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Abstract 

The Netherlands has a solid railway network focused on passenger transportation. With over 3700 
route km of rail network and 379 train stations, the rail system is the backbone of intermunicipal 
trips within the country. Disruptions during winter have caused negative impacts on several levels 
(including operational costs and passenger experience) and the authorities have noticed the 
importance of developing an approach to diminish rail vulnerability during the season. Therefore, 
the network operator (Dutch Railways - NS), the service provider (ProRail) and the Ministry of 
Infrastructure developed a project focusing on strategies towards winter disruption mitigation: 
The Winterweer op het Spoor – WS. This project has brought positive results based on constant 
monitoring and continuous propositions for improvements in the system. It has been running 
since winter 2012/2013 and there is an interest on academic level to improve the understanding 
of disruption phenomenon caused by winter on the rail network. 

Having that in mind, the evaluation of rail vulnerability to winter weather can bring further 
knowledge on the subject, leading to better and more appropriate mitigation strategies. 
Therefore, the objective of this research is to analyse and classify the vulnerability of the Dutch 
rail network based on its infrastructure and the disruption impacts on accessibility.  

With statistical analysis of historical data on winter weather disruptions, a vulnerability index was 
developed for each connection in the Dutch railway network. This index is mainly the combination 
of a link component based on infrastructure and a node component based on station potential. 
While the link component was developed using a regression model to estimate the probability of 
link disruption (based on infrastructure failure), the assessment of node importance (station 
potential) was carried out using weights for three specific node indicators: potential users, 
traveller ridership and station connectivity. These findings were necessary to answer the five 
proposed research questions for this thesis: 

1) What are main characteristics of winter-related disruptions in the Dutch rail network?  

2) Which railway infrastructure features are more sensitive to unexpected winter weather 
conditions and why?  

3) How can the likelihood of disruptions due to winter weather be estimated based on the 
encountered critical components? 

4) What network performance indicators can be used to understand the impacts of disruptions 
caused by winter weather and which are the encountered impacts on the Dutch railways in the 
developed study case?  

5) Which actions are currently being developed by NS and ProRail to decrease rail vulnerability 
(to winter weather) and are these actions focused on the most critical elements and in the most 
vulnerable regions?  

To compose a suitable dataset for the analysis three sources were used: weather data collected 
by the Royal Netherlands Meteorological Institute (KNMI), asset management disruption data and 
traffic management disruption data (both collected by the Dutch rail service provider, ProRail). 
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The goal was to relate the disruption cause, time and location to winter weather aspects such as 
low temperatures, relative humidity levels or presence of snow and freezing rain. 

The definition of the likelihood of disruption due to weather conditions, was based on component 
criticality. This means the most critical components (with the highest number of failures) were 
analysed for inclusion in the regression model. During this phase, it was verified that switches are 
accounted for over 75% of the identified causes of winter weather rail disruptions. Also, following 
the literature, switches have a key role in the operability of the rail network as they grant flexibility 
for track usage. In addition, the operation of this component is highly related to the safety of the 
rail transport system. These results supported the selection of switches as the main infrastructure 
element for the model. The sample size for the probability regression model was of 4300 switch 
winter-related disruptions. 

The switch probability regression model was established based on type of winter weather 
(snow/hail, frost/freezing rain, low temperatures), number of switches on the link and train 
frequency (low, medium, high). A log-logistic function was selected for the assessment, as it 
presented the best fit within the used range compared to the exponential and inverse potential 
functions. The product of this first step was the assessment of the probability of disruptions 
related to switches for each link within the rail network. 

As the role of the rail network is to transport passengers, it was defined that the station (node) 
potential must be included as a weight in the vulnerability index. The next step was then to 
embrace this variable in the index. 

As mentioned, the station importance was estimated based on three indicators: potential users, 
traveller ridership and station connectivity. The first indicator represents possible users of the rail 
system by estimating the number of users based on the amount of residents within a station 
catchment area. The second indicator is the number of passengers that entered or exited each 
Dutch station (daily average) in 2014. The last one, station connectivity, is an indicator developed 
by Harthold (2016) which classifies how well the station is placed within the network. This 
indicator is based on the number of necessary transfers for reachability of the station, meaning 
the better connected the station, the higher the index value. 

To understand the impacts on the network, and the importance of the studied stations, all 
possible routes within the network where analysed. The criticality of each route was calculated 
by assessing the node importance level (for the considered origin-destination - OD - pair) and the 
switch vulnerability sum of the links that compose the route. To define which links are to be 
considered in a route, a geographic information system (GIS) software for working with maps and 
geographic information was used. With ArcGis, the impacts of disruptions on accessibility were 
estimated using the Network Analyst tool. Therefore, the most critical routes (regarding winter 
weather disruption) were encountered and presented. 

Finally, the vulnerability levels per link were estimated by considering the number of routes that 
use the specified link, the sum of the switch vulnerability levels and the weight of the station 
importance of each OD pair. These findings enabled the development of a risk map defining which 
links are most vulnerable within the network.  
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It was observed that although the infrastructure presented critical locations throughout the 
network (the northern and southern parts of the country for example), the inclusion of station 
importance placed most vulnerable links within the Randstad region. This area is more active 
socially and economically in the Netherlands giving the node importance higher weighs during the 
assessment. It was also noticed that the most vulnerable links are located within station areas. 
This can be explained by the necessity of more switches due to the exit, entrance and transfer of 
passengers, demanding higher flexibility of the tracks. These links are a main concern and 
although efforts have been made to diminish the inoperability during specific weather 
circumstances, it is important to develop an improved implementation strategy.  

Having this in mind, the answers to the proposed research questions were encountered using the 
suggested methodology.  

Answering the first question, the weather characteristics accountable for rail components 
malfunction are high relative humidity levels (over 80%) and average temperatures under 0 
degrees Celsius. This is important to be considered in the WS used coding system. As the bureau 
already considers the presence of snow, freezing ice and low temperatures, a suggestion would 
be to include more specific measurements related to relative humidity. 

The second question was answered with the finding that most failures occur due to the 
malfunctioning of switches (almost 80% of the cases), especially in the Randstad area during 
December and January. The high number of switches in this region can result in failures due to 
snow/ice hampering the movement of the component or low temperatures causing malfunction 
within the communication system.  

The likelihood of component failure was assessed by carrying out a probabilistic regression (third 
research question). The number of switches per link, weather type and train frequency were 
analysed within three possible functions: exponential, inverse potential and log-logistic. As the 
log-logistic function presented the best fit, it was selected to represent component failure 
probability.  

The used station importance indicators based on potential users, traveller ridership and station 
connectivity were used to answer the fourth research question. Most critical routes lie within the 
Randstad, but in greater proportion of when compared to only considering rail infrastructure 
(regression model). The number of inhabitants, users and the quality of the rail connections built 
on the perspective of a stronger and more active economy concentrate station potential in the 
region. The reduction of trip flexibility results in longer trajectories with more transfers and 
diminishes the levels of accessibility of the rail users.  

The fifth research question focused on understanding the outputs of the winter mitigation 
program. During the development of the thesis it was verified that the improvement measures 
have a string focus on the operability of switches. As this device is the most critical regarding 
winter weather disruptions, it is concluded that the mitigation strategy is in accordance with the 
estimated vulnerability levels.  

To understand the impacts of the implementation of the WS in more detail, scenarios were 
developed to understand the variations in the vulnerability considering a decrease (scenario 1) 
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and an increase (scenario 2) in the number of switches in the network. After the comparisons with 
the baseline (calculated vulnerability index), it was concluded that the investments in switch 
improvement (point heaters) and fixed switches has the capability of diminishing disruption 
likelihood. 

It is however important to note that the fixation of switches during winter has a critical drawback: 
the strategy has negative impacts on track capacity as it reduces flexibility. As service provider has 
clear intention of intensifying frequencies in the future, this specific approach should be 
reconsidered and classified as a short-term solution. Investments in research to better understand 
the functionality of switches during winter and the disruption characteristics would be of most 
value. 

A list of mitigation strategies was developed and presented in the appendix of this thesis. They 
are based on best practices of countries that have faced winter disruption issues on their railways. 
These findings can provide valuable outcomes and solutions for improving the Dutch rail 
performance during winter season. 
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1. Introduction to the Report 

1.1 About the Topic and its Importance in Modern Society 

To uphold a competitive, effective and suitable rail transportation system for passengers, it is 
essential that service providers realize successions of synchronized activities related to planning, 
maintenance and operation of the railways. Unfortunately, unexpected events still arise and may 
result in malfunctioning or disruption of the network. These occurrences must be studied for 
provision of a more resilient arrangement. Extreme weather conditions and/or incidents, for 
example, can result in the need of track service interruption. This affects the entire system, which 
needs to recover its operability. By balancing trips on alternative tracks, delaying other 
connections and cancelling when necessary, the train schedule can be recovered, but this results 
in negative effects on time-tables, higher resource demand and additional operational costs. 

Although trains have proven to be an attractive alternative for avoiding nowadays inner city 
congestions, rail networks are more sensitive to disruptions than road networks. The impossibility 
of surpassing obstacles positioned on the tracks makes the sector quite inflexible. Trains cannot 
easily overcome a disruption and there are less detour possibilities for reaching destinations 
(stations). Partial and total blockages usually result in extra travel times, worsening the traffic flow 
and the confidence in the system. To reduce the negative impacts of a disruption, a structured rail 
network relies on a series of mitigation approaches and strategies to avoid its occurrence and to 
enhance the speed of recovery in case it is inevitable. These activities are directly related to the 
reestablishment of normal network conditions.  

For elaborating a structured mitigation approach and an optimized recovery plan, the rail 
operators must recognize its dominant links as well as each related vulnerability level. Predictions 
should be modelled to estimate the probability of disruption for specific operational conditions. 
Efforts must be directed for diminishing vulnerability and personnel must be trained to act 
promptly in case of any track interference.  

Estimating vulnerability indexes for rail connections and previewing the impacts of a disruption in 
the network support the improvement of performance. By investing in new technologies, staff 
training and better structured management and communication systems, it is possible to improve 
vulnerability levels, increase overall standards and identify which links need prioritization. Also, 
the monitoring of the disruption activities can provide important inputs and guide the operator 
on future investments.  

The Dutch Railways (2016), classify the causes of unexpected disruptions in four categories: 
weather, technical, third parties (people or animal related e.g.) and errors during activities. Heavy 
snowfalls (hampering the functioning of switches/crossings), electrical blackouts (temporarily 
disabling signals and computer systems) or people walking along the tracks (causing trains to run 
slower or stop) are listed as examples. The duration of the interruption depends on location, time 
of day, intensity and cause. These factors also have influence on the velocity of the recovery, but 
even the smallest disruption can negatively affect the smoothness of the system. It is therefore 
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essential that rail operators focus on the mitigation of the causes to diminish the propagation of 
the effects. 

This thesis has the objective of identifying the most vulnerable connections of the Dutch railway 
network in relation to winter weather. Also, the impacts of disruptions will be analysed in order 
to consider how winter weather susceptibility might reduce performance by listing the most 
critical routes during winter season. The final output is a risk map which enables a clear 
visualization of the level of vulnerability of the connections. This document will enable better 
planning of resources for disruption mitigation and maintenance arrangement. It will also support 
the operators when directing investments on technological improvements providing a more 
efficient recovery system.  

The report is structured in four main sections. In the first chapter, an introduction on the topic of 
research is developed to provide some background information and elucidate the importance of 
the subject. The same section also describes the research context and the problem definition 
which clarifies why the subject has been selected, which are the research questions and how they 
are to be answered. The theoretical framework (chapter two) has the objective of covering how 
the theme is emerged in modern society and at what level is it acknowledged by the industry and 
academic field. Here, the definitions used in this report are described and analysed. Also in this 
section, recent technologies and strategies to overcome the problems faced by rail disruption are 
investigated in more detail. The third chapter explains the Dutch rail study case. In this segment, 
the taken steps in the assessment of the vulnerability index, the analysis of the data, and the 
assessment of route criticality are described. The construction of the risk map that considers 
vulnerability to winter and the accessibility impacts is also clarified. The fourth chapter is an 
overall discussion on the theme, the encountered limitations of this study and which 
recommendations arose, followed by the conclusions of this thesis. Lastly, a list of all the used 
references is presented. They are the basis for the literature review, the selection of goals, data, 
methodologies, and tools needed for the research. 

1.2 About the Research 

The Netherlands has a dense railway network which is responsible for the transportation of 
millions of people. Disruptions in the system can cause major impacts on operation management, 
costs and passenger experience. A strategy to improve reliability has the capability of reducing 
the number of occurrences and supports faster network recovery. 

Disruptions can be classified as expected or unexpected events, which mean they can be planned 
or unpredicted. Unexpected disruptions are mainly caused by bad weather conditions, technology 
failures or people behaviour/actions. These include for example, heavy storms, communication 
interruption or people invading secured areas.  

Analysing the available dataset permitted the confirmation that most disturbances are classified 
as technological. Technical failures include a wide range of system malfunctions adding up to 33 
classification possibilities, including the communication, traffic monitoring and train detection 
systems. The main issue within the technological failures is the difficulty of accurate classification. 
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As the problems are usually not mechanical, they are of high complexity regarding the analysis of 
the main cause and demand a great deal of time to track and understand failure types and 
systems. Also, due to the complexity, the most registered technical related disruptions were not 
encountered (approximately 25%) and classified as unknown, bringing an undesired bias level 
within the analysis and demanding a more structured and extensive analysis on each level. 

On the other hand, weather has a 9-level classification of disruption, including lighting, rain, 
snow/hail, among others. Winter weather disturbances accounted for around 37% of the 
weather-related disruptions, which places winter within the most critical weather for train 
operations. Also, winter weather disruptions have proven to be a concern after disastrous 
operation experience during difficult weather conditions between 2009 and 2012. The number of 
delays, cancellations and unsatisfied clients proved the rail operators that this specific season 
needed special attention. For these reasons, the understanding of winter weather disruptions and 
the vulnerability of the railways to this condition will bring value to the operators and passengers. 

Winter disruptions varied a great deal within the data set frame and although winter related 
issues have gradually diminished over the past decade (which can be explained both by milder 
winters and extensive mitigation programs) these events still are likely to occur. The service 
provider invests yearly in operational improvements to mitigate winter related disruptions 
(Winterweer op het Spoor Program - WS). Having that in mind, the objective of this research is to 
evaluate rail track vulnerability to winter weather based on infrastructure criticality and impacts 
caused on accessibility. In addition, some of the mitigation strategies developed within the WS 
program will be analysed. 

The first step of the thesis was the development of a winter weather vulnerability index based on 
rail infrastructure. As the data set has mal-functioning per system type, an assessment on the 
most critical systems was carried out to measure the likelihood of failure. The initial analysis was 
important to understand which systems are more sensitive to winter weather. The results proved 
that moving devices, such as switches and turn-outs are responsible for nearly 80% of winter 
related disruptions. With this information, the most vulnerable links in relation to winter weather, 
switches and train frequency were identified.  

In order to add the impacts on performance, potential users, traveller ridership and station 
connectivity were analysed in a network perspective. This step enabled the inclusion of node 
potential in the vulnerability index, bringing the values closer to a realistic level. With these new 
inputs, a risk map classifying the criticality of each link was developed. The visualization of links 
that have higher risk levels permits a clearer overview of the behaviour of the system and provides 
guidance on how to implement disruption mitigation approaches.  

Finally, the research questions of this report were:  

1) What are main characteristics of winter-related disruptions in the Dutch rail network?  

2) Which railway infrastructure features are more sensitive to unexpected winter weather 
conditions and why?  
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3) How can the likelihood of disruptions due to winter weather be estimated based on the 
encountered critical components? 

4) What network performance indicators can be used to understand the impacts of disruptions 
caused by winter weather and which are the encountered impacts on the Dutch railways in the 
developed study case?  

5) Which actions are currently being developed by NS and ProRail to decrease rail vulnerability 
(to winter weather) and are these actions focused on the most critical elements and in the most 
vulnerable regions?  

For this thesis, data was collected from various sources, such as open published data (Dutch 
Bureau of statistics – CBS; Royal Netherlands Meteorological Institute - KNMI), previous studies 
on the Dutch Railways and internal reports provided by Arcadis. The theme is indispensable for 
improving rail services and is an interesting tool to diminish the risk of trip delays and cancellations 
during winter seasons. The comprehension of the rail system functionality supported evaluating 
the main reasons of sensitivity to winter weather and is used as basis for the suggestions of 
mitigation approaches.  

1.2.1 Development 
This research was developed in four phases covering the necessary steps to answer the defined 
research questions. The first was the analysis of weather and rail main characteristics, including 
descriptive statistics and correlations. The definition of the methodology was carried out in the 
second phase and supported by encountering a reliable measuring technique to evaluate rail 
vulnerability. In this stage, the development of a model that estimates disruption probability 
based on rail infrastructure was performed. The third step deals with the impact analysis on 
network performance in the interest of including a weight on accessibility levels. For this study, 
routes were analysed in relation to the encountered component failure probability, and the most 
critical listed. The last phase was the elaboration of the risk map using a vulnerability index for 
each rail link. Figure 1 represents the outlines of the development of the thesis. 

 

Figure 1 – Research Development 
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1.2.1.1 Descriptive Statistics 

Step 1: Analysis of Rail Disruptions and its Corrections with Winter Weather  
The first step was the deepening of the understandings on rail system functionality and its 
sensitivity to winter weather. During this phase, winter weather data was collected from the 
Koninklijk Nederlands Meteorologisch Instituut (KNMI), the Dutch website for open source data 
on weather, and linked to the provided data on rail disruptions. The original data sets were 
combined and organized in a matter to prioritize the relevant variables for this report. The size 
and characteristics of the examined network were defined after analysing the type, quantity and 
quality of received data. Also, the disruptions where classified by operational system failure.  

Descriptive statistics provided answers to two of the proposed research questions (question 1 and 
question 2). These questions are related to the main characteristics of winter-related disruptions 
and the infrastructure features that are more sensitive to winter weather. It was verified that low 
temperatures in addition to extremely high relative humidity were present in over 80% of the 
disruptions. Switches are the most vulnerable rail component to winter weather and the reasons 
of malfunction and/or failure where discussed with rail specialists within Arcadis and ProRail. 

During the statistical analysis, the Winterweer op het Spoor program was also studied in more 
detail. This project, initiated in 2012, is based on several efforts on different levels to diminish the 
likelihood of winter-related disruptions. The program is supported by the Ministry of 
Infrastructure and is described in within the study case section.  

1.2.1.2 Methodology 

Step 2: Definition of the Methodology and Assessment of Component Failure Probability 
Based on the theoretical framework, it was possible to develop a vulnerability index which 
considers three rail winter disruption characteristics: identified weather condition, operational 
system and link activity. The development of a probabilistic regression model was used and the 
likelihood of switch disruption estimated answering research question 3. The data went through 
cross tabulation and a probability curve was developed. Using three regression models 
(exponential, inverse potential and log-logistic), an estimation was predicted and the one with 
best fit (log-logistic) selected to represent the likelihood of disruption.  

Step 3: Impact Analysis on Network Performance 
After a disruption in the network, a series of events occur in a chain. Trains stop, make detours, 
schedules change and are trips are cancelled. Operators redefine tasks, regroup, pass on new 
updates on travel information and provide resources for the recovery phase of the disruption. As 
can be noticed, the impact of the incident can affect many sectors, and it is vital to understand 
that each node (station) has different importance levels in the functioning of the network.  

During this step, indicators for evaluating the importance of the station were de developed 
answering research question number 4. Based on the scheme presented by Geurs & van Wee 
(2004), the accessibility was analysed founded on land use, individual and temporal components 
(potential users, traveller ridership and station connectivity) and used to analyse the impacts of 
winter disruptions on network performance. The encountered impacts were assessed by 
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analysing the most critical routes in the network, showing that disruptions in the Randstad affect 
more users and imply in delays and performance reduction. 

1.2.1.3 Results 

Step 4: The Vulnerability Index and the Development of a Winter Risk Map  
The last phase of this research included the development of a risk map which enables a clear 
visualization of the most critical links in relation to winter weather. To establish the vulnerability 
of each rail connection, a combined calculation was carried out by multiplying the switch 
disruption likelihood, a weighted value for the node importance and the number of routes that 
use the specific link. Each connection was classified within one of the defined vulnerability levels: 
not applicable, very low, low, medium, high and very high vulnerability. The not applicable range 
is composed by links that have no switches or did not present any disruptions within the data used 
for the estimation of the index. This document provides suggestions on which sections need to be 
carefully monitored and/or improved within the network.  

Using the findings in the descriptive statistics section (step 1) on the Winterweer op het Spoor 
program and the final vulnerability values, research question 5 was answered. The actions that 
are currently developed by NS and ProRail to decrease rail vulnerability (to winter weather) were 
discussed and the measures focused on switches analysed. The locations of the implementations 
were studied and cross checked with the encountered most vulnerable regions in the risk map. 
Also, scenarios were developed to analyse the variations of the vulnerability following the number 
of switches on a link. The results prove that an increase of switches will cause more disruptions 
while new investments on technology or management can decrease occurrence. 

1.2.2 Encountered Contributions 
Overall, the contributions were generated in two different sectors:  

Contribution to Theory: The purpose of this research was to develop a combined methodology 
to determine rail vulnerability including the impacts on network performance. The outcomes 
provide a new technique for analysing disruptions related to winter weather. These findings can 
be used also for the analysis of other weather-related transportation disruptions.  

Contribution to Practice: The classification of link vulnerability related to winter weather and the 
creation of the risk map supports overall improvements in resource management. In addition, 
maintenance plans can be prearranged in a more optimal form and directed investments can be 
applied in critical areas. The application of new technologies and strategies is a window of 
opportunity to increase rail reliability and resilience.  

Transportation Engineering has for a long time supported researches in this field due to its 
connection with social and economic improvements. Railways have a significant role in trip 
distribution and is fundamental for the development of a more sustainable transportation system. 
Finally, Arcadis has a key role in supporting development towards rail excellence. The company 
has established several projects on rail development and is in hold of expertise in the area. The 
accomplishment of this research consequently adds value to the ideologies behind the company 
and promotes a more engaged transportation system within the Netherlands. 
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2. Part I: Theoretical Framework  

2.1 Introduction to the Theoretical Framework 

Sustainable transportation is directly related to social and economic development. Deakin (2001) 
argues that there is currently a distinct approach towards sustainability of land use and 
transportation. In this setting, sustainable transportation can be linked to a system that supports 
mobility while preserving human and ecosystem health, economic progress, and social equity. In 
relation to passenger transportation. In other words, accessibility has become an important 
indicator of wellbeing and development. 

According to Litman (2016), accessibility can be defined as the ability to reach goods, services and 
activities in which transportation systems play the main role. Several aspects can affect 
accessibility, which include mobility, the quality and affordability of transport options, transport 
system connectivity and land use. Geurs & van Wee (2004) consider four accessibility components 
from the different definitions and practical measures: transportation, land-use, temporal and 
individual. Within the transportation process, events might diminish the operability of the system. 
Vehicle incidents and accidents, badly managed public transport services, low quality 
infrastructure and poorly developed integration systems can reduce the accessibility of a 
community, bringing many problems related to social and economic development. Disruptions 
can be inevitable and/or unpredictable as the vulnerability of the system depends on a diversity 
of variables. Nevertheless, an estimation of the most critical locations is possible and has turned 
out to be a valuable tool for planning resources and mitigation strategies. 

To provide an efficient planning policy for transportation systems, policy makers, transport 
operators and authorities need to understand the causes and impacts of disruption to maintain a 
well-structured and resilient system. Having that in mind, authorities have worked together for 
increasing transport resilience and consequently diminishing vulnerability. The goal is to improve 
traffic throughput and avoid service interruptions. 

2.2 Transportation Vulnerability 

Globalization has brought modern society a new view of relevance to transportation system 
vulnerability. The need of useful and quick connections between different networks or within 
networks are necessary for adequate functionality in the case of performance loss or disruptions. 
Jenelius et al (2006) attributes the increase of studies on this theme not only to globalization and 
military activities, but also to the shocking terrorist attacks in Kobe (1995) and New York 
(September 11, 2001) during the last decades.  

Disruptions in transportation can be caused by several reasons and are usually classified as 
unexpected events or intended interventions. Unexpected events, such as poor weather 
conditions and accidents cannot be completely predicted, but assuming chronological factors, can 
be modelled based on the leading causes (critical weather conditions, imprudence, infrastructure 
conditions and overall characteristics). Intended interventions such as maintenance operations 
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are necessary for preserving the system and the impacts of disruption are more easily overcome 
due to prior strategical planning. The impacts due to unexpected events have great resource 
mobility paradigms. Many professionals must be involved and the actions need to be prompt to 
diminish the negative effects related to the disturbance. The improvement of vulnerability levels 
can provide less chances of occurrence and faster recoveries. Understanding the limitations of the 
network, knowing the vulnerability rates, studying probability scenarios and estimating network 
impacts will enable operators to perform improved services. 

The definitions on vulnerability and related measures pleat over various comparable insights. As 
stated by Mattsson & Jenelius (2015), there is no commonly accepted definition for vulnerability. 
The used meaning mostly depends on the context it is inserted in. The author defines vulnerability 
as being the susceptibility to incidents that can result in reductions of network serviceability. 
Reggiani et al (2015) describes it as being the non-operability of the network under fluctuating 
circumstances and goes a little further linking vulnerability to network weaknesses and reliability 
to network performance. Another definition on vulnerability stated by Mattsson & Jenelius (2015) 
is it as society’s risk of transportation disruptions and degradations, conceptualizing risk as the set 
of possible combinations between cause, probability and consequence.  

Vulnerability has developed over many meanings in the engineering sector. According to Miller et 
al (2010), the term has intensive correlation to resilience which represent two related yet 
different approaches to understanding the response of a system. While vulnerability is applied as 
a core concept when analysing failure, resilience focuses on recovery and return time following a 
disturbance. Other resilience and vulnerability related definitions widely mentioned are criticality 
(Jenelius et al, 2006; Taylor, 2012; Rodriguez-Nunez & Garcia-Palomares, 2014), which can be 
defined as the probability and consequences of component failure; and reliability (Reggiani 2015, 
Vromans 2006), as the operability of the network, which in Europe is usually evaluated by 
measuring average delays and observed punctuality.  

Still following Mattsson & Jenelius (2015), the literature on transport system vulnerability has two 
distinct traditions with limited interaction: the topological vulnerability analysis of transport 
networks and the system-based vulnerability analysis of transport networks. The first is 
characterized by presenting the transport network through nodes and links, which can be 
classified as undirected (no order between the connected nodes), directed (start and end node of 
each link), unweighted (same link lengths), weighted (different link lengths). The second, focuses 
on the representation of the structure of the real transport system. In this case, the network is 
frequently weighted regarding actual link lengths, travel times, costs or generalised costs. Here 
travel demand is often modelled.  

Rail transportation also relies on a series of strategies to diminish disruption occurrence. The 
system is more inflexible than road networks resulting in larger difficulties for rearrangement. As 
even the slightest disturbance can end up in knock-off effects (overlapping train schedules) it is 
fundamental that operations are planned to an optimized recovery process and cancellations used 
when necessary to diminish delays on subsequent vehicles. This is only possible when the service 
provider understands the system, the operation and its limitations, reason why the estimation of 
vulnerable locations is fundamental for disruption mitigation and traffic improvement. 
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2.3 Railway Vulnerability 

The risk of transportation disruptions and degradations on this specific system presents an even 
more worrying situation in the case of railways. As mentioned, the inflexibility of the rail systems 
results in the need of a more structured approach towards a disruption mitigation plan. This is 
mostly due to the appalling impacts that can arise during a rail interruption.  

The negative impacts tend to be higher on rails because of the systems main characteristics: 
distinguished accessibility of the tracks, complexity of vehicles and remote surrounding 
infrastructure. These aspects result in the necessity of a compound recovery plan, which involves 
several entities, distinguished investments and qualified work force.  

Even the smallest disruption on a railway can have a disastrous result. The necessity of 
maintaining tight schedules with small dwelling times and the dependency of vehicle 
synchronization balance on a thin line. Many times, its wiser to cancel a trip to avoid knock off 
effects than to risk worsening of the situation by increasing travelling speeds to make up for the 
lost time.  

Improvements in network vulnerability sustain a better arranged recovery strategy. To plan 
implementations for vulnerability mitigation, the operator must understand the type, frequency, 
cause and impacts of the disruptions and set targets regarding sections, infrastructure and 
component characteristics.  

Delgado & Aktas (2016) suggest an approach focusing on awareness of safety, sustainability, and 
timeliness towards a more resilient rail system. They analyse the existing infrastructure of the 
Northeast Corridor of the U.S. highlighting current problems and future potential hotspots. The 
developed strategies are based on the overall improvement of the system resilience and the 
recommended changes are based on the implementation of existing technologies or making 
structural upgrades to specific tracks and bridges. The strategies include the necessity of capital 
investment in its infrastructure, well-structured and monitored track and wheel maintenance, 
implementation of a advanced system to optimize track occupation and increase the signalling 
system’s overall reliability, improvement of the heat resistance on movable bridges, upgrading of 
the electrical infrastructure reliability (focused on the catenary system) by investing in projects to 
develop flexibility towards temperature oscillation, enhance and expedite maintenance and 
repair routines to ensure maximum railcar availability.  

As described before, the causes of unexpected disruptions can be classified in relation to weather, 
technology, third parties or errors during operations. They have different intensities, impacts and 
recovery strategies and depend on a series of approaches to be mitigated. The academic sector 
has publications on all three classified disruption types. Study cases on rail, weather, technology 
and society have been carried out in several cities and regions around the world. William Brazil et 
al (2017), for example, has analysed weather related train delays on the metropolitan rail in 
Dublin, while failure analysis and diagnostics for railway trackside equipment has been studied by 
Marquez at al (2007). Some examples of people related rail disruptions are: “Suicides on 
Commuter Rail in California: Possible Patterns” by Botha et al (2010) and “Analysis of railway 
fatalities in central India” by Wasnik (2010) which also focus on the social part of the incident.  
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2.3.1 Winter Weather Effects on Rail Transport 

In this thesis, the focus is weather related disruptions, the methods to evaluate the system and 
strategies to overcome the related negative impacts. As rail operators deal with a diversity of 
weather-related conditions, some are particularly challenging for rail transportation, it is 
important to focus on their main causes and characteristics. Many problems are yearly caused by 
build-ups of rain, ice and snow. While precipitation and fog affect visibility and extreme heat can 
bend tracks, heavy winds might lead to blow-over of railcars. Snow, frost and hail can result in 
long delays or even complete shutdowns (Rossetti, 2007). 

According to Marteaux (2016), the costs of bad weather conditions are high and are likely to 
increase with climate change in the coming decades. Although overall temperatures are trending 
to increase resulting in warmer winters, the intensification of storms and precipitation are the 
main concern. This fact may aggravate the frequency and intensity of disruptions to rail 
operations, which can result in more damage to infrastructure and components, more train delays 
and cancellations. Climate change adaptation projects should be developed focusing on suitable 
economic and financial methods, previewing and avoiding major network disruptions.  

As excessive snow, ice and frost are one of the major issues on northern European rail networks 
(International Union of Railways, 2016) it is currently a subject of great interest. Delays caused by 
snow and ice can lead to loss of economic efficiency, possible damage of tracks and decrease of 
safety (Rossetti, 2007). Although there are many rail devices that might cause a disruption, rail 
switches and crossings are specially monitored due to their high sensitivity to winter weather. The 
moving parts of these devices can be damaged or present malfunctioning in case snow and ice 
piles up within them. Problems due to switch malfunctioning are the most common reason for 
infrastructure disturbances during the winter period (Kloow, 2011). 

Rail operators have extensive knowledge on weather related risks and have started to develop 
mitigation plans for disruptions caused by climate change, but a greater investment and support 
is required to maintain an effective rail system (Marteaux, 2016). Predicting the impacts of winter-
related weather on transport infrastructure is yet an inexact science and the research community 
has the expertise to support the rail industry in developing effective, flexible and affordable 
strategies for overcoming this challenge.  

2.3.2 The Impacts of Disruption on Network Performance 

Vulnerability and disruptions have a negative effect on the railway network performance. As the 
inflexibility of defining new routes results in inoperability, trains tend to suffer knock-off effects 
causing delays and cancellations. Differently from other types of network systems, which usually 
have many possibilities for balancing connections in case of disturbances, rail networks are 
generally more sensitive due to its dependence on the infrastructure. Having that in mind, service 
interruptions have a great influence on customer satisfaction. The users of rail tend to be very 
selective and a reliable network makes a big difference on the distribution of modal share.  

As rail networks present limited options to redirect trains, disruptions may immediately incite 
delays and cancellations on subsequent trains. A steady risk assessment supports the 
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diminishment of impacts after disruption and a well-structured and trained staff that makes fast 
and appropriate decisions, enables quicker recovery. 

The development of a full risk assessment is necessary to identify threats, vulnerabilities and 
evaluate the impact on rail network assets, infrastructures and systems. Giannopoulos et al (2012) 
argues that the probability of the occurrence is a critical element and differentiates risk 
assessment from a typical impact methodology. The authors state that a linear approach is 
relatively common: Identification and classification of threats, identification of vulnerabilities and 
evaluation of impact. They stress that methodologies that aim at assessing risks at a higher level 
involve additional refinement. In other words, the level of detail and methodology will mostly 
depend on the scope and the chosen target group, as the information must meet the 
requirements of the professional that will use it (for example a rail operator, decision planner or 
policy maker). 

According to Rausand (2011) the objective of risk analysis is to find answers for three fundamental 
questions: What can go wrong? What is the likelihood of that happening? What are the 
consequences? Systematic use of data is essential to identify these hazards and estimate risks to 
individuals, property and the environment. The methods of assessing rail vulnerability standards 
depend on the objective of the user of the information. Probability levels can orient and guide the 
service providers on type and location of needed improvement investments. 

2.4 Assessment of Vulnerability Levels 

To support the development of a less vulnerable transport system, operators need to direct 
efforts in locating the most susceptible connections and their impacts on the transportation 
network. The selection of a research methodology is a complex step in the research process as 
the subject has a wide range of developed studies using different and combined techniques. The 
first stage towards defining the used methodology for rail risk assessment is the selection of 
measurement approach. In accordance to Hughes & Healy (2014) the selection of a methodology 
can be assessed through qualitative or quantitative frameworks.  

Qualitative measurement approaches are carried out by setting relevant principles and defining 
measurement categories while a quantitative context undertakes more detailed analysis and 
modelling defining correspondent indexes. The developed scheme enables a more precise 
selection of the methodology approach based on features related to characteristics in which data 
requirements, computational supplies, ease of implementation and flexibility are included. It is 
also possible to carry out a combined approach. This strategy is interesting because it uses 
quantitative analysis when the inputs are available and reliable and a qualitative framework when 
the data is incomplete or requires a flexible methodology. 

A complete approach can be structured in three steps: the assessment of vulnerability levels 
within the network to a specified condition, the analysis of disruption impacts in the network and 
the selection of proper mitigations strategies. These phases are described in the next sections. 
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2.4.1 Measuring Rail Vulnerability 

There are several methods being used for estimating rail vulnerability. Researchers have 
developed different techniques that combine modelling and simulation for several related 
disruption causes. Each approach depends on the quantity and quality of available data and is 
developed based on which characteristics the study is constructed on. 

For estimating rail vulnerability in relation to flood events, Hong et al (2015) used the link 
vulnerability computation method. This indicator is based on the perspective that if a railway link 
is in a high weather incident frequency area with low instances of disruption, then its vulnerability 
should be low. Similarly, if a link is in a low frequency event area but has been disrupted frequently 
in the past, then its vulnerability should be high. Using two basic assumptions: (1) all segments 
along a railway link have the same failure probability; (2) different areas in a province have similar 
geographical and climatic conditions. The authors estimate failure probability based on the link 
length, the number of disruption events in the province (over time), and the total length of railway 
links in the province.  

Hong et al (2015) used method is interesting when the research focuses on weather related 
disruptions. On the other hand, rail infrastructure has great variations of components within each 
section. If the study case has information on infrastructure characteristics, the probability of 
malfunctioning/failure and related consequences can provide a more accurate approach. Erath et 
al (2009) for example, carried out a study on vulnerability of network components. The 
vulnerability was calculated by analysing the probability of it experiencing failure due to a given 
hazard event multiplied by the sum of the direct or indirect natural hazard consequences. 

Knoop et al (2012) used a combined approach for road disturbance, where the selected indicators 
were included to find the most vulnerable road links. It was assumed that the complete dynamic 
simulation of all possible blockings had an accurate result on the vulnerabilities. Supposing all 
indicators worked equally well, simulations on each variable were carried out. Knoop et al (2012) 
agrees that the method shows the proximity of each indicator to the result of the full dynamic 
simulation. It is important to highlight that the authors did not consider spill over effects, which 
can be critical for correct vulnerability evaluation. 

To build a model that considers a wide range of variables a more generic method must be 
implemented. A probabilistic approach enables the inclusion of different variable categories in a 
simple yet sophisticated matter. Probabilistic models have been developed throughout many 
fields for understanding phenomenon behaviour, and with transport it hasn’t been different. Viti 
& Zuylen (2010) developed a model for the prediction of traffic at control signs while Sigbjörnsson 
& Snæbjörnsson (1998) developed a model for the probabilistic estimation of wind related 
accidents of road vehicles. Probabilistic modelling has supported the development of the artificial 
intelligence field and has significant importance when providing tools for the analysis of historical 
data. This technique was and is being applied in a variety of transport engineering related fields 
and is powerful since it focuses on the number of events, removing some of the biasness of when 
other characteristics are not included. 
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2.4.2 Analysing Disruption Impacts on Performance 

The impacts of disruption can be estimated in different forms. Vilko & Hallikas (2011) for example 
carried out an interview process using expert panel discussions to determine the impacts and risk 
probability, while Harris (2006) suggests a modelling approach for a specific case of trains delay 
probability. Hong et al (2015) applied a model to compute system-level vulnerability of the 
Chinese Rail System using a time-independent vulnerability metric which integrates the 
interruption durations.  

Cats & Jenelius (2014) developed a model for supply and demand interactions to evaluate the 
impacts of disruptions in a more refined manner. Most studies until then considered basically the 
network topology and the authors argue that the granular nature of services requires a more 
sophisticated approach. The measures of centrality (often used to identify potentially important 
links) from the perspectives of both operators and passengers are elucidated. Yu & Lin (2008) 
discuss about three possible performance indicators for a transit system: cost efficiency, service 
effectiveness, and cost effectiveness. Cost efficiency is defined as the ratio of outputs to inputs, 
service effectiveness as the ratio of consumption to outputs, and cost effectiveness as the ratio 
of consumption to inputs. To follow what is suggested by Yu & Lin (2008), it is necessary that data 
on expenses are available. The impacts on cycle time, throughput and delay propagation are also 
suggested as indicators of network performance (Goverde & Odijk, 2002).  

The impacts caused in a network can also be analysed considering accessibility components as 
described by Geurs & van Wee (2004). The selection of the network performance indicators 
depends on the availability of data and proposed objectives. Potential users, ridership levels and 
station connectivity can provide interesting outputs on the accessibility levels of rail passengers 
and provide weights on the importance of the operational stations. Potential users represent the 
built environment in the surroundings of a station (defining the number of residents, jobs or 
services) and is related to the land use accessibility component. On the other hand, traveller 
ridership can be directly related with the individual component, as this variable is linked to the 
number of train users, the demands and needs. Station connectivity is how well integrated is a 
specific station in relation to the network (Hartholt, 2016). It is fundamental to select a feasible 
methodology and tools that can provide the outcomes as expected and with the desired reliability. 
These specific indicators are described in detail in the following sections. 

2.4.2.1 Potential Users 
This variable is directly related to the accessibility land use component as it depends on the type 
of built environment in the surrounding area. Commercial areas tend to attract people based on 
the number of available services, while residential areas support the use of public transport. The 
closer the station to a residence, for example, the higher the probability of the usage of the rail 
system by those inhabitants.  

As discussed by Geurs & van Wee (2004), the distance decay function represents the probability 
of one making or not a trip based on the distance to the station. In other works, the probability of 
travelling diminishes as the distance increases. Using the same reasoning, users tend to use 
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stations near their home, while distant stations are less attractive. In that sense, a decay 
estimation can be developed for assessing the number of potential users. 

A series of methods can be found within the literature to determine potential station users. 
Andersen & Landex (2008), for example, highlight that catchment areas are often used. They 
agree that different GIS-based methods can be carried out depending on the chosen level of 
detail. They discuss mainly two techniques, the circular buffer which considers a radius around 
the station area and estimates all the occurrences based on the research goals (residents, jobs or 
services e.g) and the service area method which considers the street layout that gives access to 
the station. While the circular buffer technique is simple with admissible outcomes, the service 
area method can produce more accurate results. Combinations can also be used. Gutierrez et al 
(2011) adopts the distance-decay weighted regression (with bands) and La Paix Puello & Geurs 
(2015) use a joint RP/SP estimation on station access and egress. For ridership estimations, 
Hartholt (2016) makes it clear that certain included variables will have more effect on passenger 
demand on one location compared with another. The author, developed a demand estimation 
model based on aggregated and disaggregated demand (Equation 1). 

𝑌𝑖 = 𝛽0 +  𝛽𝑘 ∗ 𝛽𝑖𝑘 + 𝜀𝑖                                                                                                                𝑒𝑞. (1) 

Where Yi is the total number of predicted passengers, β0 the constant or intercept, βk the 
estimated parameter for variable k, βik variable value i for variable k and εi the error term for 
variable i. The analysis focused on different station types and the result proved that there are 
variances in the catchment areas based on station characteristics. 

Givoni & Rietveld (2014) studied multimodal accessibility to the Dutch railway stations by carrying 
out a discrete choice analysis in the Amsterdam region and developed a (dis)utility function from 
travelling by rail (Figure 2). They conclude that the optimal choice given the disutility from using 
different modes is between using bicycle and public transport to access the railway stations. 

 

Figure 2 – The utility for using different access modes with respect to distance from the station (Givoni & 
Rietveld, 2014) 

Each type of access mode will display a different catchment area. Some authors agree that for 
walking commuters for example, the radius should be kept under 800m (Guerra et al, 2011; 
Landex et al, 2006; Andersen & Landex, 2008), while bicycle access should not go over 5km 
(Rietveld, 2000). Larger distances should be carefully analysed. It is consensus that in this case, 
most users will access the station by motorized vehicles. It is important to note that buffers 
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change according to the region or country of analysis. In the Netherlands, people living in a buffer 
500–1000m from a railway station tend to use rail services 20% less than people living less than 
500m from stations (Gutierrez et al, 2001), while 80% of cyclists will access the station in a 500-
1000m buffer (Rietveld, 2000). In addition, Gutierrez et al (2001) states that most people are 
willing to walk 500 ft, 40% would walk 1000 ft, but only 10% would walk a half mile while around 
50% of cyclists would use the station if within 5000m (Rietveld, 2000). Givoni & Rietveld (2007) 
state that the Netherlands has a high usage of bicycle, a dense railway network and good 
multimodal connections, which provide a relatively easy access to the stations. The mean distance 
of inhabitants to the nearest railway station is around 4.5 km, whereas only 8.4% of the population 
live over 10.0 km from one.  

Guerra et al (2011) understands that different catchment areas have little influence on a model’s 
predictive power for the purposes of estimating station-level transit ridership and that the 
simplest and most readily available data should be used when estimating direct demand models. 

For developing visual outcomes of network performance, Landex (2008) suggests using a GIS 
(Geographic information system) approach. The author assesses the performance by developing 
maps of the network capacity. Landex (2008) states that with this tool it is possible to evaluate 
other details of the capacity consumption by selecting the observed line section. The 
interdisciplinary field of GIS for transportation (GIS-T) has developed to focus on analysis and 
planning (Miller, 1999) as many benefits can arise from the association between spatial analysis, 
GIS and transportation. The upload of routes, ridership and land-use to a GIS software enables 
visualization of disruption impacts and supports performance analysis. 

2.4.2.2 Traveller Ridership 
Traveller ridership can be based on daily average of train users entering and exiting a determined 
station. This measurement can be performed by analysing the sold tickets or using electronic 
systems that count the number of passengers that arrive or depart from a station area. Busy 
stations will have a higher traveller ridership while ide stations will have lower levels of passenger 
movement.  

It is important to identify traveller ridership to understand overall demands and better plan trip 
distribution, schedules and vehicle sizes. This variable is also fundamental when analysing which 
stations are in need of physical expansion or additional services such as ticket booths and 
information centres. Traveller ridership is an important indicator to estimate the impact of rail 
disruptions on users. In other words, the busier the station, the higher the number of affected 
and unsatisfied clients. Also, the number of trains that serve a busier station is higher, which also 
increases the chance of knock-off effects caused by delayed trains. 

The use of ridership as an additional variable to analyse rail vulnerability, meaning that stations 
which have high demands will be classified as more relevant for the system, providing more 
accurate output of the impacts of disruption on network performance.  

2.4.2.3 Station Connectivity 
Hartholt (2016) explains that attractiveness can be determined by how well interconnected the 
station is in relation to the network. A well interconnected station presents low generalized 
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journey time (in terms of in=vehicle travel time, waiting time and transfer penalty). In other 
words, station connectivity increases when the number of potential reachable activities rise. His 
research included a connectivity index based on two network accessibility definitions: 

Closeness Centrality: Defined as an inverse weighted function of generalized journey time 
between the station in question and all other stations in the network. Being calculated with the 
formula (Equation 2): 

𝐶𝐶𝐼𝑖 =  𝛿𝐶𝑖𝑗 ∗
1

𝐶𝑖𝑗 + 1
∗ 𝐷𝑗                                                                                                             𝑒𝑞(2) 

With 𝐶𝐶𝐼𝑖 being the Closeness Centrality Index of station I, 𝛿C𝑖𝑗 the probability of taking a trip 
from i to j, 𝐷𝑗 the total number of passengers arriving at station j and 𝐶𝑖𝑗 the number of transfers 
needed to get from i to j. 

Efficiency or Straightness Centrality: Defined as the ratio between the travel distances by train 
and the shortest distances by road transport from the station in question to all other station in 
the network. Being calculated with the formula (Equation 3): 

𝑆𝐶𝐼𝑖 =  𝛿𝐶𝑖𝑗 ∗
𝐿𝑟𝑜𝑎𝑑(𝑖𝑗)

𝐿𝑟𝑎𝑖𝑙(𝑖𝑗)
∗ 𝐷𝑗                                                                                                         𝑒𝑞(3) 

With 𝑆𝐶𝐼𝑖 being the Straightness Centrality Index of station i, L𝑟𝑎𝑖𝑙(𝑖𝑗) the distance from station i 
to j by train, 𝐿𝑟𝑜𝑎𝑑(𝑖𝑗) the distance from station i to j over road, 𝛿𝑐𝑖𝑗 the probability of taking a 
trip from i to j and 𝐷𝑗 the total number of passengers arriving at station j. 

According to the author, generically major Intercity stations score better compared to local train 
stations, although in the Randstad area both returned better scores than stations from other parts 
of the country. The explanation is that the Randstad area has direct (intercity train) connections 
with most other major cities in the Netherlands and the fact that this area is home to most 
economic activities. In that sense, even a small sprinter train station in the Randstad has the 
potential to reach more places within a certain (generalized) journey time compared to an 
Intercity station in the far North or south. 

The usage of additional indicators is important to bring the calculated values closer to a realistic 
factor. In this report, these indicators will support the finding of the importance of the nodes in 
relation to the network, supporting the correct implementation of maintenance strategies and 
guidelines, new technological investments and providing more competitivity of rail within the 
transport system. 

2.5 Possible Management Guidelines  

As discussed, operators have developed recuperation strategies based on their specific 
geographical areas and resources. Many have experience handling floods, strong winds, heat 
strikes, storms and excessive snow.  It is important that each provider understands its own 
capacities and limitations and invests on operational improvement based also on historical data.  
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According to Rossetti (2007), improvements in meteorological studies have resulted in modern 
weather sensing technologies and better forecasting abilities. Also, rail smart systems are being 
developed contently for moderating weather-related impacts. Positive train control (PTC) 
technology, electronically controlled brakes, intelligent grade crossings, automatic equipment 
identification, and automated scheduling systems for enhancing weather information are given 
as examples. The availability of data on the most vulnerable sections of the network in addition 
to the impacts that they cause are an important tool for developing the mitigation strategy.  

The TransRail Report (2006) discusses disruption issues in networks that have a long history of 
problems related to winter climate. Some strategies for diminishing damages on infrastructure 
involve focusing on critical sections and rail components, proper drainage systems, appropriate 
planning of resources for cleaning, adequate maintenance, monitoring and implementation of 
new technologies/equipment. Some of the given solutions are investing in mechanically protect 
exposed components, increased inspections, using heating systems and coatings that diminish the 
adhesion of snow/ice.  

Jaroszweski et al (2004) studied winter conditions on the Swedish rails. The authors state that the 
received meteorological information is important, but that the preparation of maintenance 
personnel, machines and equipment are fundamental and need to be at appropriate levels. They 
also highlight the issues caused by the lack of preventative maintenance during winter 2001-2002 
and discuss the three recommendations that followed the Channel Tunnel event: (i) increasing 
train reliability, (ii) establishment and regular updating of evacuation and response plans and (iii) 
improved communication and management of the situation. The South-eastern Pennsylvania 
Transportation Authority (SEPTA) has also developed notable mitigations strategies towards 
winter impacts on rail based on the improvement of equipment, personnel and communication. 
The developed adaptation strategy followed by SEPTA is presented in the appendix (Item 01). 

These actions should be followed by the implementation of an accurate weather forecast system, 
including the instalment of forecast measurement instruments in critical areas. The receive 
information should be analysed and triggers set to guide personnel on specific winter events. 
Previewing the disruptions and planning the recovery strategy will minimize the effects of 
extreme winter weather. But, it is important to recognize that the resources, limitations and 
difficulties are specific to each rail network and must be analysed in detail for proper strategy 
development.  
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3. Part II: Case Study 

3.1 The Dutch Railway Network 

The Dutch passenger rail network connects all major towns and cities within the country. The 
network totals approximately 3.700 route km, and over 350 frequently used passenger stations 
(Figure 3). The transport system is operated by several service providers including NS, Syntus, 
Arriva, Veolia and Connexxion, whereas NS is the company with the highest share of operability 
of the network (not including metro or tram systems). The maintenance, rail capacity distribution 
and traffic control is responsibility of ProRail, a government task organisation that covers most 
extensions of the national railway network. This company is supported by rail corporations for 
assuring the serviceability of the rail infrastructure. A map identifying the major train stations is 
presented in the appendix section (Item 06). 

The Dutch railways is considered a 
stable and well managed system. It is 
mainly focused on passenger rail 
services and connects all Dutch key 
cities. Freight is around 7% of total 
train trips and most routes run east-
west, connecting the Port of 
Rotterdam with Germany (van Es, 
2016). In the Netherlands, cargo trains 
frequently share the tracks with 
passenger trains. 

Most of the network is electrified at 
1.5 kV DC and train speeds are usually 
around 130 km/h, although the 
averages drop to 80km/h when 
analysing deceleration, acceleration 
and stops at stations. The trains are 
classified as Intercity or Sprinter 
connections. While the first is a faster 
amenity between major stations, the 

second is an all stop service, meaning the train serves every station along the route. The 
Netherlands has the highest passenger train frequency in Europe. In smaller stations, the 
frequency is usually between two and four trains per hour, whereas in large ones (such as Utrecht 
and Rotterdam) these numbers can increase to around forty trains per hour. 

The Dutch rail tracks are divided in geocodes. These segments vary in length and represent the 
tracks and all its components (including catenary and signalling). They also consist of station areas 
and rail yards. The areas are delimited with no apparent pattern, but focusing on the start or end 

  

Figure 3 – The Dutch Railway Network 
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* A15Trace – West/east corridor; ASD – Amsterdam and Duivendrecht; AMR - Alkmaar, Haarlem and Heerhugowaard; 
DDR – Dordrecht; GV&RTD – Den Haag and Rotterdam; HSL – North/south corridor; FR&GN – Friesland and Groningen; 
KR – Europoort;  R&G – Rijn en Gouwe; RM&MT – Roermond and Maastricht; TW – Twente; UT – Utrecht. 

of a specific rail section. A station area, for example, represents the platforms, buildings, tracks, 
rail infrastructure and land in the perimeter of a station. In total 508 geocodes were analysed. A 
representation of the distribution of geocodes in the Northern Randstad region of the country can 
be visualized in Figure 4. Each region is maintained by a certain company which responds directly 
to ProRail. These corporations are responsible for preserving the rail components, guaranteeing 
the operability of the network in safe and sustainable conditions.  

 

Figure 4 – The Dutch Railway Network and Geocodes. 

The contract regions where used in this report as a geographic representation to identify where 
winter related disruptions occur the most. Although they have changed over the years, it was 
possible to locate the disruptions in relation to the geocodes which makes the analysis accurate. 
On the other hand, it was not possible to analyse qualitatively the data in relation to the 
contracted companies. The contract areas (traces) and the Randstad are presented in Figure 5. 

                                                                                       
 

 

Figure 5 –Distribution of Contract Regions* 
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The regions differ in size and in number of track km. For that reason, the disruptions were also 
analysed taking these variables into consideration.  

Although it was verified that most disturbances in the Dutch network are classified as technical 
failure (46%). Many of these disruptions are unknown and need an improved data collection 
approach for an accurate analysis. Also, technical failures are more complex to analyse requiring 
a more structured and protracted process. Disruptions caused by weather conditions are a little 
over 5% of the total causes, but have a long recovery period of around six hour’s average. These 
disruptions have a more complete data set as they are usually linked to component malfunction.  

Winter disruptions are responsible for approximately 37% of weather related disruptions when 
adding up snow to ice, frost and impacts due to extremely low temperatures. According to Meyers 
(2013), a study sponsored by the 7th Framework Program of the European Commission identified 
specific levels of stress on the European countries attributed to climate change. After evaluating 
patterns, the Commission came to the conclusion that northern Europe will be subject to heavier 
levels of precipitation of rain, snow and fog. Activities that might impact even more the rail 
network. Delays caused by snow and ice can lead to loss of economic efficiency, possible damage 
of tracks and decrease of safety.  

Weather can physically effect one of two rail structures: the rail infrastructure or the rail rolling 
stock. While the infrastructure is represented by the railway itself, including substructure, bridges, 
tunnels, tracks, switches, crossings, signalling system and so on, the rolling stock refers to any 
vehicles that move on a railway. In that sense, the disruptions can be classified as infrastructure 
related and rolling stock related, which will be explained in more detail in the following sections. 

3.1.1 Rail Infrastructure 

To avoid disruptions due to excessive snow and ice on the rail infrastructure), the rail operators 
have a series of activities to prepare, monitor and control the network. This system is represented 
by tracks (including sleepers, ballast and substructure), turn-outs (switches and crossings), 
signalling, special structures (such as tunnels and bridges), and the catenary system 

The railway infrastructure components differ in sensitivity to weather conditions. During winter 
weather, meteorological situations can be of various types. Snow, hail, frost, wind gusts and low 
temperature can damage or hamper the operability of the rail system. Excessive amounts of snow, 
ice and frost can also set many problems on network performance. While snow and ice pilling can 
cause derailment or the stopping of the train, a frozen catenary might damage the overhead wire, 
restricting the train from receiving electrical energy. Ice between the movable parts of a switch 
can disable route flexibility. On the other hand, irregular and rapid variations in temperature 
result in thermal expansion/lessening, which have the cumulative effect of degrading track 
surface and might result in the rupture of rail welding.  

As explained in the literature, switches are critical devices during winter periods. Also, switches 
permit network flexibility as they are mechanical installations that enable vehicles to be guided 
from one section of track to another. Having a network with many switches allows the trains to 
enter and leave distinct parts of the system, increasing overall serviceability. 
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The device is linked between two track sections and consists of six main components: frog, guard 
rail, operating rod, points, front and rear. The tongue is the movable part of the switch and can 
be changed (from left to right or right to left) to direct a train. The wheels are guided to the desired 
switch end and the device is returned to the initial position or maintained fixed for the following 
operations. 

The movements of the tongue follow the train schedule and are monitored and operated by the 
company operational centre. Although most switches are virtually operated, some are still 
manually changed. Usually these devices are in remote areas with a low circulation of vehicles. 

3.1.2 Rolling Stock  

According to the International Union of Railways (2016), the rolling stock mostly presents 
malfunctioning of three systems when regarding extreme winter weather conditions: bogies, 
couplers and pantograph. Snow and ice pilling increases mechanical loads on the bogies and result 
in coupler malfunction. Extreme events might even block the movements of the bogie or present 
coupling fail when connecting wagons. In relation to the pantograph, which is usually the most 
recurrent issue in winter weather and rolling stock, the presence of ice on the catenary can result 
in the cracking of the carbon strip. The International Union of Railways (2016) also lists problems 
with snow and ice on sliding doors and communication/technological failures caused by moisture 
in the electric or electronic system. 

Many can be the approaches towards a more resilient infrastructure system during winter. Some 
examples are the change of daily schedules (to prevent major knock-off effects from minor delays 
due to extra maintenance on tracks), increase of cleaning maintenance programs, instalment of 
snow/ice coverage systems or barriers or investments in new technologies that diminish 
probability of component failure (such as point heaters on switches or defrosting coverages on 
the catenary). The chosen strategy must include all sensitive rail areas and components, based on 
the reality and limitations of each system, focusing on the improvement of rail parts and 
optimized maintenance so the failures can be previewed and prevented.  

Although the rail operators have extensive knowledge on weather related risks and have 
developed mitigation plans for disruptions caused by climate, a greater investment and support 
is required to maintain an effective rail system (Marteaux, 2016). Predicting the effects of winter-
related weather on transport infrastructure is yet an inexact science and the research community 
has the expertise to support the rail industry in developing effective, flexible and affordable 
strategies for overcoming the challenge.  

The “Winterweer op het Spoor Program” initiated in 2012 has already established positive results 
on the mitigation of winter related disruptions, but the service operators still perceive room for 
improvement. The involved parties have focused on the implementation of new strategies, 
technologies and maintenance plans every year and keep a close monitoring approach. 
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3.2 The Winter Disruption Mitigation Program  

The Winterweer op het Spoor (WS) is a complete scheme of analysis, investments, 
implementation, monitoring and feedback activities for winter disruption mitigation. The project 
is a cooperation between ProRail, NS and the Ministry of Infrastructure and the Environment with 
the objective of improving network performance during winter in the Netherlands. 

The initiative came into discussion after three consecutive winter seasons with many service 
interruptions (winters 2009-2010, 2010-2011 and 2011-2012). Snow, ice, frost, freezing rain and 
low temperatures caused many equipment failures and exposed the fragility of the Dutch rail 
network. The winters were harsh and proved that the network was not prepared for extreme 
weather conditions. Within the 2011-2012 winter period, initial initiatives to reduce train 
frequency during track disruption turned out to successfully prevent the extensive knock-off 
effects experienced during the previous winters. These measures were still not standardized but 
where important to realize the need of specific planning for the season.  

Initiated in 2012, the WS strategies have been developed on seven levels: scheduling (winter 
timetable), infrastructure, material, management, personnel, travel information and customer 
care. The main goals are to continuously improve infrastructure resilience, optimize recovery time 
and the capacity of treatment and adjustment. The key goal is to maintain the functionality of the 
network and satisfaction of the travellers. Each level of improvement has its own targets, analysis 
and follow up, whereas the operational teams get together to investigate, discuss and propose 
new investments, solutions and good practices. The strategies and results are debated within the 
organizations and a summarized open report is published. Currently four reports are available: 
winters 2012-2013, 2013-2014, 2014-2015 and 2015-2016. Some of the actions related to the two 
first levels, winter timetable and infrastructure, are presented in more detail in the following 
sections. 

3.2.1 Developed Winter Timetable 

The winter timetable, developed to run when specific weather conditions are previewed, was the 
first and one of the most important approaches towards less impacts on performance during track 
disruption. As explained, if snow or freezing rain is predicted, trains might be suspended (half hour 
services instead of quarterly services for example) changing the daily schedule. With this 
approach, local disruptions are less likely to impact traffic in a larger scale. Also, the measures 
enable faster reorganization of the trains in case of delays due to the possibility of bypassing 
traffic. In addition, staff and equipment can easily be planned to reach the location going through 
technical problems. 

In order to accurately preview winter weather, meteorological information is exchanged between 
weather agencies and the Operational Control Centre Rail (OCCR) of ProRail. There, discussions 
about the impacts and risks that the broadcasted conditions are carried out. The winter weather 
condition is classified based on a standard coding system which is the basis for the actions that 
must be taken. These arrangements can involve train frequency reduction, new layouts for 
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maintenance teams and additional personnel for passenger support. Afterwards, ProRail and NS 
decide whether the modified timetable will be used or not.  

The codes are based on three specific weather type conditions and are represented by colours 
(purple the most critical situation and green the least). The coding system is shown in Figure 6. 

A) Snow/hail 

The weather agency will issue a warning if snowfall is expected within the next 36 hours, or if 
possible within the next 8 days. The operator will also be warned if there is a change and / or 
deviation from the most recent weather forecast in the intensity, location, size or course.  

B) Low temperatures 

The weather bureau states that at temperatures below 0 ° C there is frost. Four levels of frost 
possibilities are used: Light frost: -5 ° C to 0 ° C; Moderate frost: -10 ° C to -5.1 ° C; Strict frost: -15 
° C to -10.1 ° C; Very severe frost: -15.1 ° C or lower. In combination with low humidity, there is a 
term "dry frost", which is considered not to cause smoothness. The weather agency delivers a 
warning if freezing precipitation and / or frost (in combination with high humidity) it is expected 
within the next 36 hours or if possible within the next 8 days. 

C) Freezing rain/frost 

The weather agency will issue a warning if ice falls under the category of winter precipitation, 
including undercooled/frozen rain/precipitation that falls on the ground or on objects or 
rain/precipitation that falls on frozen ground. The alert will be set if freezing rain/frost is expected 
within the next 36 hours, or if it is possible to occur within the next 8 days. 

 
(a) Code alert for critical snowfall 

 
(b) Code alert for low temperatures 

 

(c) Code alert for freezing rain/frost 

Figure 6 – Code alert for critical snowfall(a), low temperatures (b) and freezing rain/frost(c). 

Based on the coding, maintenance teams are allocated to ensure that the tracks remain as ice and 
snow free as possible and that malfunctioning of components is quickly solved. As snow/ice 
increases the likelihood of switch malfunctions, the project has implemented several heating 
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points throughout the years. Also, the controlled timetable (with less trains) allows the 
inoperability of a selection of the switches of the network. Having this in mind, the planning team 
chooses the most critical and strategical switches to keep unchangeable during the winter event 
based on previous experiences. 

The code alert was analysed in a general perspective to understand which weather characteristics 
could trigger the usage of the reduced time-table. Information on if the reduced time-table was 
in use or not when a specific disruption occurred was not made available. The analysis of the 
coding is important to verify if the most relevant weather characteristics are currently considered 
in the coding methodology. As the weather conditions for each disruption is available in the 
weather bureau website, it is possible to check if any important characteristics are not considered 
or if the used code alert can remove any variable.  

3.2.2 Infrastructure Investments: Implementation of Point Heaters 

As explained, movable parts in the rail system are sensitive to winter weather. It is not uncommon 
that snow and ice obstruct the device. A solution to diminish the amount of build-up snow 
between movable parts is the installation of rail switch point heaters in critical areas. This 
equipment, which can be electric of gas operated, is coupled to the switch and used when snow 
or frost are previewed. The goal is to melt any blocks of ice that can hamper the movement of the 
tongue, certifying that rail switches operate satisfactorily during adverse winter conditions. 

Although this system performs relatively well when talking about snow, hail, frost and ice, low 
temperatures are still a main issue due to its impacts on the switch communication system. Some 
simple approaches can diminish the mal contact within the motor and avoid the misunderstanding 
of the positioning of the device. As high humidity and low temperatures are the most critical 
weather conditions, avoiding maintenance during rain or using coverages while opening the 
switch motor could diminish inner humidity levels and reduce the probability of malfunctioning.  

The installation of point heaters has been done gradually during the Winterweer op het Spoor 
project. A data set containing the locations of the installations was analysed and is discussed 
within the thesis.  

3.2.3 Infrastructure Planning: Inoperability of Critical Switches 

Currently the Netherlands counts with around 8330 switches throughout the rail network. As the 
device is the most critical during winter weather, an important mitigation approach is to not 
operate the most vulnerable ones when the forecast previews severe weather conditions. This 
approach is planned every year based on the performance of the past winter and works in 
combination with the reduced train schedule. As there will be less operating switches, the 
network will be less flexible and the trains will demand more dwelling times. Data regarding the 
fixed switches for the winter year of 2016/2017 was made available and is analysed throughout 
the report. 
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3.3 Development of the Thesis 

As mentioned, the development of the research was carried out in four phases. These steps are 
consistent with the descriptive statistic, methodology and results phase, which were fundamental 
to provide answers to the proposed research questions.  

The first step, the analysis of rail disruptions and the connections with winter weather, brings the 
first understandings about the data and its characteristics. The statistical analysis compromises 
the reasoning behind aspects related to the disruptions, such as impacts on traffic management, 
recovery times and most affected systems. Some of the implemented mitigation approaches are 
discussed in this section. This phase is also where the variables for the vulnerability index are 
studied for inclusion. Based on the studied literature and the first findings, it was then possible to 
select a methodology to estimate disruption likelihood in relation to weather and rail 
infrastructure, which was the second step.  

The second and third steps, included in the methodology development, include the findings on 
disruption probability based on switches and the assessment of node potential. The impact 
analysis, is carried out by relating station potential to each route within the Dutch network. In this 
case, three important aspects of stations where considered: potential users, traveller ridership 
and station connectivity. For estimation of potential users, catchment areas were analysed for 
each studied station. The traveller ridership was obtained from previous rail studies and the 
station connectivity collected from earlier researches. With these values, the importance of the 
origin and destination stations of the routes were included as additional weights in the 
vulnerability index.  

The last step, the development of the risk map, is the building of the visualisation of the 
vulnerability levels throughout the network. The risk map is therefore the product of this thesis 
and considered the result of all the analyses. These values, as can be derived, are based on railway 
characteristics (infrastructure and disruption types), train frequency and station potential that 
were obtained using the developed methodology.  

It is important to highlight that the data considered in the vulnerability index was the collected 
measures from after the implementation of the winter disruption mitigation project (Winterweer 
op het Spoor), meaning the considered data was from winter 2012/2013 up to winter 2016/2017. 
This decision was made due to the different realities before and after the beginning of the 
program. The inclusion of data prior to the program would bring a level of bias to the index, as 
currently there are several strategies, technologies and improvements within the network. 
Nevertheless, this data was important to understand the criticality of the network in relation to 
weather conditions, the progress of the program, the general rail component functioning and the 
reasoning for the chosen measures in the implementation plan. Although details of the applied 
measures are not publicly available, it is possible to generally evaluate them and suggest new 
approaches based on the open reports.  
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3.3.1 Descriptive Statistics 

Step 1: Analysis of Rail Disruptions and its Correlations with Winter Weather 
The first step within the methodology was the deepening of the understandings on rail system 
functionality and its sensitivity to winter weather. In that sense, weather data was collected 
through the KNMI website from December 2007 to April 2017. The objective was to link the 
disruptions to the available weather indicators and run a correlation analysis.  

In total, 38 weather stations had collected measurements throughout the studied years. Some of 
the weather stations had recently been implemented, so data was not entirely available 
throughout the study period. The used variables were wind speed, air pressure, average 
temperatures, relative humidity and the presence of snow and ice formation.  

The data collected from the KNMI was processed and the characteristics of the last winter seasons 
analysed. Some assumptions were taken for structuring the weather data: 

I. A winter weather occurrence means the presence of a specific winter type (snow/frost/low 
temperatures) during a day within the specified period. As they are registered separately, it 
may occur that one or more weather types happen in a specific day. If it snows and registers 
low temperature e.g., two winter weather occurrences will be accounted for. 

II. Some weather stations (KNMI) did not have registrations for specific disruption periods. The 
solution was to use the weather characteristics from a neighbour weather station for the 
disruption located within the weather station area. 

III. As the contract regions differ in area, shape and size from the areas of the weather stations, 
the weather occurrences were linked to the geocodes of each region for a clearer analysis. 

IV. The registered cause of disruption in the used data (snow/hail, frost/freezing rain and low 
temperatures) were only considered for comparison within the study. In other words, the 
cause of disruption registered by the technician was considered when it concurred with the 
data collected by KNMI. In case the weather condition differed, the used one was the one 
from the weather station. 

V. If the cause of disruption was classified as winter weather but the historical weather data 
from KNMI didn’t have any occurrence registrations during that day, the disruption was 
considered an outlier. 

The rail disruption data refers to SAP (asset management) and Mon (traffic management) 
collected between 2007 and 2017. It is important to understand that these two systems function 
separately. As an example, it is not mandatory that a disruption on the asset (track) affects the 
traffic of trains. If it is a secondary system which is not fundamental for safety or transit, the 
disruption might not be noticed by the traffic management at all. Also, it might occur that the 
malfunctioning of a device is handled quickly enough not to affect the train schedule. On the other 
hand, if the winter condition is impacting the vehicle (ice on the bogie e.g.) it will not be registered 
within the SAP data as it does not affect the asset. Having these definitions in mind, the produced 
dataset is based on SAP and uses Mon inputs when the disruption has impacts on traffic. The 
variables include the cause of disruption, duration, location and traffic impacts of nearly every 
occurrence.  
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At the end, the data set is composed by variables on three levels, SAP data, Mon data and weather 
data. SAP and Mon data, was made available by the service provider ProRail. These variables were 
merged and additional information on weather characteristics included based on the KNMI source 
(Figure 7). Two major data sheets where initially produced, one based on all disruption types for 
general statistical analysis and one containing only switch related disruptions. The first data set 
was developed and used for the characterization of the disruption types and the necessary 
findings on the most sensitive infrastructure components to winter weather. These results were 
used to guide which methodology and variables would be used within the research. Findings 
related to the Winterweer op het Spoor program are presented in a separated section for a 
directed discussion. 

 

 

Figure 7 – Data merging process. 

3.3.1.1 Data Analysis 
The data analysis was carried out in five stages: data preparation (selection, organization, 
inconsistency check, missing data investigation) and editing (categorization and estimations), 
examination, validation, interpretation and identification of patterns (descriptive statistics 
analysis), and results and synthesis. The description of the variables and the first results are 
presented in the following sections. 

A) Data Preparation and Editing 
Data preparation can be described as the process of collecting, merging, aggregating, cleansing, 
and consolidating data into one file. This process is indispensable for preparing and providing the 
data in a usable format for the planned analysis. The activities related to understanding and 
managing the variables are the essence of the data preparation, which was developed in four 
steps: selection, organization, inconsistency check and missing data analysis. 

The selection of the variables was based on the goals of the thesis. As the focus is understanding 
patterns related to winter weather disruption, the infrastructure characteristics and the impacts 
on the network, the selected variables were essentially related to time, duration, location, 
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infrastructure system type and weather condition. The organization of the data involved the 
structuring of the variables in a form with the objective of creating an intuitive workflow. This 
strategy permitted a simplified overview of the variables and supported an objective and solid 
initial descriptive analysis. 

The inconsistency check was carried out in a prearranged form, focusing firstly on inputs that were 
out of the estimated ranges. Outliers were calculated and compared to the highest and lowest 
values in the dataset. In case possible, the input was replaced with a more accurate value. An 
example was the defined location of the disruption. For Mon data, the location is identified by a 
different system, which disables the linkage with geocodes. In this case, it was possible to detect 
the correct geocode using the Mon location system (Primair Proces Leidings Gebied – PPLG, 
translation: Primary Processing Area) in addition to the listed contractor as an additional input. 
The (PPLG) is a primary area, which is determined by the projection of a demarcated set of 
operating powers on a centrally operated part of the rail infrastructure.  

Unfortunately, it was necessary to proceed manually using ArcGIS, which demanded an excessive 
amount of time. Inconsistency checks were also performed with the disruption inputs in relation 
to weather type and cause of disruption. An example is a disruption that was considered to be 
winter related during a warm summer month with elevated temperatures. These occurrences 
were removed from the dataset. 

According to Pigott (2001), missing data needs to be carefully evaluated in order to select how to 
treat the problem. The author states that it is important to firstly define the objectives of the 
research. Depending on the goal it might be interesting to estimate and include missing values in 
some cases or only consider complete datasets in others. As it is necessary to have a complete set 
for an estimation model, it was determined that the variables included in the regression model 
needed to be integrated. For the descriptive analysis, it was decided to maintain the other 
disruption information that was considered reliable. The duration of disruptions, for example, was 
the variable with most cases of missing data. This can be explained by many reasons. Firstly, due 
of the process because the responsible for filling in the event did not complete the activity as in 
many cases the disruption time overlaps work hours. Secondly it may occur because of a 
misinterpretation of the cause, which can be initially identified as one specific issue and when in 
the field, the technician finds a different reason, bringing problems in relation of specifying a 
correct initial or end time. A third reason could even be the misunderstanding of the importance 
of the collection of the data. If the technicians are not expected to fill in the form completely, are 
not informed about the relevance of registering the duration of a disruption and don’t understand 
the goals behind analysing the data, they will probably not give it much importance and only 
register if they have an easy and straightforward measure. 

Although some variable inputs were missing, the disruption events that were considered 
important for understanding overall data characteristics were maintained. When possible, the 
missing cases were filled with a plausible value. As KNMI only provides data variables related to 
the presence of snow or ice formation e.g., it was necessary to include a variable based on the 
occurrence of low temperatures. This variable was estimated using averages per day that were 
under zero degrees Celsius. 



  

 

42 Master Thesis 

August 2017 

B) Data Validation 
When a data set is satisfactorily complete (with minor errors) to be substantial for its purpose and 
context, it is considered to be reliable (Morgan & Waring, 2004). For that purpose, data must go 
through a validation analysis. The validation process defines if the data represents what is planned 
to be assessed. For this study, data fields were analysed in sequence to understand if the values 
are well presented and clear. A cross-reference validation method was performed, combining the 
variables in sets and analysing the disruptions separately to figure out if the data sets were 
consistent. Locations, times, periods, type of system and weather characteristics were set based 
on underlying assumptions. Does the type of winter weather explain the registered event? Does 
that specific location dispose of the system that was classified as having a malfunction? Was the 
period of day of the disruption consistent with the registered weather features? And so on. 

C) Data Examination 
The characterization of the data is important to find the total variability in the data set. Also, 
within the data examination, correlations between variables were analysed. These values can be 
accessed in the appendix section (Items 02, 03 and 04). 

During the data examination, it was noticed that the occurrence of snow or frost in a specified 
area is positively related to the presence of high humidity with a correlation of approximately 
0,200. Temperatures below zero and relative humidity above 80% triggered precipitation in the 
form of snow and freezing rain. This information is important for the rail weather bureau when 
analysing the needed planning approach. It might be wise to include an alert for high humidity in 
addition to low temperatures for example.  

Generically the weather data has higher correlation variables than the disruptions. The wind 
speed has positive correlation of 0,511 with the average temperature and negative correlation of 
0,270 with ice formation, while disruption duration and number of disruptions barely correlate 
with the presence of snow, frost or low temperatures. This means the wind has a strong influence 
on the temperature and stronger winds imply in lower temperatures. Also, intense winds slightly 
diminish the formation of ice. In relation to the disruption data, the correlations are all fluctuating 
around zero, meaning the correlation is too weak to make any assumptions.  

D) Data Interpretation and Identification of Patterns - Descriptive Statistics 

 Winter Related Disruption Data 
After the preparation, editing, validation and examination of the data set, it was possible to 
analyse the information quantitatively and qualitatively. The first step was to analyse the overall 
characteristics of the disruptions in all seasons. It is important to highlight that each weather 
season has distinct impacts on the rail infrastructure. Lightning, for example, has mainly triggered 
problems in the power supply and the ICT (Information and Communication Technology) systems, 
while rain and storms strongly affect drainage systems. Snow, frost/freezing rain and low 
temperatures are strongly related to switch malfunctions (over 75%), while during other weather 
conditions switches barely enters the rank of most affected components (lighting – 2%, elevated 
temperatures – 5%, rain – 9% and storms – 4%). 
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The distribution of occurrences related to snow, ice formation and low temperatures (KNMI) 
during the studied years is represented in Figure 8. As can be visualized, the numbers of winter 
weather occurrences present an unstable variation, meaning the winter weathers of 2009/2010, 
2010/2011 and 2012/2013 seemed to be harsher than the others. Unfortunately, the intensity of 
snow and ice formation were not accessible for a more accurate analysis and were listed as one 
of the limitations of this report.  

 
Figure 8 – Distribution of Winter Weather Events. 

The physical characteristics of snow and ice that result in component malfunctioning and failure 
were analysed based on different perspectives. What can be noticed within the analysed data is 
that humidity and low temperature play the most important roles regarding winter weather and 
component malfunction. This can be observed within the registered values which were linked to 
the rail disruptions (Figure 9a and 9b). These elements are critical to a number of rail components, 
such as the catenary and movable devices (turn-overs). 

 
(a) Distribution of Average Temperatures. 

 
(b) Distribution of Relative Humidity Averages. 

Figure 9 – Distribution of Weather Measurements during Winter Weather Related Disruptions. 
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Around 80% of the disruptions occurred while average temperatures were below 0 degrees 
Celsius and average relative humidity was above 80%. Additionally, the majority (over 80%) of 
disruptions happen when the wind speed was over 2 meters/second and the atmospheric 
pressure over 980 hPa. The supplementary weather-related measurements are within the 
appendix section (Item 05). 

Under harsh winter years, when the number of occurrences of snow, ice formation and low 
temperatures were higher, rail component malfunction tended to occur more often. The winters 
of 2009/2010, 2010/2011 and 2012/2013 where the ones within the studied period that 
presented the highest number of winter weather occurrences, also representing the highest 
percentage of winter related disruptions (between 2300 and 2700 registered failures). Although 
these were the years with the highest number of rail disruptions, winter 2011/2012 presented 
the highest ratio between the number of occurrences and the number of disruptions. During this 
specific year, over 76% of the winter events resulted in a rail disruption, the worst outcome in the 
studied range (Figure 10). 

 

Figure 10 – Distribution of Weather Occurrences during Winter Weather Related Disruptions. 

As informed, the systems negatively affected by winter conditions and that suffered disruption 
were classified in 14 major operational areas. The most affected system is switches (66%), 
followed by special track structure (11%). The classification “special track structure” represents 
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not linked to a specific system and classified as Unknown (Figure 11).  

Winter 2013/2014 presented quite untypical outputs with very few weather occurrences and 
disruptions. With only 16 registered disruptions, none were classified as “unknown”, switches 
represented 38%, special track structure 32% and power supply system 25%. 

During the 10 year range, most of the unknown system disruptions (55%) were linked to low 
temperatures. This can be an indicator that this specific weather condition results in more 
challenging analysis. As snow and frost cause mechanical issues (blocked switch, slippery tracks, 
frozen catenary e.g.) they are more likely to be quickly detected and solved, while low 
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temperatures are problematic to perceive. When not considering the unknown failures, switches 
raises to nearly 80% of the disruption causes, placing the device as the most critical in the rail 
system during winter weather. 

 

Figure 11 – Number of Failures and Classification of Types. 

Switch disruptions varied greatly throughout the studied winter years. Following the pattern of 
harsh winters, the years with the highest number of switch disruptions were 2009/2010, 
2010/2011, 2011/2012 and 2012/2013 (Figure 12), while the most critical months were December 
and January representing approximately 80% of the cases (Figure 13). 

 
Figure 12 – Distribution of Number of Switch Disruptions. 
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Figure 13 – Distribution of Number of Switch Disruptions. 

Within the winter type per switch disruption, low temperature is the most common adding to 
around 45% (followed by snow with 33% and frost/freezing rain with 22%). An example of 
malfunction related to low temperature in switches is contact problems within the switch motor. 
Within the switch motor there is a simple connection device that sends a signal of the switch 
position to the central administration. If humidity builds up within the motor to a point where the 
wires have an interference (the connection is impaired), the central administration won’t receive 
the signal and will believe that the switch didn’t change the position (even though it might have). 
In this specific case, there is another overlap of possible system failure type: winter related or 
technological related, which needs to be discussed with the technicians for a clear understanding. 
The distribution of switch disruptions over the studied years per weather type is presented in 
Figure 14. 

 

Figure 14 – Distribution of Switch Disruptions per Weather Type. 

It can be verified that the number of switch disruptions has diminished over the years in a greater 
proportion than the reduction of winter weather events. This can be partially explained by the 
strategies implemented in the disruption mitigation program. A general visualization of the 
weather occurrences, the rail disruptions and the switch disruptions is presented in Figure 15. The 

34,14%

18,02%

1,91% 0,02% 0,02% 2,16%

43,72%

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

January February March April October November December

Percentage of Winter Related Switch Disruptions per Month

9

43

36
8 41

4

67

40
6

2

36

3 257

39

23
9 28

1

10
7

19
8

0 12 7 1814

17
0

44
9 47

1

37
5

30
2

2

34 31 54

0
50

100
150
200
250
300
350
400
450
500

Winter
2007/2008

Winter
2008/2009

Winter
2009/2010

Winter
2010/2011

Winter
2011/2012

Winter
2012/2013

Winter
2013/2014

Winter
2014/2015

Winter
2015/2016

Winter
2016/2017

Switch Disruptions per Weather Type

Snow/hail Frost/freezing rain Low Temperature



  

 

47 Master Thesis 

August 2017 

ratio refers to the percentage of disruptions that are switch related. The correlation coefficient 
between the number of rail disruptions and the number of switch disruptions is of 0,986.  

 

Figure 15 – Distribution of Rail and Switch Disruptions throughout the study period. 
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of critical switch disruption areas. Figure 17 present the number of switch disruptions per route 
km. The most critical in this case were Drenthe, FR&GN and Veluwe. Table 1 presents the overall 
characteristics of the disruptions per Trace. It can be noticed that the numbers vary greatly 
throughout the different regions during the winter years, being AMR, UT and ASD the ones with 
the highest number of disruptions, but also the regions with the highest standard deviations. This 
can be explained by the gradual investment in mitigation approaches in these regions, which 
dropped the number of disruptions during winter weather conditions. 

 

Figure 16 – Distribution of Switch Disruptions per Trace. 
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Figure 17 – Distribution of Switch Disruptions per Trace per route km. 

Table 1 – Disruption Data Characteristics per Trace per Year. 
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HSL 3 0,230 0,3 0,640 0 2 
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UT 433 0,213 43,3 53,536 0 140 
AMR 493 0,159 49,3 59,128 0 149 
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In Figure 18, it can be noticed that the recovery times related to the switch disruptions vary greatly 
within the selected data set. Most range within one hour to two hours (30%), whereas very little 
(1%) are solved under 15 minutes. It is important to highlight that disruptions under 15 minutes 
usually don’t have great impacts the train traffic as the dwelling times are typically over of a 
quarter of an hour. Disruptions over 15 minutes and below five hours add up to 76% of the 
occurrences. The ones over five hours are demanding, but the operation centre gradually 
overcomes these conditions. It can be said that the first couple of hours are the most critical. 

Figure 18 – Switch Disruption Recovery Times. 

Long recovery times for switches suggest a fixed switch operationally speaking, whereas the 
device is maintained in position and is used without operation during the restoration. That means 
the segment will not be flexible and the device is unmovable during that period. This explains also 
why the impacts on traffic when the disruption is over 5 hours is not higher than the disruptions 
within this time frame (Figure 19). 

 
Figure 19 – Distribution of Recovery Times related to Impacts on Trains. 
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Still analysing Figure 19, it can be argued that disruptions that are over 15 minutes and under five 
hours tend to have greater impacts on the network. This can be partially explained due to the 
initial reorganization strategies that are taken in the first moments which need the next couple of 
hours to have positive results. The range of time that most impacts traffic is within 15 minutes 
and three hours (31,25%). This is partially explained by the fact that after five hours of disruption 
the operator has managed to cancel or redirect most vehicles within the problematic area. 

As explained in the literature review, the rail switch is used to guide rail vehicles from one track 
to another and is constitutes of many elements. These devices are fundamental for the 
optimization of the rail network as they flexibilise the usage of the tracks. It is also important to 
highlight that switches are fundamental for the safety of the railway. Many can be the types of 
accidents or incidents caused by poorly operated switches. The manoeuvre of the device while a 
vehicle is over it is an elevated risk for derailment, for example. Also, as switches are the 
connection between tracks, incorrect set points can result in multiple trains on the same link, 
which can cause vehicle collision. To avoid accidents, it is extremely important to preserve the 
switches operable with a complex and severe maintenance strategy. In addition, technical 
approaches such as locks to prevent switch reversing diminish these risks. 

Being the most sensitive component to malfunction in winter weather, having a fundamental role 
in rail operations and being the device with most complete data set (regarding physical location 
and applied improvement strategies), switches were selected to be the main infrastructure 
element, and therefore the vulnerability index is based on the number of switches on a rail link. 

 Winter Disruption Mitigation Program Data 
As explained previously, the winter weather disruption mitigation program focuses on several 
levels of implementation. Currently there are approaches towards a reduction of train frequency 
when severe weather is previewed (winter timetable), infrastructure investment improvements 
(point heaters for example), infrastructure management for switch fixation and many others. As 
data on point heaters and fixed switches was made available, it was possible to analyse these 
implementations in a little more detail. 

The installation of point heaters has been done gradually during the project. Between 2016 and 
2017 for example, around 500 new point heaters were installed in the Dutch network (Figure 20). 
The trace with the highest number of new devices was GV&RTD (Den Haag and Rotterdam 
regions), followed by AMR (North of Amsterdam) and AMF (Amersfoort).  

 

Figure 20 – Number of Installed Point Heaters per Trace. 
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It is interesting to notice that the regions with the highest investments in point heaters are not 
necessarily the ones with the highest number of switch related disruptions during winter (Figure 
21). This can be explained by the type of failure that the switches presented. As there is no 
additional data on the exact type of malfunction (snow and ice build-up or communication system, 
e.g.) the switch has presented, it is not possible to conclude on the reasoning behind the selected 
installation location. However, the six regions with the highest investments (GV&RTD, AMR, AMF, 
ASD, KR and UT) are also within the most critical in relation to the number of switch disruptions, 
which can indicate that the planning of new technologies is focusing on the most critical traces. 

 

Figure 21 – Number of Switch Disruptions per Trace. 

In relation to the management of switches, the fixation of critical switches has been an important 
approach towards disruption mitigation. As explained, if the switch is fixed during severe winter 
weather, the possibility of malfunction on these devices is solved, but requires the usage of the 
reduced timetable as the flexibility of the network is affected. The main goal of this strategy is to 
diminish the chance of knock-off effects within the rail traffic. 

As the switch fixation planning for 2016/2017 was made available, additional insights could be 
analysed. During this specific winter year, 1972 switches were fixed when severe winter weather 
was forecasted. The winter timetable only was applied a couple of days, as following the previous 
years the amount of snow and ice was mild. The number of fixed switches per trace during winter 
2016/2017 can be visualized in Figure 22. 

 

Figure 22 – Number of Fixed Switch per Trace during Winter Year 2016/2017. 
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Analysing the number of disruptions during the past years, it is noticed that the chosen regions 
for fixed switches follow the most critical in relation to the number of disruptions. These locations 
are mostly in the Randstad area, where the train frequencies and traveller ridership levels are 
higher. 

Although it is difficult to evaluate the implementation of disruption mitigation measures due to 
mild winter weather during the last years, additional analysis can be performed based on the 
number of winter occurrences and the number of switch related disruptions. As can be seen in 
Figure 23 and 24, the number of switch malfunctioning during winter weather has dropped 
around 60%, but as the winters have been milder the comparison and assessment turns in to a 
more complex analysis. 

 

Figure 23 – Number of Switch Disruptions per Trace before and after WS Program. 

 
Figure 24 –Switch Disruptions per Route Km before and after WS Program. 
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rescheduling and rerouting) during the disruptions. It is possible to notice that the impacts on 
train traffic have diminished in some traces and increased in others when we the before situation 
is compared to the after implementation. As the number of disruptions diminished in all regions, 
it would be expected that the impacts on traffic would follow. HSL, Weesp, DDR, Zeeland, FR&GN, 
BD&BTL and ASD have all presented an increase of affected trains.  

 

Figure 25 – Impacts on Trains before and after WS Program. 

If the reduction of the number of weather occurrences is compared to the reductions in switch 
disruptions and train traffic impacts (Figure 26), it can be derived that although the performance 
of the switches has overall improved (61,20% reduction compared to 44,76% of less winter 
occurrences), train impacts have worsened over the past years. This does not necessarily mean 
that the train management had an inferior performance (the number of affected trains can be 
higher but the delay times shorter, for example), but this fact should trigger a deeper analysis on 
the impacts of disruption on train traffic in order to improve overall standards. 

Figure 26 – Progress before/after WS in relation to Train Impacts, Weather Occurrences and Switch 
Disruptions. 

When plotting the graphs on number of switch disruptions x number of weather winter 
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winter occurrences increased, so did the number of switch disruptions (Figure 27). The before 
condition is represented in red while the after is green. The values of winters before the 
Winterweer program tend to concentrate in the upper right quadrant (heavy winters with high 
number of disruptions), while the values after the WS implementation group within the lower left 
quadrant (mild winters with few disruption cases).  

 
(a) Snow/hail 

 
(b) Frost/freezing rain 

 
(c) Low Temperatures 

(d) Combination 

Figure 27 – Distribution of disruptions and winter occurrences per winter year. 

Finally, it can be derived that the strategy of focusing the mitigation plan on switches seems 
appropriate due to the level of criticality of the complement, but also that there needs to be 
investments in the form of data collection. The implemented approaches need to be monitored 
and evaluated and compared with the intensity of the winter event. Data from open weather 
bureau is currently not sufficient for a clear evaluation. The amount of snow/hail, frost/freezing 
rain and ice formation is an important indicator of the efficiency of the measurement. 

To evaluate both measures that focus on the mitigation of switch disruptions (fixed switches and 
point heaters), three scenarios were developed to be compared to the worst winter year 
performance within the dataset, winter year 2010/2011. This specific winter had a little over 1300 
disruptions, being 88,81% switch related. 
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E) Results and Synthesis 

The descriptive statistical analysis brings many insights on the disruption characteristics and the 
improvements that the mitigation program have brought to the system. Findings on the most 
sensitive rail equipment and the most critical locations regarding winter related disruptions are 
fundamental for analysing the mitigation approaches and defining a suitable vulnerability index.  

The weather conditions that trigger rail disruptions during weather are mainly low average 
temperatures (below zero degrees Celsius) and high relative humidity levels (above 80%). These 
measurements need effective monitoring for a clear and reliable forecast. The winter weather 
disruption mitigation program has a structured approach towards previewing the occurrence of 
snow, frost/ freezing rain and low temperatures. However, it is not possible to conclude in what 
level of detail relative humidity is analysed. As this condition has a strong relation with the 
disruption of rail elements, it is interesting to suggest a keener approach on including relative 
humidity levels in the coding system. Also, the locations of the measurements need to be analysed 
and evaluated. As mentioned, the occurrence of snow in a certain region doesn’t guarantee that 
the whole extent of the tracks is under these conditions. Studies on the number of measuring 
points and the accuracy of the information are important tools for better classifying and 
understanding the phenomenon. 

Switches are by far the most critical rail device when analysing winter related disruptions. Being 
nearly 80% of all winter weather disruption causes (not including the systems that where classified 
as unknown), switches can be affected by winter weather in a mechanical (snow or ice blocking 
the movable parts) or technological form (defects within the communication system for example). 
These devices are fundamental not only for the flexibility of the network, but also play a vital role 
in the safety of passengers. Regarding switch related disruptions, the months of December and 
January were responsible for approximately 80% of total occurrences. These months are also the 
ones with the lowest temperatures and highest humidity levels within the data set. In addition, 
the most impacting winter weather type is low temperatures, accounting for approximately 45% 
of all switch disruptions. This specific weather condition has set out many challenges to the service 
provider, as the malfunctions that arise cannot be easily understood and solved with a simple 
cleaning or scraping tactic.  

The recovery times of switch related disruptions oscillate throughout a wide range, although it is 
important to realize that the most critical conditions are between 15 minutes and three hours of 
disruption. This is explained due to two main reasons, firstly because the dwelling times between 
trains on tracks is of a quarter of an hour, secondly because during the first few hours most the 
actions taken to solve the disruption have been complete. During the first hours, the necessary 
cancellations and delays have already occurred, so the tendency is that the network starts 
recovering from the problem.  

When analysing the disruptions in relation to the regions (traces), the ones with the most switch 
disruptions are near or within the Amsterdam-Utrecht area. These regions also have high train 
frequencies and traveller ridership. Therefore, it can be initially derived that the Winterweer op 
het Spoor approach has made proper decisions as the program directed investments in these 
areas. 
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On the other hand, the regions with the highest 
number of switch disruptions per route km are 
spread-out in the northern region. The heavy 
maintenance and focus on the Randstad region 
due to its importance in number of trips and 
connectivity can be one of the explanations. 
Figure 28 shows the most critical registered 
disruption areas (highest number of disruptions 
in purple and highest ratio of disruptions per 
route km in red).  

More details on the node importance is discussed 
in the network performance section (chapter 
3.3.3), whereas the potential of the stations is 
estimated based on potential users, traveller 
ridership and station connectivity. These results 
are included in the final vulnerability index. 

Regarding the analysed data on the winter 
weather mitigation program, it can be stated the program has chosen prudently when focusing 
on the improvement of switches. As this is the most critical device within the system during 
winter, the improvements on infrastructure (point heaters) and management (fixed switches) 
seem appropriate to support the mitigation of failure. It is important to highlight, however, that 
fixed switches should be seen only as a short-term approach due to the implications on reduced 
train frequency that results from this strategy. In addition, the locations of implementation are in 
accordance to the most critical regions, meaning the selected traces can truly benefit from the 
employed technology and/or management technique. 

Overall there has been an improvement in switch performance (switch disruptions have been 
reduced in a higher proportion that the reduction of number of winter weather occurrences), but 
the impacts on traffic seem to have worsened. It would be important to analyse if there was an 
increase in train frequencies throughout these years in order to justify the poor performance. 

3.3.2 Methodology 

Step 2: Definition of the Methodology and Assessment of Component Failure 
Probability 

Although a wide range of variables were used and studied in the descriptive analysis, some are 
more relevant for this thesis and selected to be part of the vulnerability index. The literature lists 
many possibilities on developing an indicator for analysing vulnerability. While Hong et al (2015) 
focuses on the number of disruptions versus the number of weather events, for example, Erath 
et al (2009) calculated the vulnerability levels by analysing the probability of failure multiplied by 
the sum of hazard consequences. 

 

Figure 28 – Most critical regions. 
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As for this study three main variables are selected (winter weather type, number of switches in 
the link, train frequency). The first variable, winter weather type had three possible classifications: 
snow/hail, frost/freezing rain and low temperatures. The number of switches followed the 
amount of components on each studied link which varied from none (zero) to 219. The last 
variable, train frequency, was divided in three possibilities: low frequencies (up to 15 trains per 
hour), medium frequency (between 16 and 25 trains per hour) and high frequencies (more than 
26 trains per hour). It is important to highlight that the frequencies consider the corridor and not 
the track itself (route analysis). 

It was defined that a probabilistic approach focusing on critical rail components would be an 
appropriate vulnerability evaluation method. Using a probabilistic technique better represents 
the defined goal of the thesis, as the objective is to dispose of a value that represents the 
likelihood of component failure in each link. Also, the quality of inputs on switch disruptions, the 
importance of the component in rail operations and the fact that this device is responsible for the 
majority of winter related disruptions can essentially characterize the vulnerability of the Dutch 
railways. Figures 29a and 29b represent the regions with the highest number of switches and the 
busiest links (train frequencies) respectively. 

                              
Least Dense                                               Most Dense                          Lowest frequencies                                       Highest frequencies 

 (a) – Switch Density per Trace                                     (b)  – Train Frequency per Link 

Figure 29 – Variables considered in the Component Failure Probability Assessment. 

As mentioned, the data considered in the development of the component failure probability was 
the collected measures from after the implementation of the winter disruption mitigation project 
(Winterweer op het Spoor). To develop the model, the first step was the development of the 
impedance functions.  

The selection of the most suitable impedance function can strongly influence the results of the 
analysis (Geurs & van Eck, 2001).  

Ü Ü
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For this case, besides the observed values, three functions were estimated to encounter the most 
adequate solution (Equations 6, 7 and 8): 

𝐸𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑃𝑖𝑗 = 𝑒ௌ∗                                                                                                   𝑒𝑞. (6) 

𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝐹𝑢𝑛𝑐𝑖𝑡𝑜𝑛: 𝑃𝑖𝑗 =
1

𝑆
                                                                                          𝑒𝑞. (7) 

𝐿𝑜𝑔 − 𝑙𝑜𝑔𝑖𝑠𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛: 𝑃𝑖𝑗 =
1

1 + 𝐸𝑥𝑝(𝑎 + 𝑏 ∗ ln(𝑆))
                                                          𝑒𝑞. (8) 

With Pij being the probability of disruption on link ij, S being the number of switches in the link 
and a and b the function parameters. 

Using the obtained values from the historical data, the observed curve was drawn. For the 
assessment of the curves for the chosen impedance functions, the data went through cross 
tabulation and the parameter values encountered using the IBM Statistics software. The 
developed impedance functions (exponential, inverse potential and log-logistic) were modelled 
and compared among each other and the observed set.  

Nine comparison graphs where developed. Each graph represents switch failure probability in 
relation to a specific weather type and a specific train frequency. There is a curve for each function 
(exponential, inverse potential and log-logistic) and a blue curve which represents the observed 
values (Obs). They are represented in Figures 30 up to 38. The calculation the Student's t-
distribution test was used to determine if the sets are significantly different from each other, 
whereas the log-logistic function presented the closest values. These values can be assessed in 
item 08 of the appendix section. 

 
Figure 30 – Developed Functions Considering Links with Low Train Frequencies for Snow/hail 
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Figure 31 – Developed Functions Considering Links with Low Train Frequencies for Frost/freezing rain  
 

 
Figure 32 – Developed Functions Considering Links with Low Train Frequencies for Low Temperatures  
 

 
Figure 33 – Developed Functions Considering Links with Medium Train Frequencies for Snow/hail  

0,00

0,20

0,40

0,60

0,80

1,00

1 3 5 7 9 11 13 15 21 23 29 38 46 56 70 97 123 152 219

D
is

ru
pt

io
n 

Pr
ob

ab
ili

ty

Number of Switches per Link

Likelihood of Switch Disruption

Obs.Frost/freezing rain Log-logistic Frost/freezing rain

Inv.Potential Frost/freezing rain Exponential Frost/freezing rain

0,00

0,20

0,40

0,60

0,80

1,00

1 3 5 7 9 11 13 15 21 23 29 38 46 56 70 97 123 152 219

Di
sr

up
tio

n 
Pr

ob
ab

ili
ty

Number of Switches per Link

Likelihood of Switch Disruption

Obs.Low Temperatures Log-logistic Low Temperatures

Inv.Potential Low Temperatures Exponential Low Temperatures

0,00

0,20

0,40

0,60

0,80

1,00

2 5 7 9 11 14 16 18 22 24 31 33 37 47 58 69 76 98 161

Di
sr

up
tio

n 
Pr

ob
ab

ili
ty

Number of Switches per Link

Likelihood of Switch Disruption

Obs.Snow/hail Log-logistic Snow/hail Inv.Potential Snow/hail Exponential Snow/hail



  

 

60 Master Thesis 

August 2017 

 
Figure 34 – Developed Functions Considering Links with Medium Train Frequencies for Frost/freezing rain  
 

 
Figure 35 – Developed Functions Considering Links with Medium Train Frequencies for Low Temperatures 
 

 
Figure 36 – Developed Functions Considering Links with High Train Frequencies for Snow/hail 
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Figure 37 – Developed Functions Considering Links with High Train Frequencies for Frost/freezing rain 
 

 
Figure 38 – Developed Functions Considering Links with High Train Frequencies for Low Temperatures 

It can be visually verified throughout the graphs that the log-logistic model (yellow curve) presents 
the highest correlation with the observed values (blue curve), followed by the exponential 
function (red curve) and the inverse potential function (green curve). Therefore, this function was 
selected to represent the switch failure probability.  

The used equation depends on the train frequency and the calculated parameters which are the 
presented in Figure 39.  

The calculated cumulative probabilities represent the vulnerability of the rail section, which vary 
within 1 (most vulnerable) and 0 (least vulnerable). It can be noticed throughout the graphs that 
the higher the number of switches, the more likely the link will suffer a disruption. Also, the 
number of switches is different regarding the train frequency levels. While links with low 
frequencies have a maximum of 219 switches, medium frequencies present a maximum of 161 
and high frequencies 190 switches. Links with no switches were considered not applicable for this 
study.  
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Figure 39 – Encountered parameters for the log-logistic function. 

Regarding the log-logistic function, an important finding is that the winter weather types 
(snow/hail, frost/freezing rain and low temperatures) have very closely related values (the 
variation fluctuates around 12%) with correlations between 0,953 and 0,980. This is important 
aspect considering investments in disruption mitigation strategies. As the vulnerabilities to each 
winter weather type are similar, the investment in an improvement will positively affect all winter 
categories. Having that in mind, new approaches in the system don’t necessarily have to focus on 
specific winter types, providing more simple and effective actions. The implementation of 
improvements, new maintenance planning and arrangement of resources can follow one 
exclusive pattern.  

As existing risk assessment literature suggests that usually the number of risk levels depends on 
the research goal. The number of ranges was based on Duvillard et al (2015), that uses five levels 
for determining risk assessment of infrastructure destabilisation: very low, low, medium, high, 
very high, which can be visualised in the produced switch failure probability maps within Figures 
40a, 40b and 40c. Here, a map is presented for each winter weather type. 

Due to the proximity of the switch failure probability levels throughout the different winter 
weather types, it was decided to unite the results to obtain a single value for the likelihood of 
disruption based on component characteristics. This was done by developing an average between 
the obtained switch failure probability levels. The new indicator can be visualized in the switch 
failure probability map in Figure 40(d). 

The likelihood of disruption is the first step in calculating the vulnerability index. The next step 
will evaluate node potential for inclusion in the vulnerability assessment. The estimation of station 
importance is discussed in the following section (3.3.3). These values will enable the inclusion of 
the findings in the vulnerability index. Also, the estimation of node potential will permit the 
estimation of the most vulnerable routes in the network, underlining the impacts of switch 
disruption on network performance. 
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Switch Failure Probability Map for Snow/hail          Switch Failure Probability Map for Frost/freezing rain 

         

(a) – Switch Failure Probability for Snow/hail                                                                         (b) - Switch Failure Probability for Frost/freezing rain 

Figure 40 – Switch Failure Probability Maps.
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            Switch Failure Probability Map for Low Temperatures                    Switch Failure Probability Map for Winter Weather 

    

 (c) – Switch Failure Probability for Low Temperatures        (d) – Switch Failure Probability for All Weather Conditions  

Figure 40 – Switch Failure Probability Maps.
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As mentioned, the most vulnerable geocodes (links) are near or in station areas. This is explained 
due to the increase of the number of switches in these locations, as it’s generally within the 
stations areas that the trains change tracks and need higher flexibility of movement to access the 
platforms. The most vulnerable station area geocodes are presented in Table 2. These ten station 
areas are also the most vulnerable geocodes considering station and route links. Notice that the 
critical station areas are well spread throughout the country, presenting locations in the 
Northeast, South, Randstad North and Randstad South. All these station areas can be visualised 
in the Intercity station map in the appendix section. 

Table 2 – Most Vulnerable Station Area Geocodes. 

Station Area Geocode Number of 
Switches 

Vulnerability 
Index 

Amersfoort 506 190 0,957 

Rotterdam Centraal 555 112 0,890 

Eindhoven 618 110 0,887 

Zwolle 603 108 0,883 

Maastricht 520 97 0,859 

Nijmegen 514 94 0,852 

Groningen 501 81 0,811 

Amsterdam Centraal 586 161 0,806 

Haarlem 527 79 0,804 

Arnhem 508 78 0,800 

The geocodes presented in Table 3 are the most critical excluding station areas. Within the 20 
most vulnerable links in the network, 18 are station areas, while only two are rail sections.  

Table 3 – Most Vulnerable Route Section Geocodes. 

Route Section Geocode Number of 
Switches 

Vulnerability 
Index 

Weesp Aansl. - Lelystad Industrieterrein 135 70 0,763 

Barendrecht Vork - Rotterdam Maasvlakte 950 347 0,749 

Rotterdam Lombardijen - Rotterdam Centraal 163 65 0,736 

Boxtel - Eindhoven 54 59 0,697 

Amsterdam Riekerpolder - Warmond 133 86 0,672 

Moordrecht Aansl. - Rotterdam Kleiweg 132 54 0,659 

Schiedam Centrum - Hoek van Holland Strand 115 60 0,573 

Amersfoort Aansl. - Hattemerbroek 17 58 0,564 

Roosendaal - Vlissingen 127 83 0,500 

Woerden - Gouda 105 37 0,475 
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Figure 41 – Rail Tracks in Weesp and in Zeeland. 

Links such as Roosendaal – Vlissingen, located in Zeeland are characterized by possessing low 
frequency train operations which can partially explain a bigger building up of snow/ice on the 
tracks during winter. Tracks with similar conditions (Lage Zwaluwe - Roosendaal e.g) with a higher 
frequency of trains presented lower vulnerability indexes which can be clarified due that the 
traffic partially removes snow and ice from the railway. High frequency train links with high 
vulnerability levels are also encountered. Weesp Aansl. - Lelystad Industrieterrein and Rotterdam 
Lombardijen - Rotterdam Centraal are located the coastal area within the Randstad and presented 
indexes of 0,7638 and 0,7363. These links can be visualized in Figure 41. 

A correlation analysis comparing the vulnerability indicator, the distance to the coast and the train 
frequencies to understand if any correlations are present was carried out, but the results show 
very little correlation between the likelihood of disruption and the distance to the coast region. 
An explanation for higher disruption probabilities for low frequency links within the inner region 
can be that the amount of winter precipitation is greater in these locations, while the high 
frequency links demand a higher number of switches to operate. 
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The switch failure probability analysis is a valuable tool to understand the likelihood of switch 
disruption regarding winter weather conditions. These values can direct better mitigation plans 
and serve are an orientation for future investments. It is however fundamental also to understand 
the impacts that these disruptions have on the users. A busy route, for example is more critical to 
a disruption even if an unfrequently used one has higher vulnerability levels. The next section is 
the inclusion of the station importance factor in the indicator and the analysis of route 
vulnerability. These findings provide a more realistic and structured indicator for analysing switch 
vulnerability.  

A map with the weighed sum of the switch failure probability was developed to analyse which 
regions tend to have higher likelihood of disruptions based on winter weather, infrastructure and 
train frequency (Figure 42). The averages were not considered because some regions have many 
links, while other have few bringing a level of bias to the values. As can be verified, the 
vulnerability to switches happens throughout the country, being the most critical regions in the 
Randstad, Southern and Northern-west areas. This is important to visualise the impacts and 
differences that arise from a prior analysis on the switch failure probability including the network 
indicators. 

 

Figure 42 – Switch Failure Probability Levels per Trace. 

Legend: 
Most Vulnerable  

 
Least Vulnerable  
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Step 3: Impact Analysis on Network Performance 
As explained, disruptions in a train network affect many parties. Operators need to quickly recover 
the track and spend resources on solving the problem, commuter modes suffer the impacts of 
more travellers and overcrowding and passengers need to wait patiently until the service is 
operational. The accessibility of the network directly impacts travellers, which need to use the 
system for reaching their destinations. In the Netherlands, the train system is widely used and 
plays a vital role in everyday commutation to work, social services and leisure.  

The impact analysis phase of this report develops firstly an understanding on the node 
importance. In other words, the potential of the station and its surroundings are evaluated. 
Having the accessibility components from Geurs & van Wee (2004) in mind, three accessibility 
indicators were discussed: potential users, traveller ridership and station connectivity. 

These indicators were estimated individually based on the literature review. For the potential 
users’ indicator, for example, an estimation on the number of residents that can be benefited and 
use the transportation system was developed based on finding from Rietveld (2000), Gutierrez et 
al (2001) and (Hartholt, 2016). By analyzing the ranges of citizens that opted to use the rail system 
based on catchment areas from studies developed in the Netherlands, specific conditions were 
attributed to each station type (Intercity and All service). For the traveler ridership and station 
connectivity indicators, the values were collected from studies previously developed by (Hartholt, 
2016). 

Potential Users (land use component): The land use component is represented by potential train 
users around the station perimeter. As discussed by Geurs & van Wee (2004), the distance decay 
function represents the probability of one making or not a trip based on the distance. In other 
works, the probability of travelling diminishes as the distance increases. Using the same 
reasoning, users tend to use stations more frequently when there is one near their 
residence/work, while distant stations are less attractive. In that sense, buffers where created to 
estimate the number of users around a station area based on the number of inhabitants in the 
surroundings. 

Traveller ridership (individual component): Representing the individual component, the second 
indicator is based on daily average ridership characterised by the number of station users. This 
means that station which have a high demand will be classified as more relevant for the system, 
providing a full understanding of the impacts on network performance. The values where 
obtained by a research on traveller ridership developed by Hartholt (2016). 

Station Connectivity (temporal component): This indicator is related to how well the station is 
located within the network and represents the temporal component. This means the better the 
connectivity, the lower the in=vehicle travel time, waiting time and transfer penalty. Using the 
values obtained by Hartholt (2016) on closeness centrality, an indicator on station connectivity 
was included as a final weight for the understanding of the most important rail stations in the 
Dutch network. 

In the sequence, the methods to estimate the indicators are explained in more detail. 
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3.3.2.1 Station Importance based on Potential Users 
To estimate the number of potential users per station, catchment areas were defined based on 
the available literature. Data on populational density was collected on the Dutch Bureau of 
statistics (CBS) website and downloaded in shape format for covering the Dutch rail network.  

Based on the Rietveld (2000), walking, cycling and public transport are the main transport modes 
used to access the station area, adding up to approximately 90% of commuters when considering 
home end and 92% when considering activity end transport. The mode of access and egress was 
used to better estimate the number of inhabitants that should be included in the analysis, 
therefore the estimation makes a grouping of the values and the catchment areas are considered 
using this combination. Having that in mind, the buffers were developed based on walking, cycling 
and public transport commuters (Table 4) as they represent most of the residents that are willing 
to use the rail system.  

Table 4 – Train Access Distribution per Mode – Home End % and Activity End % (Rietveld, 2000). 

Mode 1994 – Home end % 1994 – Activity end % 

Walking 26% 10% 

Cycling 37% 46% 

Public Transport 27% 36% 

Others 10% 8% 

As mentioned, the estimated buffers were classified in two categories: Intercity stations and local 
service stations. Stations with overlapping buffers were not segregated as it is understandable 
that these inhabitants can be considered as potential users for more than one station. The details 
on the estimation of each band and buffer are presented in the following paragraph.  

Intercity Stations: The largest and best-connected railway stations, which focus on intercity 
services within the Netherlands. Most trips are between large metropolitan areas from all regions 
within the country. Catchment areas around Intercity stations are known to be higher (Hartholt, 
2016), so for this case the selected stations buffers were: 0m-500m, 500m-2500m and 2500m-
5000m.  

The first buffer (0m-500m) is based on the high chance of walking and biking commuters, the 
second (500m-2500m) is mainly founded on cyclists and the third (2500m-5000m) for the public 
transport modal. As Rietveld (2000) states that 100% of cyclists are potential users up to 500m 
and Gutierrez et al (2001) argues that most people are willing to walk 500 ft (the value decreases 
potentially to the walking distance), the adopted percentage of potential users was 80% in the 
first band. The second band considers the large decrease of walking commuters and a small 
reduction of cyclists. Rietveld (2000) considers a value between 70-80% of cyclists commuting to 
the station within a band with these characteristics, but pedestrians tend to discard the effort. 
For the second band, the number of people selected for the catchment area was of 50% of the 
populational density. The last band is based on a small number of cycling users and the inhabitants 
that are willing to user public transport as an access mode. This value was selected to be 30% of 
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the populational density. The scheme of the catchment areas for Intercity Stations can be 
analysed in Figure 43a. 

Local Service Stations: These stations focus on sprinter services within the Netherlands. Most 
trips are all stop services in smaller station areas. Following (Hartholt, 2016), the catchment areas 
were somewhat reduced. These stations were also divided in three buffers, but with smaller 
circumferences: 0-500m, 500m-1800m and 1800m-3000m.  

The percentages of potential users where maintained similarly to the ones adopted for intercity 
stations (80% for up to 500m, 50% for 500m-1800m and 30% for 1800m-3000m). The scheme of 
the catchment areas for local Service Stations can be analysed in Figure 43b. 

 
(a) Intercity Stations 

 
(b) All Service Stations 

Figure 43 – Station Catchment Buffer Areas (a) Intercity Stations; (b) Local Service Stations. 

Within the stations in the Netherlands, the ones with the highest number of potential users is 
Dordrecht as this region presents the highest amount of residents within the buffer area. Koudum 
Molkwerum is the one with the lowest number, being the area with the least number of residents 
within the buffer area (129062 and 202 respectively). A map with the distribution of the stations 
considering the potential users indicator can be visualised in Figure 45. Also, a rank with the 5 
most significant stations with the estimated weights is presented in Table 5. 

3.3.2.2 Station Importance based on Traveller Ridership 
According to Hartholt (2016), the number of reachable destinations of a station, train frequency 
and its accessibility levels are crucial factors when determining ridership. The author stathes that 
users are willing to travel further if the station offers a better quality of service. 

Using data available by Hartholt (2016) and collected by virtual technology by the NS service 
provider, the average number of people that entered or exited a station (daily) was defined as the 
traveller ridership for this research. For this specific analysis, the values from 2014 were used as 
a weight for station importance. Unfortunately, the data is only for NS stations, but as the 
company is service provider of most of the network, it was decided that the data is adequate for 
this analysis. A map with the distribution of the stations considering the traveller ridership 
indicator can be visualised in Figure 46. Also, a rank with the 5 most significant stations with the 
estimated weights is presented in Table 6. 
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As the averages of traveller ridership from 2007 up to 2014 were made available, it is interesting 
to visualise the progress in the number of daily train passengers. As can be seen in Figure 44, the 
years with a reduction in number of passengers are related to 2010 and 2012. These specific 
periods coincide with the years with the worst performances in relation to winter weather.  

 

Figure 44 – Distribution of variation of traveller ridership from 2007 to 2014. 

3.3.2.3 Station Importance based on Connectivity 
Based on Hartholt (2016) the station connectivity indicator determines how well interconnected 
the station is in the rest of the network. A map with the distribution of the connectivity indicator 
can be visualised in Figure 47. Also, the 5 best scored stations are presented in Table 7. It is 
important to understand that the connectivity levels represent a weight of vulnerability, meaning 
better connected stations are more important when a disruption occurs.  

Having the unit values for potential users and traveller ridership. A weighted form of each variable 
was determined to classify the most relevant station areas. This value is scaled from 0 to 1, being 
1 the most important station in relation to the indicator. The station connectivity is already 
defined and included as a weight index. The classification ranges between very low (0,0-0,2), low 
(0,2-0,4), medium (0,4-0,6), high (0,6-0,8) and very high (0,8-1,0). 

It is important to highlight that the node potential varies from station to station and classified 
indicator. Visualizing the developed maps on user potential, traveller ridership and station 
connectivity, it is noticed that potential users present a different pattern of criticality in 
comparison with traveller ridership and station connectivity.  

While traveller ridership and station connectivity seem to concentrate the most critical stations 
in the Randstad, potential users presented a much different pattern. Potential users concentrate 
around the southern part of the Randstad (Dordrecht and Delft, for example) but also present 
high values in other regions, such as Groningen, Zwolle and Eindhoven. These might be indicators 
that the service provider can benefit and increase the number of passengers by investing in 
stations located in these regions. 
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Table 7 – Top 5 best scores in Station Connectivity 

Station CCI 

Utrecht Centraal 1,00  

Schiphol 0,99 

Duivendrecht 0,92 

Amsterdam Bijlner ArenA 0,90 

Leiden Central 0,90 

 

Table 6 – Top 5 Busiest Stations in the Netherlands. 

Station 
Traveller 

Ridership (unit) 
Estimated 

Weight 

Utrecht Centraal 176292 1,000 

Amsterdam Centraal 162103 0,920 

Rotterdam Centraal 81811 0,464 

Den Haag Centraal 76216 0,432 

Leiden Centraal 71680 0,407 

 

Table 5 – Top 5 Stations in Relation to Potential Users. 

Station 
Number of 

Potential Users 
Estimated 

Weight 

 Dordrecht 129062 1,000 

 Delft 98018 0,759 

 Den Haag HS 85157 0,660 

 Utrecht Centraal 78952 0,612 

 Den Haag Moerwijk 77249 0,598 

 

Figure 45 –Potential Users. 

 

Figure 46 –Traveller Ridership. 

 

Figure 47 –Station Connectivity. 
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GIS Procedures 

For Network Performance Analysis: Critical Routes 

The first step in analysing the vulnerability impacts in a network performance perspective is to 
define all the origin-destination routes. This will allow the assessment of vulnerability levels for 
the routes and station potential per node, also needed to compound the final vulnerability index. 
For this, ArcGIS Network Analyst was used for building a chart of all links within each route. The 
software enables the simulation of all station to station courses, grouping the necessary links that 
need to be used during the trip (Figure 48). Analysing the routes and attributing switch disruption 
probability and node weights can also expose the most vulnerable ones within the network. These 
outputs will allow the determination of most critical train connections in the rail system. From 
this, strategies to enable appropriate recovery based on worldwide practices can be suggested. 

 

Figure 48 – Representation of the Identification of Links within a Route. 

Within the network analyst tool from ArcGIS, two techniques can be used to analyse network 
performance: the OD cost matrix and the closest facility solver. These methods perform very 
similar analysis; the main difference is in the output and the computation speed. The OD cost 
matrix generates results more quickly but cannot return the true shapes of routes. The closest 
facility solver returns routes and directions but demands a substantial number of internal 
computer operations, which resulted in a longer processing time (http://www.esri.com). As there 
is the necessity of recognizing all the links within each route for developing a network 
performance indicator, the closest facility solver was defined for this activity. The tool relates 
incidents and facilities (in this case, origin and destination stations) and determines possible 
routes.  

To provide a complete assessment, the combination of the components was estimated by 
calculating a route vulnerability factor in relation to potential users, ridership and connectivity in 
three levels: considering potential users and connectivity, considering ridership and connectivity 
and a grouping all three factors. It is interesting to analyse them separately to understand the 
implications of focusing only on current users compared to potential ones, although the usage of 
the results depends on the goals of improvement development within the rail network. As the 
operator has publicly announced the interest of increasing the number of daily train users the 
most suitable level would be to include both potential users and traveller ridership to the analysis. 
In addition, the usage of a complete approach can better direct investments as there is an interest 
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in attracting more passengers. Equations 9, 10 and 11 represent the variables used for the 
calculation of route vulnerability.  

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑃𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 𝑈𝑠𝑒𝑟𝑠) = ∑𝑉𝐼𝑖𝑗 ∗ 𝑃𝑈𝑖𝑗 ∗ 𝐶𝐶𝑖𝑗                                             (9) 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑇𝑟𝑎𝑣𝑒𝑙𝑙𝑒𝑟 𝑅𝑖𝑑𝑒𝑟𝑠ℎ𝑖𝑝) = ∑𝑉𝐼𝑖𝑗 ∗ 𝑇𝑅𝑖𝑗 ∗ 𝐶𝐶𝑖𝑗                                   (10) 

𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 (𝑃𝑈 𝑎𝑛𝑑 𝑇𝑅) = ∑𝑉𝐼𝑖𝑗 ∗ 𝑃𝑈𝑖𝑗 ∗ 𝑇𝑅𝑖𝑗 ∗ 𝐶𝐶𝑖𝑗                                        (11) 

Where VI is the switch disruption probability (for the route), PU is the weighed number of 
potential train users (OD pair), TR the weighed traveller ridership in from the origin and 
destination stations and CC the connectivity component. I and j represent the origin and 
destination stations that are analysed. 

For each route, the estimation is the multiplication of the switch disruption probability (weighted 
sum of all links within the route), potential users, traveller ridership and station connectivity 
components. A scheme for the calculation can be visualized in Figure 49. 

 

Figure 49 – Definition of Route Criticality. 

The most important routes were encountered firstly based on potential users (Table 8) and on 
traveller ridership (Table 9) both considering the connectivity index of each origin and destination 
station. This represents the three phases of the network performance indicator. The combination 
of all three indicators results in an indicator that presents the route criticality. The top 5 are 
presented in Table 10. The correspondent figures, 50, 51 and 52 visually represent these routes. 
Due to the importance and high usage of trains in the Randstad region. All 5 most critical routes 
from each different perspective (potential users, ridership and connectivity) are located within 
this area. 

It is important to highlight that these calculations consider any link that is used in the route, even 
if the connection is only truly partially used by the train. This can impact negatively the result. A 
highly vulnerable link that is considered but only a small fraction is used can result in a slightly 
higher value, for example. Also, the closest facility tool follows the smallest trajectory for the OD 
pair, not considering the train routes. At the end, some routes might have small variations in the 
final value.
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Table 8 – Top 5 Critical Routes in Relation to Potential Users. 

Route Index 

Dordrecht - Haarlem 1,000 

Alkmaar - Dordrecht 0,836 

Amersfoort Delft 0,779 

Den Haag HS - Dordrecht 0,767 

Amsterdam Lelylaan - Dordrecht 0,754 

Table 9 – Top 5 Critical Routes in Relation to Traveller Ridership. 

Route  Index 

Amsterdam Sloterdijk - Nijmegen 1,000 

Amersfoort – Amsterdam Sloterdijk 0,858 

Amsterdam Sloterdijk - Eindhoven 0,803 

Amsterdam Sloterdijk - Utrecht 0,797 

Breda - Haarlem 0,769 

Table 10 – Top 5 Critical Routes in the Netherlands.  

Route  Index 

Dordrecht - Haarlem 1,000 

Amersfoort - Delft 0,819 

Amsterdam Sloterdijk - Dordrecht 0,801 

Amersfoort – Amsterdam Sloterdijk 0,761 

Alkmaar - Dordrecht 0,757 

 

 

Figure 50 – 5 Most Critical Routes based 
on Potential Users. 

Figure 51 – 5 Most Critical Routes based on 
Traveller Ridership. 

Figure 52 –5 Most Critical Routes in the 
Netherlands. 
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3.3.3 Results 

Step 4: The Vulnerability Index and the Development of a Winter Risk Map  
The last phase of the vulnerability assessment is the development of a risk map based on the 
findings of the previous stages. The objective is to provide a clear visualization of the most critical 
links in relation to winter weather by weighing the rail vulnerability indicator with the node 
importance. As some links are used by a higher number of routes, they were attributed an 
additional importance weight. 

The determination of vulnerability indexes for each link followed by the understanding of the 
impacts on the network performance were the base for the classification of the connections in 
relation to risk of disruption. The winter risk map illustrates which sections of the network need 
to be carefully monitored based on their switch disruption probability levels and node potential. 
Having that in mind, the weighted averages of the calculated indicators were integrated in a single 
calculation (Equation 12). 

𝑉𝑢𝑙𝑛𝑒𝑟𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝐼𝑛𝑑𝑒𝑥 = 𝑉𝐼 ∗ 𝑁𝑉 ∗ 𝑃𝑉                                                                                                  (12) 

Where VI is the already calculated vulnerability index per link based on weather, infrastructure 
and train frequency, NV the weighted average of node vulnerability and PV the potential 
vulnerability calculated by the weighted sum of the number of routes that use the link.  

The used node vulnerability was based on potential users, traveller ridership and station 
connectivity as the goal is to provide outputs that also represent future rail demands. In other 
words, each link (with a predefined switch vulnerability) was weighted by the average of all origin 
and destination stations node potential indexes of the routes that use the link. Also, the potential 
vulnerability, which classifies the links that have the highest number of related routes, was 
included. This indicator represents the number of routes using a link, therefore the higher the 
number of routes that use the specified link, the higher the potential vulnerability. The index is 
based on the most used link (PV=1), which progressively diminishes as the number of routes going 
through a link reduces. To provide a suitable classification, the levels of vulnerability where used 
in the same distribution of the switch vulnerability (five levels of risk): very low, low, medium, high 
and very high. The final vulnerability indexes considering both link and node characteristics is 
presented in Figure 53.  

It can be verified in the risk map that major connections linking the regions of the country to the 
Randstad present higher vulnerability levels. Sections such as Zwolle to Amersfoort, Lelystad to 
Amsterdam and inner connections around Gouda and Den Haag have a certain critical level. 
Similarly to the infrastructure vulnerability index, the risk map presented highest vulnerabilities 
in station areas. Amersfoort and Utrecht are the most critical, although other station areas outside 
the Randstad must be monitored such as Arnhem and Den Bosch (s’Hertogenbosch). Figure 53 
also presents the weighted sum of the link values and provides a clear view of how the highest 
vulnerability levels shift to the Randstad. These regions must be monitored and controlled during 
winter events to avoid disruptions as the effects on users in addition to the criticality of the 
infrastructure have the highest levels. Also, new technological investments should be planed for 
supporting lower disruption levels and faster recovery. 
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Winter Risk Map 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 53 – Winter Risk Map. 
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3.4 Discussion 

This research, which focused on rail vulnerability to winter, brings important insights on the most 
critical rail components and vulnerable locations within the season. The obtained results 
presented average low temperatures below 0 degrees Celsius and average relative humidity levels 
of over 80% as critical to the functioning of the system. These features might result in snow and 
frost events and even damage electrical connections within the components. 

Switches are the most critical device during winter weather and were responsible for the majority 
of railway disruptions within the used dataset. These results are in accordance with the 
conclusions from Kloow (2011), which defined switches as being the most sensitive component in 
railway systems during winter.  

The Randstad region presented the highest number and probability of disruptions, while the 
northern region has the highest ratio between switch disruptions and route km. Also, December 
and January are the most critical months and need heavy monitoring to mitigate winter-related 
issues.  

Although Marteaux (2016) believes that severe weather conditions are likely to increase with 
climate change in the coming decades, winter has demonstrated a lower frequency tendency 
curve. As rain and storms were not analysed in this report, studies are suggested in this field to 
monitor the impacts related to these specific weather conditions. 

According to Rossetti (2007), snow, frost and hail can result in lengthy delays or even complete 
shutdowns in rail systems. As the malfunction in switches is mostly related to the jammed 
movable parts, trains can still operate if the device is fixed. In this case, rail flexibility is harmed, 
but the delay can be controlled and overcome with a structured recovery plan. 

The used methodology to estimate switch disruption probability was based on studies developed 
by Erath et al (2009), Snæbjörnsson (1998) and Geurs & van Wee (2004). By developing a 
probabilistic model based on historical data, these values were estimated and attributed to every 
link within the network. As the goal was to understand the likelihood of switch disruption within 
this phase, this methodology proved suitable for presenting clear and realistic outcomes.  

In order to include station importance in the vulnerability indicator, weighted values related to 
land use, individual and temporal components were considered. Following Geurs & van Wee 
(2004), the impacts caused in a network were analysed considering these accessibility 
components. The used methodologies were based on researches developed by Rietveld (2000), 
Gutierrez et al (2001) and (Hartholt, 2016), which proved adequate for encountering suitable 
values to include potential users, traveller ridership and station connectivity in the final indicator.  

The route criticality closes the circle composed by the three risk management questions defended 
by Rausand (2011): What can go wrong? What is the likelihood of that happening? What are the 
consequences? In other words, a disruption may occur when severe winter events strike the 
Netherlands, the likelihood can be assessed using the vulnerability index and the consequences 
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or impacts on the network can be evaluated by analysing route criticality. These results are 
important for understanding the link relevance within a network perspective.  

Although the probability of switch failure has critical locations spread throughout the 
Netherlands, the network performance is deeply dependent on region attractiveness, meaning 
the most vulnerable connections are located within the Randstad region (Figure 54).  

           

(a) Switch Disruption Probability Map     (b) Vulnerability Map 

Figure 54 – Comparison of Vulnerability (a) only Considering Switches and (b) Including Station Importance. 

The decision of focusing investments in the Randstad during the winterweer program seem 
appropriate considering the results on link criticality. The region represents the highest number 
of opportunities, residents and services in the Netherlands, making the area economically and 
socially more attractive than the inner parts of the country. 

The currently applied switch disruption mitigation strategies are focused on planning and 
implementation of new technologies. The reduced timetable and fixation of critical switches has 
proven to have great outcomes when considering the diminishment of know-off effects. The 
drawback is the lowering of train flexibility, which goes against the goals of rail transport future 
development. The implementation of devices to avoid the building up of snow and ice are an 
interesting approach, but low temperatures is still the main issue and need a more directed 
mitigation strategy.  

Overall there has been an improvement in switch performance with the winterweer program, but 
the impacts on traffic need to be monitored and evaluated to estimate gains in this field. A 
developed analysis considering the encountered vulnerability levels in different scenarios enabled 
a better understanding of the impacts that fixed switches and point heater have on disruption 
likelihood. These cases are described in the following section. 
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Developed Scenarios 
Considering that the number of switches can be virtually reduced with investments in new 
technologies (point heaters for example) or switch fixation, two scenarios were used for analysing 
the mitigation approach: a 20% reduction in the number of switches and a 20% increase in the 
number of switches. The considered baseline was the developed vulnerability map. It is important 
to highlight that the scenarios affect the switch disruption probability and not the node potential. 
The result is a reduction and an increase in the vulnerability indexes, which are presented in 
sequence. 

With the developed log-logistic function for each link in the network and the new number of 
switches, the switch disruption probability was recalculated and the vulnerability levels for the 
scenarios were defined. The scenarios are represented in Figure 55. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 55 – Vulnerability Indexes for Developed Scenarios. 

As can be noticed, in comparison with the baseline, the first scenario presented an improvement 
of the vulnerability. The connection Amsterdam-Sassenheim changed from medium to low 
vulnerability, while Rotterdam-Gouda changed from low to very low vulnerability. The station 
area of Zwolle also presented a change of classification, from high to medium vulnerability. For 
the second scenario, an overall worsening can be visualized. While the Amsterdam and 
S’Hertogenbosch station areas went from medium to high vulnerability, the connection between 
Boxtel and Geldrop changed from low to medium vulnerability and Den Haag to Gouda went from 
very low to low vulnerability. Most of the variations were maintained in the initial range (0,0-0,2 
for very low; 0,2-0,4 for low; 0,4-0,6 for medium; 0,6-0,8 for high and 0,8-1,0 for very high 
vulnerability), which means the variation is subtle for low changes in the number of switches. The 
result evidences that the reduction of switches improves vulnerability while the increase 
intensifies the probability of disruptions during winter. 
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4. Limitations and Recommendations 

Many are the limitations that can be listed within such a complex subject. The first and one of the 
most important ones is the necessity of clear orientation and training of the personnel responsible 
for registering winter weather related disruptions. The technicians must understand the relevance 
of their activity, be qualified to make the registration as complete and reliable as possible and 
receive feedback on future analysis of the produced data. These actions would improve the results 
of the investigation and better guide new inner strategies for rail performance development. 

The need of additional information on disruptions is also pertinent. The system failure has 
currently a wide range of components, but does not describe in detail the type that came into 
collapse. Switches for example can be of many categories. Double, single or outside slips, 
crossover, wye, diamond and single-point are only a few examples. Each type will react differently 
to the weather events, as some will be more sensitive to these conditions than others. The 
classification would enable a more precise analysis with better and more accurate results. Terrain 
characteristics (slope, valley, wet lands) can also interfere in operability and could be included in 
the data collection. 

Although the weather information is applicable for this case, it is important to recognize that the 
limitation in the number of distributed registration stations can bring a level of bias in the results. 
If a weather station registers snow in a specific location, a few kilometres form that place can be 
suffering only from low temperatures. To diminish this biasness, it is fundamental that new 
collecting points are implemented within the rail area, preferably near critical rail sections. In 
addition, the data should be quantified in more detail. A classification of heavy, medium and mild 
winter event for example, could support better findings in relation to the outcomes of the 
mitigation approaches. 

As the switches have a fundamental role in rail flexibility, this device needs to be analysed in 
depth, and a balance between the operability and number of switches optimal for the Dutch case. 
As there are plans of increasing train frequency, it is recommended that the operability is 
maintained at a higher range and the winter disruption causes better investigated for an improved 
system in the future. 

Finally, the propagation of a disruption is usually not a linear caused consequence. Rail disruptions 
that ended in great resource paradigms with extremely negative performance impacts resulted 
from a series of defects in the operation and management system. What began as a simple 
malfunction of a turn-out is usually aggravated by the criticality of the location, a deficient 
personnel resource system and a slow decision-making process. Mitigation strategies need to 
focus on all levels to diminish the impacts and increase recovery times. 

Actions towards a more resilient system is the back bone of sustainable transportation. The 
modern world needs an improvement. Passengers travel further away expecting lower travel 
times every day and the rail sector needs to keep up with the development of a well-structure, 
planned and managed system. A list of suggestions for mitigating winter related disruptions is 
presented in item 07 of the appendix. 



  

 

82 Master Thesis 

August 2017 

5. Conclusions 

Although the rail sector has put in efforts to solve the inconsistencies on weather related rail 
disruption, they benefit from the support of academic and industry entities when overcoming 
barriers related to implementing new technologies and management strategies. The field is 
characterized by being conservative and operates in a traditional manner. Safety is a strong factor 
and the service providers require complete studies and analysis on specific operational situations. 

Attributing vulnerability values to the links in the Dutch railways provides a clear understanding 
of how the system reacts to winter weather events and enables the estimation of likelihood of 
disruptions. The strategy needs to overlap significant aspects related to weather characteristics, 
rail infrastructure and the impacts on accessibility based on temporal, individual and land-use 
components. This indicator is a valuable tool for directing new investments and planning the 
mitigation strategies towards a better managed rail network. Vulnerability plays a significant role 
in rail network reliability. The determination of indicators that measure this aspect in combination 
with the analysis of network performance provided fundamental discernments on how to improve 
rail transportation services, reduce disturbances and decrease operational costs. The transport 
sector is at each day more competitive and an appropriate balance between costs, reliability, 
environmental impacts, comfort, safety and mobility put rail in a strategic position. The goal is to 
be attractive to users, encouraging the use of public transport for multimodal optimization. 

Although there are areas throughout the Netherlands that presented high vulnerability levels, 
most of the critical links (based on infrastructure, potential users, traveller ridership and station 
connectivity) are concentrated in the Randstad region. The development of the Risk Map provides 
a clear visualization of the most critical links and allows the service provider a more directed 
planning of resources and better preparation of investment plans. 

In relation to the developed winter disruption mitigation approach, a closer analysis on the 
conditions of the rail network before and after the implementation of the Winterweer op het 
Spoor program suggest an overall improvement in reliability monitoring and evaluation. Also, the 
choice of investing in technologies and strategies in relation to the railways movable parts seems 
the most adequate approach, as switches are by far, the most critical components. The program 
has brought positive results, but more analysis and research is fundamental for providing a 
diminishment of vulnerability in specific rail locations. Approaches focused on the timetable and 
switch fixation are important to avoid knock-off effects, but more investments on the 
improvement of rail components are fundamental to successfully increase train frequencies in the 
future. The results obtained through the risk map will support clearer findings and direct new 
evaluations, investigations and development plans. 

Finally, although this research has limitations, the results can encourage collaboration between 
entities and enable an improved disruption data collection. Mutual interests of the rail operator 
and of meteorological facilities to invest in more detailed weather and component 
measurements. Suggestions on mitigation approaches are listed in appendix section item 07. 
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Finally, the research questions and answers can be analysed in the following paragraphs:  

1) What are main characteristics of winter-related disruptions in the Dutch rail network?  

The main weather features responsible for the malfunctions of rail components are high relative 
humidity levels (over 80%) and average temperatures under 0 degrees Celsius. Winter related 
disruptions mostly occur in the Randstad, specially within and around the Amsterdam region. The 
most critical months are December and January, with around 80% of total disruptions. 

Each weather season has distinct impacts on the rail infrastructure. Lightning, for example, has 
mainly triggered problems in the power supply and the ICT (Information and Communication 
Technology) systems, while rain and storms strongly affect drainage systems. Snow, frost/freezing 
rain and low temperatures are strongly related to switch malfunctions (over 75%), while during 
other weather conditions switches barely enters the rank of most affected components (lighting 
– 2%, elevated temperatures – 5%, rain – 9% and storms – 4%). 

2) Which railway infrastructure features are more sensitive to unexpected winter weather 
conditions and why? 

Most failures occur due to the malfunctioning of switches, which are responsible for 
approximately 80% of the cases. These results are in accordance with the used literature.  

A series of issues can arise when a switch is under severe winter weather conditions. Malfunctions 
can be a result of low temperatures, snow/hail or frost and ice. While snow and frost can hamper 
the movement of the tongue, causing a mechanical failure, low temperatures seem to have bigger 
impacts on the communication system. Disruptions related to low temperatures that effect inner 
connections within the switch motor have been frequently mentioned. The result is usually 
failures in the sending/receiving messages about the switch position to the central administration.  

3) How can the likelihood of disruptions due to winter weather be estimated based on the 
encountered critical components? 

A switch probability regression model was established based on type of winter weather 
(snow/hail, frost/freezing rain, low temperatures), number of switches on the link and train 
frequency (low, medium, high). A log-logistic function was selected for the assessment, as it 
presented the best fit within the used range compared to the exponential and inverse potential 
functions. The product of this first step was the assessment of the probability of disruptions 
related to switches for each link within the rail network. As the goal was to understand the 
likelihood of switch disruption within this phase, this methodology proved suitable for presenting 
clear and realistic outcomes.  

4) What network performance indicators can be used to understand the impacts of disruptions 
caused by winter weather and which are the encountered impacts on the Dutch railways in the 
developed study case?  

As the role of the rail network is to transport passengers, it was defined that the station (node) 
potential must be included as a weight in the vulnerability index. The station importance was 
estimated based on three indicators: potential users, traveller ridership and station connectivity. 
The first indicator represents possible users of the rail system by estimating the number of users 
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based on the amount of residents within a station catchment area. The second indicator is the 
number of passengers that entered or exited each Dutch station (daily average) in 2014. The last 
one, station connectivity, is an indicator developed by Harthold (2016) which classifies how well 
the station is placed within the network. This indicator is based on the number of necessary 
transfers for reachability of the station, meaning the better connected the station, the higher the 
index value. 

To understand the impacts on the network, and the importance of the studied stations, all 
possible routes within the network where analysed. The criticality of each route was calculated 
by assessing the node importance level (for the considered origin-destination - OD - pair) and the 
switch vulnerability sum of the links that compose the route. To define which links are to be 
considered in a route, a geographic information system (GIS) software for working with maps and 
geographic information was used. With ArcGis, the impacts of disruptions on accessibility were 
estimated using the Network Analyst tool.  

The impact on network performance is the diminishment of trip flexibility, reducing the levels of 
accessibility of the rail users. As disruptions have developed to a reduced winter timetable, 
passengers need to deal with less trip options, busier trains and possible delays during winter 
events. The most critical encountered routes were Dordrecht - Haarlem, Amersfoort - Delft, 
Amsterdam Sloterdijk – Dordrecht, Amersfoort – Amsterdam Sloterdijk and Alkmaar – Dordrecht. 
All located within the Randstad region. 

5) Which actions are currently being developed by NS and ProRail to decrease rail vulnerability 
(to winter weather) and are these actions focused on the most critical elements and in the most 
vulnerable regions?  

Measures are being implemented on seven different levels as explained throughout the report. 
In relation to switches, the implementation of point heaters and the planning of fixed switches 
during winter events are the main ones used. As switches are the most critical element regarding 
winter weather disruptions and the highest number of occurrences happened in the Randstad, it 
can be stated that the mitigation strategy is in accordance with the calculated vulnerabilities. 
What can be added is that focusing on the reduced timetable and in fixing switches might bring 
development issues in the upcoming years. The number of passengers has increased gradually 
and the service provider has made public the goal of intensifying frequencies in the future. The 
increase of train frequencies can only be done with a structured timetable with no need of winter 
event reductions. A developed analysis considering the scenarios with a virtual decrease and 
increase in the number of switches (representing the implementation of fixed switches and point 
heaters) could have reduced the switch related disruptions in the past. This study supports that 
the investments in the mitigation program result in positive outcomes. 

Vulnerability levels per link which consider the probability of switch disruption and the station 
importance are an important tool for directing investments in winter disruption mitigation 
strategies. The winter risk map can be used by the rail operators to identify critical regions, plan 
resources and implement new technologies. At the end, both service providers and passengers 
benefit as the rail transport organisation becomes a more robust and trustworthy system. 
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01. SEPTA – Potential Adaptation Strategies for Snow Events 
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02. Winter Weather Correlations 
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03. Disruption Correlations 
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04. Distance to Coast Correlations 
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05. Additional Weather Characteristics during Winter Related Disruptions 
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06. Intercity Stations Dutch Rail Network 
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07. Suggested Approaches for the Winter Disruption Mitigation Program 

Timetable – Level 1 
Period Actions Category 

Immediately 
Before Event 

Evaluate train lenght and communication of train extension to 
passengers based on forecast 

Planning 

Maintain sharp and fast decision-making approaches  Operations 
Maintain well defined personnel responsibilities when defining the 
usage of the timetable 

Operations 

Check availability and create connections with main responsible 
within the weather bureaus 

Operations 

During Event Keep close and effective communication with weather bureaus for 
fast and effective decision making 

Operations 

Have all main position in alert and available during the amended 
timetable 

Operations 

Provide fast and effective communication with involved and 
responsible for updating traveller information 

Operations 

Long Term 
Planning 

Improve communication process with weather bureaus for the 
inclusion of more details on winter characteristics 

Planning 

Evaluate criteria for timetable alert  Research 
Include and analyse details on winter weather characteristics that 
trigger switch disruptions 

Capital planning 

Develop amended table based on region criticallity Planning 
Monitor and evaluate timetable necessity and performance Planning 
Install additional weather measuring systems along the railway for 
more accurate data 

Capital planning 

Sharpen decision-making process by developing a structured 
decision-making map including winter weather characteristics and 
the vulnerability per location 

 

Diminish dependencies on winter timetable by focusing on other 
mitigation strategies 

Planning 

Asset and Vehicle Maintenance – Level 2 
Period Actions Category 

Immediately 
Before Event 

Ensure that the track is free of obstacles (no branches of bushes 
covered with snow hanging low and avoidance of ice formation at 
tunnel entrances) 

Maintenance 

Put third-party contractors on call to facilitate snow/ice removal Maintenance 
Salt rails, stations, and other key areas in advance Maintenance 
Use of chemicals for melting snow Maintenance 
Plan and train maintenance teams for asset and vehicle integrity 
evaluations before winter 

 

Check functionality of point heaters Maintenance 
Increase defrosting capacity and cover of the most important 
railway yards 

Maintenance 

Deploy reaction teams and equipment (engines, rotary snow 
ploughs) 

Management 

Prepare rolling stock and infrastructure for snow and cold weather 
(e.g. heating, removal of ice and snow, de-icing) 

Maintenance 

During Event Manual cleaning of turn-overs (brushes, spades, blowers, 
excavators)  

Maintenance 

Remove snow (snow blowing machines or vehicles, manually)  Maintenance 
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Provide appropriate shelter for the rolling stock or cover sensitive 
parts (couplings, pantographs)  

Management 

If applicable, keep vehicles moving across track overnight to 
reduce ice build-up 

Operations 

Take measures to keep platforms free of snow and ice Maintenance 
Closely monitor staff working on snow removal to prevent or 
respond to injuries and fatigue 

Management 

Put third-party contractors on call to transport clients using 
different modes when necessary 

Capital planning 

Long Term 
Planning 

Implement new technology with sensors to identify obstacles on 
critical segments 

Capital Planning 

Invest in auxiliary equipment such as rubber spoilers and snow 
fences in critical segments 

Capital planning 

Expand use of platform heaters Capital planning 
Continue and enhance tree trimming program Maintenance 
Acquire backup power systems (permanent or temporary) for 
critical regions 

Capital planning 

Continue to plan for snow removal costs in budgets, in addition to 
other newer stressors 

Capital planning 

Material – Level 3 
Period Actions Category 

Immediately 
Before Event 

Check for sufficient spare equipment availability based on 
historical data  

Planning 

Maintain a clear and well-defined process for the management 
and disposal of material based on past events 

Operations 

Dispose warehouses and trained personnel within all critical 
regions 

Operations 

During Event Provide fast and efficient material delivery Operations 

Keep warehouses well maintained Maintenance 
Keep track of used material Management 
Keep track of used equipment Management 
List issues that arise during process for future improvement Management 
Keep track of material within warehouse to order additional parts 
in case necessary 

Management 

Long Term 
Planning 

Analyse and define most used and critical components Planning 
Develop a clear and well-defined process for the management and 
disposal of material based on past events 

Planning 

Improve the process description for disposal of material Planning 
Evaluate delivery times and spare part quality Research 
Evaluate spare parts provider in relation to delivery speed and 
product quality 

Research 

Evaluate overall performance with internal clients Research 
Management – Level 4 

Period Actions Category 
Immediately 
Before Event 

Check communication flow Planning 
Update personnel on the decision-making process Management 
Structure the integration and coordination with other measures. Management 

During Event Keep track of process Management 
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Keep open communication with other areas Management 
Follow defined plan Management 

Long Term 
Planning 

Improve decision-operational treatment and adjustment  Planning 
Improving communication between the different organizations  Planning 
Improving standard measures and decision-making and 
implementation after disruptions 

Planning 

Integration and coordination with other measures. Planning  
Train personnel on the decision-making process  Capital planning 
Practice decision-making in crisis situations  Planning 
Enhancing structural operational evaluation and learning cycle  Planning 
Raise awareness and periodic exercising of emergency  Operations 

Personnel – Level 5 
Period Actions Category 

Immediately 
Before Event 

Check on extra available staff for urgent matters Operations 
Send out warning for winter condition Operations 

During Event Provide support for critical management conditions Operations 
Select personnel for direct handling of unexpected decisions  Operations 

Long Term 
Planning 

Train personnel for previewed winter scenarios Capital Planning 
Invest in communication technology and training Capital planning 
Develop pilots for checking the communication within the winter 
mitigation team 

Capital planning 

Traveller Information – Level 6 
Period Actions Category 

Immediately 
Before Event 

Verify accuracy of traveler information in social media and provide 
announcements 

Operations 

Verify accuracy of travel information at stations and on national 
channels 

Operations 

During Event Provide information on the situation, the expected recovery times 
and possible alternative journeys (+ forecasts) 

Operations 

Long Term 
Planning 

Improve travel information at stations and on all national channels 
on a meta-level, including frequent updates. 

Capital Planning 

Improve stability and availability of travel information such as Info 
Plus signs and redundancy 

Capital planning 

Customer Satisfaction – Level 7 
Period Actions Category 

Immediately 
Before Event 

Monitor the spread of information on possible winter events Operations 
Check on additional staff (volunteers) ready to guide customers Operations 

During Event Provide convenient waiting rooms and coffee/tea for stations with 
delay issues  

Management 

Verify quality of received travel information to customers  Management 
Dispose of extra personnel to support passengers specially Management 

Long Term 
Planning 

Invest in marketing in favour of patience and understanding of the 
customers in winter disruptions focusing on the importance of 
safety and good travel experiences 

Capital Planning 

Develop, update, run and evaluate a yearly survey on customer 
satisfaction 

Capital planning 
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08. Probabilistic Analysis – T-tests for the Exponential Function 

 

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0,249402 0,203147 Mean 0,330753 0,322507 Mean 0,355378 0,358336
Variance 0,028374 0,043668 Variance 0,050151 0,078611 Variance 0,061943 0,087207
Observations 38 38 Observations 38 38 Observations 38 38
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 71 df 71 df 72
t Stat 1,062318 t Stat 0,141667 t Stat -0,04722
P(T<=t) one-tail 0,145846 P(T<=t) one-tail 0,443872 P(T<=t) one-tail 0,481233
t Critical one-tail 1,6666 t Critical one-tail 1,6666 t Critical one-tail 1,666294
P(T<=t) two-tail 0,291691 P(T<=t) two-tail 0,887744 P(T<=t) two-tail 0,962467
t Critical two-tail 1,993943 t Critical two-tail 1,993943 t Critical two-tail 1,993464

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
Mean 0,340168 0,347909 Mean 0,269013 0,130922 Mean 0,425532 0,43428
Variance 0,049946 0,055585 Variance 0,033548 0,012627 Variance 0,080711 0,069181
Observations 37 37 Observations 37 37 Observations 37 37
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 72 df 60 df 72
t Stat -0,14495 t Stat 3,90898 t Stat -0,13745
P(T<=t) one-tail 0,442576 P(T<=t) one-tail 0,000119 P(T<=t) one-tail 0,445529
t Critical one-tail 1,666294 t Critical one-tail 1,670649 t Critical one-tail 1,666294
P(T<=t) two-tail 0,885151 P(T<=t) two-tail 0,000238 P(T<=t) two-tail 0,891059
t Critical two-tail 1,993464 t Critical two-tail 2,000298 t Critical two-tail 1,993464

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
Mean 0,447273 0,345412 Mean 0,462709 0,29897 Mean 0,470768 0,29897
Variance 0,08537 0,044638 Variance 0,109407 0,036337 Variance 0,086868 0,036337
Observations 55 55 Observations 55 55 Observations 55 55
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 98 df 86 df 92
t Stat 2,095089 t Stat 3,180806 t Stat 3,629822
P(T<=t) one-tail 0,019371 P(T<=t) one-tail 0,001022 P(T<=t) one-tail 0,000233
t Critical one-tail 1,660551 t Critical one-tail 1,662765 t Critical one-tail 1,661585
P(T<=t) two-tail 0,038742 P(T<=t) two-tail 0,002043 P(T<=t) two-tail 0,000466
t Critical two-tail 1,984467 t Critical two-tail 1,987934 t Critical two-tail 1,986086

Low Temperatures

Low Temperatures

Low Temperatures
High Frequencies

Low Frequencies

Medium Frequencies

Snow/hail

Snow/hail

Snow/hail

Frost/freezing rain

Frost/freezing rain

Frost/freezing rain
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Probabilistic Analysis – T-tests for the Inverse Potential Function 

 

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0,249402 0,797056 Mean 0,330753 0,647025 Mean 0,355378 0,603512
Variance 0,028374 0,037483 Variance 0,050151 0,035613 Variance 0,061943 0,033642
Observations 38 38 Observations 38 38 Observations 38 38
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 73 df 72 df 68
t Stat -13,1552 t Stat -6,65733 t Stat -4,94747
P(T<=t) one-tail 3,02E-21 P(T<=t) one-tail 2,35E-09 P(T<=t) one-tail 2,61E-06
t Critical one-tail 1,665996 t Critical one-tail 1,666294 t Critical one-tail 1,667572
P(T<=t) two-tail 6,04E-21 P(T<=t) two-tail 4,71E-09 P(T<=t) two-tail 5,21E-06
t Critical two-tail 1,992997 t Critical two-tail 1,993464 t Critical two-tail 1,995469

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
Mean 0,340168 0,658749 Mean 0,269013 0,766185 Mean 0,425532 0,535587
Variance 0,049946 0,017844 Variance 0,033548 0,017182 Variance 0,080711 0,015485
Observations 37 37 Observations 37 37 Observations 37 37
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 59 df 65 df 49
t Stat -7,44283 t Stat -13,4269 t Stat -2,1584
P(T<=t) one-tail 2,4E-10 P(T<=t) one-tail 1,03E-20 P(T<=t) one-tail 0,017912
t Critical one-tail 1,671093 t Critical one-tail 1,668636 t Critical one-tail 1,676551
P(T<=t) two-tail 4,81E-10 P(T<=t) two-tail 2,06E-20 P(T<=t) two-tail 0,035824
t Critical two-tail 2,000995 t Critical two-tail 1,997138 t Critical two-tail 2,009575

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
Mean 0,447273 0,494143 Mean 0,462709 0,469768 Mean 0,470768 0,463044
Variance 0,08537 0,016048 Variance 0,109407 0,014907 Variance 0,086868 0,014591
Observations 55 55 Observations 55 55 Observations 55 55
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 74 df 68 df 72
t Stat -1,0915 t Stat -0,14848 t Stat 0,17983
P(T<=t) one-tail 0,139297 P(T<=t) one-tail 0,441202 P(T<=t) one-tail 0,428896
t Critical one-tail 1,665707 t Critical one-tail 1,667572 t Critical one-tail 1,666294
P(T<=t) two-tail 0,278593 P(T<=t) two-tail 0,882405 P(T<=t) two-tail 0,857791
t Critical two-tail 1,992543 t Critical two-tail 1,995469 t Critical two-tail 1,993464

Low Temperatures

Low Temperatures

Low Temperatures

Low Frequencies

Medium Frequencies

High Frequencies

Snow/hail

Snow/hail

Snow/hail

Frost/freezing rain

Frost/freezing rain

Frost/freezing rain
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Probabilistic Analysis – T-tests for the Log-logistic Function 

 

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2

Mean 0,249401914 0,251005128 Mean 0,330753 0,337188 Mean 0,355378 0,365632
Variance 0,028373823 0,023932302 Variance 0,050151 0,044917 Variance 0,061943 0,054477
Observations 38 38 Observations 38 38 Observations 38 38
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 73 df 74 df 74
t Stat -0,043212273 t Stat -0,12864 t Stat -0,18527
P(T<=t) one-tail 0,482825151 P(T<=t) one-tail 0,448995 P(T<=t) one-tail 0,426761
t Critical one-tail 1,665996224 t Critical one-tail 1,665707 t Critical one-tail 1,665707
P(T<=t) two-tail 0,965650302 P(T<=t) two-tail 0,89799 P(T<=t) two-tail 0,853522
t Critical two-tail 1,992997126 t Critical two-tail 1,992543 t Critical two-tail 1,992543

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
Mean 0,340167754 0,341838873 Mean 0,269013 0,270391 Mean 0,425532 0,42948
Variance 0,049945754 0,048276839 Variance 0,033548 0,032491 Variance 0,080711 0,078101
Observations 37 37 Observations 37 37 Observations 37 37
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 72 df 72 df 72
t Stat -0,032434152 t Stat -0,03261 t Stat -0,06026
P(T<=t) one-tail 0,487107786 P(T<=t) one-tail 0,487036 P(T<=t) one-tail 0,476059
t Critical one-tail 1,666293696 t Critical one-tail 1,666294 t Critical one-tail 1,666294
P(T<=t) two-tail 0,974215573 P(T<=t) two-tail 0,974072 P(T<=t) two-tail 0,952119
t Critical two-tail 1,993463567 t Critical two-tail 1,993464 t Critical two-tail 1,993464

t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances t-Test: Two-Sample Assuming Unequal Variances

Variable 1 Variable 2 Variable 1 Variable 2 Variable 1 Variable 2
Mean 0,447272727 0,434435672 Mean 0,462709 0,458309 Mean 0,470768 0,42948
Variance 0,085369828 0,085296299 Variance 0,109407 0,108302 Variance 0,086868 0,078101
Observations 55 55 Observations 55 55 Observations 55 37
Hypothesized Mean Difference 0 Hypothesized Mean Difference 0 Hypothesized Mean Difference 0
df 108 df 108 df 80
t Stat 0,230448082 t Stat 0,069925 t Stat 0,679666
P(T<=t) one-tail 0,409089778 P(T<=t) one-tail 0,472191 P(T<=t) one-tail 0,249339
t Critical one-tail 1,659085144 t Critical one-tail 1,659085 t Critical one-tail 1,664125
P(T<=t) two-tail 0,818179557 P(T<=t) two-tail 0,944383 P(T<=t) two-tail 0,498678
t Critical two-tail 1,982173483 t Critical two-tail 1,982173 t Critical two-tail 1,990063

Low Frequencies

Medium Frequencies

High Frequencies

Snow/hail
Low Frequencies

Snow/hail
Medium Frequencies

High Frequencies
Snow/hail

High Frequencies

Low Temperatures
Low Frequencies

Low Temperatures
Medium Frequencies

Low Temperatures
High Frequencies

Frost/freezing rain
Low Frequencies

Frost/freezing rain
Medium Frequencies

Frost/freezing rain


