





Abstract

Generative art in the form of animations is used more and more in the current
screen-filled world. If these animations would be generated with as much
freedom as possible, some problems arise. More freedom means more ‘ugly’
animations are generated, and an ugly animation can get unpleasant to look at,
in contrast to an ugly image. Also, to steer the algorithm towards better
animations, human feedback is needed, but giving feedback on animations
takes time. A system is proposed and developed which can generate diverse
abstract animations, while minimizing the number of unpleasant animations
in its output to (partly) solve the stated problems. This system uses a modified
version of an algorithm developed by Karl Sims [1] to render the animations, a
genetic algorithm to improve those animations and a neural network acting as
a filter to reject unpleasant animations from the system’s output. Feedback is

gathered using a custom developed feedback interface.

The system is evaluated and the performance of the filtering component
determined in terms of precision, recall and F score in several different tests.
When a system without a neural network to reject unpleasant animations, and
one with such a network are compared, the system with neural network shows
significantly less unpleasant animations. The precision of the neural network
in the different tests tends to be around 0.75, which means around one out of
four animations that pass the filter is given the lowest rating by users. Without
a filter, the precision of the system is on average around 0.66: one in three of
the shown animations would get the lowest rating. This shows an increase in
precision when a neural network is used to filter the animations. Some good
animations are rejected too, but since the system has a near infinite “pool’ of
animations to draw from, this is not considered as a big problem. Several
different neural networks are tested, but only the learning rate seems to matter
in terms of performance. However, the learning speed seems to depend much
on the dataset used for training the neural network. 50-100 animations seem to
be the minimum number to train an untrained network to a performance close
to the 0.75 precision observed in other tests. Several suggestions are made on

how to improve the system.
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1 Introduction’

Generative art, the type of art that is a result of some computer program being
left to run by itself, with minimal or zero interference from a human being, has
been around since not that long after the first programmable computers
emerged [2]. Although the name 'generative art' suggests that the art is
generated completely by a computer, this is often far from what happens. The
algorithm is still designed by a human and the inner workings, limits and
constraints of this algorithm determine what the resulting art will look like.
The art itself is generated by the algorithm, but the ‘blueprint’ of that art is
made by the ‘artist’> behind the algorithm, and thus the artist has a certain
indirect influence on the art. It depends on the algorithm how big this influence
is, but it is always there. This influence is often a necessity though, since an
algorithm with complete freedom in what it displays will have a very low
probability of producing pleasing art. This can be compared to the famous
infinite monkey theorem, where an infinite number of monkeys behind
typewriters for an infinite amount of time will eventually write the complete
works of William Shakespeare by chance. Similarly, an algorithm without any
constraints will surely be able to produce art that is considered beautiful by

people, but the probability will be so low that it will practically never happen.

Some quite impressive attempts have already been made to make a generative
art system with as much freedom as possible. One of the first ones, which also
was one of the first generative art systems around since computers were a
thing, was AARON [3]. Harold Cohen worked on this system for years, and it
could in a way come up with its own paintings. In the beginning the
involvement of Cohen was quite substantial; since he initially could not find a
good way for the system to give colour to the paintings, he colourized them
himself by painting them himself. Later, the system could also choose the
colours, but it never became fully autonomous; Cohen always selected the art

that was best. He phrases this problem well in ‘Color, Simply’ [4]:

' Some parts of this section are based on a similar text from ‘User feedback for a genetic
algorithm generating animated art’. This paper can be found in Appendix B.

> There is an interesting discussing about who can be called the artist in cases like this; the
programmer of the algorithm, the algorithm itself or the computer running the algorithm.
More about this can be read in an article by Boden [6]. For clarity, in this document the
programmer is seen as the artist.



“I was trying to write a program that could function as an
artist. Not an artist’s tool, a kind of proto-photoshop, that
I could use to make art — after twenty years as a
professional artist I already knew how to make art — but
as an autonomous entity capable of generating original
artworks; as autonomously, at least, as I could figure out
how to make it. I've been trying ever since. Autonomy
isn’t an absolute, of course, but given that AARON -
that’s the name of the program I started then — makes
most of its images at night, while I'm asleep, the program
1s obviously more autonomous than it was. But its
autonomy doesn’t extend to exercising judgment about
what it’s doing, and exercising judgment myself the next
morning isn’t easy. Which of the hundred or so images
should I print and which should I discard? They're all
good enough to print.”

Note that Cohen says here that all produced art is good enough to print. He
worked for decades on AARON and over the years substantially changed the
rules and constraints of the algorithm. The high quality of the generated art can
be largely accounted to Cohen’s fine-tuning of these rules. The style of art that
the algorithm generates is also very dependent on these rules, and this is visible
in the art the system generated; over the years it changed visual styles due to
the changing rules, but for each period the style of the generated artworks is
similar, because the rules contained in the algorithm are similar. You can see

this in Figure 1 and Figure 2.

There are several other algorithms that can generate art independently, but
they all need someone to indicate what looks good and what does not, although
the amount of human involvement differs per algorithm. Karl Sims developed
one where the involvement is reduced to just selecting artworks [1]; there are
almost no rules or constraints in the algorithm itself, but the human
involvement is still needed. This makes sense, as a machine has no concept of

beauty. Some examples of the results of Sims’ algorithm can be found in Figure

3.



Figure 1: Three different paintings generated by AARON. Years of creation from left to right:
2004, 2008, 2010°

Figure 3: Three examples of the output of Sims'algorithm [1]

Generative algorithms like this are found more and more in digital art
installations. The abundance of screens and other digital media nowadays
makes it easy and relatively cheap to set up an installation or even a website
that shows generative art. These kinds of installations also start to show more
and more animated art, as it is often quite easy to animate generative art. The

computing power of modern computers and especially GPUs makes it possible

3 Source: AARON’s home (http://www.aaronshome.com/aaron/aaron/gallery/FS-main-
galleryS4.html)



to generate the same artwork more than 20 times a second while some of its

parameters are changed over time, resulting in animations.

An algorithm that can generate animated art with a lot of diversity could make
semi-permanent art installations that are on display for months or even years
much more interesting, as the content they show can vastly differ over time. An
algorithm like that can also be very useful for artists to explore art and get
inspired by completely different art than they are used to see; a computer is not
bound to certain ideas and can come up with visuals that are totally different

than what human artists would create.

However, as mentioned at the beginning of this section, a larger diversity in the
generated art also means a higher probability of producing unwanted art. This
is also the case for animations, and the impact of unwanted animations will
probably be even bigger than with static images. Where with images the worst
ones will at most look boring or ugly, animations can get very unpleasant to
look at when they contain a lot of flickering, for example. The involvement of
humans to tell the algorithm what looks good and what does not is thus even
more important for animations. However, with animations it will probably also
take more time to give this feedback. Where with images you can show more
than 100 at once on a screen to be able to tell the algorithm which ones look
good or bad, it would be much more difficult to judge several animations this
way. The amount of different movements will probably be quite overwhelming
and it would therefore be difficult to give each animation a fair judgement. The
strain of displaying all these animations will also be higher for the system,
possibly limiting the framerate of animations, which can change how they look.
Furthermore, since animations contain a time element, it is difficult to scan
through animations and give feedback quickly. Each animation needs to be
observed for at least a couple of seconds to see how it behaves, before a
judgement can be made. This will probably slow down the process significantly

compared to static images.

These are the main design problems faced when building a system that can
independently generate diverse animations. The global aim of this project is to
design a system that can independently generate a vast diversity of abstract
animations, while minimizing the problems stated in this section. The system

should also improve the generated animations to increase the probability of
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generating pleasant animations. To do this, this system needs a couple of

components:

I. Analgorithm that can generate and display a vast diversity of abstract
animations.

2. A component that retrieves user feedback on each animation (since the
system cannot make judgements about its own output, as mentioned at
the beginning of this section).

3. Analgorithm that will improve the generated animations using this
feedback.

4. A component that can recognize the most unpleasant animations and
can filter those out of the output of the system before it is shown to the

user.

The focus of this project will be on this last component, since this will play the
biggest role in solving the problems stated in the previous paragraph. This can

all be summarized in the first (design) question of this project:

RQI: “How to design a system that generates a vast diversity of
abstract animations, while minimizing the amount of unpleasant

animations in its output?”

Since the focus of this project is on the filtering part of the system, the quality
of the designed system will be tested on the amount of unpleasant animations

in its output. This leads to the second research question of this project:

RQ2: “What is the performance of the filtering component in the

designed system in terms of precision, recall and F-score?”

To answer these questions, first past research towards user feedback methods
and art preference is discussed. Next, the design process of the system is
described per component. Finally, the user tests and their results are discussed

and conclusions are made.



2 Context

In this section, some studies towards factors that influence people’s preference
in art and user feedback methods for preference are discussed. Next to this, the
state of the art of generative algorithms for animations is discussed. These
subjects are already studied in two earlier studies: ‘Finding machine intuition
criteria for generating aesthetically pleasing animated art’ and ‘User feedback
for a genetic algorithm generating animated art’, which can be found in
respectively Appendix A and Appendix B. The relevant pieces of these studies
(mainly the review of other studies towards the subjects) will be used here and

the results and conclusions of the studies will be summarized here.

2.1 Preferencein art
2.1.1Static art

Several studies found that the complexity of generated images correlated with
subjects' preferences of the images [5] [6] [7]. These studies used random
polygons that differed in the amount of sides (more sides were interpreted as a
higher complexity of the polygon), or visuals made by a random walk (where
the length of the walk was interpreted as the complexity of the visual).
Participants were asked which visuals they preferred. The results suggested
that people have a preferred amount of complexity; preference increased with
complexity up to a certain point, after which preference decreased again. Later
studies used non-representational art instead of generated images. These
studies used a small panel of participants to judge the complexity of each
artwork. Results showed that preference increased with complexity, but did not
find a very clear decrease of preference at the highest complexity ratings. It was
suggested that this might be because the artworks with the highest complexity
were simply not complex enough, which made it not possible to notice this
effect [8] [9]. The latter study also found that the complexity of artworks
positively correlates with the amount of times subjects would look at the
artworks. This was to be expected since there are more visual stimuli in the

artwork, so it would take more time to process everything visually.

Although studies using generated random polygons seemed to find a clear
relation between complexity and preference, a study by Martindale found a

different relation (a monotonic function instead of an inverted-U function)



when the test circumstances were slightly changed [10]. They argued that the
shape of the polygons did probably not just measure complexity but also other
variables. Further experiments indicated that meaningfulness had a bigger
influence on preference than complexity. Meaningfulness is interpreted here as
how strong of a mental connection a viewer of the art can make to concepts he
knows. For example: a cloud that looks like a cat is probably more meaningful

to a viewer than a cloud with a much more random shape.

However, there is also ambiguity in art, which can be described as how many
things a viewer might see in art. This makes that meaningfulness and
ambiguity are quite related in art. Most artworks with a high ambiguity will
have a low meaningfulness and vice versa. Speaking in cloud's terms again: the
cat-shaped cloud has a higher meaningfulness but at the same time is less
ambiguous to a viewer since the similarity to a cat predominates other
interpretations of the shape. The random-shaped cloud probably has a higher
ambiguity since it is easier to see multiple similarities to known shapes in it,
but these similarities are less strong and thus the cloud has a lower
meaningfulness. Like with complexity, research was done on a relation
between ambiguity and preference in art. Jakesch and Leder performed a study
that showed that subject's preference and interest towards artworks was
highest for artworks with a medium amount of ambiguity [11]. Both artworks
with higher and lower ambiguity were rated significantly lower on both
interestingness and preference. This shows that there is probably a preferred

level of ambiguity in art.

Several studies found a link between preference and colour. Ambiguity and
liking ratings were found to be higher for coloured artworks compared to
grayscale artworks [11]. Furthermore, the more prototypical colours were, the
higher the preference was found for those colours [12][10]. This might indicate
that artworks using prototypical colours are preferred over artworks using less

prototypical colours.

The type of art also seems to matter. Vartanian and Goel found that
representational art was preferred over abstract art [13].Another interesting
find in their study was that normal artworks were preferred over filtered

(blurred) artworks. This might be linked to earlier found correlations between
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preference, complexity and meaningfulness; a blurred artwork will lose

complexity and meaning.

2.1.2 Animations

A study by Bartram and Nakatani on how motion is perceived showed that
motion features like fast speed, an angular movement shape (vs. curvy), obtuse
angles and NOT smooth motion were associated with negative terms such as
angry, painful, threatening, disgust, rejecting, urgent, fear, and annoying [14].
Features like slow speed and a curvy motion shape were associated with calm
terms such as reassuring, calming, unimportant, relax, boring, and relieved.
This indicates that fast motion, motion that changes direction abruptly and

jerky motion might not be preferred by people.

The study ‘Finding machine intuition criteria for generating aesthetically
pleasing animated art’, which can be found in Appendix A, tried to find out
what factors of abstract animation influenced people’s preference for these
animations, and in what way. Several animations were created that differed in
speed, the predictability of their movements and whether they were blurred or
not. People could watch and rate the animations online. Overall, the preference
for slower moving and more predictable animations was slightly but
significantly higher. People also tended to prefer non-blurred animations but

this seemed to differ based on the complexity of the animations.

2.2 User feedback methods
2.2.1Feedback scales

Research on preference feedback often focuses on recommender interfaces for
things like movies, music or books on the internet [15]. These are interfaces on
websites where people can rate these products to give other people an idea of
what is good and what is bad. There are different ways in which this feedback is
gathered, mainly differing on the scale. Facebook started with its famous unary
scale, where people can only give 'thumbs ups'. Other common scales are
binary (positive/negative), 5 or 10 point (often stars/half stars) or a 100-point
scale. Another method that is less common works differently than the previous
mentioned scales, because it presents the user with two options. The user must
then choose the best option of those two. Previous studies already tested which

of these scales is best in several scenarios and according to several criteria.
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These studies can be used to find the criteria that determine if a feedback

method is good or not and are discussed in the following two sections.

2.2.2Reliability

It is possible to (accidentally) introduce a bias in feedback because of certain
design choices for the feedback interface. Friedman and Amoo [16] mentioned
different causes for a possible bias. Connotations can bias the results because
the negative connotations might sound more negative to the participant than
the positive connotations sound positive. This also applies to numeric values;
there is a difference between having a scale range from -5 to 5 and from o - 10.
People are more likely to use the lower end of the scale in the last case since the
lower end is perceived more negative in the first case. Forcing a choice can bias
the results if the amount of undecided people or people without an opinion is
significant. Unbalanced scales, meaning there are more positive than negative
points on the scale (or the opposite) can have a big influence on results. The
order in which the scale is presented (does it start at the positive or negative
side) also influences the reported answers, but it is difficult to say which one of
the two has the smallest bias. This may also depend on the subject of the
question. Garland [17] found that the absence of a mid-point on a scale can
distort results, although it was not possible to tell which scale was most

accurate.

The amount of points on the scale can also have an influence on the reliability
of the scale. Too few points means a loss of information, and too many points
increases variance while accuracy may not increase significantly. Friedman and
Friedman [18] studied this problem and recommended the range between five
and eleven points as most optimal. Friedman and Amoo [16] stated that this also
depends on what the scale will be used for. If there is no reason to think
participants will have a complicated opinion about something, even a three-

point scale might suffice.

2.2.3Usability

Besides affecting the reliability of the scale, the amount of points also has an
influence on users' behaviour and satisfaction. Sparling and Sen [19] studied
how different scales (unary, binary, five-point and 100-point) influenced the

time it took users to rate an item, their cognitive load, and overall satisfaction
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with the scale. They found that overall the rating time of users increased with
the amount of points on the scale. Cognitive load was estimated by measuring
the reaction time of users on a secondary task: clicking a button as soon as it
becomes red (on random intervals). The cognitive load was found to be lower
for a unary scale compared to other scales, but differences between the other
scale were not significant. Users preferred the binary and five-point scales, and

liked the five-point scale best.

2.2.4Animations

The study ‘User feedback for a genetic algorithm generating animated art’,
which can be found in Appendix B, investigated if a binary or 5-point scale was
preferred by people if used to indicate preference for abstract animations.
People could rate several abstract animations generated by an algorithm which
used a genetic algorithm to evolve the animations based on the user’s feedback.
After rating 30 animations with each scale, participants were asked which scale
they preferred and why. The results were inconclusive, but the explanations
given seemed to indicate that usability in terms of mental effort and the
amount of freedom people had to express their opinion were key factors in

their preference.

2.3 State of the art

In this section, some existing algorithms that generate animations are

discussed.

2.3.1Electric Sheep

A well-known algorithm is Electric Sheep, a project that uses distributed
computing to render animated art that is generated using a genetic algorithm
[20]. Each frame in an Electric Sheep animation is a fractal flame, a member of
the Iterated Function System (IFS) class of fractal algorithms [21]. The
algorithm allows a big diversity of visual animations, although they still have a
distinct visual style. An example of two fractal flames can be seen in Figure 4.
Fractal flames are animated into Electric Sheep animations by varying some

parameters of the fractal flame over time.
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Figure 4: Two fractal flames [21]

Each animation can be rated by users all around the world using a binary scale;
each user can vote an animation 'up' or 'down'. A genetic algorithm mates and
mutates the animations in the current ‘population’ to create a new population,
so the animations evolve over time based on user feedback. Low rated
animations have a lower chance of mating in the genetic algorithm, so low
rated animations might ‘die out’ after a while, while high rated animations have
lots of offspring. Besides these genetic operators, the algorithm can add new
randomly generated animations and users can add animations they designed

themselves to the population.

[terated Function Systems take quite some computing time to render, and an
animation would need at least 20 fractal flames per second to be animated
smoothly. That is why Electric Sheep uses distributed computing to render the
animations into short videos, that are then distributed over the network.
However, rendering fractal flames fast enough to render animated ones in real-

time is possible nowadays using the GPU [22].

2.3.2Milkdrop

Another existing algorithm that generates animations is used as music
visualization in the music player Winamp+. It is called Milkdrop5 and uses
audio wave forms, shapes, spatial transformations and fragment shader
programs to render its animations. Unlike Electric Sheep, Milkdrop animations

are made by people programming so-called 'presets’; it does not have a genetic

4 http://www.winamp.com/
5 http://www.geisswerks.com/milkdrop/
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algorithm to automate this process. Milkdrop presets can be rendered in real-

time. An example of the output of a Milkdrop preset can be seen in Figure 5.

Figure 5: A Milkdrop preset (Inkblot by Geiss)

2.3.3Self-developed

During the study ‘User feedback for a genetic algorithm generating animated
art’, which can be found in Appendix B, an algorithm was developed that was
loosely based on Milkdrop, but it used a genetic algorithm to generate the
animations. It used several layers of shapes and several image transformation
functions to form animations that could range from simple to quite complex.

An example can be seen in Figure 6.

Just like with Milkdrop, the animations could be rendered in real-time. Users
could give feedback for each animation using the keyboard in a binary or 5-

point scale.

Figure 6: A frame of an animation generated by the self-developed algorithm
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2.3.4Karl Sims

Karl Sims developed a genetic algorithm that generates different images (not
animations) by changing its own code based on human feedback [23]. The
algorithm builds recursive lisp expressions using different functions. These
expressions are executed for each pixel, resulting in an image. The lisp
expressions can generate complex images with a very big diversity, since the
value of each pixel is determined separately, so the algorithm is not bound to
certain shapes or colours. Some examples of the output of Sims’ algorithm can

be seen in Figure 3.

The algorithm, as Sims developed it, does not generate animations, but he
suggests several methods that are easy to apply to animate the output; the
simplest one being the use of time (the number of seconds elapsed, for example)

as an input variable in some of the lisp functions of the expression.

The images are evolved using a genetic algorithm, like the Electric Sheep
algorithm. It seems like Sims could choose from a grid of generated images
which ones would be used to generate the next ‘generation’, but he does not

explain this process in detail.

2.3.5Differences

The main differences between the algorithms can be described in terms of the
animations they (could) generate, how the animations are designed, and how

much computing power is needed.

Animations

The type of animations the algorithms generate are very different: Electric
Sheep animations are very diverse, although the animations most of the times
look like some form of geometry that glows on a black background. They are
very abstract. Milkdrop can generate very diverse animations that can range
from very abstract to semi-representative animations that are made to look like
something, or use distinct shapes such as circles and squares. The self-
developed algorithm mainly uses shapes and thus is never completely abstract.
Its user test showed that people thought there was a lack of diversity in the
animations. Karl Sims’ algorithm could generate very diverse animations,
although mostly abstract. Unlike Electric Sheep, these animations do not seem

to have a common visual style, which makes this a promising algorithm for the

16



to-be-developed system, since RQI states that a vast diversity of animations is

needed.

Design

Electric Sheep are mainly generated by a genetic algorithm which adjusts a
parameter set, but can also be designed by people. Milkdrop animations are
exclusively designed by people, since the animations are partly a written
program. The animations in the self-developed algorithm are designed by a
genetic algorithm which adjusts parameters in a parameter set. The animations
from Sims’ algorithm are also designed by a genetic algorithm, but in this case
animations are altered by adjusting the rendering program itself, rather than a

parameter set which is used by that program to render the animation.

Computing power

Both Milkdrop and the self-developed algorithm do not require a lot of
computing power, and their animations can be rendered in real-time on most
modern computers. The traditional rendering method of Electric Sheep
however, needs a lot of computing power and cannot render most Electric
Sheep in real time. However, the method developed by Lawlor [22]is a
promising method that could make it possible to render Electric Sheep in real
time. Sims’ algorithm can be computationally intensive, but this could be
improved if it is possible to run the algorithm on the GPU. This should be the
case, since Sims’ algorithm performs the same calculation on each pixel of the

output image; which is exactly what GPU’s are designed to do.
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3 Design & Implementation

This section describes the design and implementation of the system. It

describes the main problems and goals for each component, the design choices

made to reach these goals or solve these problems and a description of how this

was implemented. This project was implemented in C# and GLSL.

3.1 Main goal & requirements

The main goal of the system is to independently generate a vast diversity of

abstract animations, while minimizing the number of unpleasant animations it

shows. It should also improve the generated animations. This is translated into

the global requirements stated below. Some requirements have several sub

requirements to clarify the global requirement.

REQI.

REQ2.

REQ3.

The system should generate visibly moving animations.

1.1 The output of the system should be animations; sequences of
images where each image changes a bit, which translates to an
illusion of motion when the images are shown in rapid
succession.

1.2 The animations should be visibly moving; the changes over time
should be big enough for the user to clearly see that the output is

not a static image.

The generated animations should be diverse.

2.1 The algorithm that generates the animations should not be bound
to certain shapes or colours.

2.2 There should be no clear common visual aspect between the
generated animations. An example of such an aspect is the
common visual style between Electric Sheep animations: they all

seem to consist of some sort of glowing geometry.

The system should gather feedback on the animations from users.
3.1 The feedback method should be easy to use.
3.2 The feedback method should allow the user to express their

opinion sufficiently.
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3.3 The feedback method should give the system enough information
about each animation to be able to improve the animations and

reject unpleasant ones.

REQ4. Thesystem should improve the generated animations.
The system should suit the generated animations to the
preferences of the user; generate more animations towards the
user’s likes, and less animations with elements the user dislikes.

This should translate to better rated animations over time.

REQ5.  The system should keep on exploring new animations.
Since we are not looking for one global optimum (the best
animation of all possible animations), but rather want to
constantly show different animations, the algorithm should not
converge to one ‘best’ animation, but rather keep on looking for

other good animations.

REQ6.  The system should filter out unpleasant animations.
The system should minimize the amount of animations that
receive the lowest possible feedback by learning what kind of
animations receive a low feedback, and filtering those animations
from its output. This should result in less low rated animations,
and speed up the evolution process, since the filtered animations

do not have to be rated by the user.

3.2 System architecture

The architecture of the designed system can be found in Figure 7. It consists of
four main components. The task of each component and which requirements it

should fulfil is shortly described in this section.
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Figure 7: The system's architecture

3.2.1Animation renderer

This component renders the animations using an algorithm such as the ones
described in section 2.3. It takes ‘instructions’ from the animation
improvement component, which tell how to render each animation. These
instructions can be parameter sets, or almost complete programs which are
executed to render the animations. What form these instructions take is

dependent on which algorithm is used for the animation rendering.

Renderer requirements

e REQ1:The system should generate visibly moving animations.

e REQ2:The generated animations should be diverse.

e (REQ4: The system should improve the generated
animations.)

The last requirement is not directly related to this component, but the
rendering algorithm should support being ‘steered’ by instructions from the
animation improvement component. It is therefore important to keep this

requirement in mind when choosing a rendering algorithm.

3.2.2Animation improvement

The animation improvement component takes feedback from the user or the
filter to improve the animations. In short, it makes more variations of
animations rated as being good, while discontinuing ‘bad’ animations. It does
this by modifying the instructions it gives to the rendering component.
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Improvement requirements

e REQ4: The system should improve the generated animations.
e REQS5: The system should keep on exploring new animations.
e (REQ2: The generated animations should be diverse.)

The last requirement is relevant to this component, because, as can be read in
section 3.4, some techniques for improvement are prone to generate lots of
similar animations, which would decrease diversity of the generated

animations.

3.2.3Feedback gathering

This component gathers the feedback from the users and forwards it to the

animation improvement component and the filter model.

Feedback requirements:

e REQ3: The system should gather feedback on the animations

from users.

3.2.4Filtering

The filtering component is the focus of this project. It builds a filtering model
by learning from the user feedback it receives on the shown animations. This
model classifies each rendered animation as a ‘bad’ or ‘good’ animation, where
‘bad’ means that it is expected to receive the worst possible rating when shown
to the user. If an animation is classified as ‘good’, the filter does nothing and the
animation is shown to the user. If the animation is classified as ‘bad’, the filter
gives the worst possible feedback to the improvement component, and the
animation is not shown to the user. In short, it rates the animation on behalf of

the user, so the user does not have to see the bad animation.
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Filter requirements:

e REQ6: The system should filter out unpleasant animations.

e (REQi: The system should generate visibly moving animations.)

The filter also rejects all animations that do not contain enough motion to be

visibly moving. That is why REQI is also related to this component.
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3.3 Animation renderer

The choice for an algorithm to render the animations is discussed in this
section. The chosen algorithm and its implementation in the system are then

explained in more detail.

3.3.1Choosing an algorithm

To make a choice on what algorithm to use for the rendering of the animations,
the algorithms discussed in ‘State of the art’ (Section 2.3 on page 13) are

compared. More details about each algorithm can be found there.

In section 2.3.5, the differences between four existing algorithms are described.
To make a fair comparison, the differences described there in terms of the
generated animations, the design process of these animations and the
computing power are translated to the requirements set at the beginning of this
chapter. This means the algorithms are compared here in terms of the diversity
of the generated animations, the ease at which the animations can be modified
by the system, and the computing power needed to render the animations. The
computing power needed is not part of the requirements, but since the
differences can be quite big, this factor is also considered in the decision. An

overview of how each algorithm scores on these factors can be found in Table 1.

Table 1: Overview of differences in algorithms

Algorithm Diversity | Modification | Computing
by system power needed

Electric Sheep +/- + _

Milkdrop + - ++

Self-developed - ++ ++

Karl Sims ++ + ?

As can be seen, all algorithms except for Sims’ algorithm have at least one
disadvantage over the other algorithms. However, the computing power
needed for Sims’ algorithm is unknown. Since it can probably run well on
modern GPU’s, and it is superior in the diversity of the generated animations,

this algorithm was chosen to be used in the system.
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3.3.2The algorithm explained

The visual algorithm will be explained in short here. More details can be found
in ‘Artificial Evolution for Computer Graphics’ by Sims [1]. This is also where
the information and images in this section come from. Note that only the visual
part of the algorithm will be discussed here; the evolution part will be discussed
in section 3.4. Sims’ algorithm works with a function set where each function
works on a per-pixel basis. An expression is built by starting with one of these
functions, and filling the arguments of this function with constants, vectors,
variables such as X and Y coordinates, or another recursively generated
expression. This results in a large recursive expression, which if executed on
each pixel, can generate complex images. The function set consists of basic
functions like +, -, mod, sin, log, but also more advanced noise generation
functions or functions that use neighbouring pixels to determine gradients, for

example. Sims gives some examples of relative simple expressions and the

associated images to explain the concept:

Figure 8: Some examples of results of simple expressions in Sims’algorithm

The LISP expressions associated with the above images (from left to right, top
to bottom) can be found below. Note that the X and Y coordinates range from -1

tol.
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(abs X)

(mod X (abs Y))
(and X'Y)
(bw-noise .2 2)
(

(

(

o o

color-noise .I 2)

5 g rh oo

grad-direction (bw-noise .15 2) .0 .0)

o

warped-color-noise (* X .2) Y .1 2)

The fractal-like shapes in Figure 8e are a result of using a bitwise operator on
floating-point numbers (X and Y coordinates in this case). The difference
between normal noise generation functions and their warped versions is that
the normal versions always use the X and Y coordinates as input parameters for
the noise generation, where in the warped versions these input parameters can
be given. This makes it possible to warp the generated noise, as can be seen in
Figure 8i, which is the same noise as in Figure 8g, but with a scaled X coordinate

as input parameter.

The above described expressions are relatively simple, which makes it possible
to see the relation between the expression and the resulting image. However,
more complex images are a result of complex expressions, and the relation
between the expression and the result are hard to see. An example of this can be

seen in Figure 9. This image was rendered using the following expression:

(sin (+ (- (grad-direction (blur (if (hsv-to-rgb
(warped-

color-noise #(0.57 0.73 0.92) (/ 1.85 (warped-color-
noise x y 0.02 3.08)) 0.11 2.4)) #(0.54 0.73 0.59)
#(1.06

0.82 0.06)) 3.1) 1.46 5.9) (hsv-to-rgb (warped-color-
noise y (/ 4.5 (warped-color-noise vy (/ x y) 2.4 2.4))
0.02 2.4))) x))
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Figure 9: A more complex result of Sims'algorithm

Sims suggested different ways to animate the images:

e Adding a variable ‘TIME’ that can be used in the expressions just like X
and Y coordinates are used.

e Using existing animated images as input in the expression.

e ‘Dissolving’ two expressions. This requires the expressions to have a
similar structure, so the identical parts can stay the same while the
differences are interpolated.

e Altering the mapping of the X and Y coordinates to create panning and
zooming effects.

e Experimenting by hand, for example by interpolating parameters in the
expression.

3.3.3Implementation
The algorithm lends itself well for implementation in fragment shaders on the

GPU. Fragment shaders are essentially little programs that are executed for
each pixel of the output texture, and return the colour that that pixel should
have. A system was developed that can translate the ‘instructions’ received
from the improvement component into shader programs written in GLSL.
These instructions are in the form of trees, where every node is either a

function from the function set with its arguments as children, or a variable.

Function set
First, the function set was determined. This function set can be found in

Appendix C, including the types of arguments each function takes, and

basically consists of three types of functions:
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1. Float functions: functions that output floating point values.

2. Vector functions: functions that output three-component vectors.

3. Image functions: Functions that act on an input image: they use the
values of neighbouring pixels to determine their output (which consists

of a three-component vector).

The functions are a mix of functions that are already present in GLSL and
functions that Sims used. Since GLSL supports vectors and floating-point
variables, the parts of the expressions that only contain the first two types of
functions can basically be copied into one shader program without any
problems. However, this approach does not work for image functions. These
functions need to know the colour values of their neighbouring pixels, which
means the image on which this function is executed needs to be rendered first.
Therefore, the subtree that renders the input image of such a function is
executed in a separate shader program. Once that image is rendered, it is passed
to the shader program which executes the image function. The output of that
shader program is then passed to the shader program containing the ‘parent’

function of the image function.

Iterated Function Systems

The only exception for the above described method is the function that
calculates an Iterated Function System (IFS). This is a function that does not
need the information of neighbouring pixels, but still runs in a separate shader
program, because the rendering of such an image works differently than the
rendering of the other functions. Since this function is quite different than
other basic functions, and the results of an IFS can differ greatly depending on

the implementation, a short explanation is given here.

Since Sims does not explain what kind of IFS his algorithm uses, and the
Electric Sheep algorithm (which also uses IFSs) was also considered a pretty

good option for the visual algorithm, fractal flames were used as IFS.

Generally, IFSs are systems with a set of linear transformative functions that,
when alternatively and iteratively executed, form complex shapes. The fractal
flame algorithm also contains non-linear functions and several other

modifications that together make the resulting images very complex and give
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them a three-dimensional feeling. More details about this algorithm can be

read in Draves’ and Reckase’s article on the subject [21].

Fractal flames are normally rendered using a method called the chaos game.
This is a computationally heavy method that does not lend itself well for
execution on the GPU, as we would like to do here. However, Lawlor came up
with a different method of rendering fractal flames that is well suited for
execution on a GPU. Details on the implementation can be found in Lawlor’s

article on the subject [22].

A simple version of this method is implemented here, which only uses
functions that can be well implemented in a fragment shader program. These
functions (of which examples can be found in the appendix of ‘The Fractal

Flame Algorithm’ by Draves and Reckase [21], they call them ‘variations’) are:

e Linear

e Sinusoidal
e Spherical
e Swirl

e Horsehoe
e Polar

e Heart

e Hyperbolic

e Julia
e Bent
e Fisheye

e Exponential

e Power

[t was decided that a maximum of five different functions can be used in one
[FS function, because that already gives a lot of possibilities for different fractal

flames.

Displaying the animations
The animations do not necessarily contain periodic elements, which means that
quite some animations will only move during the first couple of seconds; until

the time values used in their trees go outside certain ranges. For example, if the
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red channel is connected directly to the time parameter, the red value of all
pixels will increase during the first second (since colour is coded in a range
from zero to one in GLSL), and then stay at the maximum, since after that the
time value is always greater than one. Preferable, the animations should
animate longer than a couple of seconds, so it was decided that the first ten
seconds of the animations are skipped, also in the analysis done on them for the
filtering component. Animations like the one described above will then contain

no movement during analysis, and can be rejected by the filtering component.

Two examples of simple animations with small function trees, generated by
this algorithm, can be seen in Figure 10, and their function trees in Appendix F.

]
10.0s 10.558 11.28 12.058
|
13s 14.158 15.6s 17.158

138 14.158 15.6s 17.158
Figure 10: Two example animations with time codes
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3.3.4Reflection

A reflection is done on the requirements of this component. The relevant

requirements for this component are:

e REQI: The system should generate visibly moving animations.
e REQ2: The generated animations should be diverse.

¢ (REQ4: The system should improve the generated animations.)

REQ1
This requirement has two sub requirements. The first says the system needs
animations. This was accomplished by modifying Sim’s algorithm to output

animations instead of static images, as it was originally designed to do.

The second sub requirement states that the animations should be visibly
moving. Itis possible that by chance the system generates animations without
any ‘TIME’ nodes in its function tree, or the ‘TIME’ nodes are only found in
parts of the tree that are not expressed in the final animation. This will still
result in a ‘static image’; an animation that does not contain any motion. Also, it
is possible that an animation does contain motion, but it is so subtle that a
human viewer will not see this as motion. The filtering component is designed
to filter these cases from the output of the system. More details on how this is
implemented and further reflection on this requirement can be found in section

3.6.

REQ?2
This requirement states that the animations should not be bound to certain
shapes or colours, and there should not be a clear common visual aspect

between them.

Since the functions of the rendering algorithm are executed per pixel, and can
work freely on all three colour channels, the algorithm is not bound to shapes
or colours. The broad function set should give the algorithm enough freedom to

render animations with very diverse visual styles.

If this actually results in diverse animations without any common visual
aspect, is hard to measure. However, observing the animations generated for

the different tests, as discussed in chapter 4, should give an idea.
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REQ4
This requirement is related to this component, since the algorithm should

support being ‘instructed’ by the improvement component. Since Sims himself

used a genetic algorithm to improve the images, this should be the case.

31



3.4 Animation Improvement

The design and implementation of the animation improvement component are
explained in this section. Since a lot of the design is inspired by the work of
Sims and Rooke, there are quite some references to their work in this section. If
referred to Sims’ work, the information comes from his article ‘Artificial
Evolution for Computer Graphics’ [1], unless otherwise specified. The same
goes for Rooke’s work; this comes from his chapter ‘Eons of genetically evolved
algorithmic images’ in the book ‘Creative evolutionary systems’ [24], unless

otherwise specified.

To improve the generated images, Sims used a genetic algorithm, which slowly
evolved the images in the direction he indicated by selecting certain images.
Steven Rooke later used an extended version of the algorithm, also with a
genetic algorithm to improve the image. Both reported that the genetic
algorithm worked well, although there are almost endless ways of using a
genetic algorithm. Rooke experimented with several combinations of settings
and methods for the genetic algorithm to increase its performance and reported
his findings. Since a genetic algorithm seemed to work well for both Sims and
Rooke, and Rooke’s observations with different settings for his genetic
algorithm are very useful, this project also used a genetic algorithm to improve

the animations.

In this section the settings and implementation of this genetic algorithm is
explained. It is assumed that the reader is familiar with the concept of genetic
algorithms and common technical terms used when talking about these
algorithms. If that is not the case, a short explanation of what a genetic
algorithm does and the terms used to describe a genetic algorithm can be found
in section 2.1 of ‘User feedback for a genetic algorithm generating animated art’,

which can be found in Appendix B.

3.4.1Structure and methods

As we are evolving a program here, we follow the workings of Koza on genetic
programming [25], instead of an algorithm inspired by the work of Holland on
genetic algorithms [26]. This means our genetic representation is a tree, where
every node contains either a function with its arguments as children, or a

variable or constant without any children. Trees are mutated by randomly
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regenerating a random branch. Crossover is done by swapping two randomly
chosen subtrees between two trees. Examples of these operations on trees can
be found in Appendix G. The process that Koza calls ‘encapsulation’ was also

implemented but was not used in the end, to keep the genetic algorithm simple.

The fitness function is in practice not present, as the fitness of an animation is a
direct result of the feedback this component receives for that animation. More
information about how human feedback translates to a fitness value can be

found in section 3.5, ‘Feedback gathering’.

3.4.2 Construction of generations
It is useful to first explain how the used genetic algorithm constructs

generations, since most of the settings explained in the next section will

influence this process.

At the start of a run of the system, and whenever a population is replaced, a
new population is generated by making random function trees. These trees are
constructed using a ‘grammar’ for functions, which is summarized in the
function set in Appendix C. The grammar consists of all functions and the types
of their arguments and output. For each argument of a function, a function is
found that outputs a variable of the required type. In turn, that function’s
arguments (if present) are filled the same way. To be sure that this recursive
process ends, a maximum tree depth of five levels is set for these randomly
generated trees. If an argument is needed of the ‘float’ type, there is a chance
that a variable is used instead of a function. This can be a mathematical
constant such as wor e, or arandom number. Another possibility is that a
parameter such as time, the x-coordinate, or the y-coordinate is chosen. The
chance that a variable is chosen over a function gets bigger the closer the

current level is to the maximum level.

There is a 75% chance that a tree is generated using the above described
method. Otherwise, the tree comes from the crossover of successful animations
from past populations. More about this is explained in section 3.4.3, subsection

‘Long-term memory’.

An animation is only added to the new population if it passes the filter in the

filtering component.
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After running for a while, the system will reach a points where it gathered
feedback on all animations in a population. At that point, a new generation of
animations is constructed for that population. First, the fitness values of all
animations in the population are normalized, so their sum is exactly one. The
new generation is then filled with animations by repeating the following

process until the new generation is filled:

I. Choose between the following methods, where each method has a pre-
set probability of being chosen: reproduction, crossover or mutation.

2. Ifcrossoveris chosen, two random animations are chosen from the old
generation by using their normalized fitness values as probabilities of
being chosen. Crossover is performed on these animations to form two
new animations, which are placed in the new generation.

3. Ifone of the other two methods is chosen, one random animation is
chosen with the normalized fitness values as probabilities of being
chosen. The animation is reproduced or mutated, and placed in the new

generation.

To improve the diversity of the animations in each population, animations that
look the same within a generation are removed, so every animation is unique.
Note that animations often look the same, despite the low chance of the genetic
algorithm generating two or more duplicate trees. This happens because there
are often parts of the tree that have no influence on the rendered animation. An
example of this can be found in Figure 11: the ‘max’ function will always give the
constant number as a result, as this is always bigger than the result of the
cosine. This results in two duplicate animations, despite both having been

rendered by different trees.

Therefore, the animations are compared using the actual rendered animations:
each animation is partly rendered to extract some features which say
something about the motion and colours in the animation. These features are
further explained in section 3.6.2. Animations that generate the exact same
features are assumed to look the same, which is used to find and remove
duplicates within a generation. A check was done with a small batch of around
100 animations to see if animations with the same features looked the same as
well. Animations with the same features were not distinguishable from each

other.
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After this process has been completed, the new generation will be presented to
the user until all animations are rated and this process repeats to form a new

generation again.

Figure 11: Two different trees that will generate the same animation

3.4.3Settings

How a genetic algorithm behaves is very much dependent on variables like
population size, probabilities of reproduction, crossover and mutation, and
other possible modifications. It is therefore important to choose the right
values to let the genetic algorithm behave the way you want. For example: a
high probability of crossover will have a high chance of producing good
animations, but reduces the diversity. For mutation, it is the other way around.
A high probability of reproduction ensures that good animations will not be
lost easily, but this also reduces diversity. A big population size increases
diversity and probably the quality of the found animations, because it takes
longer until the algorithm converges on a certain type of animation, and
therefore has more time to explore. However, a big population size significantly
impacts the speed at which the genetic algorithm goes through its generations
and therefore the speed at which the animations will improve. The design
choices on these variables and other implemented concepts that differ from a

conventional genetic algorithm are explained below.
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Population

Sims used population sizes of 20-40 images, Rooke used 100-200. This is small
compared to other genetic algorithms, but most genetic algorithms have a
fitness function that determines fitness automatically. This is often done by
doing some calculations, running a simulation, or comparing the results of a
program (in case of genetic programming) with the desired results. As Sims and
Rooke had to give the feedback themselves, which is much slower than an
automated process, they chose smaller population sizes. However, rating even
20-40 animations for each generation of the population is still a tedious

process, which should be optimized as far as possible.

Sims and Rooke could look at multiple images at once to give feedback quite
fast. This approach was tried with animations during the study ‘User feedback
for a genetic algorithm generating animated art’, which can be found in
Appendix B. Showing only two animations at once already seemed
overwhelming, and it was thought that this would influence the feedback of the
animations too much. This could result in animations receiving different
ratings than if they were rated separately. Since rating animations would
therefore take even more time than rating images, a population size of 20
animations was first experimented with. One of the most notable things seen
was that, most of the times, in the first generation only one or two animations
got a good rating, resulting in a second generation that was filled with
variations on mainly those two animations. This reduced the diversity to such

extend that an alternative had to be found.

A solution that works well in keeping the diversity high, is using multiple small
populations. Each time a new animation needs to be shown, a random
animation without a rating from a random population is chosen. This way, the
user does not see similar animations all the time. Each population will still
converge to a couple of good animations, but since there are multiple
populations, the diversity is kept high. Using ten populations with each a
population size of ten seemed to give a good balance between the speed of the

genetic algorithm and the diversity of the shown animations.

The small population sizes, a new problem arises: because there are only ten
animations in each population, on average only one animation gets reproduced.
The chance that this is one of the better perceived animations is still not that
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big, and thus it is possible that good animations are ‘lost’, leaving the new
generation with only worse animations. This happens all the time in genetic
algorithms, and is normally not a big problem, because there are plenty of other
good animations that are not lost. However, with populations this small, this is
not always the case. It makes the probability of losing high quality animations
quite big. Increasing the probability of reproduction would partly solve this
problem, but there is still a chance that reproduction does not happen, or that
only the worse animations are reproduced. Therefore, to make sure that quality
is not lost, a mechanism was implemented that always reproduces the
animations with the highest score. This comes at the cost of diversity, but in
this case, it was decided that it was worth it for the increased quality of the

animations.

Convergence

Since the algorithm should continuously show new animations instead of
looking for a global optimum (REQ5), it needs to decide when a population
converged enough. This means it should recognize when the population gets
‘stuck’ on a certain type of animation, so it can replace that population, and new

animations will be shown.

Because duplicates are already removed from each new generation,
convergence can roughly be measured by the size of a population. Therefore,

when a population gets to a size of three or smaller, it gets replaced.

Long-term memory

The small size of the populations make that the populations converge quite
quickly and thus the animations do not have a lot of time to evolve. This would
break the genetic algorithm. A solution was found by implementing an idea
that Rooke used in his algorithm, something he called a ‘Genetic Library’.
Rooke would often ‘feed’ his first generations with successful images from past
runs of the algorithm, stored in this library. This would give the algorithm a
head-start and would increase the quality of the evolving images. A similar
system was implemented in this system, although the process was automated.
This allowed the continuation of the evolution process of successful animations
from past populations. Since the process is fully automated here, it is referred

to as a ‘long-term memory’ of the genetic algorithm.
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The memory works by saving the best animations of a population before the
population is replaced. Every time a new function tree is generated for a new
population, there is a 25% chance that that tree is generated by performing
crossover on two trees from this ‘long-term memory’ of past successful

animations.

This way, there is a short-term evolution going on within each population until
it is replaced, and a long-term evolution of the most successful animations that

spans multiple populations and could go on for a long time.

Probabilities

The probabilities of reproduction, crossover and mutation are normally the
main tools to adjust the behaviour of a genetic algorithm. However, the focus of
this study is on the automatic recognition of unpleasant animations and the
other factors in the genetic algorithm (explained above) seemed to have a bigger
impact on the speed of improvement and the diversity of the animations.
Therefore, for the final user test, these probabilities were chosen based on
Rooke’s findings, and were not extensively tested and compared with other

possibilities. The probabilities for the final user test were as follows:

e Reproduction: 0.1
e Crossover: 0.45

e Mutation: 0.45

Koza argued that mutation was not necessary since crossover could give similar
results [25]. However, Rooke suggested that certainly when a population
contains relatively many new animations, mutation seemed to work better for
him, while crossover worked better if there were more sophisticated
animations present. Since each new population contains both new animations
and more sophisticated animations from the long-term memory, the
probabilities for crossover and mutation were given equal values. A small
probability of reproduction was kept, despite the fact that the best animations
always get reproduced. This ensures that slightly worse scoring animations can

still reproduce.

3.4.4Reflection

A reflection is done on the requirements of this component. The relevant

requirements for this component are:
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e REQ4:The system should improve the generated animations.
e REQs5: The system should keep on exploring new animations.

e (REQ2:The generated animations should be diverse.)

REQ4

A genetic algorithm is implemented to improve the animations. Genetic
algorithms should, by their nature, improve the phenotypes (animations in this
case) they are working on over time if their settings are chosen right. However,
the implemented algorithm works differently than most conventional genetic
algorithms, mainly because of REQ5. It is unknown what the impact of this
difference is. If the implemented algorithm improves the animations and if so,

how fast, can be seen in the results of the tests, discussed in chapter 4.

REQS5

The implemented genetic algorithm is designed to never stop exploring: a
population is replaced after a certain amount of convergence is met. The way
the convergence is determined is very rough and might not be the best way to
do this. However, the used method still makes sure the algorithm does not keep

on converging on one animation.

REQ?

A method was implemented to remove duplicate animations from each
generation, preventing generations to be mainly filled with the same
animations. This should improve the diversity. However, it is impossible to
maximize diversity; a genetic algorithm needs variations of the same

animations in order to improve the animations.
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3.5 Feedback gathering
The feedback gathering component gathers the feedback for the displayed

animation and stores it, so the animation improvement and filtering
components can use this for their purposes. The design choices of the feedback

interface are discussed here.

3.5.1Scale

The rating scale is important for the feedback you get, as discussed in section
2.2.1. Using the studies in that section, the decision was made to use a five-point
scale to rate the animations. It seems to have a good balance between ease of use
and resolution. A five-point scale is also preferred by people in a study by

Sparling and Sen [19].

However, the filtering component is designed to recognize the worst
animations; those that people genuinely do not want to see. The genetic
algorithm should not use these animations to fill new generations; otherwise
there would still be a chance that this would result in one or more bad
animations in the next generation, which is unwanted. On a scale form one to
five, the ‘one’ rating could be used to recognize the worst animations. However,
a score of one would imply that the animation still would have some amount of
value in the genetic algorithm, while it is essentially thrown out. This could

result in people getting a wrong idea of what a score of one would mean.

This problem can be solved in two ways. The first is making the worst possible
score zero, as this would make clear the animation would have no value in the
algorithm. The other solution is to introduce a separate rating that makes clear
the animation will get thrown out: using a picture of a recycling bin, for
example. This second solution is not used, because it is expected that people
would be hesitant to knowingly throw an animation out, while this is necessary
for the filter to work properly. The other solution can be applied by shifting the
whole rating scale, so it ranges from zero to four, or by adding a separate zero
rating, so the whole scale ranges from zero to five. The difference is mainly in
the resolution that is left for the genetic algorithm to work with, since the ‘zero’
rating is not used in the genetic process itself. The choice was made to not

decrease the resolution of the part of the scale that can be used for the genetic
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process. Therefore, an extra zero rating was added to the five-point scale, to

create a scale reaching from zero to five.

3.5.2Interface
During the development of the system, the feedback was given through the 0-5

number keys on a standard computer keyboard. However, for the user test
another interface was needed, something more sturdy and more attractive to

use.

A box was laser cut which holds six buttons, each with a number engraved
below it. The box also contains a short explanation of what the system does. The
box is connected to the pc through USB and sends the given rating over a
virtual serial port once a button is pressed. The box is filled with little bags of

sand and rubber feet are glued to the bottom to prevent it slipping away when

people push a button. A picture of the box can be found in Figure 12.

Figure 12: The rating box

3.5.3Reflection

A reflection is done on the requirements of this component. The relevant

requirements for this component are:

e REQ3: The system should gather feedback on the animations from users.
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The sub-requirements of this requirement asked for a feedback interface that is
easy to use, allows the user to express their opinion sufficiently and gives the

system enough information to improve and reject animations.

The design choices made are backed up by past studies into different feedback
interfaces, and are expected to fulfil this requirement in terms of the needs of
the user. An interface with big, sturdy physical buttons was made to be inviting
and increase the ease of use. An extra ‘zero’ rating was added to the rating scale
to allow the filtering component to distinguish between the worst animations
and all others, without decreasing the rating resolution used by the genetic
algorithm. This should give the system enough information to perform its task
and fulfil this and the other requirements. However, if the system turns out to
not fulfil all its requirements after testing, the influence the feedback interface

could have on this will not be ignored.
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3.6 Filtering component

This section describes the design and implementation of the filtering

component.

3.6.1Method

The filter consists of two steps: one rejects animations that contain too little

motion, the other rejects animations that are predicted to get a ‘zero’ rating.

Since we have REQI: “The system should generate visibly moving animations.”,
the filter is used to filter animations with too little motion. This is done using
thresholds for different features (explained in section 3.6.2) that tell something
about the motion in an animation. The filter is used for this since it already
extracts these motion features for the second step, thus it can also easily filter

animations with a lack of motion.

If an animation passes this first step (and thus should contain enough motion to
be visibly moving), its aesthetic value to the user is predicted. In section 2.1,
some studies towards human preference in art are discussed. Although some
relations are found, there are no hard numbers that can be used for an
algorithm to make a clear distinction between pleasant and unpleasant art.
Furthermore, the features that are linked to preference are hard to measure:
complexity and ambiguity. However, for animations, things like speed and
predictability were linked to emotions and preference, which are easier to

measure.

Still, the lack of a clear line between pleasant and unpleasant makes it hard to
make this distinction; a simple threshold on some measurable values would not
work. This problem therefore asks for another method to detect this difference:
a method that can use human feedback to learn to recognize the distinction
between unpleasant and pleasant animations. Therefore, a machine learning

algorithm will be used.

This algorithm can make predictions about the rating each animation will
receive. If an animation is predicted to get a low rating, the filter can give that
low rating to the animation instead of the user. This way, the user does not have
to see the animation; the animations get essentially rejected from the system’s

output.
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3.6.2Feature extraction

There are several machine learning methods that can use images as input data
directly, but these are often mainly focussed on pattern recognition.
Recognizing certain features that can predict human preference is a whole
other problem though, it is unknown if a machine learning method could solve
this problem this way. Furthermore, the machine learning algorithm should
also be able to analyse motion in the animations, which means it should also
look at differences between frames, for example. This would make these
machine learning methods very complex to implement. This will get very
complicated while it is still unknown if the algorithms will be able to accurately

predict people’s preference in animations.

Since past studies (discussed in section 2.1) already found some features that are
linked to preference, it would be unnecessary to let the algorithm figure those
relationships out by itself. It would be better to develop a method to extract
relevant features from the animations, and provide the algorithm with only
these features. This will probably increase the accuracy of the filter, while

decreasing the complexity of the machine learning algorithm.

Choice of features

Past studies showed that complexity, ambiguity, colour use, speed, and
predictability of motion can probably be used as indicators for human
preference. Speed of motion and colour use are features that can be extracted
well from the animations. Complexity may be estimated by using the colour
data; an animation that consists of mainly one colour is less complex than an
animation that uses the full colour spectrum. Ambiguity and predictability are

much harder to extract from an animation.

However, some early tests indicated that the lowest rated animations can
probably be already recognized by their colour use and speed of motion. Most
of them were given a low rating because of flickering, fast movements, too little
motion, or a lack of diversity in the used colours (which can also be seen as too
little complexity). Therefore, it was decided to focus on motion and colour use

for the extracted features.
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Motion

To be able to detect motion, several frames of the animation are rendered. The
differences between these rendered frames can then be calculated on a per-
pixel basis and can be used to analyse the motion in the animation. Comparing
two frames results in an image where each pixel’s value is the absolute
difference between the two frames for that pixel. This difference is calculated
using the grayscale versions of the frames, since the colour is analysed
separately and it decreases the time needed to analyse an animation. An

example of some frames and their differences can be found in Figure 13.

It matters greatly which frames are rendered; if they are close together, the
difference will say something about the short-term motion, while if there are
several seconds in between the frames, the difference will say something about
long-term motion. Both options are probably required to get accurate
predictions. In the short-term difference, flickering and fast motion can be
detected, while a lack of motion will be especially well visible in the long-term
difference. The times that are used to render the frames for analysis can be
found in the first column of Table 2. To avoid the case where animations with
periodic movements with the right frequency are invisible for analysis, the
time difference between the long-term frames increases slowly. The difference
between each render time is based on prime numbers. The long-term difference
is determined by comparing the first with the second frame, the second with
the third, etc. The short-term difference is determined by comparing each

frame with a frame 100ms later, as can be seen in Table 2.

Table z: The times used for rendering frames for analysis

First frame (sec) Long-term difference (sec) | Short-term difference (sec)
10.0 10.55 10.1

10.55 I1.2 10.65

I1.2 12.05 11.3

12.05 13 12.15

13 14.15 13.1

14.15 15.6 14.25

15.6 17.15 15.7

17.15 - 17.25
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The difference between two frames could be summarized in one number. For
instance, the average value of all pixels in the difference image. However, it
might be useful to also have the minimum and maximum difference within the
difference images. This will make it possible to distinguish between an
animation where there is a lot of motion in one corner, and an animation where

there is moderate motion on all pixels, for example.

The same goes for the minimum and maximum differences that are found
between all analysed frames. For example: there is a big difference between an
animation where the colour changes from black to full red gradually between 10
and 17.15 seconds, and an animation where the colour changes instantly from
black to full red at the 15 second mark. However, the average difference over the
frames will be the same for both animations. If the maximum and minimum
difference between the frames is also given, the difference between the two
animations can be seen: for the gradually changing animation the minimum is
bigger than 0 and the maximum is small, while for the instant changing

animation the minimum is 0 and the maximum is big.

Therefore, the minimum, average, and maximum differences are calculated

both between and within the difference images. The first tells something about

how the motion is spread over time, the second how it is spread over the 2D
space the animation is rendered in. This results in nine features for motion.
Since this process is done for both long-term and short-term motion, in total 18
features are extracted that tell something about the motion in an animation.

This process is illustrated in Figure 13.
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Figure 13: Example of motion feature extraction

Colour & complexity
To analyse the colours, the frames that are already rendered to calculate the

long-term motion are used. The colours are analysed by their hue, saturation

and brightness values, since this gets close to how humans perceive colour [27].

For each analysed frame, the number of unique colours and unique hue,
saturation and brightness values are counted. Also, the mean and standard
deviation of the hue, saturation and brightness values are retrieved per frame.
For these ten numbers, the average over all frames is calculated. The number of
unique colours and values of hues, saturations and values, and their means give
an idea about colour use. The standard deviations are an estimation of (colour)
complexity; if the standard deviations are big, the range of hue, saturation and
brightness is big and thus the complexity of the animation in terms of colour is

probably high.
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Feature set

These analyses result in a feature set of 29 features: nine for long-term motion,
nine for short-term motion, ten for colour, and one for the average render time
of the frames. This last value can be used to reject animations that would take
too long to render, as there is always a chance that a certain function tree has a
combination of functions that would take several seconds per frame to render,

for example.

All values in the feature set are normalized to fall in the range between zero and

one.

3.6.3Machine learning algorithm

Since the human feedback is subjective, can be inconsistent, and might change
over time, a flexible machine learning method is needed. Also, the exact
relation between the extracted features and human preference is unknown.
Therefore, it seems like a good task for a neural network: neural networks can
learn difficult problems that are hard to put into rules or other conventional
arithmetic methods, can be quite robust against inconsistent input, and can
learn online; it can learn from the same samples it is predicting on. Therefore, a
neural network was implemented to learn which animations to filter from the
system’s output. Since the most important part of the filtering component is to
filter the most unpleasant animations, the implemented neural network is used
to classify animations between animations that receive a ‘zero’ rating and all

other animations.

Neural networks

Since not all readers might know what neural networks are, this will be
explained shortly. Neural networks are inspired by the way brains work. The
network consists of several ‘neurons’, each with several inputs and an output.
Each neuron translates its input values to an output value, often by calculating
a weighted sum of the inputs, where each input has its own weight. A neuron
can ‘learn’ by adjusting these weights based on how its output differs from the
desired output. This ‘error’ of the output of the network is propagated through
the network, so every neuron can adjust its weights. This learning algorithm is
called ‘backpropagation learning’. There are also other algorithms to ‘teach’

neural networks, but that goes beyond the scope of this project. The speed of
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the learning process can be adjusted by modifying the learning rate of the
network. The learning process can also implement ‘momentum’, which means
part of the weight changes done using a learning ‘step’ carry on to the next step,
which can stabilize the learning process when there are big differences between

succeeding samples.

A neural network can consist of several ‘layers’ of neurons, where (often) the
inputs of the neurons in a layer are the outputs of all neurons in the previous
layer. A network always has an output layer with the same number of neurons
as outputs needed from the network. The other layers are called ‘hidden layers’'.
A simple example of a neural network can be found in Figure 14. For overview,
only the outputs of the neurons in the hidden layer, and the weights and output

of the neuron in the output layer are shown here.

Input layer Hidden layer Output layer

Figure 14: Example of a neural network

The implemented network

The implemented neural network uses the features from the feature set directly
as inputs, and has one output, which is a number between zero and one. When
this output value is bigger than 0.5, the animation is classified as an animation
with a rating higher than zero. Otherwise, it is classified as an animation with a

rating of zero.
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Since it is proven that neural networks with one hidden layer can learn any
non-linear function as long as it has sufficient neurons in the hidden layer [28],
the network has only one hidden layer. In this layer, all neurons are connected
to all inputs, and every connection has its own weight. Next to this, each
neuron has an offset value, which can be seen as an extra input (with its own
weight) that always has a value of one. The output of each neuron is a sigmoid
function (Equation 1) of the weighted sum of all inputs (and the offset), and thus
always has a value between zero and one. The neuron in the output layer works
the same and has the outputs of the neurons in the hidden layer as inputs. The
number of neurons in the hidden layer and the alpha value of the sigmoid
function can be varied. Different values for these parameters are tested in

chapter 4.

1
1+ exp[—a(TE, wix; + wo)]

Equation 1: Sigmoid function of neurons. The x variables are the input values, w the weights
(where wo is the offset), and d the amount of inputs. a determines the steepness of the sigmoid
function.

The true class of an animation is determined by the human feedback that is
gathered by the system. This information is used to train the network, using a
backpropagation algorithm with momentum. The learning rate of the network
and the momentum can be varied. An untrained neural network starts with

random weights between -0.01 and 0.01.

This basic setup leaves four parameters that can be varied to create different

neural networks:

e Number of neurons in the hidden layer
e Sigmoid function alpha
e Learning rate

e Momentum

To determine what the differences in performance are between networks with
different values for these parameters, a test was performed, which is described

in section 4.73.
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3.6.4Reflection

A reflection is done on the requirements of this component. The relevant

requirements for this component are:

e REQ6: The system should filter out unpleasant animations.

e (REQi: The system should generate visibly moving animations.)

REQ6

This requirement dictates the main task of this component, and the focus of
this project. The true reflection on this requirement is therefore done by
performing multiple tests in the next chapter, and using the results of these
tests to answer the second research question “What is the performance of the
filtering component in the designed system in terms of precision, recall and F-

score?” in the Conclusion on page 76.

REQ1

The filtering component is used to filter animations that are not (visibly)
moving from its output. Certain rules are used to filter these animations based
on the motion features extracted from each animation. These rules filter all
animations which contain no motion in the analysed sections of the animation.
If these rules also work well for filtering animations that only contain very
subtle (and thus almost invisible) motion, is determined by looking at the
observed reactions of users in Test 1, discussed in section 4.2. The chosen
features are not perfect: if motion is only present outside the rendered frames,
this motion is not visible. Also, since the motion is extracted from the grayscale

images, changes in just the hue value of a pixel are not seen as motion.
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4 Testing
To answer the second research question “What is the performance of the
filtering component in the designed system in terms of precision, recall and F-

score?” adequately, three different tests are performed:

I. Auser testinvolving multiple users who use a system with a pre-trained
neural network, and a system without a neural network.

2. Atest comparing the performance of different neural networks.

3. Atest which investigates how many animations are needed to train a

neural network adequately.

These tests are performed to see how the designed system performs overall,
and to find out how the behaviour and performance of the system changes

when:

I. There are one or more users involved.
2. When the neural networks used in the filtering component differ.

3. When it is trained on a small number of animations.

4.1 Overview

First, an overview is given of the performed tests, and how they relate to each
other. Each test works with one or more sets of animations, annotated with

their rating, hereafter called ‘datasets’. These are also described.

Tests

Three tests are performed, in chronological order:

Test1 A user test with multiple users and a pre-trained neural network.
The first goal of this test is to test the whole system in the way it could be
used in a public setting: with multiple users that are free to interact with the
system as they would like. The second goal is to compare the influence of
the neural network on the system’s behaviour. Two systems are compared:
one with a neural network and one without. Furthermore, the ratings users
give to animations on the system without a neural network are used to

create a dataset which is used for the other two tests.
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Test 2 A test comparing different neural networks.

The goal of this test is to find out the influence of the layout and learning
parameters of the neural network on its learning behaviour and its
performance. This is tested on datasets generated with the ratings of both

one and multiple users.

Test 3 A test with one untrained neural network

The results of the previous test are used to choose the neural network used
for this test. The goal of this test is to find out the minimum number of
animations needed to train a network well enough to be of added value to

the system. The test uses datasets rated both by one and multiple users.

Datasets

To avoid confusing over which test uses which dataset, the three used datasets
(DS1, DSz, DS3) are described here.

DS1  Single user

Dataset 1 was annotated (rated) by myself. It contains 1030 animations, and
is used to train the neural network used in Test 1, as well as for the single-
user dataset of Test 2. The animations in this dataset were generated
randomly, without the use of the genetic algorithm, to increase the diversity
of animation types in this dataset. This was done using the method to fill
new populations for the genetic algorithm, as described in section 3.4.2, but
without a neural network for filtering, or a long-term memory. The relative

distribution of ratings can be found in Figure 15.

DS2  Multiple users

This dataset is the result of the ratings of users on the system without neural
network in Test 1, and is thus annotated by multiple users. It contains 2281
animations. This dataset is used in both Test 2 and Test 3. The relative
distribution of ratings in this dataset can be found in Figure 16. Note that
something went wrong with the rating box in Test 1, causing most ‘one’
ratings to be registered as ‘zero’ ratings. Furthermore, it is clearly visible
that the genetic algorithm with long-term memory produced more high-

rated animations than if the animations are generated randomly like in DS1.
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Figure 16: Relative distribution of ratings in DSz

DS3  Single user

Dataset 3 is not annotated by me, but by a male of 24 years old. It consists of
402 random animations from DSz, re-rated by this person. This was done
this way to make sure the quality of the animations in both DS2 and DS3 is
similar, as these datasets are both used in Test 3. The relative distribution of

ratings in this dataset can be seen in Figure 17.

Furthermore, since the animations were rated in a random order and the

ratings should be rather consistent (as they are all rated by the same
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person), this dataset could be used to see if the genetic algorithm actually

improved the animations over time. This could not be seen in DS2, as the

ratings are always relative to what the users are used to see; a certain

animation might be rated better if the previous animations were bad than if

the previous animations were good. An overall slow improvement over

time would therefore be invisible in that dataset. Therefore, a moving

average (10 samples) of the 402 ratings in DS3, in the genetic order of the

animations, can be seen in Figure 18. There is no clear improvement visible.
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Figure 17: Relative distribution of ratings in DS3
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Figure 18: Moving average (10 samples) of the personal ratings of the animations from

system 2, in genetic order

4.2 Test 1

The first test tests the performance and behaviour of the system in a public

setting involving multiple users, while the neural network is already pre-
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trained before the test begins. This could give an idea of the performance of the
system after operating in such a setting for a longer period of time. This test
also investigates the influence of the neural network on the system’s output.
This is done by comparing a system as it was designed (with a neural network),
with one where the neural network was omitted in the filtering component,

and the filter thus only rejects animations with too little motion.

4.2.1Method
Participants

The participants in this test were not selected, but could approach the
installation freely. Therefore, there is no clear data on these participants.
However, based on observations of the participants and the location of the
setup, it could be said that most participants were between 18 and 25 years old
and studied Creative Technology. However, there were also some (between 5

and 10) older people who used the installation.

Materials & setup

A computer was connected to a 42-inch TV screen with a resolution of
1360x768. Next to the TV was a high table with the rating box as described in

section 3.5.2. A picture of this setup can be found in Figure 19.

The system works as described in the
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Design & Implementation section. The long-term memory was seeded with 47
animations which received a rating of three or higher in DS1. The animations
generated by the system were all stored with their rating, the date and time

they got rated, and if they got rated by a human or not.

A choice had to be made about what neural network to use for this test.
However, at the start of this test, the comparison of different networks (Test 2)
was not performed yet. Since the execution of this comparison takes almost 48
hours to complete (this time is mainly spent on training the different
networks), and there was a limited time to perform this test, it was decided to
do a quick comparison with less networks. This was done using DS1, because it
was the only dataset available at the time. Networks were compared on the
accuracy of their classification. The chosen network had 28 neurons in the
hidden layer, a sigmoid alpha of 2, alearning rate of 0.1, and a momentum of o,

with an accuracy of 86%.

I HEYYOU!

Sogging?

57



Figure 19: The setup of the pre-trained test

Design
For two weeks (ten days, only business days), two different systems were

tested:

e System I: A system which works as described in the Design &
Implementation section.

e System 2: A system which did not use a neural network in its filtering

component, thus only rejecting animations with too little motion.

Initially, the systems were alternated every day. During the last three days, the
system without neural network was tested for two and a half days, and the
other system for the last half day. This was done to make sure each system got a

similar amount of ratings.

Procedure

The setup was located in a place where people would often walk by and it could
be seen well. Participants were passively encouraged to rate these animations
using two posters: one underneath the TV and one in a break room that was

close by. Participants could rate as many animations as they would like.

Animations were shown full screen, and the next animation was automatically
shown after an animation was rated by a user. If the system was generating new
animations, a message would be shown on the screen, telling the user to wait
for a moment while the system generated new animations. Unfortunately, this
did not always work, which resulted in a black screen being shown instead. To
prevent participants walking away if they thought the system stopped working
when this happened, a message was attached to the TV, telling them that a

black screen probably meant the system was generating new animations.

Since the animation rejected by the neural network of system 1 were not shown
to the users, these animations did not get a human rating. Therefore, the
performance of the neural network in terms of precision, recall or F score
cannot be calculated for this system. To get an idea of the performance of the
network in this setting, the same neural network system 1 started with, was fed
the rated animations from system 2 (DS2). This was done in chronological
order, to simulate how the neural network would have behaved on these

animations and ratings. Since all animations in this dataset are rated, this
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simulation could be used to find precision, recall and an F score of the neural

network.

The users and system were observed during the test. No formal method was
used to record their behaviour, although the observations were focussing on

some questions which cannot be directly answered quantitatively:

e Howdiverse are the generated animations?
e What are the main reasons of users to rate an animation a certain way?
e Do users enjoy interacting with the system?

e Isthere a common, shared opinion between users, or does preference

differ?

4.2.2Results

In total 4932 animations were generated; 2482 for system 1 and 2450 for
system 2. System I filtered 529 animations, where system 2 filtered 169. This
means system I got 1953 human ratings, and system 2 got 2281 human ratings.

These numbers and the distribution of human ratings are summarized in Table

3.

Sadly, early in the test something happened with the rating box, so the wires of
the ‘0’ and ‘I’ buttons were not isolated anymore, and touched each other.
Therefore, if participants rated an animation as one, it got recorded as a zero.
The zero and one ratings are therefore combined in the results. This should still
be able to show if the system can filter ‘bad’ animations from its output,

although it is unclear how much zero ratings it rejects compared to one ratings.
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Table 3: Results of the pre-trained test

Neural No neural X2 Significance
network network
(system 1) (system 2)
Animations 2482 2450 - -
Filtered 529 169 210.884 | p < 0.005
animations
Human 1953 2281 - -
ratings
Ratingoor1 470 802 61.620 | p<0.005
go Rating 1 32 I 34.598 | p<0.005
‘é Rating 2 361 368 4.080 p <0.05
g Rating 3 434 390 17.628 | p<0.005
§ Rating 4 364 385 2.237 -
Rating 5 292 335 0.058 -

Human ratings

The relative human rating distributions can be seen in Figure 20. If the neural
network would have no influence on the animations shown to the user, system
1is expected to have the same human rating distribution as system 2. This
hypothesis is tested using a Pearson’s chi-square test, which resulted in a chi-
square value of 96.902 (p < 0.005); the hypothesis can be rejected. This means
there is a significant difference between the relative distribution of ratings of
the two systems. To see how the distributions differ per rating, a chi-square test
was performed for each rating. The results can be seen in Table 3. If the
difference is significant, the significance is given. The biggest difference can be
found in the amount of 0 or I ratings between both systems: system 1 got
significantly less of these, while it got more ratings of 2 and 3. This means the
neural network filtered more ‘bad’ animations than ‘good’ ones; if it would have
filtered randomly (just rejecting an animation by chance) it would have had the

same relative distribution of human ratings as the other system.
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Figure zo: Relative distribution of ratings in the pre-trained test.

Simulated run
The simulated run of the same neural network as used in system 1, on the rated

animations of system 2, resulted in the precision, recalls and F scores presented
in Table 4. For comparison, these numbers were also calculated for the case
where the network would not reject any animation. Note that there is only a
very small difference in F; 3+ score between these two situations; when using
the neural network to filter, the precision is higher, but the cost on recall makes
that the F; 3+ score is still similar. The relative rating distributions of system 1
and the simulation are a bit different: the simulation got more o or 1 ratings, a
bit less 2 and 3 ratings and a bit more 4 and 5 ratings. This can be seen in Figure

21.

Table 4: Precision, recalls and F, score of neural network on animations from system 2.

Filter No rejections
Precision 0.717404 0.648400
Recall 0.844490 I
Recall 3+ 0.864865 I
F, score 3+ 0.78426% 0.786702
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Figure 21: Relative rating distributions of system I and the animations after filtering in the
simulated run

Observations

Not all users used the system in the same way: some users rated one or two
animations while waking by, while others voluntarily used the system for 10-15
minutes. Especially this last group seemed to enjoy it. The system was used
both individually and in small groups. This offered a good opportunity to get an
insight in users’ thinking process while rating the animations, since they would
openly discuss their choices when using the system in groups. This showed that
their tolerance and reasoning for ‘bad’ animations could differ much. Some
users indicated that they did not like the flickering or lack of motion of a certain
animation, but still gave it a high rating because they liked the colour use or a
certain visual element in the animation. Others would give zero ratings to
animations as soon as there was one ‘flash’ in the animation or if they did not
see any movement within the first two seconds, regardless of other elements of

the animation.

Users seemed to love diversity. They often gave higher ratings to animations
which contained motion or visual elements that they did not see before. This
also seemed to be a motivator for people that used the system for longer times;

they liked being surprised by these ‘new’ animations.

There were still animations shown to users that, according to them, contained
too little motion. “It did not move”, was heard multiple times as a reason for a
low rating. This indicates that the rules for filtering animations with too little
motion can be stricter. Furthermore, many animations consisted of a small set

of colours: red, green, blue, yellow, cyan, pink, black and white. This makes
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sense because of the way the animations are rendered, but it shows that
diversity can still be improved. Users also noticed that some of the animations
were variations of previous ones. Often, they assumed that it was the same
animation as they saw before. Some users did not like this and gave low ratings
because they “saw it so often already”. This effect was probably increased by the
reappearance of old animations from the long-term memory (some types of
animations that were already generated at the beginning of the test still

appeared close to the end).

4.3 Test 2

To determine how neural networks with different settings and layouts perform
on filtering the animations the system generates, different neural networks
were trained on two datasets: DS1 is used to test networks on single-user data,

and DS2 to test on multiple-users data.

4.3.1Method
Materials

A training set based on DS1 was constructed by including all animations from
DS1, and then applying a small amount of noise on the features of the
animations to create four more similar versions of each animation. This was
done by adding or subtracting a random value of maximum 5% of the original
value of the feature. This should make the trained networks more robust to
noisy input, since it is expected that animations that have similar features will
also have a similar rating. The final single-user training set therefore contains

5150 animations.

To get a similar amount of animations in the training set based on DS2 as in the
single-user training set, the amount of animations in the set was doubled using
the same method used for the single-user training set. This resulted in a
training set with 4560 animations (two animations were removed to make a fair
division of the training set possible for the k-fold cross-validation). Note that
the dataset itself already contains some similar animations, since it was created

using the genetic algorithm.
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Procedure

For each of the variable parameters that could be varied in the implemented
neural network (as described in section 3.6.3), certain values were chosen to be

tested:

e Number of neurons in hidden layer: 14, 21, 28
e Sigmoid alpha: 1and 2
e Learning rate: 0.1 and 0.01I

¢ Momentum: 0, 0.1 and 0.5

All 36 possible combinations of these values were tested. A k-fold cross-
validation was performed with k = 10 on each network setup. It was made sure
that the earlier created noisy versions of the animations in the training sets,
were not present in the validation sets, or the other way around. For each fold,
the network was trained for 500 epochs, and after each epoch the network was
validated on the validation set. This validation resulted in a precision score and
two different recall scores; the overall recall and the recall of animations which
scored ‘three’ or higher. This was done because the overall recall of a certain
network could be moderate when it misclassifies a lot of animations with a
rating of 1 or 2, while performing much better on the animations scoring
higher. Since the recall is especially important for the higher rated animations
(the generation of good animations can be quite rare), such a network would be
preferred over a network with a good overall recall but a moderate recall on
higher rated animations. These precision and recall scores were combined into
two different F, scores (also one overall and one for animations scoring ‘three’

or higher), so the performance of the networks could be easily compared.

4.3.2 Results

Single user
For overview, only the results of the ten best performing setups are

summarized in Table 5, excluding the overall recall and F, score. All results of
all network setups can be found in Appendix D. If the filter would not filter

anything, the precision would be 0.505, resulting in an F; 3+ score of 0.671.
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Table 5: Top 10 of neural networks trained on DSI, based on their F, 3+ score after training

Network | Learning rate | Momentum | Alpha | Neurons | Precision | Recall 3+ |F, 3+
24 0.01 0.1 I 14 0.746 0.891 0.812
25 0.01 0.1 I 21 0.745 0.891 0.812
18 0.01 (o) I 14 0.745 0.891 0.811
17 0.1 0.5 2 28 0.754 0.878 0.811
20 0.01 o I 28 0.744 0.891 0.811
26 0.01 0.1 I 28 0.743 0.891 0.810
19 0.01 o I 21 0.739 0.891 0.808
1I 0.1 0.1 2 28 0.73%4 0.891 0.805
I 0.1 (o) I 21 0.722 0.891 0.798
8 0.1 0.1 I 28 0.745 0.852 0.795

As can be seen, the F, scores are very close, there does not seem to be a network
that is significantly better than the others, although network 24 also has a
slightly better recall overall (not shown here, see Appendix D). It might be
useful to look at the learning curve of each network, as these can still be
different. The above described results were gathered without keeping track of
the precision and recalls per, therefore a second run was done using the top 10
networks from Table 5. The F, 3+ scores per epoch of this second run are plotted

in Figure 22.

A clear difference is visible between the networks with a learning rate of 0.1 and
the ones with a learning rate of 0.01. The networks with a higher learning rate
reach their highest F, 3+ score after around 100 epochs, after which it decreases
again, probably because of overfitting. The final precision, recall 3+ and F, 3+ of
the networks are listed in Table 6, as they differ from the results of the first run.
Note that the only different condition is the weights the networks are
initialized with, as these are random, which thus can be the only cause of the
differences with the results of the first run. Since the scores of the fast-learning
networks decrease again after around 100 epochs, the maximum seen score
during the learning process is given too in Table 6. Note that these maximum

scores are very similar for all networks.
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Figure 22: F, 5+ score per epoch for the ten best performing networks, trained on DS1

Table 6: Final measures on the znd run of the top 10 networks, trained on DSr1

Max F1 3+

Setup | Precision | Recall 3+ Fr 3+ 2nd run
24 | 0.745452 0.887381 | 0.810248 | 0.811836
25| 0.737464 0.887381 | 0.805507 0.808723
18 | 0.744152 0.887381 0.80948 0.810264
17 0.69876 0.859603% 0.770881 0.81428
20 | 0.745644 0.887381 0.810361 0.810469
26 | 0.739492 0.887381 | 0.806714 0.80969
19 | 0.746756 0.887381 0.811018 0.813355
II | 0.716184 0.872937 0.786829 0.801454
I 0.710118 0.830159 0.765461 0.80178
8| 0.725178 0.847381 0.781531 0.820577

Multiple users

In the case of multiple users, for all networks the precision and recall after each

epoch was stored. The single-user test revealed that taking the final F, 3+ score

might not be the best way to see the potential of each network setup: the

networks with a learning rate of 0.1 all scored lower, while their F, 3+ score

earlier in the learning process was often comparable to the final F; 3+ score of

the slower learning networks. Therefore, the top 10 given here is not selected

on the final F, 3+ score, but on the maximum F, 3+ score reached during the
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learning process. This top 10 and their scores can be found in Table 7. Their

learning curves can be seen in Figure 273. The differences in performance

between the networks are minuscule, also when looking at their learning

curves. Without a filter, the precision of the system would be 0.648, resulting in

anF, 3+

score of 0.787.

Table 7: Top 10 of network setups on the multi-user training set, based on their maximum FI 3+

score while training

Setup | Learning rate | Momentum | ;, | Neurons | Precision | Recall 3+ | F13+ | Max F1 3+
34 0.01 05| 2 21 0.756 0.908 | 0.825 0.826
21 0.01 o| 2 14 0.75% 0.890 | 0.816 0.825
29 0.01 oI| 2 28 0.755 0.898 | 0.820 0.825
14 0.1 05| I 28 0.758 0.895 | 0.820 0.825
33 0.01 05| 2 14 0.757 0.90% | 0.824 0.825
22 0.01 o| 2 21 0.754 0.891 | 0.817 0.825

2 0.1 o| I 28 0.758 0.867 | 0.809 0.825
12 0.1 05| I 14 0.756 0.883 | 0.815 0.824
8 0.1 oI | 1 28 0.754 0.881 | 0.812 0.824
35 0.01 05| 2 28 0.755 0.906 | 0.824 0.824
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Figure 23: FI 3+ score per epoch for the ten best performing network setups on the multi-user

training set
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4.4 Test 3

To see how a system which starts with an untrained neural network would
perform, two tests were done to see what the performance of the filtering
component is when trained on different numbers of animations, and how this

performance differs if the system has multiple users or just one user.

4.4.1 Method
Materials & setup

For the tests with multiple users, DS2 is used to build the training sets. For the

tests with a single user, DS3 is used for the training sets.

The networks used in this all have the same settings as network 8 as it is
presented in the results of Test 2, since that setup seems to learn fast and
reaches a high score on the single user training set. On the multiple user
training set it also performs well, although here the differences between the

setups are much smaller.

Procedure

The network is trained on training sets of 25, 50,100, 200 and 300 animations,
which are expanded to five times their size by adding four versions with noise
for each animation. This was done using the same method as in Test 2. For each
of the training set sizes, ten networks are trained on different parts of the
datasets. Each training consists of 100 epochs. This number is derived from the
learning curves as seen in Figure 22 and Figure 23; in both curves, network 8
seems to reach its best performance after 100 epochs. The animations in the
dataset which are not used in the training set are used to verify the
performance of the trained network. The mean performance of the ten trained

networks is then taken as an estimation of the performance of the network.

4.4.2 Results

The different performance measures per training set size on both DS2 and DS3
can be found in Table 8 and Table 9. Also, for each training set size, the F, score

is given of a system without a neural network.

The neural networks trained on DS2 performed better than a system without a
filter, when trained on 100 or more animations. The improvement of the

system seems to stall when trained on more than 200 animations. However,
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since 300 was the maximum number of animations in the training set, it is not
possible to tell if this stall is local and thus the performance will continue to
increase when trained on more animations, or if the performance will stay

similar.

The neural networks trained on DS73 all perform similar to a system without a
filter, regardless of the size of the training set. However, note that the
performance of a system without a filter is already very high for this dataset,

due to the lack of zero ratings in the dataset.

Table 8: Performance of networks trained on DSz using different sizes for the training set

Training set size | Precision | Recall | Recall 3+ | F13+ | No filter F1 3+
25 0.688 0.803 0.816 | 0.746 0.787
50 0.726 0.786 0.803 | 0.762 0.787
100 0.726 0.850 0.870 | 0.792 0.787
200 0.729 0.884 0.905 | 0.807 0.787
300 0.747 0.843% 0.868 | 0.803 0.787

Table 9: Performance of networks trained on DS3 using different sizes for the training set

Training set size | Precision | Recall | Recall 3+ | F13+ | No filter F1 3+
25 0.876 0.997 0.998 | 0.933% 0.933%
50 0.872 1.000 1.00O | 0.932 0.932
100 0.875 0.991I 0.993 | 0.930 0.932
200 0.878 0.981 0.994 | 0.932 0.932
300 0.881 0.985 1.00O | 0.936 0.932
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5 Discussion

In this chapter, the work of this project is discussed. The design of the system
will be evaluated by looking at the design choices and the limitations of these
choices, as well as the results of the tests and the limitations of the tests
themselves. The design of the system will be discussed using the requirements

stated in section 3.I.

5.1 REQ1

[The system should generate visibly moving animations.]

The animation rendering algorithm was originally designed to generate images,
but it has been modified to output animations. It can still render animations
that are not (visibly) moving, so the filtering component is designed to reject
these animations. However, the features to detect these animations are not

perfect, as discussed in section 5.6.

The filtering component filters all animations which contain no motion. The
results of Test 1 imply that the filter is not strict enough on animations which
contain too little motion; users still said they gave an animation a low rating
because “it did not move”. However, some users would still give these
animations a high rating because they liked certain visual elements in it,
indicating that a lack of motion is sometimes not a “deal breaker” for the user.
Note that none of these observations were a result of interviews, but were
informal observations of the users’ behaviours. Their quotes come from
discussions overheard between them. These observations can therefore not be
used to draw solid conclusions, but can merely serve as indicators of where
problems in the system might be present. This holds for the discussion of all of

these observations, also for the other requirements discussed below.

5.2 REQ2

[The generated animations should be diverse.]

The used rendering algorithm is not bound to shapes and colours. The
generated animations in Test I could be used to see how big the diversity of the
rendered animations is in practice. However, diversity is hard to measure. In
the test the diversity was judged by observing the generated animations
personally. This is of course highly subjective and cannot be used to objectively

measure the diversity. However, these observations suggest that the diversity
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could be improved. The algorithm did not always use the freedom it had in the
colour domain, it seemed to often stick to more primary colours. Also, the
genetic algorithm reduced the diversity; some users were observed giving low
ratings because they already saw certain animations often before. This is
unavoidable, since a genetic algorithm needs several variants of the same
animation to steer towards improvement, but it seems the efforts to minimize
this behaviour were not enough. This conflict between automatic improvement

and diversity is a problem for the suggested system.

5.3 REQ3

[The system should gather Feedback on the animations from users.]

The buttons did seem to invite users to use the system, although this was not
compared with other interface options. None of the users openly complained
about a lack of resolution of the rating scale. However, users were not asked
about this after the test, so it is not clear if the rating scale does indeed give
users enough room for their opinion. The rating scale’s resolution seemed to be
big enough for the system to function, shortcomings of the system did not seem
to originate from a lack of resolution on the rating scale. However, it was not
studied if the ‘zero’ rating meant the same to all users. There might be a
difference in perception, which could result in extra noise on the user feedback

if multiple users are involved.

5.4 REQ4

[The system should improve the generated animations.]

The ratings in dataset DS3 do not show an improvement of the animations, as
can be seen in Figure 18. This lack of improvement could be caused by the
diversity of opinions between the users of the system, as the genetic algorithm
was only tested with multiple users in Test I. It could also be caused by the
modifications of the genetic algorithm compared with conventional genetic
algorithms. Especially the ‘long-term memory’ could have had a significant
impact on this. Animations are never deleted from this memory, so animations
from the start of the evolution process can always be ‘resurrected’ later, putting
a ‘young’ animation in a later stage of the evolution process. Every time this
happens, the genetic algorithm is set back a couple of evolution steps.

Furthermore, the initial seed of this long-term memory in Test I influences the
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genetic algorithm as well, as the genetic algorithm could render good
animations from the beginning of its run. To test improvement properly, it
would be better to start without a seed, or with a smaller probability of using
animations from memory. Also, DS73 contained only a portion of all animations
in DS2, and these animations were rated by one person. This person may have
had a very different opinion than most users of the system, so the data is not

very reliable.

Since the focus of this project is mainly on reducing the number of unpleasant
animations in the system’s output, a lack of improvement is not necessarily a
problem. As long as the system generates enough high-scoring animations to

properly train the neural network, the system can be tested adequately.

5.5 REQ5

[The system should keep on exploring new animations.]

The implemented method to realise this works well enough to satisfy this
requirement; the algorithm continues with different animations after
converging for a while. However, the way convergence is measured is very
rough and can probably be greatly improved. The current method can in theory
leave a population run and converge on for tens of generations, while the

animations do not improve anymore.

5.6 REQ6

[The system should Filter out unpleasant animations.]

This requirement expresses the main focus of this project. A neural network is
used to classify the animations between animations that were predicted to

receive a ‘zero’ rating, and all other ratings.

The features extracted from the animations were designed to be distinctive for
the ‘bad’ animations, focussing on both motion and colour use. These motion
features are not perfect. They are extracted by rendering a limited number of
frames, so if motion occurs outside or only between these frames, it is
‘invisible’ in the motion features. Furthermore, the motion features do not look
at colour, so a change of hue is also invisible in the motion features. The impact
of this is unknown, as the rejected animations were not viewed. However,

observations of the animations the system generated before the filtering
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component was implemented, suggest that the probability of animations that

would be misclassified for these reasons is low.

The first results of Test 1 show that the filter, in combination with the rest of
the system, did filter the ‘bad’ animations: when the neural network was in use,
there were significantly less o or 1 ratings. When the neural network was tested
on the data of the other system, it showed indeed an improvement in precision,
but at a cost on recall: the network also rejected 10% of the good animations.
Since the system can easily generate more animations, the precision is more
important than recall in this case: losing 10% of the high-rated animations is
not noticed by the user. Recall will only become a problem if it gets so low that
it is noticeable in the speed at which the system generates new populations and
generations; if only 5% of the good animations would pass the filter, this

process would take around 20 times as much time.

The precision in Test 1 is found to be better than if the system would just accept
all animations, so the neural network does seem to filter on features that belong
to ‘bad’ animations. However, around 29% of the animations that passed the
filter still got a low rating from the users, which in this case means it got either
a ‘zero’ or ‘one’ rating. Without a filter, around 35% of the shown animations
are low-rated. Note that these results do not talk about the performance of the
neural network during the test itself, as this could not be measured. This were
the results of a simulated run on DS2, so the real performance might be slightly
different. Also, it is important to keep in mind that the long-term memory was
seeded by animations from DS1, while the neural network was trained on this
same dataset. Therefore, the neural network could have scored better on
performance than it would have done in a system with other animations in the

long-term memory.

In the other tests the precision got to around 0.75, meaning around 25% of the
animations passing the filter were considered ‘bad’ by the users. Only the
neural networks trained on DS3 got a higher precision, but the filter did not
perform better than not filtering at all; this dataset contains few zero-rated

animations by itself.

Test 2 showed that only the learning rate seemed to matter in the performance;

varying other parameters of the neural network always resulted in a similar
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performance in terms of the F, 3+ score. When trained on the dataset from
multiple users (DS2), even the learning rate did not seem to matter much, and
all networks seemed to learn faster on DS2 than on DS1. This difference in
learning speed is striking. The main differences between the two datasets are

the following:

I. DSI1gotrated by one person, DS2 by multiple.

2. DSi1was filled with random animations, DS2 got filled with animations
using a genetic algorithm.

3. DS2 got most ‘one’ ratings grouped together with the ‘zero’ ratings by

accident.

The first difference could not explain the difference in learning rate; if
anything, the networks would be expected to learn faster on DS1, since the
ratings in that dataset are expected to be more consistent. The second
difference could have an influence, since this caused DS2 to contain far more
animations with high ratings, making it ‘easier’ for the networks to learn the
difference between high-rated and low-rated animations. The third difference
could also have some influence, since animations rated with ‘one’ can contain
elements that normally would cause it to be rated ‘zero’, but other elements
make that the user thinks it is still worth more than that; there is a grey area
between the two rating options. This could disturb the learning process: if some
‘good’ animations (anything above a ‘zero’ rating, for the network) have
elements normally found in ‘zero’ rated animations, the learned link between
these elements and low-rated animations gets weaker. In DS2 this grey area
between ‘zero’ and ‘one’ is gone, since they both got recorded as ‘zero’,
improving the links between bad elements and bad animations. There is of
course such a grey area between all neighbouring ratings, so in DS2 the grey
area which influences the learning process is between ‘one’ and ‘two’ instead.
This grey area might be smaller than between ‘zero’ and ‘one’, causing an
increase in learning speed on this dataset. However, this cannot be proven with

these results, it is merely a suggested theory.

Test 3 showed that when trained on animations from DS2, using only 50
animations already brings the precision close to the 0.75 that is seen often
during other tests using much bigger training sets. Using 100 or more brings

the F, 3+ score to the same level or higher than the F; 3+ score the system would
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have without a neural network. This indicates that an untrained system can

probably be tailored quite fast to the tastes of new user(s) by letting those users
first rate 50-100 animations, and then training on those animations. However,
this is only based on the results of one dataset; other datasets might yield other
results. DS3 proved to be a difficult dataset to train on, probably because of the

few zero-rated animations in that dataset.
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6 Conclusion

During this project, a system was designed based on RQ1: “How to design a
system that generates a vast diversity of abstract animations, while minimizing
the amount of unpleasant animations in its output?”. This question was

translated into six requirements for the system:

—

The system should generate visibly moving animations.

The generated animations should be diverse.

The system should gather feedback on the animations from users.
The system should improve the generated animations.

The system should keep on exploring new animations.

SR NV N

The system should filter out unpleasant animations.

The system can generate animations, although it sometimes still generates
animations in which users do not observe the motion. However, users did not
always see this as a bad thing, indicating that requirement 1 could be a bit too
strict. The diversity between animations is quite big, but the diversity in colour
use seems to be lacking, and the impact of the genetic algorithm on the
diversity is not to be ignored, as users notice this and may get bored of seeing a
lot of variations of the same animation. Observations of users suggest the
feedback method fulfils its goal: users seem to like the interaction with the
system, the interface gives the system enough information to work with, and
the six rating options seem to satisfy the users’ needs. The test data indicates
that the genetic algorithm that was developed to improve the animations did
not work well: there was no clear improvement seen in the animations.
However, there are multiple reasons that could be the cause of the lack of
improvement, also in the setup of the user test, which makes it impossible to
draw clear conclusions from this data. On the other hand, the genetic algorithm
was successful in exploring new animations, even with a rough measure for

convergence.

The filter of the system was the main focus of this project. The question RQ2:
“What is the performance of the filtering component in the designed system in
terms of precision, recall and F-score?” summarizes the evaluation of this part
of the system. The different tests showed that the filter does indeed filter bad
animations from the output, while keeping most good animations. However,
the expected precision is around 0.75, meaning that I in 4 animations are still
considered unpleasant. The recall scores of animations rated ‘three’ or higher

on the scale from 0-5 are in the range of 0.8-0.9, resulting in F, 3+scores (the F,
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score based on the recall of animations scoring ‘three’ or higher) around 0.8.
This F, 3+ score is not always much higher than it would have been in a system
without any filter. However, the precision is the most important number in this
case, since that is what the user will actually notice. The precision was always
higher than the ‘precision’ of a system without a filter, which was on average

around 0.66: around I in 3 animations was considered unpleasant.

Overall, this project showed that it is possible to design and develop a system
which generates diverse abstract animations, guided by feedback from users. It
can also, to a certain extent, filter unpleasant animations from its own output,
increasing the mean quality of the animations it generates. This results in a
relative high number of ‘good’ animations, considering computers have no
concept of beauty by themselves, and the vast majority of possible animations
are often considered ‘bad’ by users (as can be seen in the rating distribution of
DS1in Figure 15). The performed tests also showed that the system can be

further improved on multiple points.
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7 Future work and suggestions

The design process and test results show that there is still a lot of potential for
interesting studies towards a system like the one realised here. This will be
discussed here per component of the system. Also, suggestions are made for

interesting points of improvement or adaptations for the developed system.

7.1 Animation generation algorithm

The implemented algorithm already does a good job at generating a diverse set
of animations. However, Rooke showed that even more interesting images can
be generated by adding fractal algorithms to the function set, for example. [24]
It might be interesting to explore other visually interesting algorithms and
adding those to the function set. Also, the currently generated animations often
consist of basic colours, since the used functions work on the RGB values of
each pixel. To improve the colour diversity, colour maps can be used, like
Rooke did.

It might also prove worthy to explore how this algorithm can be used to create
interactive animations; the same way the TIME variable is used now, variables
like sound level or the x and y coordinates of a finger on a touch screen can be

used to make the animation respond to its environment.

An observation during the various tests was that animations with iterative
functions systems were often not part of the shown animations. This might be
because the function needs a lot of arguments, and some of those quickly move
the result of the IFS to a black or white image. This makes the potential motion
in the animation invisible, causing it to be rejected. It might be better to make
sure the arguments that are sensitive for causing this are kept within certain

bounds.

7.2 Animation improvement

The implemented genetic algorithm did not seem to improve the animations
over time. There are a lot of reasons why this could happen, since the
implemented genetic algorithm differs a lot from a conventional genetic
algorithm, and the setup of the user test was not ideal for testing this.
Therefore, it is probably best to do a separate study towards a genetic
algorithm, or maybe other methods, that can improve the animations

generated by this system, while also keeping the animations diverse. Another
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option is to leave the improvement out completely: this would also increase the
diversity of the animations. However, this requires a filter with a high
precision, and a system that can analyse animations fast enough so the
generation of animations does not take too much time, as a lot will be directly
rejected (see the rating distribution of DS1 in Figure 15, which was generated

without the use of a genetic algorithm).

The long-term memory never deleted older animations, impacting diversity
and the genetic process. It might be better to limit the size of this memory,

deleting old animations when new ones come in.

This project only looked at the animations generated by the system, but it
would be very interesting to see if its animations can reach a similar quality as

animations designed by human artists.

7.3 Filtering

Most neural networks that were tested showed some improvement over a
system without a neural network, but the differences are small. Although these
differences get bigger over time if a genetic algorithm gets involved, there is
still lots of room for improvement. A future study could give more insights in
how this could be improved. This project already found some possible room for

improvement:

e The currently used features could be further improved or expanded;
there are probably other features that influence the preference of users,
that are currently not used. A study towards what people dislike about
the animations that ‘slip through’ the filter might shed more light on
this.

e The network could filter both ‘zero’ and ‘one’ ratings, while an
animation rated by a human as ‘one’ is still used by the genetic
algorithm. This is expected to improve the performance of the filter,
since it deals with the grey area between the ‘zero’ and ‘one’ ratings: it is
then probably more likely that a one-rated animation slips through the
filter than a zero-rated animation, which is not a big problem. The
network can also be made to numerically predict the rating, which
should also deal with the grey area. It would be interesting to see how

such a filter performs.
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It might also be a good idea, since the user ratings are often relative to
what the user has seen before, to use the previous ten or twenty ratings
as input to the neural network to get more accurate predictions.

This project used a relatively simple neural network working with
extracted features, but maybe other methods can perform better: a
neural network analysing the animations directly (using the pixel
value’s as input), for example.

The learning process of the neural network can also be changed. There
exist other learn algorithms for neural networks, and there are multiple
modifications that can be done to the used back-propagation algorithm;

a dynamic learning rate or a method to detect overfitting, for example.
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ABSTRACT

This study tries to find the aesthetic preference of people
about animated art. These preferences can be found in
terms of complexity and meaningfulness of the art, colour,
and speed or predictability of the animation. This study
uses an online survey to find out preferences for animated
art in terms of speed, predictability and blurriness by show-
ing eight different animations and asking for a rating on
preference. Musical taste is also considered as a predictor of
visual preference. Slow moving, predictable and non-blurred
animated art are found to be preferred. Musical taste does
not have any correlation with visual preference. The time
people watched the animations is positively correlated with
preference rating, especially for the first animation people
saw; when they were not biased by already having seen sim-
ilar animations. These results can be used in an algorithm
generating animated art to discard animations with a low
chance of being aesthetically pleasing to humans.

CCS Concepts

eApplied computing — Media arts; eHuman-centered
computing — Empirical studies in HCI;

Keywords

Generative art; Abstract animation; Perception of motion;
Computational Intelligence; Machine Intelligence

1. INTRODUCTION

Generative art, the type of art that is a result of some
computer program being left to run by itself, with mini-
mal or zero interference from a human being [3], is often
guided by the creator of the algorithm by using rules and
constraints that keep the different parameters of the gener-
ative algorithm within certain bounds. This makes sense,
since without those rules the generated art tends to be com-
pletely random, which is not very interesting or pleasing to
look at. The creator of the algorithm, also called the artist®,
uses these rules and constraints to influence the generated
artwork(s) and thus makes sure the artwork will look a cer-
tain way. The goal is often to make the artwork interest-
ing or pleasing to look at and engage the viewer. Basically

'For the moment ignoring the interesting discussion about
who the actual artist is in case of generative art. The cre-
ator of the algorithm will be referred to as the artist in this
paper. More about this discussion can be read in an article
by Boden [2].

all generative art up to now has this human influence from
the artist that made the algorithm. AARON, an algorithm
made by Harold Cohen, got very close to eliminating the
role of a human artist in the process of generating art, at
least it looks like it in the output. Every painting it gener-
ates can look much different than the previous one and no
human is involved in the generation process itself. However,
it is still rule-based; Harold Cohen programmed all the rules
and constraints of the parameters that generate the art. It
is just that Cohen worked for so long on the algorithm that
this rule-based system got very complex, giving the result-
ing art a very high diversity. Furthermore, Cohen himself
decided in the end which artworks to print and exhibit. [5]
[4].

If an algorithm would create art independently — without
the need of an artist creating rules and constraints or mak-
ing a selection of the generated art it would need to be
able to do the same as the artist does when creating these
rules and selections. You could say that it would be more
like an artificial artist than a generative artwork that way.
Since a computer can quickly generate a lot of different sets
of parameters for its generative algorithm, restricting the
output is a simple necessity for most algorithms. Automati-
cally selecting the parameter sets that create 'good’ art is a
difficult design problem though and algorithms like Cohen’s
AARON do not seem to select at all; the first 'idea’ results
in an output. In the case of AARON, Cohen makes this se-
lection after the generation took place. A human artist like
Cohen has experience with past artworks he made, a per-
sonal preference, a certain intuition on what works or not
and what people would like, and more subtle criteria he uses
to select an idea. A computer has none of these things by
default, so it would need other (maybe even similar) ways
of selecting the 'right’ parameters sets for the generative al-
gorithm. The goal of this study is to find basic criteria to
form an ’intuition’ for an algorithm on which parameter sets
will result in aesthetically pleasing art. These criteria will
be mainly based on what people would (dis)like to see.

The criteria may depend on what kind of art the algorithm
will generate. This study will use abstract animated 2D
visual art for three different reasons:

1. Abstract and 2D art since it is simple to generate us-
ing an algorithm, and it is used most often in existing
animated art installations, so will be most relevant.

2. Animated art since the time element introduces some
parameters like speed, acceleration and predictability



that are easy to manipulate and have a big influence
on the resulting artwork.

3. Visual art because although generating music would
also qualify using the previous two arguments, the rel-
evance of visual art is much higher towards art in-
stallations using LEDs and screens, which are rapidly
increasing in popularity.

Unique aspects of animated visual art are factors like
speed, predictability, colour and complexity. This study will
focus on finding out what people prefer to see in terms of
these factors. For example: do they prefer slow or fast move-
ments?

2. RELATED WORK

Numerous studies already tried to answer the question of
how people perceive art and what influences their preference.
These can be grouped by where the factors influencing pref-
erence are found; in the (visual) art itself or the personalities
of the observers. There are also numerous studies focusing
on music.

2.1 Art

Several studies found that the complexity of generated im-
ages correlated with subjects’ preferences of the images [18]
[23] [6]. These studies used random polygons that differed in
the amount of sides (more sides were interpreted as a higher
complexity of the polygon), or visuals made by a random
walk (where the length of the walk was interpreted as the
complexity of the visual). Participants were asked which vi-
suals they preferred. The results suggested that people have
a preferred amount of complexity; preference increased with
complexity up to a certain point, after which preference de-
creased again. Later studies used non-representational art
instead of generated images. These studies used a small
panel of participants to judge the complexity of each art-
work. Results showed that preference increased with com-
plexity, but did not find a very clear decrease of preference
at the highest complexity ratings. It was suggested that this
might be because the artworks with the highest complexity
were simply not complex enough, which made it not possi-
ble to notice this effect [19] [24]. The latter study also found
that the complexity of artworks positively correlates with
the amount of times subjects would look at the artworks.
This was to be expected since there are more visual stim-
uli in the artwork, so it would take more time to process
everything visually.

Although studies using generated random polygons seemed
to find a clear relation between complexity and preference,
a study by Martindale found a different relation (a mono-
tonic function instead of an inverted-U function) when the
test circumstances were slightly changed [17]. They argued
that the shape of the polygons did probably not just measure
complexity but also other variables. Further experiments in-
dicated that meaningfulness had a bigger influence on pref-
erence than complexity. Meaningfulness is interpreted here
as how strong of a mental connection a viewer of the art can
make to concepts he knows. For example: a cloud that looks
like a cat is probably more meaningful to a viewer than a
cloud with a much more random shape.

However, there is also ambiguity in art, which can be
described as how many things a viewer might see in art.

This makes that meaningfulness and ambiguity are quite re-
lated in terms of art. Most artworks with a high ambiguity
will have a low meaningfulness and vice versa. Speaking
in cloud’s terms again: the cat-shaped cloud has a higher
meaningfulness but at the same time is less ambiguous to a
viewer since the similarity to a cat predominates other in-
terpretations of the shape. The random-shaped cloud prob-
ably has a higher ambiguity since it is easier to see multi-
ple similarities to known shapes in it, but these similarities
are less strong and thus the cloud has a lower meaningful-
ness. Similar to complexity, research was done on a rela-
tion between ambiguity and preference in art. Jakesch and
Leder performed a study that showed that subject’s prefer-
ence and interest towards artworks was highest for artworks
with a medium amount of ambiguity [14]. Both artworks
with higher and lower ambiguity were rated significantly
lower on both interestingness and preference. This shows
that there is probably a preferred level of ambiguity in art.

Several studies found a link between preference and colour.
Ambiguity and liking ratings were found to be higher for
coloured artworks compared to grayscale artworks [14]. Fur-
thermore, the more prototypical colours were, the higher the
preference was found for those colours [16] [17]. This might
indicate that artworks using prototypical colours are pre-
ferred over artworks using less prototypical colours.

The type of art also seems to matter. Vartanian and Goel
found that representational art was preferred over abstract
art [22]. Another interesting find in their study was that
normal artworks were preferred over filtered (blurred) art-
works. This might be linked to earlier found correlations be-
tween preference, complexity and meaningfulness; a blurred
artwork will lose complexity and meaning.

A study by Bartram and Nakatani on how motion is per-
ceived showed that motion features like fast speed, an an-
gular movement shape (vs. curvy), obtuse angles and NOT
smooth motion were associated with negative terms such as
angry, painful, threatening, disgust, rejecting, urgent, fear,
and annoying [1]. Features like slow speed and a curvy mo-
tion shape were associated with calm terms such as reas-
suring, calming, unimportant, relax, boring, and relieved.
This indicates that fast motion, motion that changes direc-
tion abruptly and jerky motion might not be preferred by
people.

2.2 Personality

A lot of research has been done towards how taste in art
differs between people and what causes these taste differ-
ences. This section will discuss these studies. There are
different measures of personality that were found to influ-
ence people’s preferences in art. Both the Sensation Seeking
Scale and the 'Big Five’ are used often.

2.2.1 Sensation Seeking

Sensation seeking is measured using the Sensation Seek-
ing Scale (SSS) and generally includes four subscales: "Thrill
& Adventure Seeking’ (TAS), 'Disinhibition’ (Dis), "Experi-
ence Seeking’ (ES) and 'Boredom Susceptibility’ (BS). Sen-
sation seekers were found to prefer abstract art [11] [12], sur-
real paintings [10], pop-art [12], and tension evoking paint-
ings, while being more tolerant of ambiguity in style than
low sensation seekers [25]. The ES subscale was found to be
the most significant subscale for some of these findings [11]
[10]. A study using the same randomly generated polygons



as Munsinger and Kessen used in their earlier mentioned
research [18] found that sensation seeking correlates with a
preference for higher complexity in these figures [20].

2.2.2 The Big Five

The 'Big Five' dimensions of personality originate in the
NEO Five Factor Inventory: Neuroticism, Extraversion, Open-
ness to Experience, Agrecableness and Conscientiousness.
This measure was used less than the Sensation Seeking Scale
to find relations between personality and art preference. Re-
sults differ between studies [10][12][9], but the one personal-
ity dimension with clearest and most consistent results seems
to be 'Openness to experience’. People with a high open-
ness tended to prefer both abstract, pop and representa-
tional art [12] more, which was very similar to the relation
between sensation seeking and art preference in the same
study [12]. Feist and Brady even concluded that Openness
and the Experience Seeking subscale of the SSS appeared to
be measuring much the same thing, and combined the two
measures [9]. They found that this combination of measures
correlated with a preference in art in general. The difference
in preference between people scoring high and low on this
measure got bigger towards abstract art (from realistic to
ambiguous to abstract).

2.3 Music

Previous mentioned studies in this section looked mainly
at static visual art. Animated art would introduce an ex-
tra dimension — time —, which can also be found in music.
Characteristics such as speed and predictability have a great
influence on the type of music and a big subject in existing
research is to find out more about the link between person-
ality, mood and preference in certain types of music.

Sensation seekers appear to like "hard’ music such as hard
rock and techno and dislike 'soft-popular’ music such as soft
rock and easy listening [20]. Another study had the more
general conclusion that sensation seekers tend to prefer more
complex music [15]. It is notable that also for visual art a
preference for more complexity was found in sensation seek-
aers.

Just like with visual art the subscale 'Openness to Expe-
rience’ of the Big Five seems to have the highest correla-
tions with musical taste. Dunn, Ruiter and Bouwhuis did
a quick review of four different studies on the relations be-
tween Openness to Experience and preference in music [8].
This review showed that the common correlations found in
these studies were between Openness to Experience and Re-
flective & Complex music such as blues, classie, folk and
jazz, and Intense & Rebellious music such as alternative,
heavy metal and rock [21] [7] [13] [26]. Dunn, Ruiter and
Bouwhuis only found a correlation between openness and
a preference for jazz. However, they argued that the am-
biguous nature of genre labels makes it very difficult to find
robust correlations between musical genres and i.e. person-
ality and demographics.

3. METHOD

An online survey was designed to find what elements that
are unique in animated art influence how much people like
the art.

3.1 Design

The unique aspects of movement are all time-based as-
pects. The survey focused on two of these: speed and pre-
dictability. Additionally, the survey also looked at the in-
fluence of the introduction of a blur filter to make the an-
imations ‘softer’. Since related studies (see section Related
Work) found a clear preference for a moderate level of com-
plexity, and the motion of the animations in a sense already
is a form of complexity, it is to be expected that for other
factors in the animation a lower amount of complexity will
be preferred. Therefore there are three hypotheses related
to speed, predictability and blur:

H1 Low speed will be preferred over high speed.

H2 High predictability will be preferred over low predictabil-
ity.

H3 Blur will be preferred over no blur.

Since there are always taste differences between people, it
could be possible that no overall preference could be found
while in certain subgroups of people there would be an actual
preference present. Previous research found a link between
personality and visual preference as well as personality and
musical preference, so musical preference might be an in-
direct predictor of visual preference. Also, since music is
time-based as well, some features of music might directly
relate to similar features in animations. These were both
reasons to include musical preference in this study as well.
There were two more hypotheses related to this:

H4 People who prefer faster music also prefer faster motion.
H5 People who prefer unpredictable music also prefer un-
predictable motion.

3.2 Materials & procedure
3.2.1 Survey

An online survey was constructed, distributed and pro-
moted online. Participants were asked to complete the sur-
vey on a reliable internet connection to make sure the ani-
mations loaded as fast as possible. They were told they did
not have to watch each animation till its end, but instead
watch it as long as they wanted before continuing with the
survey. These instructions were given on the first page of the
survey. After this initial page, eight animations were shown
in a random order, one at a time. After each animation the
participants were asked to indicate on a scale from one to
five how much they liked the animation, where one was the
lowest score. Every animation and question was shown on a
separate page. Additionally, the time each participant spent
on each page was recorded.

After having viewed and judged the animations, partici-
pants were asked to write down three of their most favourite
songs that represented the range of music they were inter-
ested in. For example, if they would like rock, pop and
classical music, they were asked to write down one of their
favourite songs for each genre. This was seen as a better
method than asking for their favourite music genres, since
asking for genres seemed to lack accuracy and would have
been greatly dependent on individual perceptions of those
genres. For instance, within the genre of rock there is fast
rock and slow rock, hard rock and soft rock, and within those
subgenres there are still thousands of artists and bands with
a great variety of musical style. How participants would an-
swer the question would greatly depend on how they person-
ally classify their musical taste. Furthermore, characteristics



Figure 1: A screenshot of the animation with low speed, high
predictability and no filter.

of music that directly relate to characteristics of animated
art such as speed and predictability, could be compared di-
rectly by analyzing the songs. This would have been much
more difficult if participants only chose a genre they liked.

At the end of the survey, participants were asked for their
gender, age and field of study and thanked for their partici-
pation.

3.2.2  Animations

The animations had to be abstract, 2D and very simple,
to make sure they would not evoke unwanted associations in
the participants’ minds that could influence their judgments.
The concept of six lines rotating around the middle of the
screen was chosen as a good option for this. Each line had a
different colour, where the hue was chosen randomly for each
line, but consistent through all variations of the animation.
The saturation and brightness were at their maximum for
all lines. The background was black to increase contrast.
Since just having moving lines would leave a large portion
of the screen black, each line was designed to leave a trail
that would slowly fade to black. A sample of this can be
seen in Figure 1.

The behavior of each line was determined by a formula
for its angular velocity. This formula consisted of a sum
of two sines and two cosines, each having a weight of 0.25.
Each sine/cosine looked like this: sin(plcxt). The variable
pl was a parameter that was random and unique for each
sine/cosine and this made that each line would have differ-
ent and somewhat random behavior. The variable ¢ had the
same value for each sine/cosine and for each line. Increas-
ing this would result in less predictable (so more chaotic)
behavior since the angular velocity would change faster and
switeh direction more often. The speed of the lines was mod-
ified by multiplying the resulting angular velocity by a global
speed value. To have a manner of changing the complexity
and 'hardness’ of the animation, a filter was implemented
to be able to blur the resulting animation. Since the back-
ground was black, blurring the animation also decreased the
brightness of the lines. The brightness levels of the blurred
animations were adjusted such that the brightness of the
brightest point matched the brightness of that same point
in the non-blurred version of the animations. The effect of
the blur filter can be seen in Figure 2.

The resulting animation could be adjusted on three points:
speed, predictability and blurriness. For both speed and
chaos a low and high value was chosen (for speed two and

Figure 2: The same screenshot as seen in Figure 1, but with the
blur filter applied.

Figure 3: A higher speed results in frames that are more 'filled’
and complex.

ten, for chaos one and ten). All combinations of low and high
values and having a filter or not were rendered, resulting in
eight variations of the animation with a length of 60 seconds.
The links to these animations can be found in Appendix 77.
The title of the videos also codes the values used for the
speed and chaos variables; the first number is the speed
value, the second number the chaos value.

Changing the variables changed more than just what the
variables were designed for. For instance, when the speed
was increased, the trails of each line would also be more
spread out, resulting in each frame being more filled; the
coloured lines were more distributed across the screen. This
could be seen as increasing complexity too. What such a
frame looked like can be seen in Figure 3. Decreasing the
predictability resulted in lines changing direction more often,
reducing the total distance each line traveled too. Combin-
ing this with a low speed resulted in the lines 'wiggling’ on
their place instead of rotating. Adding high speed resulted
in a highly chaotic and complex animation. Having a blur
filter decreased this complexity and chaos somewhat since
separate trails that were close together were fused, creating
a gradient from one line to the next instead of a densely
packed area of separate lines. This effect can be seen in
Figure 4.

The animations were uploaded to YouTube to be able to
embed them in the online survey, which introduced compres-
sion on the video files. The compression on the videos made
individual lines somewhat harder to see, also on the highest
possible quality settings. To reduce this loss of sharpness



Figure 4: Blurred version of Figure 3. Blurring fuses trails that
are close together, reducing complexity.

Figure 5: Quality loss due to YouTube compression.

and quality as much as possible, the animations were set
to always play on the highest quality setting (720p). The
quality loss can be seen in Figure 5.

3.3 Music Analysis

The three songs submitted by each participant needed
to be converted into measures that could actually be used
for analysis. Two measures were extracted from each song:
tempo in beats per minute, and predictability on a scale
from one to ten. This was done by the student researcher
himself.

3.3.1 Tempo

Tempo was determined by manually ‘ticking’ the beats
on an online BPM measure tool.? If there was any doubt if
the actual BPM was half or double the measured BPM (for
very slow or fast songs), an attempt was made to find sheet
music of the particular song, which often reports the tempo
at the top of the first page. If that attempt failed, the song
was linked to similar music to get an idea in what range the
tempo needed to be. For songs that changed tempo during
the song the average tempo of the song was used.

3.3.2 Predictability

The predictability was also determined manually and was
mainly based on the repetitiveness inside the song. Since a
lot of the songs were well-known, any bias because the re-
searcher already knew the song (making it easier to predict)
were to be minimized as much as possible. This was done

Zhttp: / /www.all8.com/tools/bpm.htm

by basing the predictability on the repetitiveness of three
different parts of the song: the rhythm, the melody and the
lyrics, and initially looking at the spectrogram of the song
instead of just listening to it. Examples of spectrograms can
be seen in Figure 6.

The rhythm was often dietated by the drums. The more
different drum patterns were used and/or the more tempo
changes were heard (or seen in the spectrogram), the lower
the predictability grade of the song. If there were no drums
present, the instrument that mainly dictated the tempo of
the song was used as an alternative. The melody was graded
in a similar manual way. The main melody was analyzed on
repetitive parts and the more unique parts were found in
the melody, the lower the predictability of the melody. This
was also rated on a scale from one to ten.

The lyrics were analyzed using a script that counted unique
words and sentences. The amount of unique words was di-
vided by the total amount of words and multiplied by ten.
The same was done for each sentence; the amount of unique
sentences was divided by the total amount of sentences and
multiplied by ten. Ten minus the average of these two num-
bers was taken as a measure of predictability for the lyrics.

The overall predictability measure was the mean of the
three separate grades for rhythm, melody and lyrics. This
overall predictability measure was used in the analysis of the
results.

3.4 Participants

Of the 85 participants that participated in the survey, 56
completed the survey completely. Of these participants, 33
were male. Age ranged from 17 to 60, with the majority
(T1%) being between 20 and 26 years old. Most of the par-
ticipants in this majority were students at the University of
Twente who had a technical background.

Eleven participants who did not finish the full survey did
still finish the rating of the animations. These cases were
added to the data set for the results that depended exclu-
sively on this data. Participants that were probably dis-
tracted during the questionnaire were excluded. This was
determined based on the time they spent on an animation
page: if this exceeded 65 seconds for at least one animation,
the full case was excluded. Participants who did not read
instructions and watched every animation till its end were
also excluded. This could be detected since the time they
spent on an animation page was more than 60 seconds for
every animation. Thirteen cases in total were excluded, re-
sulting in a data set for the rating-dependent results of 54
cases.

For the results that depended on the music data, cases
where it was not clear which song the participant meant
were excluded. This could be because they only noted the
song’s title, they wrote down an album title instead of a song
title, or they only reported genres. After these exclusions
the data set for the music-dependent results consisted of 41
cases.

4. RESULTS

For each condition for speed, predictability and blur, there
were four animations with that condition. For each possible
condition, the mean rating of those animations was calcu-
lated for each participant, resulting in mean ratings for slow,
fast, predictable, unpredictable, blurred and non-blurred an-
imations. Paired t-tests were conducted on the condition



Figure 6: Spectrograms of two songs. The top got a high predictability rating (Daft Punk - Around the World), the bottom got a low

predictability rating (Queen - Bohemian Rhapsody)

pairs [slow - fast], [predictable - unpredictable| and [blur
no blur] with the preference rating as dependent variable.
These results can be seen in Table 77. There was a sig-
nificant difference between slow and fast, predictable and
unpredictable, and non-blurred and blurred animations (p
< .01). The same procedure was used on the time partic-
ipants watched each animation. Watch times for slow and
predictable animations were significantly longer than for fast
and unpredictable animations (p < .01). These results can
be seen in Table 77.

Factor Low | High A
Speed 291 | 2.38 | 4.46%*
Predictability | 2.38 | 2.91 | -7.10%*
Blur 2,76 | 2.52 | 2.88%

Table 1: Means of preferences and t-factor per factor. *p < .01.
**p < .005.

Factor Low | High T
Speed 15.41 | 13.46 | 2.84%
Predictability | 13.58 | 15.29 | -2.74*
Blur 14.91 | 13.96 | 1.24

Table 2: Means of watch times and t-factor per factor. *p <
.01.

To further explore the relation between blur and prefer-
ence, multiple paired t-tests were conducted on each anima-
tion pair where speed and predictability were constant but
the blur differed. There was a significant difference in pref-
erence rating for the animations with low speed and high
predictability with blur (M = 2.93, SD = 1.01) and without
blur (M = 3.63, SD = .81). This was also the case for the
animations with low speed and low predictability with blur
(M = 2.28, SD = .96) and without blur (M = 2.81, SD =
.01). Both results with p < .005. The animations with a
high speed did not have a significant difference in preference
between the blurred and non-blurred versions.

Independent | Preference | Watch time
Watch time .04% -
Order .04 .09*

Table 3: Variation of preference (R*) and watch time explained
by watch time and place in order shown. *p < .005.

A linear regression was conducted with the time the par-
ticipant watched the animation as independent variable and
the preference rating as dependent variable. A significant
positive correlation was found. To test whether the order in
which animations were watched mattered, a linear regression
was conducted with the preference rating and watch time
as dependent variables and the position of the animation in
the order they were shown to the participant as independent
variable. A significant decrease in watch times the later an
animation was shown was found, while no significant effect
could be seen on the preference ratings. These results can
be found in Table 77. To explore how the unbiased (first)
preference rating is related to the watch time, a linear re-
gression was conducted on the preference ratings and watch
times of the first animation shown to each participant. Here
a positive correlation was found too (:" = .17, p < .005)

The mean music tempo and predictability were calculated
over every participant’s three songs. Multiple linear regres-
sions with these means as independent variables and the
ratings for each group of animations (slow, fast, predictable,
unpredictable, blur, no blur) as dependent variables did not
show any significant correlations.

5. DISCUSSION

The results of the preference ratings showed a clear pref-
erence for slow and predictable animations, agreeing with
the first two hypotheses of this study. However, the effect
of blur on the preference rating was opposite of what was
expected. This may be explained by the conclusion of pre-
vious research that people tend to have a preferred com-
plexity level; the non-blurred animations might have been
preferred because these had a small increase in complexity
compared to the blurred versions. The result of comparing
all the blurred and non-blurred versions of the animations
show that this might well be true. When the animations



had a low complexity (because of a low speed and high pre-
dictability), non-blurred versions were preferred. However,
when the animations had a high complexity because of the
high speed and low predictability, this preference for non-
blurred versions disappeared. The difference in preference
was bigger for the animations with the lowest complexity
(low speed and high predictability) than for the animations
with a slightly higher complexity (low speed and low pre-
dictability), which makes sense in terms of the theory sug-
gested here. The animation with lower predictability might
already be closer to the preferred complexity level regardless
of the blur. This assumes that the complexity does indeed
increase when speed increases and predictability decreases,
which was not measured in this study.

What is also interesting to see in the preference ratings is
that participants tended to rate their preference rather low
on the scale for all animations. This can be explained using
earlier studies which showed that generally representational
art is preferred over abstract art [22]. Since all animations
were abstract and did not offer much opportunity for partici-
pants to give meaning to the abstract shapes (as can be done
by for example watching clouds and recognizing shapes and
animals in the clouds), it is to be expected that preference
ratings can be lower.

Preference in music did not have any significant effect on
the preference in animations, so the fourth and fifth hy-
potheses cannot be confirmed. Analyzing musical preference
is a very difficult task because the existing categorical sys-
tem known as genres is highly ambiguous and as experiences
in this study show, extracting more objective data such as
tempo and predictability is also hard to do in an unambigu-
ous manner. Tempo can be measured in different ways (i.e.
a tempo of 120 beats per minute can in some cases also be
considered to be 60 beats per minute with ‘shorter’ notes),
and predictability depends on an unknown amount of dif-
ferent factors. In this study the predictability was mainly
determined by looking at repeating patterns, but a certain
melody can also be predictable because it follows a ‘logical’
pattern or is similar to other well-known melodies. The main
conclusion in terms of the link between music and animation
preference should therefore be that a correlation could not
be found between the speed, predictability or blurriness of
an animation and tempo or predictability of the music in
the way these were measured in this study.

An interesting find is the correlation between watch times
and preference ratings. Vartanian and Goel found the same
correlation for paintings [22], but it was never confirmed for
animations. This could mean someone’s preference of an
animation can partly be predicted based on the amount of
time they look at the animation, although the variance in
preference explained by the watch time is small. However,
since the watch times went down the more animations par-
ticipants already saw, it might be more reliable to only look
at the ratings and watch times of the first animation each
participant saw, when they were still unbiased. In this case
the variance in preference explained by the watch time was
much bigger, although still a minor part of the total vari-
ance. It still shows that it might be very useful to include
the time someone watches an animation as a predictor when
predicting their preference of that animation. This could be
used as feedback to a system generating animations with-
out needing explicit interaction with people looking at the
animation.

This study tried to find criteria that can be used by a ma-
chine creating animated art as an ‘intuition’ to select and
create art that people like to see. It showed that people
tend to prefer relatively slow moving and predictable art
that still has some level of complexity. Existing studies al-
ready showed that indeed a certain level of complexity is
preferred, as well as a certain level of meaningfullness. The
latter can be quite hard for a machine to generate and this
is an interesting topic for future studies: how can a machine
generate art that is meaningful for humans? Coloured art
is preferred over art in grayscale, and the more prototypical
these colours are, the higher the preference. Another inter-
esting finding was that the time someone watches an anima-
tion correlates with their rating of the art. These findings
can form a great base for 'machine intuition’ in terms of
what kind of animated art will be appreciated by humans.
The next challenge is to construct a system that actually
uses such an intuition and possibly feedback to generate an-
imated art.
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ABSTRACT

A genetic algorithm that generates animated art needs hu-
man feedback to be able to improve the generated art; a
computer is unable to measure how good the generated art
actually is. This study tries to find the best method of
gathering user feedback for such an algorithm. A genetic
algorithm is developed that can generate many kinds of ani-
mated art based on given parameters and takes human feed-
back on the beauty of the animations as a fitness measure.
A selection of two user feedback methods is tested on a small
group of participants. No clear majority of participants pre-
ferred one method over the other, but it seems like each
method has its strengths in certain situations. An informal
test on the effectiveness of this feedback seems to indicate
that the generated art indeed improves over time, but also
shows some problems with the reliability of the feedback.
Some improvements for the algorithm are suggested.
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1. INTRODUCTION

Generative art, the type of art that is a result of some
computer program being left to run by itself, with minimal
or zero interference from a human being, has been around
since not that long after the first programmable computers
emerged [2]. Although the name ’generative art’ suggests
that the art is generated completely by a computer, this
is often far from what actually happens. The algorithm is
still designed by a human and the inner workings, limits
and constraints of this algorithm determine what the result-
ing art will look like. So yes, the resulting art is generated
by a computer and the creator of the algorithm does not
have direct influence on the output, but his indirect influ-
ence is significant since he sets certain constraints for the
algorithm. These constraints are often a necessity since an
algorithm with complete freedom in what it displays will
have a very low probability of producing pleasing art. This
can be compared to the famous infinite monkey theorem,
where an infinite amount of monkeys behind typewriters for
an infinite amount of time will eventually write the complete

works of William Shakespeare by chance. Similarly, an algo-
rithm without any constraints will surely be able to produce
art that is considered beautiful by people, but the probabil-
ity will be so low that it will practically never happen.

This gives rise to a big challenge when designing an al-
gorithm that does not just generate the art, but designs it
too; an algorithm where there is no doubt that the algorithm
itself is the artist and not the person that created the algo-
rithm. An algorithm like that could change its own struc-
ture, limits and constraints to converge towards art that is
considered ’good art’, while also being able to explore new
options in art. This would make it possible to have a piece
of digital art that is constantly changing on its own without
the need for a human artist designing the art. Constantly
changing art is an interesting option for (semi-)permanent
technological art pieces in public spaces or buildings, which
will often be on display for several years. Having the content
change over time will keep these art pieces more interesting
through the years. Since these art pieces often use visual
and animated art, this study first explores different ways of
implementing an algorithm that can generate animated art
and can adapt itself to be able to find good art.

Since the amount of parameters needed for the art gen-
eration is probably quite big, the ‘solution space’ for the
generated art is vast. Furthermore, this is not a traditional
optimization problem since there is not a clear definition of
what good art is and thus there is also no one clear solu-
tion to find in the solution space. A genetic algorithm can
deal with these problems though; it can explore vast solu-
tion spaces and does not stick to one local optimum. It can
also be made in such a way to keep on exploring different
options after finding good solutions. However, the algorithm
would need a way to determine the ’fitness’ of an animation;
in this case related to how visually appealing an animation
is. There is no way for a computer to measure this, so user
feedback is necessary to know how good each animation is
considered to be. However, this introduces new problems
such as bias, consistency and ease of use.

This study tries to answer the following question: "What
way of gathering user feedback on visual appeal can be used
as a reliable fitness measure for animated art?”. This ques-
tion can be answered using the following subquestions:

1. What criteria determine if a feedback method can be
used as a reliable fitness measure?

2. Which method is best according to these criteria?

3. Does this feedback method indeed improve generated
animated art?

To answer these questions, an algorithm is developed that



can generate animated art and can use a fitness measure to
improve its art using a simple genetic algorithm.

The study is split into three sections. In the first section,
the development of the algorithm is deseribed both in terms
of the visuals and the genetic algorithm. The second section
is about feedback methods, and the first two sub questions
are addressed and answered here. In the last section, the
best feedback method is tested on the algorithm to see if
the given feedback does actually improve the art. In both
the second and third section the algorithm is already used,
so these sections will also discuss improvement points for the
algorithm itself.

2. ALGORITHM

This section describes the development of an algorithm
that can generate and display animated art using a genetic
algorithm. It first explains the background of genetic al-
gorithms, then explores existing algorithms and finally de-
scribes how the algorithm used for this study works.

2.1 Background of Genetic Algorithms

Although ideas for applying evolution theory to find so-
lutions to complicated problems have been around since the
1950s, most genetic algorithms we know today have their
roots in the work of John Holland, who developed genetic
algorithms (GAs) to design artificial systems based on natu-
ral adaptive systems [10]. Besides GAs there are other rather
popular algorithms [1] which include: genetic programming,
evolution strategies and evolutionary programming. How-
ever, GAs are by far the most popular used today and often
the term Genetic Algorithm is used for the other kinds as
well.

Although there are differences between these different kinds
of evolutionary algorithms, they share the same principle
and main components. In short, a GA mimics evolution as
it occurs in nature: it maintains a population of individuals,
which all get a score based on their performance. The best
scoring individuals (which can be compared to organisms
which survive longest and/or are most fertile) will repro-
duce to form a new population, which is tested again. One
cycle like this is called a generation. After multiple gen-
erations, the individuals in the population improved com-
pared to the individuals the algorithm started with. Because
they all mimie evolution in some way, the different kinds of
GAs share the same main components: a genetic representa-
tion, crossover and mutation methods and a fitness function.
These components will be described below.

2.1.1 Genetic representation

In evolution we often talk about genotypes and pheno-
types. In nature, DNA is the genotype and the phenotype
is the creature carrying that DNA: the genotype encodes
the phenotype. The same goes for most GAs: the program
or problem that the algorithm is applied to is encoded in
a certain genetic representation so the GA can evolve that
representation. The phenotype resulting from that geno-
type can be tested by the fitness function. In some cases the
genotype and phenotype are exactly the same: the fitness
function can test the fitness of a solution directly on the
genotype. In the classic GA as Holland developed it, the
genetic representation is a string of ones and zeros. How-
ever, a genotype can also be a parameter set of different
numbers, or a string of characters. In the case of genetic

programming, the genotype is a program, often stored as a
tree where each node is a statement.

2.1.2 Crossover

In nature, animals can mate to reproduce; they exchange
DNA and this DNA is combined to form a new DNA se-
quence. In GAs this is called crossover. Depending on the
genetic representation used there are many different ways of
‘merging’ two representations (called parents in this case) to
form a new one. Holland used a method where a so-called
‘crossover point’ is chosen. Both parent strings of ones and
zeros are cut at that point, and the first part of the first
parent is combined with the second part of the second par-
ent and the first part of the second parent is combined with
the second part of the first parent. This means perform-
ing crossover on two strings produces two new strings (or
children). This type of crossover can also be performed on
parameter sets, but crossover on a parameters set could also
be done by choosing for each parameter which parent to
use as a source. In the case of genetic programming, whole
branches of two parent program trees can be swapped to
form children.

2.1.3  Muration

Apart from crossover, genetic representations can also be
altered by mutation. The probability of mutation occurring
is often quite low. How this works really depends on the ge-
netic representation. In Holland’s representation a random
one in the string representation could flip to a zero or the
other way around. In parameter sets a parameter can get a
random small addition or subtraction to change its value a
bit. In genetic programming, a node can be replaced with a
new randomly generated branch.

2.1.4  Fitness function

The intelligence in a genetic algorithm originates mainly
from the fitness function. This function directs the evolu-
tion process towards the better solutions and is therefore
essential. The fitness function itself is dependent on the ap-
plication, but the result of the fitness function is a measure
that represents the performance of a solution. An example:
the fitness measure for an algorithm that should recognize
circles in an image could for example be the percentage of
false-positives and false-negatives it finds in a test set; the
lower the better. For a GA that finds the optimal way of
braking in a car, the fitness measure can be the braking
distance; also the lower the better.

These are objective and explicit measures and this is prefer-
able of course; the fitness measure should be as close as
possible to the actual performance of a solution. However,
this introduces a problem when the goal is to produce 'good
art’. There is no objective and explicit measure for good
art; taste and experience are personal and subjective. It is
not possible to measure it by analyzing the art. The only
way of getting an estimation of how good the art is, is to ask
people about their opinion. The section "Feedback Methods’
will study what the best way of gathering this feedback is
and how to deal with bias and inconsistencies in feedback in
a genetic algorithm.

2.2 Existing algorithms

There are several existing algorithms that generate some
form of animated art and some already use a genetic algo-



rithm to generate the art. Several of them will be explored
and explained here.

2.2.1 Electric Sheep

A famous one is Electric Sheep, a project that uses dis-
tributed computing to render animated art that is gener-
ated using a genetic algorithm [4]. Each frame in an Electric
Sheep animation is a fractal flame, a member of the Iterated
Function System (IFS) class of fractal algorithms [5]. This
algorithm generates a fractal by iterating different spatial
transformation functions and displaying the log density of
the amount of times a point is "hit’ by the different transfor-
mation functions. Colour is introduced by coupling a colour
to each function. This allows a big diversity of visual ani-
mations. An example of two fractal flames can be seen in
Figure 1. Fractal flames are animated into Electric Sheep
by varying some parameters of the fractal flame over time.

Each animation can be rated by users all around the world
using a binary scale; each user can vote an animation 'up’
or 'down’. If a user votes 'up’, the rating for that sheep is
incremented, voting 'down’ decrements the rating. These
ratings decay over time; every day the ratings are divided
by four.

An Electric Sheep animation’s genetic representation con-
sists most times of 6 transforms which are constructed out of
27 parameters, so in total a genotype consists of 162 floating-
point parameters [4].

Crossover can happen between two randomly chosen par-
ents where the probability of being chosen is proportional
to user rating. Crossover can happen in two ways, each way
happening as often as the other: the new genome is created
by alternating the transforms of both parents, or by doing a
linear interpolation between the two parents using a blend
factor between zero and one.

Mutation can happen by randomizing certain groups of
parameters, adding noise to parameters, changing colours
or adding symmetry. Which groups of parameters there are
and how colours and symmetry work can be found in Scott
Draves’ work [4] [5]. It is good to mention that mutated
sheep are rendered in a low resolution to see if they are not
too dark or too bright before they are accepted.

Besides these genetic operators, the algorithm can add
new randomly generated sheep and users can add sheep they
developed themselves to the population.

A disadvantage of this algorithm is the time it takes to
render a fractal lame. Iterated Function Systems take quite
some computing time to execute, and an animation would
need at least 20 fractal flames per second. Getting this kind
of performance is possible nowadays using the GPU [11], but
this can be quite a complicated process if the flames should
be able to be modified by a genetic algorithm. Although
the diversity between fractal flames is big, they still have a
distinct visual style.

2.2.2 Milkdrop

Another existing algorithm that generates animated art
is used as music visualization in the music player Winamp!.
It is called Milkdrop® and uses audio wave forms, shapes,
spatial transformations and pixel shaders to generate its an-
imations. Unlike Electric Sheep, Milkdrop animations are
made by people programming so-called ’presets’; it does not

Yhttp:/ /www.winamp.com/
http:/ /www.geisswerks.com/milkdrop/

Figure 1: Two different fractal flames [5].

Figure 2: A Milkdrop preset (Inkblot by Geiss).

have a genetic algorithm. However, it should be possible to
convert these presets to a genetic representation that can
be modified by a genetic algorithm. There is one problem
though: the presets can currently only be rendered by the
music visualization plugin itself, which needs Winamp to be
playing music. This makes it less ideal to use for this study,
but the strategies used to form the animation can serve as
inspiration for developing a stand-alone program. For exam-
ple, wave forms and shapes can be generated from param-
eter sets using the 'Superformula’ created by Johan Gielis
[9]. The big advantage of Milkdrop over an algorithm such
as Electric Sheep is that the algorithm was always designed
to run in real-time and is therefore guaranteed to run fast
enough to animate. An example of the output of a Milkdrop
preset can be seen in Figure 2.

2.2.3 Karl Sims

Karl Sims developed a genetic algorithm that generates
different images (not animations) by changing its own code
based on human feedback [13]. The algorithm builds re-
cursive lisp expressions using different functions. The used
functions include normal lisp functions such as +, -, abs()
and sin(), but also noise generation and image processing
functions. Most of these functions can take images as input
and give their output in the form of images too, so most
can be seen as image processing functions. For example, the
function abs(X) results in a gradient from white at the left
of the image plane to black in the middle, back to white
on the right of the plane again (X and Y coordinates range
from -1 to 1). The algorithm can incorporate iterated func-
tions systems in the expressions so in theory it should be
able to generate the same visuals as the Electric Sheep al-
gorithm. It can also generate waveforms and has numerous
image processing functions available, so it should also be



Figure 3: Two results of Sims” algorithm [12].

able to generate animations similar to Milkdrop presets. It
could combine all this in one animation so in theory the di-
versity of the generated visuals should be superior to the
other two algorithms described above. An example of the
output can be seen in Figure 3. Karl Sims suggested several
ways of animating the images:

¢ Allowing time to be an input parameter.

e Dissolving two different expressions of similar struc-
ture over time. This also makes it possible to gradually
make a transition from one expression to another.

e Using an image as input in the expression, and chang-
ing this image over time.

Sims does not specify in detail how the fitness of the im-
ages is determined. It seems like each population as a whole
is presented in a grid to the user. The user then selects
which images should reproduce to form the next generation.
Sims does not tell how many images the user can select or
how many are presented in the grid, although an image in
his paper [12] suggests a population of 20 images was used.
If this is how Sims’ selection of images actually works, he
does not use a fitness score. Rather, some images form the
'seed’ for the next generation while the other images simply
'die’.

The lisp expressions are represented as tree structures

which can be traversed and changed by mutation and crossover

methods.

Mutation can happen on each node with a probability
inversely scaled to the size of the expression. Possible mu-
tations are:

¢ Replacement by a new random expression.

¢ Random addition or subtraction.

¢ Replacement by another function (while retaining the
function’s arguments where possible).

¢ Jumping in or out of a function (so becoming the argu-
ment to a new function, or an argument of this node’s
function becomes this node).

e Become a copy of another child of the parent node.

Crossover can happen in two ways. One option is that a
random node of one parent is replaced by a random node of
the other parent. The other option is to copy the parent’s
trees where they are similar, and dissolving two nodes when
they are different. This means that the node becomes a
dissolve function with the two parents’ nodes at that location
as arguments. A linear interpolation is done between the
result of the two nodes using a random blend factor between
0 and 1.

Estimations of the complexity of new expressions are made
by summing pre-calculated computing times of each function

in the expression. If this estimated execution time is con-
sidered to be too long, the expression is eliminated before
being shown to the user.

It is unknown how fast this algorithm runs on current
hardware. Sims needed a parallel supercomputer, but this
was around the year 1990. It is not known how this trans-
lates to current hardware, although the fact that Sims was
able to create a parallel implementation of his algorithm in-
dicates that this algorithm could run on GPUs, which could
make (a variation on) this algorithm fast enough to be ani-
mated in real-time.

2.3 Development

There are three main requirements for the algorithm that
generates the animated art for this study:

e [t should be able to generate a wide variety of animated
art.

e [t should be possible for the animation generation pro-
gram to be described in a genetic representation (such
as a parameter set, string representation or program
tree).

e It should be able to render the animations in real-time.
That is, it should be able to render at least 20 frames
per second. Rendering in real-time makes it possible
for the algorithm to adapt quickly to the given feed-
back instead of having to wait till the animations are
pre-rendered.

In theory, Sims' algorithm seems to be able to generate
the biggest variety of art, and it might be able to run in
real-time. The disadvantage of Sims’ algorithm is that Sims
did not explain the used functions in detail. Rebuilding the
algorithm in modern programming languages would thus be
a complicated process and require lots of testing and exper-
imenting.

The Electric Sheep algorithm can work in real-time with
some work, but although it generates a wide variety of ani-
mations, the visual style of the generated animations is still
very distincet. Therefore this study uses an algorithm that is
inspired by the Milkdrop algorithm.

The base of Milkdrop are shapes and waveforms on top
of which several image processing methods are used, which
results in a big variety of animations. This same approach
was used in this study. The shapes are formed using the Su-
performula of Johan Gielis [9], and several image processing
methods such as blur, mirroring, fading, zoom and poster-
izing are used to add variety to the animations.

2.3.1 Superformula

The Superformula (1) created by Johan Gielis [9] is a for-
mula that forms all kinds of shapes based on six parameters.
The possible shapes range from circles and squares to stars

and teardrops.
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The visual algorithm used for this study can generate mul-
tiple of these shapes and animate them by varying the six
parameters of these shapes, as well as the position, rotation
and colour of the shape over time. An example frame can
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Figure 4: A frame with different Superformula shapes and its
mirrored versions. a) Original frame. b) Mirrored two times along
the y-axis. ¢) Mirrored ten times along y-axis. d) Mirrored three
times along x-axis and four times along y-axis.

be seen in Figure 4a. FEach shape can be drawn using a
solid or dotted line and the width of the line is also variable.
The fact that the shapes can be easily modified by varying
these parameters makes it very suitable for use in a genetic
algorithm.

2.3.2  Image processing

For each shape the algorithm can apply a certain amount
of blur to the image. Doing this per shape makes it possible
to have blurred shapes in the background with sharp shapes
on top.

The algorithm can also mirror the image an arbitrary
amount of times in two dimensions. For example, if the
image is mirrored two times along the y-axis, it will contain
four 'sections’ that are all the same image but mirrored. This
can be seen in Figure 4b. If instead the image is mirrored
the maximum amount of times possible, only the first row
of pixels is essentially shown along the whole image. This
results in vertical lines covering the image (Figure 4c), while
some combinations of mirror amounts along the X- and Y-
axes can result in kaleidoscope-like visuals (Figure 4d)

Instead of completely redrawing each frame the algorithm
can also fade the previous frames to a certain colour over
time. This will introduce an extra sense of motion since the
previous locations of shapes will still be visible for a cer-
tain time. The fade parameter can even become zero which
means all previous frames will always be visible behind the
current frame, creating some interesting effects.

The fading option can generate some kind of ’smoke’ ef-
fect in combination with zoom. The algorithm can create
a zoom effect by shrinking or enlarging the previous frame.
This zoom can be varied in both horizontal and vertical di-
rections and the center position of the zoom can also change.
If the algorithm also fades the previous frame it creates a
‘smoke’ effect where a trail from each shape forms which
‘drifts’ towards or away from the zoom position. An exam-
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Figure 5: An animation with fade and zoom to create a smoke-
like effect (a) and the same animation with a posterize effect
applied (b).

ple of this effect can be seen in Figure 5a.

The last image processing option the algorithm can apply
is posterization, which reduces the colour resolution. For
example, if each colour channel is reduced to four values, all
colour values (on a scale from 0-255) will be converted to
either 0, 85, 170 or 255. So an RGB value of (249, 94, 200)
will become (255, 85, 170). This creates bigger areas of the
same colour and increases contrast. An example can be seen
in Figure 5b.

2.3.3 Parameters & genetic representation

The superformulas and image processing steps introduce
quite some parameters. Some of these parameters are varied
over time to animate the art. This is done by using five addi-
tional parameters to calculate a time-dependent parameter.
This is done using the following formula:

1 ; 1
P =p1—5p2- (sin(pst) + 1) + opa - (cos(pst) +1) (2)

This means pi is a constant which is modified negatively
by p2 and pz, and positively by py and ps. p2 and pg set
the maximum modification amount in negative or positive
direction, while ps and ps set the period of the sine or cosine.

The parameters are still constrained, but just to make
sure they do not make the program crash; the constraints
are not used to steer the algorithm towards better looking
art. When generating a random parameter set from scratch,
the constraints are more strict to make sure the animation
is not unnecessarily complicated and can be shown with a
decent frame rate, but the genetic algorithm still has all
freedom (within the non-crashing constraints) to change the
parameters.

The set of all these parameters is directly used as a ge-
netic representation of an animation. The genotype of each
animation consists of 50 base parameters and 64 parame-
ters per Superformula shape. The population is kept at a
constant size of 10 individuals.

2.3.4 Crossover

Crossover is applied to two genotypes to create a new
parameter set. The new parameter set is constructed by
choosing randomly for each parameter which parent is the
source for that parameter. For the parameters that are time-
dependent the whole set of five parameters for calculating
the time-dependent parameter are taken from the same par-



ent.

2.3.5 Mutation

FEach new genotype is mutated and each parameter in the
set has a low probability to mutate. This can happen in two
different ways: a 'soft’ and a 'hard’ mutation. A soft muta-
tion means that the value of a parameter is slightly altered
by adding or subtracting a small random amount. A hard
mutation causes one of the bits in the parameter variable
to flip. This can cause big differences in the actual value of
the parameter. As suggested by Sims [13], the probability
of a mutation decreasing complexity (lowering the value of a
parameter) is slightly higher than the probability of increas-
ing complexity. This prevents the parameter sets from drift-
ing towards complex and hard to render animations without
necessarily improving the results.

Selection.

The sets that are mated and/or mutated are chosen based
on a fitness score. In this case this fitness score will be a
direct result of the score the user gives to an animation,
since a computer cannot rate the aesthetic beauty of art.
How these scores are given is discussed and studied in the
next section. The genotypes of the best scoring animations
form a new population and are used to form new genotypes
until that new population is filled again to a size of 10. The
algorithm chooses just one genotype if it is the only one with
a better score than the lowest score in the set. Otherwise
it will choose the best two, and more if the second place
in the fitness ranking is shared among multiple genotypes.
If all genotypes have the lowest possible score, a complete
new random population is generated; none of the genotypes
survive in that case.

3. FEEDBACK METHODS

This section tries to answer the following two sub ques-
tions: "What criteria determine if a feedback method can
be used as a reliable fitness measure?” and "Which method
is best according to these criteria?”. The first question is
answered mainly by exploring studies done in the past in
similar fields. The second question is answered by imple-
menting and testing some feedback methods on users using
the algorithm developed in the first part of this study.

3.1 Feedback scales

Research on preference feedback often focuses on recom-
mender interfaces for things like movies, music or books on
the internet [3]. These are interfaces on websites where peo-
ple can rate these products to give other people an idea of
what is good and what is bad. There are different ways
in which this feedback is gathered, mainly differing on the
scale. Facebook started with its famous unary scale, where
people can only give ‘thumbs ups’. Other common scales
are binary (positive /negative), 5 or 10 point (often stars/half
stars) or a 100 point scale. Another method that is less com-
mon works differently than the previous mentioned scales,
because it presents the user with two options. The user
then has to choose the best option of those two. Previous
studies already tested which of these scales is best in several
scenarios and according to several criteria. These studies
can be used to find the criteria that determine if a feedback
method is good or not and are discussed in the following two
sections.

3.2 Reliability

It is possible to (accidentally) introduce a bias in feedback
because of certain design choices for the feedback interface.
Friedman and Amoo [6] mentioned different causes for a
possible bias. Connotations can bias the results because
the negative connotations might sound more negative to the
participant than the positive connotations sound positive.
This also applies to numeric values; there is a difference
between having a scale range from -5 to 5 and from 0 - 10.
People are more likely to use the lower end of the scale in
the last case since the lower end is perceived more negative
in the first case. Forcing a choice can bias the results if the
amount of undecided people or people without an opinion
is significant. Unbalanced scales, meaning there are more
positive than negative points on the scale (or the opposite)
can have a big influence on results. The order in which the
scale is presented (does it start at the positive or negative
side) also influences the reported answers, but it is difficult
to say which one of the two has the smallest bias. This
may also depend on the subject of the question. Garland [8]
found that the absence of a mid-point on a scale can distort
results, although it was not possible to tell which scale was
most accurate.

The amount of points on the scale can also have an influ-
ence on the reliability of the scale. Too few points means a
loss of information, and too many points increases variance
while accuracy may not increase significantly. Friedman and
Friedman [7] studied this problem and recommended the
range between five and eleven points as most optimal. Fried-
man and Amoo [6] stated that this also depends on what the
scale will be used for. If there is no reason to think partici-
pants will have a complicated opinion about something, even
a three point scale might suffice.

3.3 Usability

Besides affecting the reliability of the scale, the amount
of points also has an influence on users’ behavior and satis-
faction. Sparling and Sen [14] studied how different scales
(unary, binary, five-point and 100-point) influenced the time
it took users to rate an item, their cognitive load, and over-
all satisfaction with the scale. They found that overall the
rating time of users increased with the amount of points on
the scale. Cognitive load was estimated by measuring the
reaction time of users on a secondary task: clicking a button
as soon as it becomes red (on random intervals). The cogni-
tive load was found to be lower for a unary scale compared
to other secales, but differences between the other scale were
not significant. Users preferred the binary and five-point
scales, but liked the five-point scale best.

3.4 Criteria

Previous mentioned studies show there are two main cri-
teria for feedback methods: reliability and usability. Relia-
bility is influenced by different factors. For example:

e [f the scale has connotations or not.

e [f the user is forced to make a choice or not.

e If the scale is balanced or not.

e [f the resolution of the scale is appropriate for the sub-
ject.

e [f it is clear to every user how the scale should be used
(is the scale interpreted the same by all users?)

The usability can also be influenced by a lot of factors, for



example:

e The time it takes the average user to rate using the
scale.

The cognitive load the scale needs from the user.
Users’ understanding of the scale.

If the scale distracts the user from the content.

How the response is recorded (on a screen, paper, ete.).

3.5 Implementation

The possible feedback methods mentioned in section 3.1
were all implemented in the algorithm, except for the unary
scale. The unary scale was considered to function a lot like
a binary scale in this context and thus unnecessary to im-
plement if the binary scale was also implemented. The im-
plementation of each scale is described below.

3.5.1 Bestof two

Best of two shows two animations at the same time, next
to each other. New animations start with a score of one.
Five random pairs are formed and are shown to the user one
pair at a time. The user then chooses which one is preferred
over the other by clicking on that animation. The score
of the preferred animation will increase with one, the other
animation’s score is decreased by one. The maximum score
is two. After all five pairs are shown, the mating process will
start and a new population is formed which is again shown
to the user.

3.5.2 Binary

The order of the population is randomized and the user
is shown each animation one time. The user can indicate
his preference by pressing the arrow up or arrow down keys
on the computer keyboard, after which the next animation
is shown. Pressing arrow up increases the animation’s score
by one, pressing down decreases the score by one. The max-
imum score is also two here. After all animations are shown,
a new population is formed by the mating process.

3.5.3  Scale of five/ten

The order of the population is randomized and the user is
shown each animation one time. The user can indicate his
preference for each animation by pressing the number keys
on the computer keyboard. The zero key represents a score
of ten in case of a scale of ten points. The given amount
of points translates directly to the score of each animation.
After all ten animations are rated, the mating process is
started to create a new population which can be rated by
the user again.

3.5.4 Slider

The order of the population is randomized and the user
is shown each animation one time. A slider is shown to the
right of the animation, and starts at its middle value of 50.
This value is not shown, the user only sees the position of
the slider. Users can change the slider’s position by clicking
and dragging with the mouse or by scrolling with the mouse.
The value represented by the slider’s position is in the 0-100
range and this is directly translated to the animation’s score.
If the user is satisfied with the position of the slider, he can
hit any key to be shown the next animation. After all ten
animations are shown, a new population is generated by the
mating process which can be rated again by the user.

3.6 Selection

A selection of the implemented feedback methods was
made to narrow down the amount of methods to be tested
on users. This was done by personally testing the different
methods to get a basic idea of which ones would probably
give the best results.

Best of two seemed to work quite well for the genetic al-
gorithm, although sometimes the user was forced to choose
between two very good animations, which often resulted in
a good animation being thrown out of the population. Be-
ing shown two animations next to each other was found to
sometimes be quite overwhelming. It might even be possible
that some animations would have been rated better if they
were shown on their own instead of together with another
animation. Furthermore, slow rendering animations brought
down the framerate of both animations. This could cause
animations that were on themselves very fast rendered to
be rated worse because of the low framerate. This could be
solved by rendering each animation on a different machine.
An advantage of this method was found in the speed of rat-
ing; it is often very easy and fast to determine which of two
animations is preferred over the other.

The binary system does not have the disadvantage that
users can be forced to down-rate a good animation. This
method was also found to be quite quick in rating speed,
although it seemed to be a bit slower than the 'best of two’
method. Ratings seemed to be very much relative to the ani-
mations that were already seen; as other animations became
better or the user got bored by seeing the same (or similar)
animations multiple times, he started giving negative feed-
back on animations that he previously rated positive.

The scales were easy to use. The scale of five points al-
ready had enough points to express an opinion properly,
the added resolution of the ten point scale was not used
very much. The speed of rating was slower than the binary
method, but did not differ a lot between both scales.

The slider did not work that well. The user found it diffi-
cult to relate the scores he was giving with the scores given
to previous animations since he did not see the actual score
that was given, just the position of the slider. It was there-
fore possible that an animation that was actually preferred
over another was thrown out of the population because the
user unknowingly rated it a couple of points lower than the
other animation. Because of these problems with recalling
scores given to other animations, the rating speed seemed
to be the lowest of all methods.

It was decided that the binary and scale with five points
were the best options to test on other test subjects. The
binary method seemed to be slightly faster to use, while the
scale offers more resolution for expressing an opinion prop-
erly. These two scales were also most preferred in Sparling &
Sens’s study [14]. In this study the five-point scale was most
preferred of the two. The ten point scale did not have advan-
tages over the five points scale and the other two methods
were found to have too many disadvantages to be of good
use for this application.

3.7 User testing

The two selected feedback methods were tested on users
to find out which of the two has the best usability in this
context.

3.7.1 Method



Each participant individually tests both scales by rating
30 animations using each scale. This means each participant
will see and rate three complete generations of animations
produced by the genetic algorithm. Two fixed sets of ten
animations are used as the first generation. The order in
which the scales are tested and which set of animations is
used as first generation is randomly assigned. Before the
participants start rating the animations, it is explained how
to rate the animations using the scale that is being tested.
After the first 30 animations, the participants get an ex-
planation about the other scale and will rate 30 animations
using that scale.

After testing both scales participants are asked which of
the modes they preferred, and explain why. They are also
asked what they thought about the resulting animations and
if they thought one scale produced better animations than
the other.

The test is performed on a laptop with a 14 inch screen
with a resolution of 1600x900. The resolution of the anima-
tions is 768x768 and these are displayed in the middle of the
screen surrounded by a black border.

3.7.2  Participants

Ten participants tested both feedback methods. These
participants were all students at the University of Twente,
and all were studying in a technology-oriented field. Three
participants were female, seven were male.

3.7.3 Results

There was no majority of participants who preferred one
of the two methods; five participants preferred the binary
scale, the other five preferred the five point scale. Of the
participants who preferred the binary scale, three said it
allowed them to go with their 'gut feeling’, whereas with
the five-point scale they had to consciously think about their
rating. One participant argued that he did not use the extra
resolution of the five point scale anyway, but only used it
to express a positive or negative rating and not much in
between. Another participant did not use the extreme points
of the scale (one and five) at all. One participant said that
it allowed him to enjoy the animations more, with the five
point scale he was really focused on his own tastes and rating
behaviour.

The participants who preferred the five point scale all in-
dicated that they thought they needed the extra resolution
and could not express their opinion sufficiently with the bi-
nary scale. It seemed like these participants were more fo-
cused on their own voting behaviour, where the participants
preferring the binary scale were more interested in the ani-
mations.

Whether or not participants thought one scale produced
better animations than the other differed very much between
participants and it did not seem to be related to their pref-
erence of one method.

Participants indicated that quite some of the generated
animations were still a bit 'rough’; some animations had
very fast movements, fast flickering colours, colour schemes
with a very low contrast or did not show much at all. Some
participants also indicated that they still missed some diver-
sity and thought the animations were quite similar.

3.8 Conclusion & Discussion

The best feedback method.

Based on this study, it is not possible to say if a binary
scale or a scale of five point is best for feedback on animated
art. Exactly half of the participants preferred the binary
scale while the other half preferred the five point scale and
there is no big difference in terms of reliability.

Difference between the scales.

In terms of reliability both scales are quite similar; the
biggest difference is that the binary scale has a clear negative
part (you either rate something 'up’ or ‘down’), where the
five-point scale only has positive ratings (from one to five
points). This means the results of one scale might be shifted
either positively or negatively relative to the other scale, but
it is impossible to know which one gives the most reliable
results.

‘Which scale scores best in terms of usability seems to de-
pend on the context and the user. It seems like the two
different scales both have their advantages and disadvan-
tages, and depending on how much value someone gives to
each (dis)advantage, their preference is different. The bi-
nary scale is considered fast, easy to use and requires little
mental effort, but has a low resolution. The five point scale
offers more room for people to express their opinion, but this
also seems to introduce a higher mental effort and can make
the decision on which rating to choose slower. Therefore,
if speed and ease of use is most important, it would make
sense to use a binary scale. If precision is more important,
the five point scale seems to be the better choice. As one
participant said, it would make sense to use the binary scale
when exploring the animated art, while the five points scale
is better suited for fitting the generated art to one person’s
tastes, or for finding out what that person’s preference in
art is about.

Since the subject group was small and because the random
nature of the genetic algorithm makes it hard to make sure
the test environment is exactly the same for each participant,
these results can merely be an indication of which method to
use in a certain situation. However, an earlier study already
indicated that these two methods are indeed most preferred
by people in a different context and similar conclusions were
named in this study [14].

Users’ opinions about the art itself.

It seems like the visual algorithm can still be improved.
Users indicated that they thought there was a lack of diver-
sity and too many ‘rough’ and 'ugly’ animations. The lack
of diversity can be improved by working with more than
one population at the same time, or the algorithm can make
bigger 'steps’ between animations by increasing mutation
chances or introducing random parameter sets that are not
related to the previous population. In the first case the pop-
ulations can even be split across multiple users, so one user
rates one half of each population and the other user rates
the other half. This should result in art that is preferred by
both users, but making this work properly with users with a
big difference in art preference might be an interesting case
for future work.

4. ART IMPROVEMENT FROM FEEDBACK

As explained earlier, the developed visual algorithm uses
a simple form of a genetic algorithm, so the feedback from



users is already used to improve the art. This makes it
possible to test how effective the feedback methods from
previous section are in actually improving the art, and get an
informal answer to the question "Does this feedback method
indeed improve animated art?”.

4.1 Method

Since the used genetic algorithm is still very simple, the
effectiveness of the feedback is tested only informally in this
study; a proper test of effectiveness needs a more sophisti-
cated study of what the best genetic algorithm is for this ap-
plication or if other methods such as machine learning need
to be added. The effectiveness of the feedback is tested by
letting one person rate 50 generations (populations) of ani-
mations using the five point scale. This scale is used since it
gives a clear rating number that can directly be used to see
if the rating of the art improves through generations. The
first generation is generated randomly.

4.2 Results

The resulting ratings for each generation can be seen in
Figure 6. Note that at generation 22, all animations were
rated with 1, which means that generation 23 is a completely
random generated generation, no animations from genera-
tion 22 survived.

The test subject noted that the algorithm had the ten-
dency to sometimes focus on one particular animation and
make all kinds of variations on that one. Seeing a lot of
slight variations of the same animation all the time got the
test subject bored which caused him to drop the rating of
the variations of that animation. This was the main cause
for a complete generation receiving a rating of 1.

New animations in a generation (originated from mat-
ing surviving animations) were often rated with 1 because
they often contained flickering colours, very fast movement
or only showed a background colour without any moving
shapes.

4.3 Conclusion & Discussion

Effectiveness of feedback.

The feedback seems to be effective in improving the art,
even with a simple genetic algorithm. The later generations
got considerably more high ratings, and the last generations
did not even receive ratings of two points.

Avoiding low ratings.

There were always some animations that received a rat-
ing of one. These were often the 'rough’ kind of animations
that were also found in the user tests of the feedback meth-
ods; without any movement, flickering or with fast repet-
itive movements. The results show that these animations
have a big influence on the average rating: in every popu-
lation there are some animations which receive a rating of
one. To avoid this, animations that are rated negatively by
(almost) all people should preferably not be shown at all.
This could be done by letting the genetic algorithm form a
concept of what people generally do not like (using machine
learning, for example), and only show animations that pass
this "test’. However, this test should still allow the algorithm
to show art that does not look like art it produced before.
A genetic algorithm that can behave like that is probably
far more advanced than the one used here and the design

of such an algorithm could be a very interesting subject for
future work.

Keep exploring art.

The results also show another important point that could
be improved: the current algorithm converges quite fast to
animations with good ratings and does not easily explore
new directions once it gets 'stuck’ with a certain type of
animation. Exploring new directions when one or multiple
forms of 'good art’ are already found introduces the risk of
generating art that is of much lower quality than the already
found art. This makes it even more important to have a
filtering system in place as described above.

Consistency.

The test showed that users are not consistent in their feed-
back. When the user was shown a lot of similar animations,
he started to rate the animations lower and lower until he
got shown new animations. Such a 'rating drift’ can also be
caused because other animations are becoming better; the
ratings seem to be partly relative to the animations already
shown to the user.

5. FUTURE WORK

The next step is to develop a fully working and advanced
version of this (still rather primitive) algorithm. It should
generate and keep on exploring a vast diversity of animated
art while minimizing the presentation of art that is disliked
by the public watching the art. The conclusions of this study
can be used for this:

Feedback methods.

Depending on the application of the algorithm, one of the
feedback methods can be used. For example, if the algorithm
will be used in a physical art installation, the binary scale
will be more useful to minimize the effort passersby have to
put into rating the art. However, if the algorithm is used in
a computer program or website that tries to show the user
art that is best suited to that user’s tastes (based on the
tastes of people that voted similar to the user, for example),
the five point scale is probably better.

Filtering.

Machine learning based filtering of the generated art is
needed to minimize the amount of generally disliked anima-
tions that are shown to users. The challenge with a filtering
system like this is to learn what art should be filtered in
such abstract ways that art that is nothing like what has
been generated before can also still pass this 'test’.

Diversity and exploration.

The diversity of the generated art needs to be increased
and the algorithm needs to explore more. This can be done
in several ways, for example:

Using multiple populations.

Split populations among multiple users.

Increase mutation.

Introduce completely new parameter sets that are not
related to previous sets.

e Using a different algorithm to generate the visuals. For
example, Sim’s algorithm [13] is superior in terms of
the diversity of its output. It might be worth it to see
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Figure 6: The resulting ratings per generation. A rating of 5 was never given.

if a modern implementation of the algorithm can run
in real-time to generate animations.

Rating consistency and bias.

The ratings always being (partly) relative to the anima-
tions already shown makes the rating itself quite unreliable.
The rating given to an animation is not always the same
as the rating that would have been given to the animation
when it would have been shown on its own. It is very hard
to reduce this effect and make the rating more reliable, the
rating will never be 100 percent reliable.

Also, there is probably always a bias between what the
user thinks of the art and how he rates it, mainly introduced
by how the user understands the rating scale. This is not a
big problem if there is only one user using the algorithm since
the bias is constant, but might become more troublesome if
the system is used by multiple users. Two users giving the
same rating to an animation does not necessarily mean they
value its aesthetic beauty the same.

These two points make the rating less reliable but are
both very difficult if not impossible to eliminate. How can
a genetic algorithm deal with this unreliable feedback and
still give good results? This is an interesting question for
future work.

6. REFERENCES

[1] P. Bentley and D. Corne. Crealive evolutionary
systems. Morgan Kaufmann, 2002.

[2] M. A. Boden and E. A. Edmonds. What is generative
art? Digital Creativity, 20(1-2):21-46, 2009.

[3] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and
J. Riedl. Is seeing believing?: how recommender
system interfaces affect users’ opinions. In Proceedings
of the SIGCHI conference on Human factors in
computing systems, pages H85-592. ACM, 2003.

[4] S. Draves. The electric sheep screen-saver: A case
study in aesthetic evolution. In Werkshops on
Applications of Evolulionary Compulation, pages
458-467. Springer, 2005.

[6] S. Draves and E. Reckase. The fractal flame
algorithm. Forthcoming, available from
http://flam3.com/flame.pdf, 2003.

[6] H. H. Friedman and T. Amoo. Rating the rating
scales. Friedman, Hershey H. and Amoo, Taiwo

8]

(9

[10]

(11]

(12]

(13]

[14]

(1999).” Rating the Rating Scales.” Journal of
Marketing Management, Winter, pages 114-123, 1999.
H. H. Friedman and L. W. Friedman. On the danger
of using too few points in a rating scale: a test of
validity. Friedman, Hershey H. and Friedman, Linda
Weiser ((1986).” On the Danger of Using too few
Points in a Rating Scale: A Test of Validity.” Journal
of Data Collection, 26 (2), 60-63, 1986.

R. Garland. The mid-point on a rating scale: Is it
desirable. Marketing bulletin, 2(1):66-70, 1991.

J. Gielis. A generic geometric transformation that
unifies a wide range of natural and abstract shapes.
American journal of botany, 90(3):333-338, 2003.

J. H. Holland. Adaptation in natural and artificial
systems. An introductory analysis with application to
biology, control, and artificial intelligence. University
of Michigan Press.

O. S. Lawlor. Gpu-accelerated rendering of unbounded
nonlinear iterated function system fixed points. ISRN
Computer Graphics, 2012, 2012,

K. Sims. Artificial evolution for computer graphics,
volume 25. ACM, 1991.

K. Sims. Interactive evolution of equations for
procedural models. The Visual Computer,
9(8):466-476, 1993.

E. I. Sparling and S. Sen. Rating: how difficult is it?
In Proceedings of the fifth ACM conference on
Recommender systems, pages 149-156. ACM, 2011.



Appendix C - Animation algorithm function set

All vector -> vector functions are executed elementwise unless indicated

differently. A1, a2, a3, etc. are references to the input arguments of the

functions.
Function Arguments Output | Returns
name
abs I float Ifloat |the absolute value of a1
abs I vector I vector | the absolute value of a1
and 2 floats 1float |a1&a2
and 2 vectors I vector |aI & a2
the pixel colour at coordinates
(a1,a2) of the blurred image a3 with
2 floats, 1 image, 2 a blur size of a4 and sigma a5 (per
blur vectors I vector | RGB colour)
al, clamped by a2 as minimum and
clamp 3 floats I float |a3as maximum value
al, clamped by a2 as minimum and
clamp 3 vectors I vector | a3 as maximum value
cos I float 1float |cos(al)
cos I vector I vector | cos(aI)
cos(al) with input and output
cosn I float Ifloat |normalized to o-1
cos(al) with input and output
cosn I vector I vector | normalized to o-1
Cross 2 vectors I vector | the cross product of a1 and a2
divide 2 floats Ifloat |ar/az
divide 2 vectors Ivector |al/ a2
exp I float Ifloat |the natural exponentiation of a1
exp I vector I vector | the natural exponentiation of a1
exp2 I float Ifloat |2"ar1
exp2 I vector I vector | 2"al
the gradient direction at
coordinates (aI,a2) of image a3 per
grad_dir 2 floats, 1 image I vector | RGB colour
the gradient magnitude at
coordinates (al,a2) of image a3 per
grad_mag |2 floats, 1 image I vector | RGB colour
hsv_to_rgb |1vector I vector | an RGB output for the HSV input
iff 3 floats I1float |a2ifar<=0.5,elseas




iff 3 vectors I vector |a2if a1 <=0.5, else a3
the pixel colour at coordinates
(a1,a2) of a fractal flame rendered
with a3 variations, exposure a4,
texture scale a5, initial value a6,
initial size a7, and for each used
variation: (variation type a8,
weight a9, scale a10, hue a1,
saturation a12, X.x a13, X.y ai4, Y.x
a1s, Y.y a16, O.x a17, O.y a18). These
last inputs are repeated 4 more
times for the other possible

ifs 62 floats I vector | variations

log I float 1float |logarithm of a1 (base 10)

log I vector I vector | logarithm of a1 (base 10)

log2 I float 1float |logarithm of a1 (base 2)

log2 I vector I vector | logarithm of a1 (base 2)

logg 2 floats I1float |logarithm of a1 (base a2)

logg 2 vectors I vector | logarithm of a1 (base a2)

max 2 floats Ifloat |the maximum ofboth inputs

max 2 vectors I vector | the maximum of both inputs

min 2 floats I1float |the minimum of both inputs

min 2 vectors I vector | the minimum of both inputs

minus 2 floats 1float |aI-a2

minus 2 vectors I vector |aI - a2
the linear interpolation between a1
and a2 at point a3 (ranged between

mix 3 vectors I vector O—I)
the linear interpolation between a1
and a2 at point a3 (ranged between

mix 3 floats 1float |o-I)

mod 2 floats I1float |a1 % a2z

mod 2 vectors I vector | al % a2

I

mod I vector, I float vectors |aI % a2

normalize |Ivector I vector | the unit vector of a1

or 2 floats 1float |ar|a2

or 2 vectors I vector | aI | a2

plus 2 floats I1float |ar+az

plus 2 vectors I vector |aI + a2




pow 2 floats I1float |a1™a2
pow 2 vectors I vector |a1™a2
product 2 floats I1float |a1*a2
product 2 vectors I vector |aI * a2
al rounded to the closest whole
round I float Ifloat |number
al rounded to the closest whole
round I vector I vector | number
sign I float I1float |1ifalis positive,else -1
sign I vector I vector | Iif al is positive, else -1
sin I float 1float |sin(aI)
sin I vector I vector | sin(aI)
sin(a1) with input and output
sinn I float Ifloat |normalized to o-1
sin(aI) with input and output
sinn I vector I vector | normalized to o-1
sqrt I float Ifloat |thesquare rootofar
sqrt I vector I vector | the square root of a1
step 2 floats 1float |oifa2<ar,elsel
step 2 vectors Ivector |oifa2<al, elsel
the vector containing the 3 input
vecs 3 floats 1 vector | floats
Xor 2 floats 1float |a1” a2
Xor 2 vectors Ivector |al ™ a2




Appendix D - Results of single user network

setups
Recall 3+ means the recall of the animations that were rated 3 or higher.
Setup | Learning rate | Momentum | Alpha Neurons | Precision | Recall Recall 3+ | F,; 3+

o 0.1 I 14 | O.717472 | 0.742308 | 0.83043%5 | 0.769832
I 0.1 o I 21 | 0.722282 | 0.779231 | 0.891304 | 0.79794
2 0.1 o I 28 | 0.696896 | 0.768462 | 0.847826 | 0.764987
3 0.1 o 2 14 | 0.737374 | 0.70192% | 0.847826 | 0.788752
4 0.1 0 2 21 | 0.764403 | 0.627692 | 0.8043%48 | 0.783867
5 0.1 2 28 | 0.749195 | 0.626154 | 0.830435 | 0.787726
6 0.1 0.1 I 14 | 0.700144 | 0.748077 | 0.895652 | 0.785922
7 0.1 0.1 I 21 | 0.716226 | 0.770769 | 0.891304 | 0.79423I
8 0.1 0.1 I 28 | 0.744987 | 0.757308 | 0.852174 | 0.794984
9 0.1 0.1 2 14 | 0.755418 | 0.656923 | 0.778261 | 0.766669
10 0.1 0.1 2 21 | 0.732454 | 0.662308 | 0.865217 | 0.79332
II 0.1 0.1 2 28 | 0.734494 0.665 | 0.891304 | 0.805337
12 0.1 0.5 I 14 0.72952 | 0.760385 0.86087 | 0.789771
13 0.1 0.5 I 21 | 0.727764 | 0.777308 | 0.869565 0.79237
14 0.1 0.5 I 28 | 0.723451 | 0.754615 | 0.847826 | 0.780716
15 0.1 0.5 2 14 0.73%3%53 | 0.668077 | 0.847826 | 0.786548
16 0.1 0.5 2 21 | 0.738854 | 0.66923I | 0.843478 | 0.787707
17 0.1 0.5 2 28 | 0.753697 | 0.627308 | 0.878261 | 0.811225
18 0.01 o I 14 | 0.744534 | 0.785769 | 0.891304 | 0©.811335
19 0.01 I 21 | 0.738703 | 0.779615 | 0.891304 0.80786
20 0.01 o I 28 | 0.74403%9 | 0.768077 | 0.891304 | 0.811041
21 0.01 ) 2 14 | 0.800307 | 0.400769 | 0.569565 | 0.665503
22 0.01 o 2 21 | 0.772873% | 0.370385 0.6 | 0.675552
23 0.01I 2 28 0.7609 | 0.416154 | 0.569565 | ©.651475
24 0.01 0.1 I 14 | 0.746067 | 0.784231 | 0.891304 | 0.812244
25 0.01 0.1 I 21 | 0.745171 | 0.771538 | 0.891304 | 0©.811713
26 0.01 0.1 I 28 | 0.74263%6 | 0.775769 | 0.891304 | 0.810207
27 0.01 0.1 2 14 | 0.785567 | 0.439615 | 0.626087 | 0.696818
28 0.01 0.1 2 21 | 0.790535 | 0.346923% | 0.6043%48 | 0.685015
29 0.01 0.1 2 28 | 0.789374 0.32 | 0.569565 | 0.661692
30 0.01 0.5 I 14 | 0.707598 | 0.709231 | 0.891304 | 0.788898
31 0.01I 0.5 I 21 0.715614 | 0.710385 | 0.847826 0.77613
32 0.01 0.5 I 28 | 0.705069 | 0.706154 0.86087 | 0.775219
33 0.01I 0.5 2 14 0.79064 | 0.370385 | 0.591304 | 0.676596
34 0.01 0.5 2 21 | 0.791251 | 0.396538 | 0.626087 | 0.699046
35 0.01I 0.5 2 28 | 0.772152 | 0.398846 0.66087 0.71219




Appendix E - Results of multi user network
setups

Recall 3+ means the recall of the animations that were rated 3 or higher.

Setup | Learning rate | Momentum | ¢ | Neurons | Precision | Recall | Recall 3+ F, 3+ | MaxF, 3+
(o) 0.1 o1 14 0.757 0.836 0.870 | 0.810 0.821
I 0.1 o1 21 0.756 0.832 0.870 | 0.809 0.824
2 0.1 o1 28 0.758 0.829 0.867 | 0.809 0.825
3 0.1 o2 14 0.749 0.820 0.858 | 0.800 0.819
4 0.1 of2 21 0.751 0.801 0.833% | 0.790 0.819
5 0.1 o2 28 0.749 0.819 0.856 | 0.799 0.820
6 0.1 01| I 14 0.749 0.819 0.856 | 0.799 0.820
7 0.1 oI | I 21 0.759 0.844 0.880 | 0.815 0.824
8 0.1 oI | I 28 0.754 0.841 0.881 | 0.812 0.824
9 0.1 01| 2 14 0.751 0.810 0.838 | 0.793 0.816

10 0.1 oI | 2 21 0.750 0.803% 0.841 | 0.793 0.818
11 0.1 oI |2 28 0.755 | 0.800 0.833 | 0.792 0.820
12 0.1 05| I 14 0.756 0.847 0.883 | 0.815 0.824
13 0.1 05| I 21 0.752 0.842 0.878 | 0.810 0.823
14 0.1 05 | I 28 0.758 0.857 0.895 | 0.820 0.825
15 0.1 05 |2 14 0.755 | 0.804 0.839 | 0.795 0.820
16 0.1 05| 2 21 0.751 0.833 0.872 | 0.807 0.82%
17 0.1 05 |2 28 0.759 0.826 0.859 | 0.805 0.820
18 0.0I I 14 0.755 0.875 0.903 | 0.823 0.823
19 0.01I o1 21 0.754 0.872 0.900 | 0.821 0.821
20 0.01I o1 28 0.754 0.870 0.898 | 0.820 0.821
21 0.01I o2 14 0.753 0.856 0.890 | 0.816 0.825
22 0.0I o2 21 0.754 0.855 0.891 | 0.817 0.825
23 0.01I o2 28 0.754 0.864 0.900 | 0.821 0.824
24 0.01 oI | I 14 0.754 0.876 0.90% | 0.822 0.822
25 0.0I oI | I 21 0.754 0.874 0.902 | 0.821 0.821
26 0.01 01| I 28 0.755 0.873 0.90I | 0.821 0.822
27 0.0I oI | 2 14 0.755 0.863 0.896 | 0.819 0.823
28 0.01I oI |2 21 0.756 0.859 0.898 | 0.820 0.824
29 0.01 oI | 2 28 0.755 0.861 0.898 | 0.820 0.825
30 0.01 05| I 14 0.748 0.879 0.904 | 0.818 0.820
31 0.01I 05 | I 21 0.750 0.878 0.903 | 0.819 0.819
32 0.01 05| 1 28 0.751 0.877 0.902 | 0.820 0.820
33 0.01I 05 |2 14 0.757 0.868 0.903 | 0.824 0.825
34 0.01 0.5 |2 21 0.756 0.872 0.908 | 0.825 0.826
35 0.01I 05 |2 28 0.755 0.870 0.906 | 0.824 0.824




Appendix F - Example animations and their function trees
|

10.0s 10.558 11.28 12.058 13s 14.158 15.6 17.158

‘or’ — A bitwise ‘OR’ operating on the bits of the floating-point values in the vectors of its input.

Functions

‘noise’ - 3D simplex noise. The inputs are the coordinates for the noise.

‘vecs’ - Creates a vector from three floating-point values.



10.0s 10.55s 11.28 12.058 14.158 15.6s 17.158

Functions

‘noise’ - 3D simplex noise. The inputs are the coordinates for the noise.
‘max’ — Returns the maximum value of each vector value (elementwise).
‘mod’ - The modulo operation. Also works elementwise.

‘vec?’ - Creates a vector from three floating-point values.



Appendix G - Examples of genetic operations

The three basic genetic operations are shown below on example trees

Crossover

Parent 1 Parent 2

G°0 @QE)

Child 1 Child 2
Mutation
Parent Child



Reproduction
Parent Child
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