

Teaching a machine beauty
Intelligent interactive evolution of abstract

animations

Wouter Deenik
M.Sc. Thesis
August 2017

Supervisors:
dr. M. Poel
dr. ir. D. Reidsma

Abstract
Generative art in the form of animations is used more and more in the current

screen-filled world. If these animations would be generated with as much

freedom as possible, some problems arise. More freedom means more ‘ugly’

animations are generated, and an ugly animation can get unpleasant to look at,

in contrast to an ugly image. Also, to steer the algorithm towards better

animations, human feedback is needed, but giving feedback on animations

takes time. A system is proposed and developed which can generate diverse

abstract animations, while minimizing the number of unpleasant animations

in its output to (partly) solve the stated problems. This system uses a modified

version of an algorithm developed by Karl Sims [1] to render the animations, a

genetic algorithm to improve those animations and a neural network acting as

a filter to reject unpleasant animations from the system’s output. Feedback is

gathered using a custom developed feedback interface.

The system is evaluated and the performance of the filtering component

determined in terms of precision, recall and F score in several different tests.

When a system without a neural network to reject unpleasant animations, and

one with such a network are compared, the system with neural network shows

significantly less unpleasant animations. The precision of the neural network

in the different tests tends to be around 0.75, which means around one out of

four animations that pass the filter is given the lowest rating by users. Without

a filter, the precision of the system is on average around 0.66: one in three of

the shown animations would get the lowest rating. This shows an increase in

precision when a neural network is used to filter the animations. Some good

animations are rejected too, but since the system has a near infinite ‘pool’ of

animations to draw from, this is not considered as a big problem. Several

different neural networks are tested, but only the learning rate seems to matter

in terms of performance. However, the learning speed seems to depend much

on the dataset used for training the neural network. 50-100 animations seem to

be the minimum number to train an untrained network to a performance close

to the 0.75 precision observed in other tests. Several suggestions are made on

how to improve the system.

1

Table of contents
1 Introduction ... 4

2 Context .. 9

2.1 Preference in art .. 9

2.1.1 Static art .. 9

2.1.2 Animations .. 11

2.2 User feedback methods ... 11

2.2.1 Feedback scales ... 11

2.2.2 Reliability ... 12

2.2.3 Usability .. 12

2.2.4 Animations ... 13

2.3 State of the art .. 13

2.3.1 Electric Sheep ... 13

2.3.2 Milkdrop ... 14

2.3.3 Self-developed ... 15

2.3.4 Karl Sims ... 16

2.3.5 Differences ... 16

3 Design & Implementation .. 18

3.1 Main goal & requirements .. 18

3.2 System architecture.. 19

3.2.1 Animation renderer ... 20

3.2.2 Animation improvement .. 20

3.2.3 Feedback gathering ... 21

3.2.4 Filtering... 21

3.3 Animation renderer .. 23

3.3.1 Choosing an algorithm .. 23

3.3.2 The algorithm explained ... 24

3.3.3 Implementation .. 26

2

3.3.4 Reflection ... 30

3.4 Animation Improvement ... 32

3.4.1 Structure and methods .. 32

3.4.2 Construction of generations ...33

3.4.3 Settings .. 35

3.4.4 Reflection .. 38

3.5 Feedback gathering ... 40

3.5.1 Scale .. 40

3.5.2 Interface .. 41

3.5.3 Reflection .. 41

3.6 Filtering component .. 43

3.6.1 Method ... 43

3.6.2 Feature extraction .. 44

3.6.3 Machine learning algorithm .. 48

3.6.4 Reflection .. 51

4 Testing ... 52

4.1 Overview .. 52

4.2 Test 1 .. 55

4.2.1 Method .. 56

4.2.2 Results ... 59

4.3 Test 2 ... 63

4.3.1 Method .. 63

4.3.2 Results .. 64

4.4 Test 3 ... 68

4.4.1 Method .. 68

4.4.2 Results ... 68

5 Discussion .. 70

5.1 REQ1 ... 70

3

5.2 REQ2 .. 70

5.3 REQ3 ... 71

5.4 REQ4 ... 71

5.5 REQ5 .. 72

5.6 REQ6 ... 72

6 Conclusion .. 76

7 Future work and suggestions ... 78

7.1 Animation generation algorithm... 78

7.2 Animation improvement .. 78

7.3 Filtering .. 79

8 Bibliography ... 81

Appendix A - Finding machine intuition criteria for generating… 84

Appendix B - User feedback for a genetic algorithm geneterating… 92

Appendix C - Animation algorithm function set .. 102

Appendix D - Results of single user network setups 105

Appendix E - Results of multi user network setups .. 106

Appendix F - Example animations and their function trees 107

Appendix G - Examples of genetic operations ..109

4

1 Introduction1
Generative art, the type of art that is a result of some computer program being

left to run by itself, with minimal or zero interference from a human being, has

been around since not that long after the first programmable computers

emerged [2]. Although the name 'generative art' suggests that the art is

generated completely by a computer, this is often far from what happens. The

algorithm is still designed by a human and the inner workings, limits and

constraints of this algorithm determine what the resulting art will look like.

The art itself is generated by the algorithm, but the ‘blueprint’ of that art is

made by the ‘artist’2 behind the algorithm, and thus the artist has a certain

indirect influence on the art. It depends on the algorithm how big this influence

is, but it is always there. This influence is often a necessity though, since an

algorithm with complete freedom in what it displays will have a very low

probability of producing pleasing art. This can be compared to the famous

infinite monkey theorem, where an infinite number of monkeys behind

typewriters for an infinite amount of time will eventually write the complete

works of William Shakespeare by chance. Similarly, an algorithm without any

constraints will surely be able to produce art that is considered beautiful by

people, but the probability will be so low that it will practically never happen.

Some quite impressive attempts have already been made to make a generative

art system with as much freedom as possible. One of the first ones, which also

was one of the first generative art systems around since computers were a

thing, was AARON [3]. Harold Cohen worked on this system for years, and it

could in a way come up with its own paintings. In the beginning the

involvement of Cohen was quite substantial; since he initially could not find a

good way for the system to give colour to the paintings, he colourized them

himself by painting them himself. Later, the system could also choose the

colours, but it never became fully autonomous; Cohen always selected the art

that was best. He phrases this problem well in ‘Color, Simply’ [4]:

1 Some parts of this section are based on a similar text from ‘User feedback for a genetic
algorithm generating animated art’. This paper can be found in Appendix B.
2 There is an interesting discussing about who can be called the artist in cases like this; the
programmer of the algorithm, the algorithm itself or the computer running the algorithm.
More about this can be read in an article by Boden [6]. For clarity, in this document the
programmer is seen as the artist.

5

“I was trying to write a program that could function as an
artist. Not an artist’s tool, a kind of proto-photoshop, that
I could use to make art – after twenty years as a
professional artist I already knew how to make art – but
as an autonomous entity capable of generating original
artworks; as autonomously, at least, as I could figure out
how to make it. I’ve been trying ever since. Autonomy
isn’t an absolute, of course, but given that AARON –
that’s the name of the program I started then – makes
most of its images at night, while I’m asleep, the program
is obviously more autonomous than it was. But its
autonomy doesn’t extend to exercising judgment about
what it’s doing, and exercising judgment myself the next
morning isn’t easy. Which of the hundred or so images
should I print and which should I discard? They’re all
good enough to print.”

Note that Cohen says here that all produced art is good enough to print. He

worked for decades on AARON and over the years substantially changed the

rules and constraints of the algorithm. The high quality of the generated art can

be largely accounted to Cohen’s fine-tuning of these rules. The style of art that

the algorithm generates is also very dependent on these rules, and this is visible

in the art the system generated; over the years it changed visual styles due to

the changing rules, but for each period the style of the generated artworks is

similar, because the rules contained in the algorithm are similar. You can see

this in Figure 1 and Figure 2.

There are several other algorithms that can generate art independently, but

they all need someone to indicate what looks good and what does not, although

the amount of human involvement differs per algorithm. Karl Sims developed

one where the involvement is reduced to just selecting artworks [1]; there are

almost no rules or constraints in the algorithm itself, but the human

involvement is still needed. This makes sense, as a machine has no concept of

beauty. Some examples of the results of Sims’ algorithm can be found in Figure

3.

6

Figure 1: Three different paintings generated by AARON. Years of creation from left to right:
2004, 2008, 20103

Figure 2: Two paintings that are from the same period as the painting in the middle of Figure 13

Figure 3: Three examples of the output of Sims' algorithm [1]

Generative algorithms like this are found more and more in digital art

installations. The abundance of screens and other digital media nowadays

makes it easy and relatively cheap to set up an installation or even a website

that shows generative art. These kinds of installations also start to show more

and more animated art, as it is often quite easy to animate generative art. The

computing power of modern computers and especially GPUs makes it possible

3 Source: AARON’s home (http://www.aaronshome.com/aaron/aaron/gallery/FS-main-
galleryS4.html)

7

to generate the same artwork more than 20 times a second while some of its

parameters are changed over time, resulting in animations.

An algorithm that can generate animated art with a lot of diversity could make

semi-permanent art installations that are on display for months or even years

much more interesting, as the content they show can vastly differ over time. An

algorithm like that can also be very useful for artists to explore art and get

inspired by completely different art than they are used to see; a computer is not

bound to certain ideas and can come up with visuals that are totally different

than what human artists would create.

However, as mentioned at the beginning of this section, a larger diversity in the

generated art also means a higher probability of producing unwanted art. This

is also the case for animations, and the impact of unwanted animations will

probably be even bigger than with static images. Where with images the worst

ones will at most look boring or ugly, animations can get very unpleasant to

look at when they contain a lot of flickering, for example. The involvement of

humans to tell the algorithm what looks good and what does not is thus even

more important for animations. However, with animations it will probably also

take more time to give this feedback. Where with images you can show more

than 100 at once on a screen to be able to tell the algorithm which ones look

good or bad, it would be much more difficult to judge several animations this

way. The amount of different movements will probably be quite overwhelming

and it would therefore be difficult to give each animation a fair judgement. The

strain of displaying all these animations will also be higher for the system,

possibly limiting the framerate of animations, which can change how they look.

Furthermore, since animations contain a time element, it is difficult to scan

through animations and give feedback quickly. Each animation needs to be

observed for at least a couple of seconds to see how it behaves, before a

judgement can be made. This will probably slow down the process significantly

compared to static images.

These are the main design problems faced when building a system that can

independently generate diverse animations. The global aim of this project is to

design a system that can independently generate a vast diversity of abstract

animations, while minimizing the problems stated in this section. The system

should also improve the generated animations to increase the probability of

8

generating pleasant animations. To do this, this system needs a couple of

components:

1. An algorithm that can generate and display a vast diversity of abstract

animations.

2. A component that retrieves user feedback on each animation (since the

system cannot make judgements about its own output, as mentioned at

the beginning of this section).

3. An algorithm that will improve the generated animations using this

feedback.

4. A component that can recognize the most unpleasant animations and

can filter those out of the output of the system before it is shown to the

user.

The focus of this project will be on this last component, since this will play the

biggest role in solving the problems stated in the previous paragraph. This can

all be summarized in the first (design) question of this project:

RQ1: “How to design a system that generates a vast diversity of

abstract animations, while minimizing the amount of unpleasant

animations in its output?”

Since the focus of this project is on the filtering part of the system, the quality

of the designed system will be tested on the amount of unpleasant animations

in its output. This leads to the second research question of this project:

RQ2: “What is the performance of the filtering component in the

designed system in terms of precision, recall and F-score?”

To answer these questions, first past research towards user feedback methods

and art preference is discussed. Next, the design process of the system is

described per component. Finally, the user tests and their results are discussed

and conclusions are made.

9

2 Context
In this section, some studies towards factors that influence people’s preference

in art and user feedback methods for preference are discussed. Next to this, the

state of the art of generative algorithms for animations is discussed. These

subjects are already studied in two earlier studies: ‘Finding machine intuition

criteria for generating aesthetically pleasing animated art’ and ‘User feedback

for a genetic algorithm generating animated art’, which can be found in

respectively Appendix A and Appendix B. The relevant pieces of these studies

(mainly the review of other studies towards the subjects) will be used here and

the results and conclusions of the studies will be summarized here.

2.1 Preference in art

2.1.1 Static art
Several studies found that the complexity of generated images correlated with

subjects' preferences of the images [5] [6] [7]. These studies used random

polygons that differed in the amount of sides (more sides were interpreted as a

higher complexity of the polygon), or visuals made by a random walk (where

the length of the walk was interpreted as the complexity of the visual).

Participants were asked which visuals they preferred. The results suggested

that people have a preferred amount of complexity; preference increased with

complexity up to a certain point, after which preference decreased again. Later

studies used non-representational art instead of generated images. These

studies used a small panel of participants to judge the complexity of each

artwork. Results showed that preference increased with complexity, but did not

find a very clear decrease of preference at the highest complexity ratings. It was

suggested that this might be because the artworks with the highest complexity

were simply not complex enough, which made it not possible to notice this

effect [8] [9]. The latter study also found that the complexity of artworks

positively correlates with the amount of times subjects would look at the

artworks. This was to be expected since there are more visual stimuli in the

artwork, so it would take more time to process everything visually.

Although studies using generated random polygons seemed to find a clear

relation between complexity and preference, a study by Martindale found a

different relation (a monotonic function instead of an inverted-U function)

10

when the test circumstances were slightly changed [10]. They argued that the

shape of the polygons did probably not just measure complexity but also other

variables. Further experiments indicated that meaningfulness had a bigger

influence on preference than complexity. Meaningfulness is interpreted here as

how strong of a mental connection a viewer of the art can make to concepts he

knows. For example: a cloud that looks like a cat is probably more meaningful

to a viewer than a cloud with a much more random shape.

However, there is also ambiguity in art, which can be described as how many

things a viewer might see in art. This makes that meaningfulness and

ambiguity are quite related in art. Most artworks with a high ambiguity will

have a low meaningfulness and vice versa. Speaking in cloud's terms again: the

cat-shaped cloud has a higher meaningfulness but at the same time is less

ambiguous to a viewer since the similarity to a cat predominates other

interpretations of the shape. The random-shaped cloud probably has a higher

ambiguity since it is easier to see multiple similarities to known shapes in it,

but these similarities are less strong and thus the cloud has a lower

meaningfulness. Like with complexity, research was done on a relation

between ambiguity and preference in art. Jakesch and Leder performed a study

that showed that subject's preference and interest towards artworks was

highest for artworks with a medium amount of ambiguity [11]. Both artworks

with higher and lower ambiguity were rated significantly lower on both

interestingness and preference. This shows that there is probably a preferred

level of ambiguity in art.

Several studies found a link between preference and colour. Ambiguity and

liking ratings were found to be higher for coloured artworks compared to

grayscale artworks [11]. Furthermore, the more prototypical colours were, the

higher the preference was found for those colours [12] [10]. This might indicate

that artworks using prototypical colours are preferred over artworks using less

prototypical colours.

The type of art also seems to matter. Vartanian and Goel found that

representational art was preferred over abstract art [13].Another interesting

find in their study was that normal artworks were preferred over filtered

(blurred) artworks. This might be linked to earlier found correlations between

11

preference, complexity and meaningfulness; a blurred artwork will lose

complexity and meaning.

2.1.2 Animations
A study by Bartram and Nakatani on how motion is perceived showed that

motion features like fast speed, an angular movement shape (vs. curvy), obtuse

angles and NOT smooth motion were associated with negative terms such as

angry, painful, threatening, disgust, rejecting, urgent, fear, and annoying [14].

Features like slow speed and a curvy motion shape were associated with calm

terms such as reassuring, calming, unimportant, relax, boring, and relieved.

This indicates that fast motion, motion that changes direction abruptly and

jerky motion might not be preferred by people.

The study ‘Finding machine intuition criteria for generating aesthetically

pleasing animated art’, which can be found in Appendix A, tried to find out

what factors of abstract animation influenced people’s preference for these

animations, and in what way. Several animations were created that differed in

speed, the predictability of their movements and whether they were blurred or

not. People could watch and rate the animations online. Overall, the preference

for slower moving and more predictable animations was slightly but

significantly higher. People also tended to prefer non-blurred animations but

this seemed to differ based on the complexity of the animations.

2.2 User feedback methods

2.2.1 Feedback scales
Research on preference feedback often focuses on recommender interfaces for

things like movies, music or books on the internet [15]. These are interfaces on

websites where people can rate these products to give other people an idea of

what is good and what is bad. There are different ways in which this feedback is

gathered, mainly differing on the scale. Facebook started with its famous unary

scale, where people can only give 'thumbs ups'. Other common scales are

binary (positive/negative), 5 or 10 point (often stars/half stars) or a 100-point

scale. Another method that is less common works differently than the previous

mentioned scales, because it presents the user with two options. The user must

then choose the best option of those two. Previous studies already tested which

of these scales is best in several scenarios and according to several criteria.

12

These studies can be used to find the criteria that determine if a feedback

method is good or not and are discussed in the following two sections.

2.2.2 Reliability
It is possible to (accidentally) introduce a bias in feedback because of certain

design choices for the feedback interface. Friedman and Amoo [16] mentioned

different causes for a possible bias. Connotations can bias the results because

the negative connotations might sound more negative to the participant than

the positive connotations sound positive. This also applies to numeric values;

there is a difference between having a scale range from -5 to 5 and from 0 - 10.

People are more likely to use the lower end of the scale in the last case since the

lower end is perceived more negative in the first case. Forcing a choice can bias

the results if the amount of undecided people or people without an opinion is

significant. Unbalanced scales, meaning there are more positive than negative

points on the scale (or the opposite) can have a big influence on results. The

order in which the scale is presented (does it start at the positive or negative

side) also influences the reported answers, but it is difficult to say which one of

the two has the smallest bias. This may also depend on the subject of the

question. Garland [17] found that the absence of a mid-point on a scale can

distort results, although it was not possible to tell which scale was most

accurate.

The amount of points on the scale can also have an influence on the reliability

of the scale. Too few points means a loss of information, and too many points

increases variance while accuracy may not increase significantly. Friedman and

Friedman [18] studied this problem and recommended the range between five

and eleven points as most optimal. Friedman and Amoo [16] stated that this also

depends on what the scale will be used for. If there is no reason to think

participants will have a complicated opinion about something, even a three-

point scale might suffice.

2.2.3 Usability
Besides affecting the reliability of the scale, the amount of points also has an

influence on users' behaviour and satisfaction. Sparling and Sen [19] studied

how different scales (unary, binary, five-point and 100-point) influenced the

time it took users to rate an item, their cognitive load, and overall satisfaction

13

with the scale. They found that overall the rating time of users increased with

the amount of points on the scale. Cognitive load was estimated by measuring

the reaction time of users on a secondary task: clicking a button as soon as it

becomes red (on random intervals). The cognitive load was found to be lower

for a unary scale compared to other scales, but differences between the other

scale were not significant. Users preferred the binary and five-point scales, and

liked the five-point scale best.

2.2.4 Animations
The study ‘User feedback for a genetic algorithm generating animated art’,

which can be found in Appendix B, investigated if a binary or 5-point scale was

preferred by people if used to indicate preference for abstract animations.

People could rate several abstract animations generated by an algorithm which

used a genetic algorithm to evolve the animations based on the user’s feedback.

After rating 30 animations with each scale, participants were asked which scale

they preferred and why. The results were inconclusive, but the explanations

given seemed to indicate that usability in terms of mental effort and the

amount of freedom people had to express their opinion were key factors in

their preference.

2.3 State of the art
In this section, some existing algorithms that generate animations are

discussed.

2.3.1 Electric Sheep
A well-known algorithm is Electric Sheep, a project that uses distributed

computing to render animated art that is generated using a genetic algorithm

[20]. Each frame in an Electric Sheep animation is a fractal flame, a member of

the Iterated Function System (IFS) class of fractal algorithms [21]. The

algorithm allows a big diversity of visual animations, although they still have a

distinct visual style. An example of two fractal flames can be seen in Figure 4.

Fractal flames are animated into Electric Sheep animations by varying some

parameters of the fractal flame over time.

14

Figure 4: Two fractal flames [21]

Each animation can be rated by users all around the world using a binary scale;

each user can vote an animation 'up' or 'down'. A genetic algorithm mates and

mutates the animations in the current ‘population’ to create a new population,

so the animations evolve over time based on user feedback. Low rated

animations have a lower chance of mating in the genetic algorithm, so low

rated animations might ‘die out’ after a while, while high rated animations have

lots of offspring. Besides these genetic operators, the algorithm can add new

randomly generated animations and users can add animations they designed

themselves to the population.

Iterated Function Systems take quite some computing time to render, and an

animation would need at least 20 fractal flames per second to be animated

smoothly. That is why Electric Sheep uses distributed computing to render the

animations into short videos, that are then distributed over the network.

However, rendering fractal flames fast enough to render animated ones in real-

time is possible nowadays using the GPU [22].

2.3.2 Milkdrop
Another existing algorithm that generates animations is used as music

visualization in the music player Winamp4. It is called Milkdrop5 and uses

audio wave forms, shapes, spatial transformations and fragment shader

programs to render its animations. Unlike Electric Sheep, Milkdrop animations

are made by people programming so-called 'presets'; it does not have a genetic

4 http://www.winamp.com/
5 http://www.geisswerks.com/milkdrop/

15

algorithm to automate this process. Milkdrop presets can be rendered in real-

time. An example of the output of a Milkdrop preset can be seen in Figure 5.

Figure 5: A Milkdrop preset (Inkblot by Geiss)

2.3.3 Self-developed
During the study ‘User feedback for a genetic algorithm generating animated

art’, which can be found in Appendix B, an algorithm was developed that was

loosely based on Milkdrop, but it used a genetic algorithm to generate the

animations. It used several layers of shapes and several image transformation

functions to form animations that could range from simple to quite complex.

An example can be seen in Figure 6.

Just like with Milkdrop, the animations could be rendered in real-time. Users

could give feedback for each animation using the keyboard in a binary or 5-

point scale.

Figure 6: A frame of an animation generated by the self-developed algorithm

16

2.3.4 Karl Sims
Karl Sims developed a genetic algorithm that generates different images (not

animations) by changing its own code based on human feedback [23]. The

algorithm builds recursive lisp expressions using different functions. These

expressions are executed for each pixel, resulting in an image. The lisp

expressions can generate complex images with a very big diversity, since the

value of each pixel is determined separately, so the algorithm is not bound to

certain shapes or colours. Some examples of the output of Sims’ algorithm can

be seen in Figure 3.

The algorithm, as Sims developed it, does not generate animations, but he

suggests several methods that are easy to apply to animate the output; the

simplest one being the use of time (the number of seconds elapsed, for example)

as an input variable in some of the lisp functions of the expression.

The images are evolved using a genetic algorithm, like the Electric Sheep

algorithm. It seems like Sims could choose from a grid of generated images

which ones would be used to generate the next ‘generation’, but he does not

explain this process in detail.

2.3.5 Differences
The main differences between the algorithms can be described in terms of the

animations they (could) generate, how the animations are designed, and how

much computing power is needed.

Animations
The type of animations the algorithms generate are very different: Electric

Sheep animations are very diverse, although the animations most of the times

look like some form of geometry that glows on a black background. They are

very abstract. Milkdrop can generate very diverse animations that can range

from very abstract to semi-representative animations that are made to look like

something, or use distinct shapes such as circles and squares. The self-

developed algorithm mainly uses shapes and thus is never completely abstract.

Its user test showed that people thought there was a lack of diversity in the

animations. Karl Sims’ algorithm could generate very diverse animations,

although mostly abstract. Unlike Electric Sheep, these animations do not seem

to have a common visual style, which makes this a promising algorithm for the

17

to-be-developed system, since RQ1 states that a vast diversity of animations is

needed.

Design
Electric Sheep are mainly generated by a genetic algorithm which adjusts a

parameter set, but can also be designed by people. Milkdrop animations are

exclusively designed by people, since the animations are partly a written

program. The animations in the self-developed algorithm are designed by a

genetic algorithm which adjusts parameters in a parameter set. The animations

from Sims’ algorithm are also designed by a genetic algorithm, but in this case

animations are altered by adjusting the rendering program itself, rather than a

parameter set which is used by that program to render the animation.

Computing power
Both Milkdrop and the self-developed algorithm do not require a lot of

computing power, and their animations can be rendered in real-time on most

modern computers. The traditional rendering method of Electric Sheep

however, needs a lot of computing power and cannot render most Electric

Sheep in real time. However, the method developed by Lawlor [22] is a

promising method that could make it possible to render Electric Sheep in real

time. Sims’ algorithm can be computationally intensive, but this could be

improved if it is possible to run the algorithm on the GPU. This should be the

case, since Sims’ algorithm performs the same calculation on each pixel of the

output image; which is exactly what GPU’s are designed to do.

18

3 Design & Implementation
This section describes the design and implementation of the system. It

describes the main problems and goals for each component, the design choices

made to reach these goals or solve these problems and a description of how this

was implemented. This project was implemented in C# and GLSL.

3.1 Main goal & requirements
The main goal of the system is to independently generate a vast diversity of

abstract animations, while minimizing the number of unpleasant animations it

shows. It should also improve the generated animations. This is translated into

the global requirements stated below. Some requirements have several sub

requirements to clarify the global requirement.

REQ1. The system should generate visibly moving animations.

1.1 The output of the system should be animations; sequences of

images where each image changes a bit, which translates to an

illusion of motion when the images are shown in rapid

succession.

1.2 The animations should be visibly moving; the changes over time

should be big enough for the user to clearly see that the output is

not a static image.

REQ2. The generated animations should be diverse.

2.1 The algorithm that generates the animations should not be bound

to certain shapes or colours.

2.2 There should be no clear common visual aspect between the

generated animations. An example of such an aspect is the

common visual style between Electric Sheep animations: they all

seem to consist of some sort of glowing geometry.

REQ3. The system should gather feedback on the animations from users.

3.1 The feedback method should be easy to use.

3.2 The feedback method should allow the user to express their

opinion sufficiently.

19

3.3 The feedback method should give the system enough information

about each animation to be able to improve the animations and

reject unpleasant ones.

REQ4. The system should improve the generated animations.

The system should suit the generated animations to the

preferences of the user; generate more animations towards the

user’s likes, and less animations with elements the user dislikes.

This should translate to better rated animations over time.

REQ5. The system should keep on exploring new animations.

Since we are not looking for one global optimum (the best

animation of all possible animations), but rather want to

constantly show different animations, the algorithm should not

converge to one ‘best’ animation, but rather keep on looking for

other good animations.

REQ6. The system should filter out unpleasant animations.

The system should minimize the amount of animations that

receive the lowest possible feedback by learning what kind of

animations receive a low feedback, and filtering those animations

from its output. This should result in less low rated animations,

and speed up the evolution process, since the filtered animations

do not have to be rated by the user.

3.2 System architecture
The architecture of the designed system can be found in Figure 7. It consists of

four main components. The task of each component and which requirements it

should fulfil is shortly described in this section.

20

Figure 7: The system's architecture

3.2.1 Animation renderer
This component renders the animations using an algorithm such as the ones

described in section 2.3. It takes ‘instructions’ from the animation

improvement component, which tell how to render each animation. These

instructions can be parameter sets, or almost complete programs which are

executed to render the animations. What form these instructions take is

dependent on which algorithm is used for the animation rendering.

The last requirement is not directly related to this component, but the

rendering algorithm should support being ‘steered’ by instructions from the

animation improvement component. It is therefore important to keep this

requirement in mind when choosing a rendering algorithm.

3.2.2 Animation improvement
The animation improvement component takes feedback from the user or the

filter to improve the animations. In short, it makes more variations of

animations rated as being good, while discontinuing ‘bad’ animations. It does

this by modifying the instructions it gives to the rendering component.

Renderer requirements

• REQ1: The system should generate visibly moving animations.
• REQ2: The generated animations should be diverse.
• (REQ4: The system should improve the generated

animations.)

21

The last requirement is relevant to this component, because, as can be read in

section 3.4, some techniques for improvement are prone to generate lots of

similar animations, which would decrease diversity of the generated

animations.

3.2.3 Feedback gathering
This component gathers the feedback from the users and forwards it to the

animation improvement component and the filter model.

3.2.4 Filtering
The filtering component is the focus of this project. It builds a filtering model

by learning from the user feedback it receives on the shown animations. This

model classifies each rendered animation as a ‘bad’ or ‘good’ animation, where

‘bad’ means that it is expected to receive the worst possible rating when shown

to the user. If an animation is classified as ‘good’, the filter does nothing and the

animation is shown to the user. If the animation is classified as ‘bad’, the filter

gives the worst possible feedback to the improvement component, and the

animation is not shown to the user. In short, it rates the animation on behalf of

the user, so the user does not have to see the bad animation.

Improvement requirements

• REQ4: The system should improve the generated animations.
• REQ5: The system should keep on exploring new animations.
• (REQ2: The generated animations should be diverse.)

Feedback requirements:

• REQ3: The system should gather feedback on the animations

from users.

22

The filter also rejects all animations that do not contain enough motion to be

visibly moving. That is why REQ1 is also related to this component.

Filter requirements:

• REQ6: The system should filter out unpleasant animations.

• (REQ1: The system should generate visibly moving animations.)

23

3.3 Animation renderer
The choice for an algorithm to render the animations is discussed in this

section. The chosen algorithm and its implementation in the system are then

explained in more detail.

3.3.1 Choosing an algorithm
To make a choice on what algorithm to use for the rendering of the animations,

the algorithms discussed in ‘State of the art’ (Section 2.3 on page 13) are

compared. More details about each algorithm can be found there.

In section 2.3.5, the differences between four existing algorithms are described.

To make a fair comparison, the differences described there in terms of the

generated animations, the design process of these animations and the

computing power are translated to the requirements set at the beginning of this

chapter. This means the algorithms are compared here in terms of the diversity

of the generated animations, the ease at which the animations can be modified

by the system, and the computing power needed to render the animations. The

computing power needed is not part of the requirements, but since the

differences can be quite big, this factor is also considered in the decision. An

overview of how each algorithm scores on these factors can be found in Table 1.

Table 1: Overview of differences in algorithms

Algorithm Diversity Modification

by system

Computing

power needed

Electric Sheep +/- + -

Milkdrop + - ++

Self-developed - ++ ++

Karl Sims ++ + ?

As can be seen, all algorithms except for Sims’ algorithm have at least one

disadvantage over the other algorithms. However, the computing power

needed for Sims’ algorithm is unknown. Since it can probably run well on

modern GPU’s, and it is superior in the diversity of the generated animations,

this algorithm was chosen to be used in the system.

24

3.3.2 The algorithm explained
The visual algorithm will be explained in short here. More details can be found

in ‘Artificial Evolution for Computer Graphics’ by Sims [1]. This is also where

the information and images in this section come from. Note that only the visual

part of the algorithm will be discussed here; the evolution part will be discussed

in section 3.4. Sims’ algorithm works with a function set where each function

works on a per-pixel basis. An expression is built by starting with one of these

functions, and filling the arguments of this function with constants, vectors,

variables such as X and Y coordinates, or another recursively generated

expression. This results in a large recursive expression, which if executed on

each pixel, can generate complex images. The function set consists of basic

functions like +, -, mod, sin, log, but also more advanced noise generation

functions or functions that use neighbouring pixels to determine gradients, for

example. Sims gives some examples of relative simple expressions and the

associated images to explain the concept:

Figure 8: Some examples of results of simple expressions in Sims' algorithm

The LISP expressions associated with the above images (from left to right, top

to bottom) can be found below. Note that the X and Y coordinates range from -1

to 1.

a. X

b. Y

25

c. (abs X)

d. (mod X (abs Y))

e. (and X Y)

f. (bw-noise .2 2)

g. (color-noise .1 2)

h. (grad-direction (bw-noise .15 2) .0 .0)

i. (warped-color-noise (* X .2) Y .1 2)

The fractal-like shapes in Figure 8e are a result of using a bitwise operator on

floating-point numbers (X and Y coordinates in this case). The difference

between normal noise generation functions and their warped versions is that

the normal versions always use the X and Y coordinates as input parameters for

the noise generation, where in the warped versions these input parameters can

be given. This makes it possible to warp the generated noise, as can be seen in

Figure 8i, which is the same noise as in Figure 8g, but with a scaled X coordinate

as input parameter.

The above described expressions are relatively simple, which makes it possible

to see the relation between the expression and the resulting image. However,

more complex images are a result of complex expressions, and the relation

between the expression and the result are hard to see. An example of this can be

seen in Figure 9. This image was rendered using the following expression:

(sin (+ (- (grad-direction (blur (if (hsv-to-rgb
(warped-
color-noise #(0.57 0.73 0.92) (/ 1.85 (warped-color-
noise x y 0.02 3.08)) 0.11 2.4)) #(0.54 0.73 0.59)
#(1.06
0.82 0.06)) 3.1) 1.46 5.9) (hsv-to-rgb (warped-color-
noise y (/ 4.5 (warped-color-noise y (/ x y) 2.4 2.4))
0.02 2.4))) x))

26

Figure 9: A more complex result of Sims' algorithm

Sims suggested different ways to animate the images:

• Adding a variable ‘TIME’ that can be used in the expressions just like X
and Y coordinates are used.

• Using existing animated images as input in the expression.
• ‘Dissolving’ two expressions. This requires the expressions to have a

similar structure, so the identical parts can stay the same while the
differences are interpolated.

• Altering the mapping of the X and Y coordinates to create panning and
zooming effects.

• Experimenting by hand, for example by interpolating parameters in the
expression.

3.3.3 Implementation
The algorithm lends itself well for implementation in fragment shaders on the

GPU. Fragment shaders are essentially little programs that are executed for

each pixel of the output texture, and return the colour that that pixel should

have. A system was developed that can translate the ‘instructions’ received

from the improvement component into shader programs written in GLSL.

These instructions are in the form of trees, where every node is either a

function from the function set with its arguments as children, or a variable.

Function set
First, the function set was determined. This function set can be found in

Appendix C, including the types of arguments each function takes, and

basically consists of three types of functions:

27

1. Float functions: functions that output floating point values.

2. Vector functions: functions that output three-component vectors.

3. Image functions: Functions that act on an input image: they use the

values of neighbouring pixels to determine their output (which consists

of a three-component vector).

The functions are a mix of functions that are already present in GLSL and

functions that Sims used. Since GLSL supports vectors and floating-point

variables, the parts of the expressions that only contain the first two types of

functions can basically be copied into one shader program without any

problems. However, this approach does not work for image functions. These

functions need to know the colour values of their neighbouring pixels, which

means the image on which this function is executed needs to be rendered first.

Therefore, the subtree that renders the input image of such a function is

executed in a separate shader program. Once that image is rendered, it is passed

to the shader program which executes the image function. The output of that

shader program is then passed to the shader program containing the ‘parent’

function of the image function.

Iterated Function Systems
The only exception for the above described method is the function that

calculates an Iterated Function System (IFS). This is a function that does not

need the information of neighbouring pixels, but still runs in a separate shader

program, because the rendering of such an image works differently than the

rendering of the other functions. Since this function is quite different than

other basic functions, and the results of an IFS can differ greatly depending on

the implementation, a short explanation is given here.

Since Sims does not explain what kind of IFS his algorithm uses, and the

Electric Sheep algorithm (which also uses IFSs) was also considered a pretty

good option for the visual algorithm, fractal flames were used as IFS.

Generally, IFSs are systems with a set of linear transformative functions that,

when alternatively and iteratively executed, form complex shapes. The fractal

flame algorithm also contains non-linear functions and several other

modifications that together make the resulting images very complex and give

28

them a three-dimensional feeling. More details about this algorithm can be

read in Draves’ and Reckase’s article on the subject [21].

Fractal flames are normally rendered using a method called the chaos game.

This is a computationally heavy method that does not lend itself well for

execution on the GPU, as we would like to do here. However, Lawlor came up

with a different method of rendering fractal flames that is well suited for

execution on a GPU. Details on the implementation can be found in Lawlor’s

article on the subject [22].

A simple version of this method is implemented here, which only uses

functions that can be well implemented in a fragment shader program. These

functions (of which examples can be found in the appendix of ‘The Fractal

Flame Algorithm’ by Draves and Reckase [21], they call them ‘variations’) are:

• Linear

• Sinusoidal

• Spherical

• Swirl

• Horsehoe

• Polar

• Heart

• Hyperbolic

• Julia

• Bent

• Fisheye

• Exponential

• Power

It was decided that a maximum of five different functions can be used in one

IFS function, because that already gives a lot of possibilities for different fractal

flames.

Displaying the animations
The animations do not necessarily contain periodic elements, which means that

quite some animations will only move during the first couple of seconds; until

the time values used in their trees go outside certain ranges. For example, if the

29

red channel is connected directly to the time parameter, the red value of all

pixels will increase during the first second (since colour is coded in a range

from zero to one in GLSL), and then stay at the maximum, since after that the

time value is always greater than one. Preferable, the animations should

animate longer than a couple of seconds, so it was decided that the first ten

seconds of the animations are skipped, also in the analysis done on them for the

filtering component. Animations like the one described above will then contain

no movement during analysis, and can be rejected by the filtering component.

Two examples of simple animations with small function trees, generated by
this algorithm, can be seen in Figure 10, and their function trees in Appendix F.

Figure 10: Two example animations with time codes

10.0s 10.55s 11.2s 12.05s

13s 14.15s 15.6s 17.15s

10.0s 10.55s 11.2s 12.05s

13s 14.15s 15.6s 17.15s

30

3.3.4 Reflection
A reflection is done on the requirements of this component. The relevant

requirements for this component are:

• REQ1: The system should generate visibly moving animations.

• REQ2: The generated animations should be diverse.

• (REQ4: The system should improve the generated animations.)

REQ1
This requirement has two sub requirements. The first says the system needs

animations. This was accomplished by modifying Sim’s algorithm to output

animations instead of static images, as it was originally designed to do.

The second sub requirement states that the animations should be visibly

moving. It is possible that by chance the system generates animations without

any ‘TIME’ nodes in its function tree, or the ‘TIME’ nodes are only found in

parts of the tree that are not expressed in the final animation. This will still

result in a ‘static image’; an animation that does not contain any motion. Also, it

is possible that an animation does contain motion, but it is so subtle that a

human viewer will not see this as motion. The filtering component is designed

to filter these cases from the output of the system. More details on how this is

implemented and further reflection on this requirement can be found in section

3.6.

REQ2
This requirement states that the animations should not be bound to certain

shapes or colours, and there should not be a clear common visual aspect

between them.

Since the functions of the rendering algorithm are executed per pixel, and can

work freely on all three colour channels, the algorithm is not bound to shapes

or colours. The broad function set should give the algorithm enough freedom to

render animations with very diverse visual styles.

If this actually results in diverse animations without any common visual

aspect, is hard to measure. However, observing the animations generated for

the different tests, as discussed in chapter 4, should give an idea.

31

REQ4
This requirement is related to this component, since the algorithm should

support being ‘instructed’ by the improvement component. Since Sims himself

used a genetic algorithm to improve the images, this should be the case.

32

3.4 Animation Improvement
The design and implementation of the animation improvement component are

explained in this section. Since a lot of the design is inspired by the work of

Sims and Rooke, there are quite some references to their work in this section. If

referred to Sims’ work, the information comes from his article ‘Artificial

Evolution for Computer Graphics’ [1], unless otherwise specified. The same

goes for Rooke’s work; this comes from his chapter ‘Eons of genetically evolved

algorithmic images’ in the book ‘Creative evolutionary systems’ [24], unless

otherwise specified.

To improve the generated images, Sims used a genetic algorithm, which slowly

evolved the images in the direction he indicated by selecting certain images.

Steven Rooke later used an extended version of the algorithm, also with a

genetic algorithm to improve the image. Both reported that the genetic

algorithm worked well, although there are almost endless ways of using a

genetic algorithm. Rooke experimented with several combinations of settings

and methods for the genetic algorithm to increase its performance and reported

his findings. Since a genetic algorithm seemed to work well for both Sims and

Rooke, and Rooke’s observations with different settings for his genetic

algorithm are very useful, this project also used a genetic algorithm to improve

the animations.

In this section the settings and implementation of this genetic algorithm is

explained. It is assumed that the reader is familiar with the concept of genetic

algorithms and common technical terms used when talking about these

algorithms. If that is not the case, a short explanation of what a genetic

algorithm does and the terms used to describe a genetic algorithm can be found

in section 2.1 of ‘User feedback for a genetic algorithm generating animated art’,

which can be found in Appendix B.

3.4.1 Structure and methods
As we are evolving a program here, we follow the workings of Koza on genetic

programming [25], instead of an algorithm inspired by the work of Holland on

genetic algorithms [26]. This means our genetic representation is a tree, where

every node contains either a function with its arguments as children, or a

variable or constant without any children. Trees are mutated by randomly

33

regenerating a random branch. Crossover is done by swapping two randomly

chosen subtrees between two trees. Examples of these operations on trees can

be found in Appendix G. The process that Koza calls ‘encapsulation’ was also

implemented but was not used in the end, to keep the genetic algorithm simple.

The fitness function is in practice not present, as the fitness of an animation is a

direct result of the feedback this component receives for that animation. More

information about how human feedback translates to a fitness value can be

found in section 3.5, ‘Feedback gathering’.

3.4.2 Construction of generations
It is useful to first explain how the used genetic algorithm constructs

generations, since most of the settings explained in the next section will

influence this process.

At the start of a run of the system, and whenever a population is replaced, a

new population is generated by making random function trees. These trees are

constructed using a ‘grammar’ for functions, which is summarized in the

function set in Appendix C. The grammar consists of all functions and the types

of their arguments and output. For each argument of a function, a function is

found that outputs a variable of the required type. In turn, that function’s

arguments (if present) are filled the same way. To be sure that this recursive

process ends, a maximum tree depth of five levels is set for these randomly

generated trees. If an argument is needed of the ‘float’ type, there is a chance

that a variable is used instead of a function. This can be a mathematical

constant such as π or e, or a random number. Another possibility is that a

parameter such as time, the x-coordinate, or the y-coordinate is chosen. The

chance that a variable is chosen over a function gets bigger the closer the

current level is to the maximum level.

There is a 75% chance that a tree is generated using the above described

method. Otherwise, the tree comes from the crossover of successful animations

from past populations. More about this is explained in section 3.4.3, subsection

‘Long-term memory’.

An animation is only added to the new population if it passes the filter in the

filtering component.

34

After running for a while, the system will reach a points where it gathered

feedback on all animations in a population. At that point, a new generation of

animations is constructed for that population. First, the fitness values of all

animations in the population are normalized, so their sum is exactly one. The

new generation is then filled with animations by repeating the following

process until the new generation is filled:

1. Choose between the following methods, where each method has a pre-

set probability of being chosen: reproduction, crossover or mutation.

2. If crossover is chosen, two random animations are chosen from the old

generation by using their normalized fitness values as probabilities of

being chosen. Crossover is performed on these animations to form two

new animations, which are placed in the new generation.

3. If one of the other two methods is chosen, one random animation is

chosen with the normalized fitness values as probabilities of being

chosen. The animation is reproduced or mutated, and placed in the new

generation.

To improve the diversity of the animations in each population, animations that

look the same within a generation are removed, so every animation is unique.

Note that animations often look the same, despite the low chance of the genetic

algorithm generating two or more duplicate trees. This happens because there

are often parts of the tree that have no influence on the rendered animation. An

example of this can be found in Figure 11: the ‘max’ function will always give the

constant number as a result, as this is always bigger than the result of the

cosine. This results in two duplicate animations, despite both having been

rendered by different trees.

Therefore, the animations are compared using the actual rendered animations:

each animation is partly rendered to extract some features which say

something about the motion and colours in the animation. These features are

further explained in section 3.6.2. Animations that generate the exact same

features are assumed to look the same, which is used to find and remove

duplicates within a generation. A check was done with a small batch of around

100 animations to see if animations with the same features looked the same as

well. Animations with the same features were not distinguishable from each

other.

35

After this process has been completed, the new generation will be presented to

the user until all animations are rated and this process repeats to form a new

generation again.

Figure 11: Two different trees that will generate the same animation

3.4.3 Settings
How a genetic algorithm behaves is very much dependent on variables like

population size, probabilities of reproduction, crossover and mutation, and

other possible modifications. It is therefore important to choose the right

values to let the genetic algorithm behave the way you want. For example: a

high probability of crossover will have a high chance of producing good

animations, but reduces the diversity. For mutation, it is the other way around.

A high probability of reproduction ensures that good animations will not be

lost easily, but this also reduces diversity. A big population size increases

diversity and probably the quality of the found animations, because it takes

longer until the algorithm converges on a certain type of animation, and

therefore has more time to explore. However, a big population size significantly

impacts the speed at which the genetic algorithm goes through its generations

and therefore the speed at which the animations will improve. The design

choices on these variables and other implemented concepts that differ from a

conventional genetic algorithm are explained below.

36

Population
Sims used population sizes of 20-40 images, Rooke used 100-200. This is small

compared to other genetic algorithms, but most genetic algorithms have a

fitness function that determines fitness automatically. This is often done by

doing some calculations, running a simulation, or comparing the results of a

program (in case of genetic programming) with the desired results. As Sims and

Rooke had to give the feedback themselves, which is much slower than an

automated process, they chose smaller population sizes. However, rating even

20-40 animations for each generation of the population is still a tedious

process, which should be optimized as far as possible.

Sims and Rooke could look at multiple images at once to give feedback quite

fast. This approach was tried with animations during the study ‘User feedback

for a genetic algorithm generating animated art’, which can be found in

Appendix B. Showing only two animations at once already seemed

overwhelming, and it was thought that this would influence the feedback of the

animations too much. This could result in animations receiving different

ratings than if they were rated separately. Since rating animations would

therefore take even more time than rating images, a population size of 20

animations was first experimented with. One of the most notable things seen

was that, most of the times, in the first generation only one or two animations

got a good rating, resulting in a second generation that was filled with

variations on mainly those two animations. This reduced the diversity to such

extend that an alternative had to be found.

A solution that works well in keeping the diversity high, is using multiple small

populations. Each time a new animation needs to be shown, a random

animation without a rating from a random population is chosen. This way, the

user does not see similar animations all the time. Each population will still

converge to a couple of good animations, but since there are multiple

populations, the diversity is kept high. Using ten populations with each a

population size of ten seemed to give a good balance between the speed of the

genetic algorithm and the diversity of the shown animations.

The small population sizes, a new problem arises: because there are only ten

animations in each population, on average only one animation gets reproduced.

The chance that this is one of the better perceived animations is still not that

37

big, and thus it is possible that good animations are ‘lost’, leaving the new

generation with only worse animations. This happens all the time in genetic

algorithms, and is normally not a big problem, because there are plenty of other

good animations that are not lost. However, with populations this small, this is

not always the case. It makes the probability of losing high quality animations

quite big. Increasing the probability of reproduction would partly solve this

problem, but there is still a chance that reproduction does not happen, or that

only the worse animations are reproduced. Therefore, to make sure that quality

is not lost, a mechanism was implemented that always reproduces the

animations with the highest score. This comes at the cost of diversity, but in

this case, it was decided that it was worth it for the increased quality of the

animations.

Convergence
Since the algorithm should continuously show new animations instead of

looking for a global optimum (REQ5), it needs to decide when a population

converged enough. This means it should recognize when the population gets

‘stuck’ on a certain type of animation, so it can replace that population, and new

animations will be shown.

Because duplicates are already removed from each new generation,

convergence can roughly be measured by the size of a population. Therefore,

when a population gets to a size of three or smaller, it gets replaced.

Long-term memory
The small size of the populations make that the populations converge quite

quickly and thus the animations do not have a lot of time to evolve. This would

break the genetic algorithm. A solution was found by implementing an idea

that Rooke used in his algorithm, something he called a ‘Genetic Library’.

Rooke would often ‘feed’ his first generations with successful images from past

runs of the algorithm, stored in this library. This would give the algorithm a

head-start and would increase the quality of the evolving images. A similar

system was implemented in this system, although the process was automated.

This allowed the continuation of the evolution process of successful animations

from past populations. Since the process is fully automated here, it is referred

to as a ‘long-term memory’ of the genetic algorithm.

38

The memory works by saving the best animations of a population before the

population is replaced. Every time a new function tree is generated for a new

population, there is a 25% chance that that tree is generated by performing

crossover on two trees from this ‘long-term memory’ of past successful

animations.

This way, there is a short-term evolution going on within each population until

it is replaced, and a long-term evolution of the most successful animations that

spans multiple populations and could go on for a long time.

Probabilities
The probabilities of reproduction, crossover and mutation are normally the

main tools to adjust the behaviour of a genetic algorithm. However, the focus of

this study is on the automatic recognition of unpleasant animations and the

other factors in the genetic algorithm (explained above) seemed to have a bigger

impact on the speed of improvement and the diversity of the animations.

Therefore, for the final user test, these probabilities were chosen based on

Rooke’s findings, and were not extensively tested and compared with other

possibilities. The probabilities for the final user test were as follows:

• Reproduction: 0.1

• Crossover: 0.45

• Mutation: 0.45

Koza argued that mutation was not necessary since crossover could give similar

results [25]. However, Rooke suggested that certainly when a population

contains relatively many new animations, mutation seemed to work better for

him, while crossover worked better if there were more sophisticated

animations present. Since each new population contains both new animations

and more sophisticated animations from the long-term memory, the

probabilities for crossover and mutation were given equal values. A small

probability of reproduction was kept, despite the fact that the best animations

always get reproduced. This ensures that slightly worse scoring animations can

still reproduce.

3.4.4 Reflection
A reflection is done on the requirements of this component. The relevant

requirements for this component are:

39

• REQ4: The system should improve the generated animations.

• REQ5: The system should keep on exploring new animations.

• (REQ2: The generated animations should be diverse.)

REQ4
A genetic algorithm is implemented to improve the animations. Genetic

algorithms should, by their nature, improve the phenotypes (animations in this

case) they are working on over time if their settings are chosen right. However,

the implemented algorithm works differently than most conventional genetic

algorithms, mainly because of REQ5. It is unknown what the impact of this

difference is. If the implemented algorithm improves the animations and if so,

how fast, can be seen in the results of the tests, discussed in chapter 4.

REQ5
The implemented genetic algorithm is designed to never stop exploring: a

population is replaced after a certain amount of convergence is met. The way

the convergence is determined is very rough and might not be the best way to

do this. However, the used method still makes sure the algorithm does not keep

on converging on one animation.

REQ2
A method was implemented to remove duplicate animations from each

generation, preventing generations to be mainly filled with the same

animations. This should improve the diversity. However, it is impossible to

maximize diversity; a genetic algorithm needs variations of the same

animations in order to improve the animations.

40

3.5 Feedback gathering
The feedback gathering component gathers the feedback for the displayed

animation and stores it, so the animation improvement and filtering

components can use this for their purposes. The design choices of the feedback

interface are discussed here.

3.5.1 Scale
The rating scale is important for the feedback you get, as discussed in section

2.2.1. Using the studies in that section, the decision was made to use a five-point

scale to rate the animations. It seems to have a good balance between ease of use

and resolution. A five-point scale is also preferred by people in a study by

Sparling and Sen [19].

However, the filtering component is designed to recognize the worst

animations; those that people genuinely do not want to see. The genetic

algorithm should not use these animations to fill new generations; otherwise

there would still be a chance that this would result in one or more bad

animations in the next generation, which is unwanted. On a scale form one to

five, the ‘one’ rating could be used to recognize the worst animations. However,

a score of one would imply that the animation still would have some amount of

value in the genetic algorithm, while it is essentially thrown out. This could

result in people getting a wrong idea of what a score of one would mean.

This problem can be solved in two ways. The first is making the worst possible

score zero, as this would make clear the animation would have no value in the

algorithm. The other solution is to introduce a separate rating that makes clear

the animation will get thrown out: using a picture of a recycling bin, for

example. This second solution is not used, because it is expected that people

would be hesitant to knowingly throw an animation out, while this is necessary

for the filter to work properly. The other solution can be applied by shifting the

whole rating scale, so it ranges from zero to four, or by adding a separate zero

rating, so the whole scale ranges from zero to five. The difference is mainly in

the resolution that is left for the genetic algorithm to work with, since the ‘zero’

rating is not used in the genetic process itself. The choice was made to not

decrease the resolution of the part of the scale that can be used for the genetic

41

process. Therefore, an extra zero rating was added to the five-point scale, to

create a scale reaching from zero to five.

3.5.2 Interface
During the development of the system, the feedback was given through the 0-5

number keys on a standard computer keyboard. However, for the user test

another interface was needed, something more sturdy and more attractive to

use.

A box was laser cut which holds six buttons, each with a number engraved

below it. The box also contains a short explanation of what the system does. The

box is connected to the pc through USB and sends the given rating over a

virtual serial port once a button is pressed. The box is filled with little bags of

sand and rubber feet are glued to the bottom to prevent it slipping away when

people push a button. A picture of the box can be found in Figure 12.

Figure 12: The rating box

3.5.3 Reflection
A reflection is done on the requirements of this component. The relevant

requirements for this component are:

• REQ3: The system should gather feedback on the animations from users.

42

The sub-requirements of this requirement asked for a feedback interface that is

easy to use, allows the user to express their opinion sufficiently and gives the

system enough information to improve and reject animations.

The design choices made are backed up by past studies into different feedback

interfaces, and are expected to fulfil this requirement in terms of the needs of

the user. An interface with big, sturdy physical buttons was made to be inviting

and increase the ease of use. An extra ‘zero’ rating was added to the rating scale

to allow the filtering component to distinguish between the worst animations

and all others, without decreasing the rating resolution used by the genetic

algorithm. This should give the system enough information to perform its task

and fulfil this and the other requirements. However, if the system turns out to

not fulfil all its requirements after testing, the influence the feedback interface

could have on this will not be ignored.

43

3.6 Filtering component
This section describes the design and implementation of the filtering

component.

3.6.1 Method
The filter consists of two steps: one rejects animations that contain too little

motion, the other rejects animations that are predicted to get a ‘zero’ rating.

Since we have REQ1: “The system should generate visibly moving animations.”,

the filter is used to filter animations with too little motion. This is done using

thresholds for different features (explained in section 3.6.2) that tell something

about the motion in an animation. The filter is used for this since it already

extracts these motion features for the second step, thus it can also easily filter

animations with a lack of motion.

If an animation passes this first step (and thus should contain enough motion to

be visibly moving), its aesthetic value to the user is predicted. In section 2.1,

some studies towards human preference in art are discussed. Although some

relations are found, there are no hard numbers that can be used for an

algorithm to make a clear distinction between pleasant and unpleasant art.

Furthermore, the features that are linked to preference are hard to measure:

complexity and ambiguity. However, for animations, things like speed and

predictability were linked to emotions and preference, which are easier to

measure.

Still, the lack of a clear line between pleasant and unpleasant makes it hard to

make this distinction; a simple threshold on some measurable values would not

work. This problem therefore asks for another method to detect this difference:

a method that can use human feedback to learn to recognize the distinction

between unpleasant and pleasant animations. Therefore, a machine learning

algorithm will be used.

This algorithm can make predictions about the rating each animation will

receive. If an animation is predicted to get a low rating, the filter can give that

low rating to the animation instead of the user. This way, the user does not have

to see the animation; the animations get essentially rejected from the system’s

output.

44

3.6.2 Feature extraction
There are several machine learning methods that can use images as input data

directly, but these are often mainly focussed on pattern recognition.

Recognizing certain features that can predict human preference is a whole

other problem though, it is unknown if a machine learning method could solve

this problem this way. Furthermore, the machine learning algorithm should

also be able to analyse motion in the animations, which means it should also

look at differences between frames, for example. This would make these

machine learning methods very complex to implement. This will get very

complicated while it is still unknown if the algorithms will be able to accurately

predict people’s preference in animations.

Since past studies (discussed in section 2.1) already found some features that are

linked to preference, it would be unnecessary to let the algorithm figure those

relationships out by itself. It would be better to develop a method to extract

relevant features from the animations, and provide the algorithm with only

these features. This will probably increase the accuracy of the filter, while

decreasing the complexity of the machine learning algorithm.

Choice of features
Past studies showed that complexity, ambiguity, colour use, speed, and

predictability of motion can probably be used as indicators for human

preference. Speed of motion and colour use are features that can be extracted

well from the animations. Complexity may be estimated by using the colour

data; an animation that consists of mainly one colour is less complex than an

animation that uses the full colour spectrum. Ambiguity and predictability are

much harder to extract from an animation.

However, some early tests indicated that the lowest rated animations can

probably be already recognized by their colour use and speed of motion. Most

of them were given a low rating because of flickering, fast movements, too little

motion, or a lack of diversity in the used colours (which can also be seen as too

little complexity). Therefore, it was decided to focus on motion and colour use

for the extracted features.

45

Motion
To be able to detect motion, several frames of the animation are rendered. The

differences between these rendered frames can then be calculated on a per-

pixel basis and can be used to analyse the motion in the animation. Comparing

two frames results in an image where each pixel’s value is the absolute

difference between the two frames for that pixel. This difference is calculated

using the grayscale versions of the frames, since the colour is analysed

separately and it decreases the time needed to analyse an animation. An

example of some frames and their differences can be found in Figure 13.

It matters greatly which frames are rendered; if they are close together, the

difference will say something about the short-term motion, while if there are

several seconds in between the frames, the difference will say something about

long-term motion. Both options are probably required to get accurate

predictions. In the short-term difference, flickering and fast motion can be

detected, while a lack of motion will be especially well visible in the long-term

difference. The times that are used to render the frames for analysis can be

found in the first column of Table 2. To avoid the case where animations with

periodic movements with the right frequency are invisible for analysis, the

time difference between the long-term frames increases slowly. The difference

between each render time is based on prime numbers. The long-term difference

is determined by comparing the first with the second frame, the second with

the third, etc. The short-term difference is determined by comparing each

frame with a frame 100ms later, as can be seen in Table 2.

Table 2: The times used for rendering frames for analysis

First frame (sec) Long-term difference (sec) Short-term difference (sec)

10.0 10.55 10.1

10.55 11.2 10.65

11.2 12.05 11.3

12.05 13 12.15

13 14.15 13.1

14.15 15.6 14.25

15.6 17.15 15.7

17.15 - 17.25

46

The difference between two frames could be summarized in one number. For

instance, the average value of all pixels in the difference image. However, it

might be useful to also have the minimum and maximum difference within the

difference images. This will make it possible to distinguish between an

animation where there is a lot of motion in one corner, and an animation where

there is moderate motion on all pixels, for example.

The same goes for the minimum and maximum differences that are found

between all analysed frames. For example: there is a big difference between an

animation where the colour changes from black to full red gradually between 10

and 17.15 seconds, and an animation where the colour changes instantly from

black to full red at the 15 second mark. However, the average difference over the

frames will be the same for both animations. If the maximum and minimum

difference between the frames is also given, the difference between the two

animations can be seen: for the gradually changing animation the minimum is

bigger than 0 and the maximum is small, while for the instant changing

animation the minimum is 0 and the maximum is big.

Therefore, the minimum, average, and maximum differences are calculated

both between and within the difference images. The first tells something about

how the motion is spread over time, the second how it is spread over the 2D

space the animation is rendered in. This results in nine features for motion.

Since this process is done for both long-term and short-term motion, in total 18

features are extracted that tell something about the motion in an animation.

This process is illustrated in Figure 13.

47

Figure 13: Example of motion feature extraction

Colour & complexity
To analyse the colours, the frames that are already rendered to calculate the

long-term motion are used. The colours are analysed by their hue, saturation

and brightness values, since this gets close to how humans perceive colour [27].

For each analysed frame, the number of unique colours and unique hue,

saturation and brightness values are counted. Also, the mean and standard

deviation of the hue, saturation and brightness values are retrieved per frame.

For these ten numbers, the average over all frames is calculated. The number of

unique colours and values of hues, saturations and values, and their means give

an idea about colour use. The standard deviations are an estimation of (colour)

complexity; if the standard deviations are big, the range of hue, saturation and

brightness is big and thus the complexity of the animation in terms of colour is

probably high.

48

Feature set
These analyses result in a feature set of 29 features: nine for long-term motion,

nine for short-term motion, ten for colour, and one for the average render time

of the frames. This last value can be used to reject animations that would take

too long to render, as there is always a chance that a certain function tree has a

combination of functions that would take several seconds per frame to render,

for example.

All values in the feature set are normalized to fall in the range between zero and

one.

3.6.3 Machine learning algorithm
Since the human feedback is subjective, can be inconsistent, and might change

over time, a flexible machine learning method is needed. Also, the exact

relation between the extracted features and human preference is unknown.

Therefore, it seems like a good task for a neural network: neural networks can

learn difficult problems that are hard to put into rules or other conventional

arithmetic methods, can be quite robust against inconsistent input, and can

learn online; it can learn from the same samples it is predicting on. Therefore, a

neural network was implemented to learn which animations to filter from the

system’s output. Since the most important part of the filtering component is to

filter the most unpleasant animations, the implemented neural network is used

to classify animations between animations that receive a ‘zero’ rating and all

other animations.

Neural networks
Since not all readers might know what neural networks are, this will be

explained shortly. Neural networks are inspired by the way brains work. The

network consists of several ‘neurons’, each with several inputs and an output.

Each neuron translates its input values to an output value, often by calculating

a weighted sum of the inputs, where each input has its own weight. A neuron

can ‘learn’ by adjusting these weights based on how its output differs from the

desired output. This ‘error’ of the output of the network is propagated through

the network, so every neuron can adjust its weights. This learning algorithm is

called ‘backpropagation learning’. There are also other algorithms to ‘teach’

neural networks, but that goes beyond the scope of this project. The speed of

49

the learning process can be adjusted by modifying the learning rate of the

network. The learning process can also implement ‘momentum’, which means

part of the weight changes done using a learning ‘step’ carry on to the next step,

which can stabilize the learning process when there are big differences between

succeeding samples.

A neural network can consist of several ‘layers’ of neurons, where (often) the

inputs of the neurons in a layer are the outputs of all neurons in the previous

layer. A network always has an output layer with the same number of neurons

as outputs needed from the network. The other layers are called ‘hidden layers’.

A simple example of a neural network can be found in Figure 14. For overview,

only the outputs of the neurons in the hidden layer, and the weights and output

of the neuron in the output layer are shown here.

Figure 14: Example of a neural network

The implemented network
The implemented neural network uses the features from the feature set directly

as inputs, and has one output, which is a number between zero and one. When

this output value is bigger than 0.5, the animation is classified as an animation

with a rating higher than zero. Otherwise, it is classified as an animation with a

rating of zero.

50

Since it is proven that neural networks with one hidden layer can learn any

non-linear function as long as it has sufficient neurons in the hidden layer [28],

the network has only one hidden layer. In this layer, all neurons are connected

to all inputs, and every connection has its own weight. Next to this, each

neuron has an offset value, which can be seen as an extra input (with its own

weight) that always has a value of one. The output of each neuron is a sigmoid

function (Equation 1) of the weighted sum of all inputs (and the offset), and thus

always has a value between zero and one. The neuron in the output layer works

the same and has the outputs of the neurons in the hidden layer as inputs. The

number of neurons in the hidden layer and the alpha value of the sigmoid

function can be varied. Different values for these parameters are tested in

chapter 4.

1

1 + 𝑒𝑒𝑒𝑒𝑒𝑒�−𝛼𝛼�∑ 𝑤𝑤𝑗𝑗𝑥𝑥𝑗𝑗 + 𝑤𝑤0
𝑑𝑑
𝑗𝑗=1 ��

Equation 1: Sigmoid function of neurons. The x variables are the input values, w the weights
(where w0 is the offset), and d the amount of inputs. α determines the steepness of the sigmoid
function.

The true class of an animation is determined by the human feedback that is

gathered by the system. This information is used to train the network, using a

backpropagation algorithm with momentum. The learning rate of the network

and the momentum can be varied. An untrained neural network starts with

random weights between -0.01 and 0.01.

This basic setup leaves four parameters that can be varied to create different

neural networks:

• Number of neurons in the hidden layer

• Sigmoid function alpha

• Learning rate

• Momentum

To determine what the differences in performance are between networks with

different values for these parameters, a test was performed, which is described

in section 4.3.

51

3.6.4 Reflection
A reflection is done on the requirements of this component. The relevant

requirements for this component are:

• REQ6: The system should filter out unpleasant animations.

• (REQ1: The system should generate visibly moving animations.)

REQ6
This requirement dictates the main task of this component, and the focus of

this project. The true reflection on this requirement is therefore done by

performing multiple tests in the next chapter, and using the results of these

tests to answer the second research question “What is the performance of the

filtering component in the designed system in terms of precision, recall and F-

score?” in the Conclusion on page 76.

REQ1
The filtering component is used to filter animations that are not (visibly)

moving from its output. Certain rules are used to filter these animations based

on the motion features extracted from each animation. These rules filter all

animations which contain no motion in the analysed sections of the animation.

If these rules also work well for filtering animations that only contain very

subtle (and thus almost invisible) motion, is determined by looking at the

observed reactions of users in Test 1, discussed in section 4.2. The chosen

features are not perfect: if motion is only present outside the rendered frames,

this motion is not visible. Also, since the motion is extracted from the grayscale

images, changes in just the hue value of a pixel are not seen as motion.

52

4 Testing
To answer the second research question “What is the performance of the

filtering component in the designed system in terms of precision, recall and F-

score?” adequately, three different tests are performed:

1. A user test involving multiple users who use a system with a pre-trained

neural network, and a system without a neural network.

2. A test comparing the performance of different neural networks.

3. A test which investigates how many animations are needed to train a

neural network adequately.

These tests are performed to see how the designed system performs overall,

and to find out how the behaviour and performance of the system changes

when:

1. There are one or more users involved.

2. When the neural networks used in the filtering component differ.

3. When it is trained on a small number of animations.

4.1 Overview
First, an overview is given of the performed tests, and how they relate to each

other. Each test works with one or more sets of animations, annotated with

their rating, hereafter called ‘datasets’. These are also described.

Tests
Three tests are performed, in chronological order:

Test 1 A user test with multiple users and a pre-trained neural network.

The first goal of this test is to test the whole system in the way it could be

used in a public setting: with multiple users that are free to interact with the

system as they would like. The second goal is to compare the influence of

the neural network on the system’s behaviour. Two systems are compared:

one with a neural network and one without. Furthermore, the ratings users

give to animations on the system without a neural network are used to

create a dataset which is used for the other two tests.

53

Test 2 A test comparing different neural networks.

The goal of this test is to find out the influence of the layout and learning

parameters of the neural network on its learning behaviour and its

performance. This is tested on datasets generated with the ratings of both

one and multiple users.

Test 3 A test with one untrained neural network

The results of the previous test are used to choose the neural network used

for this test. The goal of this test is to find out the minimum number of

animations needed to train a network well enough to be of added value to

the system. The test uses datasets rated both by one and multiple users.

Datasets
To avoid confusing over which test uses which dataset, the three used datasets

(DS1, DS2, DS3) are described here.

DS1 Single user

Dataset 1 was annotated (rated) by myself. It contains 1030 animations, and

is used to train the neural network used in Test 1, as well as for the single-

user dataset of Test 2. The animations in this dataset were generated

randomly, without the use of the genetic algorithm, to increase the diversity

of animation types in this dataset. This was done using the method to fill

new populations for the genetic algorithm, as described in section 3.4.2, but

without a neural network for filtering, or a long-term memory. The relative

distribution of ratings can be found in Figure 15.

DS2 Multiple users

This dataset is the result of the ratings of users on the system without neural

network in Test 1, and is thus annotated by multiple users. It contains 2281

animations. This dataset is used in both Test 2 and Test 3. The relative

distribution of ratings in this dataset can be found in Figure 16. Note that

something went wrong with the rating box in Test 1, causing most ‘one’

ratings to be registered as ‘zero’ ratings. Furthermore, it is clearly visible

that the genetic algorithm with long-term memory produced more high-

rated animations than if the animations are generated randomly like in DS1.

54

Figure 15: Relative distribution of ratings in DS1

Figure 16: Relative distribution of ratings in DS2

DS3 Single user

Dataset 3 is not annotated by me, but by a male of 24 years old. It consists of

402 random animations from DS2, re-rated by this person. This was done

this way to make sure the quality of the animations in both DS2 and DS3 is

similar, as these datasets are both used in Test 3. The relative distribution of

ratings in this dataset can be seen in Figure 17.

Furthermore, since the animations were rated in a random order and the

ratings should be rather consistent (as they are all rated by the same

49,5%

32,3%

13,7%

3,8%
0,6% 0,1%

0%

10%

20%

30%

40%

50%

60%

0 1 2 3 4 5

35,2%

0,0%

16,1% 17,1% 16,9%
14,7%

00%

05%

10%

15%

20%

25%

30%

35%

40%

0 or 1 1 2 3 4 5

55

person), this dataset could be used to see if the genetic algorithm actually

improved the animations over time. This could not be seen in DS2, as the

ratings are always relative to what the users are used to see; a certain

animation might be rated better if the previous animations were bad than if

the previous animations were good. An overall slow improvement over

time would therefore be invisible in that dataset. Therefore, a moving

average (10 samples) of the 402 ratings in DS3, in the genetic order of the

animations, can be seen in Figure 18. There is no clear improvement visible.

Figure 17: Relative distribution of ratings in DS3

Figure 18: Moving average (10 samples) of the personal ratings of the animations from
system 2, in genetic order

4.2 Test 1
The first test tests the performance and behaviour of the system in a public

setting involving multiple users, while the neural network is already pre-

12,7%

27,9% 27,6%

12,9% 12,2%

6,7%

00%

05%

10%

15%

20%

25%

30%

0 1 2 3 4 5

0

1

2

3

4

5

1 14 27 40 53 66 79 92 10
5

11
8

13
1

14
4

15
7

17
0

18
3

19
6

20
9

22
2

23
5

24
8

26
1

27
4

28
7

30
0

31
3

32
6

33
9

35
2

36
5

Ra
tin

g

Animation in genetic order

56

trained before the test begins. This could give an idea of the performance of the

system after operating in such a setting for a longer period of time. This test

also investigates the influence of the neural network on the system’s output.

This is done by comparing a system as it was designed (with a neural network),

with one where the neural network was omitted in the filtering component,

and the filter thus only rejects animations with too little motion.

4.2.1 Method

Participants
The participants in this test were not selected, but could approach the

installation freely. Therefore, there is no clear data on these participants.

However, based on observations of the participants and the location of the

setup, it could be said that most participants were between 18 and 25 years old

and studied Creative Technology. However, there were also some (between 5

and 10) older people who used the installation.

Materials & setup
A computer was connected to a 42-inch TV screen with a resolution of

1360x768. Next to the TV was a high table with the rating box as described in

section 3.5.2. A picture of this setup can be found in Figure 19.

The system works as described in the

57

Design & Implementation section. The long-term memory was seeded with 47
animations which received a rating of three or higher in DS1. The animations

generated by the system were all stored with their rating, the date and time
they got rated, and if they got rated by a human or not.
A choice had to be made about what neural network to use for this test.

However, at the start of this test, the comparison of different networks (Test 2)

was not performed yet. Since the execution of this comparison takes almost 48

hours to complete (this time is mainly spent on training the different

networks), and there was a limited time to perform this test, it was decided to

do a quick comparison with less networks. This was done using DS1, because it

was the only dataset available at the time. Networks were compared on the

accuracy of their classification. The chosen network had 28 neurons in the

hidden layer, a sigmoid alpha of 2, a learning rate of 0.1, and a momentum of 0,

with an accuracy of 86%.

58

Figure 19: The setup of the pre-trained test

Design
For two weeks (ten days, only business days), two different systems were

tested:

• System 1: A system which works as described in the Design &

Implementation section.
• System 2: A system which did not use a neural network in its filtering

component, thus only rejecting animations with too little motion.

Initially, the systems were alternated every day. During the last three days, the

system without neural network was tested for two and a half days, and the

other system for the last half day. This was done to make sure each system got a

similar amount of ratings.

Procedure
The setup was located in a place where people would often walk by and it could

be seen well. Participants were passively encouraged to rate these animations

using two posters: one underneath the TV and one in a break room that was

close by. Participants could rate as many animations as they would like.

Animations were shown full screen, and the next animation was automatically

shown after an animation was rated by a user. If the system was generating new

animations, a message would be shown on the screen, telling the user to wait

for a moment while the system generated new animations. Unfortunately, this

did not always work, which resulted in a black screen being shown instead. To

prevent participants walking away if they thought the system stopped working

when this happened, a message was attached to the TV, telling them that a

black screen probably meant the system was generating new animations.

Since the animation rejected by the neural network of system 1 were not shown

to the users, these animations did not get a human rating. Therefore, the

performance of the neural network in terms of precision, recall or F score

cannot be calculated for this system. To get an idea of the performance of the

network in this setting, the same neural network system 1 started with, was fed

the rated animations from system 2 (DS2). This was done in chronological

order, to simulate how the neural network would have behaved on these

animations and ratings. Since all animations in this dataset are rated, this

59

simulation could be used to find precision, recall and an F score of the neural

network.

The users and system were observed during the test. No formal method was

used to record their behaviour, although the observations were focussing on

some questions which cannot be directly answered quantitatively:

• How diverse are the generated animations?

• What are the main reasons of users to rate an animation a certain way?

• Do users enjoy interacting with the system?

• Is there a common, shared opinion between users, or does preference

differ?

4.2.2 Results
In total 4932 animations were generated; 2482 for system 1 and 2450 for

system 2. System 1 filtered 529 animations, where system 2 filtered 169. This

means system 1 got 1953 human ratings, and system 2 got 2281 human ratings.

These numbers and the distribution of human ratings are summarized in Table

3.

Sadly, early in the test something happened with the rating box, so the wires of

the ‘0’ and ‘1’ buttons were not isolated anymore, and touched each other.

Therefore, if participants rated an animation as one, it got recorded as a zero.

The zero and one ratings are therefore combined in the results. This should still

be able to show if the system can filter ‘bad’ animations from its output,

although it is unclear how much zero ratings it rejects compared to one ratings.

60

Table 3: Results of the pre-trained test

 Neural

network

(system 1)

No neural

network

(system 2)

χ2 Significance

 Animations 2482 2450 - -

 Filtered

animations

529 169 210.884 p < 0.005

 Human

ratings

1953 2281 - -

H
um

an
 r

at
in

gs

Rating 0 or 1 470 802 61.620 p < 0.005

Rating 1 32 1 34.598 p < 0.005

Rating 2 361 368 4.080 p < 0.05

Rating 3 434 390 17.628 p < 0.005

Rating 4 364 385 2.237 -

Rating 5 292 335 0.058 -

Human ratings
The relative human rating distributions can be seen in Figure 20. If the neural

network would have no influence on the animations shown to the user, system

1 is expected to have the same human rating distribution as system 2. This

hypothesis is tested using a Pearson’s chi-square test, which resulted in a chi-

square value of 96.902 (p < 0.005); the hypothesis can be rejected. This means

there is a significant difference between the relative distribution of ratings of

the two systems. To see how the distributions differ per rating, a chi-square test

was performed for each rating. The results can be seen in Table 3. If the

difference is significant, the significance is given. The biggest difference can be

found in the amount of 0 or 1 ratings between both systems: system 1 got

significantly less of these, while it got more ratings of 2 and 3. This means the

neural network filtered more ‘bad’ animations than ‘good’ ones; if it would have

filtered randomly (just rejecting an animation by chance) it would have had the

same relative distribution of human ratings as the other system.

61

Figure 20: Relative distribution of ratings in the pre-trained test.

Simulated run
The simulated run of the same neural network as used in system 1, on the rated

animations of system 2, resulted in the precision, recalls and F scores presented

in Table 4. For comparison, these numbers were also calculated for the case

where the network would not reject any animation. Note that there is only a

very small difference in F1 3+ score between these two situations; when using

the neural network to filter, the precision is higher, but the cost on recall makes

that the F1 3+ score is still similar. The relative rating distributions of system 1

and the simulation are a bit different: the simulation got more 0 or 1 ratings, a

bit less 2 and 3 ratings and a bit more 4 and 5 ratings. This can be seen in Figure

21.

Table 4: Precision, recalls and F1 score of neural network on animations from system 2.

 Filter No rejections
Precision 0.717404 0.648400
Recall 0.844490 1
Recall 3+ 0.864865 1
F1 score 3+ 0.784263 0.786702

24,1%

1,6%

18,5%
22,2%

18,6%
15,0%

35,2%

0,0%

16,1% 17,1% 16,9%
14,7%

00%

05%

10%

15%

20%

25%

30%

35%

40%

0 or 1 1 2 3 4 5
System 1 System 2

62

Figure 21: Relative rating distributions of system 1 and the animations after filtering in the
simulated run

Observations
Not all users used the system in the same way: some users rated one or two

animations while waking by, while others voluntarily used the system for 10-15

minutes. Especially this last group seemed to enjoy it. The system was used

both individually and in small groups. This offered a good opportunity to get an

insight in users’ thinking process while rating the animations, since they would

openly discuss their choices when using the system in groups. This showed that

their tolerance and reasoning for ‘bad’ animations could differ much. Some

users indicated that they did not like the flickering or lack of motion of a certain

animation, but still gave it a high rating because they liked the colour use or a

certain visual element in the animation. Others would give zero ratings to

animations as soon as there was one ‘flash’ in the animation or if they did not

see any movement within the first two seconds, regardless of other elements of

the animation.

Users seemed to love diversity. They often gave higher ratings to animations

which contained motion or visual elements that they did not see before. This

also seemed to be a motivator for people that used the system for longer times;

they liked being surprised by these ‘new’ animations.

There were still animations shown to users that, according to them, contained

too little motion. “It did not move”, was heard multiple times as a reason for a

low rating. This indicates that the rules for filtering animations with too little

motion can be stricter. Furthermore, many animations consisted of a small set

of colours: red, green, blue, yellow, cyan, pink, black and white. This makes

24,1%

1,6%

18,5%

22,2%
18,6%

15,0%

28,3%

0,0%

16,6%
18,8% 19,6%

16,7%

0%

5%

10%

15%

20%

25%

30%

0 or 1 1 2 3 4 5

System 1 Simulation

63

sense because of the way the animations are rendered, but it shows that

diversity can still be improved. Users also noticed that some of the animations

were variations of previous ones. Often, they assumed that it was the same

animation as they saw before. Some users did not like this and gave low ratings

because they “saw it so often already”. This effect was probably increased by the

reappearance of old animations from the long-term memory (some types of

animations that were already generated at the beginning of the test still

appeared close to the end).

4.3 Test 2
To determine how neural networks with different settings and layouts perform

on filtering the animations the system generates, different neural networks

were trained on two datasets: DS1 is used to test networks on single-user data,

and DS2 to test on multiple-users data.

4.3.1 Method

Materials
A training set based on DS1 was constructed by including all animations from

DS1, and then applying a small amount of noise on the features of the

animations to create four more similar versions of each animation. This was

done by adding or subtracting a random value of maximum 5% of the original

value of the feature. This should make the trained networks more robust to

noisy input, since it is expected that animations that have similar features will

also have a similar rating. The final single-user training set therefore contains

5150 animations.

To get a similar amount of animations in the training set based on DS2 as in the

single-user training set, the amount of animations in the set was doubled using

the same method used for the single-user training set. This resulted in a

training set with 4560 animations (two animations were removed to make a fair

division of the training set possible for the k-fold cross-validation). Note that

the dataset itself already contains some similar animations, since it was created

using the genetic algorithm.

64

Procedure
For each of the variable parameters that could be varied in the implemented

neural network (as described in section 3.6.3), certain values were chosen to be

tested:

• Number of neurons in hidden layer: 14, 21, 28

• Sigmoid alpha: 1 and 2

• Learning rate: 0.1 and 0.01

• Momentum: 0, 0.1 and 0.5

All 36 possible combinations of these values were tested. A k-fold cross-

validation was performed with k = 10 on each network setup. It was made sure

that the earlier created noisy versions of the animations in the training sets,

were not present in the validation sets, or the other way around. For each fold,

the network was trained for 500 epochs, and after each epoch the network was

validated on the validation set. This validation resulted in a precision score and

two different recall scores; the overall recall and the recall of animations which

scored ‘three’ or higher. This was done because the overall recall of a certain

network could be moderate when it misclassifies a lot of animations with a

rating of 1 or 2, while performing much better on the animations scoring

higher. Since the recall is especially important for the higher rated animations

(the generation of good animations can be quite rare), such a network would be

preferred over a network with a good overall recall but a moderate recall on

higher rated animations. These precision and recall scores were combined into

two different F1 scores (also one overall and one for animations scoring ‘three’

or higher), so the performance of the networks could be easily compared.

4.3.2 Results

Single user
For overview, only the results of the ten best performing setups are

summarized in Table 5, excluding the overall recall and F1 score. All results of

all network setups can be found in Appendix D. If the filter would not filter

anything, the precision would be 0.505, resulting in an F1 3+ score of 0.671.

65

Table 5: Top 10 of neural networks trained on DS1, based on their F1 3+ score after training

Network Learning rate Momentum Alpha Neurons Precision Recall 3+ F1 3+
24 0.01 0.1 1 14 0.746 0.891 0.812
25 0.01 0.1 1 21 0.745 0.891 0.812
18 0.01 0 1 14 0.745 0.891 0.811
17 0.1 0.5 2 28 0.754 0.878 0.811
20 0.01 0 1 28 0.744 0.891 0.811
26 0.01 0.1 1 28 0.743 0.891 0.810
19 0.01 0 1 21 0.739 0.891 0.808
11 0.1 0.1 2 28 0.734 0.891 0.805
1 0.1 0 1 21 0.722 0.891 0.798
8 0.1 0.1 1 28 0.745 0.852 0.795

As can be seen, the F1 scores are very close, there does not seem to be a network

that is significantly better than the others, although network 24 also has a

slightly better recall overall (not shown here, see Appendix D). It might be

useful to look at the learning curve of each network, as these can still be

different. The above described results were gathered without keeping track of

the precision and recalls per, therefore a second run was done using the top 10

networks from Table 5. The F1 3+ scores per epoch of this second run are plotted

in Figure 22.

A clear difference is visible between the networks with a learning rate of 0.1 and

the ones with a learning rate of 0.01. The networks with a higher learning rate

reach their highest F1 3+ score after around 100 epochs, after which it decreases

again, probably because of overfitting. The final precision, recall 3+ and F1 3+ of

the networks are listed in Table 6, as they differ from the results of the first run.

Note that the only different condition is the weights the networks are

initialized with, as these are random, which thus can be the only cause of the

differences with the results of the first run. Since the scores of the fast-learning

networks decrease again after around 100 epochs, the maximum seen score

during the learning process is given too in Table 6. Note that these maximum

scores are very similar for all networks.

66

Figure 22: F1 3+ score per epoch for the ten best performing networks, trained on DS1

Table 6: Final measures on the 2nd run of the top 10 networks, trained on DS1

Setup Precision Recall 3+ F1 3+
Max F1 3+
2nd run

24 0.745452 0.887381 0.810248 0.811836
25 0.737464 0.887381 0.805507 0.808723
18 0.744152 0.887381 0.80948 0.810264
17 0.69876 0.859603 0.770881 0.81428

20 0.745644 0.887381 0.810361 0.810469
26 0.739492 0.887381 0.806714 0.80969
19 0.746756 0.887381 0.811018 0.813355
11 0.716184 0.872937 0.786829 0.801454
1 0.710118 0.830159 0.765461 0.80178
8 0.725178 0.847381 0.781531 0.820577

Multiple users
In the case of multiple users, for all networks the precision and recall after each

epoch was stored. The single-user test revealed that taking the final F1 3+ score

might not be the best way to see the potential of each network setup: the

networks with a learning rate of 0.1 all scored lower, while their F1 3+ score

earlier in the learning process was often comparable to the final F1 3+ score of

the slower learning networks. Therefore, the top 10 given here is not selected

on the final F1 3+ score, but on the maximum F1 3+ score reached during the

0,6

0,65

0,7

0,75

0,8

0,85

1 23 45 67 89 11
1

13
3

15
5

17
7

19
9

22
1

24
3

26
5

28
7

30
9

33
1

35
3

37
5

39
7

41
9

44
1

46
3

48
5

Setup 24

Setup 25

Setup 18

Setup 17

Setup 20

Setup 26

Setup 19

Setup 11

Setup 1

Setup 8

67

learning process. This top 10 and their scores can be found in Table 7. Their

learning curves can be seen in Figure 23. The differences in performance

between the networks are minuscule, also when looking at their learning

curves. Without a filter, the precision of the system would be 0.648, resulting in

an F1 3+ score of 0.787.

Table 7: Top 10 of network setups on the multi-user training set, based on their maximum F1 3+
score while training

Setup Learning rate Momentum α Neurons Precision Recall 3+ F1 3+ Max F1 3+
34 0.01 0.5 2 21 0.756 0.908 0.825 0.826
21 0.01 0 2 14 0.753 0.890 0.816 0.825
29 0.01 0.1 2 28 0.755 0.898 0.820 0.825
14 0.1 0.5 1 28 0.758 0.895 0.820 0.825
33 0.01 0.5 2 14 0.757 0.903 0.824 0.825
22 0.01 0 2 21 0.754 0.891 0.817 0.825

2 0.1 0 1 28 0.758 0.867 0.809 0.825
12 0.1 0.5 1 14 0.756 0.883 0.815 0.824

8 0.1 0.1 1 28 0.754 0.881 0.812 0.824
35 0.01 0.5 2 28 0.755 0.906 0.824 0.824

Figure 23: F1 3+ score per epoch for the ten best performing network setups on the multi-user
training set

0,6

0,65

0,7

0,75

0,8

0,85

1 21 41 61 81 10
1

12
1

14
1

16
1

18
1

20
1

22
1

24
1

26
1

28
1

30
1

32
1

34
1

36
1

38
1

40
1

42
1

44
1

46
1

48
1

Setup 2

Setup 8

Setup 12

Setup 14

Setup 21

Setup 22

Setup 29

Setup 33

Setup 34

Setup 35

68

4.4 Test 3
To see how a system which starts with an untrained neural network would

perform, two tests were done to see what the performance of the filtering

component is when trained on different numbers of animations, and how this

performance differs if the system has multiple users or just one user.

4.4.1 Method

Materials & setup
For the tests with multiple users, DS2 is used to build the training sets. For the

tests with a single user, DS3 is used for the training sets.

The networks used in this all have the same settings as network 8 as it is

presented in the results of Test 2, since that setup seems to learn fast and

reaches a high score on the single user training set. On the multiple user

training set it also performs well, although here the differences between the

setups are much smaller.

Procedure
The network is trained on training sets of 25, 50,100, 200 and 300 animations,

which are expanded to five times their size by adding four versions with noise

for each animation. This was done using the same method as in Test 2. For each

of the training set sizes, ten networks are trained on different parts of the

datasets. Each training consists of 100 epochs. This number is derived from the

learning curves as seen in Figure 22 and Figure 23; in both curves, network 8

seems to reach its best performance after 100 epochs. The animations in the

dataset which are not used in the training set are used to verify the

performance of the trained network. The mean performance of the ten trained

networks is then taken as an estimation of the performance of the network.

4.4.2 Results
The different performance measures per training set size on both DS2 and DS3

can be found in Table 8 and Table 9. Also, for each training set size, the F1 score

is given of a system without a neural network.

The neural networks trained on DS2 performed better than a system without a

filter, when trained on 100 or more animations. The improvement of the

system seems to stall when trained on more than 200 animations. However,

69

since 300 was the maximum number of animations in the training set, it is not

possible to tell if this stall is local and thus the performance will continue to

increase when trained on more animations, or if the performance will stay

similar.

The neural networks trained on DS3 all perform similar to a system without a

filter, regardless of the size of the training set. However, note that the

performance of a system without a filter is already very high for this dataset,

due to the lack of zero ratings in the dataset.

Table 8: Performance of networks trained on DS2 using different sizes for the training set

Training set size Precision Recall Recall 3+ F1 3+ No filter F1 3+
25 0.688 0.803 0.816 0.746 0.787
50 0.726 0.786 0.803 0.762 0.787

100 0.726 0.850 0.870 0.792 0.787
200 0.729 0.884 0.905 0.807 0.787
300 0.747 0.843 0.868 0.803 0.787

Table 9: Performance of networks trained on DS3 using different sizes for the training set

Training set size Precision Recall Recall 3+ F1 3+ No filter F1 3+
25 0.876 0.997 0.998 0.933 0.933
50 0.872 1.000 1.000 0.932 0.932

100 0.875 0.991 0.993 0.930 0.932
200 0.878 0.981 0.994 0.932 0.932
300 0.881 0.985 1.000 0.936 0.932

70

5 Discussion
In this chapter, the work of this project is discussed. The design of the system

will be evaluated by looking at the design choices and the limitations of these

choices, as well as the results of the tests and the limitations of the tests

themselves. The design of the system will be discussed using the requirements

stated in section 3.1.

5.1 REQ1
[The system should generate visibly moving animations.]

The animation rendering algorithm was originally designed to generate images,

but it has been modified to output animations. It can still render animations

that are not (visibly) moving, so the filtering component is designed to reject

these animations. However, the features to detect these animations are not

perfect, as discussed in section 5.6.

The filtering component filters all animations which contain no motion. The

results of Test 1 imply that the filter is not strict enough on animations which

contain too little motion; users still said they gave an animation a low rating

because “it did not move”. However, some users would still give these

animations a high rating because they liked certain visual elements in it,

indicating that a lack of motion is sometimes not a “deal breaker” for the user.

Note that none of these observations were a result of interviews, but were

informal observations of the users’ behaviours. Their quotes come from

discussions overheard between them. These observations can therefore not be

used to draw solid conclusions, but can merely serve as indicators of where

problems in the system might be present. This holds for the discussion of all of

these observations, also for the other requirements discussed below.

5.2 REQ2
[The generated animations should be diverse.]

The used rendering algorithm is not bound to shapes and colours. The

generated animations in Test 1 could be used to see how big the diversity of the

rendered animations is in practice. However, diversity is hard to measure. In

the test the diversity was judged by observing the generated animations

personally. This is of course highly subjective and cannot be used to objectively

measure the diversity. However, these observations suggest that the diversity

71

could be improved. The algorithm did not always use the freedom it had in the

colour domain, it seemed to often stick to more primary colours. Also, the

genetic algorithm reduced the diversity; some users were observed giving low

ratings because they already saw certain animations often before. This is

unavoidable, since a genetic algorithm needs several variants of the same

animation to steer towards improvement, but it seems the efforts to minimize

this behaviour were not enough. This conflict between automatic improvement

and diversity is a problem for the suggested system.

5.3 REQ3
[The system should gather feedback on the animations from users.]

The buttons did seem to invite users to use the system, although this was not

compared with other interface options. None of the users openly complained

about a lack of resolution of the rating scale. However, users were not asked

about this after the test, so it is not clear if the rating scale does indeed give

users enough room for their opinion. The rating scale’s resolution seemed to be

big enough for the system to function, shortcomings of the system did not seem

to originate from a lack of resolution on the rating scale. However, it was not

studied if the ‘zero’ rating meant the same to all users. There might be a

difference in perception, which could result in extra noise on the user feedback

if multiple users are involved.

5.4 REQ4
[The system should improve the generated animations.]

The ratings in dataset DS3 do not show an improvement of the animations, as

can be seen in Figure 18. This lack of improvement could be caused by the

diversity of opinions between the users of the system, as the genetic algorithm

was only tested with multiple users in Test 1. It could also be caused by the

modifications of the genetic algorithm compared with conventional genetic

algorithms. Especially the ‘long-term memory’ could have had a significant

impact on this. Animations are never deleted from this memory, so animations

from the start of the evolution process can always be ‘resurrected’ later, putting

a ‘young’ animation in a later stage of the evolution process. Every time this

happens, the genetic algorithm is set back a couple of evolution steps.

Furthermore, the initial seed of this long-term memory in Test 1 influences the

72

genetic algorithm as well, as the genetic algorithm could render good

animations from the beginning of its run. To test improvement properly, it

would be better to start without a seed, or with a smaller probability of using

animations from memory. Also, DS3 contained only a portion of all animations

in DS2, and these animations were rated by one person. This person may have

had a very different opinion than most users of the system, so the data is not

very reliable.

Since the focus of this project is mainly on reducing the number of unpleasant

animations in the system’s output, a lack of improvement is not necessarily a

problem. As long as the system generates enough high-scoring animations to

properly train the neural network, the system can be tested adequately.

5.5 REQ5
[The system should keep on exploring new animations.]

The implemented method to realise this works well enough to satisfy this

requirement; the algorithm continues with different animations after

converging for a while. However, the way convergence is measured is very

rough and can probably be greatly improved. The current method can in theory

leave a population run and converge on for tens of generations, while the

animations do not improve anymore.

5.6 REQ6
[The system should filter out unpleasant animations.]

This requirement expresses the main focus of this project. A neural network is

used to classify the animations between animations that were predicted to

receive a ‘zero’ rating, and all other ratings.

The features extracted from the animations were designed to be distinctive for

the ‘bad’ animations, focussing on both motion and colour use. These motion

features are not perfect. They are extracted by rendering a limited number of

frames, so if motion occurs outside or only between these frames, it is

‘invisible’ in the motion features. Furthermore, the motion features do not look

at colour, so a change of hue is also invisible in the motion features. The impact

of this is unknown, as the rejected animations were not viewed. However,

observations of the animations the system generated before the filtering

73

component was implemented, suggest that the probability of animations that

would be misclassified for these reasons is low.

The first results of Test 1 show that the filter, in combination with the rest of

the system, did filter the ‘bad’ animations: when the neural network was in use,

there were significantly less 0 or 1 ratings. When the neural network was tested

on the data of the other system, it showed indeed an improvement in precision,

but at a cost on recall: the network also rejected 10% of the good animations.

Since the system can easily generate more animations, the precision is more

important than recall in this case: losing 10% of the high-rated animations is

not noticed by the user. Recall will only become a problem if it gets so low that

it is noticeable in the speed at which the system generates new populations and

generations; if only 5% of the good animations would pass the filter, this

process would take around 20 times as much time.

The precision in Test 1 is found to be better than if the system would just accept

all animations, so the neural network does seem to filter on features that belong

to ‘bad’ animations. However, around 29% of the animations that passed the

filter still got a low rating from the users, which in this case means it got either

a ‘zero’ or ‘one’ rating. Without a filter, around 35% of the shown animations

are low-rated. Note that these results do not talk about the performance of the

neural network during the test itself, as this could not be measured. This were

the results of a simulated run on DS2, so the real performance might be slightly

different. Also, it is important to keep in mind that the long-term memory was

seeded by animations from DS1, while the neural network was trained on this

same dataset. Therefore, the neural network could have scored better on

performance than it would have done in a system with other animations in the

long-term memory.

In the other tests the precision got to around 0.75, meaning around 25% of the

animations passing the filter were considered ‘bad’ by the users. Only the

neural networks trained on DS3 got a higher precision, but the filter did not

perform better than not filtering at all; this dataset contains few zero-rated

animations by itself.

Test 2 showed that only the learning rate seemed to matter in the performance;

varying other parameters of the neural network always resulted in a similar

74

performance in terms of the F1 3+ score. When trained on the dataset from

multiple users (DS2), even the learning rate did not seem to matter much, and

all networks seemed to learn faster on DS2 than on DS1. This difference in

learning speed is striking. The main differences between the two datasets are

the following:

1. DS1 got rated by one person, DS2 by multiple.

2. DS1 was filled with random animations, DS2 got filled with animations

using a genetic algorithm.

3. DS2 got most ‘one’ ratings grouped together with the ‘zero’ ratings by

accident.

The first difference could not explain the difference in learning rate; if

anything, the networks would be expected to learn faster on DS1, since the

ratings in that dataset are expected to be more consistent. The second

difference could have an influence, since this caused DS2 to contain far more

animations with high ratings, making it ‘easier’ for the networks to learn the

difference between high-rated and low-rated animations. The third difference

could also have some influence, since animations rated with ‘one’ can contain

elements that normally would cause it to be rated ‘zero’, but other elements

make that the user thinks it is still worth more than that; there is a grey area

between the two rating options. This could disturb the learning process: if some

‘good’ animations (anything above a ‘zero’ rating, for the network) have

elements normally found in ‘zero’ rated animations, the learned link between

these elements and low-rated animations gets weaker. In DS2 this grey area

between ‘zero’ and ‘one’ is gone, since they both got recorded as ‘zero’,

improving the links between bad elements and bad animations. There is of

course such a grey area between all neighbouring ratings, so in DS2 the grey

area which influences the learning process is between ‘one’ and ‘two’ instead.

This grey area might be smaller than between ‘zero’ and ‘one’, causing an

increase in learning speed on this dataset. However, this cannot be proven with

these results, it is merely a suggested theory.

Test 3 showed that when trained on animations from DS2, using only 50

animations already brings the precision close to the 0.75 that is seen often

during other tests using much bigger training sets. Using 100 or more brings

the F1 3+ score to the same level or higher than the F1 3+ score the system would

75

have without a neural network. This indicates that an untrained system can

probably be tailored quite fast to the tastes of new user(s) by letting those users

first rate 50-100 animations, and then training on those animations. However,

this is only based on the results of one dataset; other datasets might yield other

results. DS3 proved to be a difficult dataset to train on, probably because of the

few zero-rated animations in that dataset.

76

6 Conclusion
During this project, a system was designed based on RQ1: “How to design a
system that generates a vast diversity of abstract animations, while minimizing

the amount of unpleasant animations in its output?”. This question was
translated into six requirements for the system:

1. The system should generate visibly moving animations.

2. The generated animations should be diverse.
3. The system should gather feedback on the animations from users.
4. The system should improve the generated animations.

5. The system should keep on exploring new animations.
6. The system should filter out unpleasant animations.

The system can generate animations, although it sometimes still generates

animations in which users do not observe the motion. However, users did not
always see this as a bad thing, indicating that requirement 1 could be a bit too
strict. The diversity between animations is quite big, but the diversity in colour

use seems to be lacking, and the impact of the genetic algorithm on the
diversity is not to be ignored, as users notice this and may get bored of seeing a

lot of variations of the same animation. Observations of users suggest the
feedback method fulfils its goal: users seem to like the interaction with the
system, the interface gives the system enough information to work with, and

the six rating options seem to satisfy the users’ needs. The test data indicates
that the genetic algorithm that was developed to improve the animations did

not work well: there was no clear improvement seen in the animations.
However, there are multiple reasons that could be the cause of the lack of
improvement, also in the setup of the user test, which makes it impossible to

draw clear conclusions from this data. On the other hand, the genetic algorithm
was successful in exploring new animations, even with a rough measure for

convergence.

The filter of the system was the main focus of this project. The question RQ2:
“What is the performance of the filtering component in the designed system in

terms of precision, recall and F-score?” summarizes the evaluation of this part
of the system. The different tests showed that the filter does indeed filter bad
animations from the output, while keeping most good animations. However,

the expected precision is around 0.75, meaning that 1 in 4 animations are still
considered unpleasant. The recall scores of animations rated ‘three’ or higher

on the scale from 0-5 are in the range of 0.8-0.9, resulting in F1 3+ scores (the F1

77

score based on the recall of animations scoring ‘three’ or higher) around 0.8.
This F1 3+ score is not always much higher than it would have been in a system

without any filter. However, the precision is the most important number in this
case, since that is what the user will actually notice. The precision was always

higher than the ‘precision’ of a system without a filter, which was on average
around 0.66: around 1 in 3 animations was considered unpleasant.

Overall, this project showed that it is possible to design and develop a system

which generates diverse abstract animations, guided by feedback from users. It
can also, to a certain extent, filter unpleasant animations from its own output,
increasing the mean quality of the animations it generates. This results in a

relative high number of ‘good’ animations, considering computers have no
concept of beauty by themselves, and the vast majority of possible animations

are often considered ‘bad’ by users (as can be seen in the rating distribution of
DS1 in Figure 15). The performed tests also showed that the system can be
further improved on multiple points.

78

7 Future work and suggestions
The design process and test results show that there is still a lot of potential for

interesting studies towards a system like the one realised here. This will be

discussed here per component of the system. Also, suggestions are made for

interesting points of improvement or adaptations for the developed system.

7.1 Animation generation algorithm
The implemented algorithm already does a good job at generating a diverse set

of animations. However, Rooke showed that even more interesting images can

be generated by adding fractal algorithms to the function set, for example. [24]

It might be interesting to explore other visually interesting algorithms and

adding those to the function set. Also, the currently generated animations often

consist of basic colours, since the used functions work on the RGB values of

each pixel. To improve the colour diversity, colour maps can be used, like

Rooke did.

It might also prove worthy to explore how this algorithm can be used to create

interactive animations; the same way the TIME variable is used now, variables

like sound level or the x and y coordinates of a finger on a touch screen can be

used to make the animation respond to its environment.

An observation during the various tests was that animations with iterative

functions systems were often not part of the shown animations. This might be

because the function needs a lot of arguments, and some of those quickly move

the result of the IFS to a black or white image. This makes the potential motion

in the animation invisible, causing it to be rejected. It might be better to make

sure the arguments that are sensitive for causing this are kept within certain

bounds.

7.2 Animation improvement
The implemented genetic algorithm did not seem to improve the animations

over time. There are a lot of reasons why this could happen, since the

implemented genetic algorithm differs a lot from a conventional genetic

algorithm, and the setup of the user test was not ideal for testing this.

Therefore, it is probably best to do a separate study towards a genetic

algorithm, or maybe other methods, that can improve the animations

generated by this system, while also keeping the animations diverse. Another

79

option is to leave the improvement out completely: this would also increase the

diversity of the animations. However, this requires a filter with a high

precision, and a system that can analyse animations fast enough so the

generation of animations does not take too much time, as a lot will be directly

rejected (see the rating distribution of DS1 in Figure 15, which was generated

without the use of a genetic algorithm).

The long-term memory never deleted older animations, impacting diversity

and the genetic process. It might be better to limit the size of this memory,

deleting old animations when new ones come in.

This project only looked at the animations generated by the system, but it

would be very interesting to see if its animations can reach a similar quality as

animations designed by human artists.

7.3 Filtering
Most neural networks that were tested showed some improvement over a

system without a neural network, but the differences are small. Although these

differences get bigger over time if a genetic algorithm gets involved, there is

still lots of room for improvement. A future study could give more insights in

how this could be improved. This project already found some possible room for

improvement:

• The currently used features could be further improved or expanded;

there are probably other features that influence the preference of users,

that are currently not used. A study towards what people dislike about

the animations that ‘slip through’ the filter might shed more light on

this.

• The network could filter both ‘zero’ and ‘one’ ratings, while an

animation rated by a human as ‘one’ is still used by the genetic

algorithm. This is expected to improve the performance of the filter,

since it deals with the grey area between the ‘zero’ and ‘one’ ratings: it is

then probably more likely that a one-rated animation slips through the

filter than a zero-rated animation, which is not a big problem. The

network can also be made to numerically predict the rating, which

should also deal with the grey area. It would be interesting to see how

such a filter performs.

80

• It might also be a good idea, since the user ratings are often relative to

what the user has seen before, to use the previous ten or twenty ratings

as input to the neural network to get more accurate predictions.

• This project used a relatively simple neural network working with

extracted features, but maybe other methods can perform better: a

neural network analysing the animations directly (using the pixel

value’s as input), for example.

• The learning process of the neural network can also be changed. There

exist other learn algorithms for neural networks, and there are multiple

modifications that can be done to the used back-propagation algorithm;

a dynamic learning rate or a method to detect overfitting, for example.

81

8 Bibliography

[1] K. Sims, "Artificial Evolution for Computer Graphics," in ACM SIGGRAPH,

Las Vegas, Nevada, 1991.

[2] M. A. Boden and E. A. Edmonds, "What is generative art?," Digital

Creativity, vol. 20, no. 1-2, pp. 21-46, 2009.

[3] H. Cohen, "The further exploits of AARON, painter.," Stanford Humanities

Review, vol. 4, no. 2, pp. 141-158, 1995.

[4] H. Cohen, "Color, Simply.," Harold Cohen Online Publication, 2006.

[5] H. Munsinger and W. Kessen, "Uncertainty, structure, and preference.,"

Psychological Monographs: General and Applied, vol. 78, no. 9, pp. 1-24,

1964.

[6] P. C. Vitz, "Preference for different amounts of visual complexity," Systems

Research and Behavioral Science, vol. 11, no. 2, pp. 105-114, 1966.

[7] H. Day, "Evaluations of subjective complexity, pleasingness and

interestingness for a series of random polygons varying in complexity,"

Perception & Psychophysics, vol. 2, no. 7, pp. 281-286, 1967.

[8] J. W. Osborne and F. H. Farley, "The relationship between aesthetic

preference and visual complexity in absract art," Psychonomic Science,

vol. 19, no. 2, pp. 69-70, 1970.

[9] J. F. Wohlwill, "Amount of stimulus exploration and preference as

differential functions of stimulus complexity," Perception &

Psychophysics, vol. 4, no. 5, pp. 307-312, 1968.

[10] C. Martindale, K. Moore and J. Borkum, "Aesthetic Preference: Anomalous

Findings for Berlyne's Psychobiological Theory," The American Journal of

Psychology, vol. 103, no. 1, pp. 53-80, 1990.

[11] M. Jakesch and H. Leder, "Finding meaning in art: Preferred levels of

ambiguity in art appreciation," The Quarterly Journal of Experimental

82

Psychology, vol. 62, no. 11, pp. 2105-2112, 2009.

[12] C. Martindale and K. Moore, "Priming, prototypicality, and preference.,"

Journal of Experimental Psychology: Human Perception and Performance,

vol. 14, no. 4, pp. 661-670, 1988.

[13] O. Vartanian and V. Goel, "Neuroanatomical correlates of aesthetic

preference for paintings," Neuroreport, vol. 15, no. 5, pp. 893-897, 2004.

[14] L. Bartram and A. Nakatani, "What Makes Motion Meaningful? Affective

Properties of Abstract Motion.," in Pacific-Rim Symposium on Image and

Video Technology (PSIVT), Singapore, 2010.

[15] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan and J. Riedl, "Is seeing

believing?: how recommender system interfaces affect users' opinions," in

Proceedings of the SIGCHI conference on Human factors in computing

systems, Ft. Lauderdale, 2003.

[16] H. H. Friedman and A. Taiwo, "Rating the Rating Scales.," Journal of

Marketing Management, vol. 9, no. 3, pp. 114-123, 1999.

[17] R. Garland, "The Mid-Point on a Rating Scale: Is it Desirable?," Marketing

Bulletin, vol. 2, no. 1, pp. 66-70, 1991.

[18] H. H. Friedman and L. W. Friedman, "On the Danger of Using too few

Points in a Rating Scale: A Test of Validity.," Journal of Data Collection, vol.

26, no. 2, pp. 60-63, 1986.

[19] E. I. Sparling and S. Sen, "Rating: how difficult is it?," in Proceedings of the

fifth ACM conference on Recommender systems, Chicago, Illinois, 2011.

[20] S. Draves, "The Electric Sheep Screen-Saver: A Case Study in Aesthetic

Evolution," Lecture notes in computer science, vol. 3449, no. Evo

workshops, pp. 458-467, 2005.

[21] S. Draves and E. Reckase, The fractal flame algorithm, 2004.

[22] O. S. Lawlor, "GPU-Accelerated Rendering of Unbounded Nonlinear

Iterated Function System Fixed Points," ISRN Computer Graphics, vol.

83

2012, 2012.

[23] K. Sims, "Interactive evolution of equations for procedural models," The

Visual Computer, vol. 9, no. 8, pp. 466-476, 1993.

[24] S. Rooke, "Eons of genetically evolved algorithmic images," in Creative

Evolutionary Systems, San Fransisco, Morgan Kaufmann Publishers Inc.,

2001, pp. 339-365.

[25] J. R. Koza, Genetic programming: on the programming of computers by

means of natural selection., Cambridge, MA: MIT Press, 1992.

[26] J. H. Holland, Adaptation in natural and artificial systems : an introductory

analysis with applications to biology, control, and artificial intelligence,

Ann Arbor: University of Michigan Press, 1975.

[27] M. W. Schwarz, W. B. Cowan and J. C. Beatty, "An experimental

comparison of RGB, YIQ, LAB, HSV, and opponent color models," ACM

Transactions on Graphics (TOG), vol. 6, no. 2, pp. 123-158, 1987.

[28] K. Hornik, M. Stinchcombe and H. White, "Multilayer Feedforward

Networks are Universal Approximators," Neural Networks, vol. 2, no. 5,

pp. 359-366, 1989.

Appendix A

Appendix B

Appendix C - Animation algorithm function set
All vector -> vector functions are executed elementwise unless indicated

differently. A1, a2, a3, etc. are references to the input arguments of the

functions.

Function
name

Arguments Output Returns

abs 1 float 1 float the absolute value of a1
abs 1 vector 1 vector the absolute value of a1
and 2 floats 1 float a1 & a2
and 2 vectors 1 vector a1 & a2

blur
2 floats, 1 image, 2
vectors 1 vector

the pixel colour at coordinates
(a1,a2) of the blurred image a3 with
a blur size of a4 and sigma a5 (per
RGB colour)

clamp 3 floats 1 float
a1, clamped by a2 as minimum and
a3 as maximum value

clamp 3 vectors 1 vector
a1, clamped by a2 as minimum and
a3 as maximum value

cos 1 float 1 float cos(a1)
cos 1 vector 1 vector cos(a1)

cosn 1 float 1 float
cos(a1) with input and output
normalized to 0-1

cosn 1 vector 1 vector
cos(a1) with input and output
normalized to 0-1

cross 2 vectors 1 vector the cross product of a1 and a2
divide 2 floats 1 float a1 / a2
divide 2 vectors 1 vector a1 / a2
exp 1 float 1 float the natural exponentiation of a1
exp 1 vector 1 vector the natural exponentiation of a1
exp2 1 float 1 float 2^a1
exp2 1 vector 1 vector 2^a1

grad_dir 2 floats, 1 image 1 vector

the gradient direction at
coordinates (a1,a2) of image a3 per
RGB colour

grad_mag 2 floats, 1 image 1 vector

the gradient magnitude at
coordinates (a1,a2) of image a3 per
RGB colour

hsv_to_rgb 1 vector 1 vector an RGB output for the HSV input
iff 3 floats 1 float a2 if a1 <= 0.5, else a3

iff 3 vectors 1 vector a2 if a1 <= 0.5, else a3

ifs 62 floats 1 vector

the pixel colour at coordinates
(a1,a2) of a fractal flame rendered
with a3 variations, exposure a4,
texture scale a5, initial value a6,
initial size a7, and for each used
variation: (variation type a8,
weight a9, scale a10, hue a11,
saturation a12, X.x a13, X.y a14, Y.x
a15, Y.y a16, O.x a17, O.y a18). These
last inputs are repeated 4 more
times for the other possible
variations

log 1 float 1 float logarithm of a1 (base 10)
log 1 vector 1 vector logarithm of a1 (base 10)
log2 1 float 1 float logarithm of a1 (base 2)
log2 1 vector 1 vector logarithm of a1 (base 2)
logg 2 floats 1 float logarithm of a1 (base a2)
logg 2 vectors 1 vector logarithm of a1 (base a2)
max 2 floats 1 float the maximum of both inputs
max 2 vectors 1 vector the maximum of both inputs
min 2 floats 1 float the minimum of both inputs
min 2 vectors 1 vector the minimum of both inputs
minus 2 floats 1 float a1 - a2
minus 2 vectors 1 vector a1 - a2

mix 3 vectors 1 vector

the linear interpolation between a1
and a2 at point a3 (ranged between
0-1)

mix 3 floats 1 float

the linear interpolation between a1
and a2 at point a3 (ranged between
0-1)

mod 2 floats 1 float a1 % a2
mod 2 vectors 1 vector a1 % a2

mod 1 vector, 1 float
1
vectors a1 % a2

normalize 1 vector 1 vector the unit vector of a1
or 2 floats 1 float a1 | a2
or 2 vectors 1 vector a1 | a2
plus 2 floats 1 float a1 + a2
plus 2 vectors 1 vector a1 + a2

pow 2 floats 1 float a1^a2
pow 2 vectors 1 vector a1^a2
product 2 floats 1 float a1 * a2
product 2 vectors 1 vector a1 * a2

round 1 float 1 float
a1 rounded to the closest whole
number

round 1 vector 1 vector
a1 rounded to the closest whole
number

sign 1 float 1 float 1 if a1 is positive, else -1
sign 1 vector 1 vector 1 if a1 is positive, else -1
sin 1 float 1 float sin(a1)
sin 1 vector 1 vector sin(a1)

sinn 1 float 1 float
sin(a1) with input and output
normalized to 0-1

sinn 1 vector 1 vector
sin(a1) with input and output
normalized to 0-1

sqrt 1 float 1 float the square root of a1
sqrt 1 vector 1 vector the square root of a1
step 2 floats 1 float 0 if a2 < a1, else 1
step 2 vectors 1 vector 0 if a2 < a1, else 1

vec3 3 floats 1 vector
the vector containing the 3 input
floats

xor 2 floats 1 float a1 ^ a2
xor 2 vectors 1 vector a1 ^ a2

Appendix D - Results of single user network
setups

Recall 3+ means the recall of the animations that were rated 3 or higher.

Setup Learning rate Momentum Alpha Neurons Precision Recall Recall 3+ F1 3+

0 0.1 0 1 14 0.717472 0.742308 0.830435 0.769832

1 0.1 0 1 21 0.722282 0.779231 0.891304 0.79794

2 0.1 0 1 28 0.696896 0.768462 0.847826 0.764987

3 0.1 0 2 14 0.737374 0.701923 0.847826 0.788752

4 0.1 0 2 21 0.764403 0.627692 0.804348 0.783867

5 0.1 0 2 28 0.749195 0.626154 0.830435 0.787726

6 0.1 0.1 1 14 0.700144 0.748077 0.895652 0.785922

7 0.1 0.1 1 21 0.716226 0.770769 0.891304 0.794231

8 0.1 0.1 1 28 0.744987 0.757308 0.852174 0.794984

9 0.1 0.1 2 14 0.755418 0.656923 0.778261 0.766669

10 0.1 0.1 2 21 0.732454 0.662308 0.865217 0.79332

11 0.1 0.1 2 28 0.734494 0.665 0.891304 0.805337

12 0.1 0.5 1 14 0.72952 0.760385 0.86087 0.789771

13 0.1 0.5 1 21 0.727764 0.777308 0.869565 0.79237

14 0.1 0.5 1 28 0.723451 0.754615 0.847826 0.780716

15 0.1 0.5 2 14 0.73353 0.668077 0.847826 0.786548

16 0.1 0.5 2 21 0.738854 0.669231 0.843478 0.787707

17 0.1 0.5 2 28 0.753697 0.627308 0.878261 0.811225

18 0.01 0 1 14 0.744534 0.785769 0.891304 0.811335

19 0.01 0 1 21 0.738703 0.779615 0.891304 0.80786

20 0.01 0 1 28 0.744039 0.768077 0.891304 0.811041

21 0.01 0 2 14 0.800307 0.400769 0.569565 0.665503

22 0.01 0 2 21 0.772873 0.370385 0.6 0.675552

23 0.01 0 2 28 0.7609 0.416154 0.569565 0.651475

24 0.01 0.1 1 14 0.746067 0.784231 0.891304 0.812244

25 0.01 0.1 1 21 0.745171 0.771538 0.891304 0.811713

26 0.01 0.1 1 28 0.742636 0.775769 0.891304 0.810207

27 0.01 0.1 2 14 0.785567 0.439615 0.626087 0.696818

28 0.01 0.1 2 21 0.790535 0.346923 0.604348 0.685015

29 0.01 0.1 2 28 0.789374 0.32 0.569565 0.661692

30 0.01 0.5 1 14 0.707598 0.709231 0.891304 0.788898

31 0.01 0.5 1 21 0.715614 0.710385 0.847826 0.77613

32 0.01 0.5 1 28 0.705069 0.706154 0.86087 0.775219

33 0.01 0.5 2 14 0.79064 0.370385 0.591304 0.676596

34 0.01 0.5 2 21 0.791251 0.396538 0.626087 0.699046

35 0.01 0.5 2 28 0.772152 0.398846 0.66087 0.71219

Appendix E - Results of multi user network
setups

Recall 3+ means the recall of the animations that were rated 3 or higher.

Setup Learning rate Momentum α Neurons Precision Recall Recall 3+ F1 3+ Max F1 3+

0 0.1 0 1 14 0.757 0.836 0.870 0.810 0.821

1 0.1 0 1 21 0.756 0.832 0.870 0.809 0.824

2 0.1 0 1 28 0.758 0.829 0.867 0.809 0.825

3 0.1 0 2 14 0.749 0.820 0.858 0.800 0.819

4 0.1 0 2 21 0.751 0.801 0.833 0.790 0.819

5 0.1 0 2 28 0.749 0.819 0.856 0.799 0.820

6 0.1 0.1 1 14 0.749 0.819 0.856 0.799 0.820

7 0.1 0.1 1 21 0.759 0.844 0.880 0.815 0.824

8 0.1 0.1 1 28 0.754 0.841 0.881 0.812 0.824

9 0.1 0.1 2 14 0.751 0.810 0.838 0.793 0.816

10 0.1 0.1 2 21 0.750 0.803 0.841 0.793 0.818

11 0.1 0.1 2 28 0.755 0.800 0.833 0.792 0.820

12 0.1 0.5 1 14 0.756 0.847 0.883 0.815 0.824

13 0.1 0.5 1 21 0.752 0.842 0.878 0.810 0.823

14 0.1 0.5 1 28 0.758 0.857 0.895 0.820 0.825

15 0.1 0.5 2 14 0.755 0.804 0.839 0.795 0.820

16 0.1 0.5 2 21 0.751 0.833 0.872 0.807 0.823

17 0.1 0.5 2 28 0.759 0.826 0.859 0.805 0.820

18 0.01 0 1 14 0.755 0.875 0.903 0.823 0.823

19 0.01 0 1 21 0.754 0.872 0.900 0.821 0.821

20 0.01 0 1 28 0.754 0.870 0.898 0.820 0.821

21 0.01 0 2 14 0.753 0.856 0.890 0.816 0.825

22 0.01 0 2 21 0.754 0.855 0.891 0.817 0.825

23 0.01 0 2 28 0.754 0.864 0.900 0.821 0.824

24 0.01 0.1 1 14 0.754 0.876 0.903 0.822 0.822

25 0.01 0.1 1 21 0.754 0.874 0.902 0.821 0.821

26 0.01 0.1 1 28 0.755 0.873 0.901 0.821 0.822

27 0.01 0.1 2 14 0.755 0.863 0.896 0.819 0.823

28 0.01 0.1 2 21 0.756 0.859 0.898 0.820 0.824

29 0.01 0.1 2 28 0.755 0.861 0.898 0.820 0.825

30 0.01 0.5 1 14 0.748 0.879 0.904 0.818 0.820

31 0.01 0.5 1 21 0.750 0.878 0.903 0.819 0.819

32 0.01 0.5 1 28 0.751 0.877 0.902 0.820 0.820

33 0.01 0.5 2 14 0.757 0.868 0.903 0.824 0.825

34 0.01 0.5 2 21 0.756 0.872 0.908 0.825 0.826

35 0.01 0.5 2 28 0.755 0.870 0.906 0.824 0.824

Appendix F - Example animations and their function trees

Functions

‘or’ – A bitwise ‘OR’ operating on the bits of the floating-point values in the vectors of its input.
‘noise’ – 3D simplex noise. The inputs are the coordinates for the noise.

‘vec3’ – Creates a vector from three floating-point values.

10.0s 10.55s 11.2s 12.05s 13s 14.15s 15.6s 17.15s

Functions

‘noise’ - 3D simplex noise. The inputs are the coordinates for the noise.

‘max’ – Returns the maximum value of each vector value (elementwise).

‘mod’ – The modulo operation. Also works elementwise.

‘vec3’ - Creates a vector from three floating-point values.

10.0s 10.55s 11.2s 12.05s 13s 14.15s 15.6s 17.15s

Appendix G - Examples of genetic operations
The three basic genetic operations are shown below on example trees

Crossover

Mutation

Reproduction

	1 Introduction0F
	2 Context
	2.1 Preference in art
	2.1.1 Static art
	2.1.2 Animations

	2.2 User feedback methods
	2.2.1 Feedback scales
	2.2.2 Reliability
	2.2.3 Usability
	2.2.4 Animations

	2.3 State of the art
	2.3.1 Electric Sheep
	2.3.2 Milkdrop
	2.3.3 Self-developed
	2.3.4 Karl Sims
	2.3.5 Differences
	Animations
	Design
	Computing power

	3 Design & Implementation
	3.1 Main goal & requirements
	3.2 System architecture
	3.2.1 Animation renderer
	3.2.2 Animation improvement
	3.2.3 Feedback gathering
	3.2.4 Filtering

	3.3 Animation renderer
	3.3.1 Choosing an algorithm
	3.3.2 The algorithm explained
	3.3.3 Implementation
	Function set
	Iterated Function Systems
	Displaying the animations

	3.3.4 Reflection
	REQ1
	REQ2
	REQ4

	3.4 Animation Improvement
	3.4.1 Structure and methods
	3.4.2 Construction of generations
	3.4.3 Settings
	Population
	Convergence
	Long-term memory
	Probabilities

	3.4.4 Reflection
	REQ4
	REQ5
	REQ2

	3.5 Feedback gathering
	3.5.1 Scale
	3.5.2 Interface
	3.5.3 Reflection

	3.6 Filtering component
	3.6.1 Method
	3.6.2 Feature extraction
	Choice of features
	Motion
	Colour & complexity
	Feature set

	3.6.3 Machine learning algorithm
	Neural networks
	The implemented network

	3.6.4 Reflection
	REQ6
	REQ1

	4 Testing
	4.1 Overview
	Tests
	Datasets

	4.2 Test 1
	4.2.1 Method
	Participants
	Materials & setup
	Design
	Procedure

	4.2.2 Results
	Human ratings
	Simulated run
	Observations

	4.3 Test 2
	4.3.1 Method
	Materials
	Procedure

	4.3.2 Results
	Single user
	Multiple users

	4.4 Test 3
	4.4.1 Method
	Materials & setup
	Procedure

	4.4.2 Results

	5 Discussion
	5.1 REQ1
	5.2 REQ2
	5.3 REQ3
	5.4 REQ4
	5.5 REQ5
	5.6 REQ6

	6 Conclusion
	7 Future work and suggestions
	7.1 Animation generation algorithm
	7.2 Animation improvement
	7.3 Filtering

	8 Bibliography
	Appendix A
	Appendix B
	Appendix C - Animation algorithm function set
	Appendix D - Results of single user network setups
	Appendix E - Results of multi user network setups
	Appendix F - Example animations and their function trees
	Appendix G - Examples of genetic operations
	Crossover
	Mutation
	Reproduction

