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ABSTRACT

This work is a master thesis performed at the company DAT.Mobility. Currently the

traffic and maintenance management of a road network are two separated worlds. In

this research we have combined these two worlds to reduce the maintenance costs by

managing the traffic through the network. Therefore we varied the speed limits in the network

by using a local search algorithm. In this thesis have set up models of road deterioration and the

traffic movement. From this we used local search determine the minimal costs whereby none of

the road authorities has to pay more than they do nowadays. It turns out that the maintenance

costs can be influenced by the traffic flows and we found speed limits in the cities Enschede and

Hengelo which result in a profit. The actual solution found in this thesis is case specific, but the

model can easily be adapted to other road networks.
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1
INTRODUCTION

The maintenance costs for the Dutch road network increases every year and they are

a substantial part of the total budget of municipalities for road infrastructure. At the

moment the maintenance occurs when needed. The moment that maintenance is needed

depends on many factors like the amount of traffic, the weather conditions, the pavement type

and thickness. The department of traffic management is totally separated from the department

of road maintenance and it may be a good challenge to combine these two departments to bring a

reduction in the maintenance costs.

In this thesis we will research if it is possible to bring a reduction in the maintenance costs by

managing the traffic in a certain way and we will make an estimation of the fall in costs. Traffic

management can be done in several ways, like bypasses, closing roads, changing speed limits,

the building of new roads, less or more lanes on roads etc. In this research we will not consider

changes in the infrastructure, which means that we will not look at changes concerning new

roads or lanes. We will focus in this research on speed limits.

With this information, we define our research question as follows:

How can we minimise the maintenance costs for a road network over time, where we will

manage the traffic with speed limits?

We divide our research question in several sub questions.

1. Which factors have an influence on the deterioration of the road and how big are these

influences? Hereby we can think of the weather, the number of cars and other vehicles,

accidents, type of asphalt, speed of the traffic etc.

2. Which static and variable factors will influence the maintenance costs and what is the

status of the pavement after maintenance?

3. How will the traffic distribute itself over the road network when the travellers want to

reach their destination?

1



CHAPTER 1. INTRODUCTION

The research question will lead to a bi-level problem, which means that we have to solve two

problems separately where the outcome of one problem will influence the other and the other

way around. The upper level is the minimisation of the maintenance costs and the lower level

is the distribution of the traffic over the road network. Because of this bi-level structure this

thesis can be roughly split into four parts: the upper level optimisation problem, the lower level

optimisation problem, the solving method and a case study. At first (chapter 2) we will give an

explanation of bi-level problems. Then, in the first part (chapter 3) we will answer the first and

second sub question, in the second part (chapter 4) we will answer the third sub question. In the

third part (chapter 5 and chapter 6) we will look for a method to solve this bi-level problem. The

last part (chapter 7) describes a case on which we will apply our model.

For the case study we will use an existing model of the cities Enschede and Hengelo and some

surrounding area, in the east of the Netherlands.

Our solving method will be local search, with this method we will compute the costs for each road

authority in this part of the Netherlands separately and we will minimise them without letting

an authority pay more than in the original situation.

2
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2
BI-LEVEL OPTIMISATION PROBLEM

The problem we have in this research is a so called bi-level optimisation problem. This

means that the problem is split into two different parts which should be solved separately,

but cannot be seen separately because they need information from each other. The two

levels of a bi-level optimisation problem are called the lower level and the upper level. The upper

level is the actual problem we want to solve, wherefore we need the information from lower level

optimisation. A bi-level optimisation problem is in general NP-hard [32].

In our research the upper level is the optimisation of the maintenance costs, in this level we

need the traffic flows. The travellers will optimise their route, which results in the lower level

optimisation problem.

We want to minimise the maintenance costs by changing speed limits. The speed limits will

influence the routes taken by the travellers and the travel flow will influence the maintenance

costs. This will be an iterative process, which is shown in Figure 2.1. The stop criterion is case

specific, like maximum number of iterations or a certain amount of time.

We will focus in our research on the computation of the maintenance costs, because DAT.Mobility

already has models which computes the traffic flow. Also our research is about minimising the

maintenance costs, not about assigning the traffic in a right way to the network. Therefore we

will use the tools of DAT.Mobility for the lower level.

The total optimisation problem is shown below

min
x

∑
r∈R

Cr( fr)

s.t. f (x)= user equilibrium given speed limits x,

where R is the set of roads, Cr is the cost function for road r, f = ( fr1 , . . . , fr|R| ) the flow on the roads

and x = (xr1 , . . . , xr|R|) the speed limits on the roads. The drivers on the network will distribute

themselves according to an user equilibrium which depends on x, more explanation of this is in

section 4.4.

3



CHAPTER 2. BI-LEVEL OPTIMISATION PROBLEM

Figure 2.1: The bi-level optimisation problem.

We will start with the upper optimisation problem, afterwards we will look which information we

need from the lower level optimisation problem, so we can describe this in an appropriate way.
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3
MINIMISING THE MAINTENANCE COSTS

Every road will deteriorate. The deterioration depends on different factors. Of course the

weather and the number of vehicles which will drive over it, influences the deterioration,

but also an accident may cause maintenance needs. There are two different types of

maintenance: acute and periodic. The acute maintenance is caused by for example an accident

and the periodic maintenance is needed because of deterioration by weather and traffic. The

maintenance costs depend on the pavement type. For example, do you have to replace asphalt or

rigid pavement.

Municipalities use the instruction manuals of the CROW (knowledge partner for municipalities).

Which is a global inspection every one or two years, the inspection card is in Appendix C. After

this a budget will be made for the next one or two years [17], [6]. This strategy may not be

optimal, because nothing is planned in this strategy, therefore we will look if we can minimise the

maintenance costs by another strategy with which money can be saved. A new strategy can be to

maintain the road after a fixed time or when the road has a certain state. Another possibility is

to set up and solve an optimisation problem to get the optimal strategy given the state of the

road over the years.

In this chapter we assume that the the traffic flows are known, so we can set up an optimisation

problem for the maintenance costs. For this optimisation problem, we need to know the costs of

the different maintenance types and the costs of replacing the pavement. We also have to know

the deterioration influence of the traffic flow on the pavement.

The optimisation of the maintenance costs will be done in two steps. First we will formulate

some models of the pavement status we found in the literature. From this we will formulate the

computation of the maintenance costs, according to the literature. Afterwards we will set up

a model according to the models found in the literature. With this model we will compute the

maintenance costs in a road network, given the amount of traffic on every road.

5



CHAPTER 3. MINIMISING THE MAINTENANCE COSTS

3.1 Definitions

Before we will discuss different models, we need some definitions. Also some formulations will be

clarified.

Some models use vehicle types. A vehicle type is a group of vehicles with approximately the same

characteristics and the same deterioration influences on the pavement.

Different types of pavement are used in the road network. Most used pavements are element

pavement, flexible pavement and rigid pavement.

Definition 3.1 (Element pavement). This pavement consists of separate (small) elements, like

clinker bricks.

Definition 3.2 (Flexible pavement). Flexible pavement consists of asphalt.

Definition 3.3 (Rigid pavement). Rigid pavement consists of cement concrete.

There are also different types of flexible pavement, because different types of asphalt are used in

the Dutch road network. On the motorways most of the time Porous Asphalt (NL: ZOAB, Zeer

Open Asfalt Beton) is used. In the municipality networks Asphalt Concrete (NL: DAB, Dicht

Asfalt Beton) is used [27].

Because the pavement types differ in structure, the pavement status models can also differ. In

the next section we will formulate the pavement status.

3.2 Formulation of the pavement status

One way to formulate the road status is the Present Serviceability Index (PSI) [2]. This index

represents the service the road offers to the passengers in the vehicles.

CE Delft has made a model which relates difference in axle loads to the maintenance costs. This

model uses the so called Axle Damage Factor (ADF) [9], [10]. It skips the step of the roadstatus

and links directly the ADF to the maintenance costs, by giving a rise or fall in the initial costs.

We will discuss both models in this section.

3.2.1 Present Serviceability Index

The PSI represents the service the road has for a driver, as a number. Before the PSI was

used, people used the PSR (Present Serviceability Rating). This value was obtained by a panel

which drove on the road and rated it to its serviceability [2], this is like the procedure of CROW.

Because the PSR is not a very precise method, the PSI was introduced: An index rating from

approximately five (excellent) to zero (awful) which depends on multiple deterioration types on

the pavement. The formula for the PSI differs for flexible pavements and rigid pavements.

6



CHAPTER 3. MINIMISING THE MAINTENANCE COSTS

The PSI depends on the following factors:

1. Slope Variance (SV ): The variance in the slope in length direction (Rad2).

2. Rut Depth (RD): The mean of the ruts in the pavement (mm).

3. Cracking (CR): The length of the cracks in the pavement (m/1000m2).

4. Patching (P A): The area of the patches placed on the pavement (m2/1000m2).

The PSI for flexible pavements is given by [18]

PSIflexible = 5.03−1.9† log(1+SV )−2.14 ·10−3RD2 −0.01
p

0.3048CR+P A .‡ (3.1)

The PSI for rigid pavements is given by [18]

PSIrigid = 5.41−1.8log(1+SV )−0.09
p

0.3048CR+P A .§ (3.2)

The variables in the PSI-formula will be explained in the following sub-subsections.

3.2.1.1 Slope Variance

For the slope variance we need multiple measurements, say y1, . . . , yn. Every measurement is the

slope on an interval in Radians. The slope variance is therefore given by [20]

SV =
∑n

i=1 y2
i − 1

n

(∑n
i=1 yi

)2

n−1
.

The length of the interval depends on the measuring instrument. We have not found a good model,

depending on the axle load or not, of the appearance of slope in a road. Therefore we cannot use

the slope variance.

3.2.1.2 Rut Depth

A road with deep rutting is shown in Figure 3.1. The rut depth can be measured on the road itself.

But in "Estimation of Rutting Models by Combining Data From Different Sources" [3], two models

are described to compute the rut depth in millimetres from axle loads and environment factors.

The first model is the WesTrack model. This model is limited to layer thicknesses and axle loads.

The other model is the AASHO model, this model is limited to the materials used. Because this

†This value differs in the articles. The values of 1,1.9 and 1.91 are found. The reason therefore we could not find.
We will use the value 1.9 because that value is found most often.

‡In the literature, this formula is found slightly different, namely PSI = 5.03− 1.9log(1+ SV )− 1.38RD2 −
0.01

p
CR+P A [19]. The reason is that the original formula works with foot and inch [2]. In the formula used in this

report the unit is metre for SV , CR and P A and millimetre for RD.
§Again this formula is found slightly different than the formula found, because the original formula works with

foot and inch and in this formula the unit is metre.

7



CHAPTER 3. MINIMISING THE MAINTENANCE COSTS

Figure 3.1: Rutting. [15]

research is about managing the traffic to minimise the maintenance costs, a model which depends

on the axle loads is most suitable. Therefore we use the AASHO model. This model can only be

used for flexible pavements.

On road section r, we have for time t:

RDr,t = RDr,0 +
t∑

s=1
∆RDr,s

= RDr,t−1 +∆RDr,t

= RDr,t−1 +
[
∆RDAC

r,t +∆RDU
r,t

]
.

where RDr,0 is the initial rut depth of the pavement and ∆RDr,t the difference in rut depth

between time t−1 and t. ∆RDr,t is the sum of ∆RDAC
r,t , the difference in rut depth of the asphalt

concrete layer, and ∆RDU
r,t, the difference in rut depth of the under layer.

According to [3] we take

∆RDAC
r,t =µr,teb′N ′

r,t∆N ′
r,t, (3.3)

∆RDU
r,t =αr,tebNr,t∆Nr,t, (3.4)

hereby is µr,t a function of high temperatures and αr,t a function of the pavement thickness and

low temperatures. The functions ∆N ′
r,t and ∆Nr,t give the effect of the traffic on the pavement in

period t. Further N ′
r,t =

∑t
s=1∆N ′

r,s and Nr,t =∑t
s=1∆Nr,s.

To define ∆N ′
r,t and ∆Nr,t, we introduce the Load Equivalence Factor (LEF). This is defined by

LEF =
(

S
Sstd

)β
. (3.5)

The LEF gives the ratio of load S to the standard axle load (Sstd). The power β is called the

empirical factor or the load equivalence coefficient.

8



CHAPTER 3. MINIMISING THE MAINTENANCE COSTS

We have

∆N ′
r,t =

RS∑
j=1

nr,t,S j

(
S j

Sstd

)β4

+
RT∑
j=1

nr,t,T j 2

(
T j

2Sstd

)β4

,

∆Nr,t =
RS∑
j=1

nr,t,S j

(
S j

Sstd

)β1

+
RT∑
j=1

nr,t,T j

(
T j

β3Sstd

)β2

,

where

nr,t,S j = # single axle loads on section r at time t with magnitude S j.

nr,t,T j = # tandem axle loads on section r at time t with magnitude T j.

RS = # different load magnitudes for single axles.

RT = # different load magnitudes for tandem axles.

β1, . . . ,β4 = parameters.

The difference between ∆N ′
r,t and ∆Nr,t can be explained as follows. For the difference in rut

depth of the asphalt concrete layer we need ∆N ′
r,t, on the surface of the pavement. The tandem

axle acts like two equal single axles. Therefore we first divide the load by two and after we

compute the LEF we multiply it by two. Also the empirical factor is equal because of this reason.

In the under layer a tandem axle does not behave like two single axles any more.

Now we just have to define µr,t and αr,t. As said before, µr,t is a function of the high temperatures.

We have:

µr,t =β5 +β6 ·THt,

where

THt =

1 TMmax,t > 28.6°C

0 otherwise

TMmax,t =mean maximum temperature in period t (°C)

β5,β6 = parameters.

The function αr,t depends on the layer thickness and low temperatures. We have

αr,t =β7eβ8TL t−RNr ,

9



CHAPTER 3. MINIMISING THE MAINTENANCE COSTS

where

TL t = TFt max
(
TMmax,t,0

)
TFt =

0 t = 1

max
(
0,TFt−1 −TMmin,t

)
t = 2, . . . ,T

TMmin,t =mean minimum temperature in period t (°C)

RNr =β9(LTr,1 +OTr)+β10LTr,2 +β11LTr,3

LTr,1 =Thickness of upper layer (m)

OTr =Thickness of overlay (m)

LTr,2 =Thickness of base layer (m)

LTr,3 =Thickness of subbase layer (m).

β7, . . . ,β11 = parameters.

As we can see, the rut depth strongly depends on the axle loads. And the combination of axle

loads with extreme weather will influence it even more (if β6 and β8 are positive).

3.2.1.3 Cracking

An example of cracks in the pavement is in Figure 3.2. A good model for cracking, depending or

not on the traffic, is not found. This means that we cannot use cracking in our model.

Figure 3.2: Cracking. [14]

3.2.1.4 Patching

Patching is a repair of the pavement. If there is a crack or a hole in the pavement, it will be

filled up (patched) with new pavement [7]. An example of patched areas in the pavement is in

Figure 3.3. The patched area is not that good as the original pavement, because the original

structure of the pavement is broken. Therefore this repair is in the PSI. The need of patching is

caused by axle loads or the weather, but the patches are placed by humans. Therefore, no formula

for patching exists.

10



CHAPTER 3. MINIMISING THE MAINTENANCE COSTS

Figure 3.3: Patching. [22]

3.2.2 Axle Damage Factor

Another model for the pavement status is the Axle Damage Factor, ADF.

In subsubsection 3.2.1.2 we defined the LEF. The ADF uses the LEF too, it is an extended

version of the Load Equivalence Factor. The ADF is described in various Dutch papers ([10], [13],

[1]).

The Axle Damage Factor depends on the following factors [9]:

1. Tire Factor (TF): Depends on the tire type, tire inflation pressure, etc.

2. Suspension Factor (SF): Can be pneumatic or a leaf spring.

3. Axle Configuration Factor (ACF): Single, tandem or tridem.

4. Load Equivalence Factor (LEF): Gives the number of standard axles.

The Axle Damage Factor for an axle is given by

ADF = TF ·SF · ACF ·LEF.

As can be seen, the ADF is just an extension of the LEF. The Axle Damage Factor is how many

standard axles one given axle is. So the ADF is, similar to the LEF, unitless.

The more axles a vehicle has, the more its weight will be distributed on the road. This means

that the more axles, the less the Axle Damage Factor will be. This is expressed in the Axle

Configuration Factor.

The Load Equivalence Factor is as defined in Equation (3.5).

The ADF is for one axle of the vehicle, so the total average Axle Damage Factor of a vehicle of

type v is the sum of the ADF of all its axles. This means

ADFv = nsingle,v ADFsingle,v +ntandem,v ADFtandem,v +ntridem,v ADFtridem,v,

11
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where nsingle,v is the average number of single axles on vehicle type v and ADFsingle,v the

average Axle Damage Factor for a single axle for one vehicle of type v. The parameters ntandem,v,

ntridem axle,v, ADFtandem,v and ADFtridem,v are defined similarly.

3.2.2.1 Axle load on the road

In [13], a model is made to define the additional maintenance costs caused by overcharged trucks

on motorways. We will describe this model and look if we can use it in general.

Now we know the total average Axle Damage Factor for every vehicle type v. We need a stan-

dardised form to express this influence. We will call this Av,r [25].

Av,r = Flanesv,rFwidthrFsuper singlev,rFspeedv,r ADFv (3.6)

The Av,r is a factor of how many times a vehicle of type v damages road r in comparison to a

standard axle when the vehicle drives the maximum speed. Like LEF and ADF, Av,r is just a

measure of standard axles, so also the factor Av,r is unitless. The factors Av,r depends on are

1. Lanes Factor (Flanesv,r): Vehicles will distribute over the number of lanes. Therefore the more

lanes, the less damage on one lane.

2. Width of Lanes Factor (Fwidthr): If the lanes are wide, the vehicles will distribute over the

width. This means that if a lane is wide, the damage will be distributed along the width, so

there will be less damage at one place.

3. Super Single Factor (Fsuper singlev,r): Some trucks have Super Single tires, this replaces two

normal tires, but is smaller. So Super Singles cause more damage to the road.

4. Speed Factor (Fspeedr): If vehicles cannot drive the maximum allowed speed it means there

is congestion. In case of congestion, vehicles will stop and start more often than if they

only drive. The starting and stopping causes more damage to the pavement. So the slower

the speed in comparison to the maximal speed limit, the higher the deterioration of the

pavement.

As said before, this model is made for trucks on a motorway. If we want to use this formula also

for cars, we can neglect the Super Single Factor, because cars do not have these kind of tires.

So for cars we have Fsuper singler = 1 for all r. Also the Fspeedr will differ for cars, because they are

allowed to drive faster on a motorway than trucks. Also if we want to use this formula for other

roads than motorways we have to take other values for the speed factor than given in [13].

12
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3.3 Maintenance costs

From the previous section we know two ways to formulate the pavement status, we now want

to say something about the maintenance costs. In this section we use the pavement status to

formulate the maintenance costs.

3.3.1 Maintenance costs using the Present Serviceability Index

The PSI is an index of the pavement status, on which basis we can make decisions when we

want to maintain the pavement. Say if PSI < B we want to replace the pavement, for a certain

value of B, and maintenance can be done every time slot. With this we will set up an optimisation

problem in subsection 3.4.2.

Another option is to look to the factors the PSI depends of, say we replace road r on time t if

RDAC
r,t ≥ B1 and RDU

r,t ≥ B2.

3.3.2 Maintenance costs using the Axle Damage Factor

We will estimate the maintenance costs of the motorways according to [13], which claims that if

the yearly standardised traffic flow f doubles, the yearly repairing costs will increase by 60%. So

the cost Cr on road r with flow fr is given by:

Cmotorway,r( fr)= c̃r1.6log2

(
fr
f̃r

)
= c̃r

(
fr

f̃r

)log2(1.6)

= c̃r

f̃ log2(1.6)
r

· f log2(1.6)
r = C̃r · f log2(1.6)

r

where

fr = traffic flow on road r

f̃r = initial flow on road r

c̃r = initial costs (when intensity is f̃r)

C̃r = c̃r

f̃ log2(1.6)
r

This means we need to have one case in which we know the intensity and the repairing costs for

one year. We can just compute the increase or decrease in the maintenance cost for that motorway

road section. It is very unlikely that we know for every motorway the present maintenance costs.

We also cannot simply use this for other roads than motorways, because we know nothing about

the raise in cost when the standardised intensity doubles for a road which is not a motorway.

3.4 The maintenance model

We discussed two different methods to formulate the maintenance costs and we decided to use

the PSI. We will not use the Axle Damage Factor, because this model is made for motorways and

the municipalities do not maintain motorways.

13
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Figure 3.4: Illustration of the time slots. The measure moments are ti , the period belonging to that measure moment
is Ti and the maintenance or replacement is θi .

With the PSI we can set-up an optimisation problem. In this optimisation, we want to minimise

the total maintenance costs in a city.

3.4.1 Model assumptions

In our research we found nothing about the influence of the traffic on rigid pavements. We

know a formulation of the PSI for rigid pavements, but it is unknown how traffic affects the

damage factors in the PSI. For flexible pavements we also have a formulation of the PSI. From

the municipality of Enschede we know that on open asphalt ravelling is the most common

deterioration and on closed asphalt it is rutting. Because in the formulation of the PSI no

ravelling is included, we just look to closed asphalt in our model. This assumption seems extreme,

but most pavements in municipalities are closed asphalt.

If we just take out the roads with no closed asphalt of our model, this will influence the network

and travellers will choose routes which they will not choose in real life. We also cannot say that

the maintenance costs for this roads will be zero, because this will influence the measures taken.

Therefore we act like every road in the network has a closed asphalt pavement.

We want to make a model for multiple years, say we model T time slots of equal length. We

assume that the flow grows with a growth factor which is equal in every time slot.

The PSI differs for every time slot (unless no one uses the road). Every time slot we have to look

if the PSI is below the replace level B, if so, we have to replace the pavement. Every time slot

we can choose if we want to do nothing, maintain or replace the pavement. This is our decision

variable θ. If we do nothing, the pavement will deteriorate further. If we replace the pavement,

the pavement is new and therefore the PSI is at its maximum. If we maintain the road, we

replace the top asphalt layer. This means that after the maintenance, the pavement is not as

good as new, but better than before the maintenance. The under layer will deteriorate further

and we take RDAC = 0. The maintenance and the replacement will take place at the end of the

time slot, directly after the measure moment. An illustration of this is shown in Figure 3.4.

We also make some assumptions about the PSI, Equation (3.1). Because the maintenance is

replacing the top layer of asphalt, we never have patched areas on our roads. This means that

P A = 0. We also did not find any useful model for cracking, therefore we neglect this by taking

CR = 0. The slope variance can just be measured by special devices, we also do not know the

influence of the vehicles on the slope variance. Therefore we will neglect this by taking SV = 0.
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All this assumptions seems extreme, but the most common deterioration on closed asphalt is

rutting and this is still in the PSI.

With this assumptions we have

PSI = 5.03−1.9log(1+SV )−2.14 ·10−3RD2 −0.01
p

0.3048CR+P A

= 5.03−1.9log(1+0)−2.14 ·10−3RD2 −0.01
p

0.3048 ·0+0

= 5.03−2.14 ·10−3RD2

The costs of maintaining and replacing the pavement will be equal for every road and in every

time slot. The influence of inflation is explained later on.

3.4.2 The optimisation problem

We define the state of the pavement on road r at time t with qr,t which depends on the PSI. Say

the asphalt concrete layer is replaced in time slot t̃AC
r and the under layer in time slot t̃U

r . Then

qr,t is the PSI from t̃AC
r up until t for the asphalt layer and t̃U

r up until t for the under layer. We

notate this with PSIr,t̃AC
r ,t̃U

r ,t.

At the first time slot, the roads have an initial pavement status. This is the given information

RDAC
r,0 and RDU

r,0.

Our decision variables are θr,t ∀r, t, we have

θr,t =


0 do nothing with road r on time t

1 maintain road r on time t

2 replace road r on time t.

(3.7)

From the decision of θr,t, we know the state of the pavement at the end of next time slot (qr,t+1).

qr,t+1 =


PSIr,t̃AC

r ,t̃U
r ,t+1 θr,t = 0

PSIr,t,t̃U
r ,t+1 θr,t = 1

PSIr,t,t,t+1 θr,t = 2

∀r ∈ R,0≤ t < T

If the state of the pavement, qr,t is below level B, we have to replace the pavement. Therefore we

have the constraint

qr,t < B ⇒ θr,t = 2.

With this we can define our optimisation problem. The optimisation problem below is not in the

standard form, but it can be rewritten in such a way it is. This would be a very big optimisation

15
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problem from which it is not clear what it does, for clarity the optimisation problem is not in

standard form.

min
θ

T∑
t=1

δt−1 ∑
r∈R

LrWrC(θr,t) (3.8)

s.t. qr,t+1 =


PSIr,t̃AC

r ,t̃U
r ,t+1 θr,t = 0

PSIr,t,t̃U
r ,t+1 θr,t = 1

PSIr,t,t,t+1 θr,t = 2

∀r, t < T

qr,t < B ⇒ θr,t = 2 ∀r, t

nv,r = # vehicles of type v on road section r ∀r

Where δ is the discount factor for inflation and deflation and Lr and Wr the length and width for

road r respectively.

In the next section the values of the used parameters are given. With this we can define our

optimisation problem for our specific situation.

3.5 Values of the parameters

In this section we will define the parameters used in our optimisation model.

3.5.1 Objective function

We start with the parameters in the objective function. The costs of the maintenance and the

replacements are as in Appendix B. We have

C(θr,t)=


e0.00 θr,t = 0

e14.50 θr,t = 1

e41.00 θr,t = 2.

The values of Lr and Wr are case specific. The inflation rate in 2016 was 0.32%, therefore we take

the discount factor δ=
(

1
1−0.0032

) 1
365 = 1.0000088.

We take the horizon of our optimisation problem T = 30 years and one time slot is one day.

3.5.2 Constraints

In the constraints, there are just parameters in the PSI and B.

In [2], an overview is given what the values of the PSI mean. If the PSI is between 2.0 and 2.9,

the pavement status is ‘fair’, which means that the pavement is barely tolerable for high speed

traffic [2], therefore we will choose B = 2.9.
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variable value variable value
b −2.28 ·10−7 β6 0.00
b′ −2.11 ·10−6 β7 1.71 ·10−6

β1 2.44 β8 4.26 ·10−6 *

β2 2.86 β9 9.28
β3 1.68 β10 4.77
β4 0.56 β11 4.29
β5 1.70 ·10−5

Table 3.1: The values of the parameters used in subsubsection 3.2.1.2 according to [3].

According to [3] we take Sstd = 8.0 ·104 Newton.

In Table 3.1, the values for the parameters in the rut depth, according to [3], are shown.

The axle load of every vehicle is unknown to us. This is the reason we have vehicle types. We

distinguish two different types: cars and lorries. We call our vehicle set V = {v1,v2}= {vcar,vlorry}.

The reason for this division is that in OmniTRANS, the program we will use in the next section,

this division has already been made.

The total average weight and other characteristics of vehicles are given in Table 3.2. These values

are for Dutch vehicles. We will use the average of these values in our research.

vcar vlorry
car mini bus truck lorry bus

# on the road (1000) 6539 756 83 60 11
weight (kg) † 1022+150 1485+338 25000 25000 10868+1500
growth factor one year 1.018 1.064 0.999 1.053 0.995
# single axles 2 2 2 2 1
# tandem axles 0 0 0 0 1
# tridem axles 0 0 0 1 0

Table 3.2: Characteristics of the vehicles. [16] [23]

We assume that the number of vehicles grows every time slot with the same factor gvcar and gvlorry .

Therefore we have nr,t+1,v = nr,t,v · gv, so nr,t,v = nr,v · gt−1
v . Where nr,v is the number of vehicles

of type v in the basis day.

The average growth factor for the vehicle types are

gvcar =
(

6539 ·1.018+756 ·1.064
6539+756

) 1
365 = 1.00006

gvlorry =
(

83 ·0.999+60 ·1.053+11 ·0.995
83+60+11

) 1
365 = 1.00005.

*[3] gives this parameter the value 4.26 ·10−3, but divides it later on by 103. For clarity, we define β8 = 4.26 ·10−6.
†The weight is combined from [16] and [23]. If a weight is a sum, it is a sum of the empty weight and the weight

of the people inside the vehicle.
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From the municipality of Enschede (Appendix B), we know that the top layer of the asphalt is

3 cm and the total thickness of the asphalt is 13 cm. Therefore we take

LTr,1 = 0.03m ∀r (3.9)

LTr,2 = 0.05m ∀r (3.10)

LTr,3 = 0.05m ∀r (3.11)

In our assumptions we never have an overlay, so we take

OTr = 0m ∀r

This means that every road has an equal thickness of pavement, so RNr = RN ∀r.

3.6 Analysis of the optimisation problem

First we will analyse what the influence is of our assumptions and parameters we have.

3.6.1 The Rut depth

We take one average day in the year, so we have to know the average minimal and average

maximal temperature of a year. In [30] the average minimum and maximum temperatures of the

months from 1706 till 2014 in the Netherlands are listed. We take these values to compute the

expected values of the average minimum and maximum for all the next years.

We have

E[TMmax,t]= 31(7.1+8.8+16.0+22.3+20.5+14.2+7.3)+30(13.1+18.8+17.9+10.2)
365.25

°C

+ 28.25 ·7.6
365.25

°C

≈ 13.68°C

E[TMmin,t]= 31(−7.0−2.3+7.5+11.2+13.9+13.5+6.0−5.7)
365.25

°C

+ 30(4.3+11.2+10.7+0.6)+28.25 ·−6.7
365.25

°C

≈ 4.83°C.

Because E[TMmax,t]≤ 28.6°C and E[TMmin,t]≥ 0 we have E[THt]= 0, E[TFt]= 0 and E[TL t]= 0.

Therefore we take THt = TL t = 0. If we fill in these values in the formulas for µr,t and ar,t we get

µr,t =β5 +β6 ·THt =β5

ar,t =β7eβ8TL t−RN =β7e−RN .
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With our assumption of the vehicle types, we can define ∆N ′
r,t and ∆Nr,t different. We will use

∆N ′
r,t =

∑
v∈V

nr,t,v∆Ñ ′
v =

∑
v∈V

nr,v gt−1
v ∆Ñ ′

v,

∆Nr,t =
∑
v∈V

nr,t,v∆Ñv =
∑
v∈V

nr,v gt−1
v ∆Ñv,

where ∆Ñ ′
v is the average number of axles in a vehicle of type v times the average axle load of

vehicle type v corrected if the vehicles have tandem or tridem axles. ∆Ñv is defined similarly.

This definition makes ∆Ñ ′
v and ∆Ñv constants. We define these constants more clearly later on.

Therefore we have

N ′
r,t̃AC

r ,t =
t∑

s=t̃AC
r

∆N ′
r,s

=
t∑

s=t̃AC
r

∑
v∈V

nr,v gs−1
v ∆Ñ ′

v

= ∑
v∈V

nr,v∆Ñ ′
v

t∑
s=t̃AC

r

gs−1
v

= ∑
v∈V

nr,v∆Ñ ′
v

gt
v − g t̃AC

r −1
v

g−1
,

Nr,t̃U
r ,t =

∑
v∈V

nr,v∆Ñv
gt

v − g t̃U
r −1

v

gv −1
.

We take

∆Ñ ′
v = nsinglev

(
Ssingle

Sstd

)β4

+ntandemv2

(
Standem

2Sstd

)β4

+ntridemv3

(
Stridem

3Sstd

)β4

.

∆Ñv = nsinglev

(
Ssingle

Sstd

)β1

+ntandemv

(
Standem

β3Sstd

)β2

+ntridemv

(
Stridem

β12Sstd

)β13

Where nsinglev is the number of single axles of vehicle type v. The parameters ntandemv and ntridemv

are defined similarly. We expand the formulas used in [3] and given earlier in this report by

adding tridem axles.

If we use average vehicles and we fill in these formulas, we get constant values of the axle damage

of one average vehicle of type v.

In the formula of ∆Ñ ′
v we filled in the variables added for tridem axles according to the reason

that in the top layer the axles in a multi-axle behave like single axles. The values of β12 and β13

must be estimated. We are not able to validate these values.

For clearness we introduce another constant β0 = 1 in ∆Ñv, this does not influence the formula:

∆Ñv = nsinglev

(
Ssingle

β0Sstd

)β1

+ntandemv

(
Standem

β3Sstd

)β2

+ntridemv

(
Stridem

β12Sstd

)β13

.
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Figure 3.5: Graph of (0,0), (1,β0) and (2,β3) to deter-
mine β12.
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Figure 3.6: Function through (0,0), (1,β1) and (2,β2)
to determine β13.

So we have β0 = 1 and β3 = 1.68, from this we can conclude that the less wheels spread the

pressure, the higher is the pressure at one place. So if the pressure is spread by an area which

goes to zero, the pressure on one place will go to infinity. We will compute a logarithmic function

y(x) through the points (x0, y0) = (0,0), (x1, y1) = (1,1) and (x2, y2) = (2,1.68) and compute y(3)

afterwards The formula which fits these points is y(x) = 2.1511ln
(

x+1.6897
1.6897

)
, see Figure 3.5. So

β12 = y(3)= 2.20.

We also use a logarithmic function to estimate β13, we use the points (0,0), (1,2.44) and (2,2.86).

The function through these points is y(x) = 0.6144ln
(

x+0.0192
0.0192

)
, see Figure 3.6. We take β13 =

y(3)= 3.11.

Now we can compute the values of the constants ∆Ñv and the ∆Ñ ′
v. We assume that the load is

divided equally over all the axles.

To keep the computations clear, we will compute ∆Ñ ′
vcari

separately for every vehicle in vehicle

type vcar and compute the average afterwards. So for ∆Ñ ′
v we have:

∆Ñ ′
vcar

= nsinglevcar

(
Ssingle

Sstd

)β4

+ntandemvcar2

(
Standem

2Sstd

)β4

+ntridemvcar3

(
Stridem

3Sstd

)β4

∆Ñ ′
vcarcar

= 2
(

9.81(1.022+0.150)/2
80

)0.56
≈ 0.457780

∆Ñ ′
vcarmini bus

= 2
(

9.81(1.485+0.338)/2
80

)0.56
≈ 0.586270

∆Ñ ′
vcar

= 6539 ·0.457780+756 ·0.586270
6539+756

≈ 0.4711. (3.12)

To keep the computations clear, we will compute ∆Ñ ′
vlorryi

separately for every vehicle in vehicle
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type vlorry and compute the average afterwards.

∆Ñ ′
vlorryi

= nsinglev

(
Ssingle

Sstd

)β4

+ntandemv2

(
Standem

2Sstd

)β4

+ntridemv3

(
Stridem

3Sstd

)β4

∆Ñ ′
vlorrytruck

= 2
(

9.81 ·25/2
80

)0.56
≈ 2.5404

∆Ñ ′
vlorrylorry

= 2
(

9.81 ·25/3
80

)0.56
+3

(
9.81 ·25/3

3 ·80

)0.56
≈ 3.6657

∆Ñ ′
vlorrybus

=
(

9.81(10.868+1.5)/2
80

)0.56
+2

(
9.81(10.868+1.5)/2

2 ·80

)0.56
≈ 2.0184

∆Ñ ′
vlorry

=
83∆Ñvlorrytruck

+60∆Ñvlorrylorry
+11∆Ñvlorrybus

83+60+11

= 83 ·2.5404+60 ·3.6657+11 ·2.0184
83+60+11

≈ 2.9415 (3.13)

And for the ∆Ñv values we have:

∆Ñvcar = nsinglevcar

(
Ssingle

Sstd

)β1

+ntandemvcar

(
Standem

β3Sstd

)β2

+ntridemvcar

(
Stridem

β12Sstd

)β13

∆Ñvcarcar
= 2

(
9.81(1.022+0.150)/2

80

)2.44
≈ 0.0032

∆Ñvcarmini bus
= 2

(
9.81(1.485+0.338)/2

80

)2.44
≈ 0.0095

∆Ñvcar =
6539 ·0.0032+756 ·0.0095

6539+756
≈ 0.0040. (3.14)

Again we will compute ∆Ñvlorryi
separately for every vehicle in vehicle type vlorry and compute the

average afterwards, to keep the computations clear.

∆Ñvlorryi
= nsinglev

(
Ssingle

Sstd

)β1

+ntandemv

(
Standem

β3Sstd

)β2

+ntridemv

(
Stridem

β12Sstd

)β13

∆Ñvlorrytruck
= 2

(
9.81 ·25/2

80

)2.44
≈ 5.6705

∆Ñvlorrylorry
= 2

(
9.81 ·25/3

80

)2.44
+

(
9.81 ·25/3
2.20 ·80

)3.11
≈ 2.2005

∆Ñvlorrybus
=

(
9.81(10.868+1.5)/2

80

)2.44
+

(
9.81(10.868+1.5)/2

1.68 ·80

)2.86
≈ 0.6119

∆Ñvlorry =
83∆Ñvlorrytruck

+60∆Ñvlorrylorry
+11∆Ñvlorrybus

83+60+11

= 83 ·5.6705+60 ·2.2005+11 ·0.6119
83+60+11

≈ 3.9572 (3.15)
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The thickness of the pavement is also defined and is equal for every road. Therefore we have

RN =β9(LTr,1 +OTr)+β10LTr,2 +β11LTr,3

= 9.28 ·0.03+4.77 ·0.05+4.29 ·0.05

= 0.7314

Therefore the rut depth is given by the following formula

RDr,t̃AC
r ,t̃U

r ,t = RDAC
r,t̃AC

r ,t
+RDU

r,t̃U
r ,t

where

RDAC
r,t̃AC

r ,t
= RDAC

r,t̃AC
r ,t−1

+∆RDAC
r,t̃AC

r ,t

= RDAC
r,t̃AC

r ,t−1
+µr,te

b′N ′
r,t̃AC

r ,t∆N ′
r,t

= RDAC
r,t̃AC

r ,t−1
+β5e

b′N ′
r,t̃AC

r ,t
∑
v∈V

nr,v gt−1
v ∆Ñ ′

v

RDU
r,t̃U

r ,t = RDU
r,t̃U

r ,t−1 +∆RDU
r,t̃U

r ,t

= RDU
r,t̃U

r ,t−1 +αr,te
bNr,t̃Ur ,t∆Nr,t

= RDU
r,t̃U

r ,t−1 +β7e−RN ebNr,t̃Ur ,t
∑
v∈V

nr,v gt−1
v ∆Ñv

with RDAC
r,0,0 and RDU

r,0,0 are the initial state of respectively the asphalt layer and the under layer.

We also have RDAC
r,s,s = RDU

r,s,s = 0 ∀r, s, because this is the difference of rut depth between two

the same time slots.

3.7 Example

To make the last section more clear we will give an example of how the PSI on a road can be

computed. In Algorithm 3.1 an iterative guideline of how to compute the PSI of one road section

is given, if we take ncar = 0. We assume in the algorithm that α,µ,b,b′,∆N and ∆N ′ are given.

According to the algorithm, we will give an example of computing the PSI in three time steps.

We take nlorry = 5000 for every time interval and the values of the given variables as computed

and given before. This is shown in Figure 3.7.

It can be seen that in three intervals the PSI does not become very low. In the next section we

will plot some graphs with more time intervals.
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PSI = 5.03
T = 3
n = 5000
N ′ = 0
N = 0
RDAC = 0
RDU = 0
α=β7 · e−RN = 1.71 ·10−6 · e−0.7314 ≈ 8.2291 ·10−7

µ=β5 = 1.70 ·10−5

t = 1
N = 0+5000 ·3.9572= 19786
N ′ = 0+5000 ·2.9415= 14707.5
∆RDU = 8.2291 ·10−7e−2.28·10−7·19786 ·5000 ·3.9572= 0.0162
∆RDAC = 1.70 ·10−5e−2.11·10−6·14707.5 ·5000 ·2.9415= 0.2424
RDU = 0+0.0162= 0.0162
RDAC = 0+0.2424= 0.2424
PSI = 5.03−2.14 ·10−3 (0.2424+0.0162)2 = 5.0299

t = 2
N = 19786+5000 ·3.9572= 39572
N ′ = 14707.5+5000 ·2.9415= 29415
∆RDU = 8.2291 ·10−7e−2.28·10−7·39572 ·5000 ·3.9572= 0.0161
∆RDAC = 1.70 ·10−5e−2.11·10−6·29415 ·5000 ·2.9415= 0.2350
RDU = 0.0162+0.0161= 0.0321
RDAC = 0.2424+0.2350= 0.4774
PSI = 5.0299−2.14 ·10−3 (0.4774+0.0321)2 = 5.0293

t = 3
N = 39572+5000 ·3.9572= 59358
N ′ = 29415+5000 ·2.9415= 44123
∆RDU = 8.2291 ·10−7e−2.28·10−7·39572 ·5000 ·3.9572= 0.0161
∆RDAC = 1.70 ·10−5e−2.11·10−6·29415 ·5000 ·2.9415= 0.2278
RDU = 0.0321+0.0161= 0.0482
RDAC = 0.4774+0.2278= 0.7052
PSI = 5.093−2.14 ·10−3 (0.7052+0.0482)2 = 5.0281

Figure 3.7: Computation example with three time intervals.
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double PSI = 5.03
int T = # time steps
int n = # lorries = nvlorry

double N ′ = 0 = Ñ ′
vlorry

double N = 0 = Ñvlorry

double RDAC = 0
double RDU = 0
for int t = 1 : T

N = N +n ·∆N
N ′ = N ′+n ·∆N ′

∆RDU =αeb·N n∆N
∆RDAC =µeb′·N ′

n∆N ′

RDU = RDU +∆RDU

RDAC = RDAC +∆RDAC

PSI = PSI −2.14 ·10−3
(
RDU +RDAC

)2

end

Algorithm 3.1: Iterative algorithm to compute the PSI on one road section if ncar = 0.

Figure 3.8: The PSI after the first time interval with RN = 0.7314.

3.8 Graphs of the Present Serviceability Index

If we plot the PSI in the first interval depending on the number of lorries we get Figure 3.8.

In this graph we see that till approximately 1.8 ·105 lorries in one time interval the graph is

decreasing. If more lorries would use the road, the PSI would be higher, that is strange because

in practice, more axles will cause more damage to the road. We can make the same graph for

only cars on the road, see Figure 3.9. The maximum number of cars is approximately 1.0071 ·106.
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Figure 3.9: The PSI after the first time interval with RN = 0.7314.

Therefore we can only use the formula for the PSI if the number of vehicles on the road is low

enough. Note that this is only the first time interval, if the growth factor is bigger than one, the

number of vehicles increases over time and therefore the start number of vehicles must be lower.

The reason that the formula can just be used for a low enough number of vehicles is because of

the shape of the ∆RD function, which is x · e−x, see Equation (3.3) and (3.4). For big enough x the

part e−x, which converges to zero, determines the behaviour of the function, which means that

we have limx→∞ x · e−x = 0. This means that the delta rut depth converge to zero if the number of

vehicles is to big, which is actually not the case in real life. This means that the PSI cannot be

used any more for a large number of vehicles.

The PSI after one time interval if a combination of lorries and cars drive over the road is shown

in Figure 3.10. The area where the PSI is usable is below the black line. If this number of vehicles

is reached in reality depends on the time interval. In one day, on the busiest roads in the east of

the Netherlands this number of vehicles is not reached.

We also made a plot about the PSI over time if we take 1000 lorries. After some trial and error,

this is the lowest PSI we can get, see Figure 3.11. Also the rut depth is computed with the

same information, this is in Figure 3.12. The reason why we cannot get the PSI lower than

approximately 4.75 can be that we just use the rut depth to compute the PSI or that we do not

take weather influences into account. In [5] we can see a graph witch has a PSI under the 1.5.

This picture is also in Figure 3.13. In [5] not enough information is given to reproduce this graph,

the missing information is the number of vehicles on the road. In their discussion the authors

indicate the presence of difficulties by calculating the rut depth. Maybe this is the same problem
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Figure 3.10: The PSI after the first time interval with RN = 0.7314.

Figure 3.11: The PSI with 1000 lorries over time, with RN = 0.7314.
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Figure 3.12: The rut depth with 1000 lorries over time, with RN = 0.7314. Red is the total rut depth, blue is the rut
depth in the asphalt concrete layer and green is the rut depth in the underlayer.

Figure 3.13: The PSI-graph according to [5].
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Figure 3.14: The corrected PSI with 1000 lorries over time, with RN = 0.7314.

as we can see in our graphs.

To make the PSI still usable in this paper, we will multiply the rut depth by a factor to get

approximately the same graph as in [5]. It turns out that a multiplication of the rut depth with

3.46, the PSI-graph looks usable. Therefore we take this factor in our formula for the PSI. This

factor can be the average of weather influences and the cracking and slope variance neglected in

this paper. If we use the formula

PSIcorr = 5.03−2.14 ·10−3 (
3.46RD

)2

= 5.03−2.57 ·10−2RD2, (3.16)

the PSIcorr-graph looks like Figure 3.14. Therefore we calculate from now on with Equation (3.16)

as formula for the PSI.
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4
THE USAGE OF THE ROAD NETWORK

G iven a network of roads, people will plan their trip optimally. This means that the

travellers want to minimise their ‘costs’, which may be for example the travel time or

the travel distance.

First we will explain the structure of a road network and the Classic Transport Model, afterwards

we will look how the usage of the road network fits in these models. Further we will describe

which different ways there are for assigning trips to the network and we will give the optimisation

problem which is used to get the distribution of the traffic over a network in such a way that no

traveller wants to change his or her route, this is called the user equilibrium and is according

to Wardrop’s first principle. Finally we will describe how OmniTRANS (a software product of

DAT.Mobility) assigns the traffic to a network.

4.1 The road network

In this chapter we will model a road network with a graph. The network is a directed graph

G(U ,E) with a set of nodes U and a set of edges E. The nodes represent the junctions and the

edges represent the links or roads. The junctions and the roads have multiple properties, which

are called the labels of the nodes and links.

4.2 Classic Transport Model

The classic transport model describes the four phases to model the movements of vehicles over a

network (Figure 4.1). The first three phases are just for personal traffic. The data of these phases

are given from other models.

Database The model starts with a database. This consists of the data about the network, like

labels of the nodes and links and the zones the network is divided in. Also data of possible

transport modes (public transport, car, lorry) is in the database.
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Figure 4.1: The Classic Transport Model. [11]

Trip Generation In this phase, the total number of trips will be generated and the number of

trips attracted and produced by each zone of the network.

Trip Distribution Now the trips will be allocated to their particular origin and destination,

this means the Origin-Destination-Matrix (OD-Matrix) will be defined.

Modal Split The OD-matrix will be split by different modes of transport, like a car or public

transport.

Assignment In this phase the trips for each mode will be assigned to their best route.

Evaluation After every phase the results should be evaluated, which is important because you

want to know if the results are plausible.

In our problem we only have to do phase 4, the assignment, and the evaluation. The other phases

are outside this research and we assume they are fixed. This means that in our research we

assume a fixed demand, therefore the OD-matrix is known.

4.3 Data

If a traveller wants to go to his destination, he needs a mode of transport. Different modes are

bikes, motorcycles, cars, taxis, tractors, trucks and walking. Because there are a lot of different

vehicles, we will group them in vehicle types v. We will neglect public transport and pedestrians,

because we only consider trips made by vehicles on the road which can change their route. We

also neglect the cyclists, because they have most of the time separate lanes. Our types are as

described in chapter 3:
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1. vcar: cars, mini buses

2. vlorry: trucks, lorries, buses.

The data of the vehicle types are the influence on the asphalt concrete and the under layer of the

pavement which are ∆Ñ ′
v and ∆Ñv respectively. They also have a growth factor gv.

The road network in which the travellers go to their destination is given, this is the directed graph

G(U ,E). A link has multiple properties, the properties which are important for this research are

1. Lr: length of road r (m).

2. Wr: width of road r (m).

3. cr: capacity of road r.

4. xr,v: maximum speed of road r for vehicle type v (km/h).

An OD-pair can have wi ∈U as origin and w j ∈U as destination, this is shown as [wi,w j]. For

every OD-pair multiple routes ρ are possible. This routes can depend on the vehicle type, because

trucks are not allowed on every road where cars are. Also cars are more likely to take shortcuts.

The nodes which can be in an OD-pair are special nodes, these nodes do not represent a junction

in our network, but so called zones. This is done because we do not know exactly the origin and

destination of travellers, but we know it approximately. These nodes are called nutrition nodes.

4.4 Assignment of the trips to the network

Two types of assignment are possible, static and dynamic assignment. Both assignments are for

a certain time interval. With static assignment every person has an origin and a destination

between which he wants to travel, the traveller chooses his route to optimise his travel costs.

This means that all the traffic from the time interval is placed at once on its route and they are

everywhere in the network at the same time. With dynamic assignment, everyone also has a

departing time, for every second it will be computed where the traffic is at that moment. This will

cost a lot of time, but it is more realistic because the congestion is simulated better. If the person

wants to travel from his origin to his destination, he can optimise the travel costs by choosing a

route and choosing the departure time.

Another important decision can be made about the capacity constraint. Every road has a capacity,

if the flow in that road is bigger than the capacity, there will be congestion and the maximal

speed the vehicles are able to drive will decrease. This means that if all the vehicles go via the

same route, this may not be optimal, even if the road is part of the initial shortest path from A to

B.
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For these four different types of assignment, different algorithms are used. A scheme for this is

in Table 4.1.

Stochastic effects included?
No Yes

Capacity constraints
included?

No All-Or-Nothing Burrell’s equilibrium
Yes Wardrop’s equilibrium Stochastic user equilibrium

Table 4.1: Classification scheme for traffic assignment. [11]

In this thesis we use static assignment for an average working day, divided in three time slots:

morning rush hour (7 till 9 o’clock), afternoon rush hour (16 till 18 o’clock) and the rest of the

day. We use static assignment because the available model of our case (Enschede and Hengelo)

is static. Also, in our research the actual travel time does not matter for the maintenance costs,

only the axle loads of vehicles does matter. The axle load does not depend on departure time, so

the static assignment is good enough for our research.

The assignment of vlorry will just be the shortest path, because the lorries will drive on big roads

and they all follow the same route if they have the same OD-pair. This type of assignment is a

state of practice for lorries. For the assignment of vcar we will look for the Wardrop’s equilibrium

with a pre-load of the lorries on the network.

The Wardrop’s equilibrium is the equilibrium the users of the network make if they choose their

optimal path. This is stated in Wardrops’s first principle.

Theorem 4.1 (Wardrop’s first principle [26]). Under equilibrium conditions traffic arranges itself

in such a way that no individual trip maker can reduce his path costs by switching routes.

This means that if all trip makers perceive costs in the same way we can rewrite Wardrop’s first

principle.

Theorem 4.2 (Wardrop’s first principle with equal trip makers [26]). Under equilibrium condi-

tions traffic arranges itself in congested networks such that all used routes between an OD-pair

have equal and minimum costs while all unused routes have greater or equal costs.

Note that the Wardrop’s equilibrium is not necessarily the total cost optimal solution!

We take identical travellers with a cost function of time. Every traveller wants to minimise his

travel time, in other words, he wants to minimise his delay. The delay on a link will be computed

with the Bureau of Public Roads curve, the BPR-function [31].

τr( fr)= τ0,r

(
1+ Ar

(
fr

cr

)Br
)
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where

τr = final travel time of a vehicle on road r

τ0,r = free flow travel time on road r

Ar,Br = parameters

fr = flow on road r

cr = capacity of road r

Note that because the travellers are all the same, their free flow travel time must also be the

same.

The flow f is a function of the numbers of the different vehicle types using the road. This is

expressed in pae, persoon auto equivalent (personal car equivalent). From this OmniTRANS

model we have

fr = nvcar,r +1.8nvlorry,r. (4.1)

The reason that lorries have a factor 1.8 is that lorries are longer vehicles than cars and therefore

take more place on the road which leads quicker to congestion.

The free flow travel time can be computed from the maximum speed by τ0,r = Lr
xr

. The parameters

Ar and Br depend on the characteristics of the road. The model in OmniTRANS has

Ar =


0.5 r has the structure of a motorway

0.8 r has the structure of a superhighway or a 80 km/h road

1.0 otherwise

Br = 4.

Which means that the higher Ar is, the earlier delay will occur and choosing another route will

be interesting.

Note that the value of Ar depends on the structure of the road and not on the maximum speed

vehicles are allowed to drive. A road with the structure of a motorway, with the maximum speed

100 km/h has Ar = 0.5 instead of the Ar-value of the superhighway.

4.4.1 The optimisation problem

Based on the descriptions given, we can set up an optimisation problem. Every traveller wants

to minimise his costs, the travel time. If every traveller acts in this way, every route between

nutrition node wi and w j must have the same travel time if it is used (Wardrop).

Say the number of trips between OD-pair [wi,w j] for vehicle type v via route ρ is given by ηi, j,ρ,v.

It is clear that

ηi, j,ρ,v ≥ 0 ∀i, j,ρ,v.
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We also have∑
ρ

ηi, j,ρ,v = ηi, j,v ∀i, j,v,

where ηi, j,v is the total vehicle v supply of node wi which goes to w j. This constraint means that

it does not matter which route will be taken, the travellers will all reach their destination.

We have the intensity on link r as given in Equation (4.1). The number of vehicle type v on link r

is given by nv,r =∑
i, j,ρ ηi, j,ρ,vξi, j,ρ,v,r where

ξi, j,ρ,r =

1 link r is part of route ρ for OD-pair [wi,w j]

0 otherwise

Therefore we have

fr = nvcar,r +1.8nvlorry,r

= ∑
i, j,ρ

ηi, j,ρ,vcarξi, j,ρ,vcar,r +1.8
∑
i, j,ρ

ηi, j,ρ,vlorryξi, j,ρ,vlorry,r

= ∑
i, j,ρ

[
ηi, j,ρ,vcarξi, j,ρ,vcar,r +1.8ηi, j,ρ,vlorryξi, j,ρ,vlorry,r

]
= ∑

i, j,ρ,v
ωvηi, j,ρ,vξi, j,ρ,v,r,

with ωvcar = 1 and ωvlorry = 1.8.

The objective function in our optimisation problem, which is commonly used in the literature [11],

is

∑
r

∫ fr

0
τr(ζ) dζ.

To keep the explanation of this objective function clear, we look at the situation with cars only.

The objective function
∑

r
∑ fr
ζ=0τr(ζ) gives the users equilibrium.

Theorem 4.3. The minimisation of
∑

r
∑ fr
ζ=0τr(ζ) gives the users equilibrium.

Proof. The users equilibrium means that no one can choose another route in such a way that

it will decrease its travel time. Suppose we are in a global optimum with objective value k and

someone can change his route to decrease his travel time with amount κ> 0.

The new solution is a feasible traffic flow. The objective value of this solution is exactly the

previous value decreased with the same amount as the travel time of that specific driver has

decreased. The new objective value is therefore k−κ < k. Which means that we found a new

solution with a smaller objective value than the global minimum, which is a contradiction.

Therefore gives the minimisation of
∑

r
∑ fr
ζ=0τr(ζ) the users equilibrium. �
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Because calculating with an integral is often easier than a summation, the summation is replaced

by an integral, this is only allowed if the integral approaches the summation good enough.

Because the integral is used everywhere in literature, we assume it is. Also an integral provides

the possibility of continuous flow functions. In our research we have cars and lorries and the flow

is given by Equation (4.1), which is not always a whole number. Which is no problem with an

integral.

This brings us to the standard model for the user equilibrium used in the literature.

min.
∑
r

∫ fr

0
τr(ζ) dζ (4.2)

s.t.
∑
ρ

ηi, j,ρ,v = ηi, j,v ∀i, j,v

ηi, j,ρ,v ≥ 0 ∀i, j,ρ,v∑
i, j,ρ,v

ωvηi, j,ρ,vξi, j,ρ,v,r = fr

The solution space is convex, which means that it can be solved with a steepest descent method.

The solution of this optimisation problem gives us the Wardrop Equilibrium [11].

4.4.2 Junction delay

At junctions the travellers have delay too, which has to be taken into account by computing

the route costs. The delay on junctions is a lot more complex to compute. The idea is to make a

Figure 4.2: The underlying structure of a junction. Instead of one big node, the junction consists of turns.

network of roads in the junction. These roads are called turns. Now the individual turns have

a delay, but this delay also depends on the intensity on the other turns. How this depends of

all the intensities on the turns in the junction depends on the type of the junction (roundabout,

non regulated, traffic lights or priority junction). In "Static Traffic Assignment with Junction

Modelling" [21] the junction modelling in OmniTRANS is extensively described. The functions

used need too much explanation for this paper, therefore we say that the delay for vehicle type v

on the junction of road r on a junction is given by τ̃r,v( f ), with τ̃r,v( f ) not further specified.
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With time delay functions which depend on the intensity on multiple links, the Wardrop’s

Equilibrium cannot be found any more with the optimisation problem in Equation (4.2). Therefore

we will use the junction modelling from OmniTRANS, which is an iterative process.

4.4.3 Iterative process for travel flow determination

OmniTRANS uses an iterative process to compute the User Equilibrium. In the first step it

computes the shortest path for the vehicles and assigns the vehicles to this path. If you stop

the algorithm here, it is called the AON (All-Or-Nothing) assignment. The iterative process now

looks for another shortest path using the BPR-function and the previous assignment as pre-load.

Afterwards its averages the traffic on all the routes found till then. This will be done a certain

number of iterations. This method is called the Volume-Averaging assignment (VA).

As said before, it is state of practice to use the All-Or-Nothing assignment for lorries. Therefore

OmniTRANS uses this assignment for lorries, afterwards, it will assign cars determined by a

Volume-Averaging assignment with the lorries as preload.

In the AON assignment the junction modelling is not used, because it is based on free flow

conditions, which is the shortest path if the network is empty. This means that the junctions

have no delay. Therefore the AON assignment is just a shortest path algorithm which is solvable

in polynomial time.

The VA assignment has junction modelling included, which means that this problem is not easy

and quick to solve anymore.
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5
THE OPTIMAL TRAVEL FLOW

We know how to compute the minimal maintenance costs given the flow on the road

network (chapter 3). We also know how travellers will distribute themself over the road

network (chapter 4). So now we have to determine which routes the vehicles have to

drive such that the travel flow is optimal for the maintenance. We can reduce this problem to

a kind of min-cost flow problem, of which an efficient solving method is known. Therefore we

write our problem in a min-cost flow optimisation problem. Afterwards we have to set up a cost

function needed in the min-cost flow problem and we will analyse it. Finally we will find out how

we will solve our special min-cost flow optimisation problem.

5.1 Formulation of the min-cost flow problem

The min-cost flow problem is an optimisation problem which decides how the flow has to go

through a graph from the source to the target node in such a way that the total costs will be

minimal. All the flow is exactly the same, which means that if a link has a flow in one direction,

flow in the opposite direction will neutralise this flow.

In our problem we have different flows, because traffic is not neutralising each other. We really

have to move flow from wi to w j and if there is another flow in the opposite direction on that link,

it will not neutralise each other. Therefore we take different flow types.

The flow on link (wi,w j) with OD-pair [wk,wl] is called f(wi ,w j)([wk,wl]). The capacity on link

(wi,w j) is given by c(wi ,w j). Note that the capacity of a link is not specific for every OD-pair,

because every vehicle of one type has the same influence as another vehicle of the same type.

Some nodes have a demand or supply, these nodes are the nutrition nodes in our road network.

The supply of node wi which goes to w j is given by di, j. The demand of node w j with origin wi is

therefore also di, j.
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The optimisation problem to get the optimal flow is given by

min.
∑

(wi ,w j)∈E
C(wi ,w j)

( ∑
wk,wl

f(wi ,w j)
(
[wk,wl]

))

s.t.
∑

wk,wl

f(wi ,w j)
(
[wk,wl]

)≤ c(wi ,w j) ∀i, j

f(wi ,w j)
(
[wk,wl]

)=− f(w j ,wi)
(
[wk,wl]

) ∀i, j,k, l∑
f(wi ,w j)

(
[wk,wl]

)= 0 ∀i 6= k, l∑
w j

f(wi ,w j)
(
[wk,wl]

)= dk,l ∀k, l

∑
wi

f(wi ,w j)
(
[wk,wl]

)= dk,l ∀k, l

which is an extension of the normal min-cost flow problem.

The capacities c are known from the data in our OmniTRANS model. Also the demands d are

known from the data in our OmniTRANS model. The cost function we have to make ourselves.

5.2 The cost function

The flow on a link consists of the number of cars, nvcar , and the number of lorries, nvlorry . In this

section we talk in terms of nv instead of flow. We can formulate the time until maintenance or

replacement which depends on the number of vehicles on the road. We know the costs of the

maintenance and replacement, so we can compute the costs depending on the flow.

The formula for the costs is not easy. If the flow is known for a road, then the costs can be

computed according to Algorithm 5.1. The value of δ is the discount factor and is the same as in

chapter 3.

if nr,l == 0 and nr,c == 0
Cr = 0

else
determine times for maintenance (= Tr,main) and replacement (= Tr,rep)
Cr = LrWr

(∑
t∈Tr,main Cmainδ

t +∑
t∈Tr,rep Crepδ

t
)

end

Algorithm 5.1: Compute the maintenance costs for one road section.

The sets Tr,main and Tr,rep can be computed according to an algorithm of your choice. For getting

the optimal costs, Equation (3.8) has to be solved, however this will cost a lot of computation

time because it is an MIP (Mixed Integer Program), which, in general, can not be solved in linear

time. Therefore an alternative algorithm is given later on, this algorithm gives a fixed strategy to

maintain or repair the road. First we give some explanation to understand this algorithm. In the
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following computations we just use the rut depth of the asphalt concrete layer. The computations

with the rut depth of the under layer are similar. For the difference of the rut depth of the asphalt

concrete layer between t2 −1 and t2 when the layer is placed new at t1 we have
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And therefore we have
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We maintain the road if RDAC ≥ BAC
1 and we repair the road if RDAC ≥ BAC

2 and RDU ≥ BU
2 .

Therefore we want to know t2 from

BAC
1 ≤ RDAC
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Note that you have to choose BAC
1 , BAC

1 and BAC
1 with the factor described in section 3.8, Equa-

tion (3.16), taken into account! We take BAC
1 = BAC

2 = 7.22 and BU
2 = 1.88, which means that we

will repair the road if the PSI is lower or equal than 2.90.

With this we can define an algorithm to compute the sets Tr,main and Tr,rep, which is done in

Algorithm 5.2.

So the function for Cr is clearly not continuous and therefore also not differentiable. This means

that the algorithms which are used usually to solve an optimisation problem, cannot be used.

Therefore we will look to iterative algorithms to solve our optimisation problem. With an iterative
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algorithm we can also skip the computation of the optimal flow an directly solve the whole

problem by taking speed measures to optimise the maintenance costs.

A visualisation of the maintenance costs can be seen in Figure 5.1. Again we see that the formula

of the PSI cannot be used for every number of lorries and cars, only the left under corner under

the black line, can be used. Further we can see that the number of cars does hardly influence

the maintenance costs. Therefore we will compute the maintenance costs just depending on the

number of lorries.

Figure 5.1: The maintenance costs depending on the number of lorries and cars. With d = 1.000009 and RN = 0.7314,
after 30 years.

In Figure 5.2, the costs per square meter are plotted, depending on the number of lorries on the

road. The blue line represents the real costs, which is not continuous. The function consists of a

lot of step-functions after each other. The red line represents the approximated costs, which is

continuous. As we can see, the first part of the blue line is a linear function, afterwards it could

be a polynomial or logarithmic function. For the last part, the PSI cannot be used any more, this

is around 18000 lorries. From then we approximate it with a horizontal straight line. We choose

for the second part a second order polynomial function.

With interpolation on the original function, the function for the costs per square meter is given by

C(nvlorry)=


0.927nvlorry nvlorry ≤ 4375

−4.050 ·10−5n2
vlorry

+1.586nvlorry −2.108 ·103 4375< nvlorry ≤ 18260

13353 otherwise

(5.1)

The total costs for the road is the costs per square meter multiplied with the length and width of

the road. The length is known in the OmniTRANS network, but the width is not. The width of a

road depends on the road order, which are listed in Table 5.1. We first give some definitions.
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Figure 5.2: The maintenance costs depending on the number of lorries. With d = 1.000009 and RN = 0.7314, after 30
years. The blue line represents the real costs and the red line indicates the approximated costs

Definition 5.1 (Flow road (NL: stroomweg) [28]). Road for a lot of flow with as less as possible

delay. For example the motorways (NL: autosnelweg) or the superhighway (NL: autoweg). This

road type has most often grade separation.

Definition 5.2 (Flow access road (NL: gebiedsontsluitingsweg) [28]). This road group connects

flow roads with access roads, therefore it has priority intersections. Also these roads are made for

big flows of traffic. Outside the urban area, examples of flow access roads are 80 km/h roads. In

the urban area, examples of flow access roads are 50 km/h roads.

Definition 5.3 (Access road (NL: erftoegansweg) [28]). These are the local roads, which are

meant to exchange traffic. This means that there are intersections. Outside the urban area,

access roads are 60 km/h roads and in the urban area they are the 30 km/h roads. These roads

does not have a division line for the different directions on the road.

road group width of lane
Access road 3.50 m
Flow access road (2×1) 2.75 m
Flow access road (2×2) 3.10 m
Flow road (2×1) 3.00 m
Flow road (2×2) 3.25 m
Highway 3.50 m

Table 5.1: The grid points of possible velocities for the first step of grid search. (2×2 means that there are two
carriageways with both 2 lanes, 2×1 is defined similarly.
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It sounds strange that access roads are wider than flow access roads, but this is because flow

roads do not have lanes. All the vehicles drive on the same area, the width is therefore the width

of the whole road.

It is possible that a road has multiple lanes, if so the lorries will distribute themselves over

these lanes. The most right lane has the most lorries on it, so this lane is determining for

the maintenance. Most roads with multiple lanes are motorways, in chapter 3 we already

introduced Flanes , a correction factor for the number of lanes. These correction factors are shown

in Table 5.2 [25]. Even though Flanes is not in the model of the PSI, we will use it, because it gives

the distribution of lorries on motorways in the Netherlands and it will make our model more

complete.

# lanes Flanes

One or target lane 1
Two 0.95
Three or more 0.90

Table 5.2: The correction factor for the lanes, according to [25].

5.2.1 Analysis of the cost function

If we analyse Equation (5.1) and look to the costs per lorry, depending on the number of lorries,

we get Figure 5.3. The last part of the graph, where the number of lorries is bigger than 1.8 ·105

is grey, because from there we cannot use the formula for the PSI any more.

Figure 5.3: The maintenance costs per lorry depending on the number of lorries. With d = 1.000009 and RN = 0.7314,
after 30 years.

It can be seen that when 4375< nvlorry < 11896 per timeslot the costs per lorry are higher than
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elsewhere, this means that if a certain number of lorries is on the road, the maintenance costs

are relatively high. It is likely that you want to avoid this number of lorries on roads. We can

mark a green, orange and red zone. In the red zone, the function for the PSI cannot be used,

so you do not want that number of lorries on the road. In the orange zone a lorry is relatively

expensive. This is shown in Figure 5.4.

Figure 5.4: The green, orange and red areas for the number of lorries. With d = 1.000009 and RN = 0.7314, after 30
years.

This does not mean that the maintenance costs are minimal if no (red and) orange roads are in

the network, we formulate this in a theorem.

Theorem 5.1. A network with no orange roads does not necessarily give the minimal maintenance

costs.

Proof. We will prove this by a counterexample.

Take a network with two nodes A and B and three roads r1, r2 and r3. All the roads have the

same width, say one meter. The length of road r1 and r3 is 15 meter and the length of r2 is 10

meter. See Figure 5.5.

At first, we put all the traffic (5000 lorries) on road r2. This means that r2 is in the orange area.

We can compute the maintenance costs

C =e
(
−4.050 ·10−5 ·5000+1.586 ·5000−2.108 ·103

)
·10≈e4.811 ·103 ·10≈e4.811 ·104.

Second, we distribute the the traffic of r2 on r1 and r3 equally. This means that on both roads are
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2500 lorries, so the roads are in the green area. The total costs therefore are

C =e2 · (0.927 ·2500) ·15≈e30 ·2.318 ·103 ≈e6.95 ·104,

which is higher than in the first network. �

So, we will not use this method.

Figure 5.5: A counterexample that only having green roads does not make the maintenance costs as low as possible.
The length of r1 and r3 is 15m and the length of r2 is 10m. The costs in the first network are e4.81 ·104 and in the
second network e6.95 ·104.

5.3 Solving the min-cost flow problem

Now we have the cost function only dependent on the number of lorries. OmniTRANS first assigns

the lorries and afterwards the cars, this means that the assigning of cars does not matter any

more, which means that we can simplify the min-cost flow problem by taking out the cars from

the flow and OD-pairs.

The cost function is not linear, which means that we cannot set up an LP to solve this optimisation

problem. We can for example use piecewise linear functions for the costs and compute the flow

which minimises the costs. Afterwards we can let the number of lorries on the road network

converge (iteratively) to the optimal flows, for example with speed limits. Or we can use an

iterative method which assigns the lorries to the network and computes the corresponding costs

every iteration.

The first option sounds like a good idea, but the problem with piecewise linear functions is that it

makes the optimisation problem only solvable in an ILP (Integer Linear Program), which means

that this problem cannot be solved in linear time. It is very likely that the outcome of this method

gives a distribution which cannot be reached with measures taken in a network. Or for example,

the optimal speed limit would be a decimals number, which is not the practice on roads. It will
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not always be the case that the speeds rounded on a multiple of ten gives the optimal speed limits.

Also in this method we have two long optimisation problems: the min-cost flow problem and the

iterative process to come to this distribution. The pro of this method is that you know which

direction you have to go with assigning the lorries to the network and it may be possible to reach

this distribution with other measures than speed limits.

Iterative methods can be a random walk, local search, grid search or a genetic algorithm. This

means that with this method you act like you do not know anything about he solution space

and therefore you do not know what the best solution would be. Such a method would be grid

search and after a certain number of iterations you can go further with local search. A pro of

iterative methods is that we skip the problems which are difficult to solve, we can compute the

costs according to Equation (5.1), which will cost little time.

We will use the second idea, the iterative methods. In the next section we analyse some and

decide which one we will use further in this research.
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int t′1 = 1, int t1 = 1, int Tmain =;, int Trep =;
double A′

vi
= exp

(
b′nvi∆Ñ ′

vi
gvi−1

)
, double Avi = exp

(
bnvi∆Ñvi

gvi−1

)
int t′2,1, t′2,2, t2, double LHS, LHS′

1, LHS′
2

while t1 < T

LHS = BU
2 α

−1 ∏
v∈V A

(
gt1−1

v

)
v

Solve t2 from LHS ≤∑t2
s=t1

[∏
v∈V A(gs

v)
v ·∑v∈V nv∆Ñv gs−1

v

]
while t′1 < t2

LHS′
1 = BAC

1 µ−1 ∏
v∈V A′

(
g

t′1−1
v

)
v

Solve t′2,1 from LHS′
1 ≤

∑t′2,1

s=t′1

[∏
v∈V A′(gs

v)
v ·∑v∈V nv∆Ñv gs−1

v

]
if t′2,1 < t2

Tmain = Tmain ∪ {t′2,1}
t′1 = t′2,1

else

LHS′
2 = BAC

2 µ−1 ∏
v∈V A′

(
g

t′1−1
v

)
v

Solve t′2,2 from LHS′
2 ≤

∑t′2,2

s=t′1

[∏
v∈V A′(gs

v)
v ·∑v∈V nv∆Ñv gs−1

v

]
if t′2,2 < t2

Trep = Trep ∪ {t′2,1}
t′1 = t′2,1
t1 = t′2,1

else
Trep = Trep ∪ {t′2,2}
t′1 = t′2,2
t1 = t′2,2

end
end

end
end
while t′1 < T

LHS′
1 = BAC

1 µ−1 ∏
v∈V A′

(
g

t′1−1
v

)
v

Solve t′2,1 from LHS′
1 ≤

∑t′2,1

s=t′1

[∏
v∈V A′(gs

v)
v ·∑v∈V nv∆Ñv gs−1

v

]
if t′2,1 < T

Tmain = Tmain ∪ {t′2,1}
end
t′1 = t′2,1

end

Algorithm 5.2: Compute the maintenance and repair times.
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6
SOLVING METHODS

We are going to solve the optimisation with an iterative algorithm. Each iterative algo-

rithm has some similar computation steps of which some are specific for our problem,

therefore we will describe this first. Afterwards we will discuss some iterative algo-

rithms found in literature and look into their applicability. We will discuss genetic algorithms,

grid search and local search. We want an algorithm which can give a ‘good enough’ solution in

maximal one night running time. It turns out that genetic algorithms and grid search will cost

too much computation time, therefore we will use local search.

6.1 Computation steps

The following computation steps are used in all the iterative algorithms which we will discuss in

this chapter:

1. Updating the database

2. Assigning the lorries to the network

3. Get the data needed from the database

4. Decide speed limits for next iteration

The first three steps are nearly the same for the algorithms, the last step is very case specific.

Therefore we will only discuss the first three steps in the next subsections.

We will use the program OmniTRANS for the network computations, this means that the first

three steps will happen in OmniTRANS. The last step is made in Matlab. Therefore we need

some communication between these two programs. The computations OmniTRANS makes are

described in so called ‘jobs’, see ??, which is a piece of code in OmniTRANS. The execution of the

jobs will take place in OmniTRANS, but will be called from Matlab.
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6.1.1 Updating the database

When we update the database, we use an UPDATE SQL-query. It is not possible to change

multiple speed limits with the same SQL-query if the new value is not the same for the links.

Therefore we need a lot of SQL queries to update the database. This means that a good time

indication is difficult. The worst case scenario is to change all the speed limits in our case in

different queries, this costs approximately 38 s. Note that grouping the roads and directions

decreases this computation time a lot.

6.1.2 Assigning the lorries to the network

The assigning will be with an AON strategy, therefore we do not use different daytimes. In

OmniTRANS three different daytimes are commonly used: morning rush hour, afternoon rush

hour and the rest of the day. It does not influence the assignation if add up the lorries in these

daytimes and assign them together. It will cost approximately 1.33 s to run a job of just assigning

the lorries, if we call this job from Matlab.

6.1.3 Get the data needed from the database

This part consists of two jobs, the first job is for the database needs of the access roads and the

other job selects the database needs for the remaining roads. Both jobs write the data in a text

file so that Matlab can work with it. The data needed are

1. type number

2. link number

3. direction

4. # lanes

5. load

6. length

The first one is needed to get the width of the road, the second and third are for the identification

of the link. The number of lanes is needed to scale the load on the link to all the lanes as described

in Table 5.2. The load is the flow on the road, this value and the length are obviously needed.

6.2 Genetic algorithms

Genetic Algorithms are directly distracted from the evolution theory of Charles Darwin. Given a

begin population, it will evaluate over time to a generation with other individuals by survival of

the fittest. We will explain this evolution process and how it can be used by solving optimisation

problems.

6.2.1 Definitions

The names used in GAs are the same as in the evolution theory. We start with a population, the

population of one iteration is a generation. Every generation consists of individuals, which are
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possible solutions in our optimisation problem. Every individual has a chromosome, the abstract

representation of the solution. On the chromosomes lay the genes, every gene is a parameter

which has to be optimised. The different values of a gene are the alleles. [29]

6.2.2 The phases of a genetic algorithm

A genetic algorithm has, like evolution, different phases, these are shown in Figure 6.1.

The initialisation is a start population, on the population a selection will occur. This selection is

made on the ‘fitness’ of a solution. The fitness is a measure of how good the solution is for our

optimisation problem. After the selection the reproduction starts, this happens with crossing

over and mutations. Now we have a new population. If in this population there is a good enough

individual, we stop the algorithm. Otherwise we will make a new generation.

Figure 6.1: The phases of a genetic algorithm.

6.2.3 Genetic algorithms in maintenance costs optimisation

In a genetic algorithm a big population and a lot of iterations are needed to get to an optimal

solution if the solution space is not nice shaped. With a big population, the probability to get

stuck in a local optimum decreases, however, this will take a lot of computation time. For every

individual we have to assign the speeds to the network, assign the lorries to the network and

compute the costs. This will cost a lot of time per individual, namely a few seconds. With a

population of a few hundred of individuals it will take too much computation time to find an

optimal solution. Therefore we will not use this method.

6.3 Grid search

To get an idea of where the good solutions are in the solution space, Grid search (GS) can be used.

To keep the explanation and the pictures clear, we will describe grid search in a two-dimensional

solution space. In the two dimensional case we have two variables x, y. The function we want
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to minimise is f (x, y). In Figure 6.2 the principle is made clear. A grid will be laid down on the

solution space. On every point (xi, yj) in the grid f (xi, yj) will be computed. At four low points

which form a box, the grid will be made finer. The whole process of looking for an optimum can be

started over again on this grid, until a stopping criterium will be reached. A stopping criterium

can for example be the number of iterations or the value of the function f (x, y).

Figure 6.2: Grid search, the darker the color, the lower the function. [8]

The grid can be built up in several ways, like regular, random or according to an algorithm. At

the same time, this brings a disadvantage, namely if the grid points are distributed in a wrong

way, it can give a distorted view on how the function behaves, an example is given in Figure 6.3.

Figure 6.3: Regular grid search vs random search. [4]

It will be clear that you have to know the behaviour of the function before you can choose the

grid points distributions well. This is in contrast with the reason grid search is used.

6.3.1 Grid search in maintenance costs optimisation

A good grid is needed before grid search is useful. This means that for every variable multiple

values have to be tested. For example, we group all our road variables in nine variables with all
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five values in our grid, we have 59 = 1953125 solutions which have to be tested. The computation

of the costs of one solution depends on the number start-ups of OmniTRANS, the program which

assigns the traffic to the network. It costs approximately three seconds to compute the costs for

one solution, for 15 solutions it costs approximately six seconds. This means that a formula for

the computation time in seconds is 2.79+0.21 ·#solutions. This means that this grid computation

costs approximately 2.79+0.21 ·1953125 seconds, which is almost 5days, which is too long.

This means that we can take less groups or less possible values in our grid, but this results in

a grid from which you cannot conclude, because it is too rough. Therefore we will not use grid

search in our research.

6.4 Local search

The local search algorithm is a steepest descent method. It is an iterative method to find an

optimal solution. Local search starts with an initial solution in the solution space, then it will

look at the neighbours and computes their ‘fitness’, how well do they apply to be optimal. From

these neighbours it will choose one and it will look to the neighbours of this chosen one. This will

repeat until the stop criterion is met, this is schematic shown in Figure 6.4.

Figure 6.4: The local search principle.

In the following subsections the different parts of local search will be explained in more detail.

6.4.1 Fitness of a solution

The fitness of a solution is how optimal the solution is. Sometimes the optimal value is known

and you search for the solution belonging to this optimal value, then the outcome of the objective

function can directly be linked to a measure of how optimal the solution is. If the optimal value is

not known the fitness can be the value of the objective function of that solution. It is even possible

to set up a fitness function which is totally different from the objective function. Normally the
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higher the fitness, the better the solution, but in case the fitness is the value of the objective

function a lower fitness could be better too.

6.4.2 Neighbours

A solution is given in the form x = (x1, . . . , xm), with for xi the possible values xi,1, . . . , xi,mi , which

have a certain order. A neighbour of x is x̃ with exactly one i for which xi 6= x̃i. It depends on the

algorithm which value x̃i can take. In some algorithms x̃i can be every possible value of xi, in

other algorithms x̃i has to be xi, j−1 or xi, j+1 if xi = xi, j.

6.4.3 Stop criterion

Local search is an iterative algorithm, which means that a stop criterion is needed. A logical

stop criterion is to stop when the fitness of all the neighbours is worse than the current solution.

Other simple stop criteria are a maximal number of steps, a maximal running time or the fitness

is above (or under) a certain level. The last one is useful if the optimal value is known.

6.4.4 Local search in maintenance costs optimisation

Local search can be very useful if exact algorithms cannot be used. A disadvantage is that the

algorithm can get stuck in a local algorithm. To avoid this, the algorithm can be run multiple times

with different starting points. This way you get more local optima. Another way not to converge

to the closest optimum is to choose a neighbour with a certain probability. The computation of for

example 18 neighbours will cost approximately seven seconds, in one night (eight hours) we can

do 4114 iterations, which is a big enough number.

Therefore we will use local search in a specific case, see chapter 7.
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7
TEST CASE: ENSCHEDE AND HENGELO

Now we will use the model which is described in the previous chapters on a case. The case

we use is about Enschede and Hengelo, two cities in the east of the Netherlands, and

some surrounding area. A model of these two cities is available in OmniTRANS inside

DAT.Mobility, see the network in Figure 7.1. The data in this model are a forecast for the year

2020. First we will look at how the situation is on the road nowadays and afterwards to some

examples to get an idea of the traffic flow influences.

After we formed an idea of the influence of the traffic flow, we will do local search to find an

Figure 7.1: OmniTRANS network of Enschede and Hengelo.
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Figure 7.2: The road administrators in Enschede and Hengelo. [24]

optimal solution. Our first implementation has nine road groups (subsection 7.3.1). Hereby, we

will look at the outcomes of the local search algorithm with three different fitness functions. First

we want to minimise the average costs for all the paying parties, second we want to minimise

the costs of the party who has to pay the most in comparison with the original costs and finally

we will minimise the total costs when no party has more maintenance costs than in the original

situation.

Afterwards we will further decrease the costs by dividing the roads into more than nine groups

(subsection 7.3.4). This second implementation has 39 road groups. With this implementation we

will minimise the total costs under the condition that none of the parties has more maintenance

costs than in the original situation.

7.1 Original situation

First we will look at the original situation with which we can compare some examples of other

speed limits. The original speed limits are given. With Equation (5.1) we can compute the total

costs for this network, which is given in Table 7.1. In this table we make the division of costs per

road authority: the municipalities (Enschede, Hengelo and a part of Oldenzaal and Dinkelland),

the province and Rijkswaterstaat (RWS). The last one is the nationwide organisation which

maintains motorways and most of the superhighways. The distribution of roads between this

three parties is shown in Figure 7.2.
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Part of the network Costs Total vehicle km
Municipality e2.2378 ·108 7.3413 ·104

Province e8.4109 ·107 2.7550 ·104

Nation e2.6880 ·109 4.0864 ·105

Total e2.9960 ·109 5.0960 ·105

Table 7.1: The costs for 30 years and vehicle kilometres made per day in the original network.

Part of the network Costs Total km
Municipality e3.8418 ·108 1.3067 ·105

Province e8.6950 ·107 2.9385 ·104

Nation e2.1638 ·109 3.2091 ·105

Total e2.6350 ·109 4.8762 ·105

Table 7.2: The costs in 30 years and vehicle kilometres made per day in the network if the speed limit is the same
everywhere.

7.2 Examples

We can also look at some other speed limits on the network. We want to look if it is even possible

to control the costs made for the three parties and how much we influence it with changing the

speed limits. We will look at three examples. The first one is on every street the same speed. The

second one is high speed limits (120 km/h) on roads outside the urban area and low speed limits

(15 km/h) on roads in the urban area. The third one is the opposite of the second one. Afterwards

we will discuss the results of the examples.

7.2.1 Example 1

In this example we take the same speed limits on every road. We take a speed limit of 80 km/h.

The exact speed limit does not matter, because the distribution of the traffic depends on the ratio

of speed limits in the network. The total costs and kilometres made for this network are given in

Table 7.2. We can also make a visualisation in OmniTRANS which shows the differences in the

traffic flows. This is shown in Figure 7.3.

If on every road the same speed limit applies, lorries will drive their shortest route by distance.

This means that the total number of kilometres made is lower. This can be seen by comparing

Table 7.1 and 7.2. The shortest routes taken place more in the urban areas, therefore we see the

increase in kilometres made in the municipality and the province, while the number of kilometres

on the motorways decreases. Likewise the costs for the municipality and the province increase,

while the costs for the nation decrease. Also the total costs decrease. Although a decrease of the

costs is what we want, we can wonder if it is acceptable to increase the costs for the municipality

by 172%.

We can also wonder if the city is liveable and safe if every day for example 300 lorries will drive

through a street in a residential area.
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Figure 7.3: The differences in the traffic flow of the original flow and everywhere 80 km/h.

Part of the network Costs Total km
Municipality e2.1994 ·108 6.8648 ·104

Province e7.1827 ·107 2.2921 ·104

Nation e3.0230 ·109 4.5613 ·105

Total e3.3147 ·109 5.4770 ·105

Table 7.3: The costs in 30 years and vehicle kilometres made per day in the network when push the traffic outside the
cities.

7.2.2 Example 2

In this example we will look what happens if we centre all the traffic on the roads outside the

urban area. Therefore we set speed limits outside the urban area to 120 km/h and the other speed

limits to 15 km/h. The costs are shown in Table 7.3 and the differences of the traffic flows are

shown in Figure 7.4.

As we could expect, the costs for the municipality are lower and the costs for the nation are higher.

This is because all the traffic is repressed from the city centre. The total costs are also higher,

because the width of the carriageway is a larger than the width of an urban road.

7.2.3 Example 3

Because the motorways are that expensive, it would be likely that managing all the traffic on

small streets causes the lowest maintenance costs. Therefore we will look at the opposite of
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Figure 7.4: The differences in the traffic flow of the original flow and when we centre the traffic to big roads.

Part of the network Costs Total km
Municipality e1.0951 ·109 3.8101 ·105

Province e2.2878 ·108 7.7409 ·104

Nation e8.6247 ·108 1.1713 ·105

Total e2.1863 ·109 5.7555 ·105

Table 7.4: The costs per 30 years and vehicle kilometres made per day in the network if we centre the traffic to cities.

subsection 7.2.2, namely the roads in the urban area will be 120 km/h and the other roads will be

15 km/h. With this measures, we centre the traffic on urban roads. The outcome of this is shown

in Table 7.4 and Figure 7.5.

Indeed the total costs are lower than in the original network and even lower than in subsec-

tion 7.2.1, but the costs for the municipality are approximately five times as high as in the

original network.

7.2.4 Discussion of the examples

As we can see in the examples, the traffic and maintenance costs can be influenced by adjusting

the speed limits. It costs a lot of effort to prevent the lorries from driving on the motorways. This

may be caused by the lorries which just have to go through the network in stead of having their

origin or destination somewhere in the network.

From a maintenance perspective, it is better to put the traffic on urban roads than on motorways.
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Figure 7.5: The differences in the traffic flow of the original flow and when we centre the traffic to urban roads.

This is caused by high costs for motorways because of their larger width than urban roads. This is

not what we want from a viability perspective, therefore it may be a good idea to put limitations

of the maximum speed limits in our network, this causes a solution which is executable in real

live. Therefore we set the maximum speed in the network on 90 km/h, because lorries are limited

on this speed. Outside the urban area, the minimal speed limit is 60 km/h and in the urban area

the maximum speed limit is 60 km/h.

We will use local search to look for an optimal solution.

7.3 Local search

We will choose our ‘best’ measures by local search. In this context best is between quotes because

local search will converge to an optimum which is not necessarily a global optimum. In this

chapter we will describe the local search algorithms we will use.

7.3.1 First implementation

For the implementation of an algorithm we need to know several things, like the solution space

and a stop criterion. In this subsection we will describe the parts needed for the implementation
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7.3.1.1 Solution space

In our research the solution x is a vector with the maximum allowed speed on the roads. Because

in this research there are two different vehicle types from which we will just look at the lorries,

we have

x =


xvlorry,r1

...

xvlorry,r|R|

 .

This solution space is too big to take the computation time low enough to run algorithms, therefore

we will group roads according to their function (motorway, urbanised road, e.d.). In these cases,

the x matrix has as many rows as groups. As said in subsection 7.2.4 we will have limited possible

speed limits, to get usable results.

OmniTRANS divides the roads in types. In the model we have, these types are:

1. motorway 2 × 4

(130 km/h)

2. motorway 2 × 3

(130 km/h)

3. motorway 2 × 2

(130 km/h)

4. slip road

5. superhighway 2× 2

(100 km/h)

6. superhighway 2× 1

(100 km/h)

7. 80 km/h 2×2

8. 80 km/h 2×1 closed for

bikes

9. 80 km/h 2×1 cycle path

10. 80 km/h 2×1 cycle lane

11. 60 km/h outside urban

areas

12. arterial road 2 × 2

(50 km/h)

13. arterial road 2 × 1

(50 km/h)

14. collector road

15. local street (30 km/h)

16. industrial road

17. closed for lorries

18. ferry

19. rush hour lane

20. parking system

21. nutrition link

22. lorry nutrition link

23. cycle path

24. parking path

25. pedestrian path

26. public transport

27. public transport and

bike

28. bus lane

29. undefined

In which the 2×4 means that there are 2 carriageways with both 4 lanes, 2×3, 2×2 and 2×1 are

defined similarly. The speed indication behind the type is the current situation in the Netherlands

for cars. The nutrition link is to put the vehicles on the network. The parking system and paths

are for another project done with this model.
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We will not use the road types ferry, parking system, (lorry) nutrition link, cycle path parking

path and pedestrian path. We also neglect the public transport, because we can not influence

their route. The other road types we group in nine groups:

1. motorway, rush hour

lane, slip road

2. superhighway

3. 80 km/h

4. 60 km/h

5. arterial road

6. collector road

7. local street

8. closed for lorries

9. other (=industrial road

and undefined)

We do not take all the possible velocities on every road type, because municipalities do not want

vehicles driving 130 km/h in the urban area. Therefore we make the solution space smaller, which

decreases the computation time. If the speed of a vehicle type is one, it means that the road is

closed for that vehicle type, we do not make it zero because then it can happen that lorries cannot

reach their destination. Lorries are limited on 90 km/h, therefore we take the maximum speed

limit of 90 km/h. The possible speed limits for the road types are given in Table 7.5.

road group number road group name possible speeds of vlorry
1 motorway {90,80,70,60}
2 superhighway {90,80,70,60}
3 80 km/h {90,80,70,60}
4 60 km/h {80,70,60,1}
5 arterial road {60,50,40,30,20,1}
6 collector road {60,50,40,30,20,1}
7 local street {60,50,40,30,20,1}
8 closed for lorries {80,70,60,50,40,30,20,1}
9 other {80,70,60,50,40,30,20,1}

Table 7.5: The grid points of possible velocities for the first step of grid search.

7.3.1.2 Neighbours

A solution is a vector of speed limits, x, where xi ∈ {90,80,70,60,50,40,30,20,1}. The speed

limit of one means that the street is closed, it is not zero, because that may cause unreachable

destinations. The maximum speed limit is 90 km/h because the lorries are limited on that speed.

A neighbour of solution x is a solution x̃ with exactly on i for which xi 6= x̃i and if xi = xi, j then

x̃i = xi, j−1 ∨ x̃i = xi, j+1.

7.3.1.3 Fitness

For the fitness function, we analyse the costs for nation, the province and the municipality

separately, so we will use the following input:
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1. costs for the nation (CRWS),

2. costs for the province (Cprov),

3. costs for the municipality (Cmuni).

The fitness is a function which compares the solution of the current situation with the solution

computed. Because the nation, the province and the municipality are independent parties who

have to pay, we assume that we can split the fitness function into independent sub fitness

functions for the separate parties and sum this up with a certain weight. We take the nation,

the province and the municipality as equal parties. This means that we take an average of their

fitnesses as the total fitness function. Therefore the fitness of a solution is given by

fav(Cmuni,Cprov,CRWS)= 1
3

fmuni(Cmuni)+
1
3

fprov(Cprov)+ 1
3

fRWS(CRWS). (7.1)

The road administrators want to make lower costs, equal costs are okay and they definitely do

not want higher costs. So we make their fitness function positive if they save money and strong

negative if they have to spend more money. We will use an exponential function for this.

Say that the current costs for a party are Ccur. If they make Ccur costs, it is okay and the fitness

is zero. If they make zero costs their fitness is one. The shape of the function is a negative

exponential function. This means we have for i ∈ {muni,prov,RWS}

f i(Ci)=−a · e
Ci

Ccur,i
b + c.

We now have three unknowns and we know two instances. Therefore we choose another one, if

the current costs are halved, we set the fitness on 3
4 , because the parties are very happy. Now we

have three costs-fitness pairs and we can determine the function. We have (0,1), (1
2 Ccur, 3

4 ) and

(Ccur,0), which makes a = 1
8 , b = 2ln(3) and c = 9

8 . This makes the fitness functions

f i(Ci)=−1
8
· e

2ln(3)
Ccur,i

Ci + 9
8
=−1

8
·3

2Ci
Ccur,i + 9

8
i ∈ {muni,prov,RWS}.

We want the speed limits to be a little bit according to the design of the type. We can fix this by

adding this constraint to the fitness. We will not add these constraints, because we already will

restrict the possible speed limits in such a way that this it is not possible to drive for example

130 km/h on an urban road.

We can also add the kilometres made in the fitness-function, but if we do this we optimise the

experience of the drivers, which is not the intention of our research.

In Equation (7.1) we made a weighted average fitness function. With this function it is possible

that the positive fitness of a party neutralises the negative fitness of another party. Therefore we

introduce another fitness function

fmm(Cmuni,Cprov,CRWS)=min
(
fmuni(Cmuni), fprov(Cprov), fRWS(CRWS)

)
, (7.2)
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which just looks to the lowest fitness.

Another possible fitness is one with constraints. We want to minimise the costs, but under the

constraint that neither the municipality nor the province nor the nation has more maintenance

costs. We call this fitness function fcon, we take

fcon(Cmuni,Cprov,CRWS)= Cmuni +Cprov +CRWS + C̃muni + C̃prov + C̃RWS, (7.3)

where

C̃i =

0 Ccurr,i −Ci ≤ 0
Ci−Ccurr,i

Ccurr,i
·a otherwise.

The value of a should be high enough to make sure that this constraint is not violated. Because

the order of magnitude of the total costs is 109 and we really do not want the parties to have

more maintenance costs, we take a = 1011.

Other than ordinary fitness functions, for this fitness applies that the lower the better.

We will look at all these three fitnesses in our research.

7.3.1.4 Next solution

Now we know the neighbours and the fitness function, we can decide how we will choose a

neighbour. We use two methods to determine this.

The first method is a decision made by a probability distribution. We take a linear one. Say

there are N neighbours, with fitnesses f1 ≤ ·· · ≤ fN We choose them respectively with probability

δ,2δ, . . . , Nδ, with a total sum of one. This means that

1= δ+2δ+·· ·+Nδ

= δ
N∑

i=1
i

= δ1
2

N(N +1)

⇒ δ= 2
N(N +1)

.

With this method we do not get stuck in a local optimum, because there is always a probability

to go to a less optimal solution and go from there to a more optimal local extreme value. The

disadvantage of this method is that it is possible to never reach an optimum.

With the second method we will choose the neighbour with the best fitness, this is called ‘hill

climbing’. An advantage of this algorithm is that you will reach an optimum, the disadvantage

is that it you will get stuck in a local optimum, whether you do not know if it is also a global

optimum or not.
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We will use a combination of both methods, first we use the method with probabilities and after

some time, we use the maximum found as a start point for the second method. For the first

method we will use different start points.

Also other decision methods are possible, a good suggestion is a decision method to make a

probability distribution which depends on the value of the fitness and not only on the order of

which solution has a better fitness.

7.3.1.5 Start points and stop criterion

As start points we take the current situation, which is approximately

x1 = (80,80,80,60,50,40,30,1,50).

We said approximately because on some roads the speed limits are a little bit different than their

type prescribes. Also the speed limit on the roads of type ‘other’ will in practice not be the same

everywhere. The reason we set the speed limit of the collector roads on 40 km/h is because in

practice it is sometimes 50 km/h and sometimes 30 km/h, and therefore we take the average. Our

second start solution is when we take all the speed limits the same, we have

x2 = (60,60,60,60,60,60,60,60,60).

Then we have two randomly chosen start solutions which are

x3 = (90,60,60,60,1,40,20,80,60)

x4 = (80,90,90,1,50,1,60,60,80).

We will stop the algorithm if the maximum number of iterations is met or, with the hill climbing,

if we are stuck in a local optimum.

7.3.2 Solutions

In this sections we will look what the different types of fitnesses give for optimal solutions and

we will discuss if this is what we want in practice.

7.3.2.1 Average fitness

For the first solution, x1, we get after some iterations of the linear neighbours and afterwards hill

climbing, the maximum solution is x̃1,av = (90,60,60,60,30,20,20,30,40). The fitness of x̃1,av is

fav(x̃1,av)= fmuni(x̃1,av)+ fprov(x̃1,av)+ fRWS(x̃1,av)
3

= 0.0544+0.2940−0.0978
3

= 0.08353.

The solutions x2, x3 and x4 stuck after iterations of linear neighbours and hill climbing afterwards

to the same local optimum, namely x̃2,av = (90,60,60,70,30,30,20, {50,60,80},40). Hereby if xi
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is a set in stead of a number, xi can take all these values to reach the same optimal costs. The

fitness of this solution is

fav(x̃2,av)= fmuni(x̃2,av)+ fprov(x̃2,av)+ fRWS(x̃2,av)
3

= 0.0201+0.3051−0.0643
3

= 0.08697.

(7.4)

To compute the costs from the fitness (given by the algorithm), we use

f i =−1
8
·3

2Ci
Ccur,i +1

1
8

i ∈ {muni,prov,RWS}

⇒ Ci =
Ccur,i

2
log3(9−8 f i) i ∈ {muni,prov,RWS}

Thus the cost vector, consisting of the costs made by the municipality, province and nation

respectively, is

C(x̃2,av)= (e2.21944 ·108,e7.1999 ·107,e2.756 ·109),

therefore the profit for x̃2,av is given by

Coriginal −C(x̃2,mm)= (e2.2378 ·108,e8.4109 ·107,e2.6880 ·109)

− (e2.21944 ·108,e7.1999 ·107,e2.756 ·109)

= (e1.836 ·106,e1.211 ·107,−e6.8 ·107). (7.5)

The best solutions from this is Equation (7.4). But we see that the fitness for the nation is

negative, which means that it has more maintenance costs than in the original solution. In the

profit vector we see that the nation has e6.8 ·107 more maintenance costs than before. The

total profits are e1.836 ·106 +e1.211 ·107 −e6.8 ·107 =−e5.405 ·107 which is less than zero and

therefore a loss.

We do not want to lose money, so the average strategy is not a good strategy to minimise the

maintenance costs. We can also see that the averaging of the fitness for the municipality, the

province and RWS turns out to be bad for the RWS. Therefore we will look at maximising the

minimal fitness, in hope that this will bring a saving of costs for all the three parties. If we get a

positive fitness with this method, we know that all the three parties have less maintenance costs.

7.3.2.2 Max-min fitness

Now we will use a max-min-strategy. If we get the minimal fitness positive, we know that all the

road administrators have a positive fitness and thus profit from the new situation.

We take the same start points as with the average strategy and again we first use the linear

neighbour strategy and afterwards hill climbing.
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Figure 7.6: The distribution of the traffic of Equation (7.6) in comparison with the current situation.

From x1 we get the solution x̃1,mm = (90,80,70,60,40,30,20,1,50) with fitness fmm(x̃1,mm) =
0.0010. This means that all parties have a profit, the average fitness is

fav(x̃1,mm)= fmuni(x̃1,mm)+ fprov(x̃1,mm)+ fRWS(x̃1,mm)
3

= 0.0062+0.0063+0.0010
3

= 0.0045.

From x2 we get the solution x̃2,mm = (90,60,60,60,40,40,30,70,50) with fitness fmm(x̃2,mm) =
0.0380. This means that all parties have a profit, the average fitness is

fav(x̃2,mm)= fRWS(x̃2,mm)+ fprov(x̃2,mm)+ fmuni(x̃2,mm)
3

= 0.0310+0.0559+0.0270
3

= 0.0380. (7.6)

From x3 and x4 we get solutions with negative min-max-fitness. Respectively −0.0282 and

−0.0374, which means that not all parties have profit and this solution is not useful.

The solution with the highest minimal fitness is also the one with the highest average fitness

with the max-min strategy. This is x̃2,mm. The distribution of the traffic is shown in Figure 7.6.

The cost vector, consisting of the costs made by the municipality, province and nation respectively,
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is

C(x̃2,mm)= (e2.20934 ·108,e8.2158 ·107,e2.65828 ·109), (7.7)

therefore the profit for x̃2,mm is given by

Coriginal −C(x̃2,mm)= (e2.2378 ·108,e8.4109 ·107,e2.6880 ·109)

− (e2.20934 ·108,e8.2158 ·107,e2.65828 ·109)

= (e2.846 ·106,e1.951 ·106,e2.972 ·107).

This means that the total profit made is e2.846 ·106 +e1.951 ·106 +e2.972 ·107 =e3.451 ·107.

We want to minimise the costs made in the network, but under the condition that the paying

parties do not have a lot more maintenance costs than they do right now. Therefore we will use a

fitness function with constraints.

7.3.2.3 Fitness with constraints

Because we want to minimise the total costs, but no loss for all the parties, we use a fitness with

constraints. The disadvantage of this method is that it is so unattractive to let some party pay

more than in the original situation that it is more difficult to escape a local minimum.

We take the same start points as with the average and max-min strategy and again we first use

the linear neighbour strategy and afterwards hill climbing.

From x1 we get the solution x̃1,con = (90,60,60,60,40,50,30,40,50) with fitness fcon(x̃1,con) =
2.9481 ·109. The cost vector is

C(x̃1,con)=
(
e2.2363 ·108,e8.2098 ·107,e2.6423 ·109

)
.

The profit per party is

Coriginal −C(x̃1,con)=
(
e2.2378 ·108,e8.4109 ·107,e2.6880 ·109

)
−

(
e2.2363 ·108,e8.2098 ·107,e2.6423 ·109

)
=

(
e1.5000 ·105,e2.011 ·106,e4.57 ·107

)
.

All the indices of the profit vector are positive, which means that all the parties have profit, the

total profit made is e1.5000 ·105 +e2.011 ·106 +e4.57 ·107 =e4.7861 ·107.

From x2 we get the solution x̃2,con = (90,80,70,60,40,30,20,70,50) with fitness fcon(x̃2,con) =
2.9941 ·109. The costs for each party separately are

C(x̃2,con)=
(
e2.2322 ·108,e8.3894 ·107,e2.6870 ·109

)
.
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This means that the profit per party is

Coriginal −C(x̃2,con)=
(
e2.2378 ·108,e8.4109 ·107,e2.6880 ·109

)
−

(
e2.2322 ·108,e8.3894 ·107,e2.6870 ·109

)
=

(
e5.6000 ·105,e2.1500 ·105,e1.0000 ·106

)
.

All the indices of the profit vector are positive, which means that all the parties have profit, the

total profit made is e5.6000 ·105 +e2.1500 ·105 +e1.0000 ·106 =e1.1661 ·106.

From x3 and x4 we get the same solution x̃3,con = (90,60,70,60,40,40,30, {20,60},50) with fitness

fcon(x̃3,con)= 2.9542 ·109.The costs for each party separately are

C(x̃3,con)=
(
e2.2326 ·108,e8.3228 ·107,e2.6477 ·109

)
.

This means that the profit per party is

Coriginal −C(x̃3,con)=
(
e2.2378 ·108,e8.4109 ·107,e2.6880 ·109

)
−

(
e2.2326 ·108,e8.3228 ·107,e2.6477 ·109

)
=

(
e5.2000 ·105,e8.8100 ·105,e4.0300 ·107

)
.

All the indices of the profit vector are positive, which means that all the parties have profit, the

total profit made is e5.2000 ·105 +e8.8100 ·105 +e4.0300 ·107 =e4.1701 ·107.

The best solution is x̃1,con, in Figure 7.7 we see the difference between the original traffic and

that of x̃1,con. It may be interesting to look separately at the assigning of internal and external

traffic. Internal traffic has its origin and destination inside the network, while external traffic

has at least one of them outside the network. The comparison between the internal traffic of

the original and the traffic of x̃1,con is shown in Figure 7.8. For clearness, the bandwidth in this

picture is 10 times as high as in other pictures. The biggest difference we can see is that less

internal traffic is going over the Hengelose-/Enschedesestraat, it takes an outside route instead.

The comparison of external traffic is shown in Figure 7.9. We can see that this traffic is more or

less the same. Only on small parts in cities it takes another route for a short time.

7.3.3 Discussion

As we can see, we can reach a profit of e41.7 million for all the parties together, this was done by

a fitness function with constraints. The best result we get is

x̃1,con = (90,60,60,60,40,50,30,40,50). (7.8)

We saw that the internal traffic in particular drives different routes, the external traffic still uses

the motorway and other big roads.
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Figure 7.7: The distribution of the traffic of x̃1,con in comparison with the current situation.

Figure 7.8: The distribution of the internal traffic of x̃1,con in comparison with the current situation. With the
bandwidth 10 times as high as in other pictures.
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Figure 7.9: The distribution of the external traffic of x̃1,con in comparison with the current situation.

Figure 7.10: The N35 and the Gronausestraat, both are modelled with type 80 km/h road but they are respectively a
superhighway and an arterial road. [12]

The result x̃1,con is not usable for every road network in the Netherlands, for other cities another

solution may result in more profit than this one. Also should be noted that for example the speed

limit 90 km/h for the motorway is for roads that have type motorway in the OmniTRANS model.

Not every road has in OmniTRANS the type of its function. For example the N35 and a part of the

Gronausestraat are modelled with type 80 km/h road, while they are respectively a superhighway

and an arterial road. More profit can maybe reached by taking a less restrictive division of road

types, such that some arterial roads and superhighways are not grouped together any more. Also

the probability of choosing a certain neighbour can be improved. We will make new road groups

and a improved decision rule in the next section.
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Figure 7.11: The assigning of traffic on a superhighway and his slip roads with a higher speed limit.

Also with another (good) grouping rare assignments like in Figure 7.11, also will not occur. This

situation happens because the speed limit on the superhighway is 60 km/h and the speed limit

on the slip road is 90 km/h, therefore all the lorries go off and on the superhighway because that

is quicker. If we group the slip road together with the motorway or superhighway with which it is

connected, this situations will not occur.

7.3.4 Second implementation

With the linear probability distribution of choosing a new neighbour, we do not actually use the

value of the fitness-function. Therefore we will define another method to select the new neighbour

and use both methods. We will also make our solution space bigger by making more road groups.

The fitness will be computed according to the constraint fitness, because we still want to minimise

the costs without letting a party pay more than in the current situation.

7.3.4.1 Solution space

The solution space in this implementation is bigger than in the first one. Here we have in total 39

groups, these groups are the motorways, the highways, the ring roads, the urban veins and some

rest groups. Note that every urban arterial and such is an apart group. The groups are shown in

Table 7.6.

In practice we have 38 groups because the group of remaining 30 km/h roads is empty. This

means that a solution vector has size 38. The order of the solution is given in Table 7.6.

7.3.4.2 Next solution

We will choose the new solution according to Algorithm 7.1 or the linear distribution. After this

algorithm we do hill climbing. As said before an algorithm according to the fitness value could be

better, but in our case we have fitnesses which lie very close to each other. The simple inverse

decision rule might not converge to the optimal solution. Nevertheless we will use an inverse

decision rule wich is given in Algorithm 7.1.
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motorway 50 km/h roads Enschede 50 km/h roads Hengelo
A1 E ring road H ring road
A35 E inner ring road H inner ring road

E outer ring road H Bornsestraat
superhighway E Boulevard and H Deldenersestraat
N35 Gronausestraat H Deurningerstraat
N342 E Deurningerstraat H Enschedesestraat
Westerval E Haaksbergerstraat H Oelerweg

E Hengelosestraat H Oldenzaalsestraat
80 km/h E Kuipersdijk and H remaining 50 km/h roads
E Oldenzaalsestraat Knalhutteweg
E Vliegveldstraat E Oldenzaalsestraat 30 km/h

and Weerseloseweg E Oostweg E 30 km/h roads
H Bornsestraat E Westerval H 30 km/h roads
H Haaksbergerstraat E Zuiderval remaining 30 km/h roads
Enschedese-/Hengelosestraat E remaining 50 km/h roads
remaining 80 km/h roads other

remaining 50 km/h roads
60 km/h remaining roads
remaining 60 km/h roads

Table 7.6: The 39 groups for local search. The E in front of a name means that this street lies in Enschede and an H
means that the street lies in Hengelo.

ns = {neighbours}
N = |ns| = #neighbours
C = (C1, . . . ,CN ) = cost vector neighbours
iC =

(
1

C1
, . . . , 1

CN

)
ciC = cumulativeSum(iC)
niC = normalise(ciC)
r = random(uniform,(0,1])
i = last index of niC wherefore r ≤ niCi
new solution = nsi

Algorithm 7.1: Inverse decision rule of choosing a new neighbour.

7.3.5 Solutions

In total we take five different start solutions and we will use the inverse and linear decision

rule for a new neighbour. Afterwards, we do hill climbing. In order not to mix-up the solutions in

subsection 7.3.2 and the solutions in this section, we start counting with five.

Our first start solution is everywhere the same speed, namely 60 km/h, the second start solution
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is the best solution we found in subsection 7.3.2, the third, fourth and fifth are random. We have

x5 = (60, . . . ,60),

x6 = (90,90,60,60,60,60,60,60,60,60,60,60,50, . . . ,50,30,30,50,50)

x7 = (70,80,60,70,60,90,90,60,60,60,80,80,50,1,20,50,20,20,40,40,40,50,50,20,50,20,

20,1,1,20,50,20,60,30,60,50,30,70)

x8 = (70,90,60,70,60,80,70,60,70,80,60,80,40,50,1,40,30,30,20,60,30,50,60,20,60,60,

1,40,1,50,30,1,60,50,60,60,1,30)

x9 = (70,90,60,70,90,90,90,60,90,90,90,80,20,1,20,60,1,1,60,40,30,30,50,20,30,30,50,

30,40,50,20,1,20,60,40,1,60,60)

There is a little side mark with solution x6, in subsection 7.3.2 we grouped together on types

which means that we divided the arterial roads and the collector roads. In practice both road

types are most of the time 50 km/h, therefore we have not looked at this types but grouped on the

function of the roads in the city. Therefore the arterial roads and collector roads are mixed in

the groups in this subsection. In Equation (7.8) we see that the best speed limits differ for the

arterial and collector roads. We have chosen 50 km/h as speed limit, because this is the state of

practice in the original situation.
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The optima we get from this start solutions are

x̃5,inv = (90,90,90,60,60,70,60,60,60,60,60,60,50,40,60,60,50,60,50,60,60,60,40,60,

60,50,50,50,60,60,50,40,40,50,40,40, {1,20,30,40,50},70),

x̃5,lin = (80,90,80,70,60,70,60,80,70,60,70,60,50,40,60,60,50,50,50,60,50,50,1,60,

60,50,50,50,60,60,40,60,30,50,30,50, {1,20,30,40,50},70),

x̃6,inv = (90,90,60,60,60,70,60,60,60,60,60,60,50,50,60,50,50,60,60,60,50,50,

{1,20,30,40,50},50,60,50,50,50,20,30,50,40,30,50,30,30,50,50),

x̃6,lin = (80,90,80,60,60,70,70,60,60,60,60,60,40,50,60,60,50,50,40,50,40,30,1,60,

40,60,60,50,60,30,50,50,30,50,20,50,50,80),

x̃7,inv = (90,90,60,70,60,70,70,60,60,60,90,60,50,30,30,60,1,50,60,40,40,50,1,50,

60,30,20,30,60,60,60,50,60,40,30,50, {1,20,30,40,50},80),

x̃7,lin = (90,90,70,60,60,70,70,60,60,60,60,60,40,40,50,60,50,50,50,40,40,40,1,50,

40,50,40,20,40,60,60,40,60,40,30,50, {1,20,30,40,50},60),

x̃8,inv = (90,90,70,70,60,70,70,60,70,70,70,60,50,40,50,50,30,60,50,50,50,40,1,30,

60,40,30,50,40,60,50,50,50,50,20,40, {1,20,30,40,50},50),

x̃8,lin = (90,90,80,60,60,90,60,60,70,90,70,70,30,50,40,50,50,50,60,50,40,50,60,60,

40,30,20,60,60,60,50,40,60,40,40,50, {1,20,30,40},40),

x̃9,inv = (90,80,90,80,70,70,80,30,90,90,80,60,20,20,30,60,30,20,50,50,30,30,50,40,

30,20,50,40,50,30,30,20,20,50,20,20, {1,20,30,40,50},70),

x̃9,lin = (90,90,60,70,80,60,90,80,70,90,80,60,20,20,30,60,20,50,60,50,60,40,30,30,

40,40,40,20,50,60,30,40,30,30,20,30, {20,30,40,50},50).

Again if for an xi we write a set, the optimum is reached on more solutions. The fitness and costs

of the optima are shown in Table 7.7. As we can see, the fitness of x̃9,inv is higher than its total

costs, which means that x̃9,inv does not satisfy our constraints.

The speed limits are shown in Figure 7.12 and the difference between the original distribution

and the distribution according to x̃5,lin is shown in Figure 7.13.

The best solution we found is x̃5,lin, which costs over thirty years e2.9283 ·109. This means that

we can save e2.9960·109−e2.9283·109 =e6.77·107, which is approximately 2.26% of the original

costs.

Again we can make pictures of the internal and external traffic, which are respectively shown in

Figure 7.14 and Figure 7.15. Again we see that the external traffic is more or less the same. Only

on small parts in cities it takes another route for a short time. The internal traffic on the other

hand have a big change of route when they travel between Enschede and Hengelo. First they
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solution fitness Ctotal Cmuni Cprov CRWS
x̃5,inv 2.9460 ·109 e2.9460 ·109 e2.2367 ·108 e8.4020 ·107 e2.6383 ·109

x̃5,lin 2.9283 ·109 e2.9283 ·109 e2.2355 ·108 e8.3692 ·107 e2.6210 ·109

x̃6,inv 2.9518 ·109 e2.9518 ·109 e2.2374 ·108 e8.4041 ·107 e2.6441 ·109

x̃6,lin 2.9368 ·109 e2.9368 ·109 e2.2377 ·108 e8.3987 ·107 e2.6291 ·109

x̃7,inv 2.9737 ·109 e2.9737 ·109 e2.2370 ·108 e8.3934 ·107 e2.6661 ·109

x̃7,lin 2.9425 ·109 e2.9425 ·109 e2.2372 ·108 e8.3834 ·107 e2.6350 ·109

x̃8,inv 2.9371 ·109 e2.9371 ·109 e2.2371 ·108 e8.4078 ·107 e2.6293 ·109

x̃8,lin 2.9767 ·109 e2.9767 ·109 e2.2377 ·108 e8.3962 ·107 e2.6689 ·109

x̃9,inv 3.3243 ·109 e3.0046 ·109 e2.2376 ·108 e8.4104 ·107 e2.6967 ·109

x̃9,lin 2.9930 ·109 e2.9930 ·109 e2.2372 ·108 e8.4101 ·107 e2.6852 ·109

Table 7.7: The solutions, fitnesses and costs of the solutions.

Figure 7.12: The speed limits in the network of Enschede and Hengelo according to x̃5,lin.

would travel on the Hengelose- and Enschedesestraat and with the speed limits of x̃5,lin they will

drive on the smaller 60 km/h road south of it.
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Figure 7.13: The distribution of the traffic according to x̃5,lin in comparison with the original situation. The rectangles
are in more detail in Figure 7.16 and Figure 7.17.

7.3.6 Discussion

Our best solution found is

x̃5,lin = (80,90,80,70,60,70,60,80,70,60,70,60,50,40,60,60,50,50,50,60,50,50,1,60,

60,50,50,50,60,60,40,60,30,50,30,50, {1,20,30,40,50},70),

which gives us a profit e67.7 million, which is e26 million more when we calculate with nine

groups and a 2.26% saving on the original costs. Unless it is a big amount of money, it is just a

small percentage, we can see this in the traffic flows, they do not differ a lot with the original

flows.

With more groups, we have a longer running time, which let us not run a high number of

iterations. Therefore we also cannot say which algorithm of choosing a neighbour is better and

we do not know if we have found the global minimal costs.

The problem with the slip road next to the superhighway we solved with this grouping. We can

see that the speed limits in Hengelo are nearly everywhere lower or equal than 50km/h, while

Enschede has a lot of roads with a 60km/h speed limit. These roads are not on the (inner) ring
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Figure 7.14: The distribution of the internal traffic of x̃5,lin in comparison with the current situation. With the
bandwidth 10 times as high as in other pictures.

road and on most of the veins, but the rest group of 50km/h roads in Enschede. This only causes

a slightly different route choice, lorries where first driving on the north part of the ring road to

take the Oldenzaalsestraat, but with this speed limit solution, they are taking the Roomweg,

see Figure 7.16. Also a difference can be seen by the superhighway the Westerval, Figure 7.17.

First lorry drivers drove on the Westerval to reach the ring road, with x̃5,lin as speed limits, they

will drive on the street north of it, the Hendrik ter Kuilestraat. It is easy to explain why this

gives a reduction in costs, the Hendrik ter Kuilestraat and the Westerval are next to each other

and approximately the same length, but the Hendrik ter Kuilestraat is a collector road, which is

smaller than a superhighway, so it has less asphalt to maintain. We also see this phenomena

with the internal traffic, instead of driving on the motorway or an 80 km/h road, it is cheaper to

let them drive on the smaller 60 km/h roads.
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Figure 7.15: The distribution of the external traffic of x̃5,lin in comparison with the current situation.

Figure 7.16: The distribution of the traffic of x̃5,lin in comparison with the current situation on the north part of the
ring road. Picture (2) in Figure 7.13.
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Figure 7.17: The distribution of the traffic of x̃5,lin in comparison with the current situation on the Westerval. Picture
(1) in Figure 7.13.
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8
CONCLUSION AND FURTHER RESEARCH

In this chapter we will give a short summary of the research done in this thesis. Next we

will present our conclusion and give some suggestions for further research.

8.1 Conclusion

We found out that the maintenance costs really can be influenced by the management of the

traffic. With the assigning of other speed limits to the network than currently, we could reach a

saving of approximately 2.3%.

The deterioration of the pavement caused by cars turns out to be insignificant in comparison to

the deterioration caused by lorries. Therefore we made a model that only depends on the number

of lorries. To get executable solutions, we cannot just minimise the costs, extra constraints are

needed. We added the constraint that none of the parties (the nation, the province and the

municipality) has to pay more that they do in the original situation. Our best solution found was

made with a division of 38 groups of roads. The road groups are ring roads, urban veins and

through roads. We found the maximal saving of approximately e67.7 million (2.3% of the original

costs) for the area of Enschede and Hengelo over a period of thirty years.

We found different factors which influence the deterioration of the road. The one we took into

account was the number of lorries. The maintenance costs therefore were only dependent of the

variable factor of the number of traffic, the static factors are road length and width.

Traffic will distribute themself over the network according to Wardrop’s first principle: no one

can reduce its costs by choosing another route. Lorry drivers do not have this behaviour, they will

take their shortest route as if there was no one else on the road.

The model we made is for general use. It can be used for every road network. Also the algorithm

with grouping on road type can be taken over. The algorithm for another grouping needs a small

change by hand, because it differ per case which road numbers are in the ring roads and in urban
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veins.

With all we found, we can say that we can reduce the maintenance costs for a road network over

time by managing the traffic with speed limits. However, before applying the solution to a road

network it has to be verified if it is sensible and will not cause unsafe situations.

8.2 Further research

For further research, one can look at the model of the rut depth and the computation time of the

local search algorithm. It may also be interesting to look at other measures than speed limits.

In this research we used a deterioration model of the Present Serviceability Index. This index

did not get below the value of 4.75, while we needed it that the PSI would reach values of

approximately two, according to the literature. We solved this problem by multiplying the rut

depth with a certain factor. Future research on the rut depth can possibly solve this problem.

We used a local search algorithm to look for the minimal costs. This algorithm is not very quick.

To get better results, it is a good idea to develop a quicker algorithm, which will reach a better

solution in the same time.

It will also be interesting to look at other measures than speed limits, to manage the traffic. For

example extra lanes and/or roads or to forbid turns on junctions.
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A
NOMENCLATURE

In this section, the used symbols and formulas are listed.

A.1 Symbols

The next symbols are used in this writing.

b,b′ Constants
c Capacity of road r
fr Flow/Intensity on road section r
gv Growth factor of vehicle type v
nv,r Number of vehicles of type v on road r
qr,t State of the pavement of road r on time t
r Road section
t Time
v Vehicle type
x Speed limit vector
xi ith element of the vector x

α Constant
β0, . . . ,β13 Constants
δ Discount factor
θr,t Decision variable of maintaining/replacing road r on time t
µ Constant
ρ A possible route in the road network
τr,v Travel time of vehicle type v on road r
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ADF Axle Damage Factor, a factor to compare the damage one
axle brings in comparison to a standard axle

B,B1,B2 Replacement levels
C Cost function per square meter asphalt
Cr Cost function for road section r
CR Cracks in the pavement (m/1000m2)
Flanes Correction factor for the number of lanes of a road
Lr Length of road r
LTr,{1,2,3} Layer thicknesses of road r
∆Ñ ′

v Standardised damage a vehicle of type v brings to a road
PSI Present Serviceability Index, an index to indicate the ser-

vice the road gives to the user
R Set of roads in the network
RD Rut depth (mm)
RDr,0 Initial rut depth of road section r.
∆RDAC

r,t Rut depth of the asphalt concrete layer of road r caused in
the interval before t

∆RDU
r,t Rut depth of the under layer of road r caused in the interval

before t
Ssingle Load on a single axle
Sstd Standard axle load
Standem Load on a tandem axle
Stridem Load on a tridem axle
SV Slope variance (Rad2)
T Number of timeslots
T[wi ,w j],v Number of trips between OD-pair [wi,w j] of vehicle type v
T[wi ,w j],v,R Number of trips between OD-pair [wi,w j] of vehicle type v

via route R
V Set of vehicle types
Wr Width of road r
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A.2 Formulas

The next formulas are used in this writing.

fr = nvcar,r +1.8nvlorry,r
N ′

r,t =∑t
s=1∆N ′

r,s
Nr,t =∑t

s=1∆Nr,s
∆N ′

r,t =∑
v∈V nr,v gt−1

v ∆Ñ ′
r,v

∆Nr,t =∑
v∈V nr,v gt−1

v ∆Ñr,v

∆Ñ ′
v = nsinglev

(
Ssingle
Sstd

)β4 +ntandemv2
(

Standem
2Sstd

)β4 +ntridemv3
(

Stridem
3Sstd

)β4

∆Ñ ′
v = nsinglev

(
Ssingle
Sstd

)β1 +ntandemv

(
Standem
β3Sstd

)β2 +ntridemv

(
Stridem
β12Sstd

)β13

PSIflexible = 5.03−1.9log(1+SV )−2.14 ·10−3RD2 −0.01
p

0.3048CR+P A
PSIcorr = 5.05−2.57 ·10−2RD2

RDr,t = RDr,0 +∑t
s=1

(
∆RDAC

r,t +∆RDU
r,t

)
RN =β9LTr,1 +β10LTr,2 +β11LTr,3

∆RDAC
r,t µeb′N ′

r,t∆N ′
r,t

∆RDU
r,t αebNr,t∆Nr,t
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MUNICIPALITY ENSCHEDE

A t the 15th of March 2017 I have spoken with Paul Koekkoek, road adviser at the municipal-

ity of Enschede. We talked about how the municipality manages their road maintenance.

In this appendix a summary of this conversation is given.

The municipality of Enschede uses the instruction manual of CROW, a knowledge partner for

municipalities in the scope of road maintenance. According to this manual, they view every year

all the roads in the municipality and give it a score. Afterwards another person will view all the

roads which should be maintained according to the manual. He or she will decide which road will

be maintained according to the guidelines of the Enschede municipality.

Mr. Koekkoek indicates that a model for the road pavement without measurements will be

difficult to make. On average, a road can be used 10 years. This is because the road status

strongly depends on the weather. If in one period the temperatures will fluctuate around the

freezing point the ice, water and salt will damage open asphalt a lot. Therefore when such a

period happens, there is a very big chance that quality of the pavement will decrease rapidly.

Also the quality of the bitumen mixture can differ. This means that some pavements are in a

poor state after two years and other pavements are still very good after 15 years. This is also

the reason why the municipality of Enschede does not have a model for the current state of the

pavements.

The most occurring damage on open asphalt is disconnected stones. On other often used roads,

rutting is the most occurring damage.

Included is the document Kosten t.a.v. onderhoud deklagen / asfaltconstructie(s). (Dutch). This

views the costs of the maintenance and the replacing of the asphalt. We get this prices from

Renée ter Meer from the municipality of Enschede, therefore it is only available in Dutch. The

prices are approximations, because every road is different. The second column is the maintenance

of replacing the top layer. The third column is replacing the whole pavement. The forth column is

patching, which is not used in this paper. We only use the prices of the AC 11 pavement.
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Kosten t.a.v. onderhoud deklagen / asfaltconstructie(s)

Soort Deklaag (laagdikte, 

35 mm)

Constructie  ᵃ⁾ (3 

lagen(135 mm))

(excl. Fundering)

Reparatie (bakken)

(totaal 100 m2, 

laagdikte, 35 mm)

prijs per m2

AC 11 14,50€                          41,00€                          51,00€                          

SMA 11 16,00€                          42,00€                          52,00€                          

Uitgangspunten:

-

-

-

-

-

-

-

-

-

Opmerkingen

 ᵃ⁾ inclusief vervangen gootlagen.

 ᵃ⁾ inclusief vervangen gootlagen.

prijs per m2

Elke 2 à 3 jaar moet de laag worden gereiningd om de geluidreducerende eigenschappen te optimaliseren.

Bovendien ligt de levensduur van geluidreducerende deklagen zo tussen de 6 à 7 jaar. Bij 'normale' deklagen ligt de levensduur 

gemiddeld tussen de 15 à 20 jaar.

Bedragen zijn inclusief eenmalige kosten, uitvoeringskosten, algemene kosten en winst & risico en klein percentage voor onvoorziene 

kosten. 

Exclusief verkeersmaatregelen, kosten voor de eigen organisatie.

Geen rekening gehouden met teerhoudend asfalt. 

Wij hebben binnen de gemeente Enschede wat minder ervaring met geluidreducend asfalt en ZOAB.

ZOAB wordt ook in mindere mate in binnenstedelijk gebied toegepast.

Geluidreducerend asfalt wordt ook niet veelvuldig toegepast in Enschede.

De geluidreducerende asfaltlagen hebben over het algemeen wat intensiever onderhoud nodig en hebben een kortere levensduur.
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GLOBAL INSPECTION CARD

The following inspection card is used by the municipalities Deventer and Enschede and

is set up by CROW. The inspection card is only available in Dutch.
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GLOBALE INSPECTIE KAART
E r n s t

A s f a l t b e t o n Omvang L M E
Textuur Rafeling asfalt beton en 

opper vlakbehand. (in %)
≥5 – <30% 1 >5 – ≤20% >20 – ≤50% >50% % van de maatgevende m2  Niet in verh.rand
≥30 – <50% 2 vertoont schade
≥ 50% 3 Alléén steenfractie > 2 mm

Rafeling zoab 
(in %)

≥5 – <30% 1 >5 – ≤10% >10 – ≤20% >20% Niet in verh.rand
≥30 – <50% 2
≥ 50% 3

Vlakheid Dwarsonvlakheid 
(m/100 m)

≥5 – <15 m 1 >10 – ≤20 mm >20 – ≤30 mm >30 mm mm hoogteverschil Niet in verh.rand
≥15 – <35 m 2 Alleen > 5 m
≥ 35 m 3 Beide sporen 1x

Oneffenheden  
(st./100 m)

≥3 – <8 st. 1 >5 – ≤15 mm >15 – ≤30 mm >30 mm mm hoogteverschil Niet in verh.rand
≥8 – <15 st. 2 Opm. Fietspaden licht Alleen < 5 m2

≥ 15 st. 3 vermelden onder matig

Samenhang Scheurvorming  
(m/100 m)

≥5 – <25 m 1 ja nee nee Gevulde scheuren
≤10 mm >10 – ≤15 mm   >15 mm Lengtescheuren, hoogteverschil in mm

≥25 – <50 m 2 ≤5 mm >5 – ≤10 mm >10 mm Scheurwijdte in mm
Let op : 
Dwarsscheuren bij 
opmerkingen

nee ja nee Meerdere parallel lengtescheuren
≥ 50 m 3 nee ja nee Lengtescheuren met zijtakken

nee nee ja Lengte- en dwarsscheuren verbonden (craquelé)

Verhardingsrand 
(facultatief)

Randschade  
(m/100 m)

≥5 – <25 m 1
Afzonderlijke schades dwarsonvlakheid, oneffenheden en
scheurvorming die in de verhardingsrand voorkomen

≥25 – <50 m 2
≥50 m 3

E l e m e n t e n Omvang L M E
Vlakheid Dwarsonvlakheid 

(m/100 m)
≥5 – <15 m 1 >10 – ≤25 mm >25 – ≤40 mm >40 mm mm hoogteverschil Tot aan goot
≥15 – <35 m 2 Alleen > 5 m
≥35 m 3 Beide sporen 1x

Oneffenheden  
(st./100 m)

≥3 – <8 st. 1 >5 – ≤15 mm >15 – ≤30 mm >30 mm mm hoogteverschil Alleen < 5 m2

≥8 – <15 st. 2 Opm. Fietspaden licht < 3 st. E K.O.
≥15 st. 3 vermelden onder matig < 3 st. M Niets

Samenhang 
(facultatief)

Voegwijdte maatvast 
(in %)

≥5 – <15% 1 >5 – ≤10 mm >10 – ≤20 mm >20 mm
≥15 – <30% 2
≥30% 3

Voegwijdte niet  
maatvast (in %)

≥5 – <15% 1 >10 – ≤15 mm >15 – ≤20 mm >20 mm Opmerking: houd rekening met grilligheid natuursteen
≥15 – <30% 2
≥30% 3

C e m e n t b e t o n Omvang L M E
Vlakheid Oneffenheden 

(st./100 m)
≥2 – <5 st. 1 >5 – ≤10 mm >10 – ≤15 mm >15 mm mm hoogteverschil
≥5 – <10 st. 2 Opm. Fietspaden licht
≥10 st. 3 vermelden onder matig

Samenhang Scheurvorming  
(aantal platen/100 m)

≥1 – <3 st. 1 ≤3 mm >3 – ≤10 mm >10 mm Scheurwijdte in mm Langs- en dwarssch. 
≥3 – <8 st. 2 ≤5 mm >5 – ≤10 mm >10 mm Hoogteverschil in mm
≥8 st. 3 nee ≤50 mm >50 mm Afbrokkeling scheurrand

ja nee nee Gevulde scheuren

Waterdichtheid Voegvulling  
(m/100 m)

≥10 – <30 m 1 n.v.t. deels geheel Verlies hechting a.d. rand
≥30 – <50 m 2 n.v.t. deels geheel Noodzaak vervanging
≥50 m 3 n.v.t. ja n.v.t. Plaatselijke uitstulping

n.v.t. nee ja Voegvulling ontbreekt

D i v e r s  -  facultatief Omvang L M E
Zetting (in m) n.v.t. ≤0,20 >0,20 – ≤0,40 >0,40 Opm.: Gelijkmatig of ongelijkmatig

Veelgebruikte afkortingen t.b.v. asfalt- en elementenverhardingen Extra t.b.v. cementbetonverhardingen
AI: aansluiting inspectieput BG: boorgaten PO: plaatselijke ophoging 
AK: aansluiting kunstwerk BP: bezweken plek PV: plaatselijke verzakking 
DS: dwarsscheuren BW: boomwortelopgroei RV: ribbelvorming

DS: hoogteverschil bij dwarsscheuren 
DV: hoogteverschil dwarsvoegen 
LV: hoogteverschil langsvoegen 
BP: bewegen betonplaat 
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Inspectiekaart
globale inspectie
(versie febr. 2013)

Afkortingen

Benaming wegvakonderdeel

RB: Rijbaan
RBL: Rijbaan Links
RBR: Rijbaan Rechts
FP:  Fietspad
VP: Voetpad
PS:  Parkeerstrook
L:  Links
R:  Rechts

Weersinvloeden

Niet inspecteren:
• Asfalt en cementbeton bij nat wegdek

Let op bij:
• Scheurvorming bij asfalt- en cementbeton bij opdrogend wegdek
• Plasvorming
• Lichtinval

Inspectieuitrusting

• ‘Handleiding globale visuele inspectie’
• rei, 1,20 meter lengte met waterpas
• wig (met schaalverdeling)
• (metalen) stiften met diameter 3, 5, 10, 15 en 20 mm doorsnede
• meetwiel
• meetlat
• veiligheidsvest of -jas
• eventueel een fotocamera
• bord ‘WEGINSPECTIE’, goed zichtbaar op de auto
• oranje zwaailicht
• eventuele vergunningen en ontheffingen
• wegafzetting of pijlenwagen, afhankelijk van de verkeerssituatie
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