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Abstract—This paper discusses the need for a reliable experi-
mental set-up providing a consistent benchmark to facilitate the
assessment of the accuracy of localisation in varying implemen-
tations of Structure from Motion algorithms. The physical set-up
involves a KUKA LWR4+ arm robot and a USB camera, both
connected to a personal computer.

A key step in determining the trajectory of the camera is
finding its pose relative the robot arm’s end effector. Two methods
are introduced in this paper to address this problem. These
methods are subjected to simulated and real-world tests. One
method clearly outperforms the other when dealing with noisy,
real-world extrinsic camera calibration at the cost of vastly
increased computational complexity.

I. INTRODUCTION

RELIABLE camera localisation is vital for many applica-
tions regarding spatial measurements and presentation.

One such application is 3D surface reconstruction from 2D
image data. This can be achieved through range imaging
techniques which apply triangulation to feature points matched
in image frames taken by cameras positioned at different loca-
tions. Similar to the stereopsis that most of us enjoy, a stereo
camera uses two lenses with a known transformation between
each other in order to acquire a sense of depth. However,
reconstructing a 3D surface from just two narrow vantage
points often does not suffice. An increase in the number of
vantage points can be attained by employing multiple cameras.
This requires knowing their translation and orientation (pose)
relative to each other, or by moving the camera and accurately
tracking the motion (often referred to as Structure from Motion

or SfM), which is where reliable camera localisation comes
into play.

The increasingly prevalent field of augmented reality (AR)
also relies heavily on accurate camera localisation to correctly
augment the image feed with visual aids depending on the
vantage point. Medical applications of AR often involve
endoscopic biopsies in which biopsy sites are tracked and
projected onto the image plane “facilitating re-targeting and
serial examination” [1]. Keeping track of which segments have
been examined can be difficult without proper localisation.
This can lead to incomplete examinations which in turn
increases the miss rate for pathological conditions [2]. Another
medical application of AR can be employed in brain tumour
resection [3]. Planning surgery of this nature can involve
the use of neuronavigational systems which reconstruct a 3D
visualisation through MRI images. After the optimal surgical
pathway has been determined it can be projected onto the

live video feed, aiding the surgeon’s navigation in this most
precarious endeavour.

In many practical applications the camera is not fastened to
a robot’s manipulator. If no other reliable data regarding the
camera’s pose at the time of the image frames is available, one
must resort to visual localisation. The use of artificial features
(fiducials) can drastically simplify the camera resectioning
problem. The application of such features, however, can be
impractical or even impossible in certain circumstances such
as endoscopic biopsies. Development of algorithms addressing
this localisation problem require reproducible and conditioned
experiments. A reliable experimental set-up can provide a con-
sistent benchmark to facilitate the assessment of the accuracy
of localisation in varying implementations of SfM. To provide
a consistent benchmark, the camera’s pose should be available
in a constant coordinate frame, regardless of changes in camera
model or mounting method between runs.

This paper presents an experimental set-up and calibration
algorithms to accurately localise the camera relative to a robot
arm’s end effector. Since the robot arm can be precisely
tracked through forward kinematics, the camera can be tracked
with the accuracy of the calibrated, static transformation
between the manipulator and the camera, without suffering
from drift. Comparing the trajectory found through this method
with the trajectory of an SfM method provides insight into the
accuracy of this implementation. The main research question
is how to obtain the camera’s pose relative to a robot’s end
effector.

Consistency relies on accurately measuring the pose of the
camera relative to the arm’s manipulator. This process will be
referred to as hand-eye calibration. It is vital in several aspects
including the following [4].

• An automated 3D robotics vision measurement of the
spatial relationships between points on an object can be
done by moving the camera to different positions in the
workspace. The poses of the camera must be known in
order to relate the images to each other. If the robot
system is capable of computing its manipulator’s pose
and the camera is rigidly fastened to this manipulator,
the pose of the camera in the robot coordinate frame can
be computed through hand-eye calibration.

• The aforementioned automated 3D robotics vision mea-
surement requires camera placement planning in order to
determine the poses of the camera which are limited by
issues including occlusion, collision, depth of focus, and
field of view. Computing the required manipulator trajec-
tory for placing the camera at the optimum pose requires
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the transformation between manipulator and camera to be
known.

The physical set-up will consist of an arm robot, a monoc-
ular camera, a fiducial marker, and a personal computer.
A software package will be provided to control the arm,
calibrate the camera’s intrinsics, and compute the camera’s
trajectories. The desired accuracy of the camera localisation
has a maximum translation error of 0.1 mm and rotation error
of 0.1 degree.

The following sections will provide an abstract overview of
the calibration problem and will be followed by a discussion
of the practical implementation of the procedure. A series of
tests are performed to evaluate the efficacy of the system. The
results of these tests are presented and will be followed by an
interpretation thereof, leading to recommendations for further
development.

II. MATERIALS

The set-up is realised with the following hardware.

• KUKA LWR4+ arm robot with an absolute unidirectional
accuracy of 1.0 mm [5].

• Logitech C270 USB camera with a resolution of 720p.
• Calibration marker as shown in Figure 1 with a square

size of 30 mm.
• Personal computer connected to the robot through an

ethernet cable and to the camera through USB

The software used is detailed in Section IV-B.

Figure 1: Calibration marker consisting of an asymmetric
square pattern

III. CALIBRATION PROBLEM

In order to localise the camera, its extrinsic parameters
(pose) need to be computed relative to the robot’s base, which
will be referred to as the reference frame. This calibration
problem consists of the following coordinate frames.

• Camera {C}
• Calibration marker {M}
• Flange {F}
• Reference frame {R}

The coordinate frames and their relative poses are repre-
sented graphically as a directed graph in Figure 2.

Of interest is the pose of the camera relative to the flange
to which it is rigidly fastened. This transformation (FTC ) can
be computed by comparing their respective trajectories.

M C(n)

R F (n)
RTF (n)

RTM

R TC
(n
) FTC

CTM (n)

Figure 2: Directed graph of the coordinate frames and their
relative poses

The pose data of the flange
(
RTF

)
is provided by the

KUKA System Software, calculated through forward kinemat-
ics based on its seven joints. The trajectory of the camera
can be extracted from image frames containing a calibration
marker. The poses received through this visual localisation
method are defined in the coordinate system of the marker.

The following sections will discuss two methods developed
for computing FTC .

A. Bipartite method

The method for determining the transformation between the
flange and the camera

(
FTC

)
is divided into an orientation

part
(
FRC

)
and a translation part

(
F tC

)
, which require a

trajectory consisting of pure translations and pure rotations
respectively.

1) Orientation: The camera’s trajectory is considered from
time i and j as a displacement relative to its coordinate system
at time i {Ci} (see Figure 3). One can derive the displacement
as follows.

MT−1

C (i)MTC(j) =
CTM (i)MTC(j) =

CiTCj
(1)

= CiRCj

CitCj
= CitCj

(2)

Here R and t are a transformation matrix and a translation
vector, respectively. Equation (2) follows from the fact that the
trajectory has no rotation

(
CiRCj

= I
)
. This can be applied

to the trajectory of the flange as well:

RT−1

F (i)RTF (j) =
FTR(i)

RTF (j) =
FiTFj

(3)

= FiRFj

FitFj
= FitFj

(4)

{ }Fi

{ }Fj

{ }Ci

{ }Cj

θFC

v
C

v
F

Figure 3: Comparing the displacements of the flange and
camera will give the rotation between them.
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In the two dimensional case, the angle (θFC) between the
two displacements (vF and vC) can be obtained by normalis-
ing them and applying the inverse cosine to their dot product:

θFC = cos−1

(
vF

∥vF ∥
·

vC

∥vC∥

)
(5)

Comparing at least three noncollinear points with equal ori-
entation within both {C} and {F} will give the orientation
between the camera and the flange (see Figure 4). The rotation
between two coordinate frames can be obtained by applying
the Kabsch algorithm [6]. This is a procedure for computing
the optimal rotation between two given vector sets.

x

y

{ }F a{ }F b{ }F

c{ }F

x

y

{ }C

a{ }C

b{ }C

c{ }C

Figure 4: Relating two points is enough to compute the
orientation between two 2D coordinate frames, a third is
needed when relating 3D systems.

2) Translation: A rotation around an axis gives the distance
from that axis. This forms a cylinder of possible solutions.
A rotation around two axes gives the intersection of two
cylinders and so on. While three cylinders gives eight points
(see Figure 5), four can be excluded for lying in the negative
z volume. To narrow it down to a single point, knowing in
which quadrant of the xy plane of the flange it falls would
suffice, as would adding two more rotation axes.

The algorithm to determine these points is explained in the
following steps.

1) Perform three rotational trajectories with orthogonal
axes of rotation.

2) For each trajectory find CiTCj
and FiTFj

.
3) Find the rotation axis of each FiTFj

by solving
FiTFj

α = α. This real eigenvector forms the direction
of one cylinder.

4) Determine the Euclidian norm (d) of the distance tra-
versed by the camera relative to the flange:

d = ∥CiTCj
∥ − ∥FiTFj

∥ (6)

5) Determine the radius (r) of the cylinder:

r =
d

2 sin
(
α
2

) (7)

y

xz

Figure 5: Knowing the distance from three axes gives eight
possible translation vectors. This image was generated with a
translation vector at (3, 4, 5).

6) The radius of a cylinder can be related to the position
of the potential points along the orthogonal axes:

r2a = b2 + c2

r2b = a2 + c2

r2c = a2 + c2

The locations can be resolved and aligned to Cartesian
axes:

pa = aαa = ±

√
r2b + r2c − r2a

2
αa (8)

pb = bαb = ±

√
r2a + r2c − r2b

2
αb (9)

pc = cαc = ±

√
r2a + r2b − r2c

2
αc (10)

7) Summing the contributions of each axis will results in a
potential F tC . Since each axis grants two possibilities,
there are 23 = 8 potential F tC .

B. Procrustes method

This method tries to approach the optimal transformation
through iteratively applying the Procrustes method. The algo-
rithm to find FTC is explained in the following steps.

Known: RTF (n) and MTC(n), for n = 0, 1, . . . , N . If F tC
were to be known, then:

1) RtC(n) = RTF (n)F tC
2) M tC(n) is known from MTC(n).
3) Apply Procrustes to compute MTR from steps 1 and 2.
4) Calculate the goodness of fit:

J =
1

N

N∑

n=1

∥MtC(n)−
MTR

RtC(n)∥
2

J is dependent on F tC . If F tC was correct, then
J
(
F tC

)
→ 0. Therefore, one applies an optimisation

method to find the optimal values of F tC .
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5) F t̂C = argmin J
(
F tC

)

6) Apply Procrustes again to compute MTR with the newly
found F t̂C .

7) Calculate M tF (n) = MTR
RtF (n).

8) Apply Procrustes yet again to compute FTC from
M tF (n) and M tC(n).

C. Tsai-Lenz method

The following method is adopted from a paper from Tsai
and Lenz [7].

To compute the orientation of the camera relative to the
flange, we first compute the time derivative of the rotation axis(
Cr′

F

)
from the rotation axis describing the rotation between

time i and j for both the camera and the flange.

Skew
(
Fir′

Fj
+ Cir′

Cj

)
Cr′

F = FirFj
+ CirCj

(11)

The skew-symmetric matrix of a vector v is generated as
follows.

Skew(v) =

⎡

⎣
0 −vz vy
vz 0 −vx
−vy vx 0

⎤

⎦ (12)

Finding Cr′

F leads us to the rotation angle θFC and rotation
vector CrF .

θFC = 2 tan−1 |Cr′

F | (14)

CrF =
2 Cr′

F√
1 + |Cr′

F |
2

(15)

The rotation matrix
(
FRC

)
can be computed from the

rotation angle and axis through Equation (13) on p. 5. Once
the orientation is known, the transformation can be computed,
provided one has at least two sets of i and j, by solving the
following linear system of three linear equations with FTC as
unknowns.

(
FiRFj

− I
)
FTC = CRF

CiTCj
− FiTFj

(16)

IV. PROCEDURE

The calibration system can be compartmentalised into sev-
eral modular components. These components can be seen in
the functional structure of the process depicted in Figure 6.
The functionality of these components and their software
implementation are described in this subsection.

A. Functionality

In order to assign physical dimensions through planar
homography and to negate the disturbance caused by lens
distortion one must perform intrinsic calibration. This can be
achieved by having a camera observe a planar pattern from
several, different orientations [8].

Once the camera is calibrated, the distance a point travels
in the image plane relative to the distance the camera moved
(motion parallax [9]) will provide us with enough information
to compute the distance between that point and the focal point.
Combining this information with the angle from the principal

axis based on the pixel coordinates, results in the position of
the point being computable in the camera’s coordinate system.

The pose of the flange can be determined through kinematic
equations based on the state of the joints [10]:

F = A1A2E1A3A4A5A6 (17)

In our case the arm has seven joints, each with one degree
of freedom (DoF). Therefore, the arm has seven degrees of
freedom, meaning it can assume any position and orientation
within its workspace while being able to afford to lose a DoF
when encountering a singularity and continue its trajectory
without discontinuities.

B. Software implementation

The software implementation is built using the Robot Op-
erating System (ROS) middleware as a framework to collect
the sensor data (raw camera images and joint angles) and
MATLAB to process the data.

1) Image frames: The raw image frames of the camera are
obtained through the ROS package usb_cam1.

2) Intrinsic camera calibration: The intrin-
sics of the camera are computed with the
estimateCameraParameters2 function from MATLAB’s
Computer Vision System Toolbox.

3) Marker tracking: The camera’s pose relative to a calibra-
tion marker can be found through the extrinsics3 function
from MATLAB’s Computer Vision System Toolbox.

4) Arm positioning: The arm can be moved manually
through the KUKA Control Panel or through commands sent
through the Fast Research Interface4 (FRI).

5) Forward kinematics: Whichever method is used to move
the arm, an FRI instance must be running to be able to read
the joint angles. These angles are used to compute the pose
of the flange with the fk function (see Appendix B-A).

6) Hand-eye calibration: The three hand-eye calibration
methods described in III-A each have their separate imple-
mentation.

a) Bipartite method: This method contains separate
methods for finding the orientation and the translation of the
camera relative to the flange. The orientation part relies on
the procrustes5 function from MATLAB’s Statistics and
Machine Learning Toolbox for finding the optimal rotation
between the trajectory of the camera and the flange. An imple-
mentation can be seen in Appendix B-B. An implementation
of the cylinder method relies only on standard trigonometric
functions as can be seen in Appendix B-C.

b) Procrustes method: This method relies heavily on the
procrustes function mentioned above. An implementation
can be seen in Appendix B-D.

c) Tsai-Lenz method: For this method a MATLAB im-
plementation can be found on Zoran Lazarevic’s homepage6

1http://wiki.ros.org/usb cam
2http://nl.mathworks.com/help/vision/ref/estimatecameraparameters.html
3https://nl.mathworks.com/help/vision/ref/extrinsics.html
4http://cs.stanford.edu/people/tkr/fri/html/
5https://nl.mathworks.com/help/stats/procrustes.html
6http://lazax.com/www.cs.columbia.edu/∼laza/html/Stewart/matlab/

handEye.m
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R =

⎡

⎣
cos θ + r2x (1− cos θ) rxry (1− cos θ)− rz sin θ rxrz (1− cos θ) + ry sin θ

ryrx (1− cos θ) + rz sin θ cos θ + r2y (1− cos θ) ryrz (1− cos θ)− rx sin θ
rzrx (1− cos θ)− ry sin θ rzry (1− cos θ) + rx sin θ cos θ + r2z (1− cos θ)

⎤

⎦ (13)

Intrinsic
calibration

Marker
tracking

Hand-eye
calibration

Arm
positioning

Forward
kinematics

Camera in
robot frame

Figure 6: Functional structure of the process

7) Camera in robot frame: After the full transformation
between flange and camera is computed, placing the camera
in the robot coordinate frame (world coordinates) is as trivial
as applying this transformation to the flange transformation in
the robot coordinate frame found through fk. To help visualise
these transformations, the function cfplot was written (see
Appendix B-G).

V. RESULTS

Test trajectories were run to assess the accuracy of the
calibration algorithms discussed in Section III. All methods
use the pure rotation trajectories as seen in Figure 9 in Ap-
pendix A. The bipartite method also requires a pure translation
trajectory as seen in Figure 11.

The same flange data is used for both the simulation
and the real-world test. The simulation, however, involves a
predetermined, random FTC and MTR from which MTC(n)
is computed. The real-world test on the other hand employs
actual extrinsic camera calibration to compute MTC(n).

A. Simulation

The simulation involves a predetermined FTC (see Table I)
to facilitate the comparison of estimated and actual values.

1) Bipartite method: The bipartite method uses the pure
translation trajectory to compute the orientation of the camera
relative to the flange and the pure rotation trajectory is used
to compute the translation. Combining these results gives us

the estimated flange-to-camera transform
(
F T̂C

)
as seen in

Table II.
2) Procrustes method: The Procrustes method only requires

the pure rotation trajectory. The estimated flange-to-camera

transform
(
F T̂C

)
can be seen in Table III.

3) Tsai-Lenz method: The Tsai-Lenz method also only
requires the pure rotation trajectory. The estimated flange-to-

camera transform
(
F T̂C

)
can be seen in Table IV.

For clarity, the predetermined transformation and the es-
timations are combined in Figure 7. The errors of each
estimation can be found in Table V.

25.5 26 26.5 27 27.5 28 28.5 29 29.5
x[mm]

48.5

49

49.5

50

50.5

51

y[
m

m
]

Figure 7: Predetermined, random FTC and the Procrustes and
Tsai-Lenz estimations overlap on the left. The bipartite method
estimation can be seen on the right. The z-axis was omitted
for spacial clarity.

B. Real-world test

For the real-world test, we employ extrinsic calibration to
attain the pose of the camera relative to the marker. The trajec-
tories of the flange and the camera can be seen in Appendix A
in Figure 9 and Figure 10, respectively. The estimated values
of the pose of the camera relative to the flange can be found
in Tables VI, VII, and VIII. A plot of these transformations
can be seen in Figure 8. The differences between the results
of the methods are summarised in Table IX.

12.5
x[mm]

− .06

−5.8

−5.6

−5.4

−5.2

− .05

−4.8

−4.6

−4.4

−4.2

− .04

y[
m

m
]

a

b

c

13.0 1   53.

Figure 8: FTC computed with three methods: a Bipartite,
b Procrustes, c Tsai-Lenz [7]
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Table I: Randomly generated FTC

⎛

⎜

⎝

−0.2019 0.5641 0.8007 25.51

0.7356 0.6271 −0.2563 50.60

−0.6466 0.5372 −0.5415 69.91

0 0 0 1.0

⎞

⎟

⎠

Table II: Bipartite method F T̂C simulation estimation
⎛

⎜

⎝

−0.2019 0.5640 0.8007 29.09

0.7356 0.6271 −0.2562 48.60

−0.6466 0.5373 −0.5415 69.91

0 0 0 1.0

⎞

⎟

⎠

Table III: Procrustes method F T̂C simulation estimation
⎛

⎜

⎝

−0.2019 0.5641 0.8007 25.51

0.7356 0.6271 −0.2563 50.60

−0.6466 0.5372 −0.5415 69.91

0 0 0 1.0

⎞

⎟

⎠

Table IV: Tsai-Lenz method F T̂C simulation estimation
⎛

⎜

⎝

−0.2019 0.5641 0.8007 25.51

0.7356 0.6271 −0.2563 50.60

−0.6466 0.5372 −0.5415 69.91

0 0 0 1.0

⎞

⎟

⎠

Table V: Error metrics of the simulation results shown as the
summation of the Euler angle differences and the norm of the
translation differences to the generated FTC

Angle [degrees] Translation [mm]

Bipartite 4.4× 10−3 4.1
Procrustes 2.2× 10−5 8.6× 10−5

Tsai-Lenz 3.1× 10−13 4.4× 10−13

Table VI: Bipartite method F T̂C reality estimation
⎛

⎜

⎝

0.7156 0.6966 0.0510 12.06

−0.6957 0.7174 −0.0370 −5.39

−0.0624 −0.0090 0.9980 74.61

0 0 0 1.0

⎞

⎟

⎠

Table VII: Procrustes method F T̂C reality estimation
⎛

⎜

⎝

0.7478 0.6565 0.0987 12.63

−0.6599 0.7513 0.00255 −4.65

−0.0725 −0.0670 0.9951 74.23

0 0 0 1.0

⎞

⎟

⎠

Table VIII: Tsai-Lenz method F T̂C reality estimation
⎛

⎜

⎝

0.6974 0.7165 0.0138 13.07

−0.7167 0.6972 0.0167 −5.06

0.0023 −0.0216 0.9998 74.58

0 0 0 1.0

⎞

⎟

⎠

Table IX: Error metrics of the real-world test results shown as
the summation of the Euler angle differences and the norm of
the translation differences between estimations

Angle [degrees] Translation [mm]
Bipartite ↔ Procrustes 6.8 1.0040
Bipartite ↔ Tsai-Lenz 5.9 1.0627

Procrustes ↔ Tsai-Lenz 11.6 0.6996

VI. DISCUSSION

Based on the simulation results, it can be said that all
three algorithms can accurately estimate the orientation of
the camera relative to the flange. Estimating the translation
however, poses a problem for the bipartite method in both
the x and y axes. The limited angles of the flange trajectory
can be the cause of the discrepancy; whereas the flange can
freely roll while keeping the calibration marker in frame, only
a slight tilt and yaw is allowed. This limits the accuracy of
the cylinder radii estimation. As can be noted from Figure 5,
a slight variation in radius can have significant influence on
the intersection point coordinates.

The results from the real-world test again show the bipartite
method’s translation estimation deviates significantly more
along the x and y axes. While the z value merely varies with a
range of less than a quarter of a millimetre between methods,
the accuracy of these estimations is disputable; all methods
base their estimations on the same extrinsic camera calibration
data which is by far the least accurate along this axis. A small
deviation in perceived marker size has major consequences for
the distance estimation compared to an erroneous perceived
translation parallel to the calibration marker plane. This error
could be reduced by decreasing the distance between the
marker and the flange. This will, however, further limit the
tilt and yaw angles for keeping the marker in frame. Besides,
this distance should approach the camera’s focal distance.

The tilt and yaw limits reveal a strict limit provided by the
chosen rotational trajectories. Having the flange move along an
arc over the marker (instead of rotating with a static position)
would greatly increase the viewing angles while allowing
closer proximity to the marker at the expense of increased
kinematic planning complexity.
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APPENDIX A
TRAJECTORY PLOTS
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APPENDIX B
MATLAB CODE

A. Function: fk

% KUKA LWR4+ Forward Kinematics
% Compute the flange pose through forward kinematics. Returns a homogeneous
% transformation matrix of the flange pose in robot base coordinates based
% on the given joint angles.

% Alexander G. Green
% 24 Feb. 2017

function rTf = fk(J)

A1 = [ cos(J(1)), 0, sin(J(1)), 0;
sin(J(1)), 0, -cos(J(1)), 0;
0, 1, 0, 310.5;
0, 0, 0, 1];

A2 = [ cos(J(2)), 0, -sin(J(2)), 0;
sin(J(2)), 0, cos(J(2)), 0;
0, -1, 0, 0;
0, 0, 0, 1];

E1 = [ cos(J(3)), 0, -sin(J(3)), 0;
sin(J(3)), 0, cos(J(3)), 0;
0, -1, 0, 400;
0, 0, 0, 1];

A3 = [ cos(J(4)), 0, sin(J(4)), 0;
sin(J(4)), 0, -cos(J(4)), 0;
0, 1, 0, 0;
0, 0, 0, 1];

A4 = [ cos(J(5)), 0, sin(J(5)), 0;
sin(J(5)), 0, -cos(J(5)), 0;
0, 1, 0, 390;
0, 0, 0, 1];

A5 = [ cos(J(6)), 0, -sin(J(6)), 0;
sin(J(6)), 0, cos(J(6)), 0;
0, -1, 0, 0;
0, 0, 0, 1];

A6 = [ cos(J(7)), -sin(J(7)), 0, 0;
sin(J(7)), cos(J(7)), 0, 0;
0, 0, 1, 78;
0, 0, 0, 1];

rTf = A1*A2*E1*A3*A4*A5*A6;

return

B. Orientation through Procrustes analysis

load ./mat/ttt
steps = length(mTc);

ctraj = zeros(steps,3);
jtraj = zeros(steps,3);
for index = 1:steps

ctrajp = (mTc(:,:,index))\(mTc(:,:,1));
ctrajp = ctrajp(1:3,4);
ctraj(index,:) = ctrajp';
jtrajp = (rTf(:,:,index))\(rTf(:,:,1));
jtrajp = jtrajp(1:3,4);
jtraj(index,:) = jtrajp';

end

[d,Z,transform] = procrustes(ctraj,jtraj);
fRc = rotm2tform(transform.T);

C. Translation through the cylinder method

%% A-axis
load ./mat/A
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l = length(rTf);
tformFA = rTf(:,:,1)\rTf(:,:,l);
tformCA = mTc(:,:,1)\mTc(:,:,l);
axisA = tform2axang(tformFA);
aA = axisA(4);
dA = norm(tform2trvec(tformCA))-norm(tform2trvec(tformFA));
ra = dA/(2*sin(aA/2));

%% B-axis
load ./mat/B
l = length(rTf)-1;
tformFB = rTf(:,:,1)\rTf(:,:,l);
tformCB = mTc(:,:,1)\mTc(:,:,l);
axisB = tform2axang(tformFB);
aB = axisB(4);
dB = norm(tform2trvec(tformCB))-norm(tform2trvec(tformFB));
rb = dB/(2*sin(aB/2));

%% C-axis
load ./mat/C
l = length(rTf);
tformFC = rTf(:,:,1)\rTf(:,:,l);
tformCC = mTc(:,:,1)\mTc(:,:,l);
axisC = tform2axang(tformFC);
aC = axisC(4);
dC = norm(tform2trvec(tformCC))-norm(tform2trvec(tformFC));
rc = dC/(2*sin(aC/2));

%% Points
a = sqrt((rbˆ2+rcˆ2-raˆ2)/2)*axisA(1:3);
b = sqrt((raˆ2+rcˆ2-rbˆ2)/2)*axisB(1:3);
c = sqrt((raˆ2+rbˆ2-rcˆ2)/2)*axisC(1:3);

index = 1;
points = zeros(2ˆ3,3);
for ai=1:2

for bi=1:2
for ci=1:2

points(index,:) = a + b + c;
index = index + 1;
c = -c;

end
b = -b;

end
a = -a;

end

ftc = points(8,:);

D. Procrustes method

load ../mat/C
wTf = rTf;
bTc = mTc;
load ../mat/B
wTf = cat(3,wTf,rTf);
bTc = cat(3,bTc,mTc);
load ../mat/A
wTf = cat(3,wTf,rTf);
bTc = cat(3,bTc,mTc);

Nmeas = length(wTf);

hold on
daspect([1 1 1])
figure
hold on
daspect([1 1 1])

%% define a grid in the t space (3 dimensional)
Ngrid = 1e5; % number of grid points
N = round(Ngridˆ(1/3)); % number of grid points per dimension
L = 100;
tx = linspace(-L,L,N);
ty = linspace(-L,L,N);
tz = linspace(-L,L,N);
[TX,TY,TZ] = ndgrid(tx,ty,tz);
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M = length(TX(:));

%% find the goodness of fit of Procrustus
ftc = [TX(:),TY(:),TZ(:)]';
R = (TX(:).ˆ2 + TY(:).ˆ2 + TZ(:).ˆ2).ˆ0.5;
ind = find(R>=0 & R<10000);
h = waitbar(0,'geduld');
K = length(ind);
J = zeros(K,1);
for k=1:K

J(k) = goodness_of_fit(ftc(:,ind(k)),wTf,bTc);
if mod(k,100)==0, h = waitbar(k/K,h); end

end
delete(h);
[Jmin,kmin] = min(J);
imin=ind(kmin);
ftc_min = [TX(imin),TY(imin),TZ(imin)]'
myfun = @(x)goodness_of_fit(x,wTf,bTc);
options = optimoptions(@fminunc,'Display','iter');
[x,fval] = fminunc(myfun,ftc_min,options)

%% visualize the error landscape in a 2D plane
% define a grid in the t space (2 dimensional)
Ngrid = 1e6; % number of grid points
N = round(Ngridˆ(1/3)); % number of grid points per dimension
tx = linspace(-L,L,N);
ty = linspace(-L,L,N);
tz = linspace(-L,L,N);
[TX,TY,TZ] = ndgrid(x(1),ty,tz);
M = length(TX(:));
ftc = [TX(:),TY(:),TZ(:)]';

J = zeros(size(TX));
h = waitbar(0,'geduld');
for k=1:M

J(k) = goodness_of_fit(ftc(:,k),wTf,bTc);
if mod(k,100)==0, h = waitbar(k/M,h); end

end
delete(h);
figure
contour(ty,tz,squeeze(J),linspace(min(J(:))+eps,max(J(:)),10))
ylabel('ty (mm)')
xlabel('tz (mm)')

%% registrate
ftc = x;
[J,btc_est,T] = goodness_of_fit(ftc,wTf,bTc);
bTw_est = [T.T' T.c(1,:)';0 0 0 1];
figure;
plot3(btc_est(:,1),btc_est(:,2),btc_est(:,3),'r.');
hold on
btc = squeeze(bTc(1:3,4,:));
plot3(btc(1,:),btc(2,:),btc(3,:),'g.');
daspect([1 1 1]);
err = btc_est' - btc;
rms = sum(err.ˆ2).ˆ0.5;
figure;
plot(rms)

%% find fTc
fTc_est = zeros(4,4,Nmeas);
for i=1:Nmeas

fTc_est(:,:,i) = inv(wTf(:,:,i))*inv(bTw_est)*bTc(:,:,i);
end

E. Function: goodness_of_fit

function [J,btc_guessed,bTw_guessed] = goodness_of_fit(ftc_guessed,wTf,bTc)

N = size(wTf,3);
wtc_guessed = zeros(3,N);
for n = 1:N

wtc_guessed(:,n) = wTf(1:3,1:3,n)*ftc_guessed +wTf(1:3,4,n); % wTf(:,:,n)*ftc
end
[J,btc_guessed,bTw_guessed] = procrustes(squeeze(bTc(1:3,4,:))',wtc_guessed','reflection',false,'scaling',

false);
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J = 1e0*J.ˆ0.25;

F. Function: fillTmat

function [ T ] = fillTmat( t,R )
%FILLTMAT(t,R) creates and fills transformation matrices

if size(t,2)==3, t=t'; end
if size(R,3)==3, R = permute(R,[3 1 2]); end
N = size(t,2);
T = zeros(4,4,N);
T(1:3,1:3,:) = R;
T(1:3,4,:) = t;
T(4,4,:) = 1;

end

G. Function: cfplot

% Coordinate frame plot
% Plot the axes of the coordinate frame given as a homogeneous
% transformation matrix 'htm' and a scale factor 's' (set to 0
% for unity).

% Alexander G. Green
% 24 Feb. 2017

function cfplot(htm,s)

quiver3(htm(1,4),htm(2,4),htm(3,4),htm(1,1),htm(2,1),htm(3,1),s,'red') % X
hold on
quiver3(htm(1,4),htm(2,4),htm(3,4),htm(1,2),htm(2,2),htm(3,2),s,'green')% Y
quiver3(htm(1,4),htm(2,4),htm(3,4),htm(1,3),htm(2,3),htm(3,3),s,'blue') % Z
axis('equal')
grid on
xlabel('x')
ylabel('y')
zlabel('z')

return
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