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Multi-Camera Tracking of Soccer Players Through Severe Occlusions

Wout Oude Elferink*

Abstract— Accurate visual tracking of soccer players is in
high demand in the industry. Existing solutions are however
unable to track players during severe occlusions, making man-
ual supervision necessary. In order to get to a fully autonomous
system we propose a setup based on the fusion of 14 cameras.
An algorithm with at its core visual hull calculations combined
with an HOG and HSV based appearance model is employed to
track the players. It is shown that the proposed system is able
to reduce the number of identity switches while maintaining
tracking accuracy during severe occlusions.

I. INTRODUCTION
Using data is becoming more and more important in the

sports industry with applications ranging from real time
coaching advisory to scouting, media and betting. One of the
first success stories dates back to the late 1990s when the
Oakland Athletics baseball team started using data in their
organization. Later the Boston Red Sox became champions
in the world series due to the influence of data analyst Bill
James. The recent successes in soccer of FC Midtjylland,
who won the 2014-2015 Danish Superliga with the help of
data statistics, led to an increase of interest in data by the
soccer industry. Leading clubs like Arsenal and Manchester
United now have their own data-analytics department.

In response to the increased interest several companies
started generating positional data on soccer players and the
ball. Opta [1] collects statistics by manually annotating the
goals, passes, possession information and so on from every
major league soccer match. Lower level information on
player positions is gathered using computer vision by com-
panies like Sentiosports [2], Prozone [3] and Chyron Hego
with their TRACAB tracking system [4]. These companies
do however still need manual interaction to correct tracking
errors and generally have difficulties tracking players in
cluttered situations.

The most interesting situations in soccer - corners, free-
kicks and scoring opportunities - are generally also the
most difficult to track due to many similar looking players
occluding each other. Manually correcting faulty tracks is
labor intensive, possibly not real-time and costly. Therefor a
solution for automatically tracking the players to generate ac-
curate and reliable data even in cluttered scenes is proposed
here.

In this paper we will first look at related work. Then
the hardware setup is discussed. Next the basic version
of the algorithm employed in this paper is explained. The
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additions to this basic framework for improving the tracking
performance are then given. It is then shown what impact
these additions have on the tracking performance. Finally a
conclusion and recommendation is given.

II. LITERATURE

Tracking soccer players is essentially a multiple object
tracking (MOT) problem. This problem has been studied
extensively, mostly for crowd monitoring using security
cameras [5]. The MOT problem has as main difficulties
that there are an unknown number of persons to track
which do possibly occlude each other, get occluded by
the surroundings and wear an unknown type and color of
clothing [5]. Similarly the soccer tracking problem also
needs to track persons which get occluded. But different
from the MOT problem, there is a known number of soccer
players. Furthermore these players cannot be occluded by
the surroundings - except for occlusions by the goal posts
- only by other players. Although these occlusions tend to
be more difficult than in the MOT problem due to a similar
appearance of players (i.e. wearing the same shirt and shorts),
sudden movement and direction change, physical contact
between players and large groups in a small area (e.g. corner
situations). A typical example of occlusion with views from
multiple cameras can be found in figure 1.

Solutions to the MOT problem can be categorized into
several groups. First of all you have ”online trackers” which
give an immediate answer to where the persons are after
a frame is given. Next to this there are ”delayed trackers”
which can combine the hypotheses of the position of persons
from multiple frames to calculate a globally optimal track,
this however means that positions are generated with some
delay [5].

Another aspect the trackers can be grouped on is the use
of a single or multiple cameras [6]. Using multiple cameras
has the advantage that there are observations from different
perspectives, reducing the number of occlusions and possibly
having a better view on the target [7]. This however gives rise
to more computation power and needs an algorithm which
can combine the data from the different cameras. This data
fusion can happen before tracking, e.g. calculating tracks
after a homography computation [8], or after tracking, e.g.
combining the tracks calculated on separate videos [9].

Soccer Player Tracking Literature

Tracking soccer players using an automatic camera based
system has been subject to extensive research over the years.
Early attempts in the year 2000 where already able to track
the ball and players in simple situations using low resolution
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Fig. 1: (a-e) Multiple views of the same situation showing
severe occlusion.

cameras [10]. The promise of a fully autonomous system
which can track the players in every situation does however
not exist, with many authors not even considering the hard
situations (e.g. corners, free kicks) where many players are
occluded. Although tracking in the more simple situations
has been solved in multiple papers [11]–[32].

Multiple approaches have been taken to solve the tracking
problem. Some authors make use of video streams from the
dynamic broadcast camera [11], [13], [16], [19], [27], [33]–
[37], multiple static cameras are used by [14], [17], [25],
[29], [31], [32], [38]–[41] and multiple static cameras with
overlapping field of view are employed in [10], [12], [18],
[20], [23], [24], [26], [28], [30], [42]–[45]. Where broadcast
cameras have the benefit of having no need for extra in-
stallations and their wide availability, however tracking can
only be done on the players which are currently visible
in the camera view and a sophisticated algorithm which
can compensate for camera motion (zoom, pan, tilt) and
which can map to a global coordinate view is needed. Static
cameras with no overlapping field of view need only a couple
of cameras - usually 2 or 3 - to track players, this reduces
the cost of the system and makes it more easy to install
and possibly move between locations. Furthermore using
static cameras makes it possible to employ sophisticated
background subtraction algorithms. Static cameras with an
overlapping field of view is the most costly system set-
up with up to 15 cameras [42] and the need for a more
permanent placement in the soccer stadium. However it has
the benefit of solving occlusions by tracking in multiple
cameras and combining the tracks in a global manner.

Since we are interested mainly in tracking in difficult
situations using multiple static cameras with overlapping
field of view, only the related work with the best occlusion
handling methods, appearance models and global data fusion
shall be presented here.

Particle filters are a popular method for tracking single
targets, however in multi-target tracking particles tend to end
up quickly at a single mode losing track of the target. In
[11] a mixture particle filter is made which can maintain
multiple modes and has a better performance in multi object
tracking tasks. As appearance model the authors make use
of normalized color histograms.

Tracking by blob-detection after background segmentation
using the Multiple Hypothesis Tracker (MHT) framework
[46] is done in [16], [47]. To track multiple players which
form one blob, players are segmented using multiple heuris-

tics. Teams are segmented based on a color template with
height bins, furthermore a compactness constraint - players
have a certain size - and a height constraint are introduced
to split multi-player blobs.

Collaborative particle filters with multiple overlapping
static cameras are described in [18]. The principal axis from
particles of all cameras is mapped to a ground plane using
homographies, tracking can then be done in the ground plane
after which particles in each camera view are re-sampled
based on the new ground plane position. In this way the
individual particle filters are guided through occlusions if
the target remains visible in other cameras. As appearance
model a color histogram is used.

Where the features used for weighting the particles in a
particle filter approach are usually weighted using a preset
constant in [21] the weights of the features in the feature
vector are learned in order to get the best performance.
This also allows for a combination of many features which
are combined in an optimal fashion. The features used for
tracking are based on constant acceleration, motion direction,
RGB color histogram, blob area, non-overlapping regions
and proximity in state space. By incorporating features gen-
erated by other single player particle filters, the particle filters
become aware of one another while they don’t need to share
particles - which is normally computationally expensive - the
authors call these pseudo-independent particle filters.

Morais et al [30] use multiple static cameras with over-
lapping field of view. The authors fuse the data from particle
filters from different views with likelihood based on a
per camera appearance model. This is done by projecting
particles on an overall view and presenting them as a
Gaussian likelihood distribution with covariance estimated
from ground truth measurements. This allows for tracking
on the ground plane using a likelihood map. As appearance
model for the particle filter both HOG and HSV histograms
with three height bins are used.

Instead of having dynamically changing positions of parti-
cles, in [32] model field particles are formed. These particles
have a static location on the field and are sampled as a grid
on the field. Tracking is performed by combining an HOG
player detector with an HSV color histogram with height bins
and motion from a Kalman filter for each particle around a
player. Occlusions are handled by allowing particles to be
used by multiple tracks and relying on the motion model.

For a more direct comparison of the papers an overview
of all literature with respect to soccer tracking is given in
appendix VII-A. For every paper the type of camera system,
the number of cameras, tracking method, appearance model
and occlusion handling method is stated. As well as an
indication on the performance of the algorithm.

III. HARDWARE

There are several considerations concerning the camera
setup. First of all the number of cameras, too many cameras
are costly while too few cameras make the tracking more
difficult. Since players tend to occlude each other far more
often near the goal area, it is beneficial to have more cameras
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covering this area. This maximizes the probability that at
least one camera has an unobstructed view of the target.
Next to this one can choose the field of view of the cameras
and how high the cameras should be placed. A smaller field
of view gives a higher resolution but covers a smaller area.
The higher a camera is placed the less occlusions will be
seen and the larger the coverage, although it does lead to a
lower resolution.

Ultimately the design of the stadium lays constraints on
the possible camera positions. Considering all the variables it
is chosen to place 14 cameras with a 2332x1752 resolution,
of which two are placed high (16m) above the field behind
the goals - the overview cameras, these cover almost the
whole field - and the remaining cameras are placed in the
first ring at about 8m high and 16m away from the field.
This leads to the camera coverage as seen in figure 2.

Fig. 2: Camera coverage, in color the number of cameras
which see that part of the field. The camera coverage is
especially high in the penalty area.

IV. ALGORITHM

In this section the basic algorithm without additions is
given. This is the algorithm available at the start of this work
and which is used as basis for further developments.

Figure 3 is a flowchart showing the main steps of the algo-
rithm. As input to the algorithm the 14 RGB and background
subtracted (BW) images are given. Using these images the
players are found for initializing the tracks, furthermore the
BW images are used for calculating the visual hull. The
visual hull is converted into the Z-Map which is in turn used
for tracking the players. As a final step the players can be
automatically classified in teams. As output of the algorithm
we get the player tracks and voxels every 1/25th second.

A. RGB

As input to the system we get 14 camera images with
a resolution of 2332x1752 at a framerate of 25 fps. See
appendix VII-B for views from each camera.

B. BW

One of the most reliable methods for extracting moving
targets from an image sequence is background subtraction.

Specifically we make use of the K-Nearest Neighbor algo-
rithm from [48]. This algorithm is chosen because of its
efficiency - especially on a GPU - its good segmentation and
its ability to remove shadows. As output of the algorithm
we get 14 binary images showing the moving targets. An
example output foreground image (BW) can be seen in figure
4.

Fig. 4: Example of a foreground image after applying back-
ground subtraction (cropped image)

C. Find Players

To be able to initialize the tracking and for applying team
classification, the individual segmented players need to be
found. This is done using blob detection on the foreground
images. The detected blobs are filtered using the constraints
that the blob needs to be on the field, it does not touch the
borders of the image, the height is within 1.4 and 2.1 meters
and the width is within 0.6 meter. Using these constraint both
the public, multi player blobs and small artifacts are filtered
out. The result of the algorithm are the segmented players
as seen in figure 5.

Fig. 5: Segmented single player blobs (blue) and multi player
blobs (green) from the find player algorithm (cropped image,
best viewed in color)

D. Visual Hull

There is one view in which players normally never get
occluded, the top view, because it is very unlikely that
players will be standing on top of one another. It is however
impossible to install multiple static cameras hanging in the
air above the field. Another method to get this view is
calculating the 3D space from the different camera views
and calculating the top view from this 3D space.
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Fig. 3: Overview of the player tracking algorithm without additions

With the given camera setup there are two possibilities for
calculating this 3D voxel space. The first being wide baseline
stereo matching, although this method relies on matching
points which is extremely difficult during occlusions of
multiple players wearing the same color jersey and which are
captured in low resolution. The other method is calculating
the visual hull, which can efficiently be calculated using only
the foreground images. The visual hull creates 3D objects
which completely envelop the real 3D objects but are not
necessarily the same shape and is an upper-bound on the
actual shape of the object [49].

As output of the visual hull algorithm we get a 3D voxel
space discretized in blocks of 5x5x5 cm in a total space
of 109x70x1.8 m, where each block is either 1 (there is
something there) or 0 (the space is empty). In figure 6 a
visualization of the 3D voxel space is given.

Fig. 6: 3D Voxel space, output of the visual hull algorithm
(best viewed in color)

E. Z-Map

As said before the top view is the best view for tracking
soccer players. No occlusions occur when looking down on
the field. Furthermore we assume that players are standing
upright. Using these assumptions it is found that a good clue
for tracking is reducing the voxel space by summing the
values in the z-direction. After summing in the z direction,
a 2 dimensional map with values between 0 and 36 (i.e.

1.8m/0.05m) is created, the Z-Map (figure 7). Before track-
ing these values are normalized to values between 0 and 1
by dividing by 36.

Using the assumptions, it can be argued that the Z-Map
holds the following properties. First the values are the highest
above the center of a player because players are assumed to
be standing upright. Secondly every grid cell can at most be
assigned to one player since we are looking from above. And
finally the values are evenly distributed around the center of
a player and decreasing the further away from the center.

F. Tracking Players

The tracking part of the algorithm consists of three steps.
First the tracks need to be initialized. Secondly the newly
initialized tracks and the tracks from the previous time step
are updated to get the player location at the current time
step. And finally the tracks which do not track a player
anymore can be deleted.

Initialize Tracks: Initializing tracks depends on combining
the found players in the foreground images with players
found in the Z-Map. In this way false positives (i.e. values
at places where no players are) in the Z-Map can be filtered
out. An overview of the initialization can be found in figure
8. In the first step the Z-Map is binarized by thresholding
the Z-Map for values larger than 0.05 which means at least
2 voxels in the z-direction at that location. This binarized
map is then dilated with size ”voxels per meter (vpm)” /
4 = 20 / 4 = 5 to get a new map which we will call D5.
In D5 the blobs which correspond to tracked players are
selected using the position of the players from the previous
frame which are possibly updated using a motion model.
The non selected blobs are deleted, while the selected blobs
are dilated once again with size vpm · 1.2 = 24, we call
this new map D24. These two maps are then combined
with the logical statement D5 & !D24. The result of this
combination is a map with blobs which do not correspond
to or are close to an already tracked player. In this map the
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Fig. 7: Z-Map created from the 3D voxel space from figure
6 (best viewed in color)

center of the blobs are selected as new player locations if
the blob area is between (vpm/2)2 = 100 and vpm2 = 400,
the find player algorithm has found a player within 0.5
meter and other already tracked players are more than 2
meters away. If however there was a deleted track within
10 seconds and within 4 meter of this location, the deleted
track is reinitialized and the positions in the missing frames
are interpolated.

Update Tracks: For every new frame the player positions
should be updated to their new locations based on the given
data. The algorithm for updating the player positions can be
found as pseudo code in 1 and as flowchart in figure 9 and
is based on these assumptions:

1) Players cannot occupy the same space when looking
downwards on the field.

2) Players are standing upright which means that the
largest value of a blob in the Z-Map corresponds to
the center of that player.

3) Players do not move faster than 40 km/h. The current
world record for the 100m sprint shows a top speed of
about 36 km/h.

Using 2 we know it is possible to make a box around a
player in real world coordinates for the top down view and
use mean shift tracking to track the players location. Using

1 we can remove other players from the Z-Map such that the
mean shift tracker will not start to track other players. Using
3 we know that the initial size of the tracking box can be
set to 90x90 cm and the player can always be found in that
box given the last known position of the player.

foreach i← tracked player do
maskImage ← Z-Map
foreach j ← tracked player do

if j 6= i then
set maskImage to 0 using a circular mask
with diameter 11 (55cm) around the center
of player j

end
end
newPosition ← do a mean shift tracking on the
maskImage with an initial circular box of 18x18
(90x90cm) centered at previous position of player i

end
Algorithm 1: Tracking players with mean shift

Mean shift is chosen as tracking algorithm because it is
able to find the highest mode in the area without using much
computational power, furthermore it has been well studied
in the tracking literature. For the mean shift algorithm itself,
camshift is used as first implemented by Bradski et al. [50].
The algorithm essentially shifts the window towards the
mean in that window and checks if the shift was more than
a certain threshold (in this case 7.5cm). If the shift is lower,
the algorithm converged and the position is returned, if the
shift is higher the algorithm does a new iteration using the
newly calculated mean position. The initial window size
used is an ellipse with both diameters 90cm. However inside
the mean shift algorithm these diameters might change per
iteration depending on the square root of the covariance
matrix of the image moments as in [50]. The diameters are
then calculated as being two times the square root of the
eigenvalues of the aforementioned matrix, unless the change
is more than 10% in which case the previous window size
is used.

Delete Lost Tracks: Since players can be substituted, walk
out of the camera view or are lost due to other reasons,
we need an algorithm that deletes lost player tracks. This
is a simple algorithm which sums the number of on pixels
in a square of 30x30 cm around the center of a track
in the thresholded player likelihood image (image after
thresholding the Z-Map in figure 8). If less than 50 percent
of the pixels is ”on” in 10 consecutive frames the track is
marked as lost and will not be tracked anymore in the next
frames.

G. Team Classification

After the tracking step the algorithm is able to classify the
players in teams. But since this step does not influence the
tracking it won’t be described in this paper.
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Fig. 8: Initializing new player tracks. *Blobs are selected as new players if 100 < area < 400, detect player algorithm has
found a player within 0.5m and other already tracked players are more than 2m away

Fig. 9: Tracking players using the mean shift algorithm. First
the other players are removed such that mean shift will not
end up on those positions. Then the mean shift algorithm
finds the new player location by shifting a box to the highest
mode in the area (shift from the red start position to the green
end position)

V. ADDITIONS TO THE ALGORITHM

The described algorithm is taken as the basis for im-
provements with several new additions. The main focus of
these additions is on reducing the number of identity (ID)
switches, since these type of errors have the most impact on
the correctness of the data.

Where the basic algorithm only makes use of the fore-
ground images converted to Z-Map, the proposed algorithm
also incorporates features from RGB images. This is done as
in figure 10. By calculating an HSV and HOG based appear-
ance model of a player and comparing this to extracted crops
at possible player positions both color and texture/shape
information are taken into account. Furthermore a motion
model has been added to get more accurate start locations
for the tracking step in the next frame.

In this section the addition of the appearance model,
its update policy and the calculation of likelihood maps is
described. Furthermore it is given how the likelihoods from
the different cameras are combined and how these combined
likelihood maps are used for tracking. Next to this there are
several separate additions, the forward-backward search for
the best player configuration, the addition of a motion model,
an improved background model update policy, annealing
mean-shift instead of normal mean-shift, incorporating the
motion model in the likelihood calculation and finally a
check if two tracks have switched identity if the resulting
configuration from tracking is unlikely.

A. Appearance model

Since we want to get a per camera per player likelihood
of a player standing at a certain position we also need a
per player per camera appearance model. How and when the
appearance model is generated and updated can be found in
the ”update policy” section below.

For now let’s assume that a player image - extracted using
a bounding box of 180x40cm - is given in a certain camera as
in figure 11. From this image we can calculate the appearance
model feature vector for both HSV and HOG as described
below.

When tracking we would like to compare the feature
vector of the appearance model to the feature vector of
the possible player positions. Therefor a sliding window is
applied with a 1 pixel stepsize and a range of 1m around
the expected player position. For each of these windows the
feature vector ft is calculated as in figure 11.

Fig. 11: Appearance Model, left an extracted player image
on which the appearance model is based. Right, during test
time a sliding window is applied to generate feature vectors
used for the similarity calculation

HSV features: From the extracted images as seen in
figure 11 we can calculate the HSV feature vector fa as a
60 bin independent HSV histogram - 20 bins per H, S and
V channel - with 3 height bins resulting in a vector length
of 180 as seen in table I. Three height bins are chosen
since this gives a good separation of players shirts and
trousers whereas it is still robust for changes in player stance.
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Fig. 10: Overview of the player tracking algorithm with additions (appearance model, motion model and likelihood
calculation). Further additions not visible in this flowchart include a forward-backward search, annealing mean-shift and
motion model likelihood in the tracking part of the algorithm. Also not visible is the new update policy for background
subtraction and the check if two tracks switched identity.

Height Bin 0:60 cm Height Bin 61:120 cm Height Bin 121:180 cm
H S V H S V H S V

TABLE I: HSV + height bins feature vector, each H, S and
V histogram is independently calculated and consists of 20
bins per channel. Thus resulting in each height bin consisting
of 60 values.

HOG features: The HOG features are calculated over the
same images as used for the HSV calculation. Calculating the
HOG features is done by aggregating HOG features over 6
horizontal and 30 vertical blocks. Where each block consists
of 9 signed orientation HOG features. Giving a total feature
length of 30 · 6 · 9 = 1620. The number of horizontal and
vertical blocks is chosen such that the feature is the most
sensitive in both vertical and horizontal sliding direction
while still being able to calculate the feature vector - players
can be as small as 6 pixels in width - and having a reasonable
length of the feature vector such that the computation is fast
enough.

B. Update Policy

To initialize and update the per player per camera appear-
ance model some rules are set to make it more likely that the
appearance model is correct. For a good view of the player
we need to know that the player is visible in that camera and
not occluded by other players.

Determining if a player is visible in a camera can be done
using the player position and the camera coverage. Occlu-
sions from other players can be determined by calculating
the overlap of bounding boxes between players using the
camera parameters and expected player positions. For this

an average player bounding box with a width of 40 cm and
height of 180 cm is taken. To make sure we do not miss
players which might be standing in front of the player the
appearance model can only be updated if at least 16 players
are being tracked (this check normally fails only during the
initialization phase of the algorithm).

If all those conditions are satisfied the player image can be
extracted and from this the feature vector will be calculated.
A summary of the appearance model update policy can be
seen in algorithm 2.

if number of players tracked >= 16 then
for All tracked players do

for All cameras do
if Visible in that camera then

if last update > 100 frames ago then
if <= 15 percent of the player
occluded then

Extract player image;
fa ← Calculate feature vector;
Appearance Model ← fa;

end
end

end
end

end
end

Algorithm 2: Appearance model update policy
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C. Likelihood Generation

For every camera in which the player is visible the sliding
window method from figure 11 is applied to generate feature
vectors at the possible player positions. From these feature
vectors the likelihood that a player is standing on position
(x,y) is determined by calculating the similarity of the feature
vectors using the Bhattacharyya coefficient:

f̃ =
f∑n

k=1 fk
, f =< f1, f2, ..., fn−1, fn > (1)

S =

n∑
k=1

√
f̃a
k · f̃ t

k, S ∈ R : 0 ≤ S ≤ 1 (2)

In the first step the feature vectors f are normalized such
that a different number of pixels (e.g. player is standing
closer or further away from the camera with respect to when
the appearance model was made) has no influence on the
similarity score and such that the similarity score will always
be between 0 and 1. In the second step the similarity score
S is calculated between the appearance model feature vector
f̃a and the test feature vector f̃ t.

The similarity scores calculated in this way can then
be non-linearly scaled to provide the best information. We
would like to have high values and more variance the more
certain we are that a player is at a certain location. Because in
this way the cameras with the most information contribute
the most to the total likelihood. Next to this we set three
points where the similarity score should map to:

• The similarity score should map to 0 at the location
where the true values occurrence is close to zero. This
is at 0.3 for HOG and at 0.6 for HSV.

• The similarity score should map to 0.5 at the location
where the true values occurrence is at its top. This is at
about 0.65 for HOG and at 0.9 for HSV.

• The similarity score should map to 1 if the similarity
score is 1.

A mapping which satisfies these requirements is given in
figure 12. Because HOG features show a peak in occurrence
at about 0.6 already it is chosen to use a straight line for
the mapping in order to already get a high variance in the
most occurring region without sacrificing variance at higher
similarity scores. Since HSV likelihoods show a much more
distinct peak in occurrence it is chosen to have a higher slope
in the upper region giving even more significance to these
values.

D. Combining Likelihoods

Ultimately we want to know Lx,y(A), the likelihood
that player A is at location (x, y). To get this value the
likelihoods from the Z-Map and those from the HSV and
HOG likelihoods of different cameras need to be combined.
This is done as in equation 3, where Lx,y(A|Zmapx,y

) is the
normalized Z-Map, ce is the number of cameras for which
player A is visible and for which the player is expected to be
less than 80% occluded, Lx,y,c(A|SHSV ) is the likelihood
of player A being at location (x, y) given the HSV similarity

Fig. 12: Normalized (divided by maximum value) occurrence
similarity score values vs the similarity score for, blue line)
good localizations (i.e. within 5 cm of the target), red line)
non player (i.e. more than 15 cm away from the target) and
the similarity score mapping based on these values

score from camera c and Lx,y,c(A|SHOG) is the same given

the HOG similarity score. The value
1

2 · ce
is to ensure that

the likelihood values stay between 0 and 1, independent of
the number of cameras.

Lx,y(A) =Lx,y(A|Zmapx,y
) · 1

2 · ce

ce∑
c=1

(Lx,y,c(A|SHSV )

+ Lx,y,c(A|SHOG))
(3)

The likelihoods are combined in this fashion for several
reasons. First multiplying with the Z-Map ensures locations
where the player is definitely not standing have a likelihood
of 0 assuming the Z-Map always has values higher than
0 at player locations. Secondly adding the HOG and HSV
likelihood instead of multiplying automatically ensures that
the best appearance models have the most impact on the
likelihood score. Scores of both an ”old” appearance model
and those given by cameras in which the player is (partly)
occluded will be lower than their counterparts, while the
variance might still be high. Multiplying these scores would
thus not show the desired behavior.

E. Tracking

Tracking is similar as before since the mean-shift algo-
rithm works equally well on likelihood maps as Z-Maps. To
reduce the computational load the likelihood maps are only
generated for players which are within 1.5 meter of another
player, otherwise only the Z-Map is used for that player.

F. Forward-Backward Search

Because the implemented tracking algorithm is inherently
sequential, players which are tracked first are more likely
to get the best position and steal the track of another
player. To reduce this effect a forward-backward search
is implemented. This is done by both doing a forward
and reverse ordered tracking step and choosing the locally
optimal combination. The locally optimal solution is set to
be the solution for which the combined likelihood for players
which are standing within 0.8 meter from each other is the
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highest. A player likelihood is defined as the sum of the
likelihood values (Lx,y) within a radius of 0.25 meter of
the tracked (forward or backward) player position times the
motion likelihood (Lm, see section V-G). In formulas the
forward search likelihood is calculated using:

Lf,i =Lmi
(
∑
x,y

Lx,y(i) · Lmi
+∑

j

(D(xi, xj) · Lmj
·
∑
xx,yy

Lxx,yy(j)))

{x, y : (x− xi)
2 + (y − yi)

2 ≤ 0.252}
{xx, yy : (xx− xj)

2 + (yy − yj)
2 ≤ 0.252}

{j ∈ N : j ≤ p, j 6= i}

D(xi, xj)

{
1 if (xj − xi)

2 + (yj − yi)
2 < 0.82

0 otherwise
(4)

Where Lf,i is the forward likelihood of player i; xi, yi
is the forward search player position of player i and p
is the number of players. The calculation if a player is
standing in the vicinity is for both the forward and backward
search determined by the backward search location, because
otherwise it could be possible that there are more players
close by in the forward search with respect to the backward
search or the other way around.

For the backwards likelihood the calculation is similar
only changing the motion likelihood and xi, yi and xj , yj
to the backward search location. A players position is then
determined by

x, y =

{
xf , yf if Lf,i ≥ Lb,i

xb, yb if Lf,i < Lb,i

(5)

Where xf , yf is the forward search player location and
xb, yb is the backward search player location.

This implementation improves the player tracking algo-
rithm by making a large jump in player position far less
likely.

G. Motion Model

It is better to start the tracking given the expected location
than using the old location. Since the tracking history for a
player is known this can be calculated. While most track-
ing algorithms make use of a Kalman filter, the irregular
movements of soccer players in both speed, acceleration and
direction degrade the performance of the Kalman filter too
much to be useful. It is therefor chosen to implement a simple
constant velocity motion model smoothed over the last 15
frames as in equation 6. Where xy(t) is the position of a
player at time t.

xy(T + 1) =
1

14
·

T∑
t=T−13

(xy(t)− xy(t− 1)) (6)

To also incorporate the fact that players cannot walk
through each other and collide often, a constraint is added

that the expected location of a player cannot be within 0.4
meter of another player. If this is the case using the motion
model, the expected player locations of the colliding players
will be gradually returned in small steps to their position
at t=T until the expected locations are more than 0.4 meter
away from each other.

Using the motion model a motion model likelihood can
be set as well, penalizing locations which are further away
from the expected location. The motion model likelihood is
calculated as in equation 7, where d is the distance between
the tracked and expected location. This likelihood is used
in the forward-backward calculation to calculate the optimal
configuration.

Lm =


1 if d < 0.4

1.5− (d+ 0.6)2 if 0.4 ≤ d ≤ 0.62

0 if d > 0.62

(7)

H. Background Model Update Policy

Because players standing still will over time be incor-
porated in the background model and therefor disappear
as foreground - and thus disappear in the Z-Map - the
background subtraction algorithm is adjusted. By not up-
dating the background model around a player - defined as a
bounding box of 180x40cm plus 20 pixels at the last player
location - players will no longer disappear in the background,
subsequently leading to fewer misses.

I. Annealing Mean-Shift

Annealing mean-shift is a form of mean-shift where the
mean-shift algorithm is repeated with a smaller window size
(i.e. 70% smaller each step) after the previous mean-shift
has converged. This is repeated for four times. This form
of mean-shift is both robust and accurate. Robust because it
first uses a large search window to find the global mode and
precise by subsequently centering a smaller window exactly
atop the highest mode.

J. Check for ID Switch

If the motion likelihood is lower than 0.75 there is the
probability that two players have switched tracks. To check
if this is indeed the case, the likelihood of the configuration
where the two possibly switched players are located is
compared to the configuration where they have switched
locations. The likelihood of the configuration (Lc) is cal-
culated as in equation 8. Where Lx,y(i) and Lxx,yy(j) are
the likelihood maps for player i and j respectively, (xi,yi) is
the location of player i and (xj ,yj) is the location of player
j. For the switched position calculation (i) is replaced with
(j) and vice versa.

Lc =
∑
x,y

Lx,y(i) +
∑
xx,yy

Lxx,yy(j)

{x, y : (x− xi)
2 + (y − yi)

2 ≤ 0.252}
{xx, yy : (xx− xj)

2 + (yy − yj)
2 ≤ 0.252}

(8)
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If the switched position is more likely than the non
switched position, the locations of the players are switched.
This is done for 12 subsequent frames - about 0.5 seconds -
after the first ID switch check to enlarge the possibility that
the players are better separated and that the cause which
leaded to the switch in the first case is not there anymore.
During this time interval the appearance model update step
for the involved players is postponed.

VI. EXPERIMENTS AND RESULTS

Since the algorithm is specifically tailored on the camera
setup given in section III, it can only be used on data from
this setup. Furthermore the player tracking algorithms given
in the literature are made for other specific setups and are
not publicly available. It is therefor chosen to only report the
results on the individual additions of the algorithm such that
the value of each component becomes clear.

A. Dataset

The performance of the algorithm is assessed on three
datasets of which the first two have also been used during
development for parameter estimation. The first is 40 seconds
(1000 frames) footage of the match Heracles-Utrecht, the
second is 30 seconds footage (750 frames) of the match
Heracles-Twente and the third is 15 seconds footage (375
frames) of the match Heracles-Utrecht. All datasets are
chosen based on the numerous occlusions that occur.

Each dataset has been manually annotated every 5 frames
using the overview camera with the best view. Between
annotations, tracks are interpolated to get a per frame per-
formance. Players which are outside the field of view of the
annotation camera are not considered in the results. The first
125 frames are needed for initializing the algorithm and are
therefor also not considered.

B. Results

The performance of the algorithm is assessed using the
clear MOT metrics, which are the standard in multi person
tracking [51]. For this paper the track association distance is
set to 1 meter for tracks which are within 20 meter in the
y-direction of the goal and to 2.5 meter further away. The
performance metrics consist of the multiple object tracking
precision (MOTP), calculated as:

MOTP =

∑
i,t d

i
t∑

t ct
(9)

Where dit is the distance between hypothesis i and its
corresponding annotated track and ct is the number of
matches found for time t, where only the tracks within 20
meter in the y-direction of the goal are counted. This measure
shows the accuracy of the tracker independent of the errors
the tracker makes.

Furthermore the multiple object tracking accuracy
(MOTA) is used, which accounts for all object configuration

errors - i.e. false positives (fpt), identity switches (idt) and
misses (mt) - except global mismatches and is calculated as:

MOTA = 1−
∑

t(fpt + idt +mt)∑
t gt

(10)

Where gt is the number of ground truth tracks at time t.
As last a new measure is introduced, called the expected

error per frame (EEPF). This measure shows the number of
errors one can expect to see when viewing a single frame
from the radar view. An EEPF of 1 thus means that in every
frame one thing is expected to be wrong. Which can be a
wrong identity, a miss, a false positive or a global mismatch.
This also means that for a normal soccer match with 23
tracks (11 per team and one referee) and an EEPF of 1,
22 out of 23 tracks are expected to be correct at any time
instance. The EEPF is calculated as:

EEPF =

∑
t(400 · idt + fpt + gmmt +mt) + 125 · gmmT∑

t 1
(11)

Where gmmT is the number of tracks with more than 125
consecutive global mismatches and gmmt is the number of
global mismatches at time t only counting tracks with less
than 126 consecutive global mismatches. The weights are set
to the above values on the assumptions that 1) an ID switch
can be detected and corrected after approximately 400 frames
(20 sec) with a shirt number recognition algorithm 2) global
mismatches can be detected after approximately 125 frames
(5 sec) by checking that there are more tracks than possible
and two tracks are continuously at about the same position.
This error rate is therefor the error rate for an online tracker,
using the same algorithm offline or with a delay of at least
20 seconds makes it possible to correct tracks after detecting
the ID switch or GMM error.

TABLE II: The additions which a certain version of the
algorithm makes use off. Version A is the original algorithm
at the start of the thesis.

Additions \ Version A B C D E F G H I J K
HSV Features x x x x x x x x x
HOG Features x x x x x x x x x
Forward-Backward Search x x x x x x x
Motion Model x x x x x x
Background Model Update Policy x x x x x
Annealing Mean-Shift x x x
Motion Model Likelihood x x x
ID switch check x x

In table III the results on the three different datasets are
given, as well as the average performance over the three
datasets. In figure 13 the EEPF versus MOTA is displayed
for the averaged datasets. It can immediately be found that
the algorithm with all the additions performs the best with
an EEPF of just 0.15. Furthermore using both the HOG and
HSV features improves the performance over just using one
of the two type of features, showing that the information
is complementary. The only addition which degrades the
performance on all three datasets is annealing mean-shift,
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using all additions except for this one slightly improves the
performance of the algorithm (version K). Although it should
be noted that it reduces the performance on the validation
dataset.

TABLE III: Results for different versions of the algorithm,
1-3 are the different datasets, C is the average of the three
datasets, MOTA is displayed as MOTA·100 for readability

A B C D E F G H I J K
MOTP 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.08

1 MOTA 99.93 99.92 99.89 99.86 99.96 99.89 99.90 99.80 99.93 99.95 99.96
EEPF 0.94 1.55 1.41 1.46 0.02 0.94 0.94 1.88 0.16 0.16 0.01

MOTP 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
2 MOTA 98.06 99.79 98.98 99.90 99.90 99.90 99.90 99.81 99.79 99.89 99.90

EEPF 4.83 0.05 4.10 0.02 0.02 0.02 0.02 1.32 0.05 0.03 0.02
MOTP 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08

3 MOTA 97.38 97.15 97.10 97.36 96.95 98.87 97.96 97.71 97.32 98.87 98.47
EEPF 3.79 3.84 4.06 3.79 5.60 0.26 3.66 5.48 2.38 0.26 0.35

MOTP 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11
C MOTA 98.46 98.95 98.65 99.04 98.94 99.55 99.25 99.11 99.02 99.57 99.44

EEPF 3.19 1.81 3.19 1.76 1.88 0.41 1.54 2.89 0.86 0.15 0.13

Fig. 13: MOTA against EEPF, values are the average of the
three datasets

VII. CONCLUSION

Accurate tracking of soccer players can greatly improve
statistics used for coaching advisory, scouting, media and
betting. Several companies have attempted to tackle the
tracking problem with varying success. The most difficult
problem - reducing the number of identity switches in
crowded situations - had yet to be solved. The main cause
for the identity switch is similar looking players occluding
each other while their movement changes suddenly and thus
cannot be predicted with the common Kalman filter.

In this paper the use of multiple cameras - 14 in total -
increases the probability of a camera having a non occluded
view of the player. Switching to the top view after calculating
the 3D space further reduces the occlusion problem, since it
is highly unlikely that players stand on top of one another.
The introduction of a per camera HOG and HSV based
appearance model enables the tracker to use both color and
texture/shape. While a smart combination of the features

from the different cameras gives a higher weight to cameras
with a good view and less degraded appearance model. This
combination is based on a mapping of the bhattacharyya
similarity coefficient between the appearance model and
sliding window features to more informative values. Cameras
are combined by adding their respective mapped HOG and
HSV similarity scores. This score is then multiplied with
the 3D map - which has been summed in the z-direction -
to get a more accurate localization. This approach increases
the MOTA from 0.9846 to 0.9904 and reduces the expected
error per frame (EEPF) from 3.19 to 1.76 with respect to
the basic algorithm. Which means a performance increase of
one error (false positive, miss or ID switch) per 65 ground
truth annotations to one per 104.

Several other additions including forward-backward
search, a motion model, a new background model update
policy and a check if players have switched ID further
increases the MOTA to 0.9944 and reduces the EEPF to just
0.13, a performance increase to one error per 179 ground
truth annotations. If the tracker is deployed as an offline
tracker or a ≥ 20s delayed tracker these values will improve
even more.

With the addition of a shirt number recognition engine, the
proposed algorithm is able to satisfy most of the use case
requirements and can be deployed in real world applications.
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APPENDIX

A. Soccer player tracking literature overview

In this appendix an overview of the literature on soccer
tracking is given. It is specified for every paper what type
of cameras are used: static cameras, static cameras with an
overlapping field of view or broadcast cameras. Also the
number of used cameras is given. Next to this the tracking
method is described shortly, as well as the appearance
model and constraints used for tracking. Since handling
occlusions is especially important for soccer tracking it is
stated what kind of occlusion handling method is used. And
finally a performance score is given to each paper indicating
how well the algorithm would likely perform based on
the results and conclusion published in the paper and the
description of the algorithm. See tables V, VI and VII.

Performance: To give an idea about the performance of
the algorithms and the scenarios which need to be solved
in order to get a perfect tracking algorithm the papers
with the best tracking algorithms are reviewed for handling
different scenarios. The scenarios are compiled from possibly
occurring situations in soccer and specified on the main
difficulties the trackers may need to handle.

The scenarios include several aspects: the number of
players involved, where more players in the same area
are generally harder to handle. The team to which the
players belong, players from different teams can normally be
separated using an appearance model based on color while
players from the same team cannot be that easily separated.
The type of occlusion, full or partial where at least 25 percent
of the occluded player is always visible. If there is interaction
between the players, e.g. the players bump into each other or
touch each other. And finally the type of motion, similar or
distinct. Where distinct motion is a type of motion which can
be solved by a motion model (i.e. Kalman filter or similar)
and similar motion cannot due to the players walking in the
same direction with the same speed or having almost no
speed at all.

The fifteen scenarios common in soccer are:
• S1: Single player, not occluded
• S2: Two players, different team, partial occlusion, in-

teracting, similar motion
• S3: Two players, different team, full occlusion, interact-

ing, similar motion
• S4: Two players, same team, partial occlusion, not

interacting, distinct motion
• S5: Two players, same team, partial occlusion, not

interacting, similar motion
• S6: Two players, same team, partial occlusion, interact-

ing, similar motion
• S7: Two players, same team, full occlusion, not inter-

acting, distinct motion
• S8: Two players, same team, full occlusion, not inter-

acting, similar motion
• S9: Two players, same team, full occlusion, interacting,

similar motion

• S10: Three players, same team, partial occlusion, non
interacting, distinct motion

• S11: Three players, same team, partial occlusion, non
interacting, similar motion

• S12: Three players, same team, partial occlusion, inter-
acting, similar motion

• S13: Four players, partial occlusion, non interacting,
similar motion

• S14: Four players, partial occlusion, interacting, similar
motion

• S15: Five or more players interacting

TABLE IV: Performance of soccer tracking algorithms per
scenario

Scenario
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Vermaak et al. [11] x x x x x
Beetz et al. [16], [47] x x x x x x x

Du et al. [18] x x x x x
Morais et al. [20] x x x x x x x x

Hess et al. [21] x x x x x x x x
Misu et al. [25] x x x x x

Liu et al. [29], [52] x x x x x x x
Morais et al. [30] x x x x x x x x
Kazuya et al. [31] x x x x x x x
Baysal [32], [53] x x x x x x x x

As can be seen in table IV the most easy and common
cases for soccer tracking have been solved in multiple papers.
Tracking similar appearing players through occlusions who
have a distinct motion pattern can easily be solved by a
motion model. While tracking players of different teams
through full occlusion can be handled by an appearance
model. However when two or more players from the same
team enter an occlusion with similar motion (same speed and
direction or standing still, a common scenario in free-kicks
and corners) most algorithms will have difficulties tracking
the correct player.

To get a fully automatic player tracking system it is im-
portant that also these scenarios can be solved by the tracker.
By making use of a multi-camera setup these situations can
be solved more easily because occlusions in one camera can
be solved from another camera where the object is less or not
occluded. The algorithm presented in this paper is therefor
able to solve all scenarios except S15.
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TABLE V: Soccer tracking papers overview part 1

Paper Type camera #cameras Tracking Method Appearance Model / Constraints Occlusion handling method Performance
[10] Static

overlapping
8 Tracking-by-detection by searching

for vertical pairs of shirt and pants
regions

Shirt / Pants match Estimation during occlusions us-
ing constant velocity, color, vertical
position on the field

Low

[42] Static
overlapping

15 Map bottom of blobs to global
view, cluster feet in global view

Background Subtraction (BGS) None Low

[11] Dynamic Broadcast Mixture particle filter Normalized color histograms Multi modality of mixture particle
filter

Medium

[12] Static
overlapping

8 Bounding box regression using
blobs, kalman filter in both single
as total view for estimations

Constant velocity, BGS Check blobs using color Low / Medium

[33] Dynamic Broadcast See [10] + estimation of 3D posi-
tion

[13] Dynamic Broadcast Boosted Particle Filter (based on
[11])

Cascaded Adaboost on a 2 spatial
bin, 110 HSV bin histogram

Multi modality of mixture particle
filter

Medium

[14] Static 1 Mean Field Monte Carlo PCA based Dynamics and constraint that one
observation can only be from one
target

Medium

[17] Static 4 Track graph of blobs with merge
and split

BGS Size, shape, vertical intensity dis-
tribution

Low

[43] Static
overlapping

8 Matching blobs BGS, blob size, color Matching positions from multiple
cameras

Low

[15], [38] Static 4 Track graph of blobs with merge
and split

BGS, position relative to team
mates, color, velocity, relative
depth

Track graph merge split Medium

[16], [47] Dynamic Broadcast Blob segmentation and Multiple
Hypotheses Tracker (MHT)

BGS based on non-field color,
color template with height bins,
compactness constraint, height
constraint

Blob segmentation and MHT Medium

[39] Static 4 Track graph of blobs with merge
and split

BGS Merge and split in track graph; us-
ing: blob area, blob perimeter, blob
width and height, vertical intensity
distribution, direction, velocity

Medium

[34] Dynamic Broadcast Support Vector Regression based
particle filter

SVM model Implicitly done by particle filter Low

[35] Dynamic Broadcast Adaptive color based particle filter Color histograms Implicitly done by particle filter Low
[36] Dynamic Broadcast Particle filter chromacity values, velocity None Low
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TABLE VI: Soccer tracking papers overview part 2

Paper Type camera #cameras Tracking Method Appearance Model / Constraints Occlusion handling method Performance
[18] Static

overlapping
3 Collaborative particle filters with

messages between ground plane
and image plane

Color histogram, homography Homography constraint from mul-
tiple cameras

Medium

[19] Dynamic Broadcast MCMC data association Haar filter player detector, velocity,
no spatial overlap

Handled with MCMC Medium

[44], [54] Static
overlapping

6 Hidden Markov Model BGS, Velocity, Acceleration and
Size

Handled with HMM Low

[55], [56] Static 1 Solving as a MAP problem BGS, Velocity, Acceleration and
Size

Handled with MAP Low

[20] Static
overlapping

4 Particle filter with shared obser-
vation function and homography
mapping with importance based on
likelihood

HOG and HSV histograms with
three height bins

Implicitly done by particle filter
and homography

Medium

[21] Static 1 Pseudo-independent log-linear par-
ticle filters. Single trackers for each
object but with knowledge of previ-
ous state estimates of other track-
ers. Weights of feature vector for
weighing particles are learned for
an optimal combination.

Constant acceleration, motion di-
rection, RGB histogram, blob area,
non-overlapping regions, proximity
in state space

Done by the features of the particle
filter

Medium / High

[22] Static 1 multi-Bernoulli filter Learned HSV color histogram with
two height bins

Implicitly handled Medium

[23] Static
overlapping

Multiple Minimizing an energy function on
a multi-plane homography map

Multi plane homography, fore-
ground likelihood

Implicitly handled Medium / High

[45] Static
overlapping

8 similar to [12]

[24] Static
overlapping

6 Linear Programming approach on a
probability occupancy map

Non-overlapping regions, CIE-
LAB color histogram

Match in LP using color and mo-
tion

Medium

[25] Static 1 Pattern matching with occlusion
weights

Color, texture, texture of head,
local motion vectors, chromakey
based patch matching

Only use those features which give
also info during partial occlusions

Medium

[26] Static
overlapping

3 Finding corresponding SIFT fea-
tures between views and frames

SIFT on foreground areas Hope on non-occluded view from
other cameras

Medium

TABLE VII: Soccer tracking papers overview part 3

Paper Type camera #cameras Tracking Method Appearance Model / Constraints Occlusion handling method Performance
[27] Dynamic Broadcast Tracking by detection using

MCMC on a frame by frame basis
(no global optimization)

Deformable part model; Smooth
change on appearance (color his-
togram), location and size; mutual
exclusion

Implicitly handled Medium

[28] Static
overlapping

3 Particle filter based blob tracker
and graph matching between views

BGS, motion, color Implicitly handled Medium

[37] Dynamic Broadcast Detecting single players, group
in tracklets, group tracklets using
number recognition

Player outline (BGS), number
recognition

No tracking of groups Low

[29], [52] Static 1 Tracking by detection and hierar-
chical clustering of low/mid/high
level trajectories

Color, player detections, motion,
game context

Clustering algorithm Medium

[30] Static
overlapping

4 Fusion of data from particle fil-
ter from different views with like-
lihood based on a per camera
appearance model projected on
an overall view and presented as
a Gaussian likelihood distribution
with covariance estimated from
ground truth measurements

Haar filter based player detection,
HOG and HSV histograms with
three height bins

Implicitly handled Medium / High

[40] Static 1+ Matching blobs BGS, blob size, color Matching positions from multiple
cameras

Low

[31] Static 1 Minimizing a Composite Energy
Function

Potential Energy: color, hog; Elas-
tic Energy: based on maintain-
ing formation; Movement Direc-
tion Based Energy

Implicitly handled Medium

[32], [53] Static 2 Model Field Particles BGS, HoG player recognition, mo-
tion using Kalman filter, HSV his-
togram with height bins

Implicitly handled + occlusion rea-
soning based on motion and color
likelihood + particles can be used
by multiple tracks

Medium / High

[41] Static 2 Tracking by blob detection and
Kalman filter

BGS Human operator Low
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B. Camera Views

The camera views used for the algorithm in this paper are given in figure 14, notice the overview cameras in 14b and
14m.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Fig. 14: The different camera views
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C. The clear MOT metrics

The clear MOT metrics are the standard for measuring the performance of multi person tracking, the different measures
are based on:

• False Positives, the number of hypotheses which do not correspond to a ground truth track
• True Positives, the number of hypotheses which do correspond to a ground truth track
• Misses, the number of ground truth tracks to which no hypothesis can be assigned
• ID switches, the number of hypotheses which track a different person than it was created on. Only counted once for

each switch, after which the identity of the hypothesis is set to that of the new target
• Global mismatches, the number of hypotheses which are tracking an already tracked track
In figure 15 it can be found how the data association is done.

Fig. 15: Possible tracking errors. Circles are ground truth, the gray area around the circles marks the distance wherein a
hypotheses (cross) can be such that it is considered a true positive. The distance for which a track is considered a true
positive is set to 1 meter if the target is within 20 meter in the vertical direction of the annotation camera and to 2.5 meter
if further away. (a) Correct tracking, ground truth corresponds to the hypotheses, (b) false positive (cross not within certain
distance from ground truth) and miss (no hypotheses which corresponds with the ground truth) at t=2, (c) global mismatch,
hypotheses on an already tracked track, (d) ID switch, (e) assigning a new track to the ground truth at t=2, assigning the
new hypotheses at t=4 to the lower ground truth track although it is closer to the upper ground truth, but that track is already
assigned.
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D. Detailed Results

The detailed results for each dataset are given in this appendix (tables VIII, IX and X). For every dataset it is shown:
• how many frames are used to calculate the results
• the number of false positives
• the number of true positives
• the number of misses
• the number of identity switches
• the number of global mismatches
• MOTP
• the standard deviation of the MOTP
• MOTA (displayed as MOTA ·100)
• the number of tracks generated by the algorithm
• the number of tracks which are not 100% correct (i.e. at least one FP, ID switch or GMM)
• the number of tracks which have more than 125 consecutive global mismatches
• the number of global mismatches except those which belong to tracks which have more than 125 consecutive global

mismatches
• the number of tracks which have at least one false positive
• the number of annotated tracks
• the number of tracks which are missed for at least 1 frame
• the expected error per frame (EEPF)

TABLE VIII: Results for dataset 1

Version A B C D E F G H I J K
Frames 875 875 875 875 875 875 875 875 875 875 875
False Positives 5 5 7 11 3 6 5 16 6 3 3
True Positives 19191 19190 19186 19185 19193 19185 19186 19180 19191 19191 19193
Misses 7 8 12 13 5 13 12 18 7 7 5
ID switches 2 3 3 3 0 2 2 4 0 0 0
Global mismatch 13 614 17 56 12 5 5 9 832 835 0
MOTP 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.09 0.09 0.08
std MOTP 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.11 0.11 0.11 0.1
MOTA 99.93 99.92 99.89 99.86 99.96 99.89 99.90 99.80 99.93 99.95 99.96

# tracks T 23 24 23 24 23 23 23 24 24 24 23
# incorrect tracks T 3 4 5 5 3 5 5 4 4 4 3
# GMM tracks T 1 3 3 3 1 1 1 2 2 2 0
# GMM tracks T > 125 frames 0 1 0 0 0 0 0 0 1 1 0
GMM for tracks T ≤ 125 frames 13 15 17 56 12 5 5 9 2 2 0
# FP tracks T 3 3 4 5 3 5 5 5 4 3 3
# tracks A 23 23 23 23 23 23 23 23 23 23 23
# miss tracks A 4 4 5 6 4 6 6 5 4 4 4

EEPF 0.94 1.55 1.41 1.46 0.02 0.94 0.94 1.88 0.16 0.16 0.01
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TABLE IX: Results for dataset 2

Version A B C D E F G H I J K
Frames 625 625 625 625 625 625 625 625 625 625 625
False Positives 171 21 55 7 7 7 7 10 21 8 7
True Positives 13881 13967 13894 13968 13968 13968 13968 13961 13967 13967 13968
Misses 94 8 81 7 7 7 7 14 8 8 7
ID switches 6 0 6 0 0 0 0 2 0 0 0
Global mismatch 397 0 26 0 0 0 0 4 0 0 0
MOTP 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17 0.17
std MOTP 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13
MOTA 98.06 99.79 98.98 99.90 99.90 99.90 99.90 99.81 99.79 99.89 99.90

# tracks T 25 24 23 23 23 23 23 23 24 23 23
# incorrect tracks T 7 1 7 1 1 1 1 4 2 2 1
# GMM tracks T 5 0 3 0 0 0 0 1 0 0 0
# GMM tracks T > 125 frames 2 0 0 0 0 0 0 0 0 0 0
GMM for tracks T ≤ 125 frames 105 0 26 0 0 0 0 4 0 0 0
# FP tracks T 8 2 7 1 1 1 1 4 3 2 1
# tracks A 23 23 23 23 23 23 23 23 23 23 23
# miss tracks A 7 1 6 1 1 1 1 3 2 2 1

EEPF 4.83 0.05 4.10 0.02 0.02 0.02 0.02 1.32 0.05 0.03 0.02

TABLE X: Results for dataset 3

Version A B C D E F G H I J K

Frames 250 250 250 250 250 250 250 250 250 250 250
False Positives 26 2 25 2 31 0 6 39 2 0 0
True Positives 5560 5523 5543 5535 5542 5617 5573 5593 5532 5617 5594
Misses 121 158 138 146 139 64 108 88 149 64 87
ID switches 2 2 2 2 3 0 2 3 1 0 0
Global mismatch 1 0 51 0 31 0 0 43 43 0 0
MOTP 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
std MOTP 0.11 0.11 0.11 0.11 0.11 0.1 0.11 0.11 0.1 0.1 0.1
MOTA 97.38 97.15 97.10 97.36 96.95 98.87 97.96 97.71 97.32 98.87 98.47

# tracks T 25 24 26 23 26 23 24 25 24 23 24
# incorrect tracks T 3 2 4 2 5 0 3 5 2 0 0
# GMM tracks T 1 0 1 0 1 0 0 1 1 0 0
# GMM tracks T > 125 frames 0 0 0 0 0 0 0 0 0 0 0
GMM for tracks T ≤ 125 frames 1 0 51 0 31 0 0 43 43 0 0
# FP tracks T 4 2 5 2 6 0 3 6 2 0 0
# tracks A 23 23 23 23 23 23 23 23 23 23 23
# miss tracks A 4 4 5 4 6 1 3 4 3 1 2

EEPF 3.79 3.84 4.06 3.79 5.60 0.26 3.66 5.48 2.38 0.26 0.35
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