 

 
Cluster evaluation 
The internal validity of the clusters and stability of the tree was evaluated for each model. All models 
were divided into three clusters as this was the best for most models and made comparison between 
models easier.  
Table 12 shows the best internal validation for model 1 (all shape parameters) and 2 (shape parameters 
and brain volumes) but model 2 has a slightly higher stability. With more parameters the internal validity 
decreases but the stability remains good.  
 
Table 12 .Internal validation and stability measures per model. 

 Model 1 Model 2 Model 3 Model 4 

Number of clusters 3 3 3 3 

Internal     

 Connectivity - - 12.36 30.17 

 Dunn Index 0.85 0.85 0.57 0.37 

 Silhouette width 0.20 0.20 0.18 0.08 

Stability     

 APN 0.0004 0.0000 0.0123 0.0000 

 AD 20.52 26.32 25.10 24.52 

 ADM 0.0007 0.0000 0.4408 0.0000 

 FOM 0.63 0.74 0.67 0.69 
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Figure 17. The dendogram combined with a heatmap of the 17 input parameters. With Z-scores used as input for clustering. On the left  colours  in 
the dendogram represent the 3 cluster approach and on the right the 7 cluster approach. In the heatmap the different values of parameters per 
cluster can be observed. For example the solidity of group 1 (dark red) is clearly higher than for group 2 and 3 and group A (7 cluster approach, red) 
is clearly distinguished by the high WM volume. Also parameters with limited contribution to the clustering can be observed, like FD of the DWMH 
lesions which shows very limited grouping of similar values.  


