
University of Twente

From Diffusion of Light to
Free-Form Scattering

Bachelor Thesis
Applied Physics and Applied Mathematics

K.W. Fokkema

Supervisors:
M.L. Meretska M.Sc. (COPS)
Dr. M. Schlottbom (SACS)
Prof. Dr. W.L. Vos (COPS)

August 22, 2017

Abstract

In this thesis, a Monte Carlo simulation is presented for radiative transfer
through free-form scattering materials. It is validated using diffusion theory
in the case of a slab and used to examine the effect of a corrugation on the slab.
The corrugation changes the angular distribution of transmitted light and the
total transmission.

1

Contents

1 Introduction 3

2 Theory 4
2.1 Scattering and absorption . 4
2.2 Interfaces . 6
2.3 Radiative Transfer Equation . 7
2.4 Diffusion Equation . 7
2.5 Slab Geometry . 8
2.6 Diffusion in a Slab . 9
2.7 Monte Carlo . 10
2.8 Inverse Transform Sampling . 10

3 Implementation 11
3.1 Traveling . 11
3.2 Interfaces . 14
3.3 Scattering . 14

4 Results 16
4.1 Slab . 16
4.2 Corrugated Slab . 19

5 Conclusion and Recommendations 23

A Code (C++) 26
A.1 mcff.cpp . 26
A.2 mcff structures.h . 28
A.3 mcff io.h . 31
A.4 mcff functions.h . 34

2

1 Introduction

As the most efficient source of ambient light, white LEDs are widely used and of
importance for everyday life and biological and medical applications. Therefore,
it is important to thoroughly understand the physical processes that are present
in white LEDs. A white LED typically consists of a blue LED surrounded by a
layer of fluorescent material (phosphor) [1]. This layer absorbs a part of the light
emitted by the blue LED and emits light with longer wavelengths (green and
red). The part of the blue light that was not absorbed contributes together with
the green and red light to the spectrum of the white LED. After the light comes
out of the phosphor, free-form optical elements are used to change the angular
distribution of the light. It is interesting to investigate whether the fluorescent
material and the free-form optical elements can be combined by changing the
shape of the interfaces of the fluorescent material.

In this thesis, light propagation through scattering elements with curved inter-
faces is investigated by means of numerical methods. The results can be used
as a starting point for further research. In chapter 2, all necessary background
knowledge is discussed, including light transport by means of the radiative trans-
fer equation, the diffusion approximation and the principles of a Monte Carlo
simulation. In chapter 3, the implementation and structure of the Monte Carlo
simulation that was written in C++ is discussed. In chapter 4, the code is val-
idated by means of comparison to the diffusion approximation and in chapter
4.2, the results of the program are analyzed for a slab with curved boundaries.

3

2 Theory

When light propagates in a medium filled with inhomogeneities of the order of
the wavelength of the light, a scattering medium, it can be modeled as a photon.
These photons travel in straight lines and can interact with the inhomogeneities
by scattering and absorption. Furthermore, when photons move between media
with different refractive indices, they can be reflected and refracted.

In this chapter, first an overview is given of all possible interactions between
a photon and a scattering medium in sections 2.1 and 2.2. In section 2.3 the
radiative transfer equation is shown, which describes the propagation of light
in a scattering medium. The radiative transfer equation can be approximated
in the limit of multiple scattering by the diffusion approximation (section 2.4).
The slab geometries that are used in the thesis are defined in section 2.5 and the
diffusion equation is applied to a slab in section 2.6. Finally, the principles of a
Monte Carlo simulation are explained in section 2.7 and a method for sampling
random variables with a probability density function is shown in section 2.8.

2.1 Scattering and absorption

A scattering medium is modeled as a homogeneous medium with small inho-
mogeneities (particles) that are randomly distributed. The probability per unit
length for a photon to scatter is given by the scattering coefficient

µs = nsσs, (1)

where ns is the number density of the scatterers in the medium and σs is the
scattering cross sections of those scatterers, a measure for how efficiently the
particles scatter the light [2]. The scattering mean free path ls, the average
distance a photon travels before it is scattered, is given by

ls = 1/µs. (2)

Similar to scattering, the probability per unit length for a photon to be absorbed
is given by the absorption coefficient

µa = naσa (3)

where na is the number density of the absorbers in the medium and σa is the
absorption cross section, a measure for how efficiently the particles absorb the
light. The absorption mean free path la, the average distance a photon travels
before it is absorbed, is given by

4

Figure 1: Schematic representation of the scattering angle θ

la = 1/µa. (4)

When a beam of light propagates through a scattering medium where both
absorption and scattering are present, its intensity decreases according to the
Beer-Lambert law given by

T (x) = e−(µs+µa)x = e−s. (5)

The variable s = (µs + µa)x is called the optical depth.

When a photon scatters, it is deflected from its straight path by the scatter-
ing angle θ ∈ [0, π] (see Fig.1). The direction of this deflection in the plane
perpendicular to the direction of propagation is given by the azimuthal angle
φ ∈ [0, 2π). The anisotropy g is given by the average cosine of the scattering
angle

g = 〈cos θ〉 . (6)

In the case of isotropic scattering, the direction of propagation in which a photon
travels after scattering is uniformly distributed on the unit circle, which means
that g = 0. If the anisotropy is close to one, predominant forward scattering
is observed. The transport mean free path l is a measure for the distance over
which the propagation direction of the photon is randomized. It is given by

l =
ls

1− g
. (7)

5

Figure 2: Schematic representation of Snell’s law at an interface between two
media with refractive indices ni and nt

2.2 Interfaces

Interfaces between media are modeled by the Fresnel equations, which depend
on the refractive indices of the material, the polarization of the light and the
angle of incidence. Reflectance is the probability that a photon is reflected when
it propagates from a medium with refractive index ni to refractive index nt with
incidence angle θi. For s-polarization, the reflectance is given by [3]:

Rs =

∣∣∣∣ni cos θi − nt cos θt
ni cos θi + nt cos θt

∣∣∣∣2 (8)

and for p-polarization the reflectance is

Rp =

∣∣∣∣ni cos θt − nt cos θi
ni cos θt + nt cos θi

∣∣∣∣2 . (9)

In these equations, θt is the angle of refraction (see Fig. 2), given by Snell’s law:

ni sin θi = nt sin θt. (10)

6

If the polarization of the light is random, the average reflectance is equal to

R = (Rs +Rp)/2. (11)

2.3 Radiative Transfer Equation

The radiative transfer equation (RTE) describes the propagation of the intensity
of light. The variable in the RTE is the radiance L, which is energy flux per
unit normal area per unit solid angle per unit time with units Wm−2sr−1. Here
the normal area is perpendicular to the direction of the flow [4]. The amount
of energy dE transported across an area dA within a solid angle dΩ in a time
dt is then given by

dE = L(~r, ŝ, t) (ŝ · n̂) dAdΩ dt (J). (12)

Here ~r is the position, ŝ is the unit vector that specifies the direction, t is the
time and n̂ is the unit vector normal to the surface dA. The RTE can be derived
from energy conservation [4] and is given by:

∂L(~r, ŝ, t)

∂t
=− ŝ · ∇L(~r, ŝ, t)− nσL(~r, ŝ, t)

+ nsσs

∫
4π

L(~r, ŝ′, t) · p(ŝ′ · ŝ)dΩ′ + S(~r, ŝ, t).
(13)

The term on the left hand side indicates the change in energy per unit time.
On the right hand side, the first term describes the diffusion of light, the second
term indicates the energy that is redirected from direction ŝ by scattering and
by absorption, and the third term indicates the energy redirected to direction ŝ
by scattering from other directions ŝ′. The function p(ŝ′ · ŝ) in that term is the
probability distribution of cos θ, and is often modeled by the Henyey-Greenstein
function [5]:

p(cos θ) =
1

2

1− g2

[1 + g2 − 2g cos θ]
3
2

. (14)

2.4 Diffusion Equation

The RTE is difficult to solve since it has 6 independent variables. Therefore, it
is often simplified to the diffusion equation [4]. The physical quantity typically
measured in experiments is the fluence rate Φ, the energy flow per unit area per
unit time [4]. It can be obtained from the radiance by integrating over all solid
angles:

7

Φ(~r, t) =

∫
4π

L(~r, ŝ, t) dΩ (Wm−2). (15)

In the absence of absorption, the diffusion equation is then given by [6]:

∂Φ(~r, t)

c∂t
−D∇2Φ(~r, t) = S(~r, t). (16)

Here S is a source of diffuse light and D is the diffusion coefficient that is given
by:

D =
l

3
(17)

in the absence of absorption. In the derivation of the diffusion approximation,
it is assumed that the radiance is isotropic everywhere, which is why Eq. 16
does not contain ŝ.

2.5 Slab Geometry

The sample geometries analyzed in this thesis are the (regular) slab and the
corrugated slab, which both consist of a homogeneous scattering medium. A
slab of thickness L is modeled to be infinite in the x- and y-directions and
bounded by z = 0 and z = L in the z-direction (Fig.3a). The slab is surrounded
by vacuum on both sides. The scattering mean free path in the slab is given by
ls. A corrugated slab is one of the simplest sample structures in the emergent
topic of ”free-form scattering optics”. In a corrugated slab with amplitude A and
frequency f , the equations for the boundaries are replaced by z = A sin(2πfx)
and z = L+A sin(2πfx) (Fig.3b).

Light is incident on the slabs from z = −∞, its propagation direction paral-
lel to the z-axis. Light is transmitted or reflected through a slab. The total
transmission Tt is divided into ballistic light (photons that did not scatter) and
diffuse transmission (photons that did scatter). Likewise, total reflection Rt is
divided into specular reflection of photons that are Fresnel reflected and diffuse
reflection for backscattered photons.

8

(a) (b)

Figure 3: (a) A slab of thickness L (b) a corrugated slab of thickness L, with
both surfaces modulated by an amplitude of A and a frequency of f . Note that
f is the frequency and not the period of the corrugation.

2.6 Diffusion in a Slab

For a slab, light propagation in the limit of multiple scattering can be calculated
analytically using the diffusion equation (Eq. 16). The diffusion theory results
in the following equation for the total transmission [6]:

Tt =
l + ze1

L+ ze1 + ze2
. (18)

Here, ze1 and ze2 denote the extrapolation length of the first and second surface
respectively (as seen from z = −∞). The extrapolation length depends linearly
on l and can be computed as the ratio of the refractive indices of the material
and the air [6]. Here, ze1 = ze2 = ze because both interfaces are bounded by
the same media.

In absence of absorption, the reflection and transmission are related by

Rt = 1− Tt. (19)

Using diffusion theory, the angular distribution of transmitted light can also be
calculated. This distribution is called the escape function E and assuming light
is polarized randomly, it is given by [6]:

E(µa) =
3

2

(
na
nm

)2

µa

(ze
l

+ µm

)
[1−R(µm)], (20)

here nm is the refractive index of the material and na the refractive index of the
air, µa = cos θa and µm = cos θm, where θa and θm are the exit and incidence

9

angles, respectively, with respect to the normal of the surface. R(µm) is the
Fresnel reflection coefficient given by Eq. 11.

2.7 Monte Carlo

Besides the diffusion approximation, another method of acquiring a solution
to the RTE is a Monte Carlo simulation. A Monte Carlo simulation relies on
the sampling of random numbers to obtain numerical results [7] and it can
solve the RTE with any desired accuracy, assuming the computational load is
affordable [8].

In the case of radiative transfer, single photons are tracked as they move through
the medium and random numbers are sampled to determine scattering lengths,
scattering angles and transmission and reflection at boundaries. In this thesis,
polarization of light, absorption and interference will be neglected.

2.8 Inverse Transform Sampling

In Monte Carlo simulations for radiative transfer, it is necessary to sample
random variables (scattering angles and the lengths of scattering paths) with a
certain probability density function [4]. Inverse Transform Sampling is a basic
method for sampling variables with a probability density function f given its
cumulative distribution function F . In this method, a random number ξ is taken
from a uniform distribution on the interval [0,1]. A random number from the
distribution f is then given by x = F−1(ξ), since the cumulative distribution
function of F−1(ξ) is given by F :

P (F−1(ξ) < x) = P (ξ < F (x)) = F (x) (21)

Inverse Transform Sampling is useful because it is an efficient method to sample
random variables according to a probability distribution, when the cumulative
distribution function is invertible.

10

3 Implementation

In this section, the implementation of the Monte Carlo code for scattering in
a 3-dimensional medium with curved interfaces is explained. The structure of
the code and the used equations are heavily based on the code ‘MCML’ [4]. In
this section, ξ denotes a random variable from the uniform distribution on the
interval [0, 1].

In the simulation, single photons are tracked as they travel through the scat-
tering medium and its environment. The main properties associated with the
photon are its step size s, which indicates the optical depth it is going to travel
before scattering, its position r̂ and its propagation direction v̂, where |v̂| = 1.
The environment through which the photon travels consists of a convex domain
bounded by edges (see Fig. 4). When a photon reaches an edge, it is termi-
nated. The domain is divided by interfaces into a scattering medium and its
environment. The main properties of the scattering medium are the refractive
index nm and the scattering coefficient µs.

The main structure of the program is shown in Fig. 5. In the remaining part of
this chapter, various parts of the program will be explained in more detail:

• Sampling the step size s and determining if the photon will cross an inter-
face or reach the edge of the domain (section 3.1). ((2), (3), (4) and (7)
in Fig. 5.)

• Interaction with a surface (section 3.2). ((6) in Fig. 5.)

• Scattering of a photon (section 3.3). ((5) in Fig. 5.)

3.1 Traveling

Interfaces between the scattering material and the environment are defined by
functions of r̂, which are 0 at the interface. The function that defines an interface
i is given by

fi(~r) = 0. (22)

The implicit function fi(~r) should be chosen such that its gradient ∇fi(~r) is
not 0 when fi(~r) = 0, to avoid division by 0 in the code. The direction of the
normal n̂i of the interface i is given by

n̂i =
∇fi(~r)
||∇fi(~r)||

. (23)

Because the gradient chosen not to be 0 at an interface, the direction of n̂ is
always to the same side of the interface and the function fi(~r) changes signs
across the interface.

11

Figure 4: Schematic of the environment in which a photon is tracked, including
the edges of a convex domain, the ‘material’ and ‘air’ layers and the direction
of propagation of a photon.

When a photon travels, it is necessary to determine if it will hit an interface
or if it will scatter in the medium. Therefore, the optical depth s to which
photon travels is calculated using inverse transform sampling. The cumulative
distribution function Fs for s is given by

Fs(s) = 1− T (x), (24)

where T(x) is given by the Lambert-Beer probability in Eq. 5. According to the
inverse transform sampling method,

Fs(s) = 1− T (x) = 1− e−s = ξ, (25)

where ξ is a uniformly distributed random variable on the interval [0,1]. Invert-
ing this function gives

s = − log(1− ξ) = − log(ξ) (26)

where 1− ξ is simplified to ξ since 1− ξ also represents a uniformly distributed
random variable on the interval [0,1].

The distance that the photon should travel is given by d = s
nσ . The new position

of the photon ~rnew = ~r + dv̂ is determined, assuming that it does not cross an
interface. Then, for each i, the signs of fi(~r) and fi(~rnew) are compared to
determine if an interface i is crossed. When the signs are different, an interface

12

Figure 5: Structure of the program. Here, s is the step size of the photon.

has been crossed (Fig. 6a). When the signs are equal, an interface may have
been crossed multiple times (Fig. 6b). To detect whether an interface has been
crossed in the case where the signs are equal, the sign of fi(r̂) is calculated at
intervals of length ε along the path of the photon to decide whether the interface
was crossed multiple times or not at all. The value of ε should be small compared
to the typical length scale of the geometry that is studied. When an interface has
been crossed, the false position method [9] is used to determine ~rbi , the location
at which interface i was crossed with an accuracy of dx. Finally, the photon
travels to the nearest interface or, if no interface has been crossed, it travels
the distance d. After traveling, the optical distance traveled is subtracted from
s. When a photon reaches the edge of the domain, its properties are stored as
output and a new photon is launched.

13

(a) (b)

Figure 6: (a) Example of a photon that crosses a curved interface a single time.
(b) Example of a photon that crosses a curved interface multiple times.

3.2 Interfaces

When a photon hits an interface, the angle of incidence is determined by cos θ =
|v̂·n̂|. Then, the angle of transmission is calculated using Snell’s law (Eq. 10) and
the probability of reflection is calculated using the Fresnel equations assuming
random polarization (Eq. 11). If ξ < R, the photon is reflected, otherwise it is
transmitted. Then the direction of propagation of the photon is updated. After
interacting with the interface, the photon is moved a distance dx away from the
interface to avoid rounding errors when s is small.

3.3 Scattering

When a photon scatters, the polar scattering angle is calculated by applying
inverse transform sampling to the Henyey-Greenstein function given by Eq. 14.
Integrating the Henyey-Greenstein function with respect to cos θ and equating
it to ξ gives

1− g2

2g
√

1 + g2 − 2g cos θ
= ξ (27)

Solving this equation for cos θ gives

cos θ =

 1
2g

(
1 + g2 −

(
1−g2

1−g+2gξ

)2)
, if g 6= 0

2ξ − 1, if g = 0
(28)

The azimuthal scattering angle φ is sampled using

φ = 2πξ (29)

14

These angles are used to determine the new direction of propagation v̂′ according
to

v′x =
sin θ(vxvz cosφ− vy sinφ)√

1− v2z
+ vx cos θ

v′y =
sin θ(vyvz cosφ+ vx sinφ)√

1− v2z
+ vy cos θ

v′z = −
√

1− v2z sin θ cos θ + vz cos θ,

(30)

except for the case when |vz| ≈ 1, when the following equations are used to
avoid dividing by zero:

v′x = sin θ cosφ

v′y = sin θ sinφ

v′z = sgn vz cos θ

(31)

15

4 Results

4.1 Slab

To validate the Monte Carlo code, the results of Monte Carlo simulations are
compared to the diffusion theory (section 2.6) for several cases. First we compare
the total reflection to the diffusion theory as a function of L/ls and nm, then the
angular dependence of the diffuse transmission is compared to diffusion theory.

For nm = na and g = 0, the total reflection Rt is plotted as a function of L/ls
in Fig. 7. For an optically thick slab (L/ls ≥ 5), the diffusion equation approx-
imates Rt within a relative error of 1 percent, but for thin samples (L/ls < 5),
the diffusion approximation is not valid because it only holds in the limit of
multiple scattering [6].

0 5 10 15 20

L/l
s

0

0.5

1

D
if
fu

s
e

 r
e

fl
e

c
ti
o

n

Monte Carlo

Diffusion

Figure 7: Total reflection as a function of slab width. Here, the refractive
index of the slab and its environment are equal, and the anisotropy g = 0. The
’Diffusion’ results are given by Eq. 19. The error bars of the Monte Carlo results
are of the order 10−4, well within the symbol size.

For L/ls = 10, na = 1 and g = 0, the total reflection and the diffuse reflection
are plotted as a function of nm in Fig. 8. Since specular reflection is not taken
into account in the diffusion equation, the diffusion approximation does not

16

represent the total reflection, but the diffuse reflection. The diffusion theory
agrees with the diffuse reflection with a rms deviation of 0.0038.

1 1.5 2 2.5 3

n
m

0.0

0.5

1

R
e

fl
e

c
ti
o

n

Diffuse Reflection

Diffusion Theory

Total Reflection

Figure 8: Reflection as a function of the refractive index of the slab, where
the refractive index of the environment na = 1 and the thickness of the slab
L/ls = 10. The ‘Diffuse Reflection’ and the ‘Total Reflection’ are the results
from the Monte Carlo code and the ‘Diffusion Theory’ is given by Eq. 19. The
error bars are of the order 10−4, well within the symbol size.

Finally, the angular distribution of diffuse transmission is compared to the es-
cape function (Eq. 20). In Fig. 9, the diffuse transmission is compared to the
escape function in the case of a large thickness (L/ls = 10) and in the absence of
anisotropy. The results match well, with a rms deviation of 0.03. When for the
same parameters the anisotropy is increased, the diffuse transmission deviates
from the escape function since the transport mean free path is large compared
to the slab and the assumption of isotropic propagation of light does not hold.
An example is given in Fig. 10 for g = 0.9.

We have shown here that the code for Monte Carlo simulations for light trans-
port agree well with the diffusion theory in the case of a small transport mean
free path.

17

0 0.2 0.4 0.6 0.8 1

cos()

0

0.5

1

1.5

2

2.5

D
if
fu

s
e
 T

ra
n
s
m

is
s
io

n

Monte Carlo
Escape Function

Figure 9: Diffuse transmission as a function of angle. Here, the width L = 1,
the anisotropy g = 0, the refractive index of the slab is nm = 1.49, the refractive
index of the environment is na = 1 and the scattering length is ls = 0.1. The
‘Escape Function’ is given by Eq. 20. The error bars of the Monte Carlo results
are of the order 10−4, well within the symbol size.

0 0.2 0.4 0.6 0.8 1

cos()

0

1

2

3

D
if
fu

s
e
 T

ra
n
s
m

is
s
io

n

Monte Carlo
Escape Function

Figure 10: Diffuse transmission as a function of angle. Here, the width L = 1,
the anisotropy g = 0.9, the refractive index of the slab is nm = 1.49. The
‘Escape Function’ is given by Eq. 20. The error bars of the Monte Carlo results
are of the order 10−4, well within the symbol size.

18

4.2 Corrugated Slab

In Fig. 11, the angular transmission is compared for a slab and a corrugated
slab. The parameter values were chosen to represent the typical design used in
white LEDs. The main difference between the slab and the corrugated slab is
that at small cos θ, the corrugated slab has a higher transmission than the slab.
The difference in angular transmission between the rectangular slab and the
corrugated is shown in Fig. 12. As a measure of the size of the deviation, the
absolute difference is integrated for all angles, which results in a difference of
2.1%. In addition to this effect, the total transmission through the corrugated
slab is lower compared to the slab by 0.36%.

0 0.2 0.4 0.6 0.8 1

cos()

0

0.5

1

1.5

2

2.5

D
if
fu

s
e

 T
ra

n
s
m

is
s
io

n

Corrugated Slab
Slab
Escape Function

Figure 11: Diffuse reflection as a function of angle. The error bars of the Monte
Carlo results are within the symbol size. Here, L = 1, g = 0.9, nm = 1.49,
na = 1 and ls = 0.08. The properties of the corrugation are A = 0.05 and
f = 1.

19

0 0.2 0.4 0.6 0.8 1

cos()

-4

-2

0

2

4

6
D

if
fu

s
e

 T
ra

n
s
m

is
s
io

n
(%

)
Difference Corrugated

Slab and Slab

Figure 12: Difference between the results for the corrugated slab and the regular
slab from Fig. 11.

A possible explanation for the difference in the angular distribution of diffusely
transmitted light is that according to the escape function, light escapes mostly
at angles perpendicular to the surface. Because in a corrugated slab, the surface
is not perpendicular to the direction in which the light propagates, more light
emerges from the surface at larger θ, or smaller cos θ, which would explain the
difference observed in Fig. 12.

An explanation for the decrease in total transmission is that the light is refracted
at the first curved surface, which causes the average distance traveled to the
second surface to be greater. To test this hypothesis, a simulation was run for the
same parameters where the first surface was a flat surface and the second surface
was corrugated (Fig. 13). The result was an increase (instead of a decrease) of
transmission with respect to two flat surfaces, by 0.16%. This suggests that
when a photon arrives at the neighbourhood of a corrugated surface from inside
the material, the chance that it transmits to the air is higher than when it
arrives at the neighbourhood of a flat surface.

20

Figure 13: A slab of thickness L, which is flat on one side and corrugated with
amplitude A and frequency f on the other side. Note that f is the frequency
and not the period of the corrugation.

It is interesting to know how the deviation in the angular distribution of the
light depends on the geometry of the sample. In Fig. 14, the dependence of the
deviation as a function of the amplitude of the corrugation is shown. When the
amplitude is larger, the deviation also becomes larger as expected. In Fig. 15, the
dependence of the deviation as a function of the frequency is shown. When the
frequency is larger the deviation also becomes larger. An analytical expression
has not been derived yet for these graphs.

21

0 0.1 0.2 0.3

Corrugation Amplitude A/L

0

1

2

3

4

5

D
e
v
ia

ti
o
n
 (

%
)

Figure 14: Deviation of the angular distribution of the light as a function of
amplitude of corrugation, gauged as an integral over the absolute difference
between the angular distribution of a slab and a corrugated slab. The error
bars are within the symbol size. Here, L = 1, g = 0.9, nm = 1.49, na = 1,
ls = 0.08 and and f = 1.

0 1 2 3 4

Corrugation Frequency f/L

0

5

10

15

20

D
e
v
ia

ti
o
n
 (

%
)

Figure 15: Deviation of the angular distribution of the light as a function of
frequency of corrugation, gauged as an integral over the absolute difference
between the angular distribution of a slab and a corrugated slab. The error
bars are within the symbol size. Here, L = 1, g = 0.9, nm = 1.49, na = 1,
ls = 0.08 and and A = 0.1.

22

5 Conclusion and Recommendations

We have studied the effect of corrugating the surfaces of a slab which consists
of a scattering medium on light propagation through such a slab. It is shown
that the corrugation influences the total transmission through the slab and the
angular distribution of the transmission. The total transmission through a slab
where both surfaces are corrugated is less then the total transmission through
a slab with two straight surfaces, but when the surface on which the light is
incident is straight and the other surface is corrugated, the total transmission is
even higher. The difference in the angular distribution is amplified by increasing
the amplitude and the frequency of the corrugation.

The Monte Carlo simulation that was written and used, can be modified in
many ways depending on the goals of the user. Absorption, polarization and
interference of light could be included, as well as structural anisotropy. The
shapes of the boundaries can be changed as well as the number of different
kinds of materials and interfaces between them. Finally, parallel computing
could be used to speed up simulations.

23

Acknowledgements

I would like to thank my daily supervisor Maryna Meretska for guiding me
through this project. Furthermore I would like to thank my other supervisors
Matthias Schlottbom and Willem Vos for their experience and useful directions.
Finally, thanks to everyone at COPS for useful discussions and being an example
to me; in particular my fellow students.

24

References

[1] The Optoelectronics Research Centre. The life and times of the led — a
100-year history. April 2007.

[2] Jens Als-Nielsen and Des McMorrow. Elements of modern x-ray physics.
Wiley, New York, NY, 2001.

[3] E. Hecht. Optics. Pearson education. Addison-Wesley, 2002.

[4] L.V. Wang and H. Wu. Biomedical Optics: Principles and Imaging. John
Wiley & Sons, Inc., Hoboken, New Jersey, 2007.

[5] L.C. Henyey and J.L. Greenstein. Diffuse radiation in the galaxy. Astro-
physical Journal, 93:70–83, 1941.

[6] B.P.J. Bret. Multiple light scattering in porous gallium phosphide. PhD
thesis, University of Twente, 2005.

[7] N. Metropolis and S. Ulam. The Monte Carlo Method. Journal of the
American Statistical Organization, pages 335–341, 1949.

[8] C. Zhu and Q. Liu. Review of Monte Carlo modeling of light transport in
tissues. Journal of Biomedical Optics, 2013.

[9] W. T. Vetterling W. H. Press, S. A. Teukolsky and B.P. Flannery. Numer-
ical Recipes in C (2Nd Ed.): The Art of Scientific Computing. Cambridge
University Press, New York, NY, USA, 1992.

25

A Code (C++)

A.1 mcff.cpp

1 #include <iostream>
2 #include <time.h>
3 #include "mcff_structures.h"
4 #include "mcff_io.h"
5 #include "mcff_functions.h"
6
7 int main()
8 {
9 std::cout << "Number of photons to simulate: " << double(M*N)/1000000 << " million." << std::endl

; // At the start of the simulation, show how many photons have to be simulated
10
11 clock_t time, begintime = clock(); // Keep track of the execution time to give an estimation

for the time it takes to finish the simulation
12
13 double T; // The current execution time (as a double)
14
15 if (refoutput){removerefoutput();} // Remove reference output if the simulation is for

reference output
16 else{removeoutput();} // Remove output if the simulation is for output
17
18 for (int m = 0; m < M; m++) // For each sub-simulation
19 {
20 OutputStruct O = initialize_output(); // Initialize the output data
21
22 for (long n = 0; n < N; n++) // For each photon
23 {
24 if (((m*N+n)%50000 == 0) & (m+n != 0)) // For certain photons, make an estimation of time

remaining and show that in the console
25 {
26 time = clock();
27 T = double(time - begintime)*double((M*N-(m*N+n))/double(m*N+n))/1000;
28 std::cout << "Number of photons to go: " << double((N-n) +(M-m-1)*N)/1000000 << "

million, estimated time remaining: " << floor(T/3600) << " hours, " << floor((T-3600*
floor(T/3600))/60) << " minutes and " << floor(int(T)%60) << " seconds." << std::endl
;

29 }
30
31 PhotonStruct P = initialize_photon(); // Initialize the data of the photon, (position,

velocity, weight, etcetera)
32 P.layer = &air; // The photon starts in the air layer
33
34 while(!P.dead) // While the photon needs to be simulated
35 {
36 double closest_boundary = 0; // Distance to closest boundary or edge is

initialized as 0
37 int found_boundary = 0, found_edge = 0; // Keep track of whether the photon hits a

boundary or edge before it has travelled it’s travel_distance
38 travel(P, closest_boundary, found_boundary, found_edge); // Calculate closest event

and travel the photon
39 if (found_boundary) // If the photon encounters a

boundary
40 {

26

41 boundary_action(P, closest_boundary, found_boundary, O);// Interact with the boundary
(Reflection/Transmission and refraction)

42 }
43 else if (found_edge) // If the photon reaches the edge of the domain
44 {
45 edge_action(P, found_edge, O,n); // Interact with the edge
46 }
47 else if ((P.layer) -> mu != 0) // If nothing else happens, the photon scatters
48 {
49 scatter(P, g, O); // Scatter the photon (update direction of

propagation)
50 }
51 else
52 {
53 P.pos[0] += diam*P.vel[0];
54 P.pos[1] += diam*P.vel[1];
55 P.pos[2] += diam*P.vel[2];
56 }
57 }
58 }
59 write_output(O,refoutput); std::cout << "Writing output..." << std::endl; // Write to all

the output files after each sub-simulation
60 }
61 }

27

A.2 mcff structures.h

1 #ifndef MCFF_IO_H
2 #define MCFF_IO_H
3 #include "mcff_structures.h"
4
5 /*-- Simulation parameters

-------------------------------------*/
6
7 const long N = 10000; // The number of photons simulated per subsimulation
8 const int M = 10; // The number of subsimulations
9 const double dx = 0.0001; // The precision used to determine the location of boundaries

10 const int checks = 5; // The number of checks that is done to check if a photon went
outside the material and then inside again in a distance diam

11 const double diam = 1; // The distance photons travel if there is no boundary or scattering
event

12 const bool refoutput = false; // Can be used to make reference output for the same parameters
13
14 /*-- Physical parameters

---------------------------------------*/
15
16 const double n_material = 1.49; // Refractive index of the material
17 const double n_air = 1; // Refractive index of the surrounding material
18 const double g = 0.9; // The scattering anisotropy
19 const double mfp = 0.8*(1-g); // Scattering mean free path
20 const double mu_material = 1/mfp; // Optical density of the material
21 const double mu_air = 0; // Optical density of air
22
23 /*-- Output

--*/
24
25 struct OutputStruct
26 {
27 int transmission = 0; // Total transmission (amount of photons that exit at

edge 2)
28 int reflection = 0; // Total reflection (amount of photons that exit at

edge 1)
29 static const int thetabins = 200; // Number of bins in the theta-direction (angle with

respect to z-axis)
30 static const int phibins = 200; // Number of bins in the phi-direction (angle in the

(x,y)-plane)
31 int angtransmission[thetabins][phibins] = {}; // 2-dimensional array for angular resolved diffuse

transmission
32 int baltransmission[thetabins][phibins] = {}; // 2-dimensional array for angular resolved ballistic

transmission
33 int angreflection[thetabins][phibins] = {}; // 2-dimensional array for angular resolved diffuse

reflection
34 int specreflection[thetabins][phibins] = {}; // 2-dimensional array for angular resolved specular

reflection
35 int unscatteredref = 0; // The total number of photons from specular

reflection
36 int unscatteredtrans = 0; // The total number of photons from ballistic

transmission
37 };
38
39 /*--- Geometry

---*/

28

40
41 const double slab_width = 1; // The width of the slab of material
42 const double A = refoutput ? 0.00 : 0.1; // The corrugation amplitude (if refoutput is true, the

boundaries are flat)
43 const double f = 1; // The corrugation frequency (length one complete

oscillation in the x-direction)
44
45 /*--------------- Boundaries ---------------*/
46
47 const int num_boundaries = 2; // Number of boundaries of the material. When changing this, also

change the boundary functions and the boundary_gradient functions accordingly.
48
49 /* Functions for the boundaries of the material. The zeros of these functions define the boundaries

of the material.
50 When changing these functions, also change the gradient functions in boundary_gradient and the

number of boundaries accordingly. */
51
52 double boundary(double x, double y, double z, int boundary_number)
53 {
54 if (boundary_number == 1)
55 {
56 return z + A*sin(2*pi*f*x) - 1; // Lower boundary for a corrugated slab
57 }
58 else if (boundary_number == 2)
59 {
60 return z + A*sin(2*pi*f*x) - slab_width - 1; // Upper boundary for a corrugated slab
61 }
62 else {std::cout << "Error, boundary doesn’t exist" << std::endl; exit(1);}
63 }
64
65 /* Functions for the gradients of the boundaries of the material.
66 When changing these functions, also change the functions in boundary and the number of edges

accordingly. */
67
68 void boundary_gradient(double x, double y, double z,int boundary_number,double* gradient)
69 {
70 if (boundary_number == 1)
71 {
72 gradient[0] = 2*pi*f*A*cos(2*pi*f*x); // Gradient of a corrugated slab (lower boundary)
73 gradient[1] = 0;
74 gradient[2] = 1;
75 }
76 else if (boundary_number == 2)
77 {
78 gradient[0] = 2*pi*f*A*cos(2*pi*f*x); // Gradient of a corrugated slab (upper boundary)
79 gradient[1] = 0;
80 gradient[2] = 1;
81 } else {std::cout << "Warning, boundary_gradient doesn’t exist" << std::endl; exit(2);}
82 }
83
84 /*----------------- Edges ------------------*/
85
86 const int num_edges = 2; // Number of boundaries of the material. When changing this, also change

the boundary functions and the boundary_gradient functions accordingly.
87
88 /* Functions for the gradients of the boundaries of the edge of the simulation (’edges’).

29

89 When changing these functions, also change the functions in edge_gradient and the number of edges
accordingly. */

90
91 double edge(double x, double y, double z, int edge_number)
92 {
93 if (edge_number == 1) return z + A + 0.01; // Lower edge (A

is added to prevent the boundaries from touching the edge
94 else if (edge_number == 2) return -z + slab_width + A + 1.01; // Upper edge (A

is added to prevent the boundaries from touching the edge
95 else {std::cout << "Warning, edge doesn’t exist" << std::endl; exit(3);}
96 }
97
98 /* Functions for the gradients of the edge of the simulation.(NORMALIZED?)
99 When changing these functions, also change the functions in edge and the number of edges

accordingly. */
100
101 void edge_gradient(double x, double y, double z,int edge_number,double* gradient)
102 {
103 if (edge_number == 1)
104 {
105 gradient[0] = 0; // Gradient for the lower edge
106 gradient[1] = 0;
107 gradient[2] = 1;
108 }
109 else if (edge_number == 2)
110 {
111 gradient[0] = 0; // Gradient for the upper edge
112 gradient[1] = 0;
113 gradient[2] = -1;
114 }
115 }
116
117 #endif // MCFF_IO_H

30

A.3 mcff io.h

1 #ifndef MCFF_IO_H
2 #define MCFF_IO_H
3 #include "mcff_structures.h"
4
5 /*-- Simulation parameters

-------------------------------------*/
6
7 const long N = 10000; // The number of photons simulated per subsimulation
8 const int M = 10; // The number of subsimulations
9 const double dx = 0.0001; // The precision used to determine the location of boundaries

10 const int checks = 5; // The number of checks that is done to check if a photon went
outside the material and then inside again in a distance diam

11 const double diam = 1; // The distance photons travel if there is no boundary or scattering
event

12 const bool refoutput = false; // Can be used to make reference output for the same parameters
13
14 /*-- Physical parameters

---------------------------------------*/
15
16 const double n_material = 1.49; // Refractive index of the material
17 const double n_air = 1; // Refractive index of the surrounding material
18 const double g = 0.9; // The scattering anisotropy
19 const double mfp = 0.8*(1-g); // Scattering mean free path
20 const double mu_material = 1/mfp; // Optical density of the material
21 const double mu_air = 0; // Optical density of air
22
23 /*-- Output

--*/
24
25 struct OutputStruct
26 {
27 int transmission = 0; // Total transmission (amount of photons that exit at

edge 2)
28 int reflection = 0; // Total reflection (amount of photons that exit at

edge 1)
29 static const int thetabins = 200; // Number of bins in the theta-direction (angle with

respect to z-axis)
30 static const int phibins = 200; // Number of bins in the phi-direction (angle in the

(x,y)-plane)
31 int angtransmission[thetabins][phibins] = {}; // 2-dimensional array for angular resolved diffuse

transmission
32 int baltransmission[thetabins][phibins] = {}; // 2-dimensional array for angular resolved ballistic

transmission
33 int angreflection[thetabins][phibins] = {}; // 2-dimensional array for angular resolved diffuse

reflection
34 int specreflection[thetabins][phibins] = {}; // 2-dimensional array for angular resolved specular

reflection
35 int unscatteredref = 0; // The total number of photons from specular

reflection
36 int unscatteredtrans = 0; // The total number of photons from ballistic

transmission
37 };
38
39 /*--- Geometry

---*/

31

40
41 const double slab_width = 1; // The width of the slab of material
42 const double A = refoutput ? 0.00 : 0.1; // The corrugation amplitude (if refoutput is true, the

boundaries are flat)
43 const double f = 1; // The corrugation frequency (length one complete

oscillation in the x-direction)
44
45 /*--------------- Boundaries ---------------*/
46
47 const int num_boundaries = 2; // Number of boundaries of the material. When changing this, also

change the boundary functions and the boundary_gradient functions accordingly.
48
49 /* Functions for the boundaries of the material. The zeros of these functions define the boundaries

of the material.
50 When changing these functions, also change the gradient functions in boundary_gradient and the

number of boundaries accordingly. */
51
52 double boundary(double x, double y, double z, int boundary_number)
53 {
54 if (boundary_number == 1)
55 {
56 return z + A*sin(2*pi*f*x) - 1; // Lower boundary for a corrugated slab
57 }
58 else if (boundary_number == 2)
59 {
60 return z + A*sin(2*pi*f*x) - slab_width - 1; // Upper boundary for a corrugated slab
61 }
62 else {std::cout << "Error, boundary doesn’t exist" << std::endl; exit(1);}
63 }
64
65 /* Functions for the gradients of the boundaries of the material.
66 When changing these functions, also change the functions in boundary and the number of edges

accordingly. */
67
68 void boundary_gradient(double x, double y, double z,int boundary_number,double* gradient)
69 {
70 if (boundary_number == 1)
71 {
72 gradient[0] = 2*pi*f*A*cos(2*pi*f*x); // Gradient of a corrugated slab (lower boundary)
73 gradient[1] = 0;
74 gradient[2] = 1;
75 }
76 else if (boundary_number == 2)
77 {
78 gradient[0] = 2*pi*f*A*cos(2*pi*f*x); // Gradient of a corrugated slab (upper boundary)
79 gradient[1] = 0;
80 gradient[2] = 1;
81 } else {std::cout << "Warning, boundary_gradient doesn’t exist" << std::endl; exit(2);}
82 }
83
84 /*----------------- Edges ------------------*/
85
86 const int num_edges = 2; // Number of boundaries of the material. When changing this, also change

the boundary functions and the boundary_gradient functions accordingly.
87
88 /* Functions for the gradients of the boundaries of the edge of the simulation (’edges’).

32

89 When changing these functions, also change the functions in edge_gradient and the number of edges
accordingly. */

90
91 double edge(double x, double y, double z, int edge_number)
92 {
93 if (edge_number == 1) return z + A + 0.01; // Lower edge (A

is added to prevent the boundaries from touching the edge
94 else if (edge_number == 2) return -z + slab_width + A + 1.01; // Upper edge (A

is added to prevent the boundaries from touching the edge
95 else {std::cout << "Warning, edge doesn’t exist" << std::endl; exit(3);}
96 }
97
98 /* Functions for the gradients of the edge of the simulation.(NORMALIZED?)
99 When changing these functions, also change the functions in edge and the number of edges

accordingly. */
100
101 void edge_gradient(double x, double y, double z,int edge_number,double* gradient)
102 {
103 if (edge_number == 1)
104 {
105 gradient[0] = 0; // Gradient for the lower edge
106 gradient[1] = 0;
107 gradient[2] = 1;
108 }
109 else if (edge_number == 2)
110 {
111 gradient[0] = 0; // Gradient for the upper edge
112 gradient[1] = 0;
113 gradient[2] = -1;
114 }
115 }
116
117 #endif // MCFF_IO_H

33

A.4 mcff functions.h

1 #ifndef MCFF_FUNCTIONS_H
2 #define MCFF_FUNCTIONS_H
3 #include <fstream>
4 #include <iostream>
5 #include "mcff_io.h"
6 #include "mcff_structures.h"
7
8 /* Function that initializes each photon */
9

10 PhotonStruct initialize_photon()
11 {
12 PhotonStruct P; // P is the structure that contains the data associated with the

photon
13 P = {}; // Initialize P by setting everything to zero
14 P.pos[0] = (1/f)*random(); // Choose a random position in the frequency of the corrugation
15 P.vel[2] = 1; // Set the velocity of the photon in the z-direction
16 P.w = 1; // Set the weight of the photon equal to 1.
17 return P;
18 }
19
20 /* Function that initializes the output */
21
22 OutputStruct initialize_output()
23 {
24 OutputStruct O; // O is the structure that contains the data associated with the

output
25 O = {}; // Initialize O by setting everything to zero
26 return O;
27 }
28
29 /* --- Initialize Layers --- */
30
31 LayerStruct air = {1,mu_air,n_air,num_boundaries,num_edges}; // Initialize the ’air’ layer
32 LayerStruct material = {2,mu_material,n_material,num_boundaries,0}; // Initialize the ’material’

layer
33
34 /* Returns the cosine of the scattering angle according to Henyey-Greenstein function */
35
36 double get_scatter_angle(double g,double ksi)
37 {
38 if (g == 0) return 2*ksi - 1; // This is the limit of the

Henyey-Greenstein function for g goes to 0.
39 else
40 {
41 return 1/(2*g) * (1+g*g-pow(((1-g*g)/(1-g+2*g*ksi)),2)); // Henyey-Greenstein function
42 }
43 }
44
45 /* Calculate where the photon will travel and if it encounters an edge or boundary while travelling

*/
46
47 void travel(PhotonStruct & P, double & closest_boundary, int & found_boundary, int & found_edge)
48 {
49 if (P.s == 0) // If step size of the photon

equals zero, sample it

34

50 {
51 P.s = -log(random()); // Sample dimensionless step size

of photon
52 }
53
54 double final_position[3], travel_distance; // Position the photon travels to

and Distance the photon travels
55
56 if (P.layer -> mu == 0) // If the optical density of the

layer equals 0
57 {
58 travel_distance = diam; // Update travel distance (high)
59 final_position[0] = P.pos[0] + travel_distance * P.vel[0]; // Calculate the final position

of the photon after it would travel travel_distance.
60 final_position[1] = P.pos[1] + travel_distance * P.vel[1];
61 final_position[2] = P.pos[2] + travel_distance * P.vel[2];
62 }
63 else
64 {
65 travel_distance = P.s/P.layer -> mu; // Update travel distance
66 final_position[0] = P.pos[0] + travel_distance * P.vel[0]; // Calculate the final position

of the photon after it would travel travel_distance.
67 final_position[1] = P.pos[1] + travel_distance * P.vel[1];
68 final_position[2] = P.pos[2] + travel_distance * P.vel[2];
69 }
70
71 double ref_boundary[P.layer -> num_boundaries], ref_edge[P.layer -> num_edges]; // Keeps

track of the values of the boundary functions at the current position
72 int sgnref_boundary[P.layer -> num_boundaries], sgnref_edge[P.layer -> num_edges]; // Pre-

calculated signs of the values in ref_boundary
73
74 double boundary_crossing = 0; // Keeps track of the distance to

the boundary, as a fraction of the travel_distance
75 bool edge_crossing = false; // Keeps track of whether the

photon crosses an edge
76
77 for (int i = 1; i <= P.layer -> num_boundaries; i++)
78 {
79 ref_boundary[i-1] = boundary(P.pos[0],P.pos[1],P.pos[2],i); // Store the values of the

boundary functions
80 sgnref_boundary[i-1] = sgn(ref_boundary[i-1]); // Store the signs of

ref_boundary
81 if (sgn(boundary(final_position[0],final_position[1],final_position[2],i)) != sgnref_boundary

[i-1])
82 {
83 boundary_crossing = 1; // If the sign of a boundary

function changes, it has been crossed
84 }
85 }
86
87 for (int i = 1; i <= P.layer -> num_edges; i++)
88 {
89 ref_edge[i-1] = edge(P.pos[0],P.pos[1],P.pos[2],i); // Store the edge functions at

previous location
90 sgnref_edge[i-1] = sgn(ref_edge[i-1]);
91 if (sgn(edge(final_position[0],final_position[1],final_position[2],i)) != sgnref_edge[i-1])

// If the sign of an edge function changes, an edge has been crossed

35

92 {
93 edge_crossing = true;
94 }
95 }
96
97 if (boundary_crossing == 0) // If no boundary is found, do

extra checks to determine if there is a boundary crossing somewhere else.
98 {
99 for (int i = 1; i<= P.layer -> num_boundaries; i++) // For every boundary

100 {
101 for (double theta = checks; theta >= 1; theta--) // Do 5 checks. Theta is a double

since it has to be divided to give a double instead of an integer
102 {
103 if (sgn(boundary((theta/(checks + 1)) * final_position[0] + (checks + 1 - theta) / (

checks + 1) * P.pos[0], //If the sign changes, update boundary_crossing
104 (theta/(checks + 1)) * final_position[1] + (checks + 1 - theta) / (

checks + 1) * P.pos[1],
105 (theta/(checks + 1)) * final_position[2] + (checks + 1 - theta) / (

checks + 1) * P.pos[2],i)) != sgnref_boundary[i-1])
106 {
107 if (boundary_crossing == 0) // If this is the first boundary

crossing that is found
108 {
109 boundary_crossing = theta/(checks + 1); // Set the relative distance of

the boundary crossing
110 }
111 else // else take the minimum boundary

distance found until now
112 {
113 boundary_crossing = std::min(boundary_crossing,theta/checks + 1);
114 }
115 }
116 }
117 }
118 }
119
120 if (boundary_crossing) // If at least one boundary is

crossed, determine which boundary is closest
121 {
122 for (int i = 1; i<= P.layer -> num_boundaries; i++) // For each boundary
123 {
124 double y_high = boundary(boundary_crossing * final_position[0] + (1 - boundary_crossing)

* P.pos[0],
125 boundary_crossing * final_position[1] + (1 - boundary_crossing)

* P.pos[1],
126 boundary_crossing * final_position[2] + (1 - boundary_crossing)

* P.pos[2],i); // The value of the boundary function at the
final position of the photon

127 if (sgn(y_high) != sgnref_boundary[i-1]) // If there is a boundary
crossing somewhere: use False Position method to determine the location of the
boundary

128 {
129 double x_low = 0; // Lower bound for position of

boundary
130 double y_low = ref_boundary[i-1]; // Value of function at lower

bound

36

131 double x_high = boundary_crossing; // Upper bound for position of
boundary

132 double x_new = 0; // Guess for position of boundary
133 double y_new = y_low; // Value of function at guess
134 while ((x_high - x_low) * travel_distance > dx) // While the upper and lower

bounds are not close enough
135 {
136 x_new = (x_low * y_high - x_high * y_low)/(y_high - y_low); // Make a better

guess (linear interpolation)
137 if ((x_new - x_high)*travel_distance < dx/2) // if x_new and x_high are close,

do a bisection step to avoid getting stuck
138 {
139 x_new = (x_high + x_low)/2;
140 }
141 else if ((x_new - x_low)*travel_distance < dx/2) // if x_new and x_high are

close, do a bisection step to avoid getting stuck
142 {
143 x_new = (x_high + x_low)/2;
144 }
145 y_new = boundary(x_new * final_position[0] + (1 - x_new) * P.pos[0],
146 x_new * final_position[1] + (1 - x_new) * P.pos[1],
147 x_new * final_position[2] + (1 - x_new) * P.pos[2],i); // Update

value at guess
148 if (sgn(y_new) != sgn(y_low)) // Always keep two points with

different signs, so throw away the point with the same sign as the new point.
149 {
150 x_high = x_new;
151 y_high = y_new;
152 }
153 else
154 {
155 x_low = x_new;
156 y_low = y_new;
157 }
158 }
159 if (closest_boundary == 0) // If the closest_boundary is not

updated yet
160 {
161
162 closest_boundary = x_new * travel_distance; // The closest boundary is the

distance we just found
163 found_boundary = i; // Keep track of the boundary that

the photon hits.
164 }
165 else // If the closest boundary has been

updated before
166 {
167 if (x_new * travel_distance < closest_boundary) // If the new boundary is closer
168 {
169 closest_boundary = x_new * travel_distance; // The closest boundary is the

distance we just found
170 found_boundary = i; // Keep track of the boundary

that the photon hits.
171 }
172 }
173 }
174 }

37

175 }
176
177 if (edge_crossing) // Determine the distance to the closest edge
178 {
179 for (int i = 1; i<= P.layer -> num_edges; i++) // For each edge
180 {
181 double y_high = edge(final_position[0],final_position[1],final_position[2],i); // The

value of the boundary function at the final position of the photon
182 if (sgn(y_high) != sgnref_edge[i-1]) // If there is a crossing
183 {
184 double x_low = 0; // Lower bound position of edge
185 double y_low = ref_edge[i-1]; // Value edge function at lower bound
186 double x_high = 1; // Upper bound position of edge
187 double x_new = 0; // Guess for position of edge
188 double y_new = y_low; // Value of edge function at guess
189 while ((x_high - x_low) * travel_distance > dx) // While the upper and lower bounds

are not close enough
190 {
191 x_new = (x_low * y_high - x_high * y_low)/(y_high - y_low); // Make a better

guess (linear interpolation)
192 if ((x_new - x_high)*travel_distance < dx/2)
193 {
194 x_new = (x_high + x_low)/2;
195 };
196 if ((x_new - x_low)*travel_distance < dx/2)
197 {
198 x_new = (x_high + x_low)/2;
199 };
200 y_new = edge(x_new * final_position[0] + (1 - x_new) * P.pos[0],
201 x_new * final_position[1] + (1 - x_new) * P.pos[1],
202 x_new * final_position[2] + (1 - x_new) * P.pos[2],i); // Update

value at guess
203 if (sgn(y_new) != sgn(y_low)) // Always keep two points with different signs,

so throw away the point with the same sign as the new point.
204 {
205 x_high = x_new;
206 y_high = y_new;
207 }
208 else
209 {
210 x_low = x_new;
211 y_low = y_new;
212 }
213 }
214 if (closest_boundary == 0) // If the closest_boundary is not updated yet
215 {
216 closest_boundary = x_new * travel_distance; // The closest boundary is the

distance we just found
217 found_edge = i; // Keep track of the edge that the photon hits.
218 }
219 else
220 {
221 if (x_new * travel_distance < closest_boundary) // If the new boundary is closer
222 {
223 closest_boundary = x_new * travel_distance; // Update closest boundary
224 found_edge = i; // Set the edge we just found

38

225 found_boundary = 0; // Reset the found_boundary (
Because that is checked first below)

226 }
227 }
228 }
229 }
230 }
231 }
232
233 /* Scatter the photon */
234
235 void scatter(PhotonStruct & P, const double anisotropy, OutputStruct & O)
236 {
237 P.scattered = true; // Keep track of the fact that the photon has been

scattered
238
239 P.pos[0] += P.s/(P.layer) -> mu*P.vel[0]; // Update the position of the P
240 P.pos[1] += P.s/(P.layer) -> mu*P.vel[1];
241 P.pos[2] += P.s/(P.layer) -> mu*P.vel[2];
242 P.s = 0; // Set the step size to zero (so next loop, a new

step size will be sampled)
243 double costheta = get_scatter_angle(anisotropy,random()); // Get the cosine of the scattering

angle
244 double sintheta = sqrt(std::abs(1-costheta*costheta)); // Calculate the sine (always

positive.
245 double phi = 2*pi * random(); // The second angle of scattering (sampled uniform

from 0 to 2 pi)
246 double cosphi = cos(phi);
247 double sinphi = sgn(pi - phi) * sqrt(std::abs(1-cosphi*cosphi));
248
249 if (std::abs(P.vel[2]) > 0.999) // If the P flies in the z-direction, use these

equations (to prevent dividing by 0)
250 {
251 P.vel[0] = sintheta*cosphi; // Update direction of velocity due to scattering
252 P.vel[1] = sintheta*sinphi;
253 P.vel[2] = sgn(P.vel[2])*costheta;
254 }
255 else
256 {
257 double ux_new = (sintheta * (P.vel[0] * P.vel[2] * cosphi - P.vel[1] * sinphi))/(sqrt(1 - P.

vel[2] * P.vel[2])) + P.vel[0] * costheta; // Update direction of velocity due to
scattering

258 double uy_new = (sintheta * (P.vel[1] * P.vel[2] * cosphi + P.vel[0] * sinphi))/(sqrt(1 - P.
vel[2] * P.vel[2])) + P.vel[1] * costheta;

259 double uz_new = -sqrt(1 - P.vel[2] * P.vel[2]) * sintheta * cosphi + P.vel[2] * costheta;
260
261 P.vel[0] = ux_new;
262 P.vel[1] = uy_new;
263 P.vel[2] = uz_new;
264 }
265 }
266
267 /* The photon interacts with a boundary*/
268
269 void boundary_action(PhotonStruct & P, double closest_boundary, int found_boundary,OutputStruct & O)
270 {
271 P.pos[0] += closest_boundary*P.vel[0]; // Update the coordinates of the photon

39

272 P.pos[1] += closest_boundary*P.vel[1];
273 P.pos[2] += closest_boundary*P.vel[2];
274
275 P.s -= closest_boundary* (*P.layer).mu; // Update the dimensionless step size of the P
276
277 double g[3]; // Initialize the normal of the

boundary
278
279 boundary_gradient(P.pos[0],P.pos[1],P.pos[2],found_boundary,g); // Get the normal of the boundary
280
281 double sizeg = g[0]*g[0] + g[1]*g[1] + g[2]*g[2];
282 if (sizeg == 0)
283 {
284 std::cout << "Error, gradient equals 0 on boundary" << std::endl;
285 }
286
287 g[0] = g[0]/sqrt(sizeg); // Normalize the normal
288 g[1] = g[1]/sqrt(sizeg);
289 g[2] = g[2]/sqrt(sizeg);
290
291 LayerStruct * current_layer = P.layer; // Keep track of layer in which the photon resides
292 LayerStruct * transmission_layer; // Keep track of layer on the other side of the

boundary
293
294 if (current_layer -> i == air.i) // If the photon is in air right now
295 {
296 transmission_layer = &material; // transmission layer is the other side of the

boundary
297 }
298 else // if the photon is in material right now
299 {
300 transmission_layer = &air; // transmission layer is the other side of the

boundary
301 }
302
303 double n1 = current_layer -> n; // save the refractive indices of the layers
304 double n2 = transmission_layer -> n;
305
306 double ip = g[0] * P.vel[0] + g[1] * P.vel[1] + g[2] * P.vel[2]; // Inner product of velocity of

photon with normal
307
308 int sgnip = sgn(ip);
309
310 double R = 0; // Reflection probability
311
312 if (ip == 0)
313 {
314 std::cout << "Photon parallel to wall. Assuming reflection." << std::endl;
315 R = 1;
316 }
317
318 double costheta_i = sgnip*ip; // Cosine of angle of velocity

with respect to the normal (always positive)
319 double sintheta_i = sqrt(std::abs(1-costheta_i*costheta_i)); // Calculate the sine from the

cosine. Take the absolute value because of rounding errors
320
321 if (n1/n2 * sintheta_i >= 1) // If there is total internal reflection according to Snell’s law

40

322 {
323 R = 1; // The reflection coefficient is one.
324 }
325 else
326 {
327 double S = sqrt(1-pow(n1/n2 * sintheta_i,2)); // Pre-calculate the square root
328 R = (pow((n1*costheta_i-n2*S)/(n1*costheta_i+n2*S),2) + pow((n1*S-n2*costheta_i)/(n1*S+n2*

costheta_i),2))/2; // Calculate the reflection coefficient averaged over polarizations
329 if (R > 1)
330 {
331 std::cout << "Error, reflection coefficient greater than 1" << std::endl;
332 }
333 }
334
335 if (random() < R) // If the P is reflected
336 {
337 P.pos[0] -= sgnip * 2 * dx * g[0]; // Move the photon a bit back from the wall to avoid

rounding errors
338 P.pos[1] -= sgnip * 2 * dx * g[1];
339 P.pos[2] -= sgnip * 2 * dx * g[2];
340
341 P.vel[0] -= 2*ip*g[0]; // Update the velocity of the P
342 P.vel[1] -= 2*ip*g[1];
343 P.vel[2] -= 2*ip*g[2];
344 }
345 else // if the P is transmitted
346 {
347 double theta_t = asin(n1/n2 * sintheta_i); // Calculate the angle of transmission (Snell’s

law)
348
349 P.pos[0] += sgnip * 2 * dx * g[0]; // Move the photon across the wall to avoid

rounding errors
350 P.pos[1] += sgnip * 2 * dx * g[1];
351 P.pos[2] += sgnip * 2 * dx * g[2];
352
353 double costheta = cos(theta_t); // Cosine of transmission angle
354
355 P.vel[0] = costheta * sgnip * g[0] + n1 / n2 * (P.vel[0] - ip * g[0]); //Update the velocity

of the Photon
356 P.vel[1] = costheta * sgnip * g[1] + n1 / n2 * (P.vel[1] - ip * g[1]);
357 P.vel[2] = costheta * sgnip * g[2] + n1 / n2 * (P.vel[2] - ip * g[2]);
358
359 P.layer = transmission_layer; // Update the layer of the photon
360 }
361 }
362
363 void edge_action(PhotonStruct & P, int found_edge, OutputStruct & O,long n)
364 {
365 if (found_edge == 2) // If the photon went through the material to edge 2
366 {
367 O.transmission += 1; // Increase the total transmission
368 int thetabin = std::min(O.thetabins-1,int(floor(P.vel[2]*(O.thetabins)))); // Calculate bins

for the angles
369 int phibin = std::min(O.phibins-1,int(floor(atan2(P.vel[1],P.vel[0])*(O.phibins/2)/pi+(O.

phibins/2))));
370 if (!P.scattered) // If the photon didn’t scatter put it in ballistic transmission,

otherwise diffuse transmission

41

371 {
372 O.unscatteredtrans += 1;
373 O.baltransmission[thetabin][phibin] += 1;
374 }
375 else
376 {
377 O.angtransmission[thetabin][phibin] +=1;
378 }
379 }
380 else if (found_edge == 1) // If the photon reflected to the side it came from
381 {
382 O.reflection += 1; // Increase the total reflection
383 int thetabin = std::min(O.thetabins-1,int(floor(-P.vel[2]*(O.thetabins)))); // Calculate

bins for the angles
384 int phibin = std::min(O.phibins-1,int(floor(atan2(P.vel[1],P.vel[0])*(O.phibins/2)/pi+(O.

phibins/2))));
385 if (!P.scattered) // If the photon didn’t scatter put it in specular reflection,

otherwise diffuse reflection
386 {
387 O.unscatteredref += 1;
388 O.specreflection[thetabin][phibin] += 1;
389 }
390 else
391 {
392 O.angreflection[thetabin][phibin] +=1;
393 }
394 }
395 else
396 {
397 std::cout << "Error, edge doesn’t exist" << std::endl;
398 }
399 P.dead = true; // Stop simulating this photon
400 }
401
402 void write_output(OutputStruct & O,bool refoutput)
403 {
404 std::ofstream myfile; // Use myfile as output
405 if (refoutput)
406 {
407 myfile.open ("angtrans_ref.txt", std::ios_base::app);
408 }
409 else
410 {
411 myfile.open ("angtrans.txt", std::ios_base::app);
412 }
413 for (int i = 0; i < O.thetabins; i++)
414 {
415 for (int j = 0; j < O.phibins; j++)
416 {
417 myfile << O.angtransmission[i][j];
418 if (j != O.phibins-1)
419 {
420 myfile << ", ";
421 };
422 }
423 myfile << std::endl;
424 }

42

425 myfile.close();
426 if (refoutput)
427 {
428 myfile.open ("baltrans_ref.txt", std::ios_base::app);
429 }
430 else
431 {
432 myfile.open ("baltrans.txt", std::ios_base::app);
433 }
434 for (int i = 0; i < O.thetabins; i++)
435 {
436 for (int j = 0; j < O.phibins; j++)
437 {
438 myfile << O.baltransmission[i][j];
439 if (j != O.phibins-1)
440 {
441 myfile << ", ";
442 };
443 }
444 myfile << std::endl;
445 }
446 myfile.close();
447
448 if (refoutput)
449 {
450 myfile.open ("angref_ref.txt", std::ios_base::app);
451 }
452 else
453 {
454 myfile.open ("angref.txt", std::ios_base::app);
455 }
456
457 for (int i = 0; i < O.thetabins; i++)
458 {
459 for (int j = 0; j < O.phibins; j++)
460 {
461 myfile << O.angreflection[i][j];
462 if (j != O.phibins-1)
463 {
464 myfile << ", ";
465 };
466 }
467 myfile << std::endl;
468 }
469 myfile.close();
470
471 if (refoutput)
472 {
473 myfile.open ("specref_ref.txt", std::ios_base::app);
474 }
475 else
476 {
477 myfile.open ("specref.txt", std::ios_base::app);
478 }
479
480 for (int i = 0; i < O.thetabins; i++)
481 {

43

482 for (int j = 0; j < O.phibins; j++)
483 {
484 myfile << O.specreflection[i][j];
485 if (j != O.phibins-1)
486 {
487 myfile << ", ";
488 };
489 }
490 myfile << std::endl;
491 }
492 myfile.close();
493
494 if (refoutput)
495 {
496 myfile.open("output_ref.txt", std::ios_base::app);
497 }
498 else
499 {
500 myfile.open("output.txt", std::ios_base::app);
501 }
502 myfile << "Number of photons: " << N << std::endl;
503 myfile << "Total transmission: " << O.transmission << std::endl;
504 myfile << "Total reflection: " << O.reflection << std::endl;
505 myfile << "Unscattered transmission: " << O.unscatteredtrans << std::endl;
506 myfile << "Unscattered reflection: " << O.unscatteredref << std::endl << std::endl;
507 myfile.close();
508 if (refoutput)
509 {
510 myfile.open("parameters_ref.txt");
511 }
512 else
513 {
514 myfile.open("parameters.txt");
515 }
516 myfile << "N " << N <<std::endl;
517 myfile << "M " << M <<std::endl;
518 myfile << "f " << f <<std::endl;
519 myfile << "A " << A <<std::endl;
520 myfile << "thetabins " << O.thetabins <<std::endl;
521 myfile << "phibins " << O.phibins <<std::endl;
522 myfile << "ls " << mfp <<std::endl;
523 myfile << "anisotropy " << g <<std::endl;
524 myfile << "lt " << mfp/(1-g) <<std::endl;
525 myfile << "slab_width " << slab_width <<std::endl;
526 myfile << "n_material " << n_material <<std::endl;
527 myfile << "n_air " << n_air <<std::endl;
528 myfile.close();
529 }
530
531 void removerefoutput() // Remove previous output in the folder
532 {
533 remove("angtrans_ref.txt");
534 remove("baltrans_ref.txt");
535 remove("angref_ref.txt");
536 remove("specref_ref.txt");
537 remove("output_ref.txt");
538 }

44

539
540 void removeoutput() // Remove previous output in the folder
541 {
542 remove("angtrans.txt");
543 remove("baltrans.txt");
544 remove("angref.txt");
545 remove("specref.txt");
546 remove("output.txt");
547 }
548
549 #endif // MCFF_INPUT_H

45

