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Abstract 
A task often occurring at CAPE Groep is the task of schema matching. Schema matching is the problem 

of finding pairs of attributes (or groups of attributes) from a source schema and attributes of a target 

schema such that pairs are likely to be related. At present, this time-consuming task is done manually. 

This thesis explores the possibilities for partially automating this process thus saving time and, 

eventually, money. 

Fully automating the task of schema matching has proved to be difficult. We therefore apply the 

concept of Intelligence Amplification to the problem of schema matching. Intelligence Amplification is 

a field which focuses on a symbiotic relationship between human and machine. A clear definition is 

currently lacking in literature and after assessing extracting key features we created our own 

definition: “Intelligence Amplification focusses on a close collaboration, with complementary 

contributions, between human and machine to empower humans in the decision-making process”. 

For the problem of schema matching we found two major moments where interaction between 

humans and machine occur: during the stage of pre-processing and during the matching stage. Pre-

processing happens at the begin of a matching scenario. Steps included in pre-processing include 

expanding abbreviations or translation of attribute names. In the matching stage, a machine calculates 

a set of candidate mappings. In our IA driven approach, the user can opt to invoke several software 

agents, either get better results or to have a different software agent for a subset of the matching 

scenario.  

A reference architecture was developed to aid in development of such tools. Using this reference 

architecture, we developed our own prototype. This prototype contained a machine learning 

approach. We trained a neural network to predict candidate mappings. Evaluation of this method has 

showed there is still room for improvement as for some scenarios the neural network was not able to 

generate any candidate mappings.  

Evaluation of the prototype was done using two metrics: effectiveness and efficiency. For effectiveness 

we look at precision and recall. Precision is a metric for the quality of results. It indicates the percentage 

of correct predictions that were made by the machine as part of the total amount of predictions made. 

Recall tells something about the completeness of results. It indicates how many correct predictions 

were made as part of the total amount of correct predictions which should be made.  

The second evaluation criteria, efficiency, is looking at the time aspect. First a baseline is established. 

In our case this is the time it takes a user to manually complete a matching scenario. When using an 

automated approach, we again look at the total time it takes to complete a scenario and compare this 

against the baseline. Using this feature a performance improvement score is calculated.  

It was found the prototype needs several improvements. We tried an approach using a trained neural 

network and one with a heuristic to create candidate mappings. We have not found a single approach 

which works best for every situation. For CAPE Groep we recommend the most important next step is 

to improve the user interface so it is better able to handle the input of an auto-mapping application. 

Sliders for the various metrics should be included. This allows a user to directly see the effect of any 

change they make and tweak the settings such that it fits the scenario they work on. This should then 

be extended by further pre-processing steps to research what the benefit is of certain pre-processing 

actions. 
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1 Introduction 
This section starts with the context in section 1.1 followed by the problem statement in section 1.2. 

Next, the relevance of the project is discussed in section 1.3. This is followed by a research model which 

is discussed in section 1.4 and the research questions which are addressed in section 1.5. Section 1.6 

provides the methodology and section 1.7 gives an outline of the rest of the thesis. 

1.1 Context 
The early days of automation started with the objective of looking which tasks could best be replaced 

by computers because the computer could do it better or against lower cost (Casini, Depree, Suri, 

Bradshaw, & Nieten, 2015).  One of the research fields seeking to achieve this objective is the field of 

Artificial Intelligence (AI) (Fischer, 1995). This is now a well-established field and a lot of research effort 

has been put in it. However, the focus of AI is to replace human reasoning which is not always possible 

(Garcia, 2010). This stands in contrast to Intelligence Amplification (IA) which does not aim to replace 

a human but amplify the human intelligence (Breemen, Farkas, & Sarbo, 2011). This is a different view 

in which the point is not to assess which tasks are better suitable to be undertaken by a human or a 

computer, but to see how tasks can best be shared by both humans and computers (Casini et al., 2015). 

This is the concept of symbiosis and the roots of it can be traced back to Licklider (1960). In his paper, 

he discusses the symbiosis between human and machine. As example of a symbiosis Licklider (1960) 

cites the fig tree which is pollinated by a larva. This larva lives in the ovary of the tree on which it eats. 

Thus, the two form a productive and thriving partnership.  

Even though the concept is more than 50 years old it hasn’t been entirely realized today (Cerf, 2013). 

However, this could be contributed to recent advances in in computer technology and psychological 

theory which make the subject possible (Griffith & Greitzer, 2007). In this thesis, we take the concept 

of Intelligence Amplification and apply it to the problem of schema matching which is introduced in 

the next section. 

1.2 Problem statement 
Schema matching is a basic problem in many database applications, such as data integration, data 

warehousing and semantic query processing (Rahm & Bernstein, 2001). It aims at identifying semantic 

correspondences between metadata structure or models, such as database schemas or XML message 

formats (Rahm, 2011). Often this process is carried out manually costing a lot of time and user effort 

(Rahm & Bernstein, 2001). It is an inherently difficult task to automate because the exact semantics of 

the data are only completely understood by the designers of the schema, and not fully captured by the 

schema itself (Madhavan, Bernstein, Doan, & Halevy, 2005). 

CAPE Groep offers eMagiz to integrate various software applications. eMagiz makes this process easy 

and intuitive by offering a graphical user interface which makes the product suitable to be used without 

extensive programming knowledge. Each implementation of eMagiz starts with the design of the 

internal data model which is referred to as a Canonical Data Model (CDM). Applications can be 

connected to the CDM thus creating a hub-and-spoke architecture (Weske, 2012).  

The process of connecting a new application to the CDM involves creating a schema mapping between 

the incoming (or outgoing) system and the CDM. At present this is done manually and therefore is very 

time-consuming (Duchateau & Bellahsene, 2016). An example of such a mapping can be seen in figure 

1.  
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Figure 1: Example mapping in eMagiz 

Each line represents a mapping between the two schemas. On the left we find the source schema 

which needs to be mapped to the destination schema on the right. To enhance this process a schema 

matcher would be useful. Research into schema matching mostly focusses on systems which are 

capable of proposing possible matching without human involvement (Rahm & Bernstein, 2001). Many 

approaches make wrong choices which could have a cascade effect and lead to further errors (Jimenez-

Ruiz, Grau, Zhou, & Horrocks, 2012). When accuracy is important user intervention during the 

matching process becomes essential and earlier research indicate this intervention could significantly 

improve matching result (Jimenez-Ruiz et al., 2012) This symbiosis between tool and user has been 

gaining more prominence but research in this area is still in its infancy (Falconer & Noy, 2011; Rahm, 

2011; Rodrigues, da Silva, Rodrigues, & dos Santos, 2015).  

In this thesis, we aim to create a symbiotic method between tool and human for schema matching. 

This approach is uncommon in science and gives a CAPE Groep a possibility to reduce time consultants 

need to perform the task of schema matching. This main research goal is to develop a reference 

architecture for using the concepts of Intelligence Amplification and database schema matching which 

should aid in the task of matching. 

1.3 Relevance 
The project has both scientific and practical relevance. First, we will look in literature and assess the 

current state-of-art in Intelligence Amplification research. This will be combined with knowledge from 

schema matching to deliver a framework for an IA driven approach for schema matching. 

Practical relevance is for CAPE Groep for which we develop a functional prototype which should 

partially automate the schema matching process thus leading to a time reduction needed for 

consultants performing the task. 

1.4 Research model 
Based on the problem statement we formulate a research model (Verschuren & Doorewaard, 2007) 

shown in figure 2. 
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Figure 2: Research model 

The main goal of the thesis is shown on the right. This is to have an evaluated IA approach for schema 

matching. To achieve this a IA driven approach to schema matching is created and a prototype. 

The IA driven approach is split in two tasks, namely features of IA on task delegation. The latter is split 

in literature concerning Intelligence Amplification and task delegation. Next, a closer look is taken at 

schema matching. We are curiosity driven to look for a solution involving machine learning. Also, a 

look is taken at different approaches and similarity measures. These are measures indicating how 

similar two text string are which are further discusses in section 2. 

To create a prototype, we used the IA driven approach defined above. We use the data set at CAPE for 

machine learning. To evaluate our approach, we look for performance metrics, these are split in 

metrics for machine learning and user evaluation.  

Colour coding is used to link the tasks to the research questions defined in the next section.  

1.5 Research Questions 
Based on the problem statement and research model we formulate the following main research 

question: 

How can we combine the concept of Intelligence Amplification with database 

schema matching to create a reference architecture for IA driven schema 

matching? 

To answer this question several sub-questions are formulated. First, we focus on Intelligence 

Amplification. We start with a literature review to assess the current- state-of-art. At present, there is 

no universally accepted definition. Therefore, a literature study is conducted to find various definitions 

and highlight the difference. 

1a. Which definitions exist in literature? 

1b. What is the current state-of-art in Intelligence Amplification research? 

1c. How does IA affect the delegation of tasks between human and machine? 

Evaluated IA approach 
for schema matching

IA driven architecture 
for schema matching

Features of IA on task 
delegation

Intelligence 
Amplification Literature

Task delegation

Schema matching

Similarity measures

Machine learning

Other approaches

Prototype

Performance evaluation 
metrics

Machine learning 
evaluation metric

User evaluation metric

CAPE data set
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Our next step is related to the task for which we will try to build a solution, namely database schema 

matching. We would like to use machine learning for this purpose so therefore we provide a general 

introduction. Before we can use the data for machine learning we look which possibilities have been 

identified in literature for performing schema matching using machine learning. These questions deal 

with the data currently present and how to prepare it for extraction by a machine learning algorithm. 

2a. Which solutions for schema matching have been proposed in literature? 

2b. Which pre-processing steps are needed to prepare data for schema matching? 

2c. Which issues has literature identified in database schema matching? 

2d. Which machine learnings algorithms are available? 

Using the knowledge from the first two research question we describe a general architecture which 

describes how we can create an IA driven approach for schema matching.  

3a. How to design an IA driven approach and architecture for schema matching? 

3b. In which stages do we include the user in the approach? 

We then use our general approach to develop a prototype. The prototype is implemented and 

evaluated.  

4a. Which parts of the architecture will we use to build a first concrete architecture? 

4b. Which data is available at CAPE? 

4c. Which machine learning algorithm produces the best result? 

4d. Which metrics can we use to measure performance? 

4e. Which improvements to the initial implementation can be made? 

1.6 Methodology 
To structure the report we use the Design Science Research Model which is displayed in figure 3 

(Peffers, Tuunanen, Rothenberger, & Chatterjee, 2008).  

 

Figure 3: DSRM process model (Peffers et al., 2008) 

The model consists of the following steps: 

• Problem identification and motivation: this step defines the research problem and is used to 

justify the value of a solution. This is covered in this chapter. 
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• Define the objectives and solution: from the problem identification and motivation the 

objectives for a solution are inferred. This looks at what is possible and feasible. This is covered 

in research question 1 and 2. 

• Design and develop: in this stage, an artefact is developed. This start by determining its desired 

functionalities and architecture. Initially we derive a general approach discussed in question 3. 

Next out prototype is created in question 4a-c. 

• Demonstration and evaluation: a demonstration shows the artefact in a single act to prove it 

works. A more formal method is an evaluation. This is covered in research question 4d-e. 

• Communication: the last step consists of communicating the outcome to relevant 

stakeholders. In this case, this would be the final report and presentation which are covered 

with all research questions. 

1.7  Document outline 
The rest of the document is outlines as follows. First, a literature study is conducted which is presented 

in section 2. Based on the literature a reference architecture for an intelligence amplification driven 

method is derived in section 3. Based on this reference architecture we build a prototype which we 

discuss in section 4. The prototype is then evaluated which is discussed in section 5. We conclude this 

thesis with a conclusion and future work in section 6. 
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2 Literature 
This chapter describes the literature search. First, we discuss literature around the topic of intelligence 

amplification in section 2.1. Next is an overall introduction to the concept of machine learning in 

section 2.2. This is followed by a literature section about the topic schema matching in section 2.3. The 

chapter is concluded with a summary in section 2.4. 

2.1 Intelligence Amplification 
The topic of the first part of the literature search is Intelligence Amplification. 

2.1.1 Questions and selection process 
We define the following questions: 

• Which definitions of IA related exist in literature? 

• Is there a suitable task delegation which can be applied in IA? 

• Has literature identified requirements or frameworks for human-machine collaboration? 

For the search process Scopus is used. Scopus provides many options for searches and has one of the 

biggest databases on scientific literature. For articles for which the full text was not available a search 

on Google Scholar was conducted. The search was conducted in February 2017 and the following five 

keywords were used: "intelligence amplification", "cognitive augment*", intelligence augment* OR 

"augment* intelligence ", "*man computer symbiosis" OR "*man machine symbiosis" and "*man 

computer collaboration"  OR  "*man machine collaboration". The search yielded 370 results which 

were first narrowed down on title, next on abstract, next on the availability of the full text article and 

finally the article was read. An overview of the result set can be found in figure 4.  

 

Figure 4: search results 

Results are classified based on the questions. 

Author IA definitions  Task 
delegation 

Requirements 

(Baker, 2016)    
(Barca & Li, 2006)  ● ● 
(Breemen et al., 2011) ●   
(Casini et al., 2015)  ●  
(Crouser & Chang, 2012)  ●  
(Cummings, 2014)  ●  
(Dekker & Woods, 2002)  ●  
(DiBona, Shilliday, & Barry, 2016)  ● ● 
(Dobrkovic, Liu, Iacob, & van 
Hillegersberg, 2016) 

●  ● 

N=370

Initial search

N=94

Selection on 
title (-276)

N=59

Selection on 
abstract (-35)

N=47

Full text 
available (-

12)

N=19

Relevant 
content (-28)



7 
 

(Fischer, 1995)   ● 
(Garcia, 2010) ●   
(Greef, Dongen, Grootjen, & Lindenberg, 
2007) 

●   

(Griffith & Greitzer, 2007) ●  ● 
(Jacucci, Spagnolli, Freeman, & 
Gamberini, 2014) 

●   

(Khabaza, 2014) ●   
(Kondo, Nishitani, & Nakamura, 2010)   ● 
(Lesh, Marks, Rich, & Sidner, 2004)   ● 
(Paraense, Gudwin, & Goncalves, 2007) ●  ● 
(Stumpf et al., 2009)   ● 

 

2.1.2 IA definitions 
In the previous chapter we introduced IA as the symbiosis between humans and machines. At present 

no universal definition exists. We analyse the papers and highlight which definitions is used. These 

definitions are presented in table 1. 

Table 1: Overview of definitions 

Author What Definition 

(Breemen et 
al., 2011) 

IA IA is a field of research aiming at increasing the capability of a man 
to approach a complex problem situation, to gain comprehension 
to suit his particular needs, and to derive solutions to problems. 

(Garcia, 
2010) 

IA Artificial intelligence (…) working in partnership with people to 
reach rationally superior solutions by helping them better explore 
the solution space. 

(Dobrkovic 
et al., 2016) 

IA Enhance human decision-making abilities through a symbiotic 
relationship between a human and an intelligent agent. 

(Greef et al., 
2007) 

Augmented 
Cognition 

The symbolic integration of man and machines in a closed-loop 
system whereby the operator’s cognitive state and the operational 
context are to be detected by the system. In this integration, there 
is a dynamic division of labour between human and machine which 
can be reallocated in real-time in order to optimize performance. 

(Griffith & 
Greitzer, 
2007) 

Human 
information 
interaction 

 

A new vision of symbiosis – one that embraces the concept of 
mutually supportive systems, but with the human in a leadership 
position, and that exploits the advances in computational 
technology and the field of human factors/cognitive engineering to 
yield a level of human-machine collaboration and communication 
that was envisioned by Licklider, yet not attained. 

(Jacucci et 
al., 2014) 

Symbiotic 
interaction 

A new generation of resources to understand users and to make 
themselves understandable to users 

(Khabaza, 
2014) 

IA Intelligence Amplification refers to the idea that the products of 
Artificial Intelligence will be used initially, not to create fully 
intelligent machines, but to amplify or increase the power of 
human intelligence. 

(Paraense et 
al., 2007) 

IA System Computational systems performing some sort of intelligent 
decision making based on the cooperation provided by an ongoing 
dialogue between a human user and a computer system. 

  

Based on these results we can see the field is diverse and draws characteristics from various research 

fields. From the results, we derive five distinct features, which are artificial intelligence, decision 
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making, problem solving, partnership/collaboration or symbiosis and human empowerment. We list 

these feature in table 2. 

Table 2: Comparing features 

 Artificial 
Intelligence 

Decision 
making 

Problem 
solving 

Partnership/ 
collaboration 

Empowering 
human 

(Breemen et 
al., 2011) 

  ●  ● 

(Garcia, 2010) ●  ● ● ● 
(Dobrkovic et 
al., 2016) 

 ●  ● ● 

(Greef et al., 
2007) 

●    ● 

(Greef et al., 
2007) 

   ● ● 

(Griffith & 
Greitzer, 2007) 

   ●  

(Jacucci et al., 
2014) 

   ●  

(Khabaza, 
2014) 

●    ● 

(Paraense et 
al., 2007) 

 ●  ●  

 

We first take a closer look what symbiosis between humans and machines entails. Jacucci et al.  (2014) 

looked at different paradigms related to symbiotic collaboration. For this purpose, three different 

frameworks were discussed, namely that of telepresence, affective computing and persuasive 

technologies. Telepresence is the research about the subjective experience of being in an environment 

that is mainly supported by digital resources. Affective computing refers to computing that relates to, 

arises from, or deliberately influences emotions. Lastly, persuasive technologies deals with the 

persuasive power a computer possess to persuade a human to undertake action. A symbiotic 

relationship draws upon all these frameworks. A comparison between system properties of each 

framework and how they relate to a symbiotic relationship is shown in figure 5. The ‘greyer’ a box the 

more a property applies to said feature. 

 

Figure 5: Comparing system features for several frameworks (Jacucci et al., 2014) 

The features listed in figure 5 can also be found in the definition of Greef et al.  (2007) and Griffith & 

Greitzer (2007). Almost all list a form of collaboration between human and machines. Two authors 

focus on AI in their definition. Where Cristina & Garcia (2010) indicates a partnership with an AI agent 

and a human Khabaza (2014) uses AI as a starting point to empower human intelligence. The same 

suggestion is made by Breemen et al. (2011) who indicates a human is empowered in its problem-
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solving ability. The same applies to empowerment of humans. Griffith & Greitzer (2007) keep their 

definition at a more abstract level by only focusing on a partnership; they do not indicate what this 

partnership can be used for.  

Next, we group the five features by their function. We consider decision making and problem solving 

as a goal. Artificial intelligence and partnership are considered as means to achieve the goal. Finally, 

human empowerment is seen as raison d’être of Intelligence Amplification. Concluding the above we 

use the following definition for IA in this thesis: 

Intelligence Amplification focusses on a close collaboration, with complementary 

contributions, between human and machine to empower humans in the decision-

making process. 

2.1.3 Task delegation 
A first attempt to distinguish tasks which are suitable for humans or machines was made in 1951 by 

Paul Fitts and are known as the Fitts’ lists (Casini et al., 2015; Cummings, 2014). This list is considered 

out-of-date (Crouser & Chang, 2012) and behind it is a false idea that humans and computers each 

have strengths and weaknesses whereby human weaknesses are eliminated or compensated by 

machines (Dekker & Woods, 2002). The list might suggest humans and machines are antithetical, 

however they are better seen as complementary (Crouser & Chang, 2012).  

Instead, automation creates new human strengths and weaknesses (Dekker & Woods, 2002). Failing 

to take this into account could lead to a situation where an engineer will envision the future in which 

only the predicted consequences will occur (Dekker & Woods, 2002). An update to the Fitts list has 

been proposed dubbed the “un-Fitts list” (Casini et al., 2015). This list is presented in table 3. 

Table 3: The “Un-Fitts” list (Hoffman et al., 2002) 

Machines 

Are constrained in that Need people to 
Sensitivity to context is low and is ontology-
limited  

Keep them aligned to the context 

Sensitivity to change is low and recognition of 
anomaly is ontology-limited  

Keep them stable given the variability and change 
inherent in the world 

Adaptability to change is low and is ontology-
limited  

Repair their ontologies 

They are not “aware” of the fact that the model 
of the world is itself in the world 

Keep the model aligned with the world 

Humans 
Are not limited in that Yet they create machines to 
Sensitivity to context is high and is knowledge- 
and attention-driven 

Help them stay informed of ongoing events 

Sensitivity to change is high and is driven by the 
recognition of anomaly 

Help them align and repair their perceptions 
because they rely on mediated stimuli 

Adaptability to change is high and is goal-
driven 

Affect positive change following situation change 

They are aware of the fact that the model of 
the world is itself in the world 

Computationally instantiate their models of the 
world 
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Strengths of humans are creativity (DiBona et al., 2016), self-reflection and the ability to perform a 

variety of tasks (Barca & Li, 2006). Machines can be designed to perform a specific task, can easily be 

replaced and can perform non-stop routines (Barca & Li, 2006).  

Automation does not transform technology and the people who adapt; human practice get 

transformed as they adapt technology to fit their local demands and constraints (Dekker & Woods, 

2002). Allocation of task should not be the focus, design for harmonious human-machine cooperation 

should be (Crouser & Chang, 2012). 

A solution to task delegation is provided by Crouser & Chang (2012) by looking at affordances. An 

affordance is defined as action possibilities that are readily perceivable by a human operator. 

Affordances are relational and exists between human and machine; they do not exist separate form 

that relationship. They suggest a non-exhaustive list of human and machine affordances which we list 

in table 4. 

Table 4: human and machine affordances (Crouser & Chang, 2012) 

Human affordances Machines affordances 

Visual perception Large-scale data manipulation 
Visuospatial thinking Collecting and storing large amounts of data 
Audio linguistic ability Efficient data movement 
Sociocultural awareness Bias-free analysis 
Creativity  
Domain knowledge  

 

Visuospatial thinking is our ability to visualize and reason about the spatial relationships of objects in 

an image.  

2.1.4 Human machine collaboration 
The key to automation is to turn systems into team players (Dekker & Woods, 2002). Effective 

collaboration between humans and machines is essential to become team players. Or, as put by Griffith 

& Greitzer (2007), the goal is to create a neo-symbiotic interaction between the human and 

information. This raises the question what is required to achieve this goal.  

Casini et al. (2015) list four requirements which are observability, directability, predictability and 

learning. Observability concerns our ability to understand and evaluate what is currently happening 

whereas directability is our ability to implement our goals for what we want to happen in the future. 

The latter two are closely related to each other and indicate (partial) results should be predictable and 

we should be able to learn from them. A lack of observability can lead to high complexity and 

undesirable machine behaviour (Greef et al., 2007). Next Casini et al. (2015) list three different 

intervention forms for collaboration between humans and machines. In the first situation, the system 

can ask the human operator for clarification. Secondly, a human can perform a random inspection and 

finally a human can perform a drill-down. In the last situation, a human is curious what led the machine 

to make a certain decision and he can inspect the processing chain which led to a specific assertion 

and conclusion.   

Kondo et al. (2010) discusses a human machine collaboration in a kitchen for recognizing objects. Three 

assumptions are made:  

1. the system should be able to uniquely a target object in good condition 

2. the user can improve the conditions  

3. the user can evaluate the result of the object recognition.  
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After testing a prototype, they indicate the key concept is to provide information feedback consisting 

of recognition status and suggestions for improvement.   

Another list of requirements for collaboration is proposed by Dobrkovic et al. (2016): 

• The human entity is given the master role, and it oversees the artificial intelligence, 

• The artificial intelligence is given the assistant role, 

• The human is responsible for the strategic decision making, 

• AI is responsible for the tactical/operational tasks, 

• The human is also responsible for the creative tasks that AI cannot handle, 

• The AI is pre-processing the data, and brings awareness to the human component, 

• The AI acts upon meta instruction given by the human, 

• The AI analyses the human output in context using the available input, and learns to recognize 

and adapt to the human’s behaviour, 

• Depending on the level of autonomy of the AI, the machine will either automatically complete 

all computational tasks that conform with the strategic goals set by the human, or will suggest 

a solution for the human to verify, executing only the tasks that the human has approved, 

• If the AI neither can understand the input, nor can process the task, it will ask for human 

assistance, 

• The human can overrule the AI. 

Using these requirements a hierarchical organization overview is created which we present in figure 6. 

 

Figure 6: hierarchical overview of intelligence amplification (Dobrkovic et al., 2016) 

When machine learning is used as intelligent agent the system should be capable of explaining the 

results it made (Stumpf et al., 2009). The user should be able to correct the machine if it is wrong. 

Paraense et al. (2007) state the final decision is not made by the human nor the machine but should 
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be seen as an offspring of the collaboration between the two of them. Whether or not the AI should 

be able to overrule the human is open for debate (Barca & Li, 2006).  

DiBona et al. (2016) investigated how information can effectively be shared between humans and 

machines. For this purpose, they propose the Proactive Autonomy Collaboration Toolkit (PACT) model 

(figure 7). The model is constructed using four primary elements: goals, work product, context, and 

information. A human (referred to as analyst) starts with goals. Initially these are limited, but they will 

become clearer further in the process. These goals lead to hypothesis which are fed to the work 

product. The latter is the collaborative environment where the human and computer (referred to as 

autonomy) work together to test hypothesis. Eventually the fully realized hypothesis becomes the goal 

of the research. Important to the collaboration with the machine is context which consists of two 

aspects: the actions and decisions of the analyst, and the information itself. Information fed to the 

work product by the human helps the machine understand what interest a human has and can help 

suggesting which information is relevant. This information serves as evidence for a hypothesis.  

 

Figure 7: PACT model (DiBona et al., 2016) 

In order to effectively allow collaboration between humans and machines a common language is need 

(Fischer, 1995). This language requires a data representation of hypotheses a human want to test 

which should be readable by both the human and machine.  

2.2 Machine learning 
We use machine learning to predict new mappings. Another option would be to predefine a set of 

rules. For example, when the name of two attributes are equal a new mapping should be created. This 

process of writing rules is what we refer to as heuristics and stands in contract to what we want to 

achieve by using machine learning. In other words, we don’t want to tell the machine what to do but 

we want the machine to learn these rules by itself so it can recognize when to make a new mapping. 

The book of Kubat (2015) provides a good introduction to the various concepts. We use his example 

to give an introduction about machine learning. Figure 8 provides a list of pies Johnny likes and dislikes. 

What we want is to induce a classifier which is an algorithm capable of predicating whether Johnny 

likes a future pie. The examples given in figure 8 constitute the training set. This is what we use to train 

a classifier. For this case, there are two different class labels: positive and negative. A classifier capable 

for these problems is therefore referred to as a two-class classifier. Other options are multi-class 

classifiers (used when a minimum of three different class values are predicted) or one-class classifiers. 

The latter are also known as anomaly detection classifiers. They are used when there is plenty training 

data regarding one class, but little of another class. An example is a bank which is trying to predict 

fraudulent transactions. Since the overwhelming majority of transactions are not fraudulent it makes 

sense to supply a classifier the ‘good’ examples and derive a pattern from those. When a new example 

comes in it is checked whether it is an anomaly (i.e. possibly fraudulent) or not. We have used this type 

of classifier as well. These results are discussed in section 4.4. 
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Figure 8: overview of pies Johnny likes and dislikes (Kubat, 2015) 

For the machine to be capable of recognizing the various pies we describe features (Kubat refers to 

this as attributes, however, we prefer the term features because in the rest of the thesis we use the 

term attribute for a different purpose). Examples of features are the shape (round, rectangular or 

triangle) or crust-size (thin or thick). Using these features, we create a table which describes the 

training examples, see table 5. 

Table 5: Twelve training examples expressed in a table (Kubat, 2015) 

Example Shape Curst - Size Curst - Shade Filling - Size Filling - Shade Class 

Ex1 Circle Thick Gray Thick Dark Pos 

Ex2 Circle Thick White Thick Dark Pos 

Ex3 Triangle Thick Dark Thick Gray Pos 

Ex4 Circle Thin White Thin Dark Pos 

Ex5 Square Thick Dark Thin White Pos 

Ex6 Circle Thick White Thin Dark Pos 

Ex7 Circle Thick Gray Thick White Neg 

Ex8 Square Thick White Thick Gray Neg 

Ex9 Triangle Thin Gray Thin Dark Neg 

Ex10 Circle Thick Dark Thick White Neg 

Ex11 Square Thick White Thick Dark Neg 

Ex12 Triangle Thick White Thick Gray Neg 
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Many classifiers exist. We group them together and discuss the type of classifier below (Herrera et al., 

2016; Witten, Frank, & Hall, 2011a): 

Bayesian learning: methods that are based on Bayes Theorem. Most notable is NaiveBayes which 

assumes mutual independence between attributes. In practice this means all attributes make an equal 

contribution to the decision (Witten et al., 2011a). All though this assumption never holds in practice 

it turns out NaiveBayes can yield good performance (Herrera et al., 2016).  

Instance Based Learning: sometimes known as lazy learners. These classifiers do no train or construct 

a model, but store all training data and compute distance measures between them. When a new 

attribute comes in the closest training example(s) is located and the outcomes are aggregated into a 

prediction. 

Rule Induction: construct a set of rules to predict the outcome. Rules have the advantage they are very 

easy to understand by humans. The easiest to understand rule classifier is OneR. This uses one feature 

to construct rules. Even though this is a very rudimentary approach it comes up with quite good results 

for characterizing the structure in data (Witten et al., 2011a).  

Decision trees: this group also provides models which are easy to interpret by humans. Decision trees 

are constructed by making multiple divisions at nodes and ending up at a leaf node. The leaf node 

provides the prediction (Herrera et al., 2016). Decision trees compare well to rules but there are 

differences. In a multi-class case a decision tree split takes all classes into account in trying to maximize 

the purity of the split whereas a rule-generating method concentrates on one class at a time, 

disregarding what happens to other classes (Witten et al., 2011a).  

Logistic regression: uses numeric attributes to construct classifiers. However, nominal attributes can 

be used as well. Logistic regression builds a linear model based on a transformed target variable.  

Support vector machines: a more recent category of classifiers. They construct a hyperplane such that 

a maximal separation is achieved between the classes. This has the advantage they are not prone to 

overfitting. 

Neural network: the working of our brain inspires these methods, or, more specifically the working of 

the neurons. An artificial neuron receives many weighted inputs and provide one aggregated outcome. 

A neural network has at least an input and output layer and between are hidden layers. This makes it 

possible to model complex data.  

To train a classifier a training set is used. After the classifier is trained we want to get an idea how it 

will perform. There are two different approaches for doing so. First, we split the data in a training set 

and a test set. As the names imply we use the train set to train the classifier, subsequently the classifier 

then scores the instances in the test set. By comparing the outcome of the classifier in the test by the 

outcome of the ground truth contained in the test set we get an idea of its performance. The other 

option is to use k-fold cross validation. This method is better suitable when limited training data is 

available. This is not the case in our thesis, therefore we omit a further explanation and we refer the 

keen reader to Witten et al. (2011b) 

Now we know how to test the performance we are interested in the metrics used for this purpose. The 

easiest and best to understand method is accuracy. Accuracy is defined as the amount of correctly 

classified instances w.r.t. the total amount of instances (Kubat, 2015). For the problem of schema 

matching literature suggests three metrics are often used. These are precision, recall and F-measure 

(Duchateau & Bellahsene, 2016). Precision calculates the proportion of relevant matches among those 

which have been discovered. Recall measures the relevant correspondences between all relevant 
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ones. A graphical overview of is displayed in figure 9. Finally, the measure is the harmonic mean of 

precision and recall and can be calculated as follows: 

𝐹 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

Figure 9: graphical overview of precision and recall (Wikipedia, 2017) 

A popular tool for performing machine learning and one that is often used in scientific publications is 

Weka (Duchateau & Bellahsene, 2016). Weka provides a number of different classifiers which can 

easily be trained without programming experience (Witten, Frank, & Hall, 2011c). 

2.3 Database schema matching 
The second part of our literature study focusses on the concept of database schema matching.  

2.3.1 Questions and selection process 
During the literature search we want to answer the following questions: 

• What techniques for schema matching have been proposed? 

• Which similarity measures are available? 

• Which approaches for schema matching have been proposed? 

To answer the questions, we started with a literature search on Scopus as we did in section 2.1. Articles 

not available on Scopus were looked up using Google Scholar. The search was conducted mid-March 

2017. Many approaches have been proposed (Assoudi & Lounis, 2015) and we are interested in those 

that use some form of machine learning. Therefore, the following keywords were used ("schema 
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matching" AND "machine learning"). After we read the documents we retrieved additional documents 

by using a forward and backward search on the relevant articles. This yielded a set of 8 relevant 

documents. The search process is displayed in figure 10. 

 

Figure 10: Overview of literature search 

2.3.2 Techniques 
Schema matching is the problem of finding pairs of attributes (or groups of attributes) from a source 

schema and attributes of a target schema such that pairs are likely to be related (Assoudi & Lounis, 

2015). It is a basic problem which can be found in many application domains (Rahm & Bernstein, 2001). 

A schema is a set of elements connected by some structure. For schema matching many approaches 

are possible and a taxonomy is provided by Rahm & Bernstein (2001) which we present in figure 11. 

 

Figure 11: Taxonomy for schema matching approaches (Rahm & Bernstein, 2001) 

At first a distinction is made between individual and combining matchers. The latter uses multiple 

individual matchers to get to its final result. An individual matcher computes a mapping based on a 

single matching criterion. A hybrid matcher uses multiple criteria to create a match whereas a 

composite matcher combines multiple results to create its final match. The taxonomy of the individual 

matchers makes the following splits (Rahm & Bernstein, 2001): 
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• Schema vs. instance based: the first case only takes the schema information is into account 

whereas the latter also uses instance data.  

• Element vs. structure matching: element matching uses individual schema elements such as 

attributes; structure matching is performed for combinations of elements. 

• Language vs constraint: a matcher can use a linguistic- based approach (e.g., based on names 

and textual descriptions of schema elements) or a constraint-based approach (e.g., based on 

keys and relationships).  

• Matching cardinality: the overall match result may relate one or more elements of one schema 

to one or more elements of the other, yielding four cases: 1:1, 1:n, n:1 and n:m. In addition, 

each mapping element may interrelate one or more elements of the two schemas. 

Furthermore, there may be different match cardinalities at the instance level.  

• Auxiliary information: a matcher could use auxiliary information such as dictionaries, global 

schemas, previous matching decisions and user input. 

2.3.3 Similarity measures 
In section 2.2 we discussed the need for features when performing machine learning. For schema 

matching these features are similarity measures. A similarity measure takes strings requires as input 

and the output is an integer describing the similarity. Similarity measures are bundled in the Second 

String project (Cohen, Ravikumar, & Fienberg, 2003). Several methods exist which we discuss briefly. 

The first category of methods are edit distance functions. A distance function maps a string s to a string 

t by calculating a real number r. A low value of r indicates high similarity. This stand in contrast to a 

similarity function for which a high value of r indicates a high similarity. We make a further distinction 

between edit distance functions and token based functions.  

Edit based distance functions 

The most well-known edit distance is the Levenshtein distance. Levenshtein counts the amount of edit 

operations needed to convert string s into string t. An edit operation is a character insertion, deletion 

or substitution. In the basic form each operation has a cost of 1 (Christen, 2006).  A more advanced 

edit distance function is Monge-Elkan which normalizes the score between [0,1]. It is an affine variant 

which means a sequence of insertions or deletions are given lower cost.  

Jaro is another popular similarity function which is not based on edit distance. It is based on the 

number of, and order of, common characters between two strings. Winkler proposed a variant, called 

JaroWinkler, which emphasizes the similarity at the beginning of the strings. It does so by using the 

length of the common prefix. Both Jaro and JaroWinkler are intended for short strings. 

Token based distance functions 

The methods we discussed so far look at characters in a string. However, often strings consist of 

multiple words (or tokens). Token based functions compute a similarity by looking at the words rather 

than the characters. An example is the Jaccard similarity which computes how many words occur in 

both string s and t and divide this number by the total amount of words in both strings. There are more 

token based similarity functions, however, since we are not using them for the purpose of this thesis 

we refer to the work of Cohen et al. (2003). 

Hybrid distance functions 

A hybrid function uses tokens as input and computes edit based distance functions of all possible 

combinations of words. First strings s and t are broken down into substrings s  = a1,…,aK and  t  = b1,…,bL. 

Similarity is then computed using the following formula: 
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𝑠𝑖𝑚(𝑠, 𝑡) =
1

𝐾
∑ 𝑚𝑎𝑥𝑗=1

𝐿 (𝑠𝑖𝑚′(𝐴𝑖, 𝐵𝑗))

𝐾

𝑖=1

 

Sim’ is a secondary distance function. In the Second String project the Monge-Elkan, Jaro and Jaro-

Winkler are used as secondary functions. These functions are referred to as level two distance 

functions. To illustrate how such a function works we compute the level 2 similarity score for the 

following two strings: ‘carriersuser firstname’ and ‘carriercontact firstname’. As secondary distance 

function we use JaroWinkler. Each string contains two tokens (words) thus the total amount of 

possibilities is 2 * 2 = 4. For each combination we calculate the JaroWinkler score. After computing the 

scores the maximum is taken for each token in the first string. This is shown in table 6. 

Table 6: calculating a Level 2 similarity score 

Token – string 1 Token – string 2 JaroWinkler 

carrieruser carriercontact 0,82 
carrieruser firstname 0,43 
Maximum for first token in string 1 max(0,82; 0,43) = 0,82 
firstname carriercontact 0,5 
firstname firstname 1 
Maximum for second token in string 1 max(0,5; 1) = 1 

 

Finally, the average is calculated from the obtained maximum:  

1

2
∗ (0,82 + 1) = 0,91 

The level 2 similarity score for these two strings using JaroWinkler as secondary distance function is 

0,91. 

2.3.4 Schema matching approaches 
Next, we look at several examples found in literature. First, we describe a general approach to schema 

matching in figure 12. 

 

Figure 12: general workflow of a schema matcher (Rahm, 2011) 

The input consists of two schema which are processed into an internal processing format (Rahm, 2011). 

Possible different pre-processing steps can be applied such as tokenization or a dictionary lookup. Next 

a matcher determines correspondences. When multiple matchers are used the results are combined 

and based on these results a selection of correspondences constitute the result mapping. Many 

different approaches have been developed prior to 2001 and a summary of these methods can be 

found in Rahm & Bernstein (2001). Below we discuss several more recent and successful approaches. 

A well-known example of a schema matcher often referred to in literature is COMA (Rodrigues et al., 

2015). COMA uses heuristics to combine the result of different matching algorithms to determine 
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matching instances. Internally input schemas are converted to trees for structural matching 

(Duchateau & Bellahsene, 2016). An overview how COMA works is given in figure 13.  

 

Figure 13: COMA matching operation: (a): two input schemas, (b) matrices aggregation, (c) candidate selection and (d) output 
(Rodrigues et al., 2015) 

COMA receives two input schemas (a) for which it makes a matrix of all possible combinations. Each 

matrix is labelled using different similarity measures. All matrices are aggregated in a single matrix 

according to a chosen criterion (e.g. maximum, average, minimum). From the aggregated matrix 

candidates are selected for which the value exceeds a certain threshold (c) which are then presented 

to the user (d). Since COMA relies solely on heuristic the approach was not used in our approach since 

we want to incorporate a machine learning approach.  

A recent advancement using machine learning is YAM, short for Yet Another Matcher (Duchateau & 

Bellahsene, 2016). YAM is a schema matcher generator designed to generate a tailor-made matcher 

when making a new mapping. Optionally user input can be specified to integrate user preferences or 

requirements. YAM uses more than 20 different classifiers using Weka and over 30 similarity measures 

using the Second String Project. An architecture overview of YAM is presented in figure 14. 

 

Figure 14: Architecture of YAM (Duchateau & Bellahsene, 2016) 
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Internally YAM stores a repository of schemas (training data), classifiers and similarity measures. When 

a new schema is presented these are used to generate matchers. Additional user preferences can be 

included by the user. For example, a user could indicate whether he favours precision over recall or 

include additional training data (expert correspondences). The output of YAM is a dedicated schema 

matcher. In this thesis, we aim to create a dedicated schema matcher by using a plethora of expert 

correspondences and thus we haven’t used YAM.  

Similarity flooding is an approach based on structural matching which is given by Melnik, Garcia-Molina 

& Rahm (2002). The algorithm makes use of the hierarchal relationships found in XML schemas to 

derive mappings between schema elements. This allows for an algorithm which works with schemas 

from different domains. Other methods based on heuristic are often fine-tuned which costs significant 

time and resources. Structure matching is therefore promising, but needs further research (Zhao & 

Ma, 2017). 

2.4 Summary 
In this section, we first looked at intelligence amplification. A definition was extracted based on a 

selection of articles. Intelligence Amplification is not a well-defined term and as such it draws upon 

literature from various domains. 

Important for Intelligence Amplification is the close collaboration between humans and machines. This 

led to the idea of investigating the task delegation between the two. Some argue the idea of exploiting 

strengths and weaknesses of humans and machines should not be looked at we tend to disagree. 

Naturally each has their own strengths and weaknesses and exploiting them results in an effective 

collaboration. To model this collaboration the PACT framework discussed explains how a machine and 

computer could collaborate on the same product. The framework provided by Dobrkovic et al. (2016) 

provides further guidelines. 

A general introduction was given into machine learning. We explained what a classifier is, what is 

needed to train a classifier and how performance of the classifiers can be evaluated on a test set by 

looking at precision and recall.  

Finally, a literature search was conducted for database schema matching. Many approaches have been 

proposed over the recent years. However, they all focus on the matching task, not on the involvement 

of users in this task (Falconer & Noy, 2011).  
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3 Reference architecture 
In this chapter, a reference architecture is defined for performing schema matching using Intelligence 

Amplification. Section 3.1 introduces the concept of a reference architecture. Next, the approach to 

the reference architecture is discussed in section 3.2. This is divided in two stages, first is pre-

processing discussed in section 3.3 and matching in section 3.4. Section 3.5 gives a summary. 

3.1 Introduction 
A reference architecture is a generic architecture for a class of systems used as a foundation for the 

design of concrete architectures from this class (Angelov, Grefen, & Greefhorst, 2012). A concrete 

architecture is an architecture specifically designed for a software application. The purpose of a 

reference architecture is to provide guidance for future development (Cloutier et al., 2009), provide 

standardization of concrete architectures and facilitation of the design of concrete architectures 

(Angelov et al., 2012). A reference architecture is defined at an abstract level (Angelov et al., 2012). 

This level of abstraction is the cause of one of the main challenges of a reference architecture, namely 

to make them concrete and understandable (Cloutier et al., 2009). For an extensive list of benefits and 

drawbacks we refer to the paper of Martínez-Fernández, Ayala, Franch, & Marques (2017). 

Our reference architecture is developed using the ArchiMate language. The core of ArchiMate consists 

of three layers, namely the business, application and infrastructure layer (Iacob, Jonkers, Quartel, 

Franken, & Berg, 2012). The business layer offers products and services to external customers that are 

realized in the organization by business processes. It shows how the organization is internally 

organized. Next is the application layer which delivers the services to realize it’s business added value 

modelled in the business layer. Lastly the infrastructure layer realizes infrastructure services on which 

applications can be build. Enterprise architecture shows the relation between these layers. These 

concepts are from the ArchiMate core (version 1); the language has been further expanded with a 

motivation, implementation & migration layer (version 2) and more recently a strategy and motivation 

layer (version 3). The reference architecture is based on the business and application layer.  

3.2 Approach 
The architecture is based on the general approach to schema matching proposed by Rahm (2011) 

which was discussed in section 2.3.4. Two main actions are distinguished: a pre-processing stage and 

a matching phase. When discussing the interaction between human and machine we refer to the PACT 

model discussed in section 2.1.4. Both actions contain a work product which both machine and human 

work on. This is indicated by creating a green coloured data object.  

3.3 Pre-processing 
Pre-processing is the task of cleaning the input labels. Auxiliary information could be used here such 

as thesauri or dictionaries (Rahm & Bernstein, 2001). The drawback of thesauri or dictionaries is they 

often do not contain domain specific words, the ability to expand abbreviations or the ability to expand 

compound nouns (a compound noun is a word composed of more than one word) (Sorrentino, 

Bergamaschi, Gawinecki, & Po, 2010). Employing pre-processing steps can greatly improve results 

(Sorrentino et al., 2010).  

The process of pre-processing first starts with the user who indicates which pre-processing steps are 

needed. For example, if the source schema is in Dutch whereas the destination schema is in English a 

translation for the source schema could be performed. The process steps are graphically presented in 

figure 15. 
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Figure 15: Steps for pre-processing 

For each pre-processing step, the machine performs a lookup in a repository. When a lookup value is 

found, or when a highly similar value is found, it is automatically replaced. However, when the machine 

is not certain about a replacement value the user is involved and is asked to indicate the correct option. 

To effectively leverage the power of the human in the process the work product (DiBona et al., 2016) 

is the list of schemas which need to be cleaned. The computer first tries to clean the text by performing 

a lookup in a repository (1.2). For each lookup, a score of certainty is generated. When the score is 

above a predefined threshold (1.4) the option should automatically be selected (1.6). When in doubt 

the user is invoked who decides which option is best, or, when no option is presented, indicate the 

result (1.5).    

We note this stage of pre-processing can occur multiple times (1.7). For example, first compound 

words could be cleaned, next abbreviations expanded and finally a translation is made. As said this is 

indicated by the user in the preference (0.1). Which pre-processing task yield best results depends on 

each situation and is open for further research because different pre-processing steps lead to different 

mappings (Zhao & Ma, 2017). For this reason, only the use of pre-processing steps is indicated in the 

reference architecture. We consider this to be the essence and therefore include it in the reference 

architecture (Cloutier et al., 2009). Which pre-processing options are implemented should as such be 

part of a concrete architecture.  

The architecture for pre-processing is displayed in figure 16. The functions in the architecture refer to 

the tasks in figure 15. 
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Figure 16: Architecture for pre-processing 

As mentioned, the user triggers the mapping process which starts by indicating the preferences (0.1). 

At the pre-processing function, the first function (clean input string) is coloured green. This indicates 

there is a work product which the human and computer jointly work together. In this case these are 

the source and destination schema. After the data has been cleaned a search space is created and 

similarity measures are added. The boxes are coloured blue which we use to indicate this is a computer 

only task. 

3.4 Matching 
After the data has been pre-processed a software agent is invoked. When using machine learning each 

pair of schema elements is considered a machine learning object where its attributes are the similarity 

values computed by a set of similarity measures of these elements (Duchateau & Bellahsene, 2016). 

An active learning approach could also be used as intelligent agent. Compared to traditional machine 

learning, where user intervention is required afterwards, active learning is requested while the method 

is running (Rodrigues et al., 2015). This goes beyond the goal of this thesis and for now we discuss 

agents which operate independently. It is important to note the actions for generating candidate 

mappings can be repeated and are therefore iterative (Falconer & Noy, 2011). The process diagram is 

shown in figure 17. 
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Figure 17: Process overview of matching stage 

Initially, the software agent generates a list of candidate mappings (2.1) which are presented to the 

user, who inspects them (2.2), removes false positives (2.3) and remaining mappings (2.4). However, 

this doesn’t necessarily have to complete the mapping scenario. A user could opt to invoke a different 

software agent or make a selection for which he needs refinement (2.5). In this case the actions repeat 

itself. This loop, to re-invoke the software agent, is what distinguishes the Intelligence Amplification 

approach from other existing approaches (Falconer & Noy, 2011). The architecture for realizing such a 

process is displayed in figure 18. 
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Figure 18: Architecture for matching 

When invoking the software agent (2.1) the search space is send and as a response the search space 

including suggested mappings is returned. The software agent could use a training set when making 

selections (Rahm & Bernstein, 2001). This is used when the software agent is a machine learning 

classifier, but is not needed when a heuristic is used. After the agent created a list of suggested 

mappings these are presented to the user. Visualisation is very important in this stage. Presenting all 

schema matching correspondences to a user at once could be too overwhelming and in fact annoys 

the user as they become frustrated sifting through all the false positives (Falconer & Noy, 2011). 

Completing the mapping is a task which is both time consuming and cognitively demanding (Falconer 

& Noy, 2011). An explanation of the reason why the software agent suggested a mapping is considered 

an important feature to help the user but this still is a feature where many approaches fall short 

(Falconer & Noy, 2011; Ivanova, Lambrix, & Åberg, 2015).  

The green coloured search space is the work product machine and human provide input to. The 

machine starts with the initial input which the user refines and the machine re-adds knowledge. When 

the matching is complete the search space is kept by the machine so it can learn upon it in future 

iterations. 

3.5 Summary 
The overall process diagram if shown  on the next page in figure 19.
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Figure 19: Total process diagram 
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Finally the complete reference architecture is displayed on the below in figure 20. 

 

Figure 20: IA driven architecture for schema matching 

The reference architecture consists of the two stages discussed above. The green coloured data objects 

coloured green is a work product user and computer jointly work together on (DiBona et al., 2016). 
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4 Prototype 
This section first describes the architecture used to build the prototype in section 4.1. Next, the 

machine learning platform used is discussed in section 4.2 after which section 4.3 describes the training 

set. Section 4.4 discusses results of a one-class classifier (anomaly detection) and section 4.5 the results 

of the two-class classifiers. Finally, section 4.6 gives an overview of the prototype itself. 

4.1 Architecture 
The prototype is developed to be part of eMagiz which is the software product developed by CAPE 

Groep. eMagiz functions by using an Integrated Life Cycle management consisting of five different 

phases: 

- Capture: the initial phase where requirements are captured. This gives a high-level overview of 

the integration 

- Design: this is where mappings are designed. The prototype we have developed is used in this 

phase. 

- Create: after the mappings have been designed they are refined and finalized. This also includes 

the routing process of messages.  

- Deploy: the created mappings are deployed to a production environment. 

- Manage: when deployed transformations are managed in this phase. 

The system architecture provided in this section is based on the reference architecture defined in the 

previous chapter. A system architecture is focussed on a limited class of systems from the reference 

architecture and is used to design and engineer a system (Cloutier et al., 2009). Figure 21 shows the 

architecture. 
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Figure 21: architecture of the prototype 

As with the general architecture the user invokes a process to create new mappings. This is triggered 

by a button in eMagiz which calls the AutoMapper webservice. However, in our case the user is not 

yet involved in any pre-processing nor is it able to indicate any preferences. 

During pre-processing the only step currently taken is to lower case the string. Next it iterates over all 

possible combinations by comparing every element of the source schema with every element of the 

destination schema (i.e. evaluation of the cross join) . This approach has at least a quadratic complexity 

and could lead to problems when using large schemas (Rahm, 2011). In these cases, reduction of the 

search space could be needed. In our prototype this isn’t done. 

Next similarity measures are added. Initially we have chosen for Levenshtein and JaroWinkler. The 

search space is wrapped in a web service and is send to the classifier. For this purpose, we use a trained 

classifier using the Azure Machine Learning platform from Microsoft. This platform offers plenty of 

possibilities for training a classifier and provides an easy to use interface. Section 4.2 provides detailed 

information about the platform and section 4.3 dives deeper in the training set. Figure 22 gives an 

overview of this process. 



30 
 

 

Figure 22: overview how data is prepared for machine learning solution  

The first step is to extract several schemas to be used for training purposes (red coloured lines; 

described in section 4.3). For each schema pre-processing steps are applied. At this stage pre-

processing only lower cases the string name. A list of all possible instance pairs is then created. If the 

amount of element in schema A is |𝐴| and for schema B is |𝐵| then the total amount of instance pairs 

is |𝐴| ∗ |𝐵|. For each instance similarity measures are appended. Since we extract schemas which have 

already been mapped we label each instance pair whether it’s mapped (1) or not (0). This comprises 

the training set which is used to train a classifier.  

When a user invokes the auto mapper the same steps are followed. The green coloured lines indicate 

these steps. However, since the class label is now unknown we use the classifier to predict the label. 

The user is then presented with new mappings which were predicted by the classifier.  

4.2 Machine learning platform 
As mentioned previously we opted to use Azure Machine Learning studio. The ease of use 

complemented with the graphical ‘drag and drop’ user interface allows to build machine learning 

experiment which fit the needs at CAPE. Initially Weka was taken into consideration but the ease of 

implementing Azure ML into Mendix compared to Weka favoured our decision to use Azure ML. 

Several classifiers are available in Azure ML which can be grouped in the following categories 

(Microsoft, 2017b): 

• Regression: used when trying to predict numerical values (e.g. stock price). 

• Anomaly detection: used for finding unusual data patterns (e.g. detecting credit card fraud). 
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• Clustering: this is an unsupervised learning method which means no class label is used. Data 

with similar patterns are clustered together to discover structures in data. Can be used to 

detect which combination of groceries are often purchased at a supermarket. 

• Two-class classification (or binary classification): used when trying to predict two categories. 

This applies to our case since we are trying to predict whether an instance pair is mapped or 

not.  

• Multi-class classification: an extension of two-class classification, however, in this case there 

are at least three categories which the classifiers is trying to predict. 

Our interest goes to two-class classification. However, we are curious to find out whether an anomaly 

detection model would give good results. At the time of writing this thesis several two-class classifiers 

are available which we list in table 7. To ease the process of selecting a classifier Microsoft indicated 

what unique features each classifier has. A brief comparison was made to Amazon Web Services (AWS) 

which only provides one classifier, namely logistic regression (Amazon Web Services, n.d.). For this 

reason, we did not dive deeper in using AWS.  

Table 7: overview of classifiers available in Azure (Microsoft, 2017b) 

Classifier Supports >100 
features 

Linear 
model 

Training 
time 

Accuracy 

Support vector machine ● ●   
Locally deep support vector 
machine 

●  
 

 

Averaged perceptron  ● Fast  
Logistic regression  ● Fast   
Bayes point machine  ● Fast   
Decision forest   Fast ● 
Boosted decision tree   Fast ● 
Decision jungle    ● 
Neural network   Long ● 

 

Each classifier has several characteristics. Both models of the support vector machines (SVM) scale 

very well to handle more than one hundred features. We only have three features, so this is not a 

relevant criterion (for an explanation of what features are we refer to section 2.2). A linear model 

assumes the problem space can be separated by a straight line (better known as a linear hyperplane). 

An illustration of a linear hyperplane is presented in figure 23. 
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Figure 23: comparing a linear vs. a non-linear class boundary (Microsoft, 2017a) 

The figure describes a problem by using two features, namely age and income. Looking at the figure 

we see a classifier which constructs a linear class boundary misclassifies a relatively high number of 

data points. A classifier which constructs a non-linear class boundary, in the figure denoted as the 

actual class boundary, would give better results because it captures almost all the data point belonging 

to the ‘purchased premium service’ class. Using a classifier which produces a linear boundary could be 

outperformed by a non-linear model. 

The last two criteria found in table 7 are training time and accuracy. Most classifiers can be trained 

quickly, however, only for the neural network it is indicated training time could be long. However, as 

we can see this is met with a generally high accuracy. In section 4.5 we discuss the outcome of the 

classifiers.  

4.3 Training set 
Before a classifier can be trained, a training set must be created. This was done by extracted existing 

mapping results which were performed at BAM, Neele-Vat and PostNL. Since all these mappings have 

been put in production we consider them to be a reliable, expert verified, set. These results have 

undergone the pre-processing steps outlined in section 4.2. This yielded a training set with 2.354.498 

records of which 19.486 were mapped. An example of this data is shown in table 8. 

Table 8: Excerpt from the training set 

AttributeIn AttributeOut Type-
Match 

Leven-
shtein 

Jaro-
Winkler 

Cla
ss 

costcentrereceived costcentercode 1 6 0,9 1 

naam1 shipper 1 7 0 1 

factuurspecificatieaankoop
pijsvaluta 

lengte 0 33 0,42 0 

documentid buildingnumberdesignati
on 

1 18 0,52 0 

bevestigingid results_of_audit 1 13 0,5 0 

adrescontactfaxnummer zeevervuilingindicator 0 20 0,46 0 

servicelevel adrestype 0 10 0,51 0 
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cityname starttimedropoff 0 14 0,58 0 

brutogewicht douanedocumentnumm
er 

0 17 0,49 0 

conf_oms conf_oms 1 0 1 1 

height gevaarlijkegoederenraili
ndicator 

0 28 0,42 0 

innerverpakking douanedocumentcode 1 16 0,47 0 

 

As can be seen the training set contains seven columns. The first is the AttributeIn which is the name 

of the attribute of the source schema. The AttributeOut columns contains an attribute name on the 

destination schema. Type match indicates whether the attributes are of the same type (i.e. string to 

string). Levenshtein gives the Levenshtein edit distance and JaroWinkler is the similarity score. Finally, 

the class indicates whether the combination of attributes is mapped (1) or not (0). 

4.4 Anomaly detection model performance 
Azure ML provides two anomaly detection classifiers, namely the one-class SVM and a PCA-Based 

anomaly detection classifier. We are interested in the initial performance before we dive deeper in the 

exact working and differences between the two classifiers. The training set outlined in section 4.3 was 

used. Unfortunately, these results were appalling with a respective F-measure of 0,4% and 1,6%. We 

therefore decided not to take a closer look at anomaly detection possibilities and move on to the two-

class classifiers in the next section. 

4.5 Two-class classifier performance 
Most of the classifiers which we listed in section 4.2 were constructed to compare performance. We 

ddin’t use the Bayes Point Machine because it threw an internal error message and as such couldn’t 

be used. For each classifier we wrote down precision, recall and F-measure. Testing was done by 

performing a stratified split for which 70% of data was used for training and the remaining 30% was 

used to test the trained classifier. The results are presented in figure 24. 

 

Figure 24: comparing classifier performance 

0

100

200

300

400

500

600

700

800

900

1000

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Averaged
Perceptron

Logistic
regression

SVM Locally deep
SVM

Decision
jungle

Decision
forest

Neural
network

Boosted
decision tree

Precision Recall F-measure Training time (minutes)



34 
 

Analysing the results, we see the best results (in terms of F-measure) came from the neural network. 

It outperformed all other classifiers with an F-measure of 69%. Other classifiers scored around 50%, 

except the decision jungle which scored appalling. However, as can be seen, there is a catch which is 

the long training time. The boosted decision tree gave good results in terms of precision (80%) but had 

a lower recall (37%). For each trained classifier, a scored column is appended. This is an indication how 

‘certain’ the classifier is of its results. Altering the threshold for which the classifier labels the class as 

either mapped or not mapped has an impact on the precision and recall. By default, the threshold is 

set to 0,5. In other words, if the scored probability is greater than or equal to 0,5 the assigned label is 

‘mapped’. Else the label would be ‘not mapped’. Azure ML generates a graph which compares precision 

and recall of two classifiers by altering the scored threshold. This graph is presented in figure 25 for 

the neural network and boosted decision tree.  

 

Figure 25: Comparing precision and recall of the neural network to the boosted decision tree by varying the scored threshold 

Based on this result we see the neural network outperforms the boosted decision tree. As mentioned 

earlier the neural network took more time to train. Since cost are incurred when training a classifier 

this means the neural network is more expensive to train. At the time of writing the cost of training a 

classifier equate to €0,85 per hour. Therefore, training the classifier would cost about €15 which is still 

acceptable. Retraining the classifier is not needed on a daily basis, but we estimate it could be needed 

once every quarter. However, this is ball-park estimate and further testing is needed to determine the 

frequency of retraining. Based on the results it is decided to use the neural network. 

4.6 Prototype 
This section shows how we created the prototype. It is build using Mendix which is the same platform 

in which eMagiz is developed. The working of the AutoMapper is illustrated using the example in figure 

26.  
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Figure 26: example of two schema's which have to be mapped 

The first step when creating a Mendix app is to create the domain model. For the AutoMapper app this 

is shown in figure 27. 

 

Figure 27: domain model in the AutoMapper app 

At the top of the domain model is the message mapping. A message mapping has a source and 

destination message. This consists of an entity, and an entity contains attributes. When the search 

space is created this is linked to the message mapping. This data is stored in the SearchSpace entity. 

This includes the Levenshtein edit distance, the JaroWinkler similarity measure and whether the types 

of the source and destination match. The last two columns are the result of the machine learning 

classifier. First is the scored label (i.e. match or no match) and the probability of the score.  
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The AutoMapper application contains a webservice which is called by eMagiz when the user requests 

a mapping. This action sends the two schemas the user is working on to the AutoMapper application. 

In this first iteration no pre-processing steps occur, other than lowering upper cases. Next, the search 

space is created and the Levenshtein and JaroWInkler similarity measures are added. The complete 

search space is send to Azure ML. It is processed and send back including the class label and scored 

probability.  

After the AutoMapper app receives the results a choice can be made which candidate mappings to 

return to eMagiz. During the evaluation two methods are used, namely the result of the neural 

network (those with a class label of mapped) and a heuristic approach. In the latter case, the set of 

candidate mappings consist of those with a JaroWinkler similarity score of at least 0,8. 

The effect of the AutoMapper on the schema provided in figure 26 is shown in figure 28. For this 

scenario, the heuristic approach was chosen since the neural network did not provide a result. The 

reason for this is discussed in the next section. 

 

Figure 28: AutoMapper suggestion based on a JaroWinkler score 

As can be seen ten candidate mappings are suggested. Next, the user completes the mapping. For this 

case, the user had to remove two candidate mappings and add two mappings. Please note this means 

adding two attribute mappings. The first iteration of our prototype is only capable of handling 

attributes; entities are ignored. The result is displayed in figure 29. 
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Figure 29: the final result 
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5 Prototype evaluation 
In this section, the prototype is evaluated. This starts by defining the evaluation criteria in section 5.1. 

Section 5.2 describes the results and section 5.3 discusses improvement suggestions. 

5.1 Evaluation criteria 
Software development requires a measurement mechanism for feedback and evaluation (Basili, 

Caldiera, & Rombach, 1994). For schema matching two major challenges exist: achieving both good 

effectiveness and efficiency (Rahm, 2011). Effectiveness (match quality) requires the correct and 

complete identification of mappings. Efficiency is the second challenge which is about the time it takes 

to perform a mapping scenario. The IA driven approach proposed in this thesis however stresses the 

benefit of including the user in the process and therefore also focusses on efficiency. At present, 

evaluation of such tools is lacking (Falconer & Noy, 2011).  

Both are required since measuring productivity cannot be viewed in isolation without any 

accompanying assessment of product quality (Fenton & Pfleeger, 1998). To construct the criteria used 

to evaluate the tool the goal, question, metric (QGM) method is used (Basili et al., 1994). In our case, 

we define two goals, namely to evaluate effectiveness and efficiency. This leads to the following two 

main questions: 

• What is the effectiveness of the prototype? 

• What is the efficiency of the prototype? 

5.1.1 Measuring effectiveness 
Measuring effectiveness tells us something about the quality of the result. For schema matching this 

is measures in terms of precision and recall (Falconer & Noy, 2011). From these two figures the 

harmonic mean, or the F-measure, is calculated. Most tools are evaluated based on these metrics and, 

as a result, are only judged on effectiveness (Duchateau & Bellahsene, 2016). 

5.1.2 Measuring efficiency 
Evaluating schema matchers based on efficiency is new and hardly done (Falconer & Noy, 2011). We 

base efficiency on time and define the following question: 

• What is the time needed to perform a matching scenario? 

The total time it takes to complete a scenario is ideally split in four metrics: 

1. Pre-processing: time it takes a to conduct the pre-processing task.  

2. Time for the software agents to create candidate mappings 

3. Time for a user to remove the false positives 

4. Time for a user to add the missing mappings (i.e. false negatives) 

However, in practice we noticed the third and fourth intertwine when a user completes a mapping 

scenario and therefore are difficult to measure independently. As such, we decided to merge these 

two metrics to the time it takes a user to complete the mapping.  

Using only total time makes it impossible to compare different scenario’s. To compare the efficiency 

of different scenario’s the time improvement is calculated. Let 𝑡1 be the total time of the base line and 

𝑡2 the total of a different method. The time improvement (in percent) is then calculated using the 

following formula: 

𝐼𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 𝑤. 𝑟. 𝑡. 𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 (%) =  
𝑡2

𝑡1
∗ 100% 
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If performance were to degrade the outcome is greater than 100%.  

The evaluation criteria are summarized in figure 30. 

 

Figure 30: evaluation criteria 

5.2 Evaluation 
The evaluation was conducted using four different schemas. The size of the schemas is presented in 

table 9. 

Table 9: Schema sizes 

Scenario Schema Attributes Entities 

1 
 

Source 7 3 
Destination 7 3 

2 Source 10 2 
Destination 10 2 

3  Source 40 6 
Destination 42 9 

4  Source 136 44 
Destination 138 44 

 

The first scenario is relatively small. The schemas have different languages, the source schema 

language is Dutch whereas the destination schema language is English. The second scenario is entirely 

in Dutch where names are mostly similar. In the source schema name elements have the tag “alg_” as 

a prefix. For example, a mapping should be created between alg_bijlageid and bijlageid. One can see 

the prefix is what makes them different, otherwise the strings are mostly similar. The third scenario is 

somewhat larger and is a schema which contains order information. The final scenario is a mapping for 

a large work order schema. Names of corresponding matches are highly similar. 

For each mapping thee user groups were selected: 

• Group 1: performing each scenario manually, i.e. without using a software agent 

What is the 
effectiveness?

Recall

Precision

What is the 
efficency?

Total time

Pre-processing

AutoMapper time

Completion time
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• Group 2: performing each scenario using the trained neural network  

• Group 3: performing each scenario using JaroWinkler heuristic 

The first group provides the baseline measurement. The second group indicates the result of the neural 

network. The third group only uses the JaroWinkler heuristic metric. This scenario is included for 

situations where the source and destination schemas are highly similar. The experiment for the second 

and third user group was performed on a local machine. 

Each user group contains one user and a different user was selected for each scenario to avoid a time 

benefit because of a learning effect.  

5.2.1 Scenario 1 
The first scenario is relatively small schema in which many names of the source and destination schema 

were similar. The first user took 36 second to complete the scenario. Involving the neural network took 

9 seconds but did not yield any result. The total was therefore 45 seconds. The third user had to wait 

two seconds for the AutoMapper to complete and it took him 28 seconds to complete the mapping 

thus the total time was 30 seconds. 

5.2.2 Scenario 2 
The second scenario is a relatively small schema as well and is the schema used to demonstrate the 

working of the AutoMapper in section 4. It took the first user 28 seconds to complete the mapping. As 

with the first scenario the neural network did not yield any results.  

The third user achieved good results. It took the AutoMapper two seconds to complete and this yielded 

10 candidate mappings. Two were false positives and two had to be added thus precision and recall 

were both 80%. I took the user an additional 10 seconds to complete the scenario bringing the total 

time to 12 seconds. 

5.2.3 Scenario 3 
The third scenario contains a schema of moderate size. The first used needed 208 seconds or 3 minutes 

and 28 seconds to complete the scenario. The second user first had to wait 17 seconds for the 

AutoMapper to create the candidate mappings (34 in total). It then took the user an additional 176 

seconds to complete the mapping. In the process 13 false positives were removed and 19 mappings 

were added (out of a total of 40). This yielded a precision of 62% and a recall of 53%.  

For the third user, it took the AutoMapper five seconds to generate results. This yielded 45 candidate 

mappings of which 24 were correct and 16 had to be added. Precision is 53% and recall 60%. 

Completing the mapping took more than five minutes or 311 seconds. This is much higher than the 

baseline. When observing the user this is probably due to the slow response of the system. Removing 

a false positive took considerable time thus the user often had to wait for the system to complete. In 

total 21 candidate mappings had to be removed so waiting took much time.  

5.2.4 Scenario 4 
The fourth scenario contains a large schema. The first user needed 28 minutes and 34 seconds to 

complete the scenario. When the second user wanted to run the AutoMapper an error message was 

shown so no candidate mappings were generated. We suspect this is due to the large memory foot 

print (Rahm, 2011). The source schema contains 136 attributes and destination schema 138 attributes 

creating a search space containing 136 * 138 = 18.768 possible mappings.  

The third user had to wait 3 minutes and 34 seconds for the AutoMapper to generate results which 

yielded 993 candidate mappings. This time, the AutoMapper was capable of delivering a result because 
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the search space was reduced at runtime (Rahm, 2011) by not adding a candidate mapping if the 

JaroWinkler score was less than 0,8.  

After completion, the user started removing false positives. Unfortunately, the system became 

unresponsive as soon as the user wanted to do so. Each false positive which had to be removed 

incurred a waiting time of 20 seconds. As such the experiment was aborted because a quick scan by 

the user indicated many candidate mappings had to be removed. It was estimated this would take 

considerable time. The user also indicated he would discard the results were this to happen in his daily 

job routine. 

5.2.5 Discussion of results 
This section discusses the results obtained above. First, we present the results per scenario. For the 

first and second scenario, the neural network (second user group) did not yield any results. Therefore, 

these results have been omitted from the overview. For these experiments, the precision as well as 

recall would be 0%.  The heuristic (third user group) did provide results so these are presented. For the 

third scenario both the neural network and heuristic provided results. The fourth scenario did not 

obtain any result and is therefore omitted as well. The obtained results are plotted in figure 31. 

 

Figure 31: effectiveness and efficiency of scenarios 

When analysing the graph, a correlation between precision, recall and the time improvement could be 

suspected. When both precision and recall are high, a high time reduction is seen. This makes sense, 

because a high value for effectiveness indicates little effort is needed from the user to refine the 

mapping scenario. This then leads to a reduction in time. However, this raises the question which 

method would work well on a given situation and wouldn’t on another.  

First, the neural network approach is discussed. We suspect one of the reasons this approach was not 

able to provide results for the first and second scenario can be contributed to the language. Since both 

scenarios both contained at least one schema in Dutch no candidate mappings were resolved. We 

analysed the training data and found the vast majority of trainings examples are English. This 

contributes to our assumption the language is a cause for the poor performance. The neural network 

managed to provide somewhat satisfactory results in the third scenario. However, only a slight time 

improvement was achieved. When precision and recall would be higher we expect a further time 

improvement can be achieved. A possible explanation for the lower scores on this scenario could be 
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contributed to the huge training set used. Perhaps, if we training examples were chosen from schemas 

similar to the ones used in the scenario a better score would be achieved.  

The second approach, using the JaroWinkler similarity as heuristic, yielded mixed results. In the first 

scenario only one candidate mapping was found. Due to the fact there was a difference in language 

(Dutch to English) the similarity between two words was generally low. We note similarity is computed 

by looking at the letters of a word; the meaning of a word is not taken into account.  

The second scenario showed good results. The reason two false positives were discovered lies in the 

fact the entity name is not taken into account. We reprint the AutoMapper result for the second 

scenario in figure 32 below. When looking at the source schema (left side) the attribute name 

‘alg_Versienummer’ is included twice. Once under the entity ‘pla_Annuleringgereed’ and once under 

´alg_Bijlagen’. The same applies for the destination schema where the attribute ‘Versienummer’ is 

seen twice. Since the entity name is not taken into account the AutoMapper cannot distinguish the 

two.  

 

Figure 32: AutoMapper result for the second scenario 

The fact the entity name is not taken into account is also one of the reasons the third scenario 

contained a number of false positive candidate mappings. What’s interesting to see is the time it took 

the user to complete the mapping. When the user removed a false positive result, he had to wait a 

couple seconds before the candidate mapping was removed. Since 22 candidate mappings had to be 

removed the user incurred a long waiting time. 

Next, we take a closer look at the efficiency of our tested method. This time we also include the 

efficiency score for the neural network for the first and second scenario. This value is computed by 

adding the time it took invoking the AutoMapper plus the baseline time. The latter is chosen since the 

AutoMapper did not provide and results and the mapping had to be completed as if the AutoMapper 

never ran (i.e. the baseline situation). Figure 33 compares the efficiency of the scenarios. 
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Figure 33: comparing efficiency for the three scenarios 

The performance of the human is the baseline and is therefore set to 100%. In all scenarios, an 

improvement in performance was achieved. However, which method works best depends on the 

scenario. From the results above we see a scenario in which attribute names are highly similar and 

overlap a heuristic approach works best. With a scenario containing English attribute names, which do 

not overlap very well, the neural network approach works better.  

Another important topic is scalability. Our fourth scenario was too big to be properly processed by the 

neural network AutoMapper. The heuristic approach did yield result but contained too many false 

positives for which the user indicated the result was unusable. In section 4.1 we discussed the size of 

the search space was the cartesian product of the number of attributes in the source schema times 

the number of attributes in the destination schema. Therefore, when the number of attributes in both 

schemas is doubled, the size of the search space is quadrupled. Rahm (2011) suggest two approaches 

of search space reduction: early pruning of dissimilar pairs and partition-based matching. In the first 

option a possible mapping is discarded from the search space if the similarity is low. In the second 

approach, a divide-and-conquer approach is used. The schema is divided section. For example, the 

search space only contains attribute pairs if the parent entities have been mapped. These options are 

not included in this version of the prototype, but are worth investigating in future work. 

5.3 Improvements 
Based on the results above we conclude further optimizations are needed. Some have been suggested 

already, but for completeness we repeat them below. 

5.3.1 Entity mapping 
At the moment, entities are not taken into account. Mapping entities not only aids the completeness 

of results, but may also improve results. In the previous section we used the example of the attribute 

‘postal code’. When a destination schema has the attribute ‘postal code’ in both the entity ‘delivery 

address’ and ‘pickup address’ the entity name provides additional information. In this section, we 

discussed the impact of this issue using the second scenario. 

5.3.2 Further pre-processing steps 
We already noted the only pre-processing step taken is to lower case strings. However, we suspect 

further pre-processing is beneficial for results. This has also been suggested by literature (Sorrentino 
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et al., 2010). First, we would start using a translation service and tokenize strings. Next, we would look 

at possibilities to expand compound nouns and perform domain specific dictionary lookups. Which of 

these steps improve, and by how much, performance should be part of future research. In this research 

we did not manage to address these issues due to time constraints.  

5.3.3 Hybrid matchers 
Combining multiple approaches in one matching solution, which we earlier referred to as hybrid 

matchers, could further improve results which this evaluation shows and has also been found in 

literature (Sutanta, Wardoyo, Mustofa, & Winarko, 2016).  

5.3.4 Further graphical support 
At present, candidate mappings are presented to the user as if they were drawn by the user. Also, we 

do not use the scored probability value generated. In a graphical user interface (GUI) candidate 

mappings can be presented to the user by giving them an option to adjust the threshold for various 

metrics. The use of a GUI in schema matching is growing (Sutanta et al., 2016). For example, if 

Levenshtein, JaroWinkler and a neural network are used the user should be presented with three 

different sliders. This allows the user to adjust the various thresholds and directly see the impact of 

these changes. The user is then able to select the best criteria for a given scenario. When a user is 

satisfied with a set of candidate mappings he accepts them and goes to the stage of refinement.  



45 
 

6  Conclusion 
This section concludes the research and we summarize each research question.  

6.1 Intelligence Amplification 
First, we answer the research questions related to IA. 

1A.  WHAT IS THE CURRENT STATE-OF-ART IN INTELLIGENCE AMPLIFICATION RESEARCH? 

In our literature review we found Intelligence Amplification is a rather new and undefined field in 

scientific literatur. We therefore focussed on a definition and the effect of close collaboration.  

1B.  WHICH DEFINITIONS EXIST IN LITERATURE? 

We found several definitions in literature. Some definitions where directly described as a definition of 

intelligence amplification, others discussed the same topic but under a different name. The structure 

of the definitions was critically assessed and five unique features were extracted, namely: artificial 

intelligence, decision making, problem solving, partnership/collaboration and empowering human. 

Using these features, we created our own definition which we used in this thesis: “Intelligence 

Amplification focusses on a close collaboration, with complementary contributions, between human 

and machine to empower humans in the decision-making process.”. 

1C.  HOW DOES IA AFFECT THE DELEGATION OF TASKS BETWEEN HUMAN AND MACHINE? 

In our definition, we argue IA focusses on a close collaboration between human and machine. This 

raises the question how this collaboration should be shaped. Before we started looking at this question 

we took a closer look at task delegation. This took us back to the 50s with what’s known as the HABA-

MABA (humans are better at – computers are better at) list introduced by Paul Fitts. There has been 

critique to this list and updates have been proposed. We liked the idea of affordances proposed by 

Crouser & Chang (2012). An affordance is defined as action possibility that is readily perceivable by a 

human operator. They exist between human and machine and cannot be seen separate from that 

relationship. A model how to share information between computer and machines is given by Dibona 

et al. (2016) which they call the Proactive Autonomy Collaboration Toolkit (PACT).  

6.2 Schema matching 
Next, we answer the questions related to schema matching. 

2A. WHICH SOLUTIONS FOR SCHEMA MATCHING HAVE BEEN PROPOSED IN LITERATURE? 

At first, we included a taxonomy which describes schema matching approaches. We reprint this 

taxonomy below and indicate where our prototype fits in.   
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Over the years many approaches have been defined. More recent and successful approaches we 

discussed are COMA and YAM. The first is based on heuristics. The latter is a schema matching factory 

which produces a machine learning classifier each time two schemas are matched. Though this yields 

good results it takes more time to perform the schema matching task (Rodrigues et al., 2015). 

2B. WHICH PRE-PROCESSING STEPS ARE NEEDED TO PREPARE DATA FOR SCHEMA MATCHING? 

The framework by Rahm & Bernstein (2001) includes several suggestions for data pre-processing. 

Name similarity is the first we discuss, which is a value to express how similar two strings are. These 

are also known as edit distances and we have noted a number. In our prototype, we used Levenshtein 

and JaroWinkler. Other pre-processing steps could include the use of a dictionary or thesaurus.  

2C. WHICH ISSUES HAS LITERATURE IDENTIFIED IN DATABASE SCHEMA MATCHING? 

The main issue with schema matching is that it cannot be fully automated. Including the user in the 

process therefore is a necessity. Recent advancement indicates the limit has been reached what can 

be done in terms of reaching precision and recall. At this stage research is needed in ways the user can 

effectively incorporated in the process. 

2D. WHICH MACHINE LEARNINGS ALGORITHMS ARE AVAILABLE? 

Many classifiers exist for the task of machine learning. We grouped them together and discussed some 

older, easier to understand classifiers, as well as more recent and more complex classifiers.  

6.3 General architecture 
We now combine the knowledge of the sections above by answering the research questions related to 

our IA driven approach for schema matching. 

3A. HOW TO DESIGN AN IA DRIVEN APPROACH AND ARCHITECTURE FOR SCHEMA MATCHING? 

Using our definition and the PACT framework we defined an architecture which focusses on a close 

collaboration between human and machine for schema matching. The user is involved in pre-

processing steps, as well as at the end for refinement of the results. The user can opt to reinvoke the 
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software agent many times in the matching process. Important as well is the feedback loop to the 

machine which it should use to further improve upon its mistakes.  

3B. IN WHICH STAGES DO WE INCLUDE THE USER IN THE APPROACH? 

As we noted above we now included the user at the start in the pre-processing stage as well as the 

matching phase.   

6.4 Prototype and evaluation 
We use our initial approach and create a prototype which we then evaluate. We answer the research 

questions related to this task below.   

4A. WHICH PARTS OF THE ARCHITECTURE DO NEED TO BUILD A MINIMUM VIABLE PRODUCT? 

When building our prototype, we first focussed on a solution which is able of automatically suggesting 

mappings. The involvement of the user only occurred at the end of the steps when the need was to 

refine the results. However, we did create a highly modular prototype which allows for further 

development. 

4B. WHICH DATA IS AVAILABLE AT CAPE? 

CAPE has a dataset containing many expert verified mappings. We extracted those from which have 

been implemented at BAM Infra, Neele-Vat and PostNL. 

4C. WHICH MACHINE LEARNING ALGORITHM PRODUCES THE BEST RESULT? 

For our prototype, we decided to use the Machine Learning platform offered by Microsoft for its ease 

of use and implementation. We tested the classifiers which are available and found we got the best 

result from the neural network.  

4D. WHICH METRICS CAN WE USE TO MEASURE PERFORMANCE? 

Schema matching performance is measured in effectiveness and efficiency. Effectiveness is the 

performance of a classifier and can be measured using precision and recall. Precision measures the 

quality of the results whereas recall tells us something about the completeness of the results.  

In our evaluation, we added the time component. This is split in the time for pre-processing, time 

needed for the AutoMapper to generate a list of candidate mappings and time needed to complete 

the mapping scenario by remove false positives and adding false negatives. We used four different 

scenarios for testing, of which three we got a result. We found that one scenario, which yielded a high 

score on both precision and recall, yielded a clear performance improvement.  

4E. WHICH IMPROVEMENTS TO THE INITIAL IMPLEMENTATION CAN BE MADE? 

At this moment, many improvements can be made. In this research we mainly focussed on an initial 

prototype for an IA driven method for schema matching. However, many improvements are yet to be 

made. First off, we haven’t included the matching of entities in the document. Also, the use of a 

structural matching approach is not yet included.  

Further improvements to the pre-processing steps need to be researched. Possibilities are to 

automatically tokenize words, translation to one language and extend abbreviations. Other 

improvements are the use of multiple machine learning stages. In the current prototype we used one 

‘do it all’ classifier. However, perhaps the concept of stacking, which uses a base learner and multiple 

different classifiers, could be used to further improve results.  
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The last improvement focusses around presentation of the results and the interaction with the user.  

6.5 Main research question 
Finally, we answer our main research question which was as follows: 

How can we combine the concept of Intelligence Amplification with database 

schema matching to create a reference architecture for IA driven schema 

matching? 

Using our definition of Intelligence Amplification, we designed a reference architecture to perform 

schema matching. In other words, we want a solution which focusses on a close collaboration between 

human and machine to empower the human in the process of matching two schemas. We used the 

idea of a work product proposed by Dibona et al. (2016) which is a product both human and machine 

can work on. Next, the process of schema matching was broken down in two stages: pre-processing 

and matching.   

In the pre-processing stage strings are cleaned. Often, string names in schemas contain abbreviations, 

compound nouns or two schemas with different languages are used. Which steps are taken will depend 

on each matching scenario and in the reference architecture we make an abstraction by indicating 

various steps can be implemented in a concrete architecture. This is done by a machine which starts 

the pre-processing task. In case the machine is uncertain about a result it consults the user. This 

process could be repeated for various pre-processing steps. Which steps are needed are indicated by 

the user. 

After pre-processing the search space is created and similarity measures are added. These are then 

send to a software agent which makes a decision which candidate pairs are elected to be candidate 

mapping. The candidate mappings identified by the software agents are presented to the user. The 

user then has to remove false positives and add the remaining mappings. The user could also choose 

to invoke a different agent or have a selection of the matching scenario run by a different software 

agent. At the end, the result is fed back to the machine to update its policies.  

For the steps above we created a reference architecture which can be used to build a system capable 

of schema matching with a close collaboration between human and machine. Since user involvement 

in the task of schema matching is rather new this reference architecture is a starting point for designing 

systems with user involvement. 

6.6 Limitations 
As it goes with scientific research there are always limitations and our research is no different. The 

reference architecture is based on a vision based coming from a business need (Cloutier et al., 2009). 

We tried to mine the essence of existing architectures, but these are scarce. The reference architecture 

is kept a high abstraction since the exact steps which need to be taken varies for each schema matching 

scenario.  

The developed prototype which was subsequently developed has several limitations. Unfortunately, 

we weren’t able to include the user in the pre-processing stages due to time constraints. The results 

gained from the machine learning platform also require further optimization, though we do believe 

more attention in the pre-processing stage will be beneficial to the results. At the matching stage, we 

haven’t yet dived deeper in visualizing the results which is something identified as in need for further 

research. 
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6.7 Future work 
Based on the limitations we make several suggestions for future work. In the pre-processing stage, 

further research is needed to investigate which pre-processing steps work well and how to efficiently 

employ the user in the process. In our prototype, we only lower the upper cases, but the use of for 

example thesauri could aid performance.  This could be part of a future version.  

In our approach, the software agent used to create a list of candidate mappings is either heuristic 

based or a machine learning classifier. However, using an active classifier, which is capable of asking 

the user more information at runtime, is interesting (Rodrigues et al., 2015). As noted, presenting the 

results and guiding the user with visualizations needs future work (Ivanova et al., 2015). At the moment 

candidate mappings are presented as if they were drawn by a human. A study which options work best 

would be beneficial. 

Our reference architecture provides a starting set of guidelines for developing applications based on 

schema matching with user involvement. When it is used for new applications this should result in 

feedback to update the document. 

6.8 Recommendations for CAPE 
The prototype created should be seen as a minimum viable product. It takes the approach where we 

use one method for all different scenarios. However, we already found some steps work better for a 

given scenario than others. Therefore, we first recommend updating the prototype with options for 

the user to create candidate mappings based on a heuristic or a machine learning classifier. Also, the 

use of a classifier trained on a domain specific dataset could further improve results. Second, 

visualization options should be incorporated to let the user know which mappings where automatically 

generated. A user interface which is better able to show various results of different software agents 

needs development. 
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8 Appendix  
The appendix is left out due to confidentiality. 

 


