
 
	
	

	
	
	
	
	
	
	
	
	
	
	

 
 

	
	

	
	 	
	

	

	

	

	

	

	

	

	
 

Self-powered Vibration Control using Piezoelectric 
Materials in High Precision Machines 

                        S.A.A. (Samer) Abdelmoeti 

   MSc Report 

C e
Dr.ir. T.J.A. de Vries 

Dr.ir. J.F. Broenink  
Dr.ir. J. Holterman 

Ir. B. Jansen 
Dr.ir. J. Van Dijk 

 
 
 

August 2017 
	

036RAM2017 
Robotics and Mechatronics  

EE-Math-CS 
University of Twente  

P.O. Box 217 
7500 AE Enschede 

The Netherlands	





Preface
This is my master’s graduation project in which I aim to bridge the gap between
the practitioners and researchers in a specific research question with an in-
dustrial motivation. The topic combines my passion towards both mechanical
vibrations and control theory, through an interesting physical phenomena which
is piezoelectricity. In my opinion, piezoelectric or smart materials are quite un-
derestimated in research. The main focus should not be only in developing
smarter software, but also smarter hardware.

This project is a result of a collaboration between ASML and the Robotics &
Mechatronics group at the University of Twente. The thesis is reported as a pa-
per for submission to the “IEEE Transactions on Mechatronics”. The research
started as an investigation of incorporating piezoelectric materials for vibration
damping of scanning blades within a lithography machine. During the literature
review of the existing powered approaches, came up the practical limitation of
the necessity of providing power to the piezoelectric versus powerless damping
techniques. Hence, we initiated the research question of self-powered vibration
control using piezoelectric materials for low level vibrations. Consequently, a re-
search proposal based on a scanning motion energy harvester was suggested
and agreed on. Accordingly, the problem was formulated, modelled, and iden-
tified. Afterwards, the appropriate solution was designed, implemented, and
validated experimentally as discussed in the paper.

Firstly, I would like to acknowledge dr.ir. Theo de Vries for being my men-
tor before being my supervisor. Without his support and constant motivation I
wouldn’t have reached this point, I will always be thankful to him. I would like to
thank ir. Bas Jansen for being unconditionally helpful, making the ultimate com-
promise between providing guidance and giving me research freedom. I also
have to give the credit to Prof. Ayman El-Badawy, my undergraduate professor,
for initiating my interest in these areas.

I would like to thank ASML, in particular the DUV optical column mecha-
tronics group members and leader, ir. Jan Marius Schotsman, for providing the
productive and friendly environment. I specifically thank Emile Demarteau for
accommodating the NXT ReMa test-rig for my project.

I dedicate this to my family and friends.

Samer Abdelmoeti,
August 2017

iii



IV PREFACE



Table of Contents

Preface iii

Table of Contents v

Introduction vii

Paper: Self-powered Vibration Control using Piezoelectric Materials 1
I Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II Reticle Masking Unit Blade Vibrations . . . . . . . . . . . . . . . 2
III System Identification & Modeling . . . . . . . . . . . . . . . . . . 4
IV Passive Shunt Damping . . . . . . . . . . . . . . . . . . . . . . . 10
V Active Damping . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
VI Self-powered Vibration Control . . . . . . . . . . . . . . . . . . . 15
VII Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . 17
VIII Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Appendices 22

Conclusions 31

Future Work 33

v



VI TABLE OF CONTENTS



Introduction

In this work, a specific vibration control application within a high precision
lithography machine is considered. Vibration control could be achieved by
damping enhancement which is a typical approach for lightly damped struc-
tures. Damping could be introduced passively using tuned mass dampers or
viscoelastic materials, however, volume and heat generation impose applica-
tion limitations.

Piezoelectric materials are compact electromechanical transducers which can
by actuation and sensing, or simply transduction, achieve vibration damping
either through passive shunting or active feedback. Passive shunting typically
require huge inductance values which can only be simulated using active cir-
cuits. This leads to the fact that both passive shunting and active feedback
using piezoelectric materials require power for operation.

Implementing a powered damping approach in high precision machines is prac-
tically challenging in terms of connecting physical power wiring to each flexible
structure. Therefore, overcoming power limitations is necessary for piezoelec-
tric based damping to compete with other standalone damping approaches.
There exist techniques in the literature for autonomous/self-powered damping
using piezoelectric materials which utilize the vibration energy as a source of
power. However, these are not feasible in high precision applications consider-
ing the limited energy of the nano/micro-meter scale vibrations. This work aims
to achieve vibration damping of scanning blades within a lithography machine
using embedded piezoelectric materials in a self-powered approach which is
applicable to low level vibrations.

This report is structured as follows. The analysis, design, and results chap-
ters are reported in the following research paper. Afterwards, the conclusion
and recommendations are presented.

vii
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Self-powered Vibration Control using Piezoelectric
Materials in High Precision Machines

Samer Abdelmoeti, Bas Jansen, and Theo de Vries

Abstract—In this paper, the vibrations of the reticle mask-
ing blades within a high precision lithography machine are
considered. Vibration damping using piezoelectric materials is
used as a suitable and compact concept for this application.
However, the requirement of external powering in both passive
and active damping using piezoelectric materials adds imple-
mentation constraints. A vibration control solution is proposed
that is self-powered and not limited by the low-level vibrations.
This is performed by energy harvesting utilizing the vibration
excitation through the scanning motion. Experimental results
validate the proposed approach for the blade excitation during
normal operation.

Index Terms—Vibration control, passive damping, active
damping, piezoelectric materials, self-powered, autonomous, high
precision, lithography machine.

I. INTRODUCTION

V IBRATION control within high precision machines has
been considered extensively in both literature and prac-

tice. The reason is that the performance of high precision
machines is directly impacted by mechanical vibrations. Vibra-
tion control has been achieved through three main concepts:
stiffness management, damping enhancement, and vibration
isolation [1]. Primarily, design concepts are limited to stiffness
management, i.e., maximizing stiffness and minimizing mass,
due to the difficulties associated with introducing pure passive
damping behavior. This generally lead to systems with lightly
damped structures. This work investigates the introduction of
passive or active damping in a specific high precision appli-
cation while overcoming limiting implementation constraints
in terms of external power requirements.

Photolithography machines are one example of high pre-
cision machines which are considered in this work. Partic-
ularly, the vibrations of the reticle masking blades during
scanning motion within the lithography machine are addressed.
Photolithography is the fundamental manufacturing process
in the semiconductor industry. This process determines the
final integrated circuits size, performance, and cost. Improving
this process allows for more advanced technologies to be
physically realizable and commercially available. The high
precision process involves high accelerating moving parts
which induce vibrations. Improving vibration control with the
addition of damping enhances the overall performance of the
lithography machine.

S. Abdelmoeti and T. de Vries are with the Faculty of Electrical En-
gineering, Mathematics and Computer Science, CTIT Institute, University
of Twente, The Netherlands (emails: s.a.a.abdelmoeti@student.utwente.nl,
t.j.a.devries@utwente.nl) .

B. Jansen is with the Department of Optical Column Mechatronics, ASML
B.V., The Netherlands (email: bas.jansen@asml.com) .

Passive vibration damping is defined as introducing the
damping behavior using passive elements which typically
don’t require external power. Alternatively, active damping is
achieved by using actuators and sensors through a feedback
control loop which mimics the damping behavior. This ap-
proach by definition utilizes power for producing the required
control forces. Active damping provide improved performance
versus passive approaches in addition to robustness.

Some passive vibration damping approaches such as tuned
mass dampers are not compact enough with limited feasibility
in a lithography machine. These are optimally located at the
highest displacement of the vibrating structure. Viscoelastic
materials on the other hand convert the vibration energy di-
rectly into heat at the location of the vibration. Heat generation
at the critical parts is extremely significant for lithography
machines which have the temperature tightly controlled. Addi-
tionally, these materials suffer from high outgassing [2], which
might cause contamination of the lithography process.

On the other hand, there remains a challenging limiting
factor for implementing active damping in high precision
machines. This is the requirement of connecting physical
power wiring from the highly accelerating flexible parts to the
fixed world. For advanced lithography machines, this requires
additional ambient to vacuum ports. Moreover, this becomes
less practical when damping multiple structures.

Piezoelectric materials offer an interesting alternative so-
lution for the introduction of both passive and active damp-
ing behaviors in high precision applications. These materials
perform electromechanical transduction where damping can
be achieved passively in the electrical domain. Moreover,
piezoelectric elements can act as sensors and actuators in order
to perform active damping. Piezoelectric transducers can be
compactly embedded within the structure at the highest strain
location instead of displacement. Furthermore, due to the fact
that damping is introduced in the electrical domain, the heat
generating element, i.e., resistor, can be located away from the
temperature critical location.

Passive damping using piezoelectric materials is achieved
by shunting the element with a resonant (RL) circuit [3]. In
order to damp low frequency vibration modes this requires
impractical high inductance values. These values cannot be
realized physically using inductors, but rather synthesized
virtually [4]. Therefore, active circuits such as simulated
inductors, i.e., gyrators, are used in order to mimic the high
inductance behavior [5], however require external power for
operation. Nevertheless, the standard definition is to consider
this approach as “Passive” since no power is supplied to the
structure [4]. Hence, both passive and active damping using
piezoelectric materials require power for operation.
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Fig. 1. Existing powered versus self-powered vibration damping solutions using piezoelectric materials. Self-powered techniques treat the beam vibrations as
an energy source.

Different feedback controllers can robustly achieve active
damping using collocated actuator/sensor piezoelectric pairs
such as Direct Velocity Feedback (DVF) and Positive Position
Feedback (PPF). Direct velocity feedback is unconditionally
stable for all frequencies, given that perfect collocation is guar-
anteed [1]. The positive position feedback controller proposed
by [6], introduces roll-off at high frequencies for robustness.
For ultimate compactness, self-sensing approaches could be
introduced in order to realize feedback control with a single
piezo element as a self-sensing actuator [7].

Overcoming power limitations makes piezoelectric vibration
damping more feasible and compete with other damping
techniques, as an ultimately standalone solution. There exist
solutions for self-powered techniques in the literature as shown
in Fig.1. For example, autonomous shunting aims at designing
shunt circuits which do not require power for operation. The
idea is based on shunts which implement a switching law
that allows for a physically realizable optimal value of L,
much smaller than for a standard RL shunt [4]. However,
the switch still requires power for operation that is provided
using an additional signal from a sensing piezoelectric. The
optimal switching laws and experimental results are discussed
in detail in [8]. Performance achieved by autonomous shunting
experimentally is half than that of standard resonant shunt-
ing. A “Strain Amplitude Minimization Patch” (STAMP) has
been introduced as a self-powered discrete time piezoelec-
tric vibration damper [9]. STAMP is a discrete time DVF
which implements active damping. The concept is based on
piezoelectric transducers which work both as power generators
and actuators through adding a charge pump in between.
When sufficient energy is accumulated the compensator and
electronics are powered and the piezoelectrics act as actuators,
otherwise they act as power harvesters to charge the pump, and
so on, back and forth. Hence, this cycle is what makes the
DVF a discrete time controller. Four piezoelectrics were used
as power generators/actuators and a fifth piezo for sensing.
Performance achieved was low when taking into account the
number of piezos used [4]. Another self-powered vibration
damping solution is proposed in [10], based on the idea of
modal energy transfer. This aims at simultaneous harvesting
and damping, but in contrast to STAMP, each with a different
piezo. The idea behind modal energy transfer is to extract
energy from some modes, in order to damp the targeted modes,
thus achieve modal energy transfer.

However, in high precision applications the vibration de-
flections, which are in terms of micro/nanometer scale, have
limited energy. This limited amount of vibration energy, which

Piezo Film 

Harvesting

Damping

+ -

+ -

Piezo
Patch Blade

Tip Mass

Clamp

Fig. 2. Proposed concept of harvesting energy from the scanning motion
using a cantilevered piezo film to power a vibration damping solution.

is still significant to the precision performance, is not enough
to power the ciruitry proposed in the existing literature. In
this work, a standalone system is proposed consisting of
piezoelectrics and circuitry that is self-powered. The concept
is to supply power from the source of vibration excitation,
which is the scanning motion in this case, in order to damp
the vibrations. By contrast, existing solutions consider the vi-
bration itself as a source of energy. The principle of operation
is to harvest energy using a piezoelectric film cantilevered in
an orientation orthogonal to the high accelerating scanning
motion. The harvested energy is utilized to power the vibration
damping solution, which is either passive shunting or active
feedback, using a piezoelectric patch embedded on the beam.
An illustration of the proposed system is shown in Fig. 2. This
concept could be generalized to harvest energy from one rigid
body mode (scanning motion), in order to damp the complete
system, i.e., 6 rigid body modes plus the flexible modes.

The paper is organized as follows. The problem of the reticle
masking blade vibrations within the lithography machine is
formulated in Section II. Section III presents the overall system
modeling and identification. Additionally, the blade vibrations
during typical operation are identified. Passive shunt and active
feedback damping solutions using embedded piezoelectric ele-
ments are presented in Sections IV and V, respectively. Section
VI proposes the self-powered vibration control solution using
the piezoelectric energy harvester of scanning motion. Section
VII shows the experimental results of the powered and self-
powered vibration damping applied on the reticle masking test-
rig. Conclusions are drawn in Section VIII.

II. RETICLE MASKING UNIT BLADE VIBRATIONS

In this section, the problem of the reticle masking unit blade
vibrations within a lithography machine is formulated.
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Fig. 3. Schematic of the latest lithography machine: ASML NXE:3350B [11].

A. Photolithography Machines
Photolithography is the principal manufacturing process in

the semiconductor industry, where a pattern printed on a
transparent substrate, knows as the reticle, is exposed onto
a silicon wafer. The high precision is required for the ability
to project a fine image of extremely small features onto the
wafer. The current resolution is within the nanometer scale
[11]. The semiconductor industry’s continuous need for higher
resolution, i.e, smaller and faster chips, and higher throughput,
i.e., cheaper process, led to huge advances in the lithography
process. In the lithography machine the reticle and wafer
perform fast motions with high precision relative to each
other, while the exposure of the wafer is performed through
a slit of light passing through the reticle. The commonly
used light source is deep ultraviolet light, while recently
extreme ultraviolet light (EUV) has been introduced which
allows the fabrication of pattern features up to few nanometers.
Many variables define the performance of the lithography
process such as the resolution, overlay, and focus, which all
directly impact the final integrated circuit’s size, speed, and
performance. To maximize throughput, these machines operate
at very high accelerations, which provide high scanning speeds
while maintaining the required accuracy. An illustration of an
EUV based lithography machine is shown in Fig. 3.

B. Reticle Masking Unit
The Reticle Masking (Rema) is the unit within a lithography

machine which is responsible for masking light except for an
arbitrary sized window in an arbitrary position. This is usually
accomplished through four independent blades, two moving in
X direction and two in Y direction. The function of masking
light comes into play during the exposure of the reticle onto
the wafer, where light should be projected only on a desired
part of the reticle. This allows the reticle to contain more then
one image of layers of products. To expose a single image,
hide the rest of the reticle using the reticle masking blades.
Similar to the reticle, these blades perform high precision
accelerations. Fig. 4 shows a top view illustration of the reticle
masking where light passes only through the window between
the blades.

C. Problem Formulation
During typical operation of the reticle masking unit, linear X

and Y blade motions cause undesired Z vibrations of the blades

X0 X1

Y0

Y1

x

y

Window where light passes

Fig. 4. Typical reticle masking blades of a lithography machine.

x

z Vibration Budget

ReMa X1-Blade

Source

Umbra Umbra

Exposure
Penumbra

Larger Penumbra due to Z Deflections

ReMa X0-Blade

Adjacent Modules

ReticleDesiredUndesired Undesired

Fig. 5. Z vibrations of the X-blade lead to larger penumbra on the exposed
wafer.

due to the non-ideal actuation. These Z deflections cause
larger penumbra, which is partial masking of the light instead
of complete masking. Penumbra leads to defocus where the
exposure overlaps a portion of the neighboring field to the
current exposed field. This is one of the limiting factors of
high volume manufacturing which requires that no empty
space remains unused. This phenomena which is increased by
vibrations is demonstrated in Fig. 5. Additionally, vibrations
lead to tighter manufacturing tolerances due to the limited
budget with the modules above and below the blades. For
simplicity, X-blades with a simplified geometry are considered
in this work.

Vibration damping is considered as an appropriate solu-
tion that can deal with the typically lightly damped system.
Moreover, the recent EUV based lithography machines lack
air damping (vacuum operation) leading to even sharper res-
onance peaks. Piezoelectric transducers compactly embedded
on the blade offer a suitable approach for vibration damp-
ing. Piezoelectric passive shunt damping synthesized using
powered virtual inductors is one solution. Active feedback
damping is another powered approach which is expected
to improve performance and robustness. From a feasibility
aspect, the high accelerating blade imposes restrictions on
connecting physical wiring with the fixed world for power
supply. This motivates the need of a self-powered piezoelectric
vibration damping solution.

This work aims to achieve vibration damping of the reticle
masking X-blade during scanning motions using embedded
piezoelectric materials which either realize a passive or an
active damping behaviour in a self-powered approach.
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III. SYSTEM IDENTIFICATION & MODELING

An experimental reticle masking test-rig has been adapted
for the following application. A reticle masking blade is
clamped to a mover performing scanning motion as shown
in Fig. 6. In this section, the flexible reticle masking blade
during scanning motion is modeled. Firstly, structural vibration
analysis is performed on the blade independently. Afterwards,
a model of the blade with embedded piezoelectric transducers
is derived and validated. The coupling between the scanning
motion and the Z-vibrations is then identified. Finally, the
dominant vibrations are analyzed for typical excitation.

A. Blade Structural Vibration Analysis

The reticle masking blade can be dynamically modelled as a
cantilevered flexible structure resulting in a model represented
in modal coordinates. An Euler-Bernoulli beam model is firstly
derived (Appendix I-B). This was chosen over a Timoshenko
model due to the thin beam assumption based on the small
slenderness ratio of the blade (Appendix I-C). Afterwards, a
Finite Element Method (FEM) based analysis is performed, to
validate the accuracy of the beam assumption relative to 2D
(plate) or 3D models.

A stainless steel AISI 304 blade is used, the dimensions and
material properties are shown in Table I. The Euler-Bernoulli
exact solution for the cantilevered beam is derived for the
mode shapes φi(x), over the length x, and modal frequencies
ωi in Equations 1 and 2, respectively, where i denotes the
number of mode.

φi(x) =Ai[sin(βix)− sinh(βix)− sin(βiL) + sinh(βiL)

cos(βiL)

∗ (cos(βix)− cosh(βix))]
(1)

Where L is the length, Ai a scaling factor, and βi solved
numerically for i = 1, 2, 3 as βi = [1.875, 4.694, 7.855] .

ωi =

√
EI

L4m
(βiL)2 (2)

Where E is the Young’s modulus, I the moment of inertia
derived using the width W and thickness H . The mass per
unit length m is calculated using the density ρ. Additionally,
the shear modulus G is used in FEM. The results of FEM
are shown in Fig. 7 for the frequency range of interest
(0− 1kHz). The first three bending modes clearly match the
Euler-Bernoulli beam’s mode shape assumption, with some
uncertainty in the modal frequency. The uncertainty increases
for higher modes, however, is around 4Hz for the first mode.
Moreover, the Euler-Bernoulli misses the torsional mode as
expected, which is predicted by the FEM to be at 538.6 Hz
with modal amplitude of 5 × 10−5 m. Therefore, the Euler-
Bernoulli beam assumption is valid to a large extent with
negligible error due to the torsional mode which has modal
amplitude 3 orders of magnitude smaller, relative to the first
three bending modes. This is due to the large aspect ratio
(Appendix I-D).

Blade

Piezo

Mover

x

y Z

Fig. 6. Photo of the piezo embedded blade clamped to the linear actuator
within the reticle masking test-rig.

TABLE I
BEAM DIMENSIONS AND PROPERTIES

Parameter Value Unit Parameter Value Unit
L 219 [mm] E 197 [GPa]

W 32 [mm] G 86 [GPa]

H 2.5 [mm] ρ 8 [g/cm3]

First Bending Mode

Second Bending Mode

811.31 Hz

First Torsional Mode

Third Bending Mode

538.63 Hz

288.63 Hz

46.01 Hz

Euler: 41.79 Hz

Euler: 261.86 Hz

Euler: 733.22 Hz

Fig. 7. Vibration analysis of the flexible cantilevered structure.

The collocated transfer function from a force actuator to a
displacement sensor, located at xa, of the first three bending
modes could be represented by Gs(s):

Gs(s) =
Z(s)

F (s)
=

3∑

i=1

φ2i (xa)

s2 + ω2
i

+R (3)

Where R approximates the contribution of the residual modes
which are truncated, and φi(xa) is the modal amplitude at
the actuation location. The mode shapes are normalized with
respect to the modal masses µi.
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B. Embedded Piezoelectric Transducers

In this section, piezoelectric transducers which are em-
bedded on the reticle masking blade are firstly introduced.
Optimal choices for placement and sizing are then discussed.
Finally, the piezo-blade embedded structure is modeled and
the relevant transfers are derived.

1) Piezoelectric Transducers: Piezoelectric materials have
the ability to convert mechanical energy into electrical energy
and vice versa, i.e, electromechanical transduction. The piezo-
electric effect could be “direct” where the transducer generates
an electric charge proportional to a mechanical stress to which
it is subjected. The inverse piezoelectric effect occurs when an
electric field is applied into the material causing a proportional
strain to that field.

Piezoelectric elements behave in three modes, d31, d33, and
d15. In d31 mode (transverse) the electric field is applied par-
allel to the polarization while the deformation is perpendicular
to the polarization direction. Simultaneously, in d33 mode
(longitudinal) by applying the same parallel electric field, a
deformation parallel to the polarization direction occurs. In
contrast, the d51 mode (shear) produces shear deformation
when subjected to an electric field perpendicular to the po-
larization direction [12].

The constitutive equations of the piezoelectric transducers
are derived in order to model its electromechanical behavior.
Restricting the analysis to one direction allows expressing the
equations using scalars rather than tensors [12]:

[
S
D

]
=

[
sE d
d εT

] [
T
E

]
(4)

Where S is the strain, D the electric displacement, T the
applied stress, and E the electric field. The material constants
εT , sE , and d represent the permittivity under constant stress,
compliance for constant electric field, and piezoelectric charge
constant, respectively. Additionally, different forms of the
constitutive relations exist by using different quantities as
independent variables. Switching the independent variables
introduces the coupling coefficient k which represents the
electromechanical conversion ratio:

k2 =
d2

sEεT
(5)

Electrical quantities are defined under constant stress T
or deformation S. Similarly, mechanical quantities are de-
fined under constant electrical displacement D, or field E.
These are denoted by a superscript. The subscript defines
the utilized mode, e.g., d31, k31. Additionally, the general-
ized electromechanical coupling coefficient Ki represents the
electromechanical coupling factor of the piezo embedded in a
structure to a certain vibration mode i. This constant is derived
experimentally in practice using:

K2
i =

Ω2
i − ω2

i

ω2
i

(6)

Where Ωi and ωi represent the structure’s modal frequency
with the piezo having open and short circuit conditions,
respectively.

Fig. 8. Optimal placement of an infinitesimal piezo patch onto the cantilevered
beam clamped at x = 0. According to the color map, black and white
correspond to the lowest and highest performing locations, respectively.
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Fig. 9. Length contribution to the electromechanical coupling factor based
on an analytical finite length piezo analysis. The first end of the piezo is at
x = 0.‘

The capacitance under constant force CF of a piezoelectric
element with length lp, width bp, and thickness t, can be
derived using:

CF =
εT33bplp
t

(7)

Accordingly, the blocked capacitance under constant deforma-
tion/strains is:

Cx = CF (1− k2t ) (8)

Where kt is used instead of k33 in the absence of lateral strains
only, i.e., free expansion in other directions.

In this application, the piezoelectric elements are mounted
on the blade utilizing the d31 mode; the subscript 31 which
defines the mode of operation is dropped for simplicity.

2) Optimal Placement & Sizing: The location of the em-
bedded piezoelectric elements has a great influence on the gen-
eralized electromechanical coupling between the transducers
and the vibration modes of interest. This relation is analyzed
in order to reach the optimal placement which enhances the
coupling and accordingly maximize application performance.

Firstly, it is worth noting that this analysis depends primarily
on the type of transducer considered. For example, the optimal
placement of an accelerometer (sensor) or a tuned mass
damper would typically exist at the maximum displacement
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amplitude of vibration, i.e., the beam tip. However, this is not
the case for piezoelectric transducers mounted onto the beam,
utilizing d31 mode.

The embedded piezo in d31 mode applies a bending moment
M on the beam, therefore, it could be deduced that for an
infinitesimal piezo the coupling factor is directly proportional
to the second derivative of the bending displacement, i.e.,
curvature, using the following relation from the mechanics of
materials:

M(x, t) = EI
∂2z(x, t)

∂x2
(9)

For a piezo with finite length, this is proportional to the
relative rotation between its ends, which is also the difference
of the first derivative of the bending displacement . The first
and second derivatives of the first three mode shapes are shown
in Appendix I-E.

Considering the infinitesimal analysis, the absolute value of
the second derivative of the mode shape is shown in Fig. 8,
to determine the optimal placement relative to the targeted
mode(s). To this end, it could be concluded that placing
the piezoelectric transducers at the clamped end achieves the
highest performance, relative to the first three bending modes.
Lowest coupling exists at the tip and the nodes of the modes.

The piezoelectric transducer optimal sizing is analyzed to
determine the dimensions of the piezo element. The width is
desired to be along the full width of the beam, in order to
maximize the coupling factor, as well as to avoid any excita-
tion of the torsional mode. The length contributes analytically
to the coupling factor through an inversely proportional term,
and a directly proportional length dependent term (Appendix
I-E1). The latter is the relative rotation of the mode shape
evaluated at the ends of the piezo element. Accordingly, the
net contribution of the piezo length to the coupling factor with
one end attached at the clamp is shown in Fig. 9.

It could be deduced that the performance targeting the first
mode could be improved by increasing the length up to around
50% of the blade length, which matches the numerical analysis
of [13].

3) Embedded Piezo Blade: The dimensions and material
properties of the piezo element embedded on the blade are
given in Table II. The length lp was determined based on the
previous analysis, but also on commercial availability.

Firstly, a rectangular embedded piezo element is considered
as an actuator as shown in Fig. 10. Assuming the voltage
difference on the piezo electrodes is controlled, the applied
moment on the blade at the piezo ends is derived using
Hamilton’s principle as [1]

Mp = −e31bpzmV = gaV (10)

Where zm is the distance from blade’s mid-plane, and e =
d/sE .

Similarly, the piezo element is treated as a sensor, where
strain causes electric displacement according to the consti-
tutive equations. Connecting the piezo to a charge/current
amplifier enforces short circuit conditions. Thus the sensor
forms a dual relation with the piezo actuator as:

Q = −e31bpzm∆θi = gs∆θi (11)

TABLE II
PIEZO DIMENSIONS AND PROPERTIES

Parameter Value Unit Parameter Value Unit
lp 29.97 [mm] −d31, d33 208, 443 [pC/N ]

bp 29.97 [mm] k31, k33, 0.38, 0.74 [ ]

t 0.508 [mm] kt 0.5 [ ]

CF 26.9 [nF ] sE11, s
E
33 16, 19 [µm2/N ]

Cx 19.6 [nF ] εT33/ε0 1900 [ ]

Actuator

Sensor

BladePiezoClamp

MM

x

y

x

z
Ztip

θi

Fig. 10. Schematic of the blade with collocated embedded piezoelectric
actuator and sensor.

Where ∆θi is the relative rotation at the piezo ends, and
Q the piezo charge. Therefore, Q is directly proportional
to the relative rotation, where ∆θi = [10.52, 49.28, 97.36].
Consequently, the charge amplifier generates a voltage Vs
which is proportional to Q:

Vs = − Q

Co
(12)

Where Co is the charge amplifier capacitance.
Accordingly, a collocated actuator/sensor transfer function

could be established from Equations 10 and 11. An actua-
tor/sensor pair extending over the same length of the beam are
shown in Fig. 10. Therefore, the transfer function between the
voltage applied on the actuator piezo, and the output voltage
of the sensor piezo is:

Gvv(s) =
Vs
Va

= gags

3∑

i=1

∆θ2i
s2 + ω2

i

(13)

Moreover, for the identical actuator and sensor ga = gs =
−0.0021.

Additionally, the transfer function between the Z tip de-
flections and voltage applied by an actuator piezo could be
defined as:

Gyv(s) =
Z

Va
= ga

3∑

i=1

∆θiφi(xt)

s2 + ω2
i

(14)

Where xt = 0.219. Both transfers are represented in the block
diagram in Fig. 11. Noting that Gyv = Gvf , where Gvf is the
transfer between a sensor piezo and a force actuator.

The root locus and open loop Frequency Response Function
(FRF) for the transfer Gvv could be then shown in Fig.’s
12 and 13, respectively. An interesting property observed is
the alternating pole zero pattern in the root locus, or the
resonance anti-resonance in FRF. This property which is due
to collocation has great influence on robust controller design.
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Fig. 11. Block diagram of the different transfer functions within the piezo
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Fig. 12. Pole zero map of the Gvv transfer showing the alternating pole zero
pattern. The upper symmetric half is only shown.

C. Blade identification

The blade dynamics are identified using the piezoelectric
actuator/sensor pair in order to validate the modal analysis
and model derived in Sections III-A and III-B, respectively.

The first transfer to be identified is the Gvv = Vs/Va
transfer which clearly identifies the vibration modes of the
blade. The first piezo Va is excited by a periodic 10 V sine
sweep with a bandwidth of 1− 1.25k Hz. The voltage output
of the second collocated piezo Vs is measured. Accordingly,
the FRF is estimated and the magnitude shown in Fig. 13.

The modelled first three bending modes are clearly iden-
tified. Additionally, the inherent (material) damping could be
estimated as ζin = [0.01, 0.03]. Inherent damping is appended
to the Euler-Bernoulli model. Another important aspect is
the unmodelled feedthrough arising from modal truncation
and actuator/sensor crosstalk, this term alters the frequency
of the zeros [1], [14]. This is compensated by estimating
R = 0.01. Due to unmodelled non-linearities, an additional
gain mismatch is compensated in this model.

The second identification is the Gyv transfer. One piezo
Va is excited by the previous sine sweep, and the absolute
Z displacement of the blade tip is measured using an optical
sensor. The FRF is estimated in Fig. 14.

The identified Gyv transfer which matches the model,
validates that the absolute displacements are vibrations caused
by the blade flexibility. This FRF is used afterwards as
a performance measure of the damping introduced by the
proposed solutions. This measurement has more noise as the
optical sensor measures Z, the absolute displacement of the
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Fig. 13. Estimated Gvv transfer (Experimental) versus Euler-Bernoulli beam
model (Simulation) shows the blade’s first three bending modes.
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Fig. 14. Estimated Gyv transfer (Experimental) versus Euler-Bernoulli beam
model (Simulation) shows the dynamics between the Z displacement and
piezo actuator Va.

blade tip, rather than Vs which only captures the relative
deformation between the blade tip and clamp.

The generalized coupling factor is evaluated experimentally
using the open and short circuit conditions as K1 = 0.03.
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D. X-Z Coupling Identification

So far, the blade has been modeled as a flexible cantilevered
structure. The next step is to include the scanning X motion
to the Z deflections coupling. Scanning in the X produces Z
displacement of the blade tip measured by the optical sensor.
This coupling arises due to the non-ideal actuation where the
actuating force does not exactly pass through the center of
mass. This is considered as a base excitation which causes
base displacement, tilting, or both. The base acceleration Z̈b(t)
excites the vibration modes of the blade. The schematic in Fig.
15 shows the model including the X − Z coupling. Fig. 16
shows the block diagram of the model.

In order to verify this model, the FRF is estimated between
the servo actuator input force applied on the mover Fx, and the
outputs: mover X displacement and blade tip Z displacement.
Additionally, the latter FRF is compared to the FRF between
an actuator piezo Va and blade tip Z displacement. The results
are shown in Fig. 17.

It could be concluded that the input force Fx produces Z
displacement similar to that due to applying voltage Va on the
piezo actuator. The applied voltage Va produces a moment
near the clamped end, i.e., the spatial derivative of bending
displacement in Z at the tip. Therefore, X motion produces
base excitation of the blade in the Z direction. Moreover,
no additional resonances were observed in Z/Fx, hence the
mover could be regarded as rigid body. The FRF between Fx

and X shows typical moving mass behavior, which is servo
controlled, and is shown for clarity.

E. Blade Vibrations for Typical Excitation

As a typical application for reticle masking, two motion
profiles are introduced in this section, and are denoted as
typical excitation. The first is a single step motion and the
second is scanning motion. The frequency content of the
acceleration profiles, which excite the vibration modes is
shown in Fig. 18. The position, velocity, and acceleration
setpoints of the step and scanning motion profiles are shown
in Fig.’s 19 and 21, respectively.

The blade is excited using both profiles where for the
scanning motion 100 scans are performed. The settling re-
sponse of the blade tip vibrations is measured using the optical
sensor starting at the end of each profile. Syncing of different
measurements is shown in Appendix IV-B. The response for
the step and scanning motions is shown in Fig.’s 20 and 22,
respectively.

In the time domain, the background noise before excitation
has a peak amplitude of 2µm. A typical excitation causes peak
amplitudes of 7µm and 48µm for step and scanning motions,
respectively. In the frequency domain the Power Spectral Den-
sity (PSD) and Cumulative PSD (CPSD) have been calculated.
From the spectral analysis, it can be concluded that the first
bending mode is the dominant cause of blade vibrations for
typical excitation. The background noise has a flat spectrum
and is uncorrelated (Appendix IV-A), which makes it white
noise. Scanning motion additionally excites the second bend-
ing mode however this has no significant contribution to the
CPSD.

x

z

Reticle Masking Blade

X Motion Z Deflections
(Modal Lever)

Z

Fx

μ1

X-Z Coupling

η1
k1

Zb(t)
Φ1

Optical Sensor

x

Mover

Fig. 15. Model representing the coupling between the X motion and the Z
deflections considering the first bending mode.

Fig. 16. Block diagram of the transfer between the input force and outputs.
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IV. PASSIVE SHUNT DAMPING

In this section, damping structural vibrations using piezo-
electric materials shunted with passive electrical circuits is
discussed. Afterwards, realizing a virtual inductance through
gyrators implemented using active components is presented.

A. Tuning of the Passive Shunt

Piezoelectric passive shunts achieve damping by connecting
an electrical impedance with high damping characteristics
to the piezoelectric. The piezoelectric coupled to the me-
chanical structure performs electromechanical transduction to
dissipate the vibrational energy through the electrical circuit.
The simplest form of shunting is the resistive shunt, which
however can only provide very little damping to the system
[1], [4]. Resonant (RL) shunting consists of a resistor R and an
inductor L to form an RLC circuit along with the capacitance
of the piezoelectric [1], [4], [15], [16]. The inductor is tuned
such that the electrical resonance matches the mechanical
resonance. Accordingly, R is adjusted to provide the maximum
achievable damping to the mechanical structure.

This analysis is limited to single mode RL shunting since
only one mode is dominant in the system. The operation of an
RL shunted piezoelectric is analogous to a tuned mass damper
[3], more specifically a skyhook tuned mass damper [17]. In
both techniques, a second order system appends the structure
to enhance the damping properties for a specific frequency
band.

The resonance frequency of the electrical circuit is defined
by:

ω2
e =

1

LCF (1− k2t )
(15)

Since the electrical resonance ωe should match the targeted
mechanical mode ωi, therefore, the inductor L is tuned such
that:

L =
1

ω2
iC

F (1− k2t )
(16)

The blocked capacitance CF (1−k2t ) will be denoted by Cp for
simplicity. Similarly, an optimal tuning law for the resistance
value has been derived using root locus technique [1]:

RL = 2LωiKi (17)

In order to asses the performance of passive resonant
shunting, the theoretical maximum achievable damping of an
optimally tuned RL shunt is derived in [1]:

ζRL =
Ki

2
(18)

For the sake of completion, the theoretical maximum
achievable damping for an optimally tuned resistive shunt is:

ζR =
Ki

2
ζRL (19)

Which is indeed low compared to the damping achieved with
an RL shunt, considering that Ki

Accordingly, the tuned passive RL shunt is evaluated to
target the first bending mode of the blade such that:

L = 728.35H

RL = 12.08 kΩ
(20)

Gvv

1

-

Y(s)

-

Cps

VsVa

i

0

Fig. 23. Interpretation of passive shunting as a feedback structure of the
transfer Gvv(s).

From another perspective, passive shunting could be in-
terpreted as a feedback system structure [4]. This facilitates
the comparison of the simulation of a passive shunting versus
different damping approaches in response to excitations. The
feedback interpretation of passive shunting is shown in Fig.
23. This could be proved by shunting the sensor piezo with
an admittance Y (s). The voltage over the shunt Vz is:

Vz(s) = Vs(s)−
1

Cps
Iz(s) (21)

Where Iz is the current flowing through the shunt. Substituting
Iz = VzY (s) yields:

Vz(s)

Vs(s)
=

Cps

Cps+ Y (s)
(22)

In the case of the sensor piezo having open circuit (Y (s) = 0):

Vz(s) = Vs(s) = Gvv(s)Va(s) (23)

However, if the shunt has finite impedance, the linear super-
position hold as:

Vs(s) = Gvv(Va(s)− Vz(s)) (24)

By substituting equation 22 into equation 24:

Vs(s) = Gvv

(
Va(s)− Cps

Cps+ Y (s)
Vs(s)

)
(25)

Finally, the transfer between the shunted sensor piezo and the
actuator piezo reads:

Vs(s)

Va(s)
=

Gvv(s)

1 +Gvv(s)K(s)
(26)

Where K(s) is the interpreted feedback controller:

K(s) =
Cps

Cps+ Y (s)
(27)

Based on this feedback model of the passive shunt, the Bode
plot for various tuning values is shown in Fig.24. The achieved
damping with optimal tuning versus over/under damped tuning
and open/short circuit conditions is clearly shown. It could be
concluded that 14 dB of first mode resonance attenuation is
achieved, which is equivalent to damping of ζRL = 0.012, in
Fig. 25 for the Gyv transfer.
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Fig. 25. Magnitude Bode plot of the damped Gyv transfer with RL passive
shunt targeting the first mode.

B. Virtual Inductance

High inductance values required for resonant shunts is not
realizable using coils or physical inductors. This could be
identified from Equation 16 where the optimal inductance
value is inversely proportional to the resonance frequency
and piezo capacitance. The first is low frequent, in order
of magnitude of 102 rad/s , while the latter is of 10−9 to

10−6 F . Therefore, typical inductance values are in terms of
hundreds/thousands of henries.

Passivity is a characteristic inherent to passive damping,
as ideally no energy is supplied to the system, thus stability
is guaranteed. This characteristic is not violated by the fact
that energy is required for powering op-amp circuits which
synthesize the inductance. Although active components are
involved, still this is referred as “Passive” in the literature.

A gyrator circuit proposed by Riordan could be utilized to
simulate high quality inductors [5], as shown in Fig. 26. The
Riordan gyrator is based on differential amplifiers, and flips
the effort and flow of the input with a tunable gyration ratio,
g = R, in the case of R1 = R2 = R3 = R4 = R. Accordingly,
a capacitive input impedance of Zin = C becomes inductive
with an inductance L of:

L = CR2 (28)

The gyrator resistor is chosen to be R = 10kΩ. The capacitor
of the gyrator is tuned in order to simulate the inductance in
Equation 20:

C =
L

R2
= 7.28 µF (29)

It is worth noting that this approach simulates non-floating
(grounded) inductors.

This passive shunting approach could be extended to multi-
modal damping using a shunt circuit consisting of multiple
resistors and inductors such as the Holkampp circuit [4].
However, synthesizing these multiple inductors is done using
gyrator circuits which form floating inductors [4].

C. Simulations

A Simulink model is developed in order to simulate the
damped versus undamped response against the typical ex-
citation of step and scanning motions. The Z displacement
time response is shown starting from the beginning of the
step/scanning motions then the settling time after the excitation
stop.

In the time domain, the vibration peak amplitude during
the scanning motion is reduced from 50 µm to 15 µm. This
is clearly achieved from the dominant mode attenuation of
66dBm/Hz in the spectral analysis. Similarly, for step motion
39 dBm/Hz attenuation is achieved.

Simulations using the gyrator (ideal op-amps) instead of an
ideal L yield the same results, verifying the functionality of
the simulated inductor.
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Fig. 27. Simulated spectral analysis of the passive damped blade tip
Z vibrations for step motion excitation.
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Fig. 28. Simulated spectral analysis of the passive damped blade tip
Z vibrations for scanning motion excitation.

V. ACTIVE DAMPING

In this section, active feedback controllers which primarily
enhance the damping properties of the system are discussed.
This is equivalent to shifting the real part of the poles to the
negative half plane, or attenuating the resonance peaks in the
frequency domain, while maintaining the natural frequencies
unaltered.

Collocated sensors and actuators are considered for active
feedback as they always lead to alternating poles and zeros.
This property allows the realization of controllers robust
against uncertain system parameters, or moreover, passivity-
based controllers which typically achieve unconditional stabil-
ity [1], [18]. Additionally, collocated control is advantageous
for its simplicity where the control laws require little or no
knowledge of the system (knowledge of the natural frequencies
at most), i.e., measuring the open loop frequency response is
followed by tuning intuitive controller parameters [1], [19].
Non-collocated control on the other hand requires model-
based feedback controllers which have its stability dependent
on damping. For the typically lightly damped system, small
variations in the system parameters can easily destabilize these
controllers [1].

Considering the system transfer, a force actuator can be
collocated with a translation sensor measuring velocity or
displacement. The first is achieved through a current amplifier
attached to the piezoelectric element, while the latter through
a charge amplifier. Using a velocity sensor, a proportional
controller can be implemented to realize Direct Velocity
Feedback (DVF) [1], [4]. While using a displacement sensor
a Positive Position Feedback (PPF) controller can be used
to realize additional roll-off [1], [4], [6]. Both topologies are
applied to laminated structures [20], [21], [22], and discussed
in the next sections.

A voltage amplifier can realize a force actuator which if
embedded on the beam operating in d31 mode produces a pair
of torques M at the piezoelectric ends, proportional to the
applied voltage as in Equation 10.

A. Direct Velocity Feedback (DVF)

A current amplifier attached to the piezoelectric enforces
short circuit conditions and produces a voltage output that is
proportional to current i, and hence, velocity, as shown in
Equations 30 and 31. Hence, for the piezoelectric embedded
on the beam in d31 mode, this specifically realizes a sensor
for strain-rate ∆θ̇i. An inverting current amplifier could be
implemented as shown in Fig. 30.

i = ga ∆θ̇i (30)

Therefore, the voltage output of the current amplifier is:

Voi = −Ri (31)

Closed-loop stability of DVF control can be proven by the
frequency domain analysis. The collocated transfer function
Gvv has a phase which varies between 0 and −180 degrees.
The current sensor adds a 90 degrees phase which guarantees
that Nyquist plot of sGvv(s) never encircle the (−1 + 0j)
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Fig. 30. Schematic of an inverting current amplifier used for achieving Direct
Velocity Feedback (DVF).

point in the complex plane. The root locus of the open loop
Gvv transfer, shows that an additional zero at the origin (i.e.,
velocity sensor), realizes a locus that is restrained to the left
half plane (LHP). Negative feedback of a strictly positive
proportional gain g can robustly achieve damping, by shifting
the poles along the locus into the LHP.

The damping achieved for the gains g = [104, 106] is
shown in Fig. 33. The gain was tuned to achieve sufficient
damping of the scanning motion but also taking the control
input into consideration to maintain practical realizability. The
magnitude Bode plot shows the damping achieved for the
first three modes. Attenuation of scanning motion vibrations
is shown in Fig. 34. The control input generated and shown
in Fig. 35 has a peak voltage of 20 V .

B. Positive Position Feedback (PPF)

Considering the laminated structure which is a distributed
parameter system, it doesn’t naturally exhibit roll-off at high
frequencies [1]. Consequently, the spillover phenomena occurs
where unmodelled dynamics contribute to the closed loop
system and might cause instability. Although DVF allows for
spillover, however, this doesn’t cause instability [4]. Positive
position feedback (PPF) was introduced in [6], as a controller
which is specifically robust against spillover instability. On
the other hand, it has to be tuned to target specific modes and
the control action is limited to these modes only. The PPF
controller is an auxiliary second order system which has the
displacement as an input and the control force as an output.
The advantageous property is that the frequency response of

Fig. 32. Schematic of a charge amplifier followed by a second order filter
used for achieving Positive Position Feedback (PPF).
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Fig. 33. Magnitude Bode plot of the damped Gvv transfer function versus
the uncontrolled case, using a Direct Velocity Feedback (DVF) and a Positive
Position Feedback (PPF) controllers.

the controller rolls off at high frequencies making it insensitive
to the unmodelled high frequency dynamics.

This controller is used with a charge amplifier as shown in
Fig. 32, that realizes a displacement sensor, more specifically,
a strain sensor. Therefore, the voltage output of the charge
amplifier is:

Voq =
−Q
C

(32)

Where C is the feedback capacitance.
A second order PPF controller is defined as:

K =
−g ω2

f ω
2
i

s2 + 2ζfωfs+ ω2
f

(33)

Where the controller parameter ωf is tuned to be in the vicinity
of the targeted mode ωi. This controller requires to be tuned to
a certain frequency, and accordingly, only achieves damping to
the modes close to that frequency. In order to target multiple
modes, more than one PPF controller can be used.

The root locus of the open loop K(s)Gvv(s) transfer shows
that locus is contained in the LHP except for a branch on the
positive real axis. Controller roll-off could be observed by
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increasing the gain where the high frequent poles relative to
ωf move slower than the targeted poles.

Stability of the PPF controller could be analyzed from the

characteristic equation of the closed-loop system:

Gcl = 1 +K(s)Gvv(s)

= 1 +
−g

s2 + 2ζfωfs+ ω2
f

. g2a

3∑

i=1

∆θ2i
s2 + ω2

i

= s2 + 2ζfωfs+ ω2
f − g g2a

3∑

i=1

∆θ2i
s2 + ω2

i

(34)

The system becomes unstable when any of the coefficients of
the power expansion of the characteristic equation is negative,
according to Routh-Hurwitz criterion. Accordingly, the stabil-
ity condition can be derived from the condition of the constant
term as:

ω2
f − g g2a

3∑

i=1

∆θ2i
ω2
i

> 0 (35)

This could be reformulated in terms of the controller gain g:

g <
ω2
f

g2a

3∑

i=1

ω2
i

∆θ2i
(36)

Alternatively, it could be stated that the stable controller
gains g should be less than the inverse of the static loop gain:

g <
1

Gvv(0)K(0)
(37)

The damping achieved for gains g = [103, 104], ζf = 0.9
and ωf = 41.8 Hz is shown in Fig. 33. The gain was tuned
to achieve sufficient damping of the scanning motion in order
to optimize stability robustness. The magnitude Bode plot in
Fig. 33 and the PSD of the scanning motion in Fig. 34 show
the damping achieved. The control input generated is shown
in Fig.35 has a peak voltage of 30 V .

In conclusion, the performance achieved using both con-
trollers are comparable in the application of damping of the
scanning motion. The control input required for the DVF
controller is slightly less than the PPF. Robustness analysis
is rather qualitative in this case. DVF control is robust against
system parameter uncertainties as it is not model based,
however one should be careful that in practice a low pass
filter is appended, i.e., limited bandwidth current amplifier.
Therefore, out of bandwidth modes shouldn’t be dominant.
On the other hand, stability of PPF control is not affected by
sensor/actuator dynamics due to the roll-off. However, it has
to be tuned properly to a certain mode, which makes it less
robust to variation in the system’s natural frequencies.
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VI. SELF-POWERED VIBRATION CONTROL

In this section, self-powered vibration control during scan-
ning motion is presented. Based on the idea of utilizing the
source of vibration excitation, i.e., scanning motion, as a
source of energy to supply the power needed for vibration
damping, self-powering is achieved. The harvested power
can be utilized to power a gyrator, and therefore, implement
passive shunt damping, or utilized to implement an active
damping feedback control topology. This is shown in Fig.
36. Moreover, the harvesting unit could be used to generate
a feedforward signal to compensate for vibrations in advance.
In this work, the implementation is limited to the simpler case
of powering passive shunt damping, due to the fact that the
performance achieved is comparable for this application.

A. Scanning Motion Energy Harvester

The scanning motion energy harvester proposed consists of
a cantilevered piezo film orthogonal to the scanning direction.
A tip mass mt is attached to the piezo tip in order to reduce
its natural frequency relative to the excitation frequency, and
hence, increase the strain.

1) Electrical Model: A piezoelectric material could be
electrically modeled as a current source Ip in parallel to
capacitance Cp as shown in Fig. 37 [12]. This could be derived
starting from the constitutive equation of the piezoelectric film:

D = e31S + εS31E (38)

Rewriting this equation in macroscopic variables using the
piezo area A, length l, and thickness t, yields:

AD =
A

l
e31 xtip +

A

t
εS31Vp (39)

Where xtip is the tip displacement, and Vp the piezoelectric
voltage.

Finally, differentiating derives an equation for the current
source value in terms of the tip velocity ẋtip:

Ip = θ ẋtip + Cx
p V̇p (40)

Where,

Cx
p =

A

t
εS31 =

A

t
εT31(1− k231) = CF

p (1− k231),

θ =
A

l
e31

(41)

2) Mechanical Model: In order to determine the tip rel-
ative velocity due to the base excitation of the cantilevered
piezoelectric, the transmissibility is derived considering the
dominant first mode, due to the tip mass:

ẋtip,r
ẋbase

=
−s2

s2 − 2ζωp − ω2
p

(42)

Where:

ωp =

√
km
mt

(43)

Where km and ωp are the equivalent stiffness and natural
frequency of the piezoelectric film, respectively.

Fig. 36. Passive shunt and active feedback damping could be implemented
utilizing the harvested power from scanning motion.

TABLE III
HARVESTING PIEZO DIMENSIONS AND PROPERTIES

Parameter Value Unit Parameter Value Unit
lp 46.0 [mm] −d31, d33 320, 650 [pC/N ]

bp 20.8 [mm] k31, k33, 0.43, 0.75 [ ]

t 0.18 [mm] kt 0.55 [ ]

CF 190 [nF ] Y E
11 , Y

E
33 63, 50 [GN/m2]

Cx 160 [nF ] km 573.67 [N/m]

xtipm

xbase

dst

km

CpdF q

Ud

+

-

Vp

Fig. 37. An equivalent electromechanical model of the cantilevered piezo-
electric film with tip mass attached.

Fig. 38. Energy Harvesting Circuit using a rectifier and step-down DC/DC
converter.

A configuration of the harvester has been realized consisting
of a mt = 5 g tip mass while performing the scanning motion
presented previously. The dimensions and material properties
of the piezoelectric film used is shown in Table III. Therefore,
θ = 0.0033, ωp = 338.53 rad/s are evaluated accordingly.
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Fig. 39. Simulating the harvesting piezo tip velocity due to the scanning motion excitation using Simulink (a). This is followed by estimating the power
output of the energy harvesting circuit using LTspice (b).

B. Energy Harvesting

The vibrating piezoelectric differs from a regular power
source in three main aspects, the varying nature of the excita-
tion amplitude and frequency, the output which typically has
high voltage and low current, and finally the capacitive nature
of the piezo source. Hence, different harvesting circuits that
maximize and regulate the power output have been developed
[23], [24], [25].

A method which optimizes the harvested power using a step-
down DC/DC converter, i.e., buck regulator, is proposed in
[23]. A full-wave bridge rectifier with a smoothing capacitor
is followed by a step-down DC/DC converter as shown in Fig.
38. This converter regulates the flow of energy from the piezo-
electric element to the desired load, allowing for changing
the output voltage of the rectifier as the mechanical excitation
changes to achieve and maintain the maximum power flow.
The converter is inherently designed, using internal feedback,
to maximize the power flow. Therefore, this results in the
piezoelectric harvesting maximum power. Additionally, the
step-down converter regulates the rectifier output from a high
voltage low current one, to a lower voltage but higher current
suitable for electronic loads. An important aspect for the
converter is to be with high efficiency but also low quiescent
current to allow for its self-powering. An integrated solution
with further optimization and additional features is offered in
the LTC3588 integrated circuit.

A two step simulation procedure is performed as shown
in Fig. 39 using Simulink and LTSpice. Using Simulink, the
piezo tip displacement and velocity due to the scanning motion
is simulated and shown in Fig. 40. A displacement of 1 mm
and a current amplitude of 0.48mA are expected.

Using the relation in equation 40, the output current of the
piezo could be modeled as a current source in the LTSpice
simulation using the piezo tip velocity derived previously.
Hence, the rectifier and the converter outputs are shown in Fig.
41 and Fig. 42, respectively. The rectifier has a high voltage
output of 40V at 1MΩ load, which drops to 30V for a 300kΩ
load. The converter regulates this to 4.2V with higher current
flowing continuously through an 8kΩ load. This estimates a
power output of 2.2mW .

Increasing the power output could be performed by maxi-
mizing the tip mass and further lowering the natural frequency
of the piezo to the excitation frequency. A tip mass of 25 g
could generate a power output up to 34mW [26].
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Fig. 40. Harvesting piezo tip displacement and current output (i.e., θ× tip
velocity) with tip mass of 5g during scanning motion excitation (Simulation).
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a 8kΩ load (Simulation).
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VII. EXPERIMENTAL RESULTS

In this section, the proposed solutions are validated through
experimentation on a photolithography reticle masking test-rig.
The experimental setup in Fig. 6 has been used to validate the
effectiveness of the previously designed approaches. Firstly
passive and active damping are demonstrated using external
power, then the self-powered approach is presented.

A. Passive Damping

The designed RL circuit is used to shunt the embedded
piezo on the blade in this section. A Riordan gyrator is
implemented using LM324 Quad op-amp to simulate the
required inductance. The estimated FRF of the implemented
gyrator is shown in Appendix III-B.

One piezo is excited with the sine sweep and the Gyv

transfer is estimated, while shunting the other piezo with the
RL circuit. The FRF is shown in Fig.45, while the time
response in Fig. 49. Similarly, the actuator piezo is excited
with a white noise signal and the time response is shown in
Fig. 46. Different tuning values for the gyrator capacitor and
shunt resistance are shown in Fig.’s 43 and 44.

The optimal values for the RL shunt (7 µF, 11.5 kΩ) are
fine tuned relative to the design values of (7.28µF, 12.08kΩ).
The damped Gyv transfer shows 13 dB of damping achieved
through RL shunting matching the expected value of 14 dB
in simulation. In the time domain, a sine sweep excitation is
damped from peak amplitude of 37.5 µm to 18 µm. White
noise excitation is damped from peak amplitude of 7.7µm to
4.1 µm relative to the background noise with peak amplitude
of 1.9 µm.

Similarly, the step and scanning motion excitations are
damped showing a settling time reduction to 1 s from 4 s
and 6 s for step and scanning motions, respectively. The peak
amplitude after the excitation shows a reduction from 47µm to
13µm for scanning motion. The spectral analysis validates that
the reduction is achieved due to the dominant mode attenuation
of 65 dBm/Hz.

B. Power Aspects

The power required by the Riordan gyrator composed from
two op-amps is measured in this section. This analysis is
specific for the type of the op-amp used, LM324 in this case.
The current is measured by means of the voltage drop across
a shunt resistor. The supply voltage required for damping
scanning motion should not be less than the piezo voltage
output during excitation to reach optimal performance. A
supply voltage of 5 V is considered.

The current flow is dependent on the supply voltage as
shown in the LTSpice simulations in Fig. 48. For 10V supply
voltage the current flow is measured experimentally to be
around 0.705 mA as shown in Fig. 51. For a supply voltage
of 5 V the current consumed is around 0.38 mA. Therefore
the power required could be calculated as:

P = V I

= 5× 0.38 = 1.9mW
(44)
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Fig. 46. Time response of the blade Z displacement during white noise piezo
excitation.
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Fig. 47. Experimental spectral analysis of the passive damped blade tip Z
vibrations for step motion excitation.
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Fig. 48. Current flow through the gyrator supply using different supply
voltages (Simulation).
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Fig. 49. Time response of the blade Z displacement during sine sweep piezo
excitation.
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Fig. 50. Experimental spectral analysis of the passively damped blade tip Z
vibrations for scanning motion excitation.
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C. Active Damping

Active damping using piezoelectric materials is validated
in this section. A Direct Velocity Feedback controller is
implemented using an inverting current amplifier with a 1MΩ
feedback resistance, followed by a low pass filter to limit the
bandwidth of the differential action. The controller output is
fed into a 10x voltage amplifier which drives the piezoelectric
actuator.

Stability is checked first by estimating the frequency re-
sponse of the open loop transfer function G(s)K(s) as shown
in Fig. 52. By adding 90 degrees phase from the velocity
sensor, i.e., current amplifier, to the plant with phase of 0
and −180 degrees, it could be seen that the open loop transfer
function achieves a phase of 90 to −90 degrees and hence
stable in closed loop.

Scanning motion excitation is accordingly damped showing
a settling time of less than 1 s. The spectral analysis validates
that the reduction is achieved due to the dominant mode
attenuation of around 70 dBm/Hz.

D. Self-Powered Vibration Control

The configuration of the clamped harvesting piezo with a
5 g tip mass attached is realized as shown in Fig. 55. The
power output could be further optimized by increasing the tip
mass within the safe limits of the piezo.

The harvesting piezo output is rectified using a full wave
bridge rectifier followed by a 10µF smoothing capacitor. The
voltage output of the piezo during scanning motion is shown
in Fig. 56 for no load (1MΩ scope resistance), and in Fig. 57
for a 300 kΩ load. This is measured to be 40 V peak voltage,
and 25 V DC voltage for both cases, respectively. Hence, this
estimates a power output of 2.1mW .

Following the rectification is a buck regulator (DC/DC
converter) in order to regulate the output to a certain desired
voltage in addition to matching the input impedance such that
maximum power is harvested, thus optimize efficiency. The
low voltage/high current output of the high efficiency buck
regulator during scanning for a 500Ω load is shown in Fig.
58. This estimates a power output of 2mW .

Another quantitative way to asses the feasibility of the self-
powered vibration control is the time required to charge a
storage element, i.e., capacitor Cr, by scanning with no load.
Hence, a storage element could serve as a reservoir to provide
enough energy for damping step motion. Fig. 58 shows that
it takes 600 ms for charging a 1 mF capacitor to 1.8 V ,
while approximately 100ms is needed for a 100µF capacitor.
Accordingly, the time of discharging into a resistive load Rload

is determined by τ = RloadCr.
Finally, self-powered passive shunting is realized through

the scanning motion energy harvester powering the gyrator.
The vibrations were attenuated from 15.7µm to 6.7µm due to
the dominant mode attenuation of 25dbm/Hz as shown in Fig.
59. For self-powering of an active damping solution, integrated
circuit amplifiers with low power consumption and capability
of driving the capacitive piezo load have to be designed.
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loop transfer function with the Direct Velocity Feedback controller. The phase
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Fig. 53. Experimental spectral analysis of the actively damped blade tip Z-
deflections after scanning motion excitation.
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Fig. 55. Photo of the piezo harvesting unit consisting of a cantilevered
piezoelectric film with a tip mass attached to the mover orthognal to the
scanning motion direction.
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VIII. CONCLUSION

In this paper, a self-powered vibration control solution using
piezoelectric materials that is applicable to the low level
vibrations within a high precision application was proposed.
This was successfully achieved using a scanning motion
energy harvester which provides power for a suitable vibration
damping solution. A passive shunting and active feedback
controllers have been designed as possible vibration control
approaches. The first approach is RL passive shunting, while
the second are the Direct Velocity Feedback and Positive
Position Feedback controllers. The scanning motion energy
harvester was designed as a cantilevered piezoelectric film
with a tip mass such that enough power is supplied for
realizing simulated inductors. The proposed approaches were
validated experimentally through damping the vibrations of
the reticle masking blades within a photolithography machine
due to scanning motion excitation. An attenuation of 57% of
the vibration peak amplitude has been achieved through self-
powered damping of the dominant mode.
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APPENDIX I
SYSTEM MODELING
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Fig. 60. Exact and approximate solutions to distributed parameter systems.

A. Structural Vibrations

In a typical vibration problem, flexibility is usually modeled
using an intuitive or systematic method. The intuitive method
is limited to systems where the flexibility can be derived using
model reduction based on the elimination of mass and stiffness
elements according to the intuition of the physical problem.
Systematic methods treat the structure as a distributed system,
thus the mass and elasticity are considered as distributed or
continuous parameters. The vibration problem of distributed
systems is either solved analytically reaching an exact solution
or by approximate methods. Exact solutions are limited to
ideal structures (uniform geometry and material properties)
with simple boundary conditions. Approximate methods offer
solutions to more complex structures with various boundary
conditions. These methods are based either on series dis-
cretization or discretization by lumping.

Discretization by lumping aims to discretizing the structure
into n masses connected by springs. Accordingly, n Ordinary
Differential Equations (ODEs) are solved through algebraic
eigenvalue problems, as the model is time dependent only.
This method has no test for convergence, i.e., no indication
for the appropriate number of n which accurately represents
the flexibility of the structure. Series discretization treats the
structure rather as a distributed system which is time and space
dependent. Therefore, a Partial Differential Equation (PDE)
has to be solved, through a differential eigenvalue problem.
Discretization is based either on variational concepts such
as Rayleigh-Ritz and Assumed Modes or weighted residuals
such as Galerkin and Collocation. On the other hand, Finite-
Element-Methods (FEM) divides the structure into elements
(meshing), and then each element is solved through series
discretization, however, in this case the element has a simple
structure for which a test function can be easily derived using
a low order polynomial. Fig. 60 shows the path on how to
approach a vibration problem considering different methods.

In this problem, the ReMa X-blade is considered a can-
tilevered plate as a general case. There exist well established
theories through which one could find the solution for this

Kirchoff's

 Theory

Mindlin-

 Reissner

Thick Thin

FEM
Euler-

Bernoulli
Timoshenko

Thick (Stocky) Thin (Slender)

ReMa X-blade Cantilvered Beam

Fig. 61. Existing theories for modelling the ReMa X-blade.
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Fig. 62. Free body diagram of a beam element in bending vibration.

type of geometry and boundary conditions. Kirchoff’s theory
could be applied for a thin plate assumption, while Mindlin-
Reissner theory extends it to thick plates. Similarly, an Euler
Bernoulli beam is based on a thin (slender) beam assumption,
while Timoshenko’s is for a thick (stocky) beam.

Fig. 61 shows the different theories for modelling the ReMa
X-blade.

B. Euler-Bernoulli Beam

Bending vibrations of the ReMa X-blade are solved in
this section based on the Euler-Bernoulli cantilevered beam
assumption.

Fig. 62 shows a uniform beam with an infinitesimal element
of width dx. The Newton-Euler dynamical equations of motion
are then derived for this element.

Considering m(x) and EI(x) as the mass and flexural rigid-
ity both per unit length, respectively, the force and moment
equations are formulated.

Force Equation:

Q(x, t) +
∂Q(x, t)

∂x
dx−Q(x, t) + f(x, t)dx =

m(x)dx
∂2y(x, t)

∂t2

(45)

By cancelling opposite shear forces, it simplifies into:

∂Q(x, t)

∂x
+ f(x, t) = m(x)

∂2y(x, t)

∂t2
(46)

Moment Equation:

−M(x, t) + [M(x, t) +
∂M

∂x
dx] + [Q(x, t)

+
∂Q(x, t)

∂x
dx]dx+ f(x, t)dx

dx

2
= 0

(47)

It is assumed that the element has negligible product of mass
moment of inertia and angular acceleration Iα.
Ignoring higher order derivatives simplifies Eq. 47 into:

∂M(x, t)

∂x
dx+Q(x, t)dx = 0 (48)
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Therefore,

Q(x, t) = −∂M(x, t)

∂x
(49)

By substituting Eq. 49 in the force Eq. 46 yields:

−∂
2M(x, t)

∂x2
+ f(x, t) = m(x)

∂2y(x, t)

∂t2
(50)

Using the following relation between the bending displacement
and bending moment from the mechanics of materials:

M(x, t) = EI(x)
∂2y(x, t)

∂x2
, (51)

yields the PDE of a general Euler-Bernoulli beam:

− ∂2

∂x2
[EI(x)

∂2y(x, t)

∂x2
] + f(x, t) = m(x)

∂2y(x, t)

∂t2
(52)

Which is a fourth order PDE that is space and time dependent.
Solving this equation results in a solution for the deflection
y(x, t) which can be evaluated at a certain position x over the
length of the beam at time instant t.

Since this PDE is a separable one, an exact solution might
be derived using the Separation of Variables principle as
follows. Assuming a solution for y(x, t) in the form of:

y(x, t) = Y (x)F (t) (53)

Inserting this solution into the PDE in Eq. 52:

−F (t)
d2

dx2
[EI(x)

d2Y (x)

dx2
] = Y (x)m(x)

d2F (t)

dt2
(54)

By separating the time and space variables:

− 1

m(x)Y (x)

d2

dx2
[EI(x)

d2Y (x)

dx2
] =

1

F (t)

d2F (t)

dt2
= λ (55)

Using the fact that the quantities in Eq. 55 are real, both
sides are equal to a constant denoted by λ. Considering the
exponential form of the solution of the RHS of Eq. 55:
F (t) = Aest, therefore λ = −ω2, where ω is the eigenvalue
(modal frequency later).

Additionally, assuming the beam has uniform mass per unit
length m(x) = m, and uniform flexural rigidity EI(x) = EI ,
the LHS of Eq. 55 then becomes:

EI
d4Y (x)

dx4
= mY (x)ω2 (56)

Rearranging yields the Differential Eigenvalue Problem:

d4Y (x)

dx4
− β4Y (x) = 0, (57)

where β4 = ω2m
EI .

1) Boundary Conditions: The BVP is solved in this section
through specifying two boundary conditions at each end (4th
order PDE) of the cantilevered beam.

Fixed End at x = 0:

y(x, t) = 0

∂y(x, t)

∂x
= 0

(58)

Free end at x = L:

M(x, t) = EI(x)
∂2y(x, t)

∂x2
= 0

Q(x, t) = − ∂

∂x
[EI(x)

∂2y(x, t)

∂x2
] = 0

(59)

By using the solution of the method of separation of variables
in Eq. 53, the boundary conditions can be written as:

Y (x) = 0,
dY (x)

dx
= 0

d2Y (x)

dx2
,
d3Y (x)

dx3

(60)

Considering the general solution of Eq. 57:

Y (x) = A sin(βx) +B cos(βx) + C sinh(βx) +D cosh(βx)
(61)

Hence, the boundary conditions are substituted to solve for the
constants A,B,C, and D.

First boundary condition yields:

Y (0) = B +D = 0

B = −D (62)

Second boundary condition yields:

C = −A (63)

Which reduces the general solution into:

A(sin(βx)− sinh(βx)) +B(cos(βx)− cosh(βx)) (64)

The third and fourth boundary conditions yield the equa-
tions:

B = − sin(βL) + sinh(βL)

cos(βL) + cosh(βL)
A (65)

cos(βL)cosh(βL) = −1 (66)

Eq. 66 is a transcendental equation which must be solved nu-
merically, however accurate solutions can be obtained through
MATLAB. This doesn’t violate the fact that this is an exact
solution in contrast to the approximate methods. Solving Eq.
66 yields different βrL values, where r = 1, 2, ..., n.

Finally, the general equation for the mode shapes is derived
from substituting Eq. 65 in Eq. 64:

Yr(x) = Ar[sin(βrx)− sinh(βrx)−
sin(βrL) + sinh(βrL)

cos(βrL)
(cos(βrx)− cosh(βrx))]

(67)

Where Ar normalizes the eigenvectors/mode shapes.
2) Orthonormality: The eigenvectors are said to be orthog-

onal if the Mass M and Stiffness K matrices are symmetric,
resulting in the following relation:

∫ L

0

m(x)Yr(x)Ys(x)dx = 0, ωr 6= ωs (68)

The orthogonality of the natural modes is a guaranteed result
to the solution of boundary-value problems. Accordingly, the
natural modes obtained in Eq. 67 are already orthogonal.
Normalized orthogonal modes are said to be orthonormal.
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Fig. 63. First three bending modes of the ReMa X-blade using the Euler-
Bernoulli beam model.

The natural modes obtained in 67 are then normalized with
respect to the mass and stiffness matrices using the following
normalization scheme to obtain the normal modes:

∫ L

0

m(x)Yr(x)2dx = 1 (69)

Normalization is performed by adjusting the constant Ar of
each natural mode. Which yields the advantageous relation:

∫ L

0

Yr(x)
d2

dx2
[EI(x)

d2Yr(x)

dx2
]dx = ω2

r (70)

The orthonormality relations allows the representation of the
bending displacement in terms of the expansion theorem,
which results in the set of modal equations:

η̈r(t) + ω2
rηr(t) = 0 (71)

Where ηr(t) denotes the modal coordinates.
3) Modes and Mode Shapes: In this section, the bending

modes and mode shapes are evaluated for the ReMa X-blade
using the Euler-Bernoulli beam model derived above. The
modal frequencies are calculated using Eq. 57:

ωr =

√
EI

L4m
(βrL)2 (72)

Where m is the mass per unit length. The first 3 modal fre-
quencies and corresponding normal mode shapes are presented
in Fig. 63.

C. Slenderness Ratio

In order to determine whether or not to consider the
thickness of the beam, there exists a deterministic factor called
the Slenderness Ratio. Based on this ratio, one could anticipate
the magnitude of the error in deflection which results due to
considering the simpler assumption, e.g., thin plate/beam.

Firstly, it is worth noting that the thin assumption means
that the shear between the top and bottom surfaces of the
beam/plate is neglected, where there exists no deformation
across the thickness. For a thick structure this assumption is
not valid since the structural element is not perpendicular to
the bending line anymore, where shear deformation is present.

The Slenderness Ratio is calculated using the length and
thickness of the structures, as well as its moduli of elasiticity
and moment of inertia, as follows:

TABLE IV
CORRESPONDING ERROR IN DEFLECTION ACCORDING TO THE

SLENDERNESS RATIO

Slenderness Ratio Deflection Error

25 1.120

50 1.060

100 1.030

1000 1.003

Slenderness Ratio:
GAL2

EI
(73)

Where G is the shear elasticity, EI the flexural rigidity, A the
cross-sectional area, and L the length of the beam. The amount
of error resulting from considering an Euler Bernoulli or
Kirchoff’s theory rather than Timoshenko or Mindlin-Reissner
for a beam or plate, respectively, is shown in Table IV.

Where the deflection error is the ratio between the bending
displacement calculated based on the Timoshenko and Euler-
Bernoulli assumption, respectively.

The Slenderness ratio of the ReMa X-blade is evaluated
as 35467, which results in less than 0.01% of error in
the calculated deflection. Within this negligible error, a thin
assumption is considered as a valid approximation. Therefore,
the ReMa X-blade is considered to be either a thin beam
(Euler-Bernoulli) or a thin plate (Kirchoff’s theory).

D. Wide Rema Blade

A FEM analysis is performed assuming a wider Rema blade
with width W = 100mm, and shown in Fig. 64.

Fig. 64. FEM vibration analysis of a wider rema blade.

It is clear that the beam model is no longer valid where
bending and torsional modes combine. Additionally, the con-
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Fig. 65. First and second derivatives of the first three bending mode shapes.

tribution of the vibrations along the width are with consider-
able modal amplitude relative to the other modes. This is due
to the smaller aspect ratio.

E. Optical Placement & Sizing

Based on euler-bernoulli beam model, the first and second
derivatives of the first three bending mode shapes are calcu-
lated and shown in Fig. 65.

1) Finite Length Analysis: In [1], an analysis of an em-
bedded piezo with finite length was performed based on
Hamilton’s variational principle. An analytical equation for
the electromechanical coupling factor is derived:

K2
i =

k231
1− k231

cEp bptpz
2
m[φ′i(x2)− φ′i(x1)]2

Lµiω2
i

(74)

Where bp and L are the piezo width and length, respectively,
which is distant zm from the mid-plane of the beam.

It could be deduced that the piezo length contributes to the
coupling factor in two ways:
• The difference of the first derivative of the mode shape

(relative rotation) [φ′i(x2)−φ′i(x1)]2 evaluated at the two
ends of the piezo patch.

• Inversely proportional length contribution to the coupling
factor 1

L .
Assuming a piezo patch with the first end at the clamp of the
beam, the contribution to the coupling factor is visualized in
Fig. 9.

In [13], a numerical analysis based on wave propagation
was performed which shows that performance is directly pro-
portional to the length up to only 50% coverage of the beam’s
length. This validates the analytical results reached above, that
increasing length doesn’t necessarily improve performance.
In contrast to what is assumed in some of the literature
based on infinitesimal piezo length analysis, which assume that
maximum performance is achieved with maximum difference
of first derivative of mode shape. These analyses miss the
length dependent contribution of capacitance to the coupling
factor.

APPENDIX II
VIBRATION DAMPING

A. Passive Damping Robustness

Robustness of passive damping against structural uncertain-
ties can be quantified by perturbing the natural frequency. The
passive shunt is tuned for a nominal frequency ω0, then the
damped resonance peak is calculated for the uncertain natural
frequency. The robustness analysis is shown in Fig. 66. It could
be shown that the damping becomes easily de-tuned such that
the performance reaches that of resistive shunting (low) at
0.7ω0 or 1.3ω0 perturbation.
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Fig. 66. Robustness of passive RL shunting against perturbing the natural
frequency.
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APPENDIX III
INSTRUMENTATION & CIRCUITS

In this section, the measurement system and implemented
circuitry are presented. Additionally, some evaluation mea-
surements are performed to prove the functionality.

A. Measurement Frame
A frame has been attached to the test-rig in order to mount

the optical sensor in front of the blade tip. The setup is shown
in Fig. 67. The frame allows for variable height of the optical
sensor.

Fig. 67. Frame for mounting the optical sensor.

B. Gyrator Circuit
The gyrator circuit has been implemented using LM324 op-

amps as shown in Fig.68.

Fig. 68. Comparison inductors versus gyrator.

The following test is performed in order to prove the
functionality of the gyrator as a simulated inductor. An RL
circuit is formed with the gyrator as shown in Fig.69, where
the voltage over the inductor is considered as an output. The
input voltage is excited with a sine sweep of 1 − 1.25k Hz.
The FRF between the output voltage and input voltage is then
estimated. This is compared to the Bode plot of the RL circuit,
which forms a high pass filter, and has the following transfer
function:

GRL(s) =
Ls

Ls+RL
(75)

Where R = 10 kΩ, and L = 700 H are used. The estimated
FRF is shown in Fig. 70.

Fig. 69. An RL circuit formed as a high pass filter to test the functionality
of the gyrator as a simulated inductor.

101 102 103

Frequency (Hz)

-3

-2

-1

0

1

M
ag

ni
tu

de
 (

dB
)

Virtual RL (Gyrator) FRF

Virtual RL (Gyrator)
Ideal RL

101 102 103

Frequency (Hz)

0.2

0.4

0.6

0.8

1

C
oh

er
en

ce

Magnitude Squared Coherence

Fig. 70. The FRF of an RL high pass filter formed using the gyrator versus
the magnitude Bode plot of the transfer function.
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APPENDIX IV
EXPERIMENTAL RESULTS

A. Background Noise

The background noise existing in the Z deflections mea-
surement, without any excitation, is analyzed through the
whiteness test. The spectral analysis is shown in Fig. 71.
Additionally, the auto-covariance function is evaluated in Fig.
72. In the frequency domain, the noise has a flat spectrum
with minor excitation of the blade first and second modes. In
the time domain, the auto correlation shows that the signal is
uncorrelated. From both analyses, it could be concluded that
the background noise is a white signal, hence white noise.
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Fig. 71. PSD of background noise shows it has a flat spectrum.

B. Syncing of Measurements (Typical Excitation)

Syncing of different measurements are explained in this
section. Syncing is performed based on the uniqueness of the
Z profile along the length of the blade. There exists a constant
shift of ≈ 1 mm from the tip to clamp of the mover. This
constant shift starts at the beginning of the motion, and hence,
it could be exactly calculated when does the blade reaches
the end position. At the end position, the analysis of settling
time of the Z-deflections is started. The time plot of two
unsynced measurements is shown in Fig. 73a. Accordingly,
the start point of each motion is clearly shown. Compensating
for this offset, brings the signals in sync as shown in Fig.’s
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Fig. 72. Autocovariance of the background noise shows that it is uncorrelated.
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(c) Zoom into start and end points of
motion.
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Fig. 73.

73b, and 73c. Finally, zooming into the area of interest yields
the analysis plot in Fig. 73d.
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C. x/Fx Transfer

The FRF of the x/Fx transfer is shown in Fig. 74 along
with the coherence of the measurement. The FRF is compared
to a magnitude Bode plot of 1/ms2 with m = 1.1 kg.
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Fig. 74. FRF of the x/Fx transfer with the coherence estimate.
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APPENDIX V
MECHANICAL DRAWINGS
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B. Rema Bracket

Fig. 76. Bracket attached to the rema test-rig for clamping the blade.
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C. Bracket
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Conclusions

In this work, a self-powered vibration damping solution has been designed for
the vibrating reticle masking blades in a lithography machine. The solution was
based on a scanning motion energy harvester for an actively powered damp-
ing approach. Firstly, blade vibrations were modeled, analyzed, and identified.
Afterwards, piezoelectric patches were embedded on the blade based on op-
timal placement and sizing analyses. Passive shunting and active feedback
controllers were designed for vibration damping. Energy harvesting from the
scanning motion was proposed through a cantilevered piezoelectric patch with
an appropriate tip mass.

Experimental results show the damping achieved by the powered damping
approaches. Dominant mode attenuation of 65 dbm/Hz and 70 dbm/Hz has
been achieved for resonant shunting and direct velocity feedback, respectively.
Moreover, regulated power output of 2 mW was attained by an energy har-
vesting circuit. Finally, self-powered vibration damping has been realized by
supplying harvested power to the simulated resonant shunt. Vibrations were
successfully attentuated with 57 % of the peak amplitude. Therefore, a stan-
dalone solution for vibration damping using piezoelectric materials has been
proved feasible through this work.

31





Recommendations on
Vibration Damping using Piezoelectric Materials

in High Precision Machines
Samer Abdelmoeti

Email: samer.abdelmoeti@gmail.com

I. FEEDFORWARD: SCANNING MOTION ENERGY
HARVESTER

Since the vibrations are induced from the scanning motion,
a very interesting proposal is to utilize the scanning motion
energy harvester as both a feedforward signal and an energy
source. Adaptive feedforward filtering [1], could be used to
synthesize the filter in between the energy harvester and
the single piezo actuator (Fig. 1 to Fig. 2). This should
be certain enough to apply feedforward since the scanning
motion is precisely controlled. A small current from the raw
harvesting piezo output is fed into the filter amplifier. The
regulated harvesting piezo DC output powers the amplifiers.
The amplifier output is accordingly fed into the actuator piezo,
to perform vibration (disturbance) cancellation/compensation.
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Fig. 1. Harvesting piezoelectric output during scanning.
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Fig. 2. Control input generated by DVF and PPF to add damping.

II. MEASUREMENT SETUP: TIP VIBRATIONS DURING
SCANNING

In this work, an optical sensor was used to measured
the vibrations while settling after the excitation. Hence, the
damping could be indeed estimated. However, the important
quantitative measurement for the specification is to measure
the vibrations during the scanning motion. A measurement
system which could measure the tip deflections during motion
should be design, maybe an accelerometer at the tip. Does the
added mass of the accelerometer affect the blade’s resonance
frequency?

III. FEASIBILITY: AUTONOMOUS SHUNTING FOR HIGHER
LEVEL VIBRATIONS

In other modules, or reticle masking units, the vibrations
could be higher than the micro-meter scale. The question is
whether autonomous shunting [8] utilizing the vibrations itself
would be feasible. The literature proves that it is feasible
to provide the amount of power required to switch over an
inductor (SSDI) with optimal switching laws, however the
performance achieved was less than standrad RL shunting.
An important aspect to be analyzed is the power/performance
trade-off.

IV. ELECTRONICS & OPTIMIZATION: ACTIVE DAMPING
USING OP-AMPS

A limiting aspect in the current configuration is the use of
robust high voltage amplifiers (PIVA) in order to drive the
low capacitive piezo load. An optimized configuration is to
use integrated op-amps with low power consumption that are
capable driving the capacitive load. Additionally, PPF should
be validated and optimized (H∞-based) experimentally. More-
over, self-sensing actuators could be incorporated.

V. VIBRATION DAMPING OF COMPLEX MODULES

Considering more complex geometry rather than a beam,
with analysis on optimal piezo placement and sizing. Is
maximum strain location still valid as a compact solution?

The following step in literature is considering a plate (2-D).
However, from application point of view, the reticle masking
Y-blades could be considered. The first blade has a U-shaped
geometry and cantilevered boundary conditions, which makes
the analysis more complicated. The other blade has a plate-like
geometry with the ”narrow” cantilevered boundary conditions.
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