
AUTOMATIC QUESTION GENERATION FOR VIRTUAL HUMANS

Evania Lina Fasya

Master of Science

Human Media Interaction

Graduation committee:

dr. Mariët Theune (1st supervisor)

dr.ir. Rieks op den Akker (2nd supervisor)

August 2017

University of Twente

Enschede, The Netherlands



ii

ABSTRACT

Alice, a virtual human that is created based on the ARIA-VALUSPA framework, is a

representation of the main character from a classic novel Alice’s Adventures in Wonderland.

Alice needs the domain knowledge of the Alice in Wonderland story in order to talk about

the story with its users. However, the current domain knowledge of Alice is still created

manually, and it can be difficult to create more virtual humans in other domains or to

extend the knowledge of Alice.

This research aims to prepare the domain knowledge of Alice in a more automated

process by developing an automatic question generation system. The system is called Alice

Question Generation (AQG) and it makes use of two semantic tasks; Semantic Role Labeling

(SRL) and Stanford Dependency. The main task of the AQG system is to generate questions

and answers (QAs) about Alice in Wonderland. The generated QAs will be stored in the

QAMatcher, which is a tool that stores the domain knowledge of Alice in a QA pair format.

The QAMatcher works by matching a user’s question with a number of prepared questions

using text processing algorithms, and then gives the answer that is linked to the matched

question.

The first phase in developing the AQG system is observing the SRL and Dependency

patterns. The second phase is creating the QA templates. These templates were evaluated

twice, with error analysis and improvements conducted after each evaluation. Next, a user

study using the QAMatcher was conducted. The user study result shows that the current

AQG system cannot be used by itself in a virtual human. More varied questions that ask

about the same thing are necessary to enable the QAMatcher to match the user’s questions

better. This research discusses the important aspects when implementing the automatic

question generation for virtual humans at the end of the report.



iii

ACKNOWLEDGMENTS

The author would like to thank dr. Mariët Theune for all the reviews and feedbacks that

enable the thoughtful and critical discussion from the research topic until the final project;

dr.ir. Rieks op den Akker for the feedback on the final project and the inspiration about

natural language processing; and Jelte van Waterschoot for the update on ARIA-VALUSPA

project and the discussion about retrieving information from a narrative.

The author would also like to thank the Ministry of Communication and Informatics

of Indonesia for granting a scholarship in Human Media Interaction at the University of

Twente and giving the chance of pursuing the master education based on the author’s

passion and competence.

Finally, this final project would not be possible without the support from the family

and friends. The author would like to thank her mother for all the love; her father for the

inspiration; two sisters for the fun and support; Niek for the encouragement and comfort;

all the housemates for the friendship; and all other family members and friends.



iv

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Conversational Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Dialogue Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Virtual Humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Dialogue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Finite-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.2 Form-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.3 Information-State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.4 Plan-Based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 ARIA-VALUSPA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 The Dialogue Manager of Alice . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.2 The Domain Knowledge of Alice . . . . . . . . . . . . . . . . . . . . . . . . . 14

4 Question Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1 Implementation of Question Generation . . . . . . . . . . . . . . . . . . . . . 15

4.2 Approaches in Question Generation . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.1 Heilman and Smith . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.2.2 Mazidi and Nielsen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5 Alice Question Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.1 Pattern Observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.2 Template Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6 Initial Evaluation and Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1 Pre-Initial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.2 Initial Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38



v

Page

6.3 Error Analysis and Template Improvement . . . . . . . . . . . . . . . . . . . 39

6.3.1 MADV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.3.2 MMNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.3.3 MLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.3.4 MTMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.3.5 ARGU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6.3.6 DCNJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.4 Evaluation After Template Improvements . . . . . . . . . . . . . . . . . . . . 49

7 User Evaluation of Alice Question Generation . . . . . . . . . . . . . . . . . . . . . 51

7.1 Evaluation Measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

7.2 Evaluation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

7.3 Error Analysis and Template Improvement . . . . . . . . . . . . . . . . . . . 53

7.3.1 MADV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7.3.2 MMNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7.3.3 MLOC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7.3.4 MTMP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3.5 ARGU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7.3.6 DCNJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

8 User Study using QA Matcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1 Preparing the QAMatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.1 Follow-Up Question Strategy . . . . . . . . . . . . . . . . . . . . . . . 61

8.1.2 Risks on the Follow-Up Question Strategy . . . . . . . . . . . . . . . . 63

8.1.3 Pilot Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

8.1.4 Improvement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

8.2 User Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8.3 User Study Result and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 70

8.3.1 Result from the First Evaluator . . . . . . . . . . . . . . . . . . . . . . 71

8.3.2 Result from the Second Evaluator . . . . . . . . . . . . . . . . . . . . 73

8.3.3 Result from the Third Evaluator . . . . . . . . . . . . . . . . . . . . . 76

8.3.4 Result from the Fourth Evaluator . . . . . . . . . . . . . . . . . . . . 78



vi

Page

8.4 User Study Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

9 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9.2 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

9.2.1 Automatic Question Generation for Virtual Humans . . . . . . . . . . 83

9.2.2 User Study using QA Matcher . . . . . . . . . . . . . . . . . . . . . . 85

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

A Appendix: Alice Question Generation . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Appendix: User Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.1 Instruction for Question and Answer Rating . . . . . . . . . . . . . . . . . . . 96



1

1. INTRODUCTION

ARIA-VALUSPA, an abbreviation for the Artificial Retrieval of Information Assistants

Virtual Humans with Linguistic Understanding, Social skills, and Personalized Aspects,

is a project of the Horizon 2020 research programme of the European Union. The project

intends to create a framework of virtual humans which are capable of conducting multimodal

interaction with their users in challenging situations, such as facing an interruption, or

reacting appropriately according to emotion and gesture changes. One virtual human that

is being developed is called Alice, representing the main character of the classic novel written

by Lewis Carroll, Alice’s Adventures in Wonderland. There are several work packages that

are involved in the ARIA-VALUSPA project. But the specific work package that is being

carried out at the University of Twente is called Multi-Modal Dialogue Management for

Information Retrieval.

There are some challenges in developing multi-modal dialogue management for informa-

tion retrieval. One of them is preparing the domain knowledge for the virtual human. As

the representation of the character Alice in the story of Alice in Wonderland, the virtual

human - Alice - needs to have the domain knowledge of the story. However, the current

domain knowledge for Alice is still created manually, and it can be difficult to create more

virtual humans in other domains or to extend the knowledge of Alice (e.g. extending the

knowledge from only knowing the story of the novel into knowing the story of the writer).

This research aims to prepare the domain knowledge of Alice in a more automated pro-

cess by using an Automatic Question Generation approach. Automatic question generation

is an activity that takes a text resource as an input and generates possible questions (and

answers) that can be asked from the resource. The generated questions and answers are

furthermore stored in the QAMatcher, which is a tool that manages the domain knowledge

of Alice. The QAMatcher works by matching a user’s question with a number of prepared

questions using text processing algorithms, and then gives the answer that is linked to the

matched question.



2

There are two other approaches that were considered to prepare the knowledge of Alice.

The first one is collecting question and answer pairs from the internet. The benefit of

this approach is that the questions from the internet are usually asked by real people.

Implementing this approach allows Alice to have some insights of what kind of Alice-in-

Wonderland-questions do people in general are curious about. The second approach is

question answering. Question answering lets the virtual human search the answer of a

question directly in a resource that is made available through a prepared “knowledge base”

[1].

The automatic question generation approach is finally chosen because the developing

time is reasonable compared to question answering approach. In addition to that, it can be

easily adapted for other virtual humans in other domains, compared to collecting question

and answer pairs from the internet which require more manual process.

As a virtual human that is based on the ARIA-VALUSPA framework, Alice is expected

to be able to respond accordingly to the users in challenging situations, such as asking for a

confirmation when Alice could not hear the user well. This research, however, only explores

the domain knowledge of Alice, which is the story of Alice in Wonderland. Therefore, the

other conversation elements such as handling interruptions, greetings, etc., are not the focus

of this research.

In the next chapter, the concept of conversational agents is explained, followed by its

relation with virtual humans. In chapter 3, the current implementation of the ARIA-

VALUSPA is described. In chapter 4, question generation is described. Chapter 5 describes

the creation of a question generation system for Alice. Chapter 6 explains the initial eval-

uation and the improvement for the system. Chapter 7 explains the next evaluation that

was conducted by 6 annotators. Chapter 8 describes a user study using the QAMatcher.

Finally, chapter 9 presents the conclusions and discusses future work.



3

2. CONVERSATIONAL AGENTS

A conversational agent is a system that can communicate with its users by understanding

spoken or textual language. Most conversational agents in the beginning of 2000s, however,

are intended to communicate through speech rather than text, and so they are also known

as spoken dialogue system [2]. Similar with spoken dialogue systems, virtual humans are

also a type of conversational agents. Virtual humans are able to carry a conversation with

their users through speech like spoken dialogue systems. However, a noticeable difference

of spoken dialogue systems and virtual humans is that virtual humans have visual represen-

tations. These visualizations are expected to be able to generate nonverbal behaviors just

like real humans.

Dialogue systems and virtual humans are described in more detail in section 2.1 and

section 2.2 below. Furthermore, a specific component of conversational agents, dialogue

manager, is described separately in section 2.3 because the dialogue manager component is

related with the focus of this research.

2.1 Dialogue Systems

A dialogue system is a computer system that is able to have a conversation with humans.

One implementation of dialogue systems is spoken dialogue systems used in commercial

applications such as travel arrangement system and call routing. How May I Help You [3]

is an example of a spoken dialogue system whose task is automatically routing telephone

calls based on a user’s spoken response to the question “How may I help you?”. Figure 2.1

shows an example of a conversation between a user and the How May I Help You (HMIHY)

system [3].

There are several activities behind a spoken dialogue system in order to understand what

the users say and give back appropriate responses. Typically, these activities are managed

within several components. An illustration of the components of a typical spoken dialogue

system [2] is shown in Figure 2.2.



4

System : How may I help you?

User : Can you tell me how much it is to Tokyo?

System : You want to know the cost of a call?

User : Yes, that’s right.

System : Please hold on for rate information.

Fig. 2.1.: A conversation between a user and the HMIHY system [3]

Fig. 2.2.: An architecture of the components of a spoken dialogue system [2]

The Automatic Speech Recognition (ASR) component takes the audio input from the

user through a desktop microphone or a telephone, and then returns a transcribed string

of words to the Natural Language Understanding (NLU) component. The NLU’s task is to

produce the semantic representation of the strings from the ASR. The Dialogue Manager

processes the semantic representation from the NLU and produces the most appropriate

response for the Natural Language Generation. The Dialogue Manager manages all the

dialogues with the help from the Task Manager. The Task Manager consists of the current

communication goals (e.g. the user wants to find direct flights on Thursday, the system

wants to give the information about some available flight schedules). The Natural Language

Generation (NLG) module gets the output from the dialogue manager and decides how to

say this output to the user in words. The Text-to-Speech component gives these words a

waveform so that the words can be produced as a speech.



5

2.2 Virtual Humans

Virtual humans are different from spoken dialogue systems because virtual humans have

visualizations, such as a body or a face. Beside of that, virtual humans that are created

based on the ARIA-VALUSPA framework are not only expected to understand the spoken

and written language, but also expected to understand nonverbal human behaviors.

Because of their human likeness, virtual humans can be used to train real human’s social

skills when facing stressful situations by simulating the scenario in a safe virtual world. An

example of this implementation is Mission Rehearsal Exercise system [4] which trains the

user’s leadership skills in a warzone. Virtual humans can also be implemented in museums

to increase the interest and engagement of the visitors (e.g. Ada and Grace [5]); or to do

interviews with patients for healthcare support (e.g. Ellie [6]).

The architecture of a virtual human is more complex than the typical architecture

of spoken dialogue systems because it involves more modules such as nonverbal behavior

understanding and nonverbal behavior generation.

Fig. 2.3.: Virtual Human Architecture [7]

Figure 2.3 shows the common architecture of a virtual human [7]. The architecture is

almost similar to the typical architecture of spoken dialogue systems [2]. However, as shown



6

in figure 2.3, the virtual human architecture also involves Audio-Visual Sensing, Nonverbal

Behavior Understanding, Nonverbal Behavior Generation, and Behavior Realization.

When a human user talks to the virtual human, his speech is transformed into a tex-

tual representation by the Speech Recognition module. The text is then translated into

semantic representation by the Natural Language Understanding module. This process is

similar to the spoken dialogue system’s process except that the human user’s expression and

nonverbal communication are also recognized by the Audio-Visual Sensing module in the

virtual human. The Nonverbal Behavior Understanding module takes the information from

the Audio-Visual Sensing module and links certain observations to higher-level nonverbal

communicative behaviors (e.g. attention value, head position). Based on the nonverbal

communicative behavior values and the semantic representation of the speech, the Dialogue

Manager replies back with the most appropriate response. The Dialogue Manager, which

is labeled as the Agent in [7], manages all the dialogues, similar to the Dialogue Manager

module in the spoken dialogue system architecture 2.2. The responses from the dialogue

manager are sent to the Natural Language Generation and Nonverbal Behavior Generation

so that they can generate the appropriate response using speech and behavior. The response

can be produced by the Speech Generation module using text-to-speech or pre-recorded au-

dio. The Behavior Realization module synchronizes all behaviors such as speech, gestures,

and facial expressions, and gives them for a renderer to show.

An example of a virtual human framework is Virtual Human Toolkit (VHToolkit) [7]

which main focus is to create a flexible framework that allows the creation of different kinds

of virtual humans. Another example is SEMAINE [8] which main goal is to create virtual

listeners that are able to engage in a conversation with a human user in the most natural

way. Each module in the architecture of VHToolkit or SEMAINE can consist of one or more

tools. For example, VHToolkit uses one tool that handles the Audio-Visual Sensing and

Nonverbal Behavioral Understanding, while SEMAINE uses three separate tools in these

two modules. The details of these modules and the rest of the modules in the virtual human

architecture are not explained further, except for the Dialogue Manager which is described

in the next section.



7

2.3 Dialogue Management

Dialogue Management is a task which is carried out after the behavior understanding

and the natural language understanding tasks. The tasks of a Dialogue Manager are to

take the semantic representation of words from the NLU module and the output from

the Nonverbal Behavior Understanding module, manage the dialogues, and give back the

appropriate response to the verbal/nonverbal generation modules. There are different types

of dialogue managers based on the goal of the conversational agents. The common dialogue

managers can be separated into four types [2] as follows.

2.3.1 Finite-State

Finite-state is the simplest architecture where the system completely controls the con-

versation with the user. It asks the user a series of questions, ignoring anything that is not

a direct answer to the question and then going on to the next question. For example, the

system will always ask the question “What city are you leaving from?” until the system

recognizes a city name from the user’s response, and then the system continues to the next

question. Figure 2.4 illustrates a simple finite-state automation architecture of a dialogue

manager in a spoken dialogue system [2].

2.3.2 Form-based

Form-based is more flexible than the finite state dialogue manager. It asks the user

questions to fill slots in the form, but allows the user to guide the dialogue by giving

information that fills other slots in the form. For example, if the user answers “I want

to leave from Amsterdam on February 24th” to the question “What city are you leaving

from?”, the system will fill in the slots ORIGIN CITY and DEPARTURE DATE. After

that, the system can skip a question “Which date do you want to leave?” and move on to

a question “Where are you going?”. Table 2.1 shows the example of slots and the questions

that a form-based dialogue manager can ask.



8

Fig. 2.4.: A simple finite-state automation architecture [2]

Table 2.1.: Example of slots and questions in a form-based dialogue manager

Slot Question

ORIGIN CITY “What city are you leaving from?”

DEPARTURE DATE “Which date do you want to leave?”

DESTINATION CITY “Where are you going?”

ARRIVAL TIME “When do you want to arrive?”

2.3.3 Information-State

Information-state is a more advanced architecture for a dialogue manager that allows

for more components, e.g. interpretation of speech acts or grounding. Different from the

finite-state or the form-based architecture which only allow the computer to ask questions,



9

the information-state architecture is able to decide whether the user has asked a question,

made a suggestion, or accepted a suggestion. This architecture thus can be more useful

than just form-filling applications that are usually the implementation of the finite-state

and form-based architecture. An information-state based dialogue management can assign

tags to the dialogues, for example, a response “Hello” can be interpreted as a greeting,

thus it can be tagged with the attribute GREET. Another example, a response “There is

one flight in the morning at 9.15” can be tagged with the attribute SUGGEST. Table 2.2

illustrates some dialogue acts in an information-state based architecture adapted from [2].

Table 2.2.: Some dialogue acts used in an information-state based dialogue manager called

Verbmobil-1

Tag Example

GREET Hello Ron

INTRODUCE It’s me again

REQUEST-COMMENT How does that look?

SUGGEST From thirteenth through seventeenth June

ACCEPT Saturday sounds fine

2.3.4 Plan-Based

Plan-based dialogue management is also a more sophisticated architecture compared

to the finite-state and form-based. The plan-based model allows the system to know the

underlying intention of utterances. The model can be further explained using the dialogues

in Figure 2.5.

Each of the discourse segment within the discourse in figure 2.5 has a purpose held

by the person who initiates it. Each discourse segment purpose (DSP) has two relations

called dominance and satisfaction-precedence. When a DSP1 dominates DSP2, it means

that satisfying DSP2 is intended to provide part of the satisfaction of DSP1. When a DSP1



10

U1 I need to travel in May.

S1 And, what day in May do you want to travel?

U2 OK uh I need to be there for a meeting that’s from the 12th to the 15th.

S2 And you’re flying into what city?

U3 Seattle.

S3 And what time would you like to leave Pittsburgh?

U4 Uh hmm I don’t think there’s many options for non-stop.

S4 Right. There’s three non-stops today.

U5 What are they?

S5 The first one departs from Pittsburgh Airport at 10:00am, arrives at Seattle

Airport at 12:05 their time. The second flight departs from Pittsburgh

Airport at 5:55pm, arrives at Seattle Airport at 8pm. And the last flight

departs from Pittsburgh Airport at 5:55pm, arrives at Seattle Airport

at 10:28pm.

U6 OK I’ll take the 5ish flight on the night before on the 11th.

S6 On the 11th? OK. Departing at 5:55pm arrives at Seattle Airport at 8pm,

U.S. Air flight 115.

U7 OK.

Fig. 2.5.: A discourse example from a telephone conversation between a user (U) and a

travel agent system (S)

satisfaction-precedes DSP2, it means that DSP1 must be satisfied before DSP2. Therefore,

the structure of the discourse in Figure 2.5 can be summarized in Figure 2.6.

The explanation of Figure 2.6 is as follows:

1. DSP1: Intend U (S finds a flight for U)

2. DSP2: Intend S (U tells S about U’s departure date)

3. DSP3: Intend S (U tells S about U’s destination city)

4. DSP4: Intend S (U tells S about U’s departure time)



11

Fig. 2.6.: The discourse structure of the discourse in Figure 2.5.

5. DSP5: Intend U (S finds a nonstop flight for U)

Since DS2 - DS5 are all subordinate to DS1, Figure 2.5 can be reflected in the dominance

relationship: DS1 dominates DS2 Λ DS1 dominates DS3 Λ DS1 dominates DS4 Λ DS1

dominates DS5. Moreover, since DS2 and DS3 need to be satisfied before DS5, thus they

can be reflected in the satisfaction-precedence relationship: DS2 satisfaction-precedes DS5

Λ DS3 satisfaction-precedes DS5.

As shown in Figure 2.6, a plan-based dialogue management allows the system to under-

stand the intention of a discourse segment. When the system asked “And what time would

you like to leave Pittsburgh?”, the user did not answer right away because the user did not

know the schedule for direct flights. The system understood this and gave some options of

direct flights before continuing the plan of reserving the departure time.



12

3. ARIA-VALUSPA

ARIA-VALUSPA is a project that intends to develop a framework of virtual humans that

allows a robust interaction between a virtual human and a user in the most natural way.

As described in the beginning of the introduction, Alice is one virtual human that is de-

veloped based on the ARIA-VALUSPA framework. The architecture of Alice is based on

the common virtual human architecture described in section 2.2. Alice has an Audio-Visual

Sensing and Speech Recognition module, as well as the Nonverbal Behavior Understanding

and Natural Language Understanding. Alice also has the Natural Language Generation,

Speech Generation, Nonverbal Behavior Generation, and the Behavior Realization. The

focus on each module is to create the most natural interaction as possible by considering

some common elements in a conversation such as facial expressions of emotions, gestures,

interruption, etc.

The focus of this research topic is, however, the knowledge of Alice - which is more

related to the Dialogue Manager in the architecture. In section 3.1, the current state of

the Alice’s Dialogue Manager is described. Furthermore, an overview of Alice’s domain

knowledge is discussed in section 3.2.

3.1 The Dialogue Manager of Alice

Alice is developed using the information-state based architecture dialogue manager [9].

As described in section 2.3, an information-state based architecture allows Alice to interpret

the intent of the utterance. For example, when a user asks “What do you think of the Mad

Hatter?”, Alice categorizes this utterance as intent “setQuestion”. Alice assigns an intent

based on some rules (e.g. assign setQuestion intent if the utterance consists of the word

“think”,“Mad”, and “Hatter”). By having these categories, Alice can respond appropriately

to an utterance by an intent “inform”, for example.

The specific dialogue manager that is used is called Flipper [10]. Flipper allows Alice to

have a flexible set of templates that can specify what kind of behavior to perform at a state.



13

These templates are called FML templates [9]. When a response has been decided, Flipper

sends a the response to the Behavioral Generation. Besides the nonverbal behavior han-

dling, an extension of Flipper has been developed to enable Alice to handle dialogues. The

dialogue handling and the nonverbal behavior handling can be processed simultaneously.

The complete overview of Alice’s dialogue manager is shown in Figure 3.1.

Fig. 3.1.: The overview of Alice’s Dialogue Manager [9]

The scope of the Dialogue Manager is marked with the dashed outline. It takes the

output from middleware, such as the output from Social Signal Interpretation (SSI) module

[11] that is used by Alice to understand the user’s behavior. The Dialogue Manager also

sends a user utterance to the Pre-Processing Module and takes the output which consists

of the intent of an utterance, such as “setQuestion”.

Within the scope of the Dialogue Manager, the Network Manager is responsible to man-

age the current state of Flipper. Some examples of the states are getting the input from the

SSI and integrating the streams to the Information State, or sending a response from the



14

Information State to the Behavioral Planner, as well as receiving feedback of whether the

response has been delivered successfully to the user. The Turn Manager module manages

the turns in the dialogue. For example, when the user speaks the turn is marked as “user”

while when Alice speaks, the turn is marked as “Alice”. The system also notices when the

user has been silent for a while, then the turn will be changed to Alice. The Discourse/Intent

Manager takes the intent from a user’s utterance and return an appropriate agent’s intent.

The discourse part specifies the phase of the discourse, such as opening phase, information

retrieval phase, or closing phase. The FML Manager decides the most appropriate FML

template from the agent’s intent that has been returned by Discourse/Intent Manager mod-

ule. FML template consists of parameters such as subjects, objects, or emotions. Finally,

the Domain Knowledge is retrieved by the Discourse/Intent Manager based on the current

intent. For example, when the intent is asking an information about the white rabbit, the

returned information from the Domain Knowledge is “The white rabbit is a strange rabbit

with a watch inside his waistcoat-pocket”.

3.2 The Domain Knowledge of Alice

The domain knowledge of Alice is stored in a system called QAMatcher and is formed in

a question and answer pair format. When a user asks a question to Alice, the QAMatcher

matches the user’s question with a list of questions by using a text processing algorithm.

When a matched question has been found, the answer to the matched question is returned

back to the user. The question and answer pairs are prepared before-hand and are stored in

the QAMatcher’s resource directory. Automatic question generation is the approach that

is used to prepare these question and answer pairs in the QAMatcher.

There are two types of knowledge that Alice can have, they are the knowledge about

Alice in Wonderland story and the knowledge about general conversation, e.g. greeting,

inform, etc. These types are called domain-dependent and domain-independent according

to Dynamic Interpretation Theory (DIT++) taxonomy of communicative function [12]. The

focus of this research, however, is the domain-dependent knowledge, which is the knowledge

about Alice in Wonderland story.



15

4. QUESTION GENERATION

Automatic question generation, or more simply known as question generation, is an activity

that takes a text resource as an input and generates possible questions (and answers) that

can be asked from the resource. This approach allows the generation of the questions and

answers that can be used in the QAMatcher.

Recent research shows that there are several applications of a question generation sys-

tem, such as education, social media security, and conversational agent. These applications

are explained in more detail in section 4.1. Despite the application of question generation

systems, a question generation system can be developed using several approaches. The

common approaches are explained in section 4.2. The discussion of the implementation of

a question generation system and what approach can it be developed for Alice is provided

in section 4.3.

4.1 Implementation of Question Generation

Many question generation (QG) systems are used in educational applications, such as

skill development assessment and knowledge assessment [13]. G-Asks is an example of QG

implementation in skill development assessments [14]. G-Asks generates trigger questions

that can support students to learn through writing. For example, students are encouraged

to learn varied opinions from other research. However, when a student cite an opinion from

other research in his own writing, a new follow-up question can be formed from this citation,

such as “Which statements of the other research that form this opinion?”. G-Asks is able

to generate this “evidence support” type of question to support the academic writing.

A QG system that is developed for knowledge assessment was conducted by Heilman

and Smith [15] [16] [17]. Heilman and Smith created this QG system with the goal of

helping teachers in creating exam and quiz materials. A user study was conducted with

real teachers and the result was the tool indeed helped teachers to prepare the question and

answer pairs faster with less effort [18].



16

Another QG system that is developed for knowledge assessment was conducted by

Mazidi and Nielsen [19]. They managed to construct deeper questions than factoid questions

and outperformed the result from Heilman and Smith.

Besides the common applications of QG in educational applications, QG can also be

used in the social media security domain. For example, getting personal information from

a user’s social media account, and generate questions from it [20]. The questions then are

asked back to the user for authentication when a user forgets his password.

A research of QG that is done in a conversational agent domain was conducted by Yao

et al. [1]. They used two QG tools to create question and answer pairs to be used as the

knowledge base for a conversational character that can communicate with real humans.

They used 14 Wikipedia articles as the topic and the question and answer pairs that have

been generated from the tools are then stored in question and answer matching tool called

NPCEditor [21]. The first QG tool that they used is the QG system that was developed

by Heilman and Smith [15]. The second tool that they used is called OpenAryhpe which

was developed by Yao et al. themselves based on a Question Answering framework called

OpenEphyra [22]. The difference between OpenAryhpe and the Question Transducer is

that OpenAryhpe expands some components so that the tool can recognize new synonyms

and is able to recognize time, distance, and measurement more precisely.

Yao et al. concluded that the question and answer pairs that were generated by both

QG tools can be used as the knowledge base for a conversational character [1]. However,

there are some problems that they faced. First, there are some mismatches between the

actual questions that the users ask and the generated questions. This happens because

question generation tools only provide questions which have the answers available in the

source text. Based on this problem, they planned to use the sample questions from the

user study to analyze the frequent questions that the users ask for future research. The

second problem is that there is a gap between the vocabularies used by the users with the

generated questions. Based on this problem, they planned to use other lexical resources to

provide synonyms for the words in the future research.



17

4.2 Approaches in Question Generation

The recent approaches in question generation (QG) are varied based on the Natural

Language Processing (NLP) tools available to the researchers [23]. However, the direction

of the approaches can be classified into two categories, syntactic or semantic [19]. Syntactic

approach explores the use of syntactic tools such as Stanford Parser and Tregex and uses

them as the foundation of its QG system. On the other hand, the semantic approach

explores the semantic tools such as Stanford Dependency and Semantic Role Labels (SRL)

as the foundation of its QG system. Either approach that is implemented as the foundation

of the QG system, however, does not limit the system to make use the opposite approach.

For example, a QG system that uses syntactic tools as its foundation can still make use

of semantic tools to make the QG system perform better. The syntactic and the semantic

approaches are explained in more detail in this section using two prior research from Heilman

and Smith, and Mazidi and Nielsen.

4.2.1 Heilman and Smith

The QG research of Heilman and Smith [15] [16] [17] can represent the syntactic ap-

proach. There are several syntactic tools that Heilman and Smith used for their QG system.

For example, they used Stanford Phrase Structure Parser to automatically sentence-split,

tokenize, and parse input texts resulting in a Penn Treebank structure (e.g. Alice = NNP,

watched = VBD, the = DT, white = NNP, rabbit = NNP). They also used the Tregex tree

searching language to identify the syntactic elements of the sentence (e.g. subject and object

of the sentence). They used Supersense Tagger to generate the answer phrase mainly for

who, what, and where types of question (e.g. Alice = PERSON, garden = LOCATION).

Heilman and Smith made use of syntactic tools as their main tools for the QG system.

However, they also used a semantic-related tool called the Supersense Tagger to generate

higher level semantic tags.

There are 3 steps involved in the QG system of Heilman and Smith [18], as displayed

in Figure 4.1. The first step, Transformations of Declarative Input Sentences, includes

the process of simplifying factual statements and pronoun resolutions. They generated

simplified sentences from a Wikipedia article as the input by removing discourse cues.



18

1. Transformations of Declarative Input Sentences

2. Question Creation

3. Question Ranking

Fig. 4.1.: Steps in the QG System of Heilman and Smith [16] summarized in [18]

Figure 4.2 shows an example of a simplified sentence taken from [18]. In Figure 4.2, the

sentence is simplified by removing the discourse marker “however” and the relative clause

“which restricted trade with Europe.”

Original Sentence:

However, Jefferson did not believe the Embargo Act, which restricted trade with

Europe, would hurt the American economy.

Simplified Sentence:

Jefferson did not believe the Embargo Act would hurt the American economy.

Fig. 4.2.: Example of a simplified sentence

The second step in the QG System of Heilman and Smith is Question Creation. The

summary of the question creation phase is shown in Figure 4.3.

1. Marking unmovable phrases

2. Generating possible question phrases

3. Decomposition of the main verb

4. Subject-auxiliary inversion

5. Removing answers and inserting question phrases

6. Post processing

Fig. 4.3.: The question creation phase of Heilman and Smith [16] summarized in [18]

In the marking unmovable phrases step, Heilman and Smith created 18 rules in Tregex

expressions to avoid the system generates confusing questions. An example is the rule PP



19

<< PP=unmv to mark prepositional phrases that are nested within other prepositional

phrases. Thus, from a sentence “Alice saw the rabbit in the room of hats,” the question

“What did Alice see the rabbit in the room of?” can be avoided because “the room of

hats” cannot be separated. Another example of the rule is NP $ VP << PP=unmv to

mark prepositional phrases in subjects. Thus, from a sentence “The capital of Germany

is Berlin,” the question “What is the capital of Berlin?” can be avoided and instead, the

question “What is the capital of Germany?” can be created.

In generating the possible question phrase step, 6 conditions were used to create WH

questions (e.g. to create “Where” question, the object of the must be tagged as noun.location

with any of the preposition: on, in, at, over, to). The next step, decomposition of the main

verb, has several purposes, such as to identify the main clause for subject-auxiliary in-

version, and to identify the main verb so that the system can decompose a do or a does

form followed by the base form of the verb. The fourth step, subject-auxiliary inversion,

is done to generate yes-no questions (e.g. Does Alice like the rabbit?) or when the answer

phrase is a non-subject noun phrase (e.g. Who likes the rabbit?) from the sentence “Alice

likes the rabbit.” In the fifth step, a selected answer phrase is removed and each possible

question phrase is inserted into a separate tree. Finally, a post processing step is done to

ensure proper formatting such as changing sentences’ final periods with question marks,

and removing extra white space).

Finally, they included question ranking as the last step in the QG system. They used

statistical ranking to the candidates and generate questions with higher ranks. The ranking

was done by learning a training set which were prepared by 15 native English-speaking

university students.

Figure 4.4 shows the overall process by using a sentence from a Wikipedia article about

the history of Los Angeles [18].

4.2.2 Mazidi and Nielsen

The QG system that was developed by Mazidi and Nielsen [24] represents the semantic

approach. Their QG system generates the questions by manipulating the predicate and

argument structure from semantic role label (SRL). Mazidi and Nielsen used SENNA which



20

Fig. 4.4.: An example of a generated question and answer pair from the QG system of

Heilman and Smith.

simplifies a sentence into several clauses and produces the SRL that identify patterns in the

source text.

Besides providing the SRL, SENNA is able to provide POS tagging, chunking, Named

Entity Recognition (NER), and syntactic parsing. Figure 4.5 shows the result of SENNA by

using a sentence taken from Alice’s Adventures in Wonderland chapter 9: “Alice watched

the White Rabbit as he fumbled over the list.”

The first column shown in figure 19 represents each word in the input, while the second

column consists of the Penn Treebank POS tagset [25] of each word:

NNP: Proper noun, singular.



21

Fig. 4.5.: The result of POS tagging, chunking, NER, SRL, and syntactic parsing from

SENNA

VBD: Verb, past tense.

DT: Determiner.

IN: Preposition or subordinating conjunction.

PRP: Personal pronoun.

NN: Noun, singular or mass.

The third column consists of the chunk tag based on Penn Treebank syntactic tagset [25]

with four different prefixes which mark the word position in the segment:

NP: Noun Phrase.

VP: Verb Phrase.

SBAR: Clause introduced by a (possibly empty) subordinating conjunction.

B: beginning.

I: intermediate.

E: ending.

S: a phrase containing a single word.



22

O: not a member of a chunk.

The fourth column consists of the NER tags - persons, locations, organizations and

names of miscellaneous entities - which is assigned on each recognizable named entity. The

NER tags also use similar prefixes with the chunk tags to mark the position of the word in

the NER phrase. The fifth column consists of the representation of the treebank annota-

tion of the word in the tree. The sixth, seventh, and eighth columns represent sequentially

the verb (predicate) of the sentence, and then the predicate-argument structures for each

sentence that can be found in the input. The SRL also use similar prefixes with the chunk

tags and the NER tags. The predicates in the sentence are labeled as V and the arguments

are labeled as A with numbers according to PropBank Frames scheme [26]:

V: verb

A0: agents/causers

A1: patient (the argument which is affected by the action)

AM-TMP: temporal markers

For the question generation process, Mazidi and Nielsen [24] prepared 42 patterns which

were based on the PropBank Frames scheme [26]. An example of a pattern that is taken

from [26] is shown in Figure 4.6.

Rel: like

Arg0: you

Arg1: [?T?] -> What

Fig. 4.6.: A Propbank annotation for a WH-phrase

Figure 4.6 shows a pattern that is represented by a Propbank structure for a WH-phrase

“What do you like?”. In an active phrase “You like cakes”, “like” represents the predicate

(Rel), while “you” represents the Arg0 and “cakes” represents the Arg1. In the example

of WH-phrase shown in Figure 4.6, “like” still represents the Rel and “you” still represents

the Arg0. However, the Arg1 is left as a trace.



23

In the work of Mazidi and Nielsen [24], they prepared a matcher function to match the

source sentence’s predicate-argument structure - that was previously produced by SENNA

- with the list of prepared patterns. Then, they generate questions based on these matched

patterns by restructuring the patterns.

In 2015, Mazidi and Nielsen updated their question generation system by combining

multiple views of different parsers [23]. The updates involved dependency parsing, SRL,

and discourse cues. In order to give a better sense of dependency parsing, an example of a

dependency parsing tree is shown in Figure [27].

Fig. 4.7.: A dependency parsing tree from the sentence “Bills on ports and immigration

were submitted by Senator Brownback, Republican of Kansas” taken from [27].

In their updated system, Mazidi and Nielsen [23] generate the dependency of the source

text using the Stanford Parser [27]. They also generate the SRL using SENNA. The results

from both the dependency parser and the SRL are then combined.

Figure 4.8 shows the dependency parsing result from the sentence “Alice watched the

White Rabbit as he fumbled over the list”. By marking the verb “watched” as the root of

the tree, the dependency parsing helps to mark the main verb of the sentence, in addition to

the semantic role labeling result. In this new system, Mazidi and Nielsen [23] managed to



24

nsubj(watched-2, Alice-1)

root(ROOT-0, watched-2)

det(Rabbit-5, the-3)

compound(Rabbit-5, White-4)

dobj(watched-2, Rabbit-5)

mark(fumbled-8, as-6)

nsubj(fumbled-8, he-7)

advcl(watched-2, fumbled-8)

case(list-11, over-9)

det(list-11, the-10)

nmod:over(fumbled-8, list-11)

Fig. 4.8.: The dependency parsing result of “Alice watched the White Rabbit as he

fumbled over the list.” using Stanford Parser

outperform their previous question generation system by involving the dependency parsing

with 21% more semantically-oriented questions versus factoid questions.

4.3 Discussion

Although the initial research on QG focused on the educational or teaching area, recent

research has proved that QG can be used for other domains, including the conversational

character or virtual human. It can save a lot of time to fill in the domain knowledge for

the virtual human rather than manually creating question and answer pairs. It is also good

for ARIA-VALUSPA project especially because there are more than one virtual humans

that can be developed based on the ARIA-VALUSPA framework. Therefore, a faster and

automated process in filling in the domain knowledge is desirable.

However, as pointed out by Yao et al. [1], it should be noted that people can ask different

kinds of questions to the virtual human. They might ask a question about something that

is not explained in the story; e.g. asking about the appearance of the virtual human, asking

about the life of the storys writer. However, QG only creates question and answer pairs from



25

the information that is provided in the source text. Therefore questions about something

that is not in the source text, even if it is still related to the story of Alice in Wonderland,

might not be covered using this approach.

Another thing that needs to be considered when using QG is that the generated questions

can be too specific. For example: “she soon made out that it was only a mouse that had

slipped in like herself”. A possible generated question from this sentence could be “What

did Alice find that slipped in like herself?”. For a user to ask this question, he must have

a knowledge that Alice is trapped somewhere with someone else.

Lastly, the related works on QG system have implemented different approaches. For

example, Heilman and Smith [15] [16] [17] used the syntactic approach while Mazidi and

Nielsen [19] used the semantic approach. However, combining information from multiple

views can improve the quality of the generated questions as shown by Mazidi and Nielsen [23]

by using dependency parsing. Questions that suggest deeper understanding of the main

information is more desirable than factual based questions.



26

5. ALICE QUESTION GENERATION

Alice Question Generation (AQG) is a question generation (QG) system that is developed

to generate question and answer pairs about Alice in Wonderland. The generated QA pairs

are intended to be stored in the QAMatcher tool (see section 3.2) that can match the stored

questions with the questions from the users when they talk with Alice the virtual human.

AQG carries the semantic views of text as the main approach for developing the algorithm.

However, it also applies the syntactic views to improve the quality of the generated QA

pairs. Combining multiple views of text is proven to reduce the error rate of the generated

questions [23].

AQG uses semantic role label (SRL) as the main tool to retrieve the semantic meaning

of Alice in Wonderland story. SRL is used as the semantic tool because it provides enough

information for a sentence to be altered into questions by parsing a sentence into a predicate-

argument structure [26]. SENNA is used to retrieve the SRL because the tool can be used

easily and it assigns the labels quickly for a number of sentences.

Besides SRL, Stanford Dependency is also used to retrieve the semantic meaning of

Alice in Wonderland story. Stanford Dependency is used because it keeps a sentence as

a whole without dividing it into clauses, which helps to keep the complete information in

a sentence. PyStanfordDependencies is the Stanford Dependency tool that is used for the

AQG system. PyStanfordDependencies is used because the library is written in Python,

which is the same language as the AQG system, and it is simple enough to be processed by

the AQG system.

Figure 5.1 shows an overview of the AQG system. First, SENNA takes an “input” text

file consists of the input sentences and produces the SRL in a text file called “output”.

This process is conducted separately with the AQG system. Next, the AQG system can be

run. AQG takes the “input” text file (which is also used by SENNA) and processes them

using the PyStanfordDependency library to generate the Stanford dependencies. The result

of the dependency is written in an XML file called “Semantic Representation”. After this



27

process, AQG takes the SENNA “output” file and adds the “Semantic Representation” file

with the SRL result.

Next, AQG runs the “Template Matching” function which matches the “Semantic Rep-

resentation” with a number of QA templates. The QA templates are created based on

the observation of SRL, which is the main tool that is used as the foundation of AQG. A

QA pair is produced every time there is a matching template and is stored in an XML file

called “Generated QA”. The process of observing the patterns and creating the templates

are explained in more detail in the rest of this chapter.

Fig. 5.1.: Overview of the AQG System



28

5.1 Pattern Observation

The QA templates in AQG are created based on two pattern considerations [28]: the fre-

quency of the pattern occurrences and the consistency of the semantic information conveyed

by the pattern across different instances.

Since SRL is used as the main tool to retrieve the semantic meaning of the input, the

pattern observation is based on the SRL result. SRL parses a sentence into a predicate-

argument structure with consistent argument labels. For example, “the rabbit” is labeled

as Arg1 both in “Alice calls the rabbit” and in “The rabbit is called”. It also gives labels

to all modifiers of the verb, such as temporal (TMP) and locative (LOC).

SENNA [29] is used to determine the SRL of the text input. SENNA divides a sentence

into one or more clauses. For example, SENNA divides the sentence “While she is tiny,

she slips and falls into a pool of water.” into two clauses (see Figure 5.2). The pattern

of the first clause “While she is tiny, she slips into a pool of water” is TMP-A1-V-A3,

and the pattern of the second clause “While she is tiny, she falls into a pool of water” is

TMP-A1-V-A4.

Fig. 5.2.: SRL Representations for “While she is tiny, she slips and falls into a pool of

water.”

The pattern observation is conducted for all the clauses that are produced by SENNA.

The observation is conducted manually. Two summaries of Alice in Wonderland are used



29

as the training data. The first summary is from GradeSaver1 and it has 47 sentences, while

the second summary is from SparkNotes2 and it has 56 sentences.

A pattern in a clause always has a verb (V) and at least an argument. The argument

can either be a basic argument (Arg, e.g. A0, A1, A2) or a modifier argument (ArgM, e.g.

TMP, LOC). Almost all of the clauses in the training data have a V and an Arg; there is

only one clause that has a V and an ArgM, without an Arg. Therefore, the algorithm does

not include a pattern that has no Arg because it is not frequent. The number of Arg can

be one (e.g. only an A0), two (e.g. an A0 and an A1), or even more. In summary, Table

5.1 shows the number of clauses within three conditions of the Arg (Arg>=2, Arg==1,

Arg==0).

Table 5.1.: The number of clauses within three conditions of the basic arguments

No Pattern Number Example of Clause

of Clau-

ses

1 Arg>=2 222 - Alice (A1) sitting (V) with her sister outdoors (A2)

ArgM>=0 when she spies a White Rabbit with a pocket watch

V==1 (TMP).

- Alice (A0) gets (V) herself (A1) down to normal

proportions (A2)

2 Arg==1 64 - She (A0) cried (V) while a giant (TMP).

ArgM>=0 - In the wood (LOC) again (TMP) she (A1) comes (V)

V==1 across a Caterpillar sitting on a mushroom (LOC)

3 Arg==0 1 - get (V) through the door or too small (DIR) to reach

ArgM>=1 the key (PNC)

V==1

1Borey, Eddie. “Alice in Wonderland Summary”. GradeSaver, 2 January 2001 Web. (accessed April, 24

2017).
2SparkNotes Editors. “SparkNote on Alices Adventures in Wonderland.” SparkNotes LLC. 2005.

http://www.sparknotes.com/lit/alice/ (accessed April 24, 2017).



30

The first pattern (Arg>=2, ArgM>0, V==1) is included in the algorithm because

it is the most frequent pattern in the two summaries. The clauses behind this pattern

communicate clear information consistently across the sentences in both summaries. Besides

these reasons, two or more Args can make better questions than just one Arg. For example,

there are three clauses created from the sentence “Suddenly, the cards all rise up and attack

her, at which point she wakes up.” Figure 5.3 shows that this sentence creates three clauses

with different information:

First clause : Suddenly (ADV) the cards all (A1) rise up (V)

Second clause : the cards all (A0) attack (V) her (A1) at which point she wakes up (TMP)

Third clause : she (A0) wakes (V) up (A2)

Fig. 5.3.: SRL Representations for “Suddenly, the cards all rise up and attack her, at

which point she wakes up.”

Even though all three clauses give information, the second clause gives more information

than the two other clauses because it has more Args in it, compared to the first and the

third clause which only has one Arg. Therefore, the first pattern “Arg>=2, ArgMs>=0,

V==1” is chosen to be included in the algorithm.

Besides the basic argument observation, the ArgM is also observed. A pattern in a

clause can have or not have an ArgM. There are 8 different ArgMs that occur in both

summaries. Table 5.2 shows the ArgMs that occur in the summaries as well as the number

of occurrences. The four most frequent ArgMs are used in the templates. They are TMP,



31

LOC, ADV, and MNR. In conclusion, the patterns that are included in the template creation

step is “Arg>=2, ArgM>=0, V==1”, and the ArgMs are TMP, LOC, ADV, and MNR.

This means that a QA pair can be created when there are 2 or more Args, 0 or more ArgMs

(TMP/LOC/ADV/MNR), and a V.

Table 5.2.: Occurrences of the Argument Modifiers

ArgM GradeSaver SparkNotes

TMP (Temporal Markers) 22 16

LOC (Locatives) 8 12

ADV (Adverbials) 9 8

MNR (Manner Markers) 7 17

DIR (Directionals) 6 7

PNC (Purpose, not cause) 2 6

DIS (Discourse Markers) 2 -

MOD (Modals) 1 5

5.2 Template Creation

Based on the pattern observation step, the required elements that can create a QA pair

are 2 or more Args, 0 or more ArgMs (TMP/LOC/ADV/MNR), and a V. To make a better

QA pair, 4 categories are prepared to group the clauses that have ArgMs. The categories

are based on the ArgM because one ArgM can really differ from the other ArgMs. For

example, a clause with an ArgM TMP may expect a question word “When”, while a clause

with an ArgM LOC may need a question word “Where”. There is also 1 category created

to group the clauses that do not have any ArgMs.

Two or more Args can have different labels. Based on a more detailed observation on the

87 clauses of the first pattern condition, there are 70 patterns that have an A0 and an A1 in

its clause. In the PropBank Frames scheme [26], A0 is understood as agents or causers and

the A1 is understood as the patient or the one being affected by the action. Therefore, in



32

the template, the subject character is represented as the lower argument, while the object

character is represented as the higher argument.

As a narrative, Alice in Wonderland has the elements that are described in the Ele-

ments of a Narrative Theory [30]. Events (actions, happenings) and existents (characters,

settings) are the main elements that included in the question generation algorithm. In the

implementation, the templates ask about the action that a subject does, the subject char-

acter, the object character, and the argument modifier. Based on these narrative elements,

there are 5 QA templates that are created for each category that has an ArgM and 4 QA

templates that are created for the category without an ArgM. The categories are called

MADV, MMNR, MLOC, MTMP, and ARGU. The template names are started with the

category name and added with a number.

Table 5.3.: Templates for the category that has an ArgM LOC

Template Template Structure Generated QA Pair

MLOC1 Q: What + aux + lower Arg + do Q: What does she do to herself in

to + higher Arg + ArgM LOC + ? a long hallway full of doors?

A: lower Arg + V + higher Arg A: She finds herself

MLOC2 Q: Who + V + higher Arg + ArgM Q: Who finds herself in a long

LOC + ? hallway full of doors?

A: lower Arg A: She

MLOC3 Q: What + aux + lower Arg + V + Q: What does she finds in a long

ArgM LOC + ? hallway full of doors?

A: lower Arg + V + higher Arg A: She finds herself

MLOC4 Q: What happens to + lower Arg + Q: What happens to she in a long

ArgM LOC + ? hallway full of doors?

A: lower Arg + V + higher Arg A: She finds herself

MLOC5 Q: Where + aux + lower Arg + V Q: Where does she finds herself ?

+ higher Arg + ? A: in a long hallway full of doors

A: ArgM LOC



33

Table 5.3 shows the 5 QA templates that have been created for MLOC category. The

generated QA pairs use the input sentence “She falls for a long time, and finds herself in a

long hallway full of doors”. This sentence is divided into two clauses by SENNA:

• She (A1) falls (V) for a long time (TMP)

• She (A0) finds (V) herself (A1) in a long hallway full of doors (LOC)

All of the templates shown in Table 5.3 are created based on the following intentions:

MLOC1: asks about the predicate

MLOC2: asks about the subject

MLOC3: asks about the object

MLOC4: asks about the predicate and the object

MLOC5: asks about the modifier location

The question phrase “What ... do to ...” shown in Table 5.3 is formed for the MLOC1

template because the template asks about the predicate. The lower Arg is located before

the phrase “do to” (as the subject) because a lower argument is an agent or a causer. The

higher Arg is located after the phrase “do to” (as the object) because a higher argument is

the patient or the argument which is affected by the action [26]. The question word “Who”

is chosen for the template MLOC2 because most of the subjects in the training data is a

character. Moreover, the QAMatcher usually still matches a question correctly even though

it uses a different question word. Figure 5.4 shows this example.

Fig. 5.4.: Two different question words are given a same answer

The generated QA pairs that are shown in Table 5.3 have several syntax errors. They

are shown in the template MLOC3 and MLOC5. The verb “find” should be generated

instead of “finds”. However, syntax errors or small grammar errors are not handled by the

AQG system because the QAMatcher can still match a question correctly when there is a



34

small syntax error. There is another error that is shown in the generated QA pair from

the template MLOC4. The object in the question “what happens to she” is supposed to

use an objective pronoun “her” instead of a subjective pronoun “she”. The handle for the

subjective and objective pronoun is implemented in the next version of the templates.

SENNA usually divides a sentence into several clauses. This makes some information in

a sentence missing, especially in a sentence with conjunctions. Using the previous example,

there will not be a QA pair that gives an information about how she finds herself in a long

hallway full of doors all of a sudden, despite the fact that the reason “she falls for a long

time” is given in the same sentence. This creates a new situation in which a dependency

parse can be useful. Therefore, a new template under a new category is created. The

template uses dependency parsing and requires a conjunction in the sentence. A Python

interface called PyStanfordDependencies is used to provide the Stanford Dependencies in

AQG. Based on the observations of dependency labels on sentences with conjunctions, the

new template is as follows:

Question = ’What happens when ’ + Subj + V + Dobj + Nmod + ’?’

Answer = Subj + V + Dobj + Nmod + Cc + Conjs

For example, the sentence “She falls for a long time, and finds herself in a long hallway

full of doors” has the dependency result which is shown in Figure 5.5.

Fig. 5.5.: Dependency Parse Result for the Sentence “She falls for a long time, and finds

herself in a long hallway full of doors”

Therefore, a new question and answer pair that is generated by the algorithm is:

Q: What happens when she falls for a long time?

A: She falls for a long time and finds herself in a long hallway full of doors

In summary, all categories that are created are displayed in Table 5.4 with their required

elements and the number of templates. In total, there are 25 templates that fall into 6



35

categories. The structures of initial templates for all categories are displayed in Table A.1

in the Appendix.

Table 5.4.: Categories and Templates

Category Name Required Elements Total Templates

MADV Arg>=2, ArgM==ADV, V==1 5

MMNR Arg>=2, ArgM==MNR, V==1 5

MLOC Arg>=2, ArgM==LOC, V==1 5

MTMP Arg>=2, ArgM==TMP, V==1 5

ARGU Arg>=2, ArgM==0, V==1 4

DCNJ Conj>=1 1



36

6. INITIAL EVALUATION AND IMPROVEMENT

First of all, a simple “QA Grouping” algorithm is created to group all the generated QA

pairs based on their categories and to store each category in a CSV file. There are 6 CSV

files generated based on the training data and can be viewed and analyzed easily using

spreadsheet applications. Next, a pre-initial evaluation is conducted to see if the program

works and if all the templates do not create too much error. The pre-initial evaluation is

explained in section 6.1. Next, an initial evaluation is conducted to measure the quality

of the initial templates. The initial evaluation is explained in section 6.2. The pre-initial

evaluation and the initial evaluation are conducted by the author. Finally, an error analysis

and improvements are next conducted based on the result of the initial evaluation. The

error analysis and improvements are explained in section 6.3.

6.1 Pre-Initial Evaluation

A quick pre-initial evaluation is conducted by using one summary from the training data,

the GradeSaver summary. There are 435 QA pairs that are generated from 47 sentences of

the summary. Based on the observation of the generated question and answer of this initial

version, there are 6 templates that create too many strange results.

Table 6.1 shows the templates that create too many errors. It seems too difficult to

create a good template that asks about the elements that these templates were meant to

ask. For the MMNR category, the verb is related to the MNR because MNR modifies the

verb, instead of the entire sentence like an ADV modifier [26]. When altering the pattern

to create the template, it is important to keep the verb with the ArgM MNR, and thus

make limitations on the templates that can be created. For example, the question that is

generated from the template that asks about the verb and the object, MMNR4: “What

happens to she through this door?”. The phrase “through this door” explains how she does

the “spy” activity. Since the ArgM Manner “through this door” is separated from the verb,

it makes the question sound strange. The template that asks about the verb and the object



37

Table 6.1.: Templates that Creates Too Many Errors

Template Description Examples

MMNR1 Asks about the action/ Q: What does she do to herself down

verb enough ?

A: she shrinks herself

MMNR3 Asks about the object Q: What does she finds with a note that

asks her to drink it ?

A: she finds a drink

MMNR4 Asks about both the action Q: What happens to she through this door ?

/verb and the object A: she spies a beautiful garden

ARGU1 Asks about the action/ Q: What does He do to her?

verb A: He mistakes her

Q: What does He do to her?

A: He sends her

ARGU3 Asks about the object Q: What does she get?

A: she get a handle

Q: What does she get?

A: she get herself

ARGU4 Asks about both the action Q: What happens to Alice?

/verb and the object A: Alice grow larger and smaller

Q: What happens to Alice?

A: Alice takes the baby

from the MADV category, however, generates a better structured question. For example,

the question “What happens to she while in the white rabbit’s home?” and the answer “she

becomes too huge to get out through the door” are generated from the template MADV4.



38

There is another error that can be seen from the generated QA pairs from the Table

6.1, which is the objective pronoun. The objective pronoun error “what happens to she”

instead of “what happens to her” is fixed in the next version of the template.

For the ARGU category, the error that can be found is that the category only provides

two Args and one V and makes the generated questions too vague. For example, the

question “what does she get” is generated 5 times with different answers according to

different scenarios in the story. Since there is no ArgM in ARGU category, the case for the

generated QA is not specific enough. In conclusion, these 6 templates are removed from

AQG.

6.2 Initial Evaluation

The evaluation that is conducted for the AQG system uses a rating scheme which is

developed to be easy for novice annotators [18]. This is because the users who will interact

with the virtual human can be general people without advanced knowledge in linguistic.

For this evaluation, each question and answer pair is rated by the author on a 1 to 5 scale

as displayed in Table 6.2.

Table 6.2.: 5 Scale Acceptability Score Adapted from [18]

Scale Score Explanation

Good (5) The QA pair does not have any problems, and it is a good as the

one that a person might ask and the virtual human might answer.

Acceptable (4) The QA does not have any problems..

Borderline (3) The QA might have a problem, but I’m not sure.

Unacceptable (2) The QA definitely has a minor problem.

Bad (1) The QA has major problems.

There are 19 templates that are further evaluated. Two summaries of the training data

are used for the initial evaluation. The first one is a summary from GradeSaver which

consists of 47 sentences, and the second one is a summary from SparkNotes which consists



39

of 56 sentences. The score for the question and answer pair acceptability is displayed in

Figure 6.1.

Fig. 6.1.: Initial Evaluation Result

As shown in Figure 6.1, the overall question and answer pairs are still below the border-

line scale (3), which are 2.790 and 2.885. Next, an error analysis is conducted and continued

by template improvements.

6.3 Error Analysis and Template Improvement

After conducting the initial evaluation, the errors from each category are analyzed. The

templates are then improved based on the result of the error analysis. The list of the

improved templates are displayed in Table A.2 in the Appendix. The error analysis and the

template improvements are explained in the rest of this section.

6.3.1 MADV

The average score of MADV category for the GradeSaver summary, 3.1, is slightly

better than the average score for the SparkNotes summary which is 2.767. However, when

observing the lower scores in the result of both summaries, there are several things that can

be improved on the template. The analysis can be explained by the examples in Figure 6.2.



40

Fig. 6.2.: The Initial Evaluation Result for the MADV Category

Figure 6.2 shows the template name, the clauses which were used as the input of the

AQG system, and the generated questions and answers of the clauses. The first clause

explains about how Alice follows a white rabbit when she was fascinated by the sight.

Therefore, a word “when” would be better added before “fascinated by the sight” to make

the question clearer. The same solution can also apply for the second clause. For the second

clause, the question “What does she do through the wood when she was left alone?” would

sound better.

Another problem that remains, however, is that the verb “do to” can only fit clauses

with Arg number A0 and A1. A0 and A1 both are the dominant Args that consist in the

training data (the GradeSaver and the SparkNotes summary) as mentioned in section 5.2,

but generalizing the template by using “do to” can causes errors in several clauses. Leaving

the object from the question template can be the solution for this. Therefore, the question



41

“What does she do when she was left alone” would be a better generated question that can

still be used for the first example as well: “What does she do when she was fascinated by

the sight”.

Using the conjunction “when” before the ArgM apparently can cause a problem for the

third clause, despite the fact that it would be good for the first and the second clause. The

phrase “as she cries” is labeled as the ArgM ADV. It means that when using “when” the

question will become “What does Alice into the pool of tears when as she cries?”. In order

to handle this problem, the syntax is checked further. If the ArgM ADV starts with “as”,

then the conjunction “when” is changed into “as” instead. This also applies to other ArgM

ADV that start with “while”, “to”, and “into”.

Adding the “when” conjunctions, or having the first word of the ArgM as the conjunc-

tions for the word “as”, “while”, “to”, and “into” applies to questions in the templates

MADV1, MADV2, MADV3, and MADV4, and also applies to the answer in the template

MADV5. Based on the changes for the QA template under MADV category, the new result

from the clauses in Figure 6.2 is displayed in Figure 6.3.

6.3.2 MMNR

The average score for the MMNR category is higher compared to the MADV category.

This is because on the pre-initial evaluation, the templates MMNR1, MMNR3, MMNR4

were removed. Therefore, only the generated QA pairs from MMNR2 and MMNR5 category

still remain and their quality is pretty good.

Despite their high score when compared to the other categories, there are two improve-

ments done for the MMNR category. They can be explained using the generated QA pairs

shown in Figure 6.4.

The second clause in 6.4 shows that she finds a drink that has a note on the drink. The

phrase “with a note that asks her to drink it” actually refers to “a drink” instead of the

verb “drink”. The phrase “with a note that asks her to drink it” is not supposed to be

labeled as the manner modifier of the verb “finds”, because manners adverbs specify how

an action is performed [26]. This also happens on the third clause. The phrase “with a

door” refers to the “tree” instead of the verb “finds”. This makes the question template



42

Fig. 6.3.: The Generated QA Pairs of the MADV Category After the Improvements

Fig. 6.4.: Errors on the Initial Evaluation Result of the MMNR Category

“How + does + lower Arg + V + higher Arg” not fit in the clause with an ArgM MNR

that starts with “with”. This template, however, still works in other clauses, such as:

Clause: Through the door (MNR), she (A0) sees (V) a beautiful garden (A1)



43

Question: How does she sees a beautiful garden ?

Answer: Through the door

Considering this problem, therefore this template is still kept as it is; however, this

template will not generate a QA pair when the ArgM MNR starts with “with”.

Another change that is done for the MMNR category is that on the MMNR2 template,

the answer is added with an auxiliary, instead of just a “higher Arg”. Therefore, the answer

for “Who sees a beautiful garden through the door” is “she does.”

6.3.3 MLOC

The average score for the MLOC category is above the borderline, 3.267 and 3.1 for

the GradeSaver and the SparkNotes summary respectively. However, there are still some

improvements conducted for this category which can be explained using 5 generated QA

pairs displayed in Figure 6.5.

Fig. 6.5.: Errors on the Initial Evaluation Result of the MLOC Category

The phrase “do to” often implies a subject that is doing a negative action towards

the object, such as “what does she do to him?”, or “what does he do to the cat?”. The



44

question “What does she do to herself” on the first example in Figure 6.5 therefore can

turn into other interpretations instead of the actual fact that she only finds herself, and not

doing anything to herself. The second question, “What does she do to a key” also not the

best question given the phrase “she discovers a key” as the source sentence. Based on this

problem, “do to” and the object are removed from the template, leaving only the subject

and the ArgM LOC on the question template.

Next, “what does she meets the forest” lacks a preposition before the ArgM LOC. This

is because “the forest” is referred by the relative adverb “where” which is left out by AQG.

To handle this problem, a preposition “in” is added to every ArgM LOC that does not have

any prepositions.

Another problem can be found on the fifth question. The question “what happens to

her giant tears at her feet” given the answer “her giant tears form a pool” can be made less

strange. On this MLOC4 template, the subject is left out for the improved version of the

template. Therefore, the generated question from the clause “Her giant tears form a pool

at her feet” becomes “What happens at her feet?”. After improving the MLOC4 template,

other clauses can still have good results, for example:

Clause: A key (A1) she (A0) discovers (V) on a nearby table (LOC)

Question: What happens on a nearby table ?

Answer: she discovers a key

Finally, a small improvement is done for MLOC2 template. The answer template is

extended with an auxiliary. Therefore, the answer “she does” is generated, with a question

pair “Who finds herself in a long hallway full of doors”. Figure 6.6 displays the result after

the template improvements.

6.3.4 MTMP

The MTMP category has an average score that is lower than the borderline. Some prob-

lems that are found in this category can be explained using the clauses that are displayed

in Figure 6.7.



45

Fig. 6.6.: The Result After the Improvement on the MLOC Category

Fig. 6.7.: Errors on the Initial Evaluation Result of the MTMP Category

The clauses on the first and the second result are from the same sentence: “She even-

tually finds a little cake which, when eaten, makes her small again”. SENNA labels the

pronoun “She” and “a little cake” with the same “A0”. It is wrong and it makes the gener-

ated QA pair strange that it cannot be understood: “What does she do a little cake when

eaten”. Therefore, on the improved templates, AQG leaves out all clauses that have two



46

phrases with a same number of arguments. This condition is also implemented in all the

templates in all categories.

For the template MTMP3, the question word “What” is changed into “Whom” since

most of the objects in the clauses in the training data are characters. Therefore, a “who”

is more suitable for the objects.

Another improvement is also done for the template MTMP4, in which the subject is left

out after the question “What happens”. Therefore, the new question template is “What

happens + ArgM TMP?”. This improvement is similar with the one for MLOC4 question

template.

6.3.5 ARGU

The generated QA pairs that are displayed in Figure 6.8 somehow imply incorrect infor-

mation according to the given clause. For example, the generated question from the second

clause, “Who make Alice” sounds like it asks about how Alice existed today. However, the

original clause talks about how two mushrooms can make Alice grow larger and smaller.

Fig. 6.8.: Errors on the Initial Evaluation Result of the ARGU Category

The obvious improvement that can be done for this is to include the Arg 2 (A2) from

the clause into the generated question. Therefore, the question “Who make Alice?” become

clearer in “Who make Alice grow larger and smaller?”. It is important to keep the A2 in

the generated questions. Figure 6.9 shows the result after improving the template.



47

Fig. 6.9.: The Result After the Improvement on the ARGU Category

6.3.6 DCNJ

The category DCNJ has high average scores too for the two summaries, compared to

the other categories. However, some improvements are still made for this category.

Fig. 6.10.: Errors on the Initial Evaluation Result of the DCNJ Category

The first generated question that is shown in Figure 6.10 is difficult to understand. When

looking into the parsing result, “longs” is incorrectly labeled by PyStanfordDependencies. It

is incorrectly labeled as another NSUBJ while “get” is labeled as the root (see Figure 6.11).

This makes the template assign “longs” as the subject, and thus generate the question



48

“What happens when longs get?”. To generate a better question, “She” should be the

NSUBJ while “longs” should be the root, as parsed by another Stanford Dependency Parser

that is visualized by the Brat tool 1 illustrated in Figure 6.12.

Fig. 6.11.: Incorrect Dependency Parsing Result for the sentence “She longs to get there,

but the door is too small”

Fig. 6.12.: Correct Dependency Parsing Result for the sentence “She longs to get there,

but the door is too small”

Another mistake with parsing the dependency also happens on the third clause “Present

are the March Hare, the Hatter, and the Dormouse”. In the dependency result, “Hare” is

labeled as the root, despite of the fact that “the March Hare” is a character.

The fourth clause in Figure 6.10 also has been incorrectly parsed by PyStanfordDepen-

dencies. “This time” is parsed as NSUBJ to the root “prepared”, as well as the NSUBJ

“she”. This makes the AQG pick a strange subject for the generated question “this she”

(“this” is a determiner before the NSUBJ “time”).

Another improvement is conducted for the problem in the second clause shown in Figure

6.10. The generated question “what happens when she pokes head” lacks the possession

modifier, despite its existence in the clause “she pokes her head”. This is, however, included

in the improved version of the template. After the improvement, the generated QA from

the second clause is:

1http://nlp.stanford.edu:8080/corenlp/process



49

Question: What happens when she pokes her head into the branches tree?

Answer: she pokes her head into the branches tree and meets a Pigeon

Finally, “the Knave of Hearts” is not included in the generated question as shown in

Figure 6.10. However, the initial version of the template leaves out passive phrases. The

initial template does not check for the passive dependency labels NSUBJPASS, which is

the label for “Knave”. Therefore, this is included in the improved version of the template.

After the improvement, the generated QA from the fifth clause is:

Question: What happens when the Knave of Hearts accused?

Answer: The Knave of Hearts accused but the evidence against him is very bad

6.4 Evaluation After Template Improvements

After error analysis and template improvement, another evaluation is conducted by the

author using the 5-Score Scale explained in Table 6.2. The input source are still the same,

they are the GradeSaver and the SparkNotes summary. The number of input sentences are

thus the same with the initial evaluation. However, fewer QA pairs are generated than the

initial one because of the template improvement. Such as, not generating a QA pair when

there is a clause with more than one Args with the same number.

Fig. 6.13.: Evaluation Result after the Template Improvement



50

The average score for overall summaries is now increased to 3.696 and 3.690 as displayed

in Figure 6.13. This means that the average score is above the borderline score (3) after

the improvement.



51

7. USER EVALUATION OF ALICE QUESTION GENERATION

After the initial evaluation and the improvements, an evaluation with external annotators

is conducted. The evaluation measurement is explained in section 7.1. The evaluation setup

is explained in section 7.2. Finally, error analysis and improvements for the templates are

again conducted based on the result. The error analysis and improvements are explained

in section 7.3

7.1 Evaluation Measurement

An evaluation with external annotators are conducted to rate the generated QA pairs

from the improved templates. The 5-scale rating system displayed in Table 6.2 is again used

for the evaluation. When a QA pair is rated as unacceptable (2) or bad (1), the annotator

can choose one or both of the reasons that are shown in Table 7.1.

Table 7.1.: Reasons for an Unacceptable or a Bad Score

Reason Reason Explanation

Incorrect Information (a) The Q&A implies something that is obviously incorrect

according to the context

Awkwardness/Other (b) The Q&A is awkwardly phrased or has some other problem

(e.g., no native speaker of English would say it this way,

or the question word is wrong).

The first reason that is displayed in 7.1 can be chosen when the generated question

or answer does not entail correct information that is given in the sentence. The following

sentence for example: “There is later a cake with a note that tells her to eat; Alice uses

both, but she cannot seem to get a handle on things, and is always either too large to get



52

through the door or too small to reach the key” generates the following QA pair:

Question: Who get a handle on things ?

Answer: she does

An Unacceptable score (2) can be assigned to the above QA pair because the correct infor-

mation from the sentence is “but she cannot seem to get a handle on things”. A question

“Who cannot get a handle on things?” or an answer “nobody” should have been generated

for this case.

The second reason, awkwardness/other, is more related to the structure of the generated

QA. Therefore, it can be assigned when the phrase of the generated QA is strange or when

the question word is wrong. For example, the sentence “She longs to get there, but the

door is too small” generates the following QA pair:

Question: What happens when She longs get ?

Answer: She longs get but the door is too small

A bad score (1) can be assigned to above QA pair because the structure of the question

and answer is strange and they are difficult to understand.

7.2 Evaluation Setup

A summary of Alice in Wonderland from Litcharts1 is used as the test data. This

summary consists of 69 sentences. There are 6 annotators involved in this evaluation. All

annotators are students or recently graduated students from English taught programmes

at the University of Twente, and one from the Saxion University of Applied Sciences. All

annotators are not native speakers, however, they understand English well and speak English

almost in daily life.

The test data is separated into two parts. The first half consists of 35 sentences and

the second half consists of 34 sentences. The first half of the QA pairs is evaluated by

3 annotators. The second half of the QA pairs is also evaluated by 3 annotators. The

annotators are assigned randomly to either the first half group or the second half group.

The 35 sentences from the first half group have 137 generated QA pairs, and the 34 sentences

1http://www.litcharts.com/lit/alice-s-adventures-in-wonderland/summary



53

from the second half group have 131 generated QA pairs. The generated QA pairs in each

group are also randomized.

Fig. 7.1.: User’s Evaluation Form

First, the annotators are given an instruction, an explanation of the 5-scale scoring

system, an explanation of both reasons for the unacceptable or bad score, and some examples

of rated QA (see Appendix chapter B). In the instruction, the annotators are told to not

focus on the grammars and pronoun resolution for the current evaluation. The grammar

errors and pronouns are not handled in the AQG because the QAMatcher can still correctly

match the questions. However, when they find the generated QA pairs have grammars or

pronoun resolutions that are too much for them to understand the generated QA pairs,

then they can include them in their judgments.

Next, the annotators give a score for each QA pair. The time that the annotators take

to finish the task is about one hour. Figure 7.1 shows 5 examples of generated QA pairs

that have been rated by an annotator.

7.3 Error Analysis and Template Improvement

Figure 7.2 displays the average score from all annotators. Based on this user evaluation,

error analysis and improvements are again conducted for the templates. Almost all the

errors found are improved, except for the ones that cannot be fixed because of parser errors



54

Fig. 7.2.: User Evaluation Score Result of the Question and Answer Rating

or sentence ambiguities. However, several minor errors on generated questions are not fixed

if the QAMatcher can still match the questions well (such as a wrong question word).

7.3.1 MADV

The majority of the problems that exist in the MADV category are caused by strange

parsing results. An example of parsing error is displayed in Figure 7.3.

Clause: The White Rabbit returns (A0) having lost his gloves, and, mistaking Alice for

his maid (ADV) asks (V) her fetch them (A1)

Question: When does The White Rabbit returns asks her fetch them ?

Answer: when The White Rabbit returns is having lost his gloves , and , mistaking Alice

for his maid

Fig. 7.3.: SRL Labeling Error from the MADV Category

Figure 7.3 shows a parsing error on the subject. The verb “returns” is not supposed

to be labeled as the subject together with “The White Rabbit”. It makes the generated



55

question and answer sound strange. Beside of the parsing error, the clause also has a

grammar mistake by not including the preposition “to” before “fetch them”.

Another problem that can be seen from the evaluation result, which was also pointed

out by an annotator, is a causality problem in one of the sentences that falls under the

MADV category. The sentence and the generated QA are displayed in Figure 7.4.

Clause: The Queen (A0) gets (V) very irate (A1) calling for mass executions (ADV)

Question: Who gets very irate when calling for mass executions ?

Answer: The Queen gets very irate

Fig. 7.4.: Causality Problem in a Generated QA from the MADV Category

What the clause in Figure 7.4 trying to say is the queen gets very irate, and then she

calls for mass executions. However, this clause can also mean that the queen gets very irate

when she calls for mass executions. Unfortunately, the parser gets the latter meaning of

the clause which makes the clause fall into the MADC category and generates a question

that implies incorrect information.

7.3.2 MMNR

A parsing error also occurs in a clause under the MMNR category as displayed in Figure

7.5. The complete sentence of the clause is “She tries one side of the mushroom and finds

it makes her smaller so quickly eats the other side, which makes her grow taller, but mostly

in the neck”. The phrase “her smaller” is incorrectly labeled as the subject (Arg 0) which

creates a strange answer as shown in Figure 7.5.

Clause: her smaller (A0) so quickly (MNR) eats (V) the other side, which makes her grow

taller, but mostly in the neck (A1)

Question: Who eats the other side , which makes her grow taller , but mostly in the neck

so quickly ?

Answer: her smaller does

Fig. 7.5.: Parsing Error from the MMNR Category



56

Besides parsing errors, sentence ambiguity is another source of low scores in two QA

pairs which are generated from the same sentence, as shown in Figure 7.6. The generated

QA pairs are correct. Playing card is actually a character in the story. The parser labeled

the playing cards correctly as the subject, however, it might be confusing for the annotators

since the test data do not have this character written in capitals. The average score for the

generated QA from template MMNR2 is 1.6 and the average score for the pair from template

MMNR5 is 2, with “incorrect information” as the major reason for the unacceptable or bad

score.

Clause: Playing cards (A0) annoy (V) her (A1) in any way (MNR)

Question (Template MMNR2): Who annoy her in any way ?

Answer (Template MMNR2): playing cards does

Question (Template MMNR5): How does playing cards annoy her?

Answer (Template MMNR5): in any way

Fig. 7.6.: Correct Generated QA Pairs that Got Unacceptable Scores

7.3.3 MLOC

The average score for MLOC is relatively good compared to the results for other cat-

egories. However, there is one error that is fixed for the templates in this category. The

error is found on the generated QA pairs from the sentence “Inside this house, the Duchess

is nursing a pig baby and a cook is having a temper tantrum”. Figure 7.7 shows this error.

In a previous improvement, a generalized preposition “in” is added when a location does

not have a preposition2. But the check misses prepositions that start with an “in”. After

this improvement, the generated question from template MLOC1 becomes “what does the

Duchess do inside this house?” while the generated answer from template MLOC5 becomes

“Inside this house”.

2Such as, to enable a question “what does she meet in the forest?”, instead of “What does she meet forest”

since the LOC phrase is only “the forest” from the sentence: “She wanders off into the forest, where she

meets a Caterpillar sitting on a mushroom and smoking a hookah (i.e., a water pipe)”



57

Clause: Inside this house (LOC) the Duchess (A0) nursing (V) a pig baby (A1)

Question (Template MLOC1): What does the Duchess do in Inside this house ?

Answer (Template MLOC1): the Duchess nursing a pig baby

Question (Template MLOC5): Where does the Duchess nursing a pig baby ?

Answer (Template MLOC5): in Inside this house

Fig. 7.7.: A Missed Preposition that Causes an Error

There is another generated QA pair that is rated low because it has a strange structure

as displayed in Figure 7.8. Having “Alice” as a location can be quite strange. However,

since this problem occurs only one time and the average score for the generated QA pairs

from this clause is not very low, this problem is not included in the improvement.

Clause: The Hatter (A0) fires (V) riddles (A1) at Alice (LOC)

Question: What happens at Alice ?

Answer: The Hatter fires riddles

Fig. 7.8.: Alice as a Location

7.3.4 MTMP

There is one improvement that is conducted on the MTMP error analysis phase but is

applied in other categories as well. Modal modifiers (ArgM MOD) are quite important to

be included in the templates because they can change a sentence meaning. Figure 7.9 shows

an example from the MTMP category.

Perhaps including the modal “can” to make the generated question become “Whom

does she can reach no longer?” does not make a big difference. However, including the

ArgM MOD in the templates is still important to keep the correct information of the text.

A bigger difference perhaps can be found when the clause is “she cannot reach the key”;

a generated question “what does she reach” with a generated answer “she reach the key”



58

Sentence: she (A0) can (MOD) no longer (TMP) reach (V) the key for it (A1)

Question: Whom does she reach no longer ?

Answer: she reach the key for it

Fig. 7.9.: Including the Modal Modifiers

will not carry the correct information from the text. Therefore, when including the ArgM

MOD, the correct information can still be carried by the generated QA pairs, especially the

generated answer (“she cannot reach the key” instead of “she reach the key”).

Several generated QA pairs that are rated low under the MTMP category have wrong

question words. However, they are not fixed because the QAMatcher can still match these

questions well. Two of them are as follows:

Sentence: It is not the kind of croquet that Alice is used to, instead of mallets and

balls, the Queen’s version uses flamingoes and hedgehogs, who become quite unruly when

Alice tries to use them

Question: Whom does flamingoes and hedgehogs become when Alice tries to use them ?

Answer: flamingoes and hedgehogs become quite unruly

Sentence: By this time, she has grown again to giantess size, and knocks the jurors flying

as she gets up to take the stand

Question: Whom does she grown By this time ?

Answer: she grown to giantess size

7.3.5 ARGU

The improvements that are done for the templates in the ARGU category are all related

to syntactic clues. The first one is a check to make sure that objective pronouns are used

for objects and subjective pronouns are used for subjects. This check actually has been

implemented in other templates but not in ARGU templates. The following example shows



59

the generated QA pair before the improvement, followed with the generated QA pair from

the same source after the improvement.

Sentence: She shrinks again and slips and is swept up by the pool

Question: Who swept up She ?

Answer: by the pool does

After improvement:

Question: Who swept up her ?

Answer: the pool does

The second one is to remove the preposition “by” from answers that consist of “by” as

their first word. The following example shows the generated QA pair before the improve-

ment, followed with the generated QA pair from the same source after the improvement.

Sentence: He is interrupted by the sound of the Queen loudly commencing the Knave’s

trial

Question: Who interrupted He ?

Answer: by the sound of the Queen loudly commencing the Knave s trial does

After improvement:

Question: Who interrupted him ?

Answer: the sound of the Queen loudly commencing the Knave s trial does

7.3.6 DCNJ

Several parsing errors are found under the DCNJ category based on the error analysis

of the user evaluation result. Figure 7.10 shows an example of the error. The word “mood”

is incorrectly labeled as the root by the PyStanfordDependencies library. Therefore, the

template also generates a strange question and answer from this sentence.

Another example is displayed in Figure 7.11. The phrase “with a frog footman outside”

is labeled as an “nmod” of the main phrase “she eats some of the...”. This causes the

information to be incorrectly understood as Alice eats the mushroom with a Frog Footman.

The correct dependency tree should have had the phrase “with a frog footman outside”



60

Sentence: The Duchess is in a terrible mood and rudely addresses Alice before flinging

the baby at her

Question: What happens when The Duchess mood ?

Answer: The Duchess mood and rudely addresses Alice before flinging the baby at her

Fig. 7.10.: Dependency Parsing Error - Part 1

under the phrase “a little house”. Since these cases are caused by parsing errors, they are

not improved.

Sentence: She eats some of the shrinking side of the mushroom and sees a little house,

with a Frog Footman outside, who has received an invitation for the Duchess to attend the

Queen of Hearts croquet tournament

Question: What happens when She eats some of the shrinking side of the mushroom with

a Frog Footman outside , received ?

Answer: She eats some of the shrinking side of the mushroom with a Frog Footman

outside , received and sees a little house

Fig. 7.11.: Dependency Parsing Error - Part 2



61

8. USER STUDY USING QA MATCHER

The evaluations in chapter 6 and chapter 7 involve a rating scheme to assess the quality

of the generated QA pairs. Improvements have been made based on the evaluation results.

Next, a user study using the QAMatcher is conducted.

Before conducting the user study, the QAMatcher is prepared by implementing a follow-

up question strategy, a solution to resolve the risk of implementing the follow-up question

strategy, a pilot evaluation, and an improvement. All of these preparations are explained

in section 8.1. Next, the setup of the user study is explained in section 8.2. The user study

result and discussion are provided in section 8.3. Finally, the conclusion of the user study

is provided in section 8.4.

8.1 Preparing the QAMatcher

8.1.1 Follow-Up Question Strategy

When a person talks to a virtual human, he should be able to say anything to the virtual

human and get a relevant response. However, the generated QA pairs from the AQG system

are limited to the Alice in Wonderland story that is used as the input. In order to reduce the

probability of a user asking questions that are not in the generated QA pairs, a follow-up

question strategy is created. A follow-up question strategy here is a strategy that implicitly

suggests the user ask a follow-up question that is related to the previous response that the

agent gives.

The follow-up question strategy that is implemented for the evaluation is to add the

clue “then something happens” and a phrase of the next story piece. This strategy is

implemented in 4 QA template categories:

1. MLOC: If the next sentence has an ArgM LOC → return the current answer + “

Then something happens ” + ArgM LOC of the next sentence.



62

2. MTMP: If the next sentence has an ArgM TMP → return the current answer + “

Then something happens ” + ArgM TMP of the next sentence.

3. MADV: If the next sentence has an ArgM ADV → return the current answer + “

Then something happens to ” + Subj + ArgM ADV of the next sentence.

4. DCNJ: If the next sentence has a Conjunction → return the current answer + “

Then something happens ” + a clause before the conjunction of the next sentence.

Fig. 8.1.: Examples of the clue implementation for a generated QA in the MADV category

Figure 8.1 shows the implementation of the strategy in two sample dialogues from the

MADV category, and Figure 8.2 shows the implementation for the DCNJ category. The

second utterance in both figures shows the real answer. The additional “Then something

happens...” is implemented in the AQG answer templates as an extension. The third

dialogue, “What happens...” is the expected follow-up question that might be asked by the

evaluator. This question then can be matched with the QA pairs that are already in the

resource.



63

Fig. 8.2.: Examples of the clue implementation for a generated QA in the DCNJ category

The clues are implemented for the MLOC, MTMP, MADV, and DCNJ categories, but

not for the MMNR and ARGU categories because MMNR and ARGU do not have a “What

happens...” question template. The reason of why they do not have this question template

is because it is difficult to separate their elements (Subject, verb, object, modifier) without

losing the information from its clause. This means that it is also difficult to come out with

a good clue for the evaluators to ask. Beside this reason, it is also good to not have the

same “Then something happens...” clue every time the QAMatcher give a response. Other

clues might be good to have in the future work.

8.1.2 Risks on the Follow-Up Question Strategy

The follow-up question strategy that is implemented for the second user evaluation using

QAMatcher is to add the clue “then something happens” and a phrase of the next story



64

piece. The positive case for implementing this strategy is that the user will ask a complete

follow-up question that can be matched easily to the generated question, such as “what

happens when she sees a beautiful garden through the door?”, as displayed in Figure 8.2.

This question is then matched with the following generated QA pair to give the right answer:

<qa category="DCNJ" template="DCNJ1">

<question>What happens when she sees a beautiful garden Through the door

?</question>

<answer>she sees a beautiful garden Through the door and Alice begins

to cry when she realizes she cannot fit through the door </answer>

</qa>

QAMatcher will still match a user question when it is only a little bit different than the

generated question. However, it is also possible that the user will only ask “what happens?”

which can be matched with many other generated questions. One solution to resolve this

risk is to keep a history of the dialogue between the QAMatcher and the user. Therefore,

when the user only asks “What happens”, this question can be linked into the previous

answer from the QAMatcher, and next, the QAMatcher can give the right answer.

Figure 8.3 illustrates the solution for incomplete follow-up questions using the dialogue

example from Figure 8.1. Figure 8.3 shows that the user only asks “What happens” instead

of “What happens to her while in the white rabbit’s home?”. The solution algorithm

analyzes whether the user’s question is specific enough, by checking if the user starts his

question by a phrase “What happens” and followed by 15 or more characters. The user’s

question “What happens” will not pass the algorithm’s check and will go to the “no” option.

Therefore, the algorithm will check the last utterance that was given by the QAMatcher,

“He does. Then, something happens to her while in the White Rabbit’s home...”. The

phrase after “something happens” will be retrieved by the algorithm and added into the

current user’s utterance. Therefore, the user’s utterance after the process will become

“What happens to her while in the White Rabbit’s home”. The QAMatcher will take the

after-process user’s utterance and match it with the generated QA pairs. Using the same

example, the best generated question that can be matched by the QAMatcher is as follows:

<qa category="MADV" template="MADV4">



65

Fig. 8.3.: A solution to resolve the risk of implementing the follow-up question strategy

<question>What happens to her While in the White Rabbit s home ?</question>

<answer>she drinks another potion </answer>

</qa>

The incomplete follow-up question solution is implemented in a separate python file

named historysearch.py, with the dialogue history stored in a text file named history.txt.

Since the QAMatcher is written in java, a console script is written separately to call both

historysearch.py and the QAMatcher simultaneously. Therefore, this second user evalu-

ation can be conducted directly by opening the console script.

8.1.3 Pilot Evaluation

A pilot evaluation is conducted by a recently-graduated student from an English taught

programme at the University of Twente. The evaluator is able to communicate in English

really well. The QA pairs are generated from three summaries that were used previously as



66

the training and test data; GradeSaver, SparkNotes, and Litcharts. The AQG system that

is used has been improved based on the user evaluation (see chapter 7. The pilot evaluator

was also involved in the user evaluation, however, his understanding in Alice in Wonderland

story is limited.

The pilot evaluator was first interviewed about his knowledge of the Alice in Wonderland

story. The interview result was his understanding of the story is limited to a girl who meets

a White Rabbit and followed it down a hole, and then meets some strange creatures in

Wonderland, without knowing exactly what Alice’s experiences are. After being interviewed

about his knowledge of the story, the pilot evaluator was told to ask questions about Alice

in Wonderland, as he wants to know more about the story. The pilot evaluator was given

about 15 to 20 minutes. When the time is finished, he was asked to rate five statements

on a 1 to 5 scale. Score 1 is “strongly disagree”, score 2 is “disagree”, score 3 is “neutral”,

score 4 is “agree”, and score “5” is strongly agree. The statements and rates that the

pilot evaluator gave are displayed in Table 8.1. The result of the ratings are not so great.

However, the pilot evaluator agreed that he knows more about the story after the evaluation

session.

Table 8.1.: The Rating Result for the Post-evaluation Statements of the Pilot Evaluator

No Statements Rate

1 You know more about the story 4

2 The answers make sense 2

3 The answers use correct English 3

4 The dialogue as a whole is coherent 2

5 The dialogue as a whole feels natural 2

The QAMatcher starts with an introduction: “The story begins on an ordinary land,

then something happens when Alice was sitting with her sister outdoors...”. Next, the

evaluator can ask anything to the QAMatcher. Figure 8.4 shows the dialogue that between

the evaluator and the QAMatcher.



67

Fig. 8.4.: The dialogue between the pilot evaluator (U) and the QAMatcher (A) - Part 1

Overall, the follow-up question strategy works well with the pilot evaluator. He almost

always responds back according to the answers which implement the strategy. For example,

the first question that was asked by the pilot evaluator (U1) is “What is the name of Alice’s

sister?”. This question is related to the information that was given in the follow-up strategy

phrase “then something happens when Alice was sitting with her sister outdoors...” (A1).

However, this follow-up question is not the intended question. The second question from

the pilot evaluator (U2), however, is the intended follow-up question from the strategy. It

asks about the information that was given in the phrase “then something happens to her

when fascinated by the sight...” (A2). The QAMatcher matches this question (U2) well

and gives the correct answer (A3).

The incomplete follow-up question also happens several times during the evaluation.

For example, the follow-up question that the pilot evaluator asked, “what happens?” as

shown on the utterance U23 and U24 in Figure 8.5. However, the solution to resolve the

risk of this incomplete follow-up question works well and gives the right answer as shown

on the utterances A24 and A25 respectively.

However, there is one major issue that appears on this pilot evaluation. The answers

always seem to follow the story despite the questions that are asked. This problem occurs

only when the previous answer that was given by the QAMatcher consists of the follow-up



68

Fig. 8.5.: The dialogue between the pilot evaluator (U) and the QAMatcher (A) - Part 2

strategy “then something happens...”. This is apparently caused by the proposed solution

to resolve the risk of an incomplete follow-up question. The solution, as illustrated on Figure

8.3, is to give an answer based on the previous answer if the users do not ask a complete

question such as “what happens when she tastes a part of the mushroom”. This solution is

quite naive and can cause problems when the users want to ask other questions. This also

prevents the process to evaluate the relevancy of an answer given a question. However, this

might be the reason why the pilot evaluator agreed with the statement “You know more

about the story”.

8.1.4 Improvement

Based on the pilot evaluation, the solution to face the risk of incomplete follow-up

question is improved. By using several regular expressions, the follow-up questions that

will be linked to the previous QAMatcher’s answers are around:

• What happen(s)(ed)(?)

• What happen(s)(ed) next(then)(after)(?)



69

• What(’s) next(then)(does)(after)(?)

• What(?)

• And then(next)(?)

• Then(next)(?)

The improved solution is also based on the follow-up question observation from the

pilot evaluation; there are 5 “What does?”, 4 “What happens?”, and 1 “What?”. After

improving the solution to resolve the incomplete follow-up question, the evaluation is further

conducted with 4 people.

8.2 User Study Setup

The user evaluation using the QAMatcher is conducted with 4 evaluators. All of the

evaluators are students or recently graduated students from the University of Twente. The

evaluators are not native English speakers but they understand English well and regularly

speak English in their daily lives.

The first and the fourth evaluator were not involved in the first user evaluation of rating

the generated QA pairs. The second and third evaluator were involved in the evaluation of

rating the generated QA pairs. However, all of the evaluators were first asked about their

knowledge about Alice in Wonderland story, and all of them have a very limited knowledge

about it. They only know that the story is about a girl who experienced strange events in

the Wonderland.

The first, second, and third evaluators conduct the evaluation without being told about

the summary of the story in the beginning. The fourth evaluator is, however, first explained

about the summary of Alice in Wonderland from Wikipedia in order to see if the result of

the evaluation can be better when an evaluator is given a brief summary beforehand. All

of the evaluators then are told to ask any questions about Alice in Wonderland as they

want to know more about the story. They are given about 15 to 20 minutes. When the

evaluation finishes, they are given 5 post-evaluation statements that they need to rate in a

1 to 5 scale (the same procedure with the pilot evaluation in subsection 8.1.3).



70

The data for this user study is the same as the one that is used for the pilot user study.

They are the training data of AQG and the test data from previous evaluations (chapter 6

and chapter 7); the summaries from GradeSaver, NoteSparks, and Litcharts. The three of

them generate 691 QA pairs from 172 sentences.

8.3 User Study Result and Discussion

After the evaluation session with the QAMatcher, the evaluators are asked to rate 5

statements using 5-scale scheme. Score 1 for “strongly disagree”, 2 for “disagree”, 3 for

“neutral”, 4 for “agree”, and 5 for “strongly agree”. Figure 8.2 displays the score, with A

as the first evaluator, B as the second evaluator, C as the third evaluator, and D as the

fourth evaluator.

Table 8.2.: The Rating Result for the Post-evaluation Statements of the Four Evaluators

Statement A B C D Average

You know more about the story 4 3 2 2 2.75

The answers make sense 3 3 2 2 2.5

The answers use correct English 3 4 4 3 3.5

The dialogue as a whole is coherent 3 3 1 2 2.25

The dialogue as a whole feels natural 2 2 2 2 2

The number of relevant answers (including their percentage based on the number of

questions asked by the evaluator) that the QAMatcher gave for the evaluators are provided

in Table 8.3. The number of relevant but incorrect answers are also provided in the table

because a virtual human is expected to give relevant answers, however, correct answers

might be desirable too.



71

Table 8.3.: The Number of Relevant Answers

Evalu- Number of Number of Rele- Number of Relevant

ator Questions vant Answers but Incorrect Answers

A 51 18 (35%) 9

B 34 10 (29%) 5

C 34 11 (32%) 2

D 62 19 (30%) 4

8.3.1 Result from the First Evaluator

The first evaluator almost always asks question following the previous answer from the

QAMatcher. The follow-up question strategy works well because most of them ask about

the information that consists in the strategy phrase “then something happens...”. However,

the evaluator’s follow-up questions are about something else that does not exist in the story.

An example is displayed in Figure 8.6.

Fig. 8.6.: The dialogue between the 1st evaluator (U) and the QAMatcher (A) - 1

Overall the questions that are asked do not get correct answers. Most of them because

the answers are not in the story or the source input. However, there are several questions

that are supposed to be in the source input, but not in the generated QA pair. An example

is displayed in Figure 8.7.



72

Fig. 8.7.: The dialogue between the 1st evaluator (U) and the QAMatcher (A) - 2

The game information is actually written in the source input:

The Queen takes Alice to join in the croquet game. It is not the kind of croquet

that Alice is used to, instead of mallets and balls, the Queen’s version uses

flamingoes and hedgehogs, who become quite unruly when Alice tries to use

them. Also, nobody takes turns, so the pitch is suddenly a mess with animals

and playing cards. The Queen gets very irate, calling for mass executions.

Meanwhile, the Cheshire Cat has returned and is causing trouble with the King,

but when the Queen’s officers try to catch him, he vanishes. So the game is

abandoned and the Queen turns her attention to Alice.

The first sentence from the story above perhaps can give the information about the

game in the simplest way. However, the generated questions from this sentence are different.

They are “Who takes Alice?” and “Who join in the croquet game?”, instead of telling that

croquet is the kind of game that is played.

There is also a question that asks about the information that is given as the follow-up

question strategy that does not have a correct answer to it. This question is already good

by including “What happens” on the beginning, however, the QAMatcher cannot match

it well with the right answer because the question is not specific enough. Despite the

incorrect answer that is given, the answer is still quite coherent with the question asked.

Which means that the QAMatcher seems to understand the question and give an answer

accordingly. This question is shown in Figure 8.8.

The question U32 is actually supposed to be matched with the following QA pair:

<qa category="DCNJ" template="DCNJ1">

<question>What happens when she sees a beautiful garden Through the door



73

Fig. 8.8.: The dialogue between the 1st evaluator (U) and the QAMatcher (A) - 3

?</question>

<answer>she sees a beautiful garden Through the door and Alice begins

to cry when she realizes she cannot fit through the door </answer>

</qa>

However, the question U32 is matched with a wrong QA pair instead:

<qa category="MLOC" template="MLOC4">

<question>What happens in the forest ?</question>

<answer>she meets a Caterpillar sitting on a mushroom and smoking a hookah

( i.e. , a water pipe ) . Then something happens when The Caterpillar and

Alice get into an argument ...</answer>

</qa>

The first evaluator asks a few questions that match with the follow-up question strategy

and its solution to handle the risk of the incomplete follow-up question. These questions

are successfully matched with the relevant answers. The dialogue is displayed in Figure 8.9.

8.3.2 Result from the Second Evaluator

Similar with the first evaluator, the second evaluator asks several questions about things

that are not in the story (e.g. “What is the flavor of the cake?”, “What is the color of the

flowerpot?”). However, the second evaluator notices that the program cannot give the right

answers to that and start to ask questions about the phrase that is part of the follow-up

question strategy (Figure 8.10).



74

Fig. 8.9.: The dialogue between the 1st evaluator (U) and the QAMatcher (A) - 4

Fig. 8.10.: The dialogue between the 2nd evaluator (U) and the QAMatcher (A) - 1

There are several questions about information that exist in the story and are asked by

the second evaluator but they do not get correct answers. The utterance U48 and A49 on

Figure 8.11 show that a question that does not have the answer in the generated QA pairs

might get a response that is incorrect and irrelevant. The question U49 and answer A50

are not very good as well but at least the answer is still related to the Knave of Hearts.



75

Fig. 8.11.: The dialogue between the 2nd evaluator (U) and the QAMatcher (A) - 2

There is no QA pair generated about the things that are asked in Figure 8.11 because

both input sentences only have clauses that fall under the ARGU category, which only

has one template (ARGU2) that asks about the subject. It seems better to include the

template ARGU1 and ARGU3 which have been excluded based on the pre-initial evaluation

(explained in section 6.1). When only the subject that is mentioned in the question, such

as “What does Alice do?”, there can be several answers linked to this question. The user

might ask about what Alice does in the first chapter and the QAMatcher responds with

what Alice does in the second chapter. However, for a virtual human, it is better to respond

to this question with a relevant but incorrect answer, rather than an incorrect and irrelevant

answer. An example of a relevant but incorrect answer is when a user asks “What does

Alice do” and refer to the story when Alice is in the White Rabbit’s house. However, the

answer that the user gets is “Alice finds a pig baby”, which refers to the story when Alice

is at the house of the Duchess. When the template ARGU1 and ARGU3 are included, the

following QA pairs should be generated.

<sentence word="The Knave of Hearts has been accused of stealing the tarts

of the Queen of Hearts , but the evidence against him is very bad ">

<qa category="ARGU" template="ARGU3">

<question>What is The Knave of Hearts accused?</question>

<answer>The Knave of Hearts is accused of stealing the tarts of the Queen

of Hearts </answer>

</qa>

</sentence>

<sentence word="The Cheshire Cat explains to Alice that everyone in



76

Wonderland is mad , including Alice herself ">

<qa category="ARGU" template="ARGU1">

<question>What does The Cheshire Cat do?</question>

<answer>The Cheshire Cat explains that everyone in Wonderland is mad ,

including Alice herself . Then something happens when The Cheshire Cat

gives directions to the March Hare s house ...</answer>

</qa>

</sentence>

8.3.3 Result from the Third Evaluator

There are more relevant answers given for the third evaluator. This is perhaps because

the third evaluator rarely asks questions that are not in the story. There are several ques-

tions that do not follow the follow-up question strategy but they still get relevant and even

correct answers. Figure 8.12 displays an example of it.

Fig. 8.12.: The dialogue between the 3rd evaluator (U) and the QAMatcher (A) - 1

Fig. 8.13.: The dialogue between the 3rd evaluator (U) and the QAMatcher (A) - 2

However, there are several answers that are not correctly given but still related to the

question, such as the question and answer displayed in Figure 8.13. Perhaps the question

“Does she meet someone when she is stretched out?” (U14) would have been better if the

it was matched this question with the following QA pair in the QAMatcher:

<qa category="DCNJ" template="DCNJ1">



77

<question>What happens when she pokes her head into the branches of a

tree ?</question>

<answer>she pokes her head into the branches of a tree and meets a

Pigeon </answer>

</qa>

However, the user’s question (U14) was matched with the following QA pair instead:

<qa category="MADV" template="MADV1">

<question>What does she do While stretched out ?</question>

<answer>she pokes her head into the branches of a tree </answer>

</qa>

The answer “she pokes her head into the branches of a tree” perhaps is not so relevant

but it is still related because in the story, she pokes her head into the branches of a tree

and then meets a pigeon.

There is one time when the third evaluator seems to ask about whom does the pronoun

refer to, as shown in utterance U12 on Figure 8.14. The answer that is given is actually quite

relevant. However, since the current AQG system does not include pronoun resolution, the

answer that is given still uses the pronoun “she” instead of using the person’s name, Alice.

Fig. 8.14.: The dialogue between the 3rd evaluator (U) and the QAMatcher (A) - 3

There are several questions that follow the follow-up strategy as well, as shown in Figure

8.15. These questions successfully give relevant and correct answers.

Despite the overall better result, incorrect and irrelevant answers are still given for the

third evaluator. Figure 8.16 shows an example of it. What the user meant to ask is perhaps

about the pocket watch that the White Rabbit has. However, this is not explained explicitly



78

Fig. 8.15.: The dialogue between the 3rd evaluator (U) and the QAMatcher (A) - 4

Fig. 8.16.: The dialogue between the 3rd evaluator (U) and the QAMatcher (A) - 5

in the summaries that are used as the test data. It is only explained that there is a White

Rabbit with a pocket watch or is pulling a pocket watch.

There is one question that is supposed to get a correct answer based on the completeness

of the utterance, as shown in Figure 8.17. This question is almost similar as the generated

question that is stored in the resource of the QAMatcher. However, apparently the spaces

between the words can make the QAMatcher incorrectly match the questions. Figure 8.18

shows how these spaces create problems on the generated answers on the QAMatcher.

Fig. 8.17.: The dialogue between the 3rd evaluator (U) and the QAMatcher (A) - 6

8.3.4 Result from the Fourth Evaluator

Since the fourth evaluator is first told about the summary of Alice in Wonderland, the

evaluator asks several questions about some questions that do not follow the previous answer



79

Fig. 8.18.: A difference in spaces can give a different answer

or the follow-up question strategy phrase from the QAMatcher. Two sample questions are

displayed on Figure 8.19. These questions that are shown in utterance U8 and U19 are not

mentioned in the dialogue before.

Fig. 8.19.: The dialogue between the 4th evaluator (U) and the QAMatcher (A) - 1

A different problem that can be noticed from the fourth evaluator result is that it is

also necessary to link a follow-up question such as the one shown by the utterance U43

on Figure 8.20. The follow-up question “then” (U43) cannot retrieve the next piece of the

story because the previous utterance (A43) does not have the follow-up question strategy

phrase (“then something happens...”). When these follow-up question phrases (e.g. “then?”,

“what’s next?”) are handled for all questions that the user asks and not only when the

previous response from the QAMatcher has a follow-up question strategy phrase, then the

QAMatcher can keep telling the next story to the user.

8.4 User Study Conclusion

In conclusion, the current generated QA pairs from the AQG system cannot be used by

themselves for the QAMatcher. There were more irrelevant answers than relevant ones that



80

Fig. 8.20.: The dialogue between the 4th evaluator (U) and the QAMatcher (A) - 2

were given by the QAMatcher in the user study. The post-evaluation statement ratings

were also not great.

The AQG system might be used to provide the domain knowledge of Alice. However,

various question templates that ask about the same thing are necessary in order for the

QAMatcher to match the user’s questions and the prepared questions better. Tools that

provide synonyms might be necessary to create more varied templates.

The follow-up question strategy is a good solution to give the users some ideas of what

to ask, and also to keep the users to ask about things that have answers. The history of

the dialogue between the user and the QAMatcher is important to be kept for the current

follow-up strategy, and for other purposes in the future work.



81

9. CONCLUSION AND FUTURE WORK

In this chapter, the summary of this research is provided first, and later the conclusion and

the future work are discussed.

9.1 Summary

The introduction chapter explains about the ARIA-VALUSPA project which develops a

framework of virtual humans. One work package that is being developed at the University

of Twente is called Multi-Modal Dialogue Management for Information Retrieval. The

work package is conducted for a virtual human called Alice, who is a representation of

the character Alice in the Alice in Wonderland story. One challenge in developing multi-

modal dialogue management for information retrieval is preparing the domain knowledge

for the virtual human. Question generation is chosen as an approach to create the domain

knowledge of Alice.

The concepts of conversational agents and virtual humans are also explained, including

dialogue management which is a module in conversational agents or virtual humans that is

responsible to manage the dialogue between Alice and its users. Next, the dialogue manager

of Alice is explained together with the domain knowledge that is managed by a tool called

QAMatcher. The QAMatcher works by matching a user’s question with existing questions

by using text processing algorithms. The existing questions in the QAMatcher will be

generated by the chosen approach, question generation. The topic of the questions that will

be generated focuses on Alice in Wonderland related story.

Question generation is a subject in natural language processing that intends to generate

questions from text. Question generation is usually used for helping teachers to make ques-

tions for their students. However, recent research show that question generation can also

be used for other purposes such as internet security domain and virtual humans. There are

two main approaches in conducting question generation research, they are the syntactic ap-

proach and the semantic approach. Syntactic approach usually explores the use of syntactic



82

tools such as Stanford Parser and Tregex while the semantic approach explores the semantic

tools such as Stanford Dependency and Semantic Role Labels (SRL). The approach that is

chosen for the Alice Question Generation system is the semantic approach.

Alice Question Generation (AQG) is a question generation system that is developed to

generate question and answer pairs about Alice in Wonderland. AQG uses SRL as the main

task to retrieve the semantic meaning of Alice in Wonderland story. SENNA is the SRL

tool that is used to retrieve the SRL. Beside SRL, AQG also uses Stanford Dependency to

retrieve the semantic meaning of Alice in Wonderland story. PyStanfordDependencies is

the Stanford Dependency tool that is used for the AQG system.

The first phase in building the AQG system is observing the SRL patterns based on

the frequency of the pattern occurrences and the consistency of the semantic information

conveyed by the pattern across different sentences. Two summaries of Alice in Wonderland

from GradeSaver and SparkNotes are used as the training data. Based on the observation,

the pattern that consist of 2 or more Arguments, 0 or more Modifiers, and 1 verb, is

chosen to be included in the AQG templates. The modifiers that are chosen are adverbials,

manners, locatives, and temporals. Next, the dependency labels are observed for sentences

that have conjunctions, because sentences with conjunctions are most likely separated into

different clauses by SENNA and can lose a complete information from the sentence.

The second phase in building the AQG system is creating the templates. The template

creation focuses on the events (actions, happenings) and existents (characters, settings).

The questions in the templates ask about the subject, the predicate, and the object of the

events and existents. In the initial version of the AQG, there are 25 templates of question

and answer pairs that fall under 6 categories. Next, initial evaluation of the templates is

conducted by the author. The templates that create too many errors are removed from

the AQG system, and other templates are improved. After initial evaluation, there are 19

templates under 6 categories that are included in the system.

The AQG system is next evaluated by 6 annotators by using a 5-scale rating system. The

test data is a summary of Alice in Wonderland from Litchart that consists of 69 sentences.

The annotators are divided into two groups. The first group consists of 3 annotators and

35 sentences, while the second group consists of 3 annotators and 34 sentences. The first

group evaluate 137 question and answer pairs from the 35 sentences, while the second group



83

evaluate 131 pairs from the 34 sentences. The average score from both groups 3.495 out of

5. A last improvement on the template is conducted before the next evaluation with the

QAMatcher.

The QAMatcher is first set up by a follow-up question strategy in order the keep the

evaluators to ask questions about Alice in Wonderland only. A pilot evaluation is first

conducted and the follow-up strategy is improved. Next, the user study is conducted with

4 evaluators. The evaluators are given about 15 to 20 minutes time to ask about Alice

in Wonderland as they want to know more about the story. The result from this user

study is that there were more irrelevant answers than relevant ones that were given by the

QAMatcher. The current generated QA pairs from the AQG system cannot be used by

themselves for the QAMatcher. More varied templates that ask about the same thing are

necessary to be created in the future work. The follow-up question strategy and the history

of the dialogue between the user and the QAMatcher are important implementation for the

current user study and for other purposes in the future work.

9.2 Conclusion and Future Work

In conclusion, the current generated QA pairs from the AQG system cannot be used by

themselves for the QAMatcher because there were more irrelevant answers than relevant

ones that were given by the QAMatcher in the user study. Furthermore, there are several

things that are important to be considered when implementing QG systems for virtual

humans. They are discussed in subsection 9.2.1. The discussions on conducting the user

study is provided in subsection 9.2.2.

9.2.1 Automatic Question Generation for Virtual Humans

First, the question is not the only important part of a question generation (QG) system.

Answers are also important because they are the ones that the virtual human shows to the

users. It is different compared to QG systems that are used for teaching since they usually

focus more on the question formulation. QG for virtual humans needs a good question

formulation by considering its performance when being processed by text algorithms, and



84

it also needs a good answer formulation by considering its naturalness when virtual humans

give this answer to the user.

A recent research of QG focuses on the importance of information in a sentence pattern

before generating questions [28]. This approach is proven to overcome the result of prior

works in QG which focus on creating as many questions as possible. QG for virtual humans,

however, performs better when there are more generated questions. A way that it can be

done is to create a variety of questions that ask about the same thing. For example, an

answer “Alice follows the rabbit to a rabbit hole” can have several questions such as “Where

does Alice follow the Rabbit?”, “Where does Alice go when she sees the rabbit?”, “What

does Alice do when she sees the rabbit?”. A challenge on creating various questions is,

however, to have a good semantic parsing result that is consistent across different sentences.

In the current implementation, one question is always paired with one answer. However,

more varied questions can be created in the future work.

Most QG researchers evaluate their systems by having annotators rate the generated

questions. This is somehow more difficult to be conducted as it is with QG for virtual

humans. Most annotators prefer a simpler answer to a question. For example, the question

“Where does Alice follow the rabbit?” is better to have a direct answer “to a rabbit hole”

than a more complete answer “Alice follows the rabbit to a rabbit hole”. In virtual humans,

however, having direct answers every time can make the virtual humans appear less natural.

In future work, it can be better to have direct answers for the evaluation that rates the

generated question and answer and more complete phrases can be implemented for the

answers when conducting the user study with QA matching tools. The another way is to

change the evaluation procedure instead.

More complete phrases are also preferred for the user study with QA matching tools

such as QAMatcher. When having a more comprehensive answer, several questions can be

matched with one complete answer. Figure 9.1 shows an answer that is more comprehensive.

When the answer is direct, the probability that the QAMatcher gives relevant answers might

decreases. Figure 9.2 shows the expected utterances when the answers are direct. When the

user asks “where does Alice follow the rabbit” (Question 1) there might be a chance that

the QAMatcher mistakenly matches this question with “Alice follows the rabbit” (Answer

2) because there are many similar words in both questions. When the answer is more



85

comprehensive as shown in Figure 9.1, question 1 and 2 from the Figure 9.2 can be matched

with the same answer “Alice follows the rabbit to a rabbit hole”.

Question 1: Where does Alice follow the rabbit?

Question 2: What does Alice do when she sees the rabbit?

Answer: Alice follows the rabbit to a rabbit hole

Fig. 9.1.: QA pairs that use a comprehensive answer

Question 1: Where does Alice follow the rabbit?

Answer 1: to a rabbit hole

Question 2: What does Alice do when she sees the rabbit?

Answer 2: Alice follows the rabbit

Fig. 9.2.: QA pairs that use more direct answers

9.2.2 User Study using QA Matcher

A follow-up question strategy and a history file of the dialogue between the user and

the QAMatcher are important implementations for conducting a user study with the QA-

Matcher. The follow-up question strategy can give the users some ideas of what to ask. It

also keeps them to ask about things that have the answers. The history file is important

for this follow-up question strategy, and also other purposes such as giving the next piece of

the story every time the user wants to know what happens next, or to refer pronouns that

are mentioned in the previous utterances. Pronoun resolution also needs to be implemented

in the future work.

The history file is also important for the QAMatcher to keep track of what has been

discussed. This is especially important to know which part of the story the question asks

about. Another way to keep the context of the conversation together is to separate the

domain knowledge into several story pieces. For example, by keeping the chapters’ numbers

behind the generated QA pairs and knowing which chapter the user asked about can already

keep the context of the story. This strategy, however, cannot be dependent only on the QG



86

system, because most of the semantic tools only take one sentence as the input and it

somehow already misses the context. The strategy of keeping the context of the story can

be implemented in the future work.



REFERENCES



87

REFERENCES

[1] X. Yao, E. Tosch, G. Chen, E. Nouri, R. Artstein, A. Leuski, K. Sagae, and D. Traum,
“Creating conversational characters using question generation tools,” Dialogue & Dis-
course, vol. 3, no. 2, pp. 125–146, 2012.

[2] D. Jurafsky and J. H. Martin, Speech and Language Processing (2Nd Edition). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 2009.

[3] A. L. Gorin, G. Riccardi, and J. H. Wright, “How may i help you?” Speech communi-
cation, vol. 23, no. 1, pp. 113–127, 1997.

[4] W. R. Swartout, J. Gratch, R. W. Hill Jr, E. Hovy, S. Marsella, J. Rickel, D. Traum
et al., “Toward virtual humans,” AI Magazine, vol. 27, no. 2, p. 96, 2006.

[5] W. Swartout, D. Traum, R. Artstein, D. Noren, P. Debevec, K. Bronnenkant,
J. Williams, A. Leuski, S. Narayanan, D. Piepol et al., “Ada and grace: Toward real-
istic and engaging virtual museum guides,” in International Conference on Intelligent
Virtual Agents. Springer, 2010, pp. 286–300.

[6] D. DeVault, R. Artstein, G. Benn, T. Dey, E. Fast, A. Gainer, K. Georgila, J. Gratch,
A. Hartholt, M. Lhommet et al., “Simsensei kiosk: A virtual human interviewer
for healthcare decision support,” in Proceedings of the 2014 international conference
on Autonomous agents and multi-agent systems. International Foundation for Au-
tonomous Agents and Multiagent Systems, 2014, pp. 1061–1068.

[7] A. Hartholt, D. Traum, S. C. Marsella, A. Shapiro, G. Stratou, A. Leuski, L.-P.
Morency, and J. Gratch, “All together now,” in International Workshop on Intelli-
gent Virtual Agents. Springer, 2013, pp. 368–381.

[8] M. Schröder, E. Bevacqua, F. Eyben, H. Gunes, M. ter Maat, S. Pammi, E. de Sevin,
M. Valstar, and M. Wöllmer, “Final sal system. project deliverable d1d, semaine,”
2010.

[9] ARIA-VALUSPA, “Deliverable d3.2: Implementation of adaptive task-based dialogue
system,” 2016.

[10] M. ter Maat and D. Heylen, “Flipper: An information state component for spoken
dialogue systems,” in International Workshop on Intelligent Virtual Agents. Springer,
2011, pp. 470–472.

[11] J. Wagner, F. Lingenfelser, and E. André, “The social signal interpretation framework
(ssi) for real time signal processing and recognition.” in INTERSPEECH, 2011, pp.
3245–3248.

[12] H. Bunt, J. Alexandersson, J. Carletta, J.-W. Choe, A. C. Fang, K. Hasida, K. Lee,
V. Petukhova, A. Popescu-Belis, L. Romary et al., “Towards an iso standard for dia-
logue act annotation,” in Seventh conference on International Language Resources and
Evaluation (LREC’10), 2010.



88

[13] N.-T. Le, T. Kojiri, N. Pinkwart et al., “Automatic question generation for educational
applications-the state of art.” in ICCSAMA. Springer, 2014, pp. 325–338.

[14] M. Liu, R. A. Calvo, and V. Rus, “G-asks: An intelligent automatic question generation
system for academic writing support,” Dialogue & Discourse, vol. 3, no. 2, pp. 101–124,
2012.

[15] M. Heilman and N. A. Smith, “Question generation via overgenerating transforma-
tions and ranking,” CARNEGIE-MELLON UNIV PITTSBURGH PA LANGUAGE
TECHNOLOGIES INST, Tech. Rep., 2009.

[16] ——, “Extracting simplified statements for factual question generation,” in Proceedings
of QG2010: The Third Workshop on Question Generation, 2010, p. 11.

[17] ——, “Good question! statistical ranking for question generation,” in Human Language
Technologies: The 2010 Annual Conference of the North American Chapter of the
Association for Computational Linguistics. Association for Computational Linguistics,
2010, pp. 609–617.

[18] M. Heilman, “Automatic factual question generation from text,” Ph.D. dissertation,
Carnegie Mellon University, 2011.

[19] K. Mazidi and R. D. Nielsen, “Pedagogical evaluation of automatically generated ques-
tions,” in International Conference on Intelligent Tutoring Systems. Springer, 2014,
pp. 294–299.

[20] S. S. Woo, Z. Li, and J. Mirkovic, “Good automatic authentication question genera-
tion.” in INLG, 2016, pp. 203–206.

[21] A. Leuski and D. R. Traum, “Npceditor: A tool for building question-answering char-
acters.” in LREC, 2010.

[22] N. Schlaefer, P. Gieselmann, and G. Sautter, “The ephyra qa system at trec 2006,” in
Proceedings of the Fifteenth Text REtrieval Conference, 2006, 2006.

[23] K. Mazidi and R. D. Nielsen, “Leveraging multiple views of text for automatic ques-
tion generation,” in International Conference on Artificial Intelligence in Education.
Springer, 2015, pp. 257–266.

[24] ——, “Linguistic considerations in automatic question generation.” in ACL (2), 2014,
pp. 321–326.

[25] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large annotated
corpus of english: The penn treebank,” Computational linguistics, vol. 19, no. 2, pp.
313–330, 1993.

[26] O. Babko-Malaya, “Propbank annotation guidelines,” URL: http://verbs. colorado.
edu, 2005.

[27] M.-C. De Marneffe, B. MacCartney, C. D. Manning et al., “Generating typed depen-
dency parses from phrase structure parses,” in Proceedings of LREC, vol. 6, no. 2006.
Genoa Italy, 2006, pp. 449–454.

[28] K. Mazidi and P. Tarau, “Infusing nlu into automatic question generation,” in The 9th
International Natural Language Generation conference, 2016, p. 51.



89

[29] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa, “Natu-
ral language processing (almost) from scratch,” Journal of Machine Learning Research,
vol. 12, no. Aug, pp. 2493–2537, 2011.

[30] S. B. Chatman, Story and discourse: Narrative structure in fiction and film. Cornell
University Press, 1980.



APPENDICES



90

A. APPENDIX: ALICE QUESTION GENERATION

Table A.1.: Initial QA Templates

No Template Template Structure

1 MADV1 Q: What + aux + lower Arg + do to + higher Arg +

(Asks about the ArgM ADV + ?

predicate) A: lower Arg + V + higher Arg

2 MADV2 Q: Who + V + higher Arg + ArgM ADV + ?

(Asks about the A: lower Arg

subject)

3 MADV3 Q: What + aux + lower Arg + V + ArgM ADV + ?

(Asks about the A: lower Arg + V + higher Arg

object)

4 MADV4 Q: What happens to + lower Arg + ArgM ADV + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

5 MADV5 Q: When + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM ADV

modifier adverbial)

6 MMNR1 Q: What + aux + lower Arg + do to + higher Arg +

(Asks about the ArgM MNR + ?

predicate) A: lower Arg + V + higher Arg

7 MMNR2 Q: Who + V + higher Arg + ArgM MNR + ?

(Asks about the A: lower Arg

subject)

continued on next page



91

Table A.1.: continued

No Template Template Structure

8 MMNR3 Q: What + aux + lower Arg + V + ArgM MNR + ?

(Asks about the A: lower Arg + V + higher Arg

object)

9 MMNR4 Q: What happens to + lower Arg + ArgM MNR + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

10 MMNR5 Q: How + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM MNR

modifier manner)

11 MLOC1 Q: What + aux + lower Arg + do to + higher Arg +

(Asks about the ArgM LOC + ?

predicate) A: lower Arg + V + higher Arg

12 MLOC2 Q: Who + V + higher Arg + ArgM LOC + ?

(Asks about the A: lower Arg

subject)

13 MLOC3 Q: What + aux + lower Arg + V + ArgM LOC + ?

(Asks about the A: lower Arg + V + higher Arg

object)

14 MLOC4 Q: What happens to + lower Arg + ArgM LOC + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

15 MLOC5 Q: Where + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM LOC

modifier location)

continued on next page



92

Table A.1.: continued

No Template Template Structure

16 MTMP1 Q: What + aux + lower Arg + do + higher Arg + ArgM

(Asks about the TMP + ?

predicate) A: lower Arg + V + higher Arg

17 MTMP2 Q: Who + V + higher Arg + ArgM TMP + ?

(Asks about the A: lower Arg

subject)

18 MTMP3 Q: What + aux + lower Arg + V + ArgM TMP + ?

(Asks about the A: lower Arg + V + higher Arg

object)

19 MTMP4 Q: What happens to + lower Arg + ArgM TMP + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

20 MTMP5 Q: When + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM TMP

modifier location)

21 ARGU1 Q: What + aux + lower Arg + do to + higher Arg + ?

(Asks about the A: lower Arg + V + higher Arg

predicate)

22 ARGU2 Q: Who + V + higher Arg + ?

(Asks about the A: lower Arg

subject)

23 ARGU3 Q: What + aux + lower Arg + V + ?

(Asks about the A: lower Arg + V + higher Arg

object)

continued on next page



93

Table A.1.: continued

No Template Template Structure

24 ARGU4 Q: What happens to + lower Arg + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

25 DCNJ1 Q: What happens when + Subj + V + Dobj + Nmod + ?

(Asks about the A: Subj + V + Dobj + Nmod + Conj

story from other)

clauses)

Table A.2.: QA Templates After Improvement

No Template Template Structure

1 MADV1 Q: What + aux + lower Arg + do + ArgM ADV + ?

(Asks about the A: lower Arg + V + higher Arg + higher Args

predicate)

2 MADV2 Q: Who + V + higher Arg + ArgM ADV + ?

(Asks about the A: lower Arg + V + higher Arg + higher Args

subject)

3 MADV3 Q: What is it that + lower Arg + V + ArgM ADV + ?

(Asks about the A: lower Arg + V + higher Arg + higher Args

object)

4 MADV4 Q: What happens to + lower Arg + ArgM ADV + ?

(Asks about the A: lower Arg + V + higher Arg + higher Args

predicate and)

the object)

5 MADV5 Q: When + aux + lower Arg + V + higher Arg +

(Asks about the higher Args + ?

continued on next page



94

Table A.2.: continued

No Template Template Structure

modifier adverbial) A: ArgM ADV

6 MMNR2 Q: Who + V + higher Arg + ArgM MNR + ?

(Asks about the A: lower Arg + aux

subject)

7 MMNR5 Q: How + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM MNR

modifier manner)

8 MLOC1 Q: What + aux + lower Arg + do + ArgM LOC + ?

(Asks about the A: lower Arg + V + higher Arg

predicate)

9 MLOC2 Q: Who + V + higher Arg + ArgM LOC + ?

(Asks about the A: lower Arg + aux

subject)

10 MLOC3 Q: What + aux + lower Arg + V + ArgM LOC + ?

(Asks about the A: lower Arg + V + higher Arg

object)

11 MLOC4 Q: What happens + ArgM LOC + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

12 MLOC5 Q: Where + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM LOC

modifier location)

13 MTMP1 Q: What + aux + lower Arg + do + ArgM TMP + ?

(Asks about the A: lower Arg + V + higher Arg

predicate)

continued on next page



95

Table A.2.: continued

No Template Template Structure

14 MTMP2 Q: Who + V + higher Arg

(Asks about the A: lower Arg + V + higher Arg + ArgM TMP

subject)

15 MTMP3 Q: Whom + aux + lower Arg + V + ArgM TMP + ?

(Asks about the A: lower Arg + V + higher Arg

object)

16 MTMP4 Q: What happens + ArgM TMP + ?

(Asks about the A: lower Arg + V + higher Arg

predicate and)

the object)

17 MTMP5 Q: When + aux + lower Arg + V + higher Arg + ?

(Asks about the A: ArgM TMP

modifier location)

18 ARGU2 Q: Who + V + higher Arg + higher Args + ?

(Asks about the A: lower Arg + aux

subject)

19 DCNJ1 Q: What happens when + Subj + V + Ccomps +

(Asks about the Xcomps + Dobj + Nmod + ?

story from other) A: Subj + V + Ccomps + Xcomps + Dobj + Nmod

clauses) + Conj



96

B. APPENDIX: USER EVALUATION

B.1 Instruction for Question and Answer Rating

Instruction

The goal of this evaluation is to rate question and answer (Q&A) pairs according to their

acceptability for literal reading, which means that the Q&A pairs are for basic understanding

for the facts that are presented in the text, and not about the implications, characters’

feelings, conclusions, etc. The Q&A pairs in this evaluation are intended to be carried by a

person and a virtual human. The virtual human is called Alice, who is the representation

of the character Alice from the Alice in Wonderland story. Therefore, the Q&A that will

be exchanged between the person and Alice is about Alice in Wonderland.

The question is the representation of the question that a person can ask to Alice, while

the answer is the representation of the answer that Alice can respond back to the person.

The question and the answer are not to be rated separately. Therefore, when the question

is good but the answer is strange, then a ”good score” cannot be assigned to this pair and

vice versa.

The focus of the evaluation is the awkwardness and the information that is being carried

away by the Q&A pairs. Grammars and pronoun references are not the focus of this eval-

uation, unless the grammars or the pronoun references create difficulties in understanding

the Q&A, then it can be categorized in the Awkwardness/Other problem. Please read the

sentence before rating the Q&A pair. Next, rate the Q&A pair according to the 5-scale

score which is described below. When score 2 or 1 is given, please give either ”Incorrect

Information” or ”Awkwardness/Other”, or both. Finally, please rate each Q&A pair in-

dependently. For example, if there are two similar Q&A pairs, please rate them the same

even though they seem redundant.



97

Fig. B.1.: 5-Scale Scoring System

Fig. B.2.: Explanation of Unacceptable or Bad Score Reason

Fig. B.3.: Example of rated Q&A pairs


	ABSTRACT
	Introduction
	Conversational Agents
	Dialogue Systems
	Virtual Humans
	Dialogue Management
	Finite-State
	Form-based
	Information-State
	Plan-Based

	ARIA-VALUSPA
	The Dialogue Manager of Alice
	The Domain Knowledge of Alice


	Question Generation
	Implementation of Question Generation
	Approaches in Question Generation
	Heilman and Smith
	Mazidi and Nielsen

	Discussion

	Alice Question Generation
	Pattern Observation
	Template Creation

	Initial Evaluation and Improvement
	Pre-Initial Evaluation
	Initial Evaluation
	Error Analysis and Template Improvement
	MADV
	MMNR
	MLOC
	MTMP
	ARGU
	DCNJ

	Evaluation After Template Improvements

	User Evaluation of Alice Question Generation
	Evaluation Measurement
	Evaluation Setup
	Error Analysis and Template Improvement
	MADV
	MMNR
	MLOC
	MTMP
	ARGU
	DCNJ


	User Study using QA Matcher
	Preparing the QAMatcher
	Follow-Up Question Strategy
	Risks on the Follow-Up Question Strategy
	Pilot Evaluation
	Improvement

	User Study Setup
	User Study Result and Discussion
	Result from the First Evaluator
	Result from the Second Evaluator
	Result from the Third Evaluator
	Result from the Fourth Evaluator

	User Study Conclusion

	Conclusion and Future Work
	Summary
	Conclusion and Future Work
	Automatic Question Generation for Virtual Humans
	User Study using QA Matcher


	REFERENCES
	Appendix: Alice Question Generation
	Appendix: User Evaluation
	Instruction for Question and Answer Rating


