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Summary 
 
Chapter 1: Introduction 
This chapter contains the clinical background of rectal cancer and its surgical options. Current efforts in 
improving surgical outcome are focused on surgical navigation. In the current implementation, surgical 
navigation can only be applied in an open surgical setting. As 85% of rectal cancer procedures are 
performed laparoscopically, the majority of patients cannot benefit from these developments. The rest 
of the chapter contains the technical background on used techniques, and shows how augmented reality 
can extend the use of surgical navigation to laparoscopic procedures. The chapter ends with the defined 
goals for this research in a first step towards application of augmented reality. 
 
Chapter 2: Camera calibration 
Intrinsic camera parameters are evaluated in order to verify current assumptions in literature, and to 
define a camera model for the used laparoscope. In addition to evaluation of current literature, we show 
that addition of decentering distortion to the camera model improves results. 
 
Chapter 3: Hand-eye calibration 
The position of the camera is related to the two optically tracked sensors attached the laparoscope. 
Behavior of the relation during rotation of the laparoscope is evaluated in order to define which 
reference sensor can best be used to model the position of the camera’s pose. We show that the sensor 
attached to the cylinder of the laparoscope can provide the best results as it requires a simpler model, 
and, by being closer to the camera, it produces a lower tracking error. 
 
Chapter 4: Delay estimation 
A delay estimation procedure is developed to estimate the acquisition delay between the laparoscopic 
images and the optical tracking system. The procedure is based on phase differences in fitted sinusoidal 
patterns obtained by both systems. The pattern is generated by rotation of an object at constant angular 
frequency that can be tracked by both systems. 
 
Chapter 5: Laparoscope calibration 
The camera and hand-eye model are combined to evaluate the accuracy in a static environment. We 
show that the combined model produces accurate results on calibration data, but is not able to 
reproduces the results on validation data. The increase in error is determined to be caused by freedom 
of motion of the camera’s image sensor within the laparoscope. As the image sensor cannot be tracked 
externally, it seems that generation of a calibration method for this specific laparoscope is not feasible. 
 
Chapter 6: General discussion and conclusions 
Obtained results are summarized to answer the research questions, and are compared to other 
literature. Finally, several recommendations are given to answer several questions that were raised by 
the obtained results.   
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CH1: Introduction 

1.1 Clinical background 
Since 1990 the incidence of colorectal cancer (CRC) in the Netherlands has more than doubled to over 
15,500 new cases in 2015. Rectal cancer contributes 4,500 of these cases and went through a similar 
increase in incidence [1]. It is expected that the phased introduction of the colorectal screening program, 
started in 2013, will, at least temporarily, further increase the incidence of CRC in the Netherlands, 
especially that of early stage disease [2-4]. 
  
Treatment options of rectal cancer consist of surgery, radiotherapy, and systemic therapy, with surgery 
being the principal treatment leading to cure [5-11]. There are two main techniques available for rectal 
cancer surgery. The first technique is low anterior resection (LAR) consisting of excision of the proximal 
part of the rectum containing the tumor, followed by an anastomosis of the sigmoid to the remainder of 
the rectum. The second technique is abdominoperineal resection (APR), which is an extension of LAR for 
tumors in the distal rectum, where the anus is also removed and a permanent colostomy is made. Since 
the colostomy in APR results in a worse quality of life, LAR is the preferred treatment for tumors in the 
proximal two-thirds of the rectum with an overall share of 71% in 2015 [4]. A major improvement in 
surgery of rectal cancer came with the introduction of the total mesorectal excision (TME) in the early 
90s. Instead of just removing the rectum, surgeons follow the mesorectum, which is the mesentery 
surrounding the rectum containing the rectum, blood vessels, fat, and pararectal lymph nodes. With 
TME, recurrence rates decreased from 25% to 5% and it has therefore become the gold standard in both 
LAR and APR [12, 13]. The subsequent step in improving rectal cancer surgery came with the 
introduction of laparoscopy in the early 00s. With laparoscopic surgery, patient have reduced blood loss, 
shorter hospital stay, and earlier return of bowel function [14]. The percentage of rectal cancer 
interventions performed laparoscopically has increased from 35% in 2009 to almost 85% in 2015 [4]. 
  
One of the ways success of surgery is measured is the circumferential resection margin (CRM). A positive 
CRM is defined as having a resection margin < 1 mm to the edge of the tumor and is associated with a 
hazard ration (HR) of 1.7 for reduced overall survival and a HR of 2.8 for developing distant metastasis 
when compared to a negative CRM. The HR for local recurrence in positive CRM ranges from 6.3 for 
treatment without, and 2.0 for treatment with neoadjuvant therapy compared to negative resection 
margins [15]. In 2015 a positive CRM was found in 5.0% of the patients undergoing rectal cancer surgery 
of which 4.5% had an irradical resection, meaning that there is no resection margin [4]. High positive 
CRM rates occur in subgroups such as patients with locally advanced disease, mainly with low rectal 
tumors (22%), and in patients who are operated with an APR (32%) [16-18]. Of all patients that 
underwent rectal cancer surgery 13% needed re-intervention within 30 days of the primary surgery due 
to complications [4]. Several studies have shown that local recurrence could have been lower if tumor 
resection is improved by, for example, excising wider around low rectal tumors [12, 19-21]. 
 
Vital structures surrounding the rectum can be damaged during surgery, leading to postoperative 
morbidity such as bladder and sexual dysfunction. After TME surgery, functional urinary problems arise 
in 24-32% of the patients due to visceral sacral nerve damage [22]. As a consequence, patients may 
experience voiding dysfunction, overflow incontinence, frequent lower urinary tract infections, and loss 
of bladder filling sensation. In addition, damage to the parasympatic nerve fibers can lead to 
disturbances in sexual function. Up to 30% of women and 45% of men experience sexual dysfunction 
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after rectal surgery [22]. A nerve-sparing surgical approach is applied to minimize damage to the pelvic 
nerves [23]. However, this technique is difficult to perform due to the complex anatomy of the various 
neural branches. 
 
In summary, surgery of rectal cancer is a challenging field where a balance needs to be found between 
reducing positive resection margins and preventing morbidity. Although major improvements have been 
achieved over the past 3 decades, subgroups of patients can still be identified which can profit from 
further technical developments. 

1.2 Technical background 

Imaging modalities such as MRI and CT are a valuable source of information for physicians. These images 
are used for diagnosis, treatment planning, surgical planning, and evaluation of the treatment. It is 
therefore surprising that these images are hardly used during surgery. Instead, surgeons rely on mental 
notes of the images to guide them through the procedure, or look at static images on a screen in the 
operating room. Image guided surgery (IGS), or surgical navigation (SN), is a technique that aims to 
provide surgeons access to the information contained in the images by displaying them in a dynamic way 
visibly to the surgeon during surgery. However, current implementations of SN are limited to open 
surgery while over 85% of rectal cancer surgeries are performed laparoscopically. SN needs to be 
expanded to the domain of laparoscopic surgery to allow surgeons to incorporate the imaging 
information in surgical decision making. 
 

1.2.1 Surgical Navigation 
Computer-assisted surgery (CAS) is a broad concept that describes the use of technology to create 
patient specific models for surgical simulation, surgical planning, and the use of these models during 
intervention. It is this interventional part of CAS what SN refers to. In SN, the patient’s anatomy is related 
to the pre-operative imaging by means of tracked sensors attached to the patient. Generally these 
sensors are placed on rigid anatomical landmarks, such as osseous structures, to minimize movement of 
the sensors during the intervention. Location of these sensors is then defined in the pre-operative 
imaging, followed by a registration procedure to match the pre-operative imaging to the patient’s 
position on the surgical table [24]. 
 
Tracked navigational tools are used to navigate in and around the registered patient. The tracked tool 
can be used to display orthogonal views of the patient’s CT or MRI scan at the  current location of the 
tool, thereby providing the surgeon interactive access to the images. Pre-operative imaging can also be 
used to generate a 3D model of the patient containing the anatomy relevant to the procedure such as, 
tumor, critical structures surrounding the tumor, and osseous reference structures. In this case, the 
navigational tool and its motion are displayed within the 3D model of the patent, allowing localization of 
the tumor and critical structures with respect to the tool. The model does not only display what can be 
seen from the surface, but also relevant structures not directly visible to the surgeon. Visualization of 
these otherwise invisible structures helps the surgeon to navigate towards or around these structures 
and can thereby improve surgical outcome, or even enable surgeries that would otherwise not have 
been possible [24, 25]. 
 
Implementation of SN has mainly been focused around ear, nose, throat (ENT); neuro-; and orthopedic 
surgery, but is not limited to these areas [24]. SN systems can only match the patient’s model to the 
patient’s anatomy on the table if the position of relevant structures can accurately be described in 
relation to the sensors. In areas of deformable anatomy this requires a complex model, but when the 
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position of relevant structures is more or less rigid in relation to the landmark a much simpler model can 
be used. In ENT, neuro-, and orthopedic surgery the relation between surrounding osseous structures 
and points of interest can often be described as rigid, explaining the interest and success of SN in these 
areas.  
 

1.2.2 Tracking systems 
Tracking systems used for SN can generally be divided in two categories, electromagnetic (EM) systems, 
and optical tracking systems (OTS). Optical systems consist of a stereoscopic camera, and infra-red 
reflecting spheres. Several of these spheres are attached to a rigid body to allow definition of a 
coordinate system with respect to the fixed geometry of the spheres. Infra-red light emitted by the 
camera system is reflected back by the spheres and detected by both image sensors. The stereoscopic 
view by the double camera system allows pose estimation of the rigid body containing the spheres with 
respect to the camera. Compared to EM systems, OTS is generally deemed more accurate and it has a 
larger working volume. However, it does require a direct line-of-sight between both cameras and the 
reflecting spheres. Tracking is lost as soon as the view of one of the cameras on one of the spheres is 
blocked. Higher accuracy and larger working volume make OTS ideal for tracking of objects outside of the 
patient, such as laparoscopes, where larger movements of these objects can be expected. Rigid body size 
and the direct line-of-sight requirement, however, make the system unfit for in-vivo use and tracking of 
the patient. 
 
EM systems consist of a field generator and EM sensors. Coils in the field generator create an EM field 
that is detected by the sensors. Controlled variation of the EM field induces a signal in the sensor from 
which the position and orientation of the sensor is estimated with respect to the field generator. Only a 
small field can reliably be produced around the field generator, limiting the working volume of EM 
systems. A major limitation of EM systems is that magnetic fields are distorted by ferromagnetic 
materials. If accounted for this, EM systems provide a reliable, but slightly less accurate tracking solution 
compared to OTS. In abdominal surgery, tracking sensors need to be placed in areas where the surgeon 
would frequently obstruct a direct line-of-sight, making EM tracking the most suitable option. 
 

1.2.3 Surgical navigation at the NKI/AVL 
Several ongoing studies at the NKI/AVL focus on the implementation of SN to provide surgeons access to 
the valuable information contained in pre-operative imaging during surgery. The first study included 
seven patients and was target at malignancies in the pelvic area while preventing damage to surrounding 
tissue such as the ureters. The small size of a suspect lymph node makes it difficult to locate the node in 
a patient. This becomes even more challenging when the lymph node has decreased in size as a response 
to treatment leading up to the surgery. During this first study, twelve out of thirteen lymph nodes were 
found, and all tumors were removed radically. For two of these patients the surgeons indicated that 
radical resection was only possible due to navigation [25]. Since the first trial, other areas are included in 
the SN studies as well. Current ongoing SN trials are targeting liver, rectum, lymph nodes, bladder, 
kidney, and oral cavity tumors. 
 
In areas of deformable anatomy, such as the rectum, liver, and tongue, the location of the tumor can 
move with respect to the sensors placed on the patient due to patient positioning, breathing, or handling 
of tissue by the surgeon. Several trials are started in which EM sensors are placed close to the tumor to 
track its motion during surgery. This allows updating of the 3D patient model for real-time visualization 
of the tumor motion during surgery. Currently, a wired sensor is used for tumor tracking, thereby limiting 
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the possibilities of sensor placement. However, the first steps are made towards replacing the wired by 
wireless sensors. 
 
Current implementations of SN require that the navigation tool can be placed directly on the organ for 
visualization of relevant surrounding anatomy. This requirement limits SN to ‘open’ procedures where 
there is direct access to the organs for the tool. Currently over 85% of rectal cancer surgeries are, at least 
partially, performed laparoscopically, meaning that the majority of patients cannot benefit from SN at 
this time [4]. The use of a navigation tool also requires the surgeon to pause the procedure in order to 
pick up the tool, point at the anatomy, and look on the screen to get the information, thereby 
temporarily diverting its attention away from the patient. Ideally the information SN offers is available 
on demand, without a tool, and within the surgical field. 
 

1.2.4 Augmented reality 
Augmented reality (AR) is defined as “an enhanced version of reality created by the use of technology to 
overlay digital information on an image of something being viewed through a device (as a smartphone 
camera)” [26]. According to this definition AR overlays digital information, like preoperative imaging, on 
a view of the world. This approach can be dated back to as early as 1938 when H. Steinhaus described a 
technique using x-rays to image a bullet inside the head of patient on a fluorescent screen and projecting 
its position back on the skull with a pointer [27]. In the following decades several revolutionary 
technological advances, such as the invention of imaging modalities as CT and MRI and the improvement 
of computers, resulted in an explosion in the field of AR research. The first head mounted display (HMD) 
was already created in 1968, but it took until the early 90s for computer technology to catch up and be 
able to produce images in real-time as needed for clinical application of the technique. This first system 
tracked the HMD and an ultrasound probe to visualize ultrasound images superimposed on a pregnant 
patient [28, 29]. Since then, AR has extensively been researched and used for education, neurosurgical 
interventions, and ENT surgery, using a variety of techniques such as HMDs, augmented optics, AR 
windows, endoscopes, and projections on to the patient. For a more elaborate introduction to the 
history of AR in medicine the reader is referred to the review of T. Sielhorst et al. [30]. 
 
AR can provide a solution to current limitations of SN. By tracking of the laparoscope and patient, as in 
SN, an overlay for the laparoscopic images can be created from the 3D patient model. This overlay of the 
patient model directly visualizes the information contained in the pre-operative imaging on the anatomy 
visible in the laparoscopic images. Direct visualization of the information eliminates the requirement of a 
navigational tool. As visualization is achieved by projecting the SN information directly on top of the 
laparoscopic images, the surgeon is also no longer required to divert its attention away from the surgical 
field to receive this information. Visualization of relevant information allows the surgeon to increase its 
understanding of the environment. During surgery, AR can be used to display critical information about 
the patient such as vital functions, location of a tumor, and the location of other critical structures. The 
projected information is not any different from that of SN, in fact, it is the same information displayed in 
a different way. AR should therefore be considered an extension of SN in our application. With the 
increasing use of laparoscopy for (rectal cancer) surgery, development of an AR solution can benefit 
many patients. 
 
First implementations of AR in laparoscopic surgery are reported in the early 90s, again in the field of 
ENT- and neurosurgery where the anatomy can be described as rigid relative to externally tracked 
anatomical landmarks [30, 31]. Since then, the field has expanded to other areas such as oncological 
adrenal and liver surgery [32]. Under certain circumstances, these are again areas with a rigid 
transformation relative to external sensors, if placed appropriately. To our knowledge, no 
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implementations have been reported in areas with considerable anatomical deformation, as is the case 
in rectal surgery. However, with the ongoing research of mobile tumor tracking, this should no longer be 
a limitation to surgical navigation. 
 

1.2.5 Laparoscopy 
Laparoscopes of the type Olympus ENDOEYE HD are used for this research, Table 1. Olympus, and other 
manufacturers, offer two different types of scopes. The first is a forward viewing scope that has its 
direction of view along the axis of the scope. The second scope offered is an oblique viewing scope that 
has its direction of view at a fixed angle to the axis of the scope, in this case 30˚. Both scopes consist of a 
lens system and sensor placed in the tip of the scope. The images recorded by the sensor are transmitted 
along the shaft of the scope to a processor for display. In the forward viewing scope, the lens system and 
sensor are fixed, resembling a camera placed on the tip of a stick. Every movement of the ‘stick’ results 
in the same predictable movement of the camera. In the oblique viewing scope on the other hand, the 
lens system and sensor are oriented independently. The sensor is magnetically coupled to the handle of 
the laparoscope [33]. This allows the surgeon to keep the desired onscreen orientation of the view on 
the patient while the lens can be rotated independently to direct the view of the scope in the direction 
of interest. 
 
Laparoscopic surgery has drastically reduced recovery time, pain, hemorrhage, and infection rate in 
patients and enables surgery to patients that are not able to receive open surgery due to poor health. 
These are all excellent benefits to the patient, but have come at the cost of increased surgical complexity 
such as loss of sense of touch, a smaller range of motion, limited field of view (FOV), poor depth 
perception, and opposite movement of surgical tools with respect to the surgeons hand due to the pivot 
point (Fulcrum effect]. Augmented reality can help overcome some of these disadvantages. The limited 
FOV makes orientation within the patient challenging. If the surgeon is mistaken in orientation, the 
possibility of surgical complication increases. AR can ease orientation and decrease the likelihood of 
erroneous surgical decisions by visualization of relevant structures. This visualization does not need to be 
in the laparoscopic FOV, but can be extended to outside to FOV to help in navigation. Another 
enhancement AR can provide is an improved sense of depth. 2D images recorded by the laparoscope 
cannot be easily turned in to 3D, but with the combined knowledge of patient anatomy, laparoscope 
position, and surgical tool used it is possible to estimate the distance between tool and surface of an 
organ or tumor. Addition of an onscreen depth metric that uses color or numbers can give the surgeon a 
sense of depth or distance between tool and patient without visually experiencing the distance [32, 34]. 
Implementation of these AR benefits is however beyond the scope of this research. 
 

Table 1: Laparoscope specification overview of the type ENDOEYE HD from Olympus 

 ENDOEYE HD 5 mm ENDOEYE HD 10 mm 

Field of view 80˚ 90˚ 

Direction of view 0˚ / 30˚ 0˚ / 30˚ 

Depth of field 12 – 200 mm 12 – 200 mmm 

Working length 300 mm / 302 mm 335 mm / 330 mm 

Distal end outer diameter 5.4 mm 10 mm 

 

1.2.6 Camera calibration 
Successful implementation of AR during laparoscopic interventions does not only require tracking of the 
laparoscope and patient, but also a model that describes how the laparoscopic image is formed from the 
anatomy in the FOV of the laparoscope. Camera calibration is a procedure extensively used in computer 



- 6 - 
 

vision to characterize the properties of a camera. If the position of an object is known in relation to a 
calibrated camera, the projection of the object on the image plane can be simulated from the calibrated 
parameters. This simulation is used to generate the AR overlay for the laparoscopic images from pre-
operative imaging where the position in relation to the camera is known from SN. The lens-system in the 
laparoscope does not project an exact copy of the scenery on to the sensor [31, 35]. Accurate fusion of 
laparoscopic images with the AR overlay requires the same projection in both modalities. The projections 
can be made similar by either distorting the AR overlay in the same way the laparoscope does, or by 
removing the distortions from the laparoscopic images [31, 36, 37]. In this research we focus on the first 
since we want to keep the amount of changes as small as possible. 

1.3 Definition of mathematical notations 
During this thesis several mathematical notations are used. In general, bold font capital letters represent 

matrices  M , bold lowercase letters represent column vectors  v , italic lowercase letters represent 

scalar values  s , and coordinate systems are denoted in capital non-bold font  CS . However, if the 

common notation of symbols in literature deviates from this convention, the convention in literature is 
used.  
 
During surgical navigation, many different coordinate systems are used. An object known in one 
coordinate system can be expressed in another coordinate system if the relation between the two 
coordinate systems in known. The relation between two coordinate systems can be expressed by a 

homogeneous transformation matrix. Transformation matrices are denoted as B

AT , where the matrix 

expresses the pose of coordinate system A  in coordinate system B . A transformation matrix consists of 
a rotation component, the 3x3 rotation matrix R , and a translation component, the 3x1 translation 
vector t . 
 

 
1

B

A

 
  
 

R t
T

0
  (1.1) 

 

In this notation, 0  is a 1x3 zero vector. Two transformation matrices can be chained together to 

describe the transformation from A  to C  if both are known in relation to B  by 
 

 C C B

A B A T T T   (1.2) 

 

Here, A  is first transformed to B , followed by a transformation to C . With this transformation, point 

Ap  in the coordinate system of A  can be expressed in the coordinate system of C  as point Cp  by 

 

 
1 1

C AC B

B A

   
     

   

p p
T T   (1.3) 

 

Here, 
T

T 1  p  is the expression of point p  in homogeneous coordinates. If the pose of a A  is known 

in relation to B , the opposite relation is given by the inverse on the transformation matrix. 
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  
1 1

1

1

A B

B A

 
  

   
 

R R t
T T

0
  (1.4) 

 

As R  is an orthonormal matrix, the expression can be simplified by replacing 
1

R  with 
T

R . 

1.4 Research design 
The ultimate goal is accurate real-time visualization of the tumor and other critical anatomical structures 
in the laparoscopic images during rectal cancer surgery. There are many challenges on the path to this 
goal of which some are already conquered, and others beyond the scope of this research. During this 
study, the focus is on achieving accurate projection of a moving object on to the image plane. Literature 
on oblique viewing laparoscopes is limited and there exists no literature for the type of laparoscope 
under investigation in this research. The assumptions made in literature for the camera and laparoscope 
models are investigated to establish if they are valid in our laparoscope for each parameter 
independently. Based on the observations, an attempt will be made to produce a calibration method for 
the laparoscope under investigation that allows real-time visualization. To achieve this, the following 
subgoals are defined: 
 
1. Design of a camera calibration model for oblique viewing laparoscopes 

 
2. Design of a model to relate the pose of the camera to a reference sensor on the laparoscope 

 
3. Design of a delay estimation procedure between different sources used 

 
4. Proof of concept where the first three subgoals are combined 

 
5. Evaluation of the achieved results and their implications for clinic application 
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CH2: Camera calibration 

2.1 Introduction 
Camera calibration describes the relation between an object at known position in front of the camera 
and its projection on the image plane. The parameters obtained during camera calibration are unique to 
a camera. Even cameras of the same brand and type have slightly different calibration parameters due to 
small geometrical differences in the lens configuration. Of the two common types of rigid laparoscopes, 
the forward viewing scope can directly be calibrated using a standard calibration algorithm such as 
Tsai’s, or Zhang’s method [38-40]. However, in the oblique viewing laparoscope, the camera system does 
not have a fixed configuration. The angled view of the laparoscope has the advantage of a much larger 
field of view through rotation of the scope cylinder. While the scope is rotated, the image sensor keeps a 
fixed orientation relative to the handle. This independent rotation of image sensor and scope cylinder 
changes the calibration parameters for each angle, requiring a calibration model that describes the 
camera parameters as a function of the rotation angle. 
 
Only a few groups have developed methods to describe the camera calibration for an oblique viewing 
laparoscope. In order to describe the camera parameters as a function of the rotation angle it is 
necessary to know the rotated angle. This is achieved by tracking of the movable parts of the 
laparoscope as described in the next chapter. Yamaguchi et al. [41] described the pose of the camera as 
a function of the rotation angle and kept all internal parameters of the camera constant. Wu et al. [42] 
improved the Yamaguchi method by keeping the pose of the camera fixed in relation to the scope 
cylinder, and rotating the image around the center of the image plane. De Buck et al. [43] modeled the 
camera pose in a similar way and extended the standard camera model by interpolation of internal 
camera parameters obtained at several angles to account for scope rotation. The most recent model by 
Liu et al. [44] improved on these methods by rotating the image around a rotation axis, defined as the 
center of principal points obtained from calibration at several angles, instead of rotating around the 
center of the image. Melo et al. [45] presented a method that relies on a wedge mark in the image to 
model the camera parameters to the rotation angle. However, this wedge mark is not available in the 
Olympus scopes used here and many other laparoscopes. 
 
All of the proposed methods assume that some or all of the camera parameters are fixed during rotation. 
However, none of the authors evaluated what happens to the camera parameters during rotation to 
validate these assumption. Decentering distortion, a parameter extensively used in computer vision to 
correct for a specific type of lens distortion, is also excluded in all proposed methods. Here we aim to 
develop a camera calibration model that can accurately describe the camera as a function of the 
rotation. To do this, all parameters are evaluated independently and combined in to a single model. 

2.2 Method 
Camera calibration is performed using Zhang’s method as implemented in Matlab R2017a [39, 40]. 
Camera calibration is performed at nine angles ranging from -120° to 120° with increments of 30°. At 
each angle, nine images of the standard Mathworks checkerboard pattern are captured. The 
checkerboard is printed on a flat board with pattern square size of 1.02 cm. The nine positions of the 
checkerboard are chosen to equally distribute corner points in the checkerboard over the image,  
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Figure 1: Nine calibration images captured for each of the nine angles camera calibration is performed 
at. Image poses are chosen to equally distribute the corner points over the entire field of view. 

Figure 1. The laparoscope image processor has an edge enhancement function that is set to its lowest 
value to minimize the influence of image processing on the calibration. 
 
Camera model 

Let  ,p px y  be the normalized pinhole projection of a point after lens distortion, and  ,p pu v  its 

corresponding point in pixel coordinates given by 
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With K  the camera matrix containing the camera’s intrinsic parameters. 
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Here, ,x yf f  are the focal lengths in pixel dimensions, and  0 0,u v  the principal point coordinates in 

pixel dimensions. If pixel axes are not orthogonal, K  can be extended to include a skew parameter to 
correct for this. Coordinates are usually not defined in the coordinate system of the camera, but in some 
other coordinate frame that we call world. To apply (2.1), the world coordinates are first transformed to 
the camera coordinate system by 
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Here,   is a scaling factor, and ,R t  are the rotation and translation needed to transform a point 

 , , ,1w w wx y z  in homogenous world coordinates to its unnormalized position in the camera coordinate 

system, ignoring distortions. If we refer to world as CBI, and camera coordinate system as CC, the 

transform CC

CBIT  needed for hand-eye calibration in the previous chapter is defined by 
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Intrinsic and extrinsic parameters  0 0, , , , ,x yf f u v R t  are estimated using Zhang’s method as 

implemented in Matlab 2017a. See Appendix A for a more extensive derivation and interpretation of the 
camera model. 
 
Lens distortions 
Radial distortion of lenses causes a displacement of projected points along the radial lines from the 

principal point. Radial distortion for the first three radial components  1 2 3, ,k k k  is given by 
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Here,  ,p px y   are the undistorted normalized points, and 
2 2 2

p p pr x y    the radius measured from the 

principal point. Decentering distortion by misalignment of the image sensor and optical axes of the 
lenses in the lens-system is given by 
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  (2.6) 

 

Here,   is the direction of the decentering distortion, it indicates the axis the lens is tilted on, and 1J  is 

the magnitude of distortion, an indication of the amount of lens tilting. The two are combined to get the 
parameters estimated in camera calibration. 
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With  1 2,p p  the decentering distortion parameters. Lens distorted normalized points are given by  
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During camera calibration the distortion parameters  1 2 3 1 2, , , ,k k k p p  are estimated as well. Besides 

displacement of projected points with respect to the principal point, decentering distortion also 
displaces the principal point itself. Displacement of the principal point due to decentering of a lens is 
given by 
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Here,    0 0 0 0, , ,x y x y   are the distorted and undistorted principal point coordinates respectively, and 

  the amount of displacement due to decentering given by  

 

  3 1c      (2.10) 

 
With c  the principal distance (calculated focal length),   the index of refraction, and   the tilt angle of 

the lens in radians given by 
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In camera calibration, this shift of the principal point is ignored as its effect on the projection of points is 
compensated by a change in extrinsic parameters, only the distortions are influenced by this shift. The 
overall effect on distortion of points is marginal and can therefore be ignored [46]. For a more extensive 
derivation of the distortions, its parameters, and an interpretation of the  distortions, see Appendix B. 
 
Laparoscope lens-system model 
Camera calibration as described above will return parameters specific to the lens-system configuration 
used for collection of the calibration images. As there is no information available on the camera 
configuration present in the laparoscope, several assumptions are made to allow prediction of the 
behavior of the calibration parameters. Rotation of the scope changes the aiming direction of the scope, 
but does not rotate the image. This means that the sensor and the outer lens are not contained in one 
compound lens-system. Therefore the assumption is made that the system consists of two compound 
lens-systems, Figure 2. The outer compound system is referred to as Optics, it contains the lenses with 
the optical axis in the oblique view direction, and a prism that changes the direction of the optical axis 
from the oblique axis to one parallel with the axis of rotation. The inner compound system is referred to 
as Camera, it consists of the image sensor and lenses with the optical axis parallel to the rotation axis. 
Camera has a fixed pose in relation to the handle of the scope, while Optics is attached to the outside of 
the scope and rotates when the scope shaft is rotated. As the two systems move independently during 
rotation, the parameters will change depending on the amount of rotation. 
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Figure 2: Model of the camera in the laparoscope. The total lens-system can be separated in to two 
compound lens-systems. One of the compound lenses contains the camera sensor and several lenses 
and is referred to as Camera. Ideally the sensor is orthogonal to the rotation axis, however, this does 
not need to be the case. The other compound lens-system, referred to as Optics, contains several 
lenses and a prism to align the optical axis of the oblique viewing part of the scope with the Camera 
system. Results of camera calibration are the combination of both compound systems. Independent 
rotation of the parts can influences camera parameters such as, a displacement of the principal point. 

Effects of rotation on calibration parameters 
Principal point position is determined by the optical axis. If the optical axis does not coincide with the 
rotation axis, rotation of the scope will, in an undistorted lens-system, result in a circular motion of the 
principal point around the point where the rotation axis intersects the image sensor. As decentering 
distortion also changes the location of the principal point, the actual pattern of the principal point due to 
rotation can deviate from a circular pattern. 
 
Focal distances are determined by the pixel dimensions and distance between sensor and lenses. The 
assumption is made that distance between sensor and lenses does not change as this would have 
unwanted noticeable changes in the image that are not observed in the used system. Since the camera 
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pose is defined by the axis of the image sensor, the pixel dimensions do not change either. Focal 
distances are therefore expected to be constant. 
 
Extrinsic parameters depend on the optical axis coming out of the scope. As the direction of the optical 
axis is changed by rotation of the scope the extrinsic parameters will change accordingly. These changes 
are modeled by hand-eye calibration in the next chapter. 
 
Radial distortion is radially symmetrical around the principal point. Radial distortion parameters are 
therefore expected to be constant with the center of distortion changing according to the movement of 
the principal point. As radial distortion depends on the focal length, the assumption will only hold if the 
focal lengths are indeed constant. 
Decentering distortion originates from lens misalignment. As we have defined two compound lens-
systems, the total decentering distortion is described by a sum of three separate distortions. Each 
compound system has its own internal decentering distortion, and there is an external decentering 
distortion between the compound systems. Magnitude of the internal distortions do not change as the 
compound systems are unaffected by rotation. Direction of the internal distortion of Optics is 
determined by rotation, and that of Camera is fixed as the compound system also holds the sensor. 
External distortion originates from the decentering between the compound systems. As the tilt and 
displacement between the two systems changes during rotation, magnitude and direction change with 

rotation. Decentering distortion parameters as a function of the rotation angle view   is given by 
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Here, , ,C O COp p p  are the distortions due to Camera, Optics, and interaction between the two 

compound systems respectively, and  viewR  a 2D rotation matrix corresponding to the angle of 

rotation. By ignoring the external distortion,  1 2,p p  describe a circle during rotation. The added 

external distortion will cause a deviation from this circular path. 
 
Angle dependent modelling 
Focal lengths and radial distortion parameters are estimated by finding the value that fits best to all 
calibration angles. Camera calibration returns a value and uncertainty estimation for each of the 
parameters at each angle. From the estimated values and uncertainties a Gaussian profile can be created 
for each angle. Gaussian profiles for all angles are normalized with respect to area and summed, the 
peak value is set as the estimated parameter for the focal lengths and radial distortions. 
 
Ignoring the effects of the external component of decentering distortion, the principal point and 
decentering distortions parameters will describe a circle during rotation of the scope. Depending on the 
magnitude of the external decentering component, the actual path described can be closer to an ellipse. 
As the external decentering distortion depends on the relative positions and lens tilting between the 
two, its true contribution is complex and hard to model with little data. Therefore, an ellipse is fitted to 
the principal point and decentering distortion parameters, both estimated at several angles. 
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Reprojection error 
Accuracy of the model is assessed by comparison of the pixel reprojection error obtained using 
parameters given by the model, and those obtained during single angle camera calibration. Reprojection 
error within an image is given as the root-mean-square (RMS) of the distances between projected points 

projp  , and detected points in the image 
detp .  
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Here,  ,d    is the Euclidean pixel distance, and N  the numbers of corner points in an image. 

2.3 Results 
Calibration is performed with and without including decentering distortion in the model, at angles 
ranging from -120° to +120° with increments of 30°. The angles are updated using rotation calibration as 
performed in the next chapter where 0° is set as the reference angle for the rest. At each angle, nine 
images are captured, Figure 1. Image positions are chosen to get a good distribution of calibration points 
over the image plane, Figure 3.  
 
Focal lengths and radial distortion 
When decentering distortion is included in the model, estimated parameters have a similar value over all 
angles and their standard deviations are narrower, Figure 4. This allows the focal lengths and radial 
distortion parameters to be approximated by a single value for all angles. When decentering distortion is 
 

 
Figure 3: Scatterplot of all found corner points of the checkerboard over nine angles and nine images 
corresponding to the locations shown in Figure 1. Large empty areas on the side are where the images 
are black. Chosen pattern positions place the entire checkerboard within the image. No corners are 
detected on the outer edge of the pattern. This creates a white bar at the top and bottom of the image 
where no corners are detected. 
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excluded from the model, parameters have a larger spread and standard deviation. For the focal lengths 
the spread is large enough that it is not possible to choose a single value for the model. Radial distortion 
parameters have a larger standard deviation as their number increases, corresponding to a decrease in 
influence on the distortion by the larger parameters. 
 
Principal point 
An ellipse is fitted to the principal points obtained by camera calibration of the nine angles, Figure 5. 
Model based locations are obtained by rotation of the principal point around the rotation axis, defined 
as the center of the ellipse, using the angles acquired by optical tracking of the laparoscope. Model 
positions are estimated in reference to angle 0° which is assumed to be correct. Displacement effects of 
decentering distortion on the principal point is investigated by correcting the measured principal point 
for decentering distortion. For correction, refractive index is assumed to be equal to glass (1.5), and 
sensor size is assumed to be 1/3.2" (4.54x3.42 mm) to leave enough space in the tip of the scope for 
other components and light fibers to pass the sensor. Principal point positions for calibration without 
decentering distortion have marginal differences compared to calibration with decentering distortion. 
 

  

  
Figure 4: Gaussian profiles for focal lengths and radial distortion coefficients obtained by camera 
calibration for the nine calibration angles. Top images are acquired when decentering distortion is 
included in the model, bottom without decentering distortion.  
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Figure 5: Left, ellipse fitted on principal points obtained during camera calibration (solid), and the 
locations estimated with the model (open). Right, estimated positions of the obtained principal points 
corrected for the displacement imposed on the principal points by decentering distortion (star). For 
correction, the sensor size was assumed to be 4.54x3.42 mm, and index of refraction μ = 1.5. 

Decentering distortion 
Again, an ellipse is fitted to the decentering distortions parameters obtained by camera calibration, 
Figure 6. Ellipse axis length ratio is large, indicating a large influence by the external component of 
decentering distortion. Decentering is modeled in the same way as for the principal point. Model based 
decentering is estimated by rotation of the decentering at 0° around the rotation axis with the angle 
measured by navigation. Model errors are large for larger angles suggesting an ellipse might not be the 
best model. 
 

 
Figure 6: Decentering distortion for the nine angles. An ellipse is fitted to the measured decentering 
distortion (solid) to model the decentering distortion as a rotation around the center of the ellipse 
(open) with reference to 0°.  Larger angles show a large error in the modeled decentering distortion. 
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Reprojection error 
Model based and calibration based reprojection errors are compared with and without decentering 
distortion included, Figure 7. Reprojection error per angle is given as the mean RMS of all images for that 
angle. Extrinsic parameters are re-estimated to account for the changes in camera parameters due to 
modelling before the reprojection error is determined. Calibration based errors are consistent and angle 
independent. Method based comparison shows inclusion of decentering distortion results in a lower 
error in all cases with the exception of one angle in the model based method. At the reference angle, the 
model based reprojection error including decentering distortion is lower than the calibration based 
reprojection error without decentering included. For all methods, the mean reprojection error is lower 
than 1 pixel.  
 

 
Figure 7: Reprojection errors using parameters obtained by calibration and model based method, with 
and without decentering distortion included. Model based errors show some angle dependency and 
are overall larger than the calibration based method. At reference angle 0° the model based method 
with decentering distortion has a lower error compared to the calibration based method without 
decentering distortion. 

2.4 Discussion 
Inclusion of decentering distortion in the model results in overall better performance. It also allows focal 
lengths and radial distortion to be approximated to a single value. As the true focal length is unlikely to 
change during rotation, the spread in focal lengths found without decentering distortion can be 
explained as a compensation mechanism for the effects of unmodeled decentering. Radial distortions 

show a narrow peak for 1k  increasing in width to 3k . This is to be expected as the effects of radial 

distortion decreases with an increase in coefficient number. As the first coefficient has the most 
influence, its estimated value needs to be more precise compared to the other coefficients to correctly 
describe the distortion. For this particular laparoscope the radial distortion can be described by two 
parameters instead of three as the third coefficient is nearly zero. As this is not the case for all 
laparoscopes, the model can best be approximated by three coefficients for generality. 
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Principal point modeling is accurate for zero and negative angles. Modeled principal points have a 
positional discrepancy with the measured principal point, increasing in size as the angle between 
modeled point and reference point zero increases. Part of this error can be explained by the incorrect 
angle determined with navigation as described in the next chapter. The one-sidedness of incorrect 
principal point estimation is caused by assuming the reference angle is correct. One or two pixels offset 
against the clock for the reference principal point results in an error distribution similar to that of 
decentering distortion. Correction for decentering distortion shows a significant influence of decentering 
distortion on the position of the principal point. A consequence of this is that a model of the principal 
point needs to include the effects of decentering distortion on the path described by the principal point. 
If the magnitude of decentering distortion has a large variation, the path described by the principal point 
will show a similar effect. The overall shape change of the path depends on the radius of the rotation 
described for the undistorted principal points, and the magnitude of decentering distortion. If 
decentering is low in comparison to the undistorted path, principal point can be approximated by a 
circle. As the effects of decentering seem to be larger than the undistorted radius, its effects cannot be 
ignored and the principal point cannot be described by a circular path around the rotation axis. 
 
Decentering distortion model shows a strong elliptical path indicating a significant contribution by the 
external decentering distortion component. However, estimated distortions based on the model show a 
large difference compared to the calibrated distortion with a magnitude of decentering twice as large for 
the model compared to calibrated at ±120°. This could either be due to an ellipse not being the right 
model, or that the decentering interaction between the two compound lens-systems is not linear to the 
rotation angle. A definitive answer to this question requires more measurements, and will be 
investigated in chapter 5. 
 
Average reprojection error per method and angle is lower than one pixel in all cases. For the calibration 
based method the error is consistent over all angles indicating that by correctly modeling all parameters 
to the angle it is possible to obtain an angle-independent reprojection error. In both methods the 
reprojection error when excluding decentering distortion in the model is slightly higher than for the 
included case. This low error is obtained by compensating for the lack of decentering distortion in the 
model with adjustment of the other parameters as can be seen in the spread of the focal length, and to a 
lesser extent in radial distortion. If the focal length and radial distortion parameters are fixed, 
reprojection errors in the model based method without decentering distortion describes a sinusoid due 
to a lack of this compensatory mechanism. 
 
In the decentering model based method, the error is angle dependent. At the reference angle, the error 
for the model based method is even lower than the error obtained using calibration for the case without 
decentering, increasing to 1.5 times the error of the calibrated case in angles ±120°. The angle 
dependency is due to incorrect modelling of the decentering distortion. The error in principal point does 
not contribute to the reprojection error as the error at ±90° is the same while the principal point has no 

error for -90° but does have an error in the +90° case. This error is independent on principal point here 
due to re-estimation of the extrinsic parameters based on the model. A shift in principal point is 
corrected for by a similar shift of the calibration object in the coordinate system of the camera. This 
suggests that small errors in principal point position can be corrected for by the hand-eye calibration 
model. To do this, it is necessary to use the extrinsic parameters obtained with the model based intrinsic 
and distortion parameters, not those obtained during calibration, to accurately describe the hand-eye 
calibration as a function of the angle. If the extrinsic parameters are not re-estimated, the reprojection 
error increases to 5-25 pixels for both methods (not shown). 
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2.5 Conclusion 
Obtained results suggest that the camera model can be described with a constant focal length and radial 
distortion at all angles if decentering distortion is modeled correctly. Principal point heavily depends on 
decentering distortion. If the distortion is large, the effects of decentering distortion need to be included 
in the model to accurately describe principal point position. However, errors in principal point position 
can be compensated for by hand-eye calibration. This requires feeding the extrinsic parameters 
corresponding to the parameters of the model based method to the hand-eye calibration procedure, and 
not the extrinsic parameters obtained during camera calibration. Decentering distortion is shown to have 
a large influence on all parameters regardless of its small magnitude. It is therefore necessary to 
accurately model the decentering distortion as a function of the rotation angle. The current model of an 
ellipse is not sufficient to correctly describe decentering distortion. This is likely due to the complex 
decentering distortion between the two compound lens-systems of the camera during rotation. In 
chapter 5 these effects will further be investigated. In all cases the reprojection error is less than one 
pixel. On an image size of 1440x1080 pixels a reprojection error of less than a pixel is not discerning. How 
the reprojection errors evolve if the extrinsic parameters are not estimated from the image, but 
obtained by navigation, will be the true test of this model and are investigated in chapter 5. 
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CH3: Hand-eye calibration  

3.1 Introduction 
With AR we aim to create a virtual image of a tumor that is projected in the correct position of the 
patients anatomy as visible on the image captured by the laparoscope. This requires the that the position 
of the tumor in known in relation to the camera. The position of the patient and tumor is known from 
tracking sensors placed for surgical navigation. The effective position of the camera is located 
somewhere in the tip of the laparoscope. Tracking sensors are placed on the laparoscope, followed by a 
registration to procedure to relate the effective position of the camera to the tracking sensor. This 
registration procedure is referred to as hand-eye calibration. In oblique viewing laparoscopes, the 
camera’s lens-system can move independently from the image sensor. As the camera pose is defined by 
the combination of lens-system and image sensor, two sensors are placed on the laparoscope to track 
the individual movements. One sensor is attached to the handle and has a fixed relation to the camera’s 
image sensor, while a second sensor is attached to the cylinder of the laparoscope to track the motion of 
the lens-system. 
 
Either one of the sensors attached to the laparoscope can serve as reference for tracking of the camera, 
and both applications have been described in the few literature references available on the topic. 
Yamaguchi et al. [41] were the first to attempt calibration of an oblique viewing laparoscope. They 
attached an optical sensor to the handle, and a rotary encoder was used to track the relative rotation 
between the moving parts. The proposed method was rather complex as it required estimation of five 
parameters for the hand-eye calibration model. All other methods use the sensor attached to the scope 
cylinder as reference for tracking of the camera [42-44]. Both electromagnetic and optical systems have 
been used for this purpose. These methods assume a fixed relation between the optical axis of the 
laparoscope and the reference tracking sensor attached to the scope cylinder. This assumption is used to 
create a projection of an object using the standard camera model, initially ignoring the orientation of the 
image sensor. After projection, a rotation correction is applied to align the orientation of the projected 
image with the orientation of the image sensor. Rotation correction is achieved by rotating the image 
around a point in the image plane. The point around which the projected image is rotated differs per 
method and is either the center pixel of the image plane, the principal point (one of the intrinsic camera 
parameters), or a point in the image plane around which the principal point rotates. These methods are 
relative simple compared to the reference on the handle as they only require one or two parameters to 
be estimated for the hand-eye calibration model. 
 
Current choices for the reference sensor in hand-eye calibration methods are based on the hardware 
available for tracking, and simplicity of the model. All methods are evaluated by the overall reprojection 
of the combined camera model and hand-eye calibration model, but none of the authors evaluated the 
hand-eye calibration itself. Here we will investigate what sensor can best serve as a reference for hand-
eye calibration, and what model best describes the relation between the reference sensor and camera in 
the tip of the laparoscope. This is achieved by inspection of the hand-eye transformations in several 
laparoscope configurations to gain insight in the differences between hand-eye transformations with 
respect to both reference sensors. 
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Figure 8: Top, side and front view of the Olympus EndoEye HD 10 mm with an oblique view angle of 
30° and two optical frames attached for navigation. 

3.2 Methods 
Laparoscope 
An Olympus EndoEye HD 10 mm oblique viewing laparoscope is used for this study, Figure 8. The scope’s 
viewing direction is 30 degrees away from the scope’s cylinder axis. Olympus’ chip-on-the-tip technology 
allows the camera’s sensor in the tip to keep a fixed pose with respect to the handle while the scope’s 
cylinder can be rotated to change the direction the camera is aimed at. In the camera, two coordinate 
systems are defined. The first is the coordinate system of the image sensor and will be referred to as 
CCD, the second is the coordinate system of the camera itself with its origin in the ‘pinhole’ of the 
camera and is referred to as CC, Figure 12. CC is the coordinate system used in the camera model for 
projection of an object and is the coordinate system of interest in hand-eye calibration. 
 
Hand-eye calibration of the laparoscope 
During surgery, the pose of CC is determined based on tracking of the rigid bodies attached to the handle 

(H) and scope’s cylinder (S) denoted by transforms OTS

HT  and OTS

ST . Here, OTS refers to the coordinate 

system of the optical tracking system; see Figure 9 and Figure 11. Hand-eye calibration is performed to 
estimate the transformation between coordinate systems S or H and that of CC. There is no way of 
directly measuring CC by the OTS. Hand-eye calibration is therefore performed with a checkerboard 
pattern of which the pose is estimated in relation to CC during camera calibration as explained in the 
previous chapter. By attaching optical reflecting spheres to the checkerboard pattern, its pose can also 
be estimated by the OTS. As the pose of the checkerboard pattern is now known in relation to CC and 
the OTS, it can indirectly relate CC to the OTS, Figure 9. 
 
For hand-eye calibration two extra coordinate system and three extra transformations need to be 

defined. CB defines the coordinate system of the checkerboard as tracked by the OTS, given by OTS

CBT , 

and CBI defines the coordinate system of the checkerboard pattern itself. CBI

CCT  denotes the 

transformation from the checkerboard image to the camera coordinate system, and  CB

CBIT  the 

transformation between the checkerboard pattern and the optical sensor attached to the board. CC can 
now be expressed in relation to H or S by 
 

 
 

 

1

1

H OTS OTS CB CBI

CC H CB CBI CC

S OTS OTS CB CBI

CC S CB CBI CC





   

   

T T T T T
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  (3.1) 

 

Here, ,H S

CC CCT T  are the transforms to CC from H and S respectively. 
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Figure 9: Hand-eye calibration is performed using an object that can be tracked by both the camera 
and OTS. 𝑻𝑪𝑪 

𝑯 , 𝑻𝑪𝑪 
𝑺  are the target transforms of hand-eye calibration. H and S can be expressed in 

relation to the checkerboard CB by the OTS. The checkerboard pattern CBI is known in relation to CC 
through camera calibration. The two systems can be linked together by determination of the fixed 
transform between CB and CBI. 

Estimation of 𝐓𝐶𝐵𝐼 
𝐶𝐵  

Transform between checkerboard image and optical sensor on the board (CBI and CB) is determined 

with a point registration. Let , ( 1, 2, 3,..., )i i

CBI CB i np p  be column vectors of the corner point positions 

in the checkerboard with respect to CBI and CB respectively where the ith corner of CBI corresponds with 
the ith corner of CB. Corner points positions in CBI are known from the geometry of the checkerboard, 
Figure 10. Corner points in CB are determined with point measurements using an optically tracked 

pointer. CBp  are defined by the translation vector in CB

pointerT . The two point sets are registered using 

the Procrustes algorithm. First, the centroid of both point sets is shifted to the origin of their respective 
coordinate system 
 

 

i i

CBI CBI CBI

i i

CB CB CB

  

  

p p p

p p p
  (3.2) 

 
Here p  is the centroid, or mean coordinate of the set of points. Rotation is found using the Kabsch 

algorithm. The 3x3 cross-covariance matrix C  between the point sets is calculated by 
 

 T

1

n
i i

CBI CB

i

  C p p   (3.3) 

 
From the cross-covariance matrix the optimal rotation matrix R  between the two point sets is 
determined using singular value decomposition 
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 TC USV   (3.4) 
 

 TR VU   (3.5) 
 

We require rotation for a right handed coordinate system, meaning  det 1R . If the determinant is -1, 

the rotation matrix is recalculated using 
 

 T

1 0 0

0 1 0

0 0 1

 
 


 
  

R V U   (3.6) 

 
Translation between the coordinates system is given by 
 

 CBI CB   t R p p   (3.7) 

 
Using this rotation and translation the transformation matrix from CB to CBI is defined as 
 

 
1

CB

CBI

 
  
 

R t
T

0
  (3.8) 

 

  
Figure 10: Checkerboard pattern has an even number of squares on one axis and uneven number on 
the other. This allows definition of a coordinate system CBI with its origin in the first corner within the 
image where the top-left square is black. For a right-handed coordinate system, the z-axis points in to 
the plane. CB tracked by the OTS is defined from the sphere closest to the origin of CBI. 
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Figure 11: Model of the laparoscope used. Aim of laparoscope navigation is knowing the pose of the 
camera coordinate system CC in the OTS coordinate system. H and S are rigid bodies tracked by the 
OTS. H is attached to the handle and has a fixed relation to the camera sensor. S is attached to the 
scope and has a fixed relation to the orientation of the outer camera lens. 𝜽𝟎 is the angle around the 
rotation axis between H and S at reference orientation. Other orientations of the outer camera lens 
are given by 𝜽𝟎 + 𝜽𝒗𝒊𝒆𝒘.  

Rotation calibration 

The two optical rigid bodies attached to the laparoscope, H and S given by the OTS as OTS

HT  and OTS

ST , 

are used to determine the orientation of the camera coordinate system, Figure 11. S can be expressed 
with respect to H by transformation 
 

  
1

H OTS OTS

S H S



 T T T   (3.9) 

 
By rotating the scope, the origin of S describes a circular path in the coordinate system of H, Figure 14. 
Rotation between the two parts of the laparoscope is given by the angle between the two tracking 
sensors around a rotation axis going through the center of the circle. Definition of the rotation axis 
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requires a direction of the axis, and a point on the axis. The direction is given by the normal to the 
circular path described by S in H, and the center of the circle is used as the required point on the axis. 
The center and normal of the circle are found by solving a non-linear least squares problem using the 
Levenberg-Marquardt method as described in appendix C. The angle from H to S around the rotation axis 

is given by 
r . Reference orientation of the laparoscope is defined as the oblique view aimed 

downwards 
0 r  . Viewing angle 

view  of the scope  with respect to the reference angle is given by 

 

 
0view r      (3.10) 

 
Results are validated by comparing the measured angle to several manually set angles. 
 
Rotation angle dependent hand-eye modeling 
Rotation of the scope with respect to the handle changes the hand-eye transformation. This change 

requires modelling of ,H S

CC CCT T  as a function of the angle 
view . As CC is defined by camera 

calibration, its orientation is defined in relation to the orientation of the image sensor (CCD). In a 
forward viewing scope, or any standard camera for that matter, the orientation of CC and CCD are very 
similar and can be described by a single fixed transformation. In the standard camera model; the x-, y-, 
and z-axis of CC are usually parallel to their counterparts in CCD. The only exception in orientation is the 
possible inversion of axes directions, Figure 12.  
 
In the oblique viewing scope, the orientation of CC is changed to point the optical (z-)axis away from the 
z-axis of CCD. Rotation of the scope then results in precession of the optical axis around the rotation axis 
of the scope. During rotation, the orientation of CCD is still fixed with respect to the handle. As the axes 
of CC are defined by the orientation of CCD, rotation of the scope does not cause the orientation of the 
x- and y-axis to rotate around the rotation axis. Instead, the x-axis of CC rotates in a plane parallel to the 
yz-plane of CCD, and the y-axis of CC rotates in a plane parallel to the xz-plane of CCD. In other words, 
rotation of the scope causes a precession of the optical axis around the rotation axis but does not involve 
a rotation of CC around its z-axis, Figure 12. Technically, the motion is not a precession as there is no 
rotation around the z-axis, but it will be referred to as such. 
 

Modeling of H

CCT  as a function of view  involves definition of the position of CC in relation to H. The 

position should either be fixed, or if the origin of CC does not lie on the rotation axis, describe a circular 
motion around the rotation axis of the scope. Modeling of the orientation is rather complex as none of 
axes has a fixed relation to H. As CCD is fixed in relation to H, the x- and y- axis of CC will each describe a 
motion in a plane of H during rotation. Correct definition of the x- and y-axis of CC as a function of the 
angle will yield a function that gives the precession of the z-axis. 
 
S is assumed to have a fixed relation with the optical axis in the tip of the scope. Orientation modeling of 
S

CCT  requires rotation around the z-axis of CC in the opposite direction of the scope’s rotation to 

correct the xy-plane of CC in relation to CCD. As the origin of CC is not expected to coincide with the 
rotation axis of the scope, the translation from S to CC describes a circle during rotation. 
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Figure 12: Coordinate systems within two simplified camera models where only the image sensor and 
outer lens are shown. CCD is the coordinate system of the image sensor with its x- and y-axis parallel 
to the pixels. CC is the camera coordinate system with its origin in the ‘pinhole’ of the camera. In a 
standard camera there is fixed relation between CC and CCD. In an oblique viewing laparoscope, the 
pose of CCD is assumed fixed in relation to the handle and does not change during rotation of the 
scope. The z-axis of CC is the optical axis of the camera and has an angle with the z-axis of CCD. During 
rotation, the optical axis describes a precession around the rotation axis as scope’s cylinder. As CCD 
determines the orientation of CC, rotation of the scope does not result in rotation of CC around it’s z-
axis. In the models, CC is shown on the outer lens of the camera. However, the effective position of CC 
is located somewhere in the lens-system between the outer lens and the image sensor. 

Inverse of the hand-eye calibration  ,CC CC

H ST T  expresses the position of H and S in relation to the 

origin of CC. If the hand-eye calibration can be modeled as a function of the rotation angle, the rotation 
angle between two orientations of S or H expressed in CC should have the same rotation angle as found 
with navigation for S expressed in H. The same strategy is applied as in rotation calibration to find the 
rotation axis of S/H expressed in CC. The rotation angle between hand-eye calibration poses is compared 
to the rotation angle found for S expressed in H. 
 
Hand-eye calibration is performed at nine rotation angles of the scope ranging from -120° to +120° with 

increments of 30°. The results of hand-eye calibration for H

CCT  and S

CCT  are inspected to get an 

insight in which of the two can best be used, and how to model hand-eye calibration as a function of the 
rotation angle. 

3.3 Results 
Point set registration of 𝐓𝐶𝐵𝐼 

𝐶𝐵  
A standard Mathworks checkerboard pattern is printed on a board for the experiments. The pattern has 
10x7 squares and has a square edge length of 1.02 cm, Figure 10. Of the 54 corners in the pattern, 43 are 
measured with respect to the reference coordinate frame attached to the printed board using an 
optically tracked pointer. One of the corners is left out for visual inspection of the results, Figure 13. The 
root mean square error of registration is less than 0.4 mm for all 43 points. 
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Figure 13: Registration of point clouds between CB and CBI. Red are the measured points in 
coordinates of CB. Blue are known points of CBI. The root mean square error of registration <0.4 mm. 

Rotation calibration 
The rotation axis defined by the normal and center of the rotation calibration results is shown in Figure 
14. The nine angles used for hand-eye calibration are estimated based on the gear shaped grip on the 
handle. Five of the peaks on the gear correspond to the 0°, ±60°, and ±120° angles. The remaining angles 
correspond to the notches in between the peaks. These estimated angles are compared to the measured 
angles by setting the measured angle at 0° as the reference angle. 
 
Hand-eye calibration 
Pure translation and orientation components of CC in the coordinate frames of H are shown in Figure 15. 
The optical axis describes a precession similar to the rotation of the scope as expected. However, the x- 
and y-axis were expected to move in a plane during rotation as the sensor orientation should be fixed in 
relation to the handle. Translations are expected to be fixed, or describe a circular motion. This is clearly 
not the case as translations show two clusters in the data. One corresponding to the positive angles, and 
one to the zero and negative angles. 
 

 

  
  

Estimated Measured 

120 120 

90 93 

60 62 

30 31 

0 0 

-30 -28 

-60 -61 

-90 -88 

-120 -118 

  

Figure 14: Center and normal of circular path described by S in H. Nine orientations were recorded for 
which 𝜽𝒗𝒊𝒆𝒘 was estimated. The table on the right shows the measured angles using navigation for the 
estimated angles. Here, the measured angle at 0° was set equal to that of the estimated angle.  



- 29 - 
 

  

  

  
H

CCT   S

CCT  

Figure 15: Hand-eye calibration results with reference to the tracking sensors attached to the handle 
(H) in the left column, and to the scope’s cylinder (S) in the right column. Top row, hand-eye 
orientation components; middle row, scatter plot of translation components; bottom row, average 
translation component per axes and per angle shifted to zero mean. The optical (z-)axis describes a 
precession for H, and is fixed for S. All x- and y-axes almost lie in a plane for H. Translation components 
of H show two distinct clusters. The translation components resemble a circle with an indentation 
between -30° to 30° for S. Mean translations for individual axes show a sinusoidal motion during 
rotation in the y-axis. The other axes do not complete the second coordinate for a circular motion. 
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Translation and orientation of CC in the coordinate frame of S are shown in Figure 15. Orientation of the 
optical axis is constant with respect to S as expected. As there are six hand-eye calibration  combinations 
that have a rotation angle difference of approximately 90°, the combined orientations should show 
collinearity of several of the x- and y-axes. However, there is a clear angular difference visible between 
the axes that are expected to be collinear. The translation components are expected to describe a 
circular path. There is clear sinusoidal motion visible in the y-axis, but the other axes do not complete 
the second coordinate to obtain a circular motion. The scatter plot resembles a circle with an indentation 
between -30° to 30°. 
 
Navigation versus inverse hand-eye based rotation angle 
Translations for the inverse of the hand-eye calibrations (from CC to H and S) describe a circle as 

expected, Figure 16. The rotation angle between different scope configurations is determined with the 

same rotation calibration method as used for rotation between the optical tracking sensors. Hand-eye 

calibration rotation angles for both methods deviate from the true rotation angle, as determined with 

navigation, with a maximum absolute difference of 7.8°, Table 2. 

 

  
Figure 16: Positions of H (left) and S (right) in reference to CC from the inverse hand-eye calibrations. 
The positions describe a clear circular path during rotation. Applying rotation calibration to these 
coordinates gives the rotation between hand-eye coordinates with reference to 0°, Table 2. 

Navigation Hand-eye Handle Difference Hand-eye Scope Difference 

120 113 -7.8 117 -3.6 

93 87 -5.8 89 -3.5 

62 60 -2.3 60 -1.7 

31 31 -0.1 31 -0.3 

0 0 0 0 0 

-28 -29 -0.4 -26 2.0 

-61 -62 -0.8 -56 4.6 

-88 -89 -1.3 -83 4.6 

-118 -117 1.1 -112 6.1 

Table 2: Rotation angles obtained by navigation, rotation in hand-eye calibration, and the difference 
between the two. In both cases 0° is set as the reference angle. In both cases the rotation angle of 
hand-eye calibration deviates from the true/navigation based rotation. 
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3.4 Discussion 
Point cloud registration using the Procrustes algorithm has an RMSE of <0.4 mm. As the RMSE of a single 
reflecting sphere as detected by the OTS can be up to 0.25 mm, the current results are at the limit of 
what is possible with the used method. Visible inspection of the results show a good match between the 
two point clouds with only one clear mismatch caused by a measurement error. Removal of the 
incorrectly measured point lowers the RMSE to 0.033 cm, but does not change the registration results. 
The method therefore produces accurate results and is robust to at least one outlier. 
 
Rotation calibration produces angles consistent with the input angles. In comparison to the reference 
angle, six out of eight evaluation angles have an angle 1-3° larger than the input angle. This suggests that 
reference angle 0° should be 1°. As this is just an offset in reference angle, it does not change the 
accuracy of rotation calibration. This method is already shown to be accurate and the results are 
therefore only to validate correct implementation. As there is no pattern visible in angular differences, 
the inaccuracies are attributed to errors in the estimated angles by manual positioning. 
 
Hand-eye calibration results differ from what is to be expected based on the information available on the 
laparoscope. One possible explanation could be a defect in the laparoscope. During the experiments a 
strong unnatural resistance was felt when rotation the scope around 0°. This resistance was not present 
in other laparoscopes used during the initial experimental stage of which no results are shown here. 
When rotating around the reference angle the scope’s cylinder felt to be forced downward in the 
reference angle direction. This defect would also explain the two clusters in hand-eye calibration 
translations with respect to the handle. During measurements, first the positive angles were measured, 
then the scope was rotated back to the reference angle and then on to the negative angles. At the 
positive angles the scope’s cylinder was in one configuration with respect to the handle, while rotating it 
back over the reference angle put it in another configuration. This could also be the cause of the circle 
indentation in scope translation, but the mechanisms of this are not understood, yet. Results obtained 
from these experiment suggest that hand-eye calibration can best be performed in relation to a sensor 
attached to the scope’s cylinder as it produces a simpler model, is closer to the scope’s tip, and its 
relation to the camera coordinate system is less influenced by tilting between the handle and cylinder. 
The proximity to the scope’s tip is of benefit since a small angular error in orientation estimation can 
result in a large error of a distant point expressed in the reference frame. As the reference frame on the 
scope is closer to the camera coordinate system than the handle, this arm effect of the orientation error 
is smaller. 
 
In the current understanding of the laparoscope it is assumed that the orientation of the camera sensor 
is fixed in relation the handle. Hand-eye calibration orientations suggest that this is not the case. The 
deviation of the x- and y-axis during motion from a plane in the hand-eye calibration from the handle 
show that the sensor orientation is changed with respect to the handle. Rotation differences between 
navigation and those extracted from the inverse hand-eye calibration suggest the same. The camera in 
the tip of the scope is presumed to be magnetically coupled to the handle [33]. It is possible that this 
coupling does not completely fix the orientation of the sensor and the orientation is affected by 
rotational friction in the scope resulting in hysteresis. If this is the case, it needs to be investigated 
whether this rotation offset is a defect, or that its behavior is predictable. If the behavior is 
unpredictable, it is very difficult to accurately determine the pose of CC based on tracking of the outside 
of the scope alone.  
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3.5 Conclusion 
Point cloud registration of the checkerboard pattern and rotation calibration methods are performed 
using optical tracking. Both provide results close to what can be expected with the accuracy of optical 
tracking. These results are sufficient for our purpose, and can be implemented as is for navigation and 
subsequent projection of the patient model on the laparoscopic images. 
 
Hand-eye calibration does not behave as expected. Rotation of the scope does not have the same 
rotation in orientation of the camera. As a result, the orientation of the image plane does not 
correspond with what is to be expected based on navigation of optical trackers attached to the 
laparoscope. Further research is needed to investigate if this is due to the specific laparoscope used for 
these experiments, or if this is a property of the Olympus EndoEye HD. This study should also include 
experiments to investigate if the angular offset is predictable, and thus can be included in the model for 
hand-eye calibration. These questions are looked in to in chapter 5. 
 
Translation from the laparoscope attached reference frames to the camera coordinate system does not 
behave as a rotation of the scope’s cylinder around a fixed rotation axis through the handle. Here, the 
behavior is expected to be due to a defect in the particular laparoscope used. To verify this, experiments 
will be repeated with another laparoscope in chapter 5. To eliminate effects of variable configuration 
between scope’s cylinder and handle, and to minimize the effects of errors in pose estimation of the 
reference frame, the optical reference frame attached to the scope’s cylinder is most suited for hand-eye 
calibration. 
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CH4: Delay estimation 

4.1 Introduction 
Real-time visualization of objects in the laparoscopic images requires input from two different sources. 
Laparoscopic images are acquired by a frame grabber connected to the computer, while position and 
orientation data is acquired by means of an optical tracking system (OTS). Data from both systems needs 
to be synchronized to produce a visualization that accurately displays motion of the projected anatomy 
within the images. If there is a delay between the data streams, the projected anatomy will either move 
ahead or lag behind the anatomy seen through the laparoscope. If we assume the delay to be constant it 
is possible to delay one of the systems to synchronize with the other.  
 
Sampling rate of both systems is 30 Hz, meaning that the time between measurements is ~33 ms. Cross-
correlation is the easiest way to estimate the delay between two signals. However, since we are working 
with discrete time signals, cross-correlation can provide accurate results up to half the sampling interval. 
With a sampling interval of ~33 ms this would result in an accuracy up to ~17 ms. Since we are aiming 
for an accuracy of less than 5 ms, cross-correlation is not a suitable option. The proposed method for 
delay estimation makes use of an object that is rotated at a constant angular frequency to allow fitting of 
a sinusoidal function to both of the coordinates. The delay between both systems can be estimated from 
the phase difference between the fitted sinusoidal functions. 

4.2 Method 
Delay estimation setup consists of an object that can be tracked by both systems, in this case a rigid body 
for the OTS, and can be rotated at a constant angular velocity around a fixed point, Figure 19. Rotation of 
the frame can be described as a 2D circular motion around the center of rotation, Figure 17. Stationary 
position of the object can be expressed as 
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Here, p  is the position of the object, r  the radius of circle, s  the stationary phase relative to the 

positive x-axis, and c  the center of rotation. If the axes of the coordinate systems in the image and OTS 
are aligned, the stationary phase will be equal for both. However, if the axes are not aligned the phases 
will differ between both systems with an angle equal to the rotation between the coordinate systems. 
 

 , ,s s I s OTS       (4.2) 

 

Here, s  is the phase difference between the image and optical tracking system which are denoted 

with subscripts I and OTS respectively.  
 
If the object is rotated at a constant velocity, the position can be described as a function of time by 
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Figure 17: Phase differences between modalities of a rotating object. Phase difference during motion 
is a measure for the amount of acquisition delay between the image and OTS. The phase difference in 
motion needs to be corrected for the rotation between coordinate systems of both modalities before 
the delay can be estimated. This rotation is given by the phase difference when there is no motion. 
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Here,   is the angular velocity, t  the time, and m  the phase where subscript m denotes motion. If 

there is no acquisition delay between the OTS and the image, the phase difference between modalities 
in motion is the same as the stationary phase difference. If these phase differences are not equal it is 
possible to find the delay between both systems from the difference in phase differences. 
 

 , ,m sm I m OTS delay
           (4.4) 

 

Here, m  is the phase difference in motion between the image and OTS, and delay  the phase delay of 

OTS with respect to the image. Phase delay is given by the difference between phase differences. 
 

 s m delay
       (4.5) 

 
Since we are interested in a time delay, and not a phase delay this needs to be converted to time 
 

 
delay

t



    (4.6) 

 
Parameter estimation 

To estimate the delay we need to find / ,s m  . If the object is in motion, this can be achieved by fitting a 

sinusoidal curve to the x or y coordinate of the object versus time, Figure 18. 
 

 ( ) sin( )mf t r t c        (4.7) 
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Figure 18: Sinusoidal curve fitting for the coordinates of one of the axes in the image. Circles indicate 
the stationary phase before and after motion. 

Fit results give an estimate of m  and  . Using the center and radius of the fit, and the stationary 

position p  the stationary phase can be estimated by 
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  (4.8) 

 

To perform the procedure described above, we first need to estimate the positions  tp  for both 

modalities. The OTS already gives us a position in 3D space of the object. For the camera we need to find 
the position of the object in each image. The procedure can be split in four parts, data acquisition, pre-
processing, position estimation, and delay estimation. Delay estimation is already discussed above, the 
other three will now be explained in the order they occur in. 
 
Data acquisition  
Acquisition for both modalities is straight forward. The OTS needs to be placed at a position where it can 
see the optical frame during the entire rotation. The camera, in this case a webcam, is positioned with 
the optical axis parallel to the rotation axis of the object, Figure 19. This is needed to prevent oblique 
projection of the circular motion turning it in to a spherical trajectory. The data for both modalities is 
acquired and time stamped by Plus Server via OpenIGTLink [47, 48]. 
 
Pre-processing and position estimation 
Optical tracking system 
The only pre-processing step required for the 3D OTS data is eliminating one dimension to get a 2D 
circular motion. The OTS gives a position and orientation for each point of the rigid body during motion. 
By finding the center of a rotating point it is possible to get the axis of rotation, see appendix C. By 
aligning the axis of rotation with the z-axis of the OTS, the plane rotation takes place in is placed parallel 
to xy-plane of the OTS, allowing removal of the z-axis to get the 2D coordinates of the rotating point. 

𝜃𝑠 end 
𝜃𝑠 start 



- 36 - 
 

 
Figure 19: Experimental setup. Tracked object is connected to a motor for rotation and placed in front 
of a dark background to prevent the reflecting spheres from disappearing in the background. A 
webcam is placed in front of the object with the optical axis parallel to the object’s axis of rotation. 
The OTS is placed where it can track the object during the entire rotation. 

Image 
Pre-processing of the images consists of correction for lens distortion, converting to grayscale, and 
defining a region of interest (the predicted trajectory of the object) where the object can be found, 
Figure 20. This last step is taken to reduce the number of specular reflections in the image that can 
simulate the object resulting in a wrong estimate of the position, and to speed up processing time. 
 

   
Figure 20: From left to right, original image, grayscale and lens correction, and masking and cropping 
of the image. As can be seen in the last image, the bottom right sphere is the sphere that is tracked. 
The coordinates of the object are expressed by the OTS with respect to the same sphere. 
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Figure 21: Left, cropped image with tracked object and masked expected trajectory of motion. Right, 
NCC map. High values indicate the template is very similar to the image at that position, while 
negative values indicate the opposite. Cross-correlation cannot be performed on a patch with constant 
values, as is the case for the masked out area. If the patch is constant, NCC returns zero. 

The position of the object, in this case the sphere furthest away from the center of rotation, is found by 
template matching using normalized cross-correlation (NCC). In NCC the template is slid over the image 
to create a map that shows the correlation between the template and the current position on the image. 
In this map we can find the position of the best match between template and image. The best match is 
assumed to be the location of the sphere being searched Figure 21. Sphere position is updated by 
quadratic curve fitting to get a sub-pixel position estimation. 

4.3 Experiments 
4.3.1 Curve fitting 
Curve fitting is evaluated by performing five measurements and fitting over five periods (rotations) of the 
moving object in each measurement. In starting and stopping of the rotation the angular velocity will not 
be constant. To account for this changing velocity an extra period is recorded at the start and end of 
motion that is excluded from curve fitting. Data is recorded for a short period before and after motion to 
estimate the phases in rest using the parameters found by curve fitting. Fit results are shown in Table 3.  
 
Camera and OTS radii fits are very consistent with a standard deviation < 0.1% of the radii. Since the 
object describes a circular motion, the radii in x- and y-direction are expected to be of equal length. This 
is the case for OTS, but the radius found in the y-direction of the camera is slightly shorter than the one 
found in the x-direction. This is probably due to placement of the camera with respect to the rotating 
object. If the camera’s optical axis is not parallel to the object’s axis of rotation, the circular motion is 
projected as an ellipse on the image plane. The ellipsoid can be corrected back to a circle. However, since 
the difference is in the order of 0.1% of the radius no further processing was performed. 
 
The angular frequency for the last two measurements is different from the first three. This is likely due to 
limitations of the equipment used for rotating the object. This change in frequency makes it difficult to 
compare angular frequency between measurements. However, since the camera and OTS captured the 
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motion at the same time, their angular frequencies should be the same within a measurement. The 
difference in angular frequency between both modalities is less than a milliradian per second for each 
measurement. With a standard deviation for the measurement differences of 0.02% of the average 
angular frequency, it very likely that the difference between measurements is due to the equipment and 
not fit inaccuracy. 
 
Phases in motion are shown as a phase difference between the camera and OTS. Since the phase 
difference in motion depends on angular frequency it is not useful to compare radial phase differences 
over measurements. Dividing the phase difference by the measurement’s angular frequency removes 
this dependency and gives a more meaningful result. For both of the axes, the phase difference in 
motion shows a delay of the OTS compared to the image of 13.5 ms with a standard deviation of less 
than 2 ms. Delay difference between x- and y-axis should the same within one measurement. 
Comparison of the intra and inter measurement standard deviation (0.7 ms vs 1.7 ms) suggests that the 
delay is not consistent over all measurements. This could be due to how the data is processed in Plus 
Server, or small timing differences at the start acquisition. However, with only five measurements, 
statistics are not strong enough to draw any real conclusions. If there is a delay difference between 
measurements, the data suggests that it is in the order of a ms and therefore acceptable to our cause.  
 
Coordinates for the center of rotation are consistent between measurements for the camera and OTS 
with a standard deviation in the order of 0.1% of the radius. Camera standard deviation of the y-axis is 
three times larger than that in the x-direction. This is likely due to the same ellipsoid projection as in 
radius fit. Ellipsoid shape cannot be perfectly fitted by a single sinusoid if the major and minor axis of the 
ellipsoid are not parallel to the x- and y-axis used for fitting. As a result there is a small spread in the 
 

Measurement # Source 1 2 3 4 5 Mean ± SD 

Amplitude / Radius 
[pixel, mm] 

IX 160.1 160.0 159.9 160.0 160.0 160.0 ± 0.07 

IY 159.8 159.9 159.9 159.7 160.0 159.8 ± 0.12 

OTSX 63.6 63.6 63.6 63.5 63.5 63.6 ± 0.02 

OTSY 63.6 63.6 63.6 63.6 63.6 63.6 ± 0.02 

Angular Frequency 
[rad/s] 

IXY 2.40 2.40 2.40 2.44 2.46 2.42 ± 0.03 

OTSXY 2.40 2.40 2.40 2.44 2.46 2.42 ± 0.03 

I-OTS -0.0004 0.0003 0.0008 0.0007 0.0003 0.0003 ± 0.0005 

Phase Difference 
[mrad]  

IX-OTSX -25.3 -32.1 -32.4 -38.4 -35.6 - 

IY-OTSY -25.9 -33.2 -32.1 -35.5 -37.3 - 

Phase Difference 
[ms] 

IX-OTSX -10.5 -13.4 -13.5 -15.7 -14.5 -13.5 ± 1.9 

IY-OTSY -10.8 -13.8 -13.4 -14.5 -15.2 -13.5 ± 1.7 

X-Y 0.3 0.4 -0.1 -1.2 0.7 0.0 ± 0.7 

Offset /  
Center of Rotation 

[pixel, mm] 

IX 211.0 210.9 211.0 210.9 210.9 210.9 ± 0.05 

IY 208.9 208.9 208.6 208.8 209.1 208.9 ± 0.16 

OTSX 291.4 291.4 291.4 291.4 291.5 291.4 ± 0.03 

OTSY 10.1 10.2 10.1 10.3 10.1 10.2 ± 0.07 

Table 3: Curve fitting results for 5 measurements. Origin of the data is denoted by the sources I and 
OTS that represent image and optical tracking respectively. Source subscripts refer to the axes the 
data is from. Due to differences in angular frequency the radial phase differences cannot be compared 
between measurements. Instead, phase differences are compared in milliseconds. 
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center coordinates between measurements. Standard deviations of the OTS show a similar difference. In 
pre-processing the OTS data, coordinates are transformed from 3D to 2D by aligning the axis of rotation 
with one of the axes of the coordinate frame, followed by removal of that axis. In the results shown here, 
the axis of rotation is only estimated in the first measurement and used to pre-process all five 
measurements. However, when the axis of rotation in the OTS data is estimated for each measurement 
independently, the standard deviation increases to 1-2% of the radius. Incorrect estimation for the axis 
of rotation results in an ellipsoid shape of the 2D motion. This ellipsoid shape is the reason OTS shows a 
similar variation as the camera for center coordinates. The increase in spread, if pre-processing is applied 
for each measurement independently, shows that the rotation axis estimation is not robust. 
 

4.3.2 Stationary phase differences 
With the parameters found in curve fitting the stationary phases can be estimated using (4.8). The 
coordinates at start and end are averaged over ten samples to limit the effects of measurement noise. 
Due to the ellipsoid shape of the rotation by processing or acquisition, or due to measurement noise it 
happened several times that the radius was larger than the radius found by curve fitting. As a result, the 
fraction in the inverse sine could become larger than one and returned a complex phase. The atan2 
function was therefore used to find the phases at the start and end of a measurement to solve this 
problem. Another option to solve this problem was recalculating the radius from the center coordinates 
and coordinates found at the start and end of a measurement. Since both options will give the same 
answer, using the atan2 function is computationally more effective. 
 
Phase differences and radii at the start and end of a measurement can be found in Table 4. In the 
absence of motion, the phase differences are independent of a measurement’s angular frequency. Phase 
differences can therefore best be compared in radians, or in this case milliradians. The table also shows 
the phase difference in milliseconds calculated using the measurement’s angular frequency. Phase 
differences in milliseconds can be used to compare the phase differences with those of curve fitting. 
 
The setup was not changed between measurements and therefore the setup at the end of one 
measurement was the same as the start of the next. Looking at the phase differences we can clearly see 
this relationship between measurements. The relationship is also visible in the radius of the camera. A 
 

Measurement # 1 2 3 4 5 Mean ± SD 

Phase Difference 
[mrad] 

Start 19.3 20.0 2.2 11.9 3.5 
11.2 ± 8.0 

End 18.6 -1.4 13.4 6.5 18.5 

Phase Difference 
[ms] 

Start 8.0 8.4 0.9 4.9 1.4 
- 

End 7.8 -0.6 5.6 2.7 7.5 

Camera Radius 
[pixel] 

Start 161.6 161.3 158.8 161.0 158.3 
160.2 ± 1.5 

End 161.3 158.8 161.3 158.2 161.7 

OTS Radius 
[mm] 

Start 63.6 63.4 63.8 63.7 63.5 
63.7 ± 0.2 

End 63.5 63.9 63.9 63.7 63.5 

Table 4: Radii and phase difference at start and end of measurements. Radii are consistent for OTS 
over all measurements with a standard deviation of 0.2 mm, the accuracy that can be expected from 
the OTS. Variation of camera radii are slightly larger if compared to the radius. There is a clear 
correlation visible between the camera radius and phase difference. A shorter radius has a smaller 
phase difference and vice versa. Stationary phase differences are independent of angular frequency 
and therefore shown in milliradians. 
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shorter radius results in a lower phase difference while a larger radius results in a larger phase 
difference. Changes in radial magnitude are due to elliptical trajectory found of the moving object. Radial 
length at start and end depends on their position in the ellipse. For the OTS, the same relationship 
between a measurements start and end radius is visible, but it doesn’t seem to have any correlation with 
the phase differences. In contrast to the fit parameters, the elliptical shape of the motion does have an 
influence on the phase differences at start and end of motion. To reduce this effect the shape of the 
motion can be corrected back to a circle. 
 

4.3.3 Delay estimation 
From the phase differences between rest and motion the delay in milliseconds is estimated using (4.5) 
and (4.6), Table 5. There is still a relationship visible between the end delay of a measurement and the 
start delay of the next measurement. With a standard deviation of 3.1 ms the variation is well within an 
acceptable range for our purpose. Within a single measurement the delay should be the same comparing 
start to end. In the curve fitting results of phase difference in motion we saw that the difference within a 
measurement was less than a ms, while it increased to 6 ms comparing the estimated delay at start and 
end. This increase in variation is due to stationary phase estimation, and is by far the largest source of 
variation in the delay estimation process. 
 

Measurement #  1 2 3 4 5 Mean ± SD 

Delay 
[ms] 

Start 18.5 21.7 14.4 20.6 15.9 
18.2 ± 3.1 

End 18.5 13.2 19.0 17.2 22.7 

Start-End 0.0 8.5 -4.6 3.4 -6.8 0.1 ± 6.1 

Table 5: Estimated delay for five measurements using stationary phases at start and end of motion, 
and the difference between estimated delay in a single measurement. 

4.3.4 Influence of template selection 
Template selection is the only manual part in the delay estimation process. To evaluate the effects of 
template selection, five templates are used to get the coordinates from each of the five measurements. 
Templates are selected from the first frame from each of the five measurements, Figure 22. The five 
acquired sets of coordinates for each measurement are used for curve fitting and estimation of the 
stationary phases.  
 
Standard deviations of radius, angular frequency, and phase difference within a measurement for curve 
fitting results (not shown) are an order of magnitude smaller than the standard deviations between 
measurements using a single template as stated in Table 3. Template selection can therefore be assumed 
to have negligible effects on these parameters.  
 

 
Figure 22: Templates selected from the first image of each of the five measurements. All five 
templates are used on all five measurements to evaluate the effects of template selection on the 
coordinates of the moving object in the image. 



- 41 - 
 

Template selection does have an influence on the coordinates found of the rotating object as it can have 
a fixed translation for all coordinates from one template to another. In Figure 23 the effects on the found 
coordinates of the stationary positions at start and end, and the center of rotation can be seen. The 
mean for start, end, and center of rotation coordinates is set to zero within a measurement to get all 
coordinates in the same window. It is clear that template selection has a significant influence on the 
coordinates found. It is also clear that the influence is constant over all measurements. By subtracting 
the center of rotation from the start and end coordinates this bias can be removed, Figure 24. 
Subtracting the center of rotation does not fully remove the bias as there is still a pattern visible, but the 
spread is now less than 0.1 pixel in all directions, or 0.1% of the radius, the same order as the standard 
deviation of the radius. As template selection has no influence on the angular frequency and phase 
difference in motion, and since the influence it does have on the parameters for stationary phase 
difference is self-correcting, the overall effect of template selection on delay estimation seems to be 
negligible based on the performed experiments. 
 

4.3.5 Validation 
Validation is performed by introducing a delay between the camera and OTS data. Plus server allows the 
addition of a delay to one of the sources to synchronize the data. This functionality is used create a delay 
between both sources and test the delay estimation process. For validation, delays of 0 (no added delay), 
20, 50, 100, and 200 ms are added to the OTS data. Each delay is measured five times, Figure 25. 
 

 
Figure 23: Coordinates for the object before and after motion, and center of rotation from curve fitting 
for five measurements using five templates in each measurement. All coordinates are shifted to the 
same window by subtracting the measurement mean from the parameters. The selected template has 
a clear and predictable influence on the coordinates found. 
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Figure 24: After subtraction of the center of rotation from the start and end coordinates of the object 
the bias is mostly removed. Remaining variation is in the same range as the radius standard deviation. 

Variation in the estimated delays is larger for delays of 20, 50, and 200 ms compared to that of no added 
delay. This could be because a delay of 100 ms is a delay of exactly 3 data points at an acquisition 
frequency of 30 Hz, not requiring any interpolation of the data. If this were the case, the same would be 
expected of the spread at 200 ms, which is a delay of exactly 6 data points. No conclusive answer can be 
given on the cause of the low spread at 100 ms, if there even is a cause except chance, but it is 
worthwhile to investigate if a better approximation is needed.  
 
Trend lines are fitted for the delay with reference to the start and end of measurements. Both trend lines 
show a slope of nearly one with an offset of just over 15 ms. Even though there is a spread in the 
estimations, the delay estimation process is able to accurately find the added delay in the 
measurements. 
 
Inspection of the phase difference based on motion alone suggests that phase fitting is the cause of 
spread in the estimated delay, Figure 26. As the standard deviation of differences between phase 
differences of a single measurement is less than a millisecond, it is also possible that the true delay is 
variable. 

4.4 Discussion 
Ellipsoid shape of the motion does not have a relevant influence on the fitted parameters. It does 
influence the phase estimation before and after motion and is in the current method by far the largest 
source of variation in delay estimation within a measurement. If the current delay estimation is to be 
improved, the phases in rest need to be estimated more accurately. 
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Figure 25: Delay estimation with an added delay of 0, 20, 50, 100, and 200 ms, and five measurements 
per added delay time. The spread for measurements with an added delays is larger than those 
without. Fitted trend lines have a slope of nearly one meaning the delay estimation process has 
accurately estimated the delay. 

 
Figure 26: Delay based on phase difference during motion alone shows the same spread as the delay 
estimation corrected for stationary phase difference. This suggest that phase fitting is inaccurate, or 
that the true delay is variable. 
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Until now, the variations in estimation of radius, center coordinates, and phases in rest are presumed 
originate from ellipsoid shape of the registered motion due to incorrect rotation axis estimation, or 
projections under an angle on the image plane. Ellipsoidal motion can explain some of the variation seen 
in the measurements, but it does not account for the relatively large standard deviation in estimated 
radii for the stationary phases in the images. Standard deviations of fitted radii and center coordinates 
are in the same range for the OTS and camera if expressed as a percentage of the modality’s 
corresponding radius. The same goes for radii found in stationary phase estimation for the OTS. The 
relatively large variation in radii for the phases in rest of the camera can be an effect of the template 
used. During template selection a circle is placed around the object to be tracked. In the current 
implementation of the normalized cross-correlation it is necessary to have a rectangular template. To 
fulfill this requirement, the selected patch is made rectangular by filling the patch with zero values 
around the selected semi-circular area, Figure 22. The mask created in pre-processing the images also 
has zero values on areas that are excluded from the predicted path of motion. Zero values in the mask 
and template will have a high correlation, and allow for inaccurate coordinate estimation of the object. 
In Figure 21, the effect of the zero patches can be seen. Throughout the entire predicted path of motion 
a high correlation is found. As the object is obviously only in one point in the image, the high correlation 
in the rest of the image is due to overlapping zero patches. The amount of overlap between zeros from 
template and mask will determine the size of the error in coordinate estimation. If there is direction in 
the template that has more zero values than the other, the template will have a preferred axis of 
deviation from the true coordinates. In the current experiments these effects of template selection are 
not evaluated. The current technique can be improved by dilating the mask to prevent overlap between 
the zero patches in the template and mask. As the legs of the rigid body that holds the tracked sphere 
has a dark color, the overlap with the zero patch in the template will draw the estimated coordinates 
closer to the center of rotation on the diagonal axis (y = ±x) compared to when there is little overlap with 
the dark legs, such as when the template is on one of the axis with its origin in the center of rotation. If 
the delay estimation needs to be improved I recommend investigating the accuracy of finding the 
coordinates of the spherical object using Hough transforms to circumvent the limitations and 
cumbersome process of the current technique. 
 
In a study on the effects of visual delay on dexterity and accuracy in a laparoscopic setting the upper 
limit the human brain can correct for is found to be 0.25 sec [49]. However, this is for a delay between 
hand movement and visual feedback. In our case, a delay between the two data sources can create 
visual stimuli with conflicting messages. Delays between the two sources the brain is able to process 
correctly will therefore be significantly less. Given the upper limit, it is possible to delay both sources in 
order to have enough time to generate the patient model using the navigation, and accurately project it 
on to the laparoscopic image before presenting the view to the surgeon on screen. 
 
Delay estimation is performed to allow accurate projection of the patient model on to the laparoscopic 
images. The presented method allows estimation of the delay with a standard deviation of 3.1 ms for 
five measurements, or 8.0 ms for twenty five measurements in which twenty measurements had an 
added delay. Calculated standard deviations assume the highly unlikely case that there is no variation in 
true delay between measurements, meaning that the delay estimation method is probably more 
accurate than shown here. The experiments performed show that the delay can be estimated accurate 
enough for our purpose. 
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CH5: Laparoscope calibration 

5.1 Introduction 
During the previous chapters, all steps needed to prepare the laparoscope for real-time tracking and 
visualization were investigated separately. Before the technique can be used in the clinic, all parts need 
to be combined in to one model. In this chapter, the camera calibration and hand-eye calibration 
methods are combined and the results are evaluated in a stationary setting where the delay between the 
laparoscopic images and tracking of the components does not play a role. 
 
The laparoscope under investigation during this thesis is the Olympus EndoEye HD 10 mm with an 
oblique angle of 30°. The scope’s camera is assumed to consist of two compound lens-systems. The inner 
compound lens-system holds the image sensor and is assumed to have fixed pose in relation to the 
handle of the scope. To change the direction the scope is looking at, the cylinder attached to the outer 
lens-system can be rotated around its axis. To keep the model simple, it is assumed that the only motion 
possible between the two lens-systems is a rotation around a fixed axis through both lens-systems. 
 
Camera calibration results of chapter 2 indicate that the focal length and radial distortion parameters 
can be assumed fixed. These parameters are estimated from a sum of Gaussians where the mean and 
standard deviation of camera calibration at a single angle is used to generate one Gaussian curve with an 
area under the curve of one. The value where the sum of Gaussians from all angles obtains its maximum 
is set as the fixed value for each of the parameters. Principal point and decentering distortion 
parameters describe a circular motion during rotation of the scope. These parameters are estimated by 
fitting an ellipsoid through the parameter values obtained during calibration at several angles. By setting 
the value obtained in the standard configuration of the laparoscope (oblique view directed downwards) 
as reference, the values at other angles during rotation are estimated by rotation along the fitted ellipse. 
We have seen that this ellipsoid model is not perfect, but as the error stays below one pixel RMS its 
accuracy is sufficient for our purpose. 
 
Two optical tracking sensors are attached to the laparoscope for navigation and measuring the scope’s 
rotation angle. One sensor is attached to the handle and has a fixed relation to the image sensor while 
the sensor attached to the scope’s cylinder has a fixed relation to optical axis of the camera. The sensor 
attached to the scope’s cylinder can best be used as reference for the camera coordinate system as it 
requires a simpler model and its proximity relative to the other sensor will result in a smaller tracking 
error. Results of chapter 3 suggest that the hand-eye calibration can be modeled as a circular motion of 
the translation component, with a rotation of the camera coordinate system around the optical axis in 
opposite direction of the scope’s rotation. Hand-eye calibration is performed using a checkerboard that 
is tracked relative to the optical sensors attached to the scope, and of which the position is known in 
relation to the camera coordinate system by camera calibration. The proposed camera model does not 
produce the exact same results as found by camera calibration. To account for this, the extrinsic camera 
parameters that describe the relation between the checkerboard and camera coordinate system are re-
estimated based on the model and used for hand-eye calibration. 
 
Comparison of the rotation angle obtained by navigation using the sensors attached to the scope, and by 
rotation angle obtained from hand-eye calibration results, suggested that the image sensor in the 
laparoscope is not completely fixed in relation to the handle. The translation component of the hand-eye 
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calibration deviated from a circular motion in chapter 3, however, this is expected to be due to a defect 
in the scope used for the experiments. If this assumption holds, and how the rotation offset influences 
the overall reprojection result is investigated in this chapter. 
 
In this chapter, we will first look at the overall reprojection results of the combined hand-eye and camera 
calibration model. Then, the individual components of camera calibration and hand-eye calibration, 
including the angle dependent model, are re-evaluated to see how the results came to be. Finally, the 
extrinsic parameters obtained by navigation are compared with the extrinsic parameters extracted from 
validation images using the camera model to determine the causes of the overall reprojection errors.  

5.2 Navigation based reprojection of checkerboard 
For the experiments, two Olympus laparoscopes of the same type are used. Results for both 
laparoscopes are evaluated simultaneously. During this chapter, images on the left correspond to 
laparoscope 1, and images on the right correspond to laparoscope 2, unless stated otherwise.  
 
Camera calibration is performed at nine angles ranging from -120° to +120° with increments of 30° by 
capturing nine images of the checkerboard pattern in the same positions as in chapter 2. From the 
results, the proposed angle dependent camera model is created. Extrinsic parameters of all calibration 
images are re-estimated using our camera model. These extrinsic parameters are used to define all hand-
eye transformations from the camera coordinate system to the optical tracking sensor attached to the 
scope’s cylinder. An angle dependent hand-eye calibration model, explained in section 5.4, is generated 
from the results and used to estimate the extrinsic parameters between the checkerboard pattern in 
validation images and the camera coordinate system. These navigation based extrinsic parameters are 
used in combination with the camera model to reproject the 54 checkerboard points on to the image 
plane and compared to the true points as detected in the image. Reprojection error is expressed as the 
Euclidean root mean square error of all points in a single image. For each laparoscope, 30 validation 
images are captured, Figure 27. 
 

  
Figure 27: RMS error for reprojection of checkerboard point on image using combined camera and 
hand-eye calibration model. Thirty validation images are captured per laparoscope. The maximum 
error of 100 pixels corresponds to an error of ~10% of the image size. 
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Reprojection error ranges between 15-100 pixels where the lowest error occurs around 0° and the 
highest error around 100°. An error of 100 pixels on image size of 1440x1080 corresponds to a 
displacement of approximately 10% of the short axis of the image. In the camera calibration model, the 
parameters are expressed in relation to the reference angle 0°, giving a possible cause for the error 
distribution. However, the camera parameter errors are small in the model, and the reprojection error 
stayed below one pixel if the extrinsic parameters are estimated based on the model. Even though this 
was a doubling of the error compared to the standard camera model, it does not explain why the error 
increases to 100 pixels here. 
 
All intrinsic and extrinsic parameters are evaluated again to determine why the model produces an error 
of this magnitude, and why the maximum error occurs at 100°, and not at 180°. 

5.3 Intrinsic camera parameters 
5.3.1 Reprojection error 
The error of camera calibration is compared to the error obtained after applying our model. Similar to 
previous test, both methods are compared with decentering distortion in- and excluded from the camera 
model, Figure 28. Since a change in intrinsic parameters imposes a change on origin of the camera 
coordinate system, the extrinsic parameters are re-estimated for our model before point reprojection. 
As expected, the model based reprojection error is higher than the calibration based error and the 
inclusion of decentering distortion improves the results. However, the errors are still in the order of a 
pixel, and do not explain why the error increases up to 100 pixels in the navigation based method. 
 

5.3.2 Focal length 
In the proposed camera model, and all currently existing models, it is assumed that the focal lengths can 
each be approximated by a single value. The reasoning behind this is that a changing focal length would 
result in a noticeable, but unobserved, change in the images produced by the laparoscope during 
rotation. As the focal length describes the distance between the image plane and lenses, a change in 
focal length would mean that the distance between the two compound lens-systems changes during 
rotation. Results for focal length are shown in Figure 29. 
 

  
Figure 28: Reprojection error obtained during camera calibration and with the proposed model. Both 
methods are evaluated with decentering distortion in- and excluded from the camera model. 
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Figure 29: Top to bottom: sum of Gaussians for focal length calibration results at different angles; focal 
length parameters per angle; focal length x vs. y. In the model, it is assumed that the focal length can 
be approximated by a fixed value at all angles. This is clearly not the case as there is a 40 pixel 
difference, or ~4% of the average value, in laparoscope 1 during rotation. 
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From the Gaussian profiles and their sum it is clear that the estimated values for focal length are not 
consistent for laparoscope 1. There is 40 pixel range in estimated values for laparoscope 1. On a focal 
length of approximately 1000 pixels, this range corresponds to 4% of the total focal length. The values 
for laparoscope 2 show a spread of 15 pixels, similar to what was observed in chapter 2. Here, the 
variation was assumed to be due to calibration inaccuracies. However, if calibration is the cause of 

variation, the ratio 
x yf f  is also expected to change. In the plots of 

xf  vs 
yf  it can be seen that this is 

not the case. This means that the variation is due to a physical change in distance between the two 
compound lens-systems in the laparoscope. If focal length values are not consistent, they should be 
modeled as a function of the rotation angle. This requires the parameters to be predictable and describe 
a cyclical change as a function of the rotation angle. The rotation angle versus focal length plots show a 
sinusoid pattern for laparoscope 2. However, laparoscope 1 only shows a similar pattern for the positive 
angles, and the negative angles have a linear change.  
 
The large unpredictable change of the focal lengths during rotation of laparoscope 1 suggest that the 
compound lens-systems not only rotate around a single axis, but are also permitted to move along this 
axis. This freedom of motion along the optical axis invalidates one of the assumptions for our model. As 
the reprojection error of our model with a fixed focal length stays below one pixel, the overall effect of 
this varying focal length on reprojection is not that large. However, the change in focal length also 
changes where the origin of the camera coordinate system is located within the camera. This topic will 
be discussed in the hand-eye calibration section. 
 

5.3.3 Radial distortion 
In the proposed camera model, and all currently existing models, it is assumed that the radial distortion 
parameters can each be approximated by a single value. This assumption is based on the assumption 
that the focal lengths are fixed. From the derivation of radial distortion, Appendix B, we know that the 
amount of distortion is proportional to the cubed field angle. The field angle is given by arctangent of the 
distance from a point on the image plane to the principal point, divided by the focal length. As the focal 
length changes, we already know that the radial distortion parameters will change, Figure 30. 
 
The sum of Gaussians profiles clearly do not resemble a single Gaussian for any of the distortion 
coefficients. The width of the peaks still increases with coefficient number, but there is not a single value 
anymore that can be distinguished as the optimal value. In all profiles there seem to be two peaks where 
the values between the peaks differ by a factor of two.  
 
If the radial distortion is to be modeled as a function of the rotation angle, the pattern preferably 
describes a cyclical motion or any other pattern that can be described by a simple function. From the 
normalized coefficient versus rotation angle plots it is clear that there is no simple function that can 
describe the change of the coefficient values. Since the radial distortion is a function of the focal length, 
one could expect to find a relation between the two. However, this relation is not visible in the 
normalized coefficient plots. This is because rotation and shift between the two compound lens-systems 
is not around and along the optical axes of both systems. Besides the relation to the focal length, radial 
distortion also depends on several other lens coefficients. As the rotation and motion are not around and 
along the optical axis, the interaction between the lens coefficients also changes during rotation. 
 
From the results obtained here, it does not seem possible to model the radial distortion as a function of 
the rotation angle. However, as the reprojection error using our model is small, the initial assumption of 
a fixed value still seems accurate enough to describe radial distortion. 
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Figure 30: Top, sum of Gaussians for radial distortion coefficients. Bottom, radial distortion parameters 
normalized to zero mean and standard deviation one per coefficient versus the calibration angle. For 
both laparoscopes, the distortion parameters change during rotation, violating our assumption of a 
fixed value. In the bottom plots it is visible that the change cannot be described by a simple function. 

5.3.4 Principal point 
The path on the image plane described by the principal point during rotation of the laparoscope can be 
modeled as an ellipsoid. The principal point rotates around a point where the rotation axis of the 
laparoscope intersects the image plane. The path of the principal point depends on the distance to the 
rotation axis, the angle between the image plane and rotation axis, and on the decentering distortion. 
Results for the principal point modeling are shown in Figure 31. 
 
Principal points for laparoscope 1 resemble a circle while those for laparoscope 2 plot an ellipsoid. The 
circular shape of laparoscope 1 clearly shows an angular offset in one direction between the reference 
angle at 0° and the other angles. This is most likely due to an error in estimation of the principal point at 
reference angle 0°. In the ellipsoid of laparoscope 2, we can see that the angular error in the model 
increases along the long axis of the ellipsoid, similar to that observed for the decentering distortion in 
chapter 2. As the error in principal point can partially be corrected by the extrinsic parameters, the 
results obtained here are sufficient for modeling of the principal point. 
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Figure 31: Model and calibration based principal point positions for the different calibration angles. 
Solid circles are the measured principal points, open circles the principal points estimated with the 
model, and the black square the center of the ellipsoid. Left shows an angular offset originating from 
an estimation error in the reference angle at 0°. The error on the right increases in size along the long 
axis of the ellipse.  

5.3.5 Decentering distortion 
Decentering distortion consists of a direction and magnitude that together can be modeled as a function 
of the rotation angle by an ellipsoid. The decentering distortion is a combination of the decentering 
distortion of the two compound lens-systems and the interaction between the two. It is assumed that 
the center of the ellipsoid indicates the direction and magnitude of the inner compound lens-system that 
holds the image plane. The path described by the decentering distortion relative to the center of rotation 
is a sum of the outer lens-system and the interaction between the two systems, Figure 32. 
 
 

  
Figure 32: Model and calibration based decentering distortion parameters. Solid circles are the 
measured decentering distortion parameters, open circles the distortion estimated with the model, 
and the black square the center of the ellipsoid. In the strong ellipsoid shape on the left there is a clear 
error along the long axis of the ellipse. In the image on the right the shape is close to a circle and the 
model can better approximate the decentering parameters. 
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In the decentering distortion parameters there are again an ellipsoid and circular shape visible. Where 
the principal point had a circular path for laparoscope 1, the decentering distortion has an ellipsoidal 
path and vice versa for laparoscope 2. Just as in the principal point model of laparoscope 2, and the 
decentering distortion model of chapter 2, the error of the estimated values increases along the long axis 
of the ellipsoid. Calibrated values for laparoscope 2 are close to a circular shape and show that the model 
is a good approximation for the calibrated values. 
 

5.3.6 Discussion 
All intrinsic and distortion parameters included in the model are re-evaluated to test if the assumptions 
and approximations of the model still hold in attempt to find the origin of the large navigation based 
reprojection error. Reprojection error for the model based method is approximately 30% larger than the 
calibration based method. The reprojection error stays below one pixel in all cases when decentering 
distortion is included in the model. It therefore seems unlikely that the errors in the model are the cause 
of the large errors in the overall reprojection. 
 
Focal lengths were assumed to be fixed during rotation. Results show that this is not the case as there is 
a variation of 4% of the total focal length visible in laparoscope 1. This can only be caused by a variable 
distance between the two compound lens-systems in the tip of the laparoscope. As the radial distortion 
is proportional to the cubed focal length, the assumption that distortion parameters are fixed also does 
not hold. Even though the assumptions are incorrect, the reprojection error obtained using these 
assumptions show that the effects on the error are not that concerning. One effect of the variable focal 
length not discussed is the change imposed on the extrinsic parameters. This will be looked in to further 
in the next section. 
 
Ellipsoid fitting for principal point and decentering distortion is still deemed accurate enough for our 
purpose. The results are not perfect, but the errors in the model can be compensated for by the extrinsic 
parameters. The ellipsoid model achieves accurate results when the actual shape of the parameters 
resembles a pattern close to a circle. If the pattern changes to an ellipsoid with a strong difference in 
short and long axis, the error in values generated by the model increase in size along the long axis. As the 
effects on the reprojection error are small, and as the approximated values are much closer to the 
calibrated value than assuming a fixed value for all angles, the model is not changed. 

5.4 Hand-eye calibration 
During the hand-eye calibration experiments in chapter 3, the transformations between the reference 
sensors and camera coordinate system expressed unexpected behavior due to a suspected defect in the 
laparoscope used. It was not possible to define the hand-eye model as a function of the rotation angle 
because of this. Here, we will look in to the hand-eye transformations again, and investigate the effects 
of intrinsic camera parameters on the hand-eye transformations. Then, a hand-eye transformation 
model will be defined as a function of the rotation angle. All transformations are inspected relative to 
the optical tracking sensor attached to the scope’s cylinder. 
 

5.4.1 Hand-eye transformations using different extrinsic parameter sources 
During hand-eye calibration, four transformations are multiplied to get a transformation from the 
coordinate system of the reference sensor to the camera coordinate system. Two of the transforms are 
obtained using the optical tracking system, one is a fixed transformation that is obtained as defined in 
chapter 3, and the final transformation is between the checkerboard pattern and the camera coordinate 
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system and is obtained during camera calibration. This last transformation is generated from the 
extrinsic parameters, and is obtained in combination with the intrinsic camera parameters during camera 
calibration. The intrinsic and extrinsic parameters from a set that together describe how a point in front 
of the camera is projected on to the image plane. In our model, the intrinsic parameters differ from the 
calibrated parameters. This means that the extrinsic parameters also need to be corrected to account for 
this change. Here we evaluate the effect of our intrinsic model on the hand-eye transformations. Figure 
33 shows the hand-eye transformation obtained by re-estimating the extrinsic parameters using our 
model. Figure 34 shows the hand-eye transformations using the extrinsic parameters found during 
camera calibration. It is important to note that the intrinsic parameters self are not used for calibration. 
 
 

  

  
Figure 33: Hand-eye transformation translation components projected on the XY- and XZ-plane using 
the extrinsic parameters found using our model. Each rotation angle has nine hand-eye 
transformations. The spread is approximately 1 mm in all directions per angle. In the top row there is a 
clear circular pattern visible on the left. On the right, the pattern is less obvious as the points for all 
angles are closer together, but it is still present. The angle between successive angles of the nine 
calibration sets is approximately 30°. However, the angle between two successive sets around a fictive 
point in the center of the circle is clearly not constant. Around reference angle 0°, the angular distance 
between sets is larger than at distant angles. The circle is closed in the 240° degrees that are 
measured. In the XZ-plane it can be seen that the transforms are all in a plane with a 1 mm spread. 
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Figure 34: Hand-eye transformation translation components projected on the XY- and XZ-plane using 
the extrinsic parameters found during camera calibration. Each rotation angle has nine hand-eye 
transforms. For each angle, the hand-eye translations are sort of clustered, but neither of the 
laparoscopes shows a clear pattern. From the transforms in Figure 33 we know that the optical axis 
lies diagonally in the XZ-plane. For laparoscope 1, the range of the points along the optical axis is 
approximately 5 mm due to the large variation in focal lengths. For laparoscope 2, the variation along 
the optical axis in approximately 1.5 mm. 

A change in focal length and principal point has a direct influence on the extrinsic parameters. The focal 
length influences the distance along the optical axis, and the principal point influences the position in the 
plane orthogonal to the optical axis. In the scatterplots, the optical axis is diagonally downwards in the 
XZ-plane. This can best be seen in the plots of Figure 33 where the optical axis is perpendicular to the 
plane of rotation. In the calibration based transformations of laparoscope 1 there is a spread of 5 mm 
along the optical axis due to the variation in the calibrated focal lengths. By fixing the focal lengths to a 
single value, the hand-eye transformations are forced in to a plane with a spread of around 1 mm. A 
similar behavior can be seen in the spread for scope 2. Here, the spread in the calibration based method 
is smaller as the variation in focal lengths is smaller, but still improves by fixing the focal lengths. 
 
Fitting the principal point to an ellipsoid shape imposes a similar behavior on the hand-eye translations 
in the plane orthogonal to the optical axis during rotation. For laparoscope 1 the calibrated method 
creates a shape that resembles a triangle instead of a circle. In the hand-eye translations obtained using 
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the model, the shape is close to a circle. For laparoscope 2, the behavior is similar but less obvious due to 
a smaller radius of the circle resulting in an overlap between the clusters per angle. For both laparoscope 
scatterplots in the model based method it can be seen that the rotation of the clusters around a fictive 
point in the center of the circular motion is not equal to the rotation angle of the laparoscope. The 
amount of rotation between successive angles is much larger close to the reference angle 0° than it is at 
distant angles. In both cases, the circle closes in the 240° used for camera calibration. This means that 
the translation component of the hand-eye transformation cannot be modeled by a simple rotation 
around a central axis. 
 
Hand-eye calibration results obtained with the extrinsic parameters re-estimated based on our model 
not only improve the hand-eye translations, but are also necessary to create a pattern in that can be 
modeled by a simple function. In the ideal case, all translation components at a single calibration angle 
coincide in a single point. The results obtained here have a spread of around 1 mm in all directions. This 
spread can be a result of tracking inaccuracies of the optical sensors, and of errors in estimated extrinsic 
parameters. This spread will have an significant influence on the reprojection error no matter the origin. 
 
Orientation of the hand-eye transformation does not change if the intrinsic parameters are changed. In 
all hand-eye transformations, the optical axis pointed in the same direction with a negligible variation. 
The orientation between the corresponding transformation from the calibration based method and the 
model based method were similar as expected. Based on the orientation results there is no preference 
for a method to use in the hand-eye model. 
 

5.4.2 Rotation angle dependent hand-eye model 
Above we have seen that the hand-eye transformations can best be created using the extrinsic 
parameters obtained using our model. The orientation and translation for the hand-eye transformations 
are modeled independently.  
 
The translation component is determined by first finding the plane the rotation takes place in and the 
axis of the rotation. This is achieved using the same method as used for rotation calibration of the 
laparoscope. All translation components are assumed to lie in a plane and describe a circle around a 
point in that plane, Figure 33. The normal to the plane (circle), and the center of the circle are found by 
solving a non-linear least squares problem, Appendix C. The average translation per calibration angle is 
determined, and the rotations of these average positions around the rotation axis are determined with 
respect to the position at reference angle 0°, Figure 36. As the rotation of hand-eye positions does not 
move at the same speed around the rotational axis as the rotation of the scope, the amount of hand-eye 
rotation is fitted to the scope’s rotation angle using a Fourier sum, Figure 35. 
 

    0 1 1cos sinHE view viewa a b           (5.1) 

 

Here, HE  is the hand-eye rotation angle, view  the scope’s rotation angle relative to the reference angle, 

and  0 1 1, , ,a a b   the fitted values. The position in hand-eye transformations can then be modeled by 

rotation of a point at a fixed radius to the rotation axis with an angle as given by (5.1). Results for the 
model based position, and calibrated position are shown in Figure 36. 
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Figure 35: Fourier sum fit results of the of the scope’s rotation angle to the rotation angle of the 
calibrated hand-eye translation components. The fit is a decent approximation of the true hand-eye 
angle. 

Hand-eye translation modeling has a mean error of 0.5 mm compared to the averaged translation per 
angle. As the spread of the translations within an angle is 1 mm on average, the error of the model is 
within an acceptable range. Optical tracking errors will influence this error during use and can lower or 
increase the error as a result. 
 
Orientation of the hand-eye transformation is modeled by rotating the orientation of the measured 
hand-eye transformation at reference angle 0° around the optical (z-)axis. The amount of rotation 
around the optical axis is equal but in opposite direction of the rotation of the laparoscope. 
 

  
Figure 36: Model results for hand-eye translation components. Blue are the hand-eye positions from 
all images at nine angles. Open blue circle is the center of rotation, and red arrow is the normal that 
together from the rotation axis. Solid dots are the average positions per angle, and in open circles the 
modeled based position of the average positions. The variation of the positions per angle is about 1 
mm. The modeled position deviates from the measured position with 0.5 mm on average, meaning 
that the modeled positions are not perfect, but within the measured variation. 
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5.5 Validation 
The overall reprojection error using navigation is based on 30 validation images per laparoscope. For 
laparoscope 1, the calibration was performed from +120° to -120° followed by acquisition of the 
validation images from negative to positive rotation angles. For laparoscope 2, the procedure was 
repeated in opposite direction of rotation. By inverting the rotation direction in the acquisition 
procedure we aim to get more information on the rotational offset observed in chapter 3.  
 
The reprojection error in the validation images is first evaluated using extrinsic parameters estimated 
from the image using our model, Figure 37. If the reprojection error of the validation image is compared 
to the reprojection error in the calibration images using our model, it can be seen that the error in the 
validation images is slightly larger in most cases but there are a few angles where the error is even lower. 
This indicates that the error observed using navigation is not caused by the intrinsic model and can be 
accounted to the extrinsic parameters in the hand-eye transformation. 
 
The influence on the overall reprojection error is evaluated for translation and orientation separately. 
This is achieved by determination of the reprojection error where the hand-eye transformations using 
navigation are corrected for position, and for rotation around the optical axis. The position error is 
corrected by setting the translation of navigation based extrinsic parameters equal to the translation 
from the image based extrinsic parameters. The positional error is then defined as the distance between 
the navigation and image based extrinsic translations. The rotational error around the optical axis is 
determined by finding the geometrical transformation between the reprojected points in the image and 
the detected points in the image. The error in orientation is corrected by setting the orientation in the 
navigation based extrinsic parameters equal to that of the image based extrinsic parameters, Figure 38. 
 
 

  
Figure 37: Reprojection error where extrinsic parameters are obtained from the images using our 
model. In blue, the error obtained from the calibration images (average of nine per angle). In orange, 
the RMSE on the validation images.  



- 58 - 
 

  

  
Figure 38: Top, reprojection error corrected for rotational offset around the optical axis in blue, and 
the extrinsic position error in orange. Bottom, reprojection error corrected for extrinsic position error 
in blue, and the rotational offset around the optical axis in orange.  

If the orientation is corrected, the shape of the reprojection error is similar to that of the extrinsic 
position error. In laparoscope 1, the correlation between the two is almost perfect. In laparoscope 2 
there is an angular shift between the two graphs due to the rotation offset in the translation component 
of the hand-eye model as can be seen in Figure 36. If the position is corrected, there is positive 
correlation for laparoscope 1, and a negative correlation for laparoscope 2 between the remaining 
reprojection error and the rotation error around the optical axis. This reversal of correlation is due to the 
way the data is acquired for both laparoscopes. By reversing the direction of acquisition, the rotational 
offset is in opposite directions. For both laparoscopes, it can be seen that reprojection error drops to 10 
pixels where the angular error is zero. For both laparoscopes the slope is constant with a rotation error 
of approximately 8° over a scope rotation angle of 200°. It is clear that there is still a large error present 
in both rotation and position of the hand-eye model. Solving just one of the two does not lower the 
error, in fact, in three of the four cases the reprojection error even increases if just one is solved. 
 
The rotation offset between the angle measured with navigation and the image plane can be explained 
by rotation of the compound lens-system containing the image sensor within the laparoscopes. It was 
assumed that the image sensor was fixed in relation to the handle by magnetic coupling, but the results 
show that there is still rotation possible. Unfortunately this rotation offset is not constant as this would 
result in a zero rotation error at the reference angle 0°. It seems that the offset is caused by friction 
within the laparoscope leading to hysteresis of the rotation.  
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Figure 39: Position of the origin of the camera coordinate system obtained from hand-eye calibration. 
In orange, the positions obtained using navigation and the hand-eye model. In blue, the positions 
obtained using extrinsic parameters extracted from the validation images using our model. There is 
also an error in the dimension not shown here.  

Rotation of the image sensor in the laparoscope does not explain the observed position error. In an 
effort to uncover the cause of the positional error, the model based hand-eye translations are compared 
to the navigation based hand-eye translations for the validation images, Figure 39. For both 
laparoscopes, the position errors at the reference angle are small and rapidly increase from there. The 
circular shape of the points generated by the model should be rotated around the position at the 
reference angle (opposite to the opening in the model based circle) to get a better match between the 
two sets. The direction the model based positions should be rotated in is in opposite directions for both 
laparoscopes, just as the acquisition order of the images. Changing the direction of rotation between 
acquisition of calibration and validation images, has moved the origin of the camera coordinate system. 
It seems that the position of the camera sensor in the laparoscope has changed by inverting the rotation 
direction. If we still assume the outer compound lens-system fixed to the laparoscope’s cylinder, the 
change in camera position can only be caused by a movement of the inner compound lens-system 
containing the image sensor. We have already observed hysteresis in the rotation and a changing focal 
length. Both are the result of a movement of the image sensor in relation to the handle. Considering the 
observed movements, it is likely that other movements, such as tilting of the image sensor, are also 
possible. The small error in position around the reference angle, in both laparoscopes evaluated here, 
and in the laparoscope evaluated in chapter 3 (results not shown), suggest that the camera components 
have a default resting state the camera falls back to in the reference configuration. 

5.6 Discussion 
We have created a model to describe the hand-eye transformation, between the coordinate system of 
the optical reference sensor and the camera coordinate system, as a function of the scope’s rotation 
angle. The reprojection error of the combined intrinsic camera and hand-eye model ranged from 20-100 
pixels RMS for two different laparoscopes. The intrinsic camera model, and the hand-eye model are re-
evaluated to find the source of the large reprojection error. 
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In the intrinsic camera model it was assumed that focal lengths are fixed. Here we have shown that this 
is not the case. The size and unpredictability of the change in focal length during rotation suggest that 
the distance between the two compound lens-systems in the laparoscope can change. As a 
consequence, radial distortion can also change during rotation as it is a function of the focal length. 
Modeling of the principal point and decentering distortion by an ellipsoid provides a good approximation 
of the calibrated values. If the fitted ellipsoid is close to a circle, the approximation is more accurate 
compared to a strong ellipsoidal shape. In the fitted functions, the rotation angle measured by 
navigation was used for visualization of the modeled values. As the rotation of the image plane is less 
than the navigation based rotation angle, the model fits better than shown here. The reprojection error 
for the calibration and validation images is close to one if the extrinsic parameters are estimated from 
the image. 
 
Fixing the focal length to a single value, and modeling of the principal point by an ellipse, creates hand-
eye translations that resemble a circle in a plane. The translations obtained from the original calibrated 
values produce a distribution that cannot be modeled. The intrinsic camera model is therefore also 
necessary for hand-eye calibration. The spread in hand-eye positions is in the order of 1 mm in all 
directions per angle. Ideally, all of the points per angle would coincide in a single point. However, due to 
measurement errors, there will always be some spread in the positions. The translation component is 
modeled as a rotating point around a fixed radius to the rotation axis in the center of the circle. The 
amount of rotation around the rotation axis is not linear to the navigation based rotation and is 
therefore approximated by a Fourier sum. The mean deviation between the average position per angle 
and its modeled position is 0.5 mm. 
 
Re-evaluation of the intrinsic and hand-eye model show that the modeled values are a good 
approximation of the measured values. Based on these results, the overall reprojection errors are 
expected to be lower and have a smaller range than obtained with the validation images. The difference 
between the extrinsic parameters obtained from the images and from the hand-eye model show that 
there is a significant rotation and position error in the hand-eye model. Rotation around the optical axis 
shows hysteresis of the rotation of the image plane. On a rotation of 200°, the rotation of the image 
plane is constantly 4% less than the rotation measured using navigation. Since the rotation offset is very 
consistent, it might be possible to model the hysteresis by including the history of rotation. However, 
this would require the optical tracking system to record every single rotation of the scope to be accurate. 
This might be possible in an experimental setup, but in a clinical setting this is not realistic. Changing the 
rotation direction between acquisition of calibration and validation images creates a movement of the 
camera coordinate system in the laparoscope. As a result, there is position error of up to 10 mm in the 
extrinsic parameters obtained using navigation. Rotation offset (hysteresis), displacement of the camera 
coordinate system, and changing focal length can all be explained by a movement of the inner 
compound lens-system including image sensor relative to the handle of the laparoscope. The unexpected 
hand-eye translation behavior that could not be explained in chapter 3 can also be caused by this. 
 
In order to create model for the laparoscope it is necessary to know the pose of both compound lens-
systems in the tip of the laparoscope. The outer lens-system is still assumed fixed in relation to the 
scope’s cylinder and can be tracked by an optical sensor attached to this cylinder. As the inner lens-
system is not fixed in relation to the handle, as initially assumed, there is no option to track its pose 
based on anything accessible on the outside of the laparoscope. This is the result of the configuration in 
chip-on-the-tip laparoscopes. In conventional systems, the laparoscope consists of an interchangeable 
lens-system that is attached to a camera-head. This conventional setup allows external tracking of the 
individual components of the laparoscope, thereby eliminating the source of our problem.  
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Three different laparoscopes were used in the experiments performed during this research. All 
laparoscopes showed that the image sensor is not fixed in relation to the handle, thereby making it 
impossible to track the two components of the camera system. However, none of the laparoscopes was 
calibrated twice. It is possible that the movement between the two components is predictable and can 
be correlated to the rotation of the laparoscope. Further research will need to be conducted to verify if 
this correlation exists. If it exists, it would still be difficult to model the behavior based on optical tracking 
as the tracking system would need to record every single rotation of the scope. Including rotation history 
in the model would also make the model very complex and prone to errors. 

5.7 Conclusion 
In this chapter we have seen that the initial assumption of a fixed focal length during rotation of the 
laparoscope does not hold. As a consequence, the radial distortion coefficients are also not fixed. 
However, by fixing the focal length and radial distortion parameters to a single value, and by 
approximating the principal point and decentering distortion parameters by an ellipse, the translation 
between the camera coordinate system and coordinate system of the reference sensor is forced to 
behave as a circular motion in a plane during rotation of the laparoscope. Despite its inaccuracies, the 
camera model produces a reprojection error in the order of only 1 pixel RMS. The low error and circular 
motion of the hand-eye translation make the proposed model a good approximation of the camera. 
Rotation of the hand-eye translation component along the circle is not linear to the rotation between the 
two parts of the laparoscope. Hand-eye translation rotation angle can be modeled as a function of the 
scope’s rotation angle using a Fourier sum.  
 
Changing the direction of the scope rotation results in a substantial change of the hand-eye 
transformations. This is caused by a displacement of the camera coordinate system. The only 
explanation we see for a displacement of the camera coordinate system is a displacement of the image 
sensor within the laparoscope. In the model, it was assumed that only motion possible between the two 
camera components is a rotation around a fixed axis through the two components. This freedom of 
motion would require a significantly more complex model for the laparoscope. As the pose of the inner 
compound lens-system cannot be measured in relation to anything accessible on the outside of the 
laparoscope, it does not seem feasible to create a simple model for the laparoscope using external 
tracking. 
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CH6: General discussion and conclusions 
 
In the few literature references available on camera calibration of oblique viewing laparoscopes, several 
assumptions are made on the behavior of the intrinsic and extrinsic camera parameters. All laparoscope 
configurations used in these references consist of a conventional laparoscope setup with a camera head 
and separable optics system. The Olympus EndoEye HD 10 mm laparoscope used during this study is an 
all-in-one system with the image sensor located in the tip of the laparoscope. To our knowledge, there 
are no literature references available of a (working) calibration method for oblique viewing laparoscopes 
with this chip-on-the-tip technology. The behavior of intrinsic and extrinsic camera parameters during 
rotation of the laparoscope were evaluated to verify if the assumptions made for the conventional 
laparoscopic setup are still valid. 
 
In literature, focal length and radial distortion coefficients are assumed to be fixed, and the principal 
point is either described as a fixed point, or as a circular motion around a point on the image plane. We 
have shown that, for our laparoscope, the focal length does change during rotation. Radial distortion 
therefore also changes as it is a function the focal length. Our observations showed that the principal 
point behavior can best be modeled as an ellipse instead of a circle.  
 
Decentering distortion is not included in any of the available references. Decentering distortion 
originates from misalignment of lens elements. As the total lens-system of the laparoscope consists of 
two compound lens-systems rotating relative to another, decentering distortion also changes during 
rotation. The estimated decentering parameters describe a magnitude and direction that can also be 
modeled by an ellipse during rotation. We have shown that the addition of decentering distortion 
improves the reprojection results of the camera model.  
 
Even though the assumption of a fixed focal length and radial distortion is false, it is used in the designed 
model as it leads to better extrinsic camera parameters needed for hand-eye calibration. The proposed 
camera model has a reprojection error on calibration images of 0.5-1 pixel RMS. Applying the camera 
model to validation images increased the reprojection error to a mean of 1 pixel RMS. This increase can, 
at least partially, be contributed to errors in estimation of the rotation angle, leading to incorrect 
intrinsic parameters used to represent the camera during reprojection. An average error in the order of 1 
pixel RMS is sufficient for any AR purposes of this laparoscope. 
 
Two optical sensors are used to track the motion of the laparoscope. One is attached to the handle, and 
the other to the cylinder of the laparoscope. Rotation angle of the laparoscope is determined by solving 
a non-linear problem to find the center and axis of rotation.  
 
The sensor attached to the cylinder of the laparoscopes is used as reference for the camera coordinate 
system as it has a fixed relation to the optical axis, and it being closest to the tip of the laparoscope 
produces smaller tracking errors. If our intrinsic camera model is used, the origin of the camera 
coordinate system produces a circular motion in the coordinate system of the reference sensor during 
rotation. The rotation angle of this circular motion was modeled using a Fourier sum to correct for the 
non-linearity in relation to the laparoscope’s rotation angle. Origin of the camera coordinate system was 
modeled as a point rotating at a fixed radius around the center point of the circular motion with the axis 
of rotation normal to the center of the circular motion. 
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As the direction of the optical axis is fixed in relation to the reference sensor, the orientation of the 
camera coordinate system could be modeled by a rotation around the optical axis with an angle equal 
but in opposite direction of the rotation angle of the laparoscope. In the model, the orientation obtained 
in the default configuration of the laparoscope (oblique view directed downwards) was used as 
reference for the orientation at other viewing angles of the laparoscope. 
 
The intrinsic camera model and hand-eye translation model have shown to be a good approximation of 
the truth on the calibration data of multiple laparoscopes. However, the camera orientation model 
showed hysteresis of rotation, and the overall model could not produce accurate results on validation 
images. In the validation images, the reprojection error increased to a maximum of 100 pixels RMS. The 
cause of this error was determined to be motion of the image sensor within the laparoscopes by 
changing the direction of scope rotation. Movement of the image sensor causes the camera coordinate 
system to move, making the hand-eye translation model incorrect. This freedom of motion permits 
changing focal lengths, hysteresis of the rotation, and the observed movements in camera coordinates. 
 
Producing an accurate model for the laparoscope requires the pose of both parts of the camera system 
to be tracked. This was attempted by placing two optical sensors on the laparoscope. The sensor on the 
handle of the laparoscope was assumed to be fixed in relation to the image sensor, but this assumption 
is proven to be incorrect. As there is no other place accessible from the outside of the laparoscope to 
track the image sensor, it does not seem possible to create a model for this specific type of laparoscope 
based on external tracking. However, none of the laparoscopes was calibrated more than once. 
Repeating the calibration multiple times, and closer inspection of the behavior of the camera coordinate 
system, may reveal a pattern in the behavior of the image sensor in relation to rotation of the scope. This 
pattern can then be used to predict the behavior of the image sensor during rotation. This would require 
the rotation history of the laparoscope to be included in the model, making it substantially more 
complex. Inclusion of the rotation history would also require all rotations of the laparoscope to be 
measured by the optical tracking system, a challenging task that limits the usability in a clinical setting. 
 
If we compare our laparoscope to the conventional laparoscopic setups used by other authors, we see 
that the issues in tracking are specific to our chip-on-the-tip system. In conventional setups, the image 
sensor is located and fixed within the camera head. This configuration allows accurate pose estimation of 
the image sensor and lens-systems, and therefore allows the laparoscope to be modeled by external 
tracking. However, most of the literature references are between 10-15 years old. Since the initial 
publication, none of the authors have released a follow up publication or shown a clinical application of 
the system. One of the possible reasons for this is that the issues experienced in our system are also 
present in the conventional system if used in the clinic. During clinical use of the laparoscope, the scope 
is introduced into the patient through a trocar that provides the pivot point for changing the 
laparoscopes view to the general direction of interest. The abdominal wall can be several centimeters 
thick. Pivoting of the laparoscope in the abdominal wall therefore requires force to be put on the camera 
head of the conventional laparoscope. This force can cause the camera head to tilt and maybe even 
move in relation to the optical system, leading to similar issues as experienced in our system. However, 
as there is no literature available on this topic, this explanation is no more than an assumption based on 
extrapolation of our results. 
 
All experiments performed on the laparoscope were in a static setting where the acquisition delay 
between the laparoscope and optical tracking system played no role. Real-time AR application in a 
dynamic setting requires the delay between both systems to be known. A delay estimation procedure 
was developed that can accurately estimate the delay. In the procedure, an object is rotated at a 
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constant angular frequency and tracked by both systems. In the images, the position of the object is 
estimated with subpixel accuracy using a template and normalized cross-correlation. A sinus was fitted 
to the constant rotation in both systems and the delay was determined by the phase delay between the 
two. The system was validated by introducing delays of up to 200 ms to the optical system. The system 
can estimate the delay accurate up to 5 ms. However, it was not validated if the delay between the two 
systems could be reduced to zero. 

6.1 Recommendations 
A lot of time and effort is put into the creation of a camera model. This has resulted in a detailed 
description of the behavior of the intrinsic camera parameters during rotation of the laparoscope. 
However, the camera model produces a reprojection error in the order of a pixel, even if the parameters 
are modeled incorrect. The role of the intrinsic model is therefore irrelevant on the scale of the currently 
obtained total reprojection error. In further attempts are made to create a laparoscope calibration 
method, the focus should therefore be aimed at describing the behavior of the image sensor’s pose. The 
intrinsic parameters should only be evaluated to obtain extrinsic parameters that allow prediction of 
image sensor’s behavior. 
 
None of the laparoscopes used were calibrated more than once. This provided a lot of information on 
the functioning of the laparoscope itself, but did not provide an answer to how the laparoscope behaves 
over time. The calibration and validation procedure should be extended to include multiple calibrations, 
and rotation in both directions to investigate if there is a pattern in the behavior. 
 
As the issues seem to be specific to the laparoscopes used, replacing the laparoscope could provide a 
solution. Olympus recently provided us with a newer version of the laparoscope, the EndoEye HD II. It 
would be worth wile to investigate if this laparoscope has similar properties as its predecessor, or that 
the image sensor is indeed fixed in relation to the handle in the new scope. 
 
The delay estimation procedure has shown to estimate the accuracy of the delay up to 5 ms. However, 
the procedure was validated using a webcam, not a laparoscope, and the total delay ranged from 15-215 
ms. It should be investigate if the procedure is still accurate when a laparoscope and other acquisition 
hardware is used, and if the delay can be reduced to zero ms. 
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A. Standard camera model 
To predict where an object will be visible in an image it is necessary to know the relationship between 
points in space and the projection on the image plane. The position of an object in space with respect to 
the camera can be determined by navigation. For the projection on to the image a camera model needs 
to be described. Ignoring the effects of lenses, the pinhole model gives an accurate description of image 
generation from a scene. This appendix first describes the pinhole model, followed by conversion of the 
distance metric to pixel dimensions. The information and images in this appendix are based on the book 
multiple view geometry in computer vision by Hartley and Zisserman [50]. 

Pinhole model 
We consider a Euclidean coordinate system with a pinhole at its origin C . The image plane, or focal 

plane is located at a distance f from the pinhole in the Z -direction. Let  , ,
T

X Y ZX  be a point in 

space. This point is projected on to the image plane at x  where the line that connects point X  to the 

origin intersects with the image plane. By similar triangles it is easy to see that the point  , ,
T

X Y Z is 

mapped to point  / ,  / ,  
T

fX Z fY Z f  on the image plane. By ignoring the final coordinate we can 

determine the position on image plane to be  / ,  /
T

fX Z fY Zx , Figure 40.  

   

    , ,   / ,  /
T T

X Y Z fX Z fY Z   (7.1) 

 

(7.1) describes the mapping of a point in Euclidean 3-space 
3

 to a point on the image plane in 

Euclidean 2-space 
2

. The pinhole is the point that all points in space are projected to. It is also called 
the optical center, or camera center. The XY-plane of the camera center is called the principal plane and 
it is parallel to the image plane. The line perpendicular to the principal plane at the origin is the principal 
axis. The principal axis intersects the image plane at the principal point p . 

 
The mapping in (7.1) can easily be performed in homogenous coordinates as the matrix multiplication 
 

 

0

0

1 0
1 1

X X
fX f

Y Y
fY f

Z Z
Z

   
      
            
         

   

  (7.2) 

 
Until now we have assumed the origin of the image plane to be located at the principal point. This does 
not need to be the case. For example, if the image plane is a camera sensor, the origin of the plane is 

usually defined in a corner of the sensor, Figure 41. If the principal point is located at  0 0,
T

x y , in the 

image plane the mapping can be updated to 
 

    0 0, ,   / ,  /
T T

X Y Z fX Z x fY Z y    (7.3) 
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Figure 40: Point X in space is projected on the image plane at x where the line between X and pinhole 
C intersects the image plane. Coordinates for the position of point x on the image plane can be found 
using similar triangles. Optical or principal axis is in the Z-axis of the pinhole coordinate system. The 
image plane is perpendicular to the principal axis with its x- and y-axis parallel to the X- and Y-axis of 
the pinhole coordinate system. Intersection of the optical axis with the image plane is referred to as 
the principal point. 

Or in terms of homogeneous coordinates 
 

 

0 0

0 0

0

0

1 0
1 1

X X
fX Zx f x

Y Y
fY Zy f y

Z Z
Z

   
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         

   

  (7.4) 

 
This matrix multiplication can also be written as 
 

  K Ix 0 X   (7.5) 

 

With I  the 3x3 identity matrix, 0  a 1x3 null vector,  , , ,1
T

X Y Z the point X  given in homogenous 

coordinates, and K  defines the camera calibration matrix, containing the intrinsic parameters of the 
camera calibration. 
 

 

0

0K=

1

f x

f y

 
 
 
  

  (7.6) 

 
In the current mapping we assume that X  is defined in the coordinate system of the camera with its 

center at C . If X is defined in terms of a different Euclidean coordinate system, let’s call it the world 

coordinate system and give it origin O , we first need to transform point X  from world coordinates to 
camera coordinates, Figure 41. The transformation in homogenous coordinates is given by 
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cam w

X
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T

Z

 
 

        
 
 

R RC
X X

0
  (7.7) 

 

Here CC

wT  is the transformation matrix that relates the world coordinate system to the camera 

coordinate system with C  the position of camera center in world coordinates, and R  the rotation 

matrix to get from world frame to camera frame. Combining (7.7) with (7.5), and setting  RC t  gives 
 

  Kx R t X   (7.8) 

 

,R t  are the extrinsic parameters describing the pose of the camera coordinate system in the world 

coordinate system. The intrinsic and extrinsic parameters can be combined in to a 3x4 camera projection 
matrix P  that relates points in space to its projection on the image plane 
 
 Px X   (7.9) 
 

 
 

Figure 41: Left, with the origin of the sensor coordinate system in the bottom left corner, the principal 
point is located at pixel coordinates (x0,y0). Right, pose of the object defined in world coordinated with 
origin O is transformed to coordinates in the camera coordinate system using the extrinsic parameters 
R, t. 

Pixel dimensions 
In the pinhole model derived above the axes have equal scales in all directions. In dealing with images as 
captured by a camera it is easier to work in pixel or image coordinates. The number of pixels per unit 

distance in the x- and y-direction are given by xm , and ym  respectively. An unequal scale factor can be 

applied in the orthogonal directions of the image plane. This scale factor expresses the focal length in 

terms of pixel dimensions in x- and y-direction as x xm f  , and y ym f   respectively. Similarly the 

principal point is given in pixel dimensions by    0 0 0 0, ,x ym x m y u v p . The new camera calibration 

matrix is given by 
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  (7.10) 

 
Here we assume the axes of the pixels to be orthogonal. This is usually the case, however, if this 
assumption does not hold, a skew parameter needs to be added to the camera calibration matrix, Figure 

42. Skew is defined as    / ys tan m  

 

 
Figure 42: If the pixel axes are not orthogonal a skew parameter s needs to be added to the camera 
matrix. 
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x R t X R t X X   (7.11) 

 
In words the projective mapping of (7.11) can be explain as, a transformation of point X  from the world 
frame to the camera frame, followed by a mapping to the image plane expressed in pixel coordinates. 

Distortions 
In the pinhole model we ignored the effects of lenses on the projection of an object on the image plane. 
Even the most expensive and complicated lens-systems are to some extent affected by one or more 
types of optical aberrations. Depending on the intended application of a camera it is necessary to correct 
for these aberrations. In this case the application is accurately superimposing the image of a tumor on 
the images acquired by a laparoscope. Assuming a typical lens-system in which all types of aberrations 
are relative small, the only aberration we are interested in is geometrical distortion. Geometrical lens 
distortions are explained in the next appendix. 
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B. Lens distortions 
In the field of optics it is common to make use of the paraxial approximation to describe a lens-system. 
In the paraxial approximation the assumption is made that for small angles sin   in the propagation 
of rays through the lens. While this assumption holds reasonably, a better approximation is achieved 
when higher order components of the Maclaurin series for the sine are included, (8.1). 
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


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
   (8.1) 

 
  
For small angles the contribution of the higher order components is minimal, but still enough to cause 
aberrations in the image. Analytical derivation of the five aberrations originating from the third-order 
component of the series expansion were published by Seidel in 1857. Of the five third order aberrations, 
spherical, coma, astigmatism, field curvature, and distortion; the last one is the only one of geometrical 
interest. The geometrical distortion by this aberration component causes a displacement of a point on 
the image plane. In order to accurately project the patient model on to the laparoscopic images it is 
necessary to account for this displacement by either correcting distortions in the image, or distorting the 
patient model to match the image. 

Radial distortion 
Geometrical distortion as derived by Seidel is, in camera calibration, usually referred to as radial 
distortion because it is radially symmetrical from the principal axis outwards, if the lens is radially 

symmetrical. Radial distortion r  is given by 
 

 3 cosr gd      (8.2) 

 
Here, g  is a lens specific aberration coefficient, d  the pupil radius,   the relative pupil radius 

(between 0 and 1),   the field angle (the angle between the chief ray an the optical axis), and   the 

pupil angle measured from the positive x-axis, Figure 43. Component cos   are the pupil coordinates 

 ,   that indicate the position where a specific ray intersects the aperture in the optical system. In 

radial distortion this component guarantees that all rays originating from a single point on the object will 
focus at the same point on the image plane no matter where the ray intersects the aperture.  
 
Without loss of generality we can rewrite the radial displacement of a point on the image plane as 
 

 3 3arctan
r

r b b
f


 

    
 

  (8.3) 

 

Here, b  is a constant, f  the distance between aperture and image plane, and r  the distance from the 

principal point to the undistorted image point.  
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Figure 43: A ray from the object passes through the pupil at polar coordinates (φ,ρ), and intersects the 
image plane at a distance r from the principal point. The image plane is positioned at a distance f to 
the lens. The field angle is the angle between the optical axis and chief ray, the ray that passes through 
the optical center. 

The arctan can be rewritten as a series expansion with f  a constant 
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Combining (8.3) and (8.4) gives the distortion as a distance from the ideal para-axial point along the 
radial line coming from the principal point.  
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Here, coefficients nk  are a product of b  and the cubed arctan coefficients. This distortion can also be 

given in separate ,x y  coordinates on the image plane given that cos , sinx r y r    
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  (8.6) 

 
Radial distortion is given by an endless series expansion, but is generally approximated in camera 
calibration by the first two or three coefficients, setting the rest to zero.  
 
The overall effect of radial distortion is a change in magnification with distance to the principal point. As 
a consequence the amount of distortion increases with distance to the principal point, and the largest 
effects can be seen on the edges of the image. Depending on the type of lens, aberration coefficient g  

can be positive or negative. The sign of the aberration coefficient determines if a distorted point is closer  
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Figure 44: Left, barrel distortion; right, pincushion distortion. The displacement vectors start at the 
ideal undistorted point, and end at the distorted position. It can easily be seen that the amount of 
distortion increases with distance to the image center, or principal point. For simplicity, only the first 
distortion coefficient is used. 

or further away from the principal point compared to the ideal undistorted point. If the distortion causes 
a decrease in magnification, barrel distortion can be observed. An increase in magnification along the 
radial lines will result in pincushion distortion, Figure 44. 

Decentering distortion 
Aberrations as derived by Seidel originate from the curvature of a lens, but do not account for lens-
placement. However, it is difficult, if not impossible, to perfectly align all lenses and the image plane. If a 
lens is slightly tilted, so the optical axes of the lenses are no longer collinear, the projected points of the 
object on the image plane suffer a displacement with regard to the ideal situation, Figure 45. The 
analytical derivation of geometrical distortion due to decentering of lenses was first published by 
Conrady in 1919 [51]. His work has long gone unnoticed as the community used the thin prism model to 
correct for distortions created by decentering of lenses. His work was rediscovered by Brown who 
showed that the thin prism model and decentering model were analytically the same under certain 
conditions. However, since the decentering model of Conrady originated from an analytical derivation by 
ray tracing it gives a better description of the distortion. Brown therefore advocated to abandon the thin 
prism model and only use the decentering model [46]. In literature the model is usually referred to as 
the Brown-Conrady model. 
 
Decentering distortion d  consists of two components. It has a radial component r  that acts along 
the radial lines from the principal point, and a tangential component t  that acts perpendicular to the 
radial lines, Figure 46. Unlike radial distortion, decentering distortion is not radially symmetrical, but its 
magnitude and direction depend on the amount and axis of lens tilting. It is important to note that the 
radial component in decentering distortion is not the same as the radial  distortion as derived by Seidel. 
This naming ambiguity has resulted in decentering distortion to be referred to by some as tangential 
distortion. Decentering distortion is given by 
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Figure 45: In an ideal case all lenses in the lens-system have their optical axes aligned, and the 
principal planes are parallel to the camera sensor. In a misaligned, or decentered lens-system, 
projected points suffer a displacement due to this decentering. 

Here,  P r  is the tangential profile,   the angle from the positive x-axis, and 
0  the angle to the axis of 

maximum tangential distortion, the axis on which the lens is tilted, Figure 46. Decentering distortion can 

be expressed in Euclidean coordinates given that cos , sinx r y r    for the radial component, and 

noting that the radial component precedes the tangential component by 90 degrees ny 
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  (8.8) 
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With 2 2 2r x y  . The tangential profile as derived by Conrady is given by 

 

   2

3P r p V   (8.10) 

 

Here 3p  is a constant, and V  the field angle (same as   in radial distortion).  P r  can be rewritten in a 

similar form as (8.4) to get a series expansion for the tangential profile. 
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Here coefficients nJ  are a product of 3p  and the squared arctan coefficients. In camera calibration, all 

coefficients larger than 1J  are usually set to zero to get an approximation of the decentering distortion. 

Combining (8.9) with (8.11) results in the standard form used in camera calibration. 
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It is important to note that there is no clear convention for the order of numbering 
1p  and 

2p . One 

should always check if the parameters are defined as they are here, or with the numbers reversed. 

Lens distorted points 
By combination of the radial and decentering distortion, the distorted position 

distortedp  of an ideal 

undistorted point 
idealp  on the image plane is given by 

 

 
distorted idealp p r d     (8.13) 

 

 
Figure 46: Decentering distortion. Left, an adaptation of Brown’s image illustrating the geometrical 
significance of parameters defining tangential distortion [46]. Right, illustrates decentering distortion 
of point p to point p + Δd. 
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Figure 47: Top, radial and tangential components of decentering distortion at 𝜽𝟎 = 𝟎. Distortion 
vectors point from the ideal undistorted points to distorted position of the points. The magnitude of 
the radial component is three times as large as the tangential component. Bottom, summation of the 
components gives the total decentering distortion. 
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C. Center and axis of a rotating 3D point 
A circular motion in 3D can be described by the center and axis of rotation. Here we solve a non-linear 
least squares problem to find the center and axis corresponding to a set of 3D coordinates, ignoring 
orientation of the point. As the cost function of the method gives more weight to larger errors, it is 
important to remove large outliers before the problem is solved. 
 
Rotation axis direction is determined by using the principal axis method to find the normal n  to the 

data. Let  1, 2, 3,...,i i nr  be the i-th measured 3D position, and r  the measurements mean 

coordinates. Then, 
i i

g  r r r  denotes the coordinates shifted to their gravity center. Normal is 

determined by the eigenvector corresponding to the lowest eigenvalue of the 3x3 matrix 
T

1

n i i

g gi
 r r , 

and is found using singular value decomposition. Letting   be the radius of the circle, the circle center 

c  is found by minimizing 
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    r c n r c   (9.1) 

 
Here  is the inner product. This non-linear least squares problem can be solved using the Levenberg-
Marquardt method [41].  
 

 
Figure 48: Center and axis of a set of points describing a circle obtained using non-linear least squares. 
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