
MASTER THESIS

Symbolic Model Checking with
Partitioned BDDs in Distributed

Systems

Author:
Janina TORBECKE

(s0191981)

Graduation Committee:
Jaco VAN DE POL

Wytse OORTWIJN

Ana VARBANESCU

Marieke HUISMAN

September 17, 2017

Formal Methods and Tools (FMT)

Abstract

In symbolic model checking Binary Decision Diagrams (BDDs) are often used
to represent states of a system in a compressed way. By using reachability
analysis the system’s entire state space can be explored. However, even with
symbolic representation models can grow exponentially during an analysis such
that they do not fit in a single machine’s working memory. Both multi-core and
distributed reachability algorithms exist, but the combination of both is still
uncommon.

In this work we present a design for multi-core distributed reachability anal-
ysis. Our work is based on the multi-core model checking tool Sylvan and com-
bines this with a BDD partitioning approach. As network traffic is one of the
bottlenecks that are often reported in distributed reachability designs, we tried
to minimize communication between machines.

Our benchmark results show that our current design does not fully utilize
available hardware capacity, but nevertheless our implementation was able to
achieve speedups up to 29 compared to a linear execution and up to 5.3 com-
pared to an existing multi-core distributed analysis tool [11].

iii

Contents

1 Introduction 1
1.1 Challenges for Distributed Model Checking 2

1.1.1 Locality . 2
1.1.2 Workload balancing . 3
1.1.3 Communication Overhead 3
1.1.4 Bandwidth/Network . 4

1.2 Related Work . 4
1.2.1 Distributed Explicit Graph Analysis 4
1.2.2 Symbolic Model Checking 5

1.3 Research Questions . 6

2 Preliminaries on Symbolic Model Checking 9
2.1 Binary Decision Diagrams . 9
2.2 BDD Operations . 10
2.3 BDD Partitioning . 14

2.3.1 Horizontally Partitioned BDDs 14
2.3.2 Vertically Partitioned BDDs 15

3 Method 17
3.1 Validation . 18
3.2 Performance Measurement . 18

4 Designing and Implementing Distribution and Communication Al-
gorithm 21
4.1 Algorithm Overview . 21
4.2 Splitting and Sending a BDD . 25
4.3 Finding the Split Variable . 29
4.4 Exchanging Non-Owned States 32
4.5 Updating the List of Split Variables 34

v

4.6 Determining the Status and Termination 36
4.7 Implementation Details . 37

4.7.1 Functionality from Sylvan 38
4.7.2 Sending and Receiving BDDs with MPI 38

5 Experimental Evaluation 41
5.1 Overall performance . 43
5.2 Number of Final Nodes . 46
5.3 Communication Overhead . 49

5.3.1 Network Traffic Caused by Idle Workers 49
5.3.2 Network Traffic Caused by Active Workers 50

5.4 Influence of Split Size and Split Count 56
5.5 Validation . 59

6 Conclusion and recommendations 61
6.1 Conclusion . 61

6.1.1 How can principles of vertical partitioning be combined
with existing multi-core model checking solutions? 61

6.1.2 How do different configurations regarding the partition-
ing policy affect the overall performance of the resulting
system? . 62

6.1.3 How does the proposed method scale with the size of the
graph and the number of machines used? 63

6.2 Future Work . 64

A Split Size and Split Count 73

vi

List of Figures

2.1 Binary Decision Tree . 11
2.2 QROBDD . 11
2.3 ROBDD . 11
2.4 BDD φ with two partitions . 15

4.1 Flow chart of the process from the workers’ view. 22
4.2 Flow chart of the process from the master’s view. 22
4.3 Primitives commonly used in the following pseudo codes of this

chapter . 24
4.4 Partitioned BDD . 30
4.5 Partitioned BDD after one reachability step 33
4.6 List of new split variables . 35

5.1 Best achieved speedup with respect to linear analysis 43
5.2 Benchmark results compared to Sylvan and DistBDD. 44
5.3 Final number of nodes plotted against number of active worker

processes . 47
5.4 Execution times plotted against final number of nodes 48
5.5 Communication overhead caused by idle worker processes 50
5.6 Comparision of analyses on one and four machines with final nodes 54
5.7 Comparision of analyses on one and four machines with split times 55
5.8 Execution times plotted against split count for a certain split size

and number of splits . 57
5.9 Execution times plotted against number of splits and split count

for a certain split size and number of splits (1) 58
5.10 Execution times plotted against number of splits and split count

for a certain split size and number of splits (2) 59

6.1 Execution times of PartBDD plotted against execution times of
Sylvan, DistBDD and linear execution 66

vii

Chapter 1

Introduction

In recent days the application of program verification became more important
and challenging as the number of software solutions and their complexity in-
creased. For instance, in the last fifty years, the size of aircraft software grew
from 1.9 million lines of code (F-22) to over 24 million lines of code (F-35) [1].
One common program verification technique is model checking, where an ab-
stract model of the system is built. This model can then be used to check if the
software meets the requirements imposed on it.

In model checking the a program is reflected by its state space. The state
space is defined as a set of all possible combinations of variable assignments
in the program. Thereby the software can be seen as a graph such that com-
mon graph analysis tools can be used to test for certain desired or undesired
outcomes and properties. For instance, it can be tested if a certain error state
is reachable from a given initial state of the system. Since verifying even small
programs can result in exploring huge state spaces, several mechanisms to cope
with this state space explosion problem have been developed. One method is
to decrease the number of states, another is to use faster or more hardware
resources.

There are different ways to decrease the state space, for example Partial Or-
der Reduction or Bisimulation Minimization. Another method is to represent
the state space in a compressed manner, symbolically instead of explicitly, by us-
ing Reduced Ordered Binary Decision Diagrams – for the purpose of convenience
just called Binary Decision Diagrams (BDDs). BDDs can describe Boolean func-
tions and are therefore capable of storing sets of states and transitions from
one state to another. It is also possible to represent structures like Petri Nets or
cyclic graphs as BDDs [2]. This could be useful for dense graphs – graphs with
a very high number of edges compared to the number of nodes. Due to the dif-

1

1.1. CHALLENGES FOR DISTRIBUTED MODEL CHECKING

ferent structure of BDDs compared to less restrictive graphs, in many of these
cases the number of edges tends to decrease compared to the initial representa-
tion. [3] By using BDD operations the state space of a system can be generated
and analyzed. Although compressing the model by a symbolic representation
(symbolic model checking) yields a significant reduction of states, the size of
the state space remains a limiting factor.

It is also possible to use more processing units and parallelize the computa-
tion. Recent work shows that a significant speedup factor of up to 38 can be
reached with 48 cores by the parallel model checker Sylvan [4]. However, if
the size of the model exceeds the size of the main memory, it is necessary to
distribute the computation over multiple machines. Although many algorithms
for distributed symbolic verification have been developed [5–8], most of them
can process big models, but do not result in speedup. The main two reasons are
that the computation is either executed sequentially (no speedup through par-
allelization), e.g. through horizontal partitioning [6, 9], or it is slowed down
due to workload or memory imbalance or communication overhead between
machines. As far as we know there is only one approach that combines both
multi-core and distributed architectures. This was done by Oortwijn, van Dijk
and van de Pol in [10]. Their BDD package (called DistBDD) reached speedups
up to 51.1 and is even able to outperform single-machine computations with
Sylvan when memory runs short. [11]

In this work we focus on symbolic model checking with BDDs and the opti-
mization of their distribution and processing on multiple machines. In partic-
ular, we will focus on limiting communication overhead and finding a suitable
BDD partitioning strategy with the goal to obtain speedups in distributed sym-
bolic verification. As [11] has shown the advantages of combining multi-core
with distributed algorithms, we will follow this approach.

1.1 Challenges for Distributed Model Checking

1.1.1 Locality

To distribute BDD exploration, the BDD needs to be split into partitions which
are then assigned to multiple machines. Each machine processes a subtree of
the BDD. Depending on the splitting mechanism, adjacent nodes might be lo-
cated on different machines. As a result communication between machines
is necessary in certain stages of the analysis. These inter-machine edges be-

2

1.1. CHALLENGES FOR DISTRIBUTED MODEL CHECKING

tween adjacent nodes are referred to as cutting edges. In a distributed environ-
ment, the performance of BDD-based exploration can be improved significantly
if adjacent BDD-nodes are located on the same machine such that the number
of cutting edges is minimal. However, this graph partitioning problem is NP-
complete [12]. There are several ways to make a good estimation of a reason-
able graph distribution of explicit graphs. This operation remains challenging
in symbolic reachability analysis, since it is difficult to make assumptions about
the resulting graph (a BDD) obtained after applying an operation.

Obviously, locality is maximal if all nodes of the BDD belong to one ma-
chine. In this case, there are no cutting edges and no communication between
machines is necessary. [13] However, this is not possible in the case that the
graph exceeds a machine’s memory limit. Furthermore, due to additional hard-
ware resources in distributed systems, the communication overhead might be
compensated by higher parallelization (load balancing).

1.1.2 Workload balancing

Together with the challenge of locality comes the issue of workload balancing.
While certain problems need to be calculated sequentially, others are suited
to be parallelized. For example, rendering 3D images is a task that is often
performed independently for different parts of the resulting image. An exam-
ple in terms of graph theory is the algorithm of Borůvka which allows high
parallelization of calculating the minimal spanning tree for a given graph. An
optimal workload balance means that tasks are distributed over all processing
units (over both machines and cores within these machines) in a way such that
during a computation all these units finish processing at the same or nearly
at the same time without idle or waiting times during the computation. For
some types of graphs there exist approaches to achieve a good workload bal-
ance while keeping the number of cutting edges low, but often a good workload
balance correlates with a high number of cutting edges [14].

1.1.3 Communication Overhead

Also communication overhead is an important factor with respect to model
checking in distributed environments. If only one machine is utilized or most
nodes are located on one machine there is no or at least not much communi-
cation between machines. The more machines are used for the computation

3

1.2. RELATED WORK

and the more the nodes are spread over machines, the more likely it is that
data must be shared between them. On the other hand, a good distribution
over several machines might result in a better workload balance and therefore
achieve higher parallelization of processing, which can lead to less processing
time. There are graphs for which there are good distribution algorithms such
that the workload is balanced and still communication is low [15]. However,
in many cases it is difficult to achieve both a good workload balancing and
minimal communication [13]. Still, there are also several algorithms that try
to address communication overhead by sending data in bursts in contrast to
continuous traffic [16] or optimize the network load in other ways [17].

1.1.4 Bandwidth/Network

Communication between machines and therefore the entire computation is also
limited by the throughput/bandwidth and the latency of the used hardware of
the network. Recent research indicates that the Infiniband [18] technology
shows good results in this area. Infiniband supports remote direct memory
access (RDMA), which decreases the latency. Therefore latency is not a bottle-
neck, but the throughput is still an issue. In our opinion Infiniband is at this
point the fastest and also affordable network hardware available [10, 19]. In
this study we will use this technology and will not focus on finding an even
better solution.

1.2 Related Work

1.2.1 Distributed Explicit Graph Analysis

In 2015 Hong et al. developed a new system (called PGX.D) for distributed
graph analysis which is able to reach speedup factors of up to 90 compared to
other distributed (explicit) graph processing systems. It also shows faster re-
sults than single-machine executions. Hong et al. stated that a low overhead
bandwidth-efficient communication mechanism with support for remote data
pulling is important for fast graph processing. They use the Infiniband technol-
ogy for a fast network communication. They also made use of selective ghost
node creation to reduce traffic between machines. This is a technique where
on each machine copies are created of specific nodes, for instance high-degree
nodes. To achieve balanced workload, edge partitioning and edge chunking

4

1.2. RELATED WORK

were used, which are, according to the developers, essential for a balanced
workload between cores. [19]

Research by Guo, Varbanescu, Epema and Iosup showed that the combina-
tion of GPU and CPU resources in distributed systems can have a positive impact
on the performance [20].

An explicit model checker which achieves close to linear speedup is Murφ.
It uses distributed memory without synchronization between processes and a
hash function to guarantee a balanced workload. [13]

Work by Inggs and Barringer on reachability analysis for CTL* model check-
ing also shows nearly linear speedup. They use a shared-memory architecture
with a work stealing mechanism to keep the workload balanced and minimize
idle times of processors. [21]

1.2.2 Symbolic Model Checking

In 1997 Narayan, Jain, Fujita and Sangiovanni-Vincentelli invented partitioned-
ROBDDs as a new way of constructing decision diagram representations for a
given Boolean function. The Boolean space is divided into partitions and each
partition is then represented by a ROBDD with its own variable ordering. This
can result in a state space which is exponentially smaller than the generated
state space using a single ROBDD. [22] According to [23] the core advantage
of partitioned-ROBDDs is that for instance counterexamples in model checking
can be located fast and that each partition can have its own variable ordering.

In 2000 Heyman, Geist, Grumberg and Schuster developed a partitioning
algorithm with dynamic repartitioning for symbolic model checking with BDDs
in a distributed-memory environment [8]. Their partitioning method (’Boolean
function slicing’) is based on the work of Narayan et al. (see [22]). We will refer
to it as vertical partitioning.

In 2003 Grumberg, Heyman and Schuster presented a work-efficient ap-
proach due to dynamic allocation of resources and a mechanism for recovery
from local state space explosion. This means that no unnecessary hardware
resources are used. [17]

Chung and Ciardo (2004) presented a distributed-memory saturation al-
gorithm for multi-valued decision diagrams (MDDs) using horizontal partition-
ing [24]. Due to the sequential computation this method does not achieve
speedups compared to a single machine version. However, this approach en-
ables the computation of much larger graphs, because more memory is avail-

5

1.3. RESEARCH QUESTIONS

able. [6]

Two years later (2006) Chung and Ciardo developed their method further
and achieved speedups of up to 17 percent compared to their previous version.
This time they used vertical slicing combined with speculative firing. [7]

Not a distributed technology but another way to minimize the state space are
partial binary decision diagrams (POBDDs) which were developed by Townsend
and Thornton in 2002 [25]. As opposed to the method of Narayan et al. not
a Boolean formula but an existing ROBDD representation is partitioned into
multiple partial BDDs. As far as we know this approach has not yet been used
in a distributed environment.

In 2015 Oortwijn, van Dijk and van de Pol presented their findings on
shared-memory hash tables for symbolic reachability model checking. They
stated that for the efficient use of shared hash tables it is essential to minimize
the number of roundtrips which is limited by the throughput of the network (in
this case Infiniband which supports Remote Direct Memory Access – RDMA).
According to Oortwijn et al. linear probing is one way to achieve less roundtrips
(compared to e.g. Cuckoo hashing). With DistBDD they implemented the first
BDD package that combines both distributed and multi-core reachability algo-
rithms. [10,11]

1.3 Research Questions

In the graph analysis and especially the symbolic model checking domain there
are still many challenges to solve to make optimal use of the benefits of dis-
tributed environments. Since in most of the cases of distributed reachability
analysis the network is the bottleneck of the system, we focus in this thesis
mostly on how to reduce communication overhead between machines and how
to achieve this by combining existing multi-core and multi-machine approaches
that have shown good performance in earlier research. We will base our work
on the multi-core model checker Sylvan and the vertical partitioning method
of [17].
This leads to the following main research question:

Research question: How can a problem of BDD based symbolic model checking
be divided between machines in a compute cluster of multi-core machines to
reduce the total computation time?

6

1.3. RESEARCH QUESTIONS

To better point out the different aspects, this question will be split into three
sub-questions.

Subquestion 1: How can principles of vertical partitioning be combined with ex-
isting multi-core model checking solutions?

Subquestion 2: How do different configurations regarding the partitioning policy
affect the overall performance of the resulting system?

Subquestion 3: How does the proposed method scale with the size of the graph
and the number of utilized machines?

7

Chapter 2

Preliminaries on Symbolic Model
Checking

2.1 Binary Decision Diagrams

Binary decision diagrams were developed by C. Y. Lee [27] and are based on the
idea of Shannon expansion [28]. Any Boolean function f can be decomposed
into two sub-functions in which each Boolean variable Xi is either true or false:

f (X0, . . . ,Xi , . . . ,Xn) ≡ Xi · f (X0, . . . ,1, . . . ,Xn) +Xi · f (X0, . . . ,0, . . . ,Xn) (2.1)

Since every variable in a Boolean formula can have two values, a binary
decision tree can be built by recursively applying the Shannon expansion for-
mula. Figure 2.1 is an example of such a tree. It represents formula a∨ (b∧ c).
This tree can be transformed into a directed acyclic graph (DAG) by merging
or deleting some nodes. These DAGs were invented by Bryant and are called
Reduced Ordered Binary Decision Diagrams (ROBDDs). [29,30]. The following
definition is taken from [4].

Definition 1 (Ordered Binary Decision Diagram). An (ordered) BDD is a directed
acyclic graph with the following properties:

1. There is a single root node and two terminal nodes 0 and 1.

2. Each non-terminal node p has a variable label xi and two outgoing edges,
labeled 0 and 1; we write lvl(p) = i and p[v] = q, where v ∈ {0,1}.

3. For each edge from node p to non-terminal node q, lvl(p) < lvl(q).

9

2.2. BDD OPERATIONS

4. There are no duplicate nodes, i.e.,
∀p∀q · (lvl(p) = lvl(q)∧ p[0] = q[0]∧ p[1] = q[1])→ p = q.

The 0 and 1 edges are also referred to as high- and low-edges [31] and in
diagrams they are indicated with dashed and solid lines respectively. A BDD
that has all the properties that are mentioned in Definition 1 is called quasi-
reduced (QROBDD). It does not contain duplicate nodes, but it may contain
redundant nodes. These are nodes for which the node’s high and low edge lead
to the same child node. A BDD which also does not contain any redundant
nodes is called a reduced OBDD (ROBDD). [32]

In [4] (fully-)reduced and quasi-reduced BDDs are defined as follows:

Definition 2 (Fully-reduced/Quasi-reduced BDD). Fully-reduced BDDs forbid re-
dundant nodes, i.e. nodes with p[0] = p[1]. Quasi-reduced BDDs keep all redun-
dant nodes, i.e., skipping levels is forbidden.

The graphs shown in Figures 2.1, 2.2, and 2.3 all describe the following
Boolean formula:

a∨ (b∧ c) (2.2)

Figure 2.1 shows the decision tree belonging to the formula without any re-
ductions or ordering. In Figure 2.2 all duplicate nodes of the decision tree
in Figure 2.1 are removed (i.e. the two b-nodes on the bottom right) and its
variables are ordered. In Figure 2.3 also the redundant nodes are removed.

In the following we refer to ROBDDs simply as BDDs.
An important part of model checking with BDDs is that there must be a

unique table of nodes which is used to guarantee that there are no duplicate
nodes in a BDD. This prevents the creation of superfluous nodes which may
lead to overhead. In many existing implementations a hash table is used for
this.

In the following section the most important operations on BDDs will be
explained.

2.2 BDD Operations

The most basic operation is restrict. It is an essential part of Shannon decom-
position which is used to create BDDs from Boolean functions. The result of
applying the restrict operator on a BDD is another BDD.

10

2.2. BDD OPERATIONS

a

b c

c c b b

1 1 1 10 0 0 1

Figure 2.1: Binary Decision Tree

a

b b

c cc

10

Figure 2.2: QROBDD

a

b

c

10

Figure 2.3: ROBDD

Definition 3 (Restriction (cofactor)). Let f (x0, . . . ,xn) be a BDD representing a
Boolean function and 0 ≤ i ≤ n. Then:

restrict(f ,xi ,1) = fxi=1(x0, . . . ,xi , . . . ,xn)

= f (x0, . . . ,1, . . . ,xn)

restrict(f ,xi ,0) = fxi=0(x0, . . . ,xi , . . . ,xn)

= f (x0, . . . ,0, . . . ,xn)

are the positive and negative restrictions (or cofactors) of f with respect to xi .

Multiple BDDs can be combined in certain ways using Boolean operators like
conjunction (∧), disjunction (∨), implication (→), exclusive or (⊕) and more.
Given two BDDs φ and ψ and a Boolean operator

〈
op

〉
a new BDD φ

〈
op

〉
ψ can

be constructed which is defined as follows:

φ
〈
op

〉
ψ = x(φx

〈
op

〉
ψx) + x

′(φx′
〈
op

〉
ψx′) (2.3)

The algorithm that computes φ
〈
op

〉
ψ is based on Shannon decomposition (see

Equation (2.1)) and is commonly called apply. [33]
The operations computed by apply can also be expressed in an if-then-else

(ITE) structure. This ITE operation is defined as follows (definition from [4]).

Definition 4 (If-Then-Else (ITE)). Let ITEx=v be shorthand for the result of
ITE(φx=v,ψx=v,χx=v) and let x be the top variable of φ, ψ and χ. Then ITE

is defined as follows:

IT E(φ,ψ,χ) =


ψ φ = 1

χ φ = 0

MK(x, IT Ex=1, IT Ex=0) otherwise

11

2.2. BDD OPERATIONS

Boolean operator ITE
f ∧ g IT E(φ,ψ,0)
¬f ∧ g IT E(φ,0,ψ)
f ∧¬g IT E(φ,¬ψ,0)
f ∨ g IT E(φ,1,ψ)
¬(f ∧ g) IT E(φ,¬ψ,1)
¬(f ∨ g) IT E(φ,0,¬ψ)
f → g IT E(φ,ψ,1)
f ← g IT E(φ,1,¬ψ)
f ↔ g IT E(φ,ψ,¬ψ)
f ⊕ g IT E(φ,¬ψ,ψ)

Table 2.1: Boolean operators and their ITE representation, where φ and ψ are the unique BDD
representatives of f and g, respectively.

MK(x,T ,F) in Definition 4 is used to create a new BDD node with variable
x. The outgoing high-edge of x goes to the BDD T and its low edge to the BDD F.

Table 2.1 shows Boolean operators and their ITE equivalents.
For a reachability analysis with BDDs there are four operations which are

necessary to calculate the reachable states. These are ∧, ∨, ∃ and substitution.
The Boolean operators are covered by the apply operation explained above.
Furthermore ∧ and ∃ are commonly combined in a single algorithm. [4]

Listing 2.1 shows an outline of a reachability analysis, where Initial is an
initial BDD, T is a BDD representing a transition relation from one state to
another and X and X′ are sets of states.

1 BDD R e a c h a b i l i t y (BDD I n i t i a l , BDD T , Set X , Set X ’)
2 BDD Reachable := I n i t i a l , Prev ious := 0
3 while Reachable != Prev ious
4 BDD Next := (∃X · (Reachable ∧ T)) [X ’ / X]
5 Prev ious := Reachable
6 Reachable := Reachable ∨ Next
7 return Reachable

Listing 2.1: Reachability algorithm from [4]

In line 4 of the algorithm ∃X · (Reachable ∧ T))[X ′/X] computes the set of
reachable states from state Reachable using the transition relation T. After
applying ∃ only the successors remain. This combination of ∃ and ∧ is called
the relational product (RelProd).

The formal specification of RelProd is given by the following definition [33].

12

2.2. BDD OPERATIONS

Definition 5 (RelProd). Let X = {x1, . . . ,xn} and X ′ = {x′1, . . . ,x′n} be two sets of
variables, f : Bn→ B a Boolean function and g : Bn ×Bn→ B a Boolean relation.
Let φ and ψ be the respective BDD representations of the functions f and g. The
relational product over φ and ψ with respect to X’, denoted by RelProd(φ,ψ,X,X ′)
is the BDD representing ∃X · (f (X)∧ g(X,X ′)).

An example algorithm of RelProd is shown in Listing 2.2 [4].

1 BDD RelProd (BDD A, BDD B , Set X)
2
3 // (1) Terminating cases
4 i f A = 1 ∧ B = 1 then return 1
5 i f A = 0 ∨ B = 0 then return 0
6
7 // (2) Check cache , hash t a b l e f o r cons tant time acces s on
8 // in te rmedia te r e s u l t s of BDD opera t ions
9 i f inCache (A , B , X) then return r e s u l t

10
11 // (3) Ca l cu l a t e top v a r i a b l e and c o f a c t o r s
12 x := topVar iab le (xA , xB)
13 A0 := co fac to r0 (A , x) B0 := co fac to r0 (B , x)
14 A1 := co fac to r1 (A , x) B1 := co fac to r1 (B , x)
15
16 i f x ∈ X
17
18 // (4) Ca l cu l a t e subproblems and r e s u l t when x ∈ X
19 R0 := RelProd (A0 , B0 , X)
20 i f R0 = 1 then r e s u l t := 1 // Because 1 ∨ R1 = 1
21 else
22 R1 := RelProd (A1 , B1 , X)
23 r e s u l t := ITE (R0 , 1 , R1) // Ca l cu l a t e R0 ∨ R1
24 else
25
26 // (5) Ca l cu l a t e subproblems and r e s u l t when x < X
27 R0 := RelProd (A0 , B0 , X)
28 R1 := RelProd (A1 , B1 , X)
29 r e s u l t := MK(x , R1 , R0)
30
31 // (6) Store r e s u l t in cache
32 putInCache (A , B , X , r e s u l t)
33
34 // (7) Return r e s u l t
35 return r e s u l t

Listing 2.2: RelProd algorithm

The last BDD operation we discuss is substitution which is used to rename
one variable to another.

13

2.3. BDD PARTITIONING

Definition 6 (Substitution). Let X = {x1, . . . ,x2} be a set of variables and f :
Bn → B be a Boolean function. Let x1, y ∈ X be two variables from X. Then
the substitution of xi by y, denoted by f [xi ← y], is defined as f [xi ← y] ≡
f (x1, . . . ,xi−1, y,xi+1, . . . ,xn). Let Y = {y1, . . . , ym} ⊆ X and Z = {z1, . . . , zm} ⊆ X
be two subsets of X. Then φ[Y ← Z] ≡ (((f [y1← z1])[y2← z2]) . . .)[ym← zm].

2.3 BDD Partitioning

2.3.1 Horizontally Partitioned BDDs

In horizontal partitioning [6, 9] the levels of a BDD are distributed over ma-
chines and each level is assigned to a single machine. This means that all nodes
that belong to a certain level are located on the same machine. Figure 2.4
visualizes this partitioning strategy.

10

w1

w2

w3

An advantage of vertical partitioning is that no duplicate nodes are created.
This approach focuses on increasing the available space (by utilizing more ma-
chines) and not on decreasing computation time. Due to more resources larger
models can be processed. Through an approach called “speculative firing” also
faster computations (compared to linear analyses) could be achieved. However,
vertical partitioning (see section 2.3.2) achieved better results with respect to
computation time.

14

2.3. BDD PARTITIONING

x x

10

φ∧ x
φ∧¬x

Figure 2.4: BDD φ with two partitions

2.3.2 Vertically Partitioned BDDs

In [22] partitioned-ROBDDs were introduced which can be exponentially smaller
than other BDDs. With partitioned-BDDs not the entire Boolean space is repre-
sented as a whole, but it is divided in multiple partitions and each of them is
represented by one ROBDD. The division is done using one or more “window-
ing functions” w. A windowing function can be a Boolean variable or a Boolean
formula, which represents a part of the BDD’s Boolean space. In Definition 7
which is taken from [22] partitioned-ROBDDs are described formally.

Definition 7 (Partitioned-ROBDDs). Given a Boolean function f : Bn→ B defined
over Xn, a partitioned-ROBDD representation xf of f is a set of k function pairs,
xf = {(w1, f̃1), . . . , (wk , f̃k)} where wi : Bn→ B and f̃i : Bn→ B for 1 ≤ i ≤ k, are also
defined over Xn and satisfy the following conditions:

1. wi and f̃i are represented as ROBDDs with the variable ordering πi , for 1 ≤
i ≤ k.

2. w1 ∨w2 ∨ · · · ∨wk ≡ True

3. f̃i ≡ wi ∧ f , for 1 ≤ i ≤ k

According to Definition 7 partitions in partitioned-ROBDDs do not need to
be disjoint. This means that duplicate nodes can be created during partitioning.

An advantage of partitioned-ROBDDs, which can make the representation
even smaller, is that each partition can have its own variable ordering (see
condition 1 of Definition 7).

15

2.3. BDD PARTITIONING

Research in [8,17,34] also uses partitioned-ROBDDs. Based on Definition 7
they developed algorithms to find suitable windowing functions for partitioning
a BDD. Figure 2.4 visualizes a BDD after partitioning with windowing function
w = x. We base this research on the findings in [34].

16

Chapter 3

Method

In the following we will describe how we try to answer the main research ques-
tion and the three subquestions stated in section 1.3.

To answer research question 1 we use the work on partitioned-ROBDDs done
in [34] as a starting point and try to implement their partitioning algorithm,
which divides Boolean functions into multiple BDDs. These newly created BDDs
can be processed locally by an existing model checker. We will use Sylvan for
this purpose since this tool has shown significant speedup on multi-core ma-
chines compared to other tools. In this way we hope to achieve also good
speedups in a distributed environment. The goal is to extend Sylvan’s func-
tionality in order to obtain communication between multiple machines within
reachability analysis. This leads to several additional challenges that have to
be solved like synchronization of local analyses and avoidance of unnecessary
communication overhead. For communication between machines/processes we
will introduce Open MPI [35], an open source implementation of the Message
Passing Interface (MPI) standard [36].

Research question 2 aims at the influence of both the moment when a BDD
is partitioned during reachability and the number of partitions that are created
when a BDD needs to be divided. By the moment of partitioning we mean that
we will set a certain maximum BDD partition size (number of nodes). When
exceeding this threshold the BDD will be split into more partitions. We will
evaluate the influence of both configuration parameters by repeatedly analyzing
several models of different sizes. By a model’s size we mean the approximate
size it reaches during an analysis and not its initial size. We will use well-known
BEEM [37] and Petri-net [38] models for this purpose. Between runs, we vary
the parameter values while keeping the number of machines constant. Here,
we focus on finding suitable configurations for a given model. Therefore, we

17

3.1. VALIDATION

are interested in differences in performance (execution time) between multi-
ple analyses of the same model with varying initial settings of the parameters
mentioned above.

In order to find an answer to research question 3 and be able to make as-
sumptions over the scalability of the system, the proposed partitioning and com-
munication method, we will evaluate the system’s performance depending on
the maximum size of the input model and the utilized hardware resources. In
contrast to research question 2, we want to gain insights into the performance
of our implementation when the initial configurations are kept the same, but
the size of the input model grows. Furthermore, we are interested in how effi-
ciently additional hardware resources can be used.

3.1 Validation

We will validate the implementation by executing multiple reachability anal-
yses on several models. We do this with varying parameters/settings of our
implementation (like the moment when a BDD is partitioned and the number
of partitions that are created during partitioning). We will compare the results
with those of other implementations (DistDD). Hereby we use the number of
reachable states as an indication of correct calculations.

3.2 Performance Measurement

When it comes to the general evaluation of the invented method we want to be
able to draw conclusions regarding its contribution with respect to the overall
computation time.

To set our approach into relation with existing ones we will record and mea-
sure the following factors:

• total computation time
• size of the generated state space
• number of machines that are not idle at the end of the computation (see

chapter 4)
• used settings for the analysis (moment that a BDD is partitioned and num-

ber of partitions that are created during partitioning)

By setting the computation time in relation to the other values, we will try to
find bottlenecks of the system.

18

3.2. PERFORMANCE MEASUREMENT

We will compare the execution times to those obtained with (1) the dis-
tributed system DistBDD, (2) the not distributed but parallel system Sylvan and
(3) the linear execution in order to be able to draw conclusions about the com-
petitiveness of the system.

19

Chapter 4

Designing and Implementing
Distribution and Communication
Algorithm

4.1 Algorithm Overview

During reachability analysis of large models the BDD of that model might be-
come too large to process on a single machine. In this case, the process can split
its BDD and send one or more of its partitions to processes on other machines,
if available. In this section we will give a short overview of the reachability al-
gorithm we designed and implemented in this work. In the following sections,
we will go into more detail.

One essential part of our design is that each analysis using our algorithm
consists of at least two processes of which one is called the master process and
all other are worker processes. The master process handles part of the com-
munication between processes and provides information about the progress of
the analysis. The worker processes, on the other hand, are responsible for the
actual reachability analysis.

When an analysis is started, all processes (one master and one or multi-
ple workers) are immediately initialized. They all get the transition relation to
perform the reachability analysis, but only one worker process gets the initial
BDD. All other processes get an empty BDD (=false) and are initially idle. Fur-
thermore, every worker has a list of split variables or split functions, which are
necessary when more than one worker process is involved in the computation.
Split variables and functions are essentially the same as ”windowing functions”

21

4.1. ALGORITHM OVERVIEW

start

receive split vars
from master

do reachability step
compute non-
owned part(s)

send non-owned
BDDs to and receive
owned BDDs from

other workers
delete non-owned
states from set of
visited states

merge received
BDDs with set of
visited states

send status to
master and receive
termination signal

continue

receive BDD split
from worker

receive BDD split
from master

split BDD into k
partitions

receive target IDs
for partitions and
send new split vari-
ables to master

send BDD
partition(s)

terminate

Figure 4.1: Flow chart of the process from the workers’ view. Dotted (black) arrows: local
processing steps, dashed (blue) arrows: communication between a worker and the
master, solid (green) arrows: communication between workers.

start

send split vars to all
workers

receive worker
statuses and send
termination signal

continue

send target IDs to
splitting workers
and receive new
split variables

send signal to pro-
ceed to idle workers

terminate

Figure 4.2: Flow chart of the process from the master’s view. Dotted (black) arrows: local pro-
cessing steps, dashed (blue) arrows: communication between master and all work-
ers, solid (green) arrows: communication between master and one/some workers.

22

4.1. ALGORITHM OVERVIEW

from section 2.3.
Figures 4.1 and 4.2 show an overview of all the steps that each process,

worker and master, perform multiple times during the reachability analysis.
When the processes begin the analysis (see start node in the figures), the initial
setup is already done (initializing processes, reading transition relations and
initial BDD from file). The following steps are performed in each iteration:

1. Updating the list of split variables. The master process keeps track of all
changes and notifies the worker processes (see section 4.5 for details).

2. Each worker process performs one level of the reachability analysis (com-
putes the set of next states using the transition relation). Note that also
the idle states (their local BDD is still empty, or false) do this step. Their
set of next states will be empty.

3. Worker processes exchange non-owned states (see section 4.4). States
that do not belong to the BDD partition of a process will be removed and
states that have been received from other processes will be merged with
the local BDD partition.

4. All worker processes merge their set of next states (including the received
states from other processes) with all reachable states that have been ex-
plored locally.

5. Each worker process determines a status (“idle”, “out of work”, “in progress”,
“needs to split”) and sends it to the master process. The master process
receives these messages and determines how to proceed. If all workers
send the message “out of work”, the master will notify the workers to ter-
minate. If at least one of the workers sent ”needs to split”, the master will
handle the splitting procedure in the next step.

6. If no signal to terminate has been received, worker processes may receive
or send BDD partitions. This depends on the processes’ status:

• “in progress” or “out of work”: The worker process will do nothing
and continue with the next step.

• “idle”: The worker process waits for a BDD from another worker
process or the master process.

• “needs to split”: The worker process determines a split variable to
split its BDD into one or multiple partitions. Then it receives one or

23

4.1. ALGORITHM OVERVIEW

multiple target processes from the master and sends the partitions
to these targets. Finally it notifies the master about the used split
variables.

7. The master sends empty BDDs to every process that is still idle.

Listing 4.1 gives the pseudocode to the steps described above, that runs
on each worker process. Note that it is similar to the reachability algorithm in
Listing 2.1 with some additional steps. On lines 7 and 16 the actual reachability
analysis happens. First, the set of reachable states (Next) from the current set of
already explored states (Reachable) is calculated using the relational product of
the current state space and the transition relation T . Then, the states in Next are
added to Reachable. While the algorithm in Listing 2.1 tests whether Reachable
changes with respect to the previous iteration to terminate the while loop, our
algorithm terminates, when all processes are finished. More specifically, they
terminate, when the master process sends a termination signal.
On lines 9 to 15 the exchange of non-owned states happens. Each process sends
states that it is not supposed to keep to other processes and may receive states
from other processes. We explain non-owned states and their exchange in more
detail in section 4.4.
The following lines of code (18 to 22) determine, if a process can receive or
must send a BDD partition, does not need to do anything or has to terminate
(in this case the reachability analysis is finished).
Receiving and sending of BDD partitions happens on lines 24 to 30, if any
process has to split its BDD or can receive one.
Finally, each process receives updates about used split variables from the master.

Primitive Description
BDD datatype from Sylvan representing BDDs
BDDVAR datatype from Sylvan representing a single variable in

a BDD
(target)ID, (target)rank integer representing an ID of an MPI process
MPI ANY SOURCE MPI constant that can be used when no specific rank is

necessary
status integer representing the current status of a process
WORKER STATUS SPLIT integer representing the status split of a process
WORKER STATUS IDLE integer representing the status idle of a process
WORKER STATUS PROGRESS integer representing the status in progress of a process

Figure 4.3: Primitives commonly used in the following pseudo codes of this chapter

24

4.2. SPLITTING AND SENDING A BDD

In the next sections, we will describe each step of the algorithm in more
detail.

1 // Initial BDD, transition relation T, variable sets X, X’
2 BDD R e a c h a b i l i t y (BDD I n i t i a l , BDD T , Set X , Set X ’)
3 BDD Reachable := I n i t i a l
4 BDD S p l i t v a r s [number of processes]
5 in t q // id of this process
6 while not a l l p roces se s f i n i s h e d
7 BDD Next := (∃X · (Reachable ∧ T)) [X ’ / X]
8
9 fo r each process p , p , q

10 BDD n e x t s p l i t := Next ∧ s p l i t v a r s [p]
11 send to (p , n e x t s p l i t)
12 f o r each process p , p , q
13 Next := Next ∨ rece ive f rom (p)
14
15 Next := Next ∧ S p l i t v a r s [q]
16 Reachable := Reachable ∨ Next
17
18 Sta tus := de te rmine s ta tus ()
19 send to master (S ta tus)
20 i f r e c e i v e t e r m i n a t i o n s i g n a l ()
21 break
22
23 i f Sta tus == SPLIT
24 in t n := 0
25 while n < k : // k = number of partitions
26 Reachable := h a n d l e s p l i t (Reachable)
27 n := n + 1
28 i f Sta tus == IDLE
29 Reachable := rece ive f rom ()
30
31 rece ive and update (S p l i t v a r s)
32 return Reachable

Listing 4.1: Customized reachability algorithm

4.2 Splitting and Sending a BDD

The essence of our approach is that large BDDs are partitioned into multiple
BDDs which will be processed by different workers. In our design we assume
the workers to all have the same amount of memory available. Small adapta-
tions of the algorithm might be sufficient to make it suitable for heterogeneous
system memory. Next to designing the splitting procedure itself, it is important
to make decisions about when to split a BDD and how many partitions to create.
We will first explain what the latter two factors indicate and will then proceed

25

4.2. SPLITTING AND SENDING A BDD

with the algorithm itself. Note, that we will provide details about BDD parti-
tions and their creation in section 4.3. In this section we will keep this concept
on a higher level. At this point it is sufficient to keep in mind, that each BDD
can be split into multiple partitions. These partitions can “overlap” (are usually
not disjoint) and their conjunction gives the initial BDD.

By when to split we mean: “How large is the state space of one process
allowed to be?”. As a measure of the state space we use the number of nodes
of the BDD. We can either choose a large number of nodes as limit, such that a
BDD does just fit in the working memory of a machine. Or we can set the limit
lower and split the BDD when it is smaller. The advantage of a high value is
that the reachability analysis is kept on as few machines as possible. The fewer
machines involved in the computation, the less time-consuming communication
between them is necessary. Only when the working memory of the utilized
machines does not suffice, we split and use more machines. However, splitting
and sending large BDDs might consume more time compared with splitting
and sending smaller BDDs. If we set the limit lower, the BDD will be split
earlier. The advantage of this approach is that more machines may get involved
in the computation (e.g. a BDD will be split 3 times instead of once), which
can process the partitions in parallel. When a good partitioning can be found
(see section 4.3) it is possible that splitting the BDD early decreases the total
number of nodes (removal of redundant states). This could have an impact
on the computation time. Also, splitting and sending partitions might happen
faster. The disadvantage is that more communication between machines will
be necessary (when exchanging non-owned states) and more duplicate nodes
might be created compared with an execution with a higher maximum number
of nodes.

How many partitions means: “Into how many parts should a process split
its BDD when it exceeds the maximum number of allowed nodes?”. If a BDD
exceeds the maximum number of allowed nodes, we can split it into at least
two parts, but it is also possible to create more partitions. When we follow
the approach to utilize as few machines as possible, we can set the number
of partitions (split count) low (2), possibly combined with a high maximum
number of nodes. In this way, when a BDD needs to be split, one partition will
be kept by the process and one additional process will get the other partition.
On the other hand, we can set the number of partitions to a higher value, which
means that more machines will be used for the computation. The advantages
and disadvantages are similar to the ones of a low and a high maximum number

26

4.2. SPLITTING AND SENDING A BDD

of nodes. When the number of partitions is low, less machines are needed,
which leads to less communication between machines. But a low split count
also means that the created partitions are likely to consist each of more nodes
than a partition in the case that the split count is high, because all the states of
the initial BDD will be distributed over less partitions. At the same time, more
partitions might lead to more duplicate nodes. We explain duplicate nodes
in section 4.3. One advantage of more splits is that it might take more time
until the next process needs to split, because the partitions are initially smaller.
However, at the same time, creating more partitions might take longer and the
communication between processes might increases.

In our implementation we use fixed numbers for the maximum number of
nodes and the number of partitions per run of the algorithm. So for every
partition and every split that a partition performs during the entire analysis,
the same numbers are used.

Listings 4.2 and 4.3 give the pseudocode that belongs to the splitting proce-
dure, the first from a worker’s point of view, the second from the master’s. As
seen in Listing 2.1 on lines 26 to 28, each worker that has to split its BDD will
call handle split() k − 1 times, where k is the number of partitions that we
want the worker to create.

In each iteration, the worker process will first search a suitable split variable
(see section 4.3). In the next step, two partitions will be created from the BDD
that contains all explored states so far. The split variable is used to generate
these partitions. After this, on line 11 of Listing 4.2 and line 14 of Listing 4.3
the worker will receive a target process from the master. For this, the master
iterates through all workers and chooses the first “idle” process. The worker can
now send the smaller one of the created partitions to the target process which
is already waiting to receive a BDD (see lines 29 and 30 in Listing 2.1). It is
important that the worker keeps the larger partition, because we might want to
split this one again, if the process has not yet split k−1 times. In this way we try
to achieve an even distribution of states over all created partitions. The master’s
next step is to set the current status of the target process to “in progress”. This
is done to avoid sending multiple partitions to that process.

After a partition has been sent to another process and the target process’
status has been updated, the splitting worker sends the used split variables,
including its own and the used target ID to the master. The master will store
all process IDs and their belonging split variables and will use them when he
notifies all workers about changes.

27

4.2. SPLITTING AND SENDING A BDD

Finally, handle split returns the partition that has not been sent and the
worker process will set its BDD of reachable states to this partition.

1 BDD h a n d l e s p l i t (BDD reachable)
2
3 // determine the best variable to split over
4 BDDVAR s p l i t v a r := s e l e c t s p l i t v a r (reachable)
5
6 // perform the actual split and return both partitions
7 // where left is the larger part, if not equal
8 BDD r i gh t , l e f t = decompose (reachable , s p l i t v a r)
9

10 // receive a “target” process from master
11 in t t a r g e t r a n k := r e c e i v e t a r g e t r a n k ()
12
13 // sending smaller part of the split to “target rank”
14 bdd bsendto (r i gh t , t a r g e t r a n k)
15
16 // send the split variables and process IDs to the master process
17 s e n d n e w s p l i t v a r s (ta rge t rank , s p l i t v a r , worker id , neg (s p l i t v a r))
18
19 // Return the other part of the splitted BDD
20 return l e f t

Listing 4.2: Pseudocode for handle split(BDD next)

1 void handle communicat ion BDD spl i t ()
2
3 fo r (in t j = 1; j < s p l i t c o u n t ; j++)
4
5 // loop through worker processes

6 fo r each process p
7
8 // if p has sent worker status ‘‘has to split’’

9 i f c u r r e n t s t a t u s [p] == WORKER STATUS SPLIT
10 // find a worker with status ‘‘idle’’, abort otherwise

11 in t t a r g e t i d := f i n d f i r s t i d l e p r o c e s s o r a b o r t () ;
12
13 // send target id to process p

14 s e n d t a r g e t i d (p , t a r g e t i d)
15
16 // update status of target process from ‘‘idle’’ to ‘‘in progress’’

17 c u r r e n t s t a t u s [t a r g e t i d] := WORKER STATUS PROGRESS
18
19 // receive new split variables from p

20 r e c e i v e s p l i t v a r s (p)

Listing 4.3: Pseudocode for handle communication BDD split() from the master’s
perspective

28

4.3. FINDING THE SPLIT VARIABLE

4.3 Finding the Split Variable

Whenever a worker needs to split its BDD (because it became too large), one or
multiple split variables must be determined to divide the BDD into partitions.
In order to generate k partitions, k − 1 split variables are necessary. When k

partitions are created, the splitting worker keeps one partition and sends k − 1
partitions to other workers. However, more than two BDD partitions are never
created in a single step, but to create multiple partitions, the BDD φ (and its
partitions) will be divided in two parts multiple times. For instance, when three
partitions must be generated, first the initial BDD will be split along variable x.
For this split variable x, one partition contains all nodes that are reachable via x
and the other partition contains all nodes that are reachable via ¬x. In the next
step, one of these partitions (e.g. the ¬x-part) will again be split into two parts
along variable y. This means that we now have three partitions: φ1 = φ ∧ x,
φ2 = φ ∧¬x ∧ y and φ3 = φ ∧¬x ∧¬y, where each has its own split function.
Figure 4.4 shows how two BDD partitions of the BDD given in figure 2.4 might
look like.

Figure 4.4a shows the partition φ∧ x, which contains all BDD nodes of the
initial BDD φ that are reachable via high (positive) edges of split variable x.
Low edges of x in the initial BDD now lead to 0. Figures 4.4b and 4.4c show
the counterpart of Figure 4.4a. Here, all high edges of variable x lead to 0 and
the BDDs contain all nodes that were reachable via low edges of x in the initial
BDD φ. The BDD of Figure 4.4b is still unreduced, while in Figure 4.4c all
redundant nodes are removed. In the unreduced version, both nodes on level
x have high and low edges leading to the same nodes, so they can be merged.
This leads to the fact that the top node becomes redundant, because both its
edges lead to the same node. This unreduced version shown in Figure 4.4b is
actually never created and is included here for illustration purposes only. When
BDD operations are performed on BDDs with Sylvan, the resulting BDD is kept
reduced at all time and duplicate nodes are never created.

Given Figure 4.4 (especially Figures 4.4a and 4.4c) we can observe that
there are many possible ways to split the initial BDD, leading to different re-
sults with respect to (1) node distribution, (2) duplicate nodes and (3) node
reduction:

(1) The left partition contains 11 nodes, while the right one contains 7 nodes.

(2) There is one duplicate node at the top of the BDDs (left x node) and one

29

4.3. FINDING THE SPLIT VARIABLE

x x

10

φ∧ x

(a) Left partition (φ∧ x)

x x

10

φ∧¬x

(b) Right partition (φ∧¬x)

x

10

φ∧¬x

(c) Reduced right partition

Figure 4.4: Partitioned BDD φ with split variable x

at the bottom.

(3) The right partition could be reduced by two nodes.

Finding a suitable split variable is essential for the overall performance of
the reachability analysis using vertical partitioning. An optimal split variable
splits the BDD into two partitions where

1. one partition has approximately |φ|k and the other has approximately |φ| −
|φ|
k nodes, where |φ| is the number of nodes in the initial BDD and k is the

number of desired partitions,

2. the number of duplicate nodes (redundancy) is as low as possible and

3. the partitions can be reduced, such that the total number of nodes de-
creases.

In [8] an algorithm has been developed to find a good split variable with
respect to the above criteria (see Listing 4.4). This algorithm uses the following
function to determine the cost of a given partitioning of BDD φ along variable v.

cost(φ,v,α) = α ∗
MAX(|φv |, |φ¬v |)

|φ|
+ (1−α) ∗

|φv |+ |φ¬v |
|φ|

(4.1)

The first part, MAX(|φv |,|φ¬v |)
|φ| , gives a measure of the reduction achieved by the

partition (criterium 3), while the second part, |φv |+|φ¬v ||φ| , gives a measure of the

30

4.3. FINDING THE SPLIT VARIABLE

number of shared BDD nodes (redundancy) in φv and φ¬v (criterium 2). The
weight of both parts of the function depends on the value of α, which has to
be between 0 and 1. A low α results in a low weight of the first (reduction)
part and a high weight of the second (redundancy) part. As α increases, the
weight of the first part increases and the weight of the second part decreases.
The value of α is reset after each search for a split variable.

Equation (4.1) only effects criterium 2 and 3, the redundancy and the re-
duction of the partitioning. The partitioning algorithm (Listing 4.4), however,
also takes criterium 1, the node distribution into account. First, the value of
α (which is needed in the cost function) and a step variable ∆α will be set to
min(0.1, 1k), where k is the number of partitions we want to achieve. Then, on
line 2, the best split variable best var of all variables v ∈ φ with the given BDD
φ and α is determined. Because α is initially low, the cost function will give
most weight to the number of duplicate/shared nodes of the partitions.

At this point it may be that |φ1| ≈ |φ| and |φ2| ≈ 0. Therefore, the split
variable will be improved – if possible – in the following while loop (rows 3 to
5) to achieve a more balanced split. Because we want the two partitions to be of
size |φ|k and |φ| − |φ|k (see criterium 1), a threshold variable δ is set to |φ|k and will
be used in the while condition. According to [8], when the redundancy of the
split is small and one of the partitions is of size δ, then the other partition is very
likely of size |φ| − δ. From this follows that we want to find a split variable for
which the larger partition of the split is smaller or equal to |φ|−δ. The first part
of the while condition, max(|φ∧best var |, |φ∧¬best var |) > |φ|−δ, checks if this
property is fulfilled. When no such split can be found, α will be increased by ∆α

which equals min(0.1, 0.1k) and therefore the reduction part’s weight of the cost
function increases. This will be repeated until either a suitable split variable is
found or alpha becomes 1, which means that the weight of the reduction factor
is maximal.

Note that although processing the while loop may take up to max(k,9) it-
erations with each |V | processing steps to calculate the minimum cost for each
variable, where |V | is the number of variables in φ, the total processing time
of select var() does not increase significantly due to the while loop, because
|φ∧ best var | and |φ∧¬best var | are only computed once.

31

4.4. EXCHANGING NON-OWNED STATES

1 α , ∆α := min(0.1,1/k)
2 δ := |φ|/k
3 b e s t v a r = the variable v with minimal cost(φ,v,α)
4 while ((max (|φ ∧ b e s t v a r | , |φ ∧ ¬b e s t v a r |) > |φ | − δ) ∧ (α ≤ 1))
5 α := α + ∆α

6 b e s t v a r := the variable v with minimal cost(φ,v,α)
7 return b e s t v a r

Listing 4.4: Pseudo code for select splitvar(φ) which searches for a split variable best var

that can be used to divide the given BDD into two partitions with desired sizes,
minimal redundancy, and maximal reduction

4.4 Exchanging Non-Owned States

During reachability analysis it is very likely that a process will encounter non-
owned states. These are states that belong to one or more other partitions. To
define these states, we introduce split functions which are essentially a single or
a conjunction of multiple split variables. Every partition φ′ of an initial BDD φ

has its own unique split function X such that the conjunction of φ and X gives
the partition φ′. On the other hand, the union of all partitions except φ′ equals
the conjunction of φ and the negation of X. A more formal definition of split
functions is given in Definition 8.

Definition 8 (Split function). A split function X : Bn→ B of BDD (sub-)partition
φi of an initial BDD φ is a Boolean function over the set of variables {x1, . . . ,xn} of
BDD φ, for which

φi = φ∧X

and
∨

1≤j≤n,
j,i

φj = φ∧¬X

Additionally, for every BDD φ with split function X the split functions of its par-
titions φ1 = φ ∧ x and φ2 = φ ∧ ¬x with split variable x are X ′1 = X ∧ x and
X ′2 = X ∧¬x respectively.

Now that we have defined split functions, we will describe non-owned states
more precisely and explain why it is important that other partitions know about
these states. Figure 4.5 shows an example of how the BDD from Figure 4.4c (in
the following referred to as φ′) might look like after one reachability step. Ini-
tially, φ′ equals φ ∧ X, where φ is the BDD from 4.4 and X = ¬x is a split
function to create φ′ from φ. At this point, φ′ ∧¬X = false.
After one reachability step (the resulting BDD will be referred to as φ′R1) using
the transition relation ψ, for some of the successors of φ′ the negation of the

32

4.4. EXCHANGING NON-OWNED STATES

x

10

φ∧¬x
φ∧ x

Figure 4.5: Resulting BDD φ′R1 after one reachability step on the partition φ′ = φ∧¬x

split function, ¬X, is true (see the green, left part of Figure 4.5). These succes-
sor states are called non-owned states of φ′R1, while states for which X is true
are called owned states.

Definition 9 (Non-owned states). Let φ′ be a BDD partition φ∧X of BDD φ with
split function X : Bn→ B, then the non-owned states of φ′ are all states of φ′ for
which ¬X is true. Therefore, φ′ ∧¬X gives the BDD that contains all non-owned
states of φ′.

With the owned states of φ′R1 nothing needs to happen. However, the non-
owned states need to be sent to other partitions of the initial BDD, because
it might be that these states could only be explored via the states in partition
φ′. On the other hand, partition φ′R1 might receive states for which X is true
from other partitions. After all non-owned states have been exchanged, every
partition will only keep their owned states and merge its received states with
its own state space. For φ′R1 this means that φ′R1 := (φ′R1 ∧X)∨R, where R is
the BDD of received states. After this, φ′R1∧¬X = false and φ′R1∧X = φ′R1. How
the exchanging procedure works will be explained in the following. Note, that
the set of non-owned states only needs to be computed for the newly discovered
states during this iteration of reachability analysis (variable Next in Listing 2.1)
and not for the entire state space of φ′R1. Initially the BDD of all reachable states
(Reachable) does only contain owned states. After this, only owned states will
be added to this BDD, because non-owned states are removed before merging
Next with Reachable.

33

4.5. UPDATING THE LIST OF SPLIT VARIABLES

We implemented the calculation and exchange of non-owned states as shown
in Listing 4.5.

1 exchange non owned (BDD next) {
2 BDD r e s u l t = f a l s e ;
3
4 // send non−owned s t a t e s
5 fo r each process p , p , q
6 BDD other ;
7
8 // determine pa r t s owned by worker p by using the s p l i t
9 // function of p

10 i f (s p l i t f u n c t i o n s [p] == true)
11 other = f a l s e ;
12 else
13 other = next ∧ s p l i t f u n c t i o n s [p]
14
15 // send non−owned pa r t s to process p without wai t ing
16 // fo r p to r e c e i v e the message
17 bdd ibsendto (other , p)
18
19 // r e c e i v e owned s t a t e s from other workers
20 f o r each process p , p , q
21 BDD tmp = bdd brecvfrom (ANY SOURCE) ;
22 r e s u l t = r e s u l t ∨ tmp ;
23
24 // wait u n t i l a l l non−owned s t a t e s have been
25 // rece ived by other proces se s
26 f o r each process p , p , q
27 w a i t u n t i l r e c v (p) ;
28
29 return r e s u l t ;

Listing 4.5: Pseudocode for exchange nonowned(BDD next)

4.5 Updating the List of Split Variables

Every process that is involved in the reachability analysis has a local list of split
variables or split functions, stored as BDDs. For each entry in this list, also the
ID of the process is stored which a specific split function belongs to.

Every time when new BDD partitions have been created, this list of split
variables has to be updated. In order to minimize the communication that is
needed to update all lists, the processes are only notified about the variables
that have changed, or more specific, have been added to a split function. This
happens according to a specific protocol.

In Listing 4.2 on line 17 a splitting worker sends the split variable it used

34

4.5. UPDATING THE LIST OF SPLIT VARIABLES

to generate the partitions and also its own and the target process ID to the
master. The master receives a list of four entries (target ID, split variable target
ID, worker ID, split variable worker ID – in this order) for every split that a
process does. It stores all lists that it receives during one reachability step in
a larger list. In the end of each reachability step the master sends this list to
each process (see line 33 of Listing 4.2). Figure 4.6 visualizes the design of
the list that the master sends. The gray boxes on top of the list indicate which
entries belong to one split and which process sent the information. These are
not stored by the master but are only shown for clarification purposes.

process 2process 1

split 1 split 2 split 3

t id t sv s id s sv t id t sv s id s sv t id t sv s id s sv . . .

Figure 4.6: List of new split variables

The length of the list that the master sends is always a multiple of four. The
processes receive this list and add the new split variables to their local list of
split variables (L) as follows:

For each set of four elements

• Read the target process ID (t id)

• Read the target split variable (t sv) and transform it into a BDD (target
BDD).

• Merge the target BDD with the current entry for the target ID in L and
store the result as the new split BDD of the target process (L[t id] =
L[t id] ∧ target BDD).

• Read the source process ID (s id).

• Merge L[t id] with the current entry for the source ID in L and store the
result as the new split BDD of the target process (L[t id] = L[t id] ∧
L[s id]).

• Read the source split variable (s sv) and transform it into a BDD (source
BDD).

35

4.6. DETERMINING THE STATUS AND TERMINATION

• Merge the source BDD with the current entry for the source ID in L and
store the result as the new split BDD of the source process (L[s id] =
L[s id] ∧ source BDD).

Due to the fact that the process with the target ID has received a partition
from the process with the source ID, its received partition will only contain
states that have been in the BDD of the target process before the split. These
are states for which L[s id] is true. This is why the split function of the target
process (before the split) has to be merged with the split variable (or split BDD)
that is used to create the target’s partition.

4.6 Determining the Status and Termination

In each iteration the master process has to determine if all processes are fin-
ished with their calculation, if some are still running or if a BDD needs to be
partitioned. To be able to do this, every worker sends his status to the master
once in each iteration. We chose to use four statuses for this purpose:

1. idle

2. out of work

3. in progress

4. needs to split

The first two statuses, idle and out of work, essentially mean the same: A
process with this status did not explore new states during the last iteration
of reachability analysis. Neither did it extend its state space itself, nor has it
received states from other processes during the exchange of non-owned states.
The difference is that an idle process has never received a BDD (its BDD is still
empty or false), while a process that is out of work has a BDD, but did not dis-
cover more states. An idle process can only receive states/a BDD when another
process has sent a partition of its BDD. A process that is out of work, on the
other hand, might receive states in a following iteration, when other processes
send their non-owned states. We distinguish between these two, because in
our implementation every process can receive only one BDD during the entire
computation. We chose for this implementation, because we expect a processes’
working memory is likely to be not large enough for receiving more than one

36

4.7. IMPLEMENTATION DETAILS

BDD partition, given that the split happens only when a BDD does not fit in a
single machine’s working memory any more.

The third status, in progress, means that a process has explored new states
and its state space is still smaller then the maximum number of allowed nodes.

When a worker has the fourth status, needs to split, he has discovered new
states and the size of its BDD exceeds the maximum number of allowed nodes.
This status signals the master that it has to perform additional actions in the
next step such as sending target process IDs for BDD partitions to the worker.

After all processes have sent their statuses, the master determines an overall
status and sends a signal to continue or terminate back to the processes. There
are three outcomes:

• At least one process sent needs to split: Notify workers to continue. Han-
dle splitting procedure in the next step. Abort if no idle process is left.
Otherwise, if

• at least one process sent in progress: Notify workers to continue. Analysis
is not done, yet. Otherwise,

• all processes sent either idle or out of work: Notify workers to terminate.
The analysis is done.

4.7 Implementation Details

In this section we will provide some information about our implementation of
the algorithm described above.

In our implementation we combined locally running versions of Sylvan with
a BDD partitioning approach. For this, we tried to reuse as much code from
Sylvan as possible. With respect to the splitting procedure there was no ex-
isting code that we could base our implementation on. This is why we have
implemented this part from scratch. As the communication interface between
processes we used MPI, the Message Passing Interface. One advantage of MPI
is that it can handle communication between processes on one machine as well
as communication between processes on different machines without the need
to change any of the code.

We used C++ for our implementation since it is fast and compatible with
both Sylvan and MPI.

37

4.7. IMPLEMENTATION DETAILS

4.7.1 Functionality from Sylvan

In our implementation several features of Sylvan have been used. The goal
was to minimize effort of reprogramming and to take advantage of the achieve-
ments of Sylvan. As two basic features we took the cache and unique nodes
table. These functionalities provide fast access and computation on BDDs. Fur-
thermore, the unique table supports garbage collection, which releases us of
tedious memory management during BDD operations. For a closer look on the
details of Sylvan we refer to [4].

Next to the cache and unique table, we could reuse Sylvan’s implementa-
tions of BDD operations and node creation. Common commands of Sylvan that
we adopted in our work are and, or, not and RelProd (also see [4]).

Two more functions that are important are satcount and nodecount. The
former counts the number of satisfying variable assignments of a given BDD,
the latter counts all nodes in it. While satcount is usually only called after
the analysis, this is not true for nodecount. In our design, we need to know
the current size of every BDD partition in each iteration of the analysis. This
means that every worker calls this function at least once per reachability step.
In addition to this, if a worker needs to split its BDD, the splitting procedure will
be initialized, which bases its cost function on the sizes of both resulting BDD
partitions. Every time a worker searches for a split variable, the nodecount
function may be called as many times as there are levels in a given BDD. In
other words, as the nodecount function is likely to be called very often during
an analysis run, it is vital for its algorithm to be as performant as possible. In
vanilla Sylvan this function could not be executed in parallel. This is why we
implemented our own version to be able to calculate the size of two BDDs in
parallel. The reason why Sylvan can count the nodes of only one BDD at a time
is that there exists only one marker type for visited nodes. By adding an extra
marker type the algorithm can now distinguish which nodes for which count
run are already visited.

4.7.2 Sending and Receiving BDDs with MPI

For the communication within the network we used Open MPI, an open source
implementation of the Message Passing Interface. This API bundles a tool set of
common purpose high-speed data transmission operations. One special prop-
erty of MPI is that it can create processes and it does not matter how these
are distributed over machines. The software frees the developer from concerns

38

4.7. IMPLEMENTATION DETAILS

regarding the underlying design and design changes of the network. MPI pro-
vides an abstraction layer which eliminates the need for the programmer to
distinguish between processes on the same machine and processes on different
machines.

Open MPI has many built-in functions of which MPI Send, MPI Recv, MPI Isend,
MPI Wait and MPI Bcast have been used in our implementation. Further details
on these functions can be found on [35,36].

39

Chapter 5

Experimental Evaluation

In order to evaluate the performance of the introduced algorithms, we will run
our tests on models of the BEEM database and well-known Petri Nets. We chose
these models, because they are often used in related work, which makes it easier
to compare the performance of our approach with others. In this chapter we
will present and discuss the benchmark results of our implementation. First
the results will be reviewed in relation to existing work. Then, we look at
performance and performance variation of our implementation in more detail.
From this point on we will use the name PartBDD for our implementation using
partitioned BDDs.

All test runs have been done on the DAS-5 compute cluster (Distributed ASCI
Supercomputer 5) [39]. The cluster consists of 68 dual-eight-core compute
nodes (ASUS nodes with Intel® Xeon® E5-2630v3 CPUs, 2.4 GHz). Each node
has 64 GB working memory and the operating system is CentOS Linux, release
7.2. The nodes are linked via Infiniband for high-speed interconnection.

During all test runs we utilized 16 cores on each machine of the cluster if
not stated otherwise. Since we assigned exactly one process to each machine,
this also means that each process had 16 threads. We compare our results
with documented test runs of Sylvan and DistBDD. All analyses with Sylvan
are done on a single machine with one or 16 threads. We refer to the single-
core execution with Sylvan linear or just linear and with Sylvan to its 16-core
execution. When we compare our results to those of DistBDD, we always refer
to analyses with 16 threads and a varying number of machines.

The results show that the choice of split parameters – split size and split
count – is crucial for the performance of our implementation. These parameters
determine at which size a BDD will be divided and – when reaching this limit –
into how many parts the BDD is split. The choice of both values can influence

41

the total execution time of reachability analysis significantly.
In many cases computations with our program were slower than those done

with Sylvan or DistBDD. However, for some models our implementation reached
speedups of up to 5.3 compared to DistBDD and 2.5 compared with Sylvan
with specific configurations of split size and split count. For the comparison
with DistBDD we only used computations where our approach used at least
two worker processes – executions with a single worker process do not involve
partitioning, which is the essential feature of our algorithm. We also compared
our results with a linear analysis (using Sylvan on one machine with a single
thread). In this case speedups of up to 29 could be observed.

The communication overhead between idle machines/processes is negligible
as we will see in greater detail in section 5.3. We define idle machines/processes
as those that did not receive a BDD to analyze according to the description in
section 4.1. As opposed to this, active machines or (worker) processes are those
with a status different from idle. The terms non-idle and active processes are
used interchangeably in the following sections.

In general, the number of total nodes at the end of an analysis does not
correlate with the number of active workers. The increase or achieved reduc-
tion seems to depend on the structure of the model instead of the number of
generated partitions. For some models a significant reduction of nodes could
be achieved compared to the number of final nodes in a single machine compu-
tation. Our results show a maximum reduction of nearly 40%, from 1593166
nodes with a single active worker to 957244 nodes with 7 active workers and a
split count of 4.

The tests also show that it is not beneficial to partition very small BDDs. By
very small we mean that reachability analyses on those models finish within a
few milliseconds to seconds. In these cases splitting the BDD and exchanging
partitions takes more time than an analysis on a single machine would take.

The main reason for unsuccessful reachability analyses was an unsuitable
combination of split size and split count. When the split size is chosen too small,
the split count too large or both, there are no machines left where BDD parti-
tions could be send to. Another reason for unsuccessful runs were timeouts.
For most analyses we set the timeout to 5 hours. Especially the larger models
did not even split, before this time limit had been reached. On the other hand,
when they did split (smaller split size), in most cases they had to split very of-
ten, outrunning the number of available machines/worker processes such that
the program stopped.

42

5.1. OVERALL PERFORMANCE

5.1 Overall performance

Compared to a linear analysis PartBDD reached significant speedups of up to 29.
The best achieved results, compared to a linear execution, are shown in Fig-
ure 5.1. The figure plots execution times against the number of utilized ma-
chines for Sylvan (1 in this case). For PartBDD, the x-axis indicates the number
of worker processes that are involved in the computation and not the number
of machines that are available. We will explain this in section 5.3. Every anal-
ysis with n non-idle/active worker processes can be executed on n+ 1 or more
processes (n worker processes and one master process). Since we chose to as-
sign one process to each machine, “n non-idle worker processes” means, that an
analysis was done on at least n+ 1 machines. Our implementation reached its
minimum execution time for model collision4 with 14 active worker processes.

0 6 12 18 24 30
number of machines/

non-idle worker processes

0

50

100

150

200

250

300

tim
e

(s
)

collision4 linear
PartBDD
Sylvan linear

Figure 5.1: Model (collision4) with the best achieved speedup with respect to linear analysis.
Linear analysis means that Sylvan performed the computation on a single machine
and a single core. PartBDD utilized 16 cores on each machine. The model was
analyzed several times with different configurations of split size and split count.

In general, PartBDD was significantly faster than the linear execution. For
every analyzed model there was at least one run with our implementation which
had been faster. However, especially for small models, some of PartBDD’s exe-
cution times were higher than the linear one’s due to unsuitable split sizes or
split counts.

The best speedups that our analyses reached compared to Sylvan and Dist-
BDD were 5.3 and 2.5 respectively. For most models the execution times using
DistBDD decrease as the number of machines increases. An exception is the
computation on one machine, which is often faster than the distributed analy-

43

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

2

4

6

8

10

12

14
tim

e
(s

)
adding2

PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

50

100

150

200

250

300

tim
e

(s
)

adding6
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0
1
2
3
4
5
6
7

tim
e

(s
)

anderson1
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

500

1000

1500
tim

e
(s

)

anderson3
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

5

10

15

20

25

30

tim
e

(s
)

anderson6
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

50

100

150

tim
e

(s
)

anderson8
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

0.5

1

1.5

tim
e

(s
)

at1
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

20

40

60

80

100

tim
e

(s
)

at6
PartBDD
DistBDD
Sylvan

Figure 5.2: Benchmark results compared to Sylvan and DistBDD. Each plot shows multiple
analyses (with 16 threads per machine) of a single model. For Sylvan and Dist-
BDD the x-axis gives the number of utilized machines, for PartBDD it indicates the
number of active worker processes at the end of an analysis.

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

2

4

6

8
tim

e
(s

)
collision3

PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

20

40

60

80

100

tim
e

(s
)

collision4
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0
50

100
150
200
250
300
350
400

tim
e

(s
)

collision5
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0
0.5

1
1.5

2
2.5

3
3.5

tim
e

(s
)

lamport2
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

10

20

30

40

50

60

tim
e

(s
)

lamport6
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

20

40

60

80

tim
e

(s
)

lamport8
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0

0.5

1

1.5

2

tim
e

(s
)

scheduleworld1
PartBDD
DistBDD
Sylvan

1 2 4 8 16 32
number of machines/

non-idle worker processes

0
10
20
30
40
50
60
70
80

tim
e

(s
)

scheduleworld3
PartBDD
DistBDD
Sylvan

Figure 5.2: Benchmark results compared to Sylvan and DistBDD. (continued)

5.2. NUMBER OF FINAL NODES

ses. In contrast, we could not observe a correlation between the execution time
and the number of active worker processes using PartBDD. Figure 5.2 visual-
izes a selection of our benchmark results and compares them to DistBDD and
Sylvan. The performance of PartBDD compared to DistBDD and Sylvan varies
per model and configuration. We based the selection of results on different
aspects such as the size of the model and the relation between analysis configu-
rations and execution time. In this way, we try to cover all different effects and
observations like positive, negative or no correlation between parameters.

Most of the time PartBDD was slower than Sylvan with 16 threads, which
does not surprise, since Sylvan is used for the reachability analyses and PartBDD
adds additional communication between processes. However, we were able to
find configurations (split size and split count) for which PartBDD was faster
than Sylvan. This is the case for models adding6 and collision4.

The best results compared to DistBDD were achieved for models adding6,
anderson1, collision3, and collision4. The poorest performance can be observed
for models anderson6, at1, lamport2, scheduleworld1 and scheduleworld3. An-
derson8 is one of the models for which PartBDD was slower than DistBDD for
most runs. Nevertheless, with a good configuration, results could be achieved
that came close to the results of DistBDD (see Figure 5.2, anderson8, 22 non-
idle worker processes). We could not relate the results to properties of the
mentioned models like their size of number of final states.

Our benchmark results also show that the analyses on one machine – this
means without partitioning – were often the fastest. In many cases there is a
steep rise in execution time when going from a single worker to multiple work-
ers. The time difference between single and multiple worker executions is often
larger than the variation within the multiple worker executions (e.g. anderson1
and anderson6). However, this is not true for all models (e.g. anderson3 and
collision4).

5.2 Number of Final Nodes

When partitioning a BDD, our algorithm searches for the best split variable to
create a partition. The choice of this split variable, but also the general structure
of a BDD influences the total number of nodes that are needed to represent all
partitions. For some models partitioning might not be possible without creating
many duplicate nodes. In order to draw conclusions about our approach we

46

0 6 12 18 24 30
number of non-idle
worker processes

0

100000

200000

300000

400000

500000

600000

fin
al

 n
od

es

adding6

0 3 6 9 12 15
number of non-idle
worker processes

0

5000

10000

15000

20000

25000

30000

fin
al

 n
od

es

anderson1

0 6 12 18 24 30
number of non-idle
worker processes

0
200000
400000
600000
800000

1000000
1200000
1400000
1600000

fin
al

 n
od

es

anderson3

0 4 8 12 16 20
number of non-idle
worker processes

0

200000

400000

600000

800000

1000000
fin

al
 n

od
es

anderson8

0 3 6 9 12 15
number of non-idle
worker processes

0
100000
200000
300000
400000
500000
600000
700000
800000

fin
al

 n
od

es

at6

0 6 12 18 24 30
number of non-idle
worker processes

0

50000

100000

150000

fin
al

 n
od

es

collision4

Figure 5.3: Plots of final number of nodes against the number of active worker processes. The
final number of nodes is the sum of all worker’s BDD nodes at the end of an analysis.

300000
350000
400000
450000
500000
550000
600000

number of final nodes

20

30

40

50

60

70

80

tim
e

(s
)

adding6

24000

26000

28000

30000

32000

number of final nodes

1

2

3

4

5

6

tim
e

(s
)

anderson1

800000

1000000

1200000

1400000

1600000

number of final nodes

500

1000

1500

tim
e

(s
)

anderson3
200000

400000

600000

800000

1000000

number of final nodes

0

50

100

150

tim
e

(s
)

anderson8

400000

500000

600000

700000

800000

number of final nodes

20

40

60

80

100

tim
e

(s
)

at6

40000
60000
80000
100000
120000
140000
160000
180000

number of final nodes

20
30
40
50
60
70
80
90

tim
e

(s
)

collision4

Figure 5.4: Plots of execution times against the final number of nodes. The final number of
nodes is the sum of all worker’s BDD nodes at the end of an analysis.

5.3. COMMUNICATION OVERHEAD

measured the number of final nodes of each execution (this is the sum of the
final nodes of each partition) and looked at two relations:

1. The number of nodes depending on the number of partitions.

2. The execution time depending on the number of final nodes.

These relations are visualized in Figures 5.3 and 5.4 for a selection of models.
Regarding the correlation of the final number of nodes and the number of

active worker processes/BDD partitions (Figure 5.3), it is not possible to gener-
alize any conclusions for all models. Model anderson1 shows a slight increase
of nodes for more partitions, while the increase of nodes is stronger for model
collision4. The number of nodes in adding6 and anderson8 rises from 1 to 4
partitions, stays nearly constant for a medium number of partitions and rises
again for more than 13 to 18 partitions. There is no tendency of an in- or de-
creasing number of nodes for model at6. Finally, the number of final nodes does
even decrease for anderson3 for the first partitions and stays constant after that.

Figure 5.4 shows that there is also no clear correlation between final num-
ber of nodes and execution time. For instance, analyses on adding6 performed
better when more nodes were created (in this case this also means more par-
titions, see Figure 5.3). The execution time of anderson1 significantly rises
with the number of nodes in the range of 26000 to 31000 nodes. Consider-
ing the total execution time of at most 6 seconds and the increasing number
of nodes with the number of partitions as shown in Figure 5.3, this difference
could be caused by the splitting time instead of number of nodes. Addition-
ally the execution time with less than 18000 nodes is not slower or faster than
the executions with more nodes. Also models anderson3 and at6 show that
the number of nodes does not necessarily influence the execution time, while
collision4 indicates that a (nearly) constant number of nodes can still result in
varying execution times.

5.3 Communication Overhead

5.3.1 Network Traffic Caused by Idle Workers

In our implementation all initialized worker processes need to communicate
with each other and with the master process a few times in each iteration of the
analysis. This is necessary even if workers are still idle. We measured the com-
munication overhead induced by idle processes to find out if the total execution

49

5.3. COMMUNICATION OVERHEAD

time is influenced by the number of initialized worker processes, especially in
the case that not all processes are needed due to a low number of splits.

We measured this by repeatedly executing the same analysis of the same
model with a high split size (such that no partitions would be created) and vary-
ing number of machines/worker processes. Since no partitioning takes place
due to the high split size the value of the split count parameter is not important
in this case. A selection of the results is shown in Figure 5.5. The observed
execution times indicate that about one second difference can be attributed to
the number of idle workers, regardless of the size of the model. For very small
models (see lamport2) this can cause a significant increase of execution time,
since the entire analysis on one machine takes less than 0.4 seconds. For larger
models this variation can be neglected since it only makes up a small fraction
of the total execution time (see adding4). Even if the number of machines is in-
creased even more and the communication time caused by idle processes grows
as well, this amount will not significantly change the total execution time.

2 4 8 16 32
number of machines

18

19

20

21

22

23

tim
e

(s
)

adding4

2 4 8 16 32
number of machines

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

tim
e

(s
)

lamport2

Figure 5.5: Execution times plotted against the number of machines for runs with a single
active worker process. This visualizes the communication overhead caused by idle
workers. Each dot represents a single run with x machines. Since at least one
worker and one master are needed for every analysis, the minimum number of
machines is 2. This means that an analysis using x machines was done by one
master process/machine, one active worker process/machine and max(0,x−2) idle
workers.

5.3.2 Network Traffic Caused by Active Workers

The approach mentioned above analyzes the network traffic caused by idle pro-
cesses. We also tried to measure latency of the network and message sizes
caused by active workers (e.g. due to exchanging non-owned states). For this

50

5.3. COMMUNICATION OVERHEAD

purpose we chose five models and six different configurations and we analyzed
each model ten times with each configuration. This is 60 runs per model in to-
tal. For the chosen models we knew in advance which split size would result in
which number of splits. Note that this is the only time that we used a number
of threads per process different from 16. The six configurations differ in (1)
network design, (2) split size and (3) split count.

(1) Network design:

(a) Analysis on 1 machine with 4 processes (1 master, 3 workers) and 4
threads per process (16 total)

(b) Analysis on 4 machines (1 master, 3 workers) with each 1 process
and 4 threads per process (16 total)

(2) Split size:

(a) High split size such that the BDD will not be partitioned

(b) Lower split size such that the BDD will be partitioned exactly once

(3) Split count:

(a) Split count 2 such that two worker processes are active after one split

(b) Split count 3 such that all three worker processes are active after one
split

To distinguish the different designs, we will use the notation T (m,n) in the
following, where m indicates the number of machines and n the number of
active worker processes. The six combinations of configurations are as follows:

In combination with different split sizes and split counts both network de-
signs produce one, two and three BDD partitions (and active worker processes)
for different runs of each model.

Using all six setups we can compare execution times of both network de-
signs for each combination of split size and split count independently to see if
communication between machines is more expensive than communication on
one machine. Furthermore we can compare both designs with respect to the
changes of computation time depending on the number of partitions.

The benchmark results of the approach described above are shown in Fig-
ures 5.6 and 5.7. The first figure combines the result with the corresponding

51

5.3. COMMUNICATION OVERHEAD

network design split size split count T (m,n)

(1a) 4 processes on a sin-
gle machine, 4 cores per
process

(2a) 50.000.000 – ((3a) 2, does not split) T (1,1)

(2b) 500.000
(3a) 2 T (1,2)

(3b) 3 T (1,3)

(1b) 4 processes dis-
tributed over 4 machines,
4 cores per process

(2a) 50.000.000 – ((3a) 2, does not split) T (4,1)

(2b) 500.000
(3a) 2 T (4,2)

(3b) 3 T (4,3)

final node counts. The second shows the execution times together with the time
that was needed to partition the BDD. This includes selecting one or two split
variables – depending on the split count – and partitioning the BDD using the
determined variable(s).

There are several aspects we can observe. First of all, model adding6 is the
only one that shows a decrease in execution time when the number of partitions
increases. All other model’s executions were fastest with a single worker process
(T (x,1)). For those models the execution time increases significantly as we
compare the analyses of one worker with those of multiple active workers. The
difference between two and three active workers is a lot smaller – if there is any
at all.

The analyses on four machines (T (4,x)) were almost always faster than
those on a single machine (T (1,x)) regardless of the fact that the processes
in both designs had the same resources available (4 cores). The differences in
performance are the least without partitioning (T (x,1)) and increase for two
and three partitions (T (x,2) and T (x,3)) (except for adding6). We explain the
better overall performance of the design with four machines with a better work
load balancing. When we assume that idle workers do only minimal work, a
computation with one active worker process uses the capacity of up to 8 cores
(4 for the active worker and 4 for the master). In our case this is a half of the
available cores on a single machine (T (1,1)). If distributed over multiple ma-
chines, only 4 cores would be occupied (T (4,1)). When the number of active
workers is three, all cores of the machine of the computation with only one
machine (T (1,3)) are utilized. As opposed to this, in the other design (T (4,3))
only a quarter of each machine’s cores is used. Because the processing speed
(especially memory access speed) does not scale linearly with the number of

52

5.3. COMMUNICATION OVERHEAD

utilized cores on a machine, this could explain the faster executions on four
machines although communication overhead rises with increasing number of
machines.

The number of final nodes increased for all models when more partitions
were created. While the number of final nodes of model adding6 only changed
by a factor of less than 1.1, the final node count of models anderson8 and lam-
port7 is nearly 1.5 times as much for three partitions (T (x,3)) as for a single
partition (T (x,1)). Also creating three partitions requires more time than creat-
ing two partitions. This splitting time, however, does not increase linearly, but
splitting a BDD into two partitions takes approximately 2

3 of the time it takes to
create three partitions. No significant difference can be observed between both
network designs. The splitting procedures took up to 12 seconds depending on
the model and split count. For some models this is a large proportion of the
time an analysis without splitting lasts in total.

If we assume the communication, especially the exchange of non-owned
states to be responsible for the increase of processing time, we would expect
a correlation between the number of final nodes and the execution time. Of
course, the maximum number of nodes during the analysis (peek) would be a
more accurate value, but since we did not measure BDD sizes in each iteration
of the calculation, we use the final number of nodes for this purpose. The higher
the increase of final nodes, the more duplicate nodes were created through par-
titioning and the more communication between active workers is expected to be
necessary. More specifically, if network latency is the bottleneck, we also expect
the communication between machines (in the 4 machine design, T (4,x)) to be
more expensive than the communication within a machine (1 machine version,
T (1,x)), which would cause a faster increase of execution time in the design
with four machines when more partitions are created. As we compare the one
and the two worker computations in relation to those factors (processing time
and number of final nodes) we observe that the number of nodes as well as
the execution time of most models increases. However, while the difference in
execution time between both network designs is little or not available when no
partitioning is done, the analyses on four machines finished significantly earlier
than those on a single machine for the runs with two active workers (T (4,2)
and T (1,2) respectively). This is exactly the opposite of what we would expect
to observe, if the communication between machines via the network would be
the bottleneck. Even if the network latency attributes to the increase of exe-
cution time, this is compensated by a better load balancing in the case of four

53

1 2 3
number of partitions

100

150

200

250

300

350

tim
e

(s
)

adding6
1 machine
4 machines

no split
split count 2
split count 3

1 2 3

351000
381000

1 2 3
number of partitions

50

100

150

tim
e

(s
)

anderson8
1 machine
4 machines

no split
split count 2
split count 3

1 2 3

279000

396000

1 2 3
number of partitions

10

15

20

25

30

tim
e

(s
)

at5
1 machine
4 machines

no split
split count 2
split count 3

1 2 3

179000

207000

1 2 3
number of partitions

20

25

30

35

40

45

tim
e

(s
)

lamport6
1 machine
4 machines

no split
split count 2
split count 3

1 2 3

81000

90000

1 2 3
number of partitions

10
20
30
40
50
60
70
80

tim
e

(s
)

lamport7
1 machine
4 machines

no split
split count 2
split count 3

1 2 3

22000

33000

Figure 5.6: Comparision of analyses on one and four machines. The plots show the execution
time (large plots) and corresponding final number of nodes (small plots) against
the number of partitions for each model. The different markers indicate the net-
work design and split count. The split count equals the number of partitions and
active worker processes. Each setting was repeated ten times for every model.

1 2 3
number of partitions

100

150

200

250

300

350

tim
e

(s
)

adding6
1 machine
4 machines

no split
split count 2
split count 32 3

6
7
8

1 2 3
number of partitions

50

100

150

tim
e

(s
)

anderson8
1 machine
4 machines

no split
split count 2
split count 32 3

8
9

12

1 2 3
number of partitions

10

15

20

25

30

tim
e

(s
)

at5
1 machine
4 machines

no split
split count 2
split count 32 3

6
7
8

1 2 3
number of partitions

20

25

30

35

40

45
tim

e
(s

)
lamport6

1 machine
4 machines

no split
split count 2
split count 32 3

55

6

1 2 3
number of partitions

10
20
30
40
50
60
70
80

tim
e

(s
)

lamport7
1 machine
4 machines

no split
split count 2
split count 32 3

7
8
9

Figure 5.7: Comparision of analyses on one and four machines. The plots show the execution
time (large plots) and the corresponding split time (small plots) against the number
of partitions for each model. The different markers indicate the network design
and split count. The split count equals the number of partitions and active worker
processes. The split time is the time that the first active worker needed to select a
split variable and partition its BDD.

5.4. INFLUENCE OF SPLIT SIZE AND SPLIT COUNT

utilized machines. We see similar results for the runs with tree partitions. The
four machine design is still faster than the single machine design and the time
difference between both does not decrease with more partitions.

The increase of execution time could be caused by combination of the par-
titioning procedure (finding split variables and splitting the BDD), duplicate
work that has to be done due to additional nodes through partitioning, and idle
times of active workers.

5.4 Influence of Split Size and Split Count

As mentioned earlier, the choice of split size and split count has a great influence
on the performance of our implementation. In this section we will discuss some
of our benchmark results in detail with respect to these two parameters. In
order to minimize variation caused by other factors than split size and split
count, all reachability analyses that are used in this section are executed on 32
machines with 16 threads on each machine. We will show some selected results
in this section. More plots can be found in appendix A.

Over all reachability analyses there was no clear correlation between the
split size and execution time. For some models it seems to be beneficial to split
early, for others a high split size resulted in better performance. For most mod-
els similar execution times were possible with different split sizes, provided that
the split sizes were small enough such that the partitioning procedure would be
carried out at least once. There is also no significant correlation between split
count and execution time. However, some conclusions about the interaction of
split size and split count can be drawn.

In Figure 5.8 we plotted the execution times of two models against the split
count. For both models the split size is constant for all runs of that model
(1,000,000 for anderson3 and 500,000 for at5). These split sizes caused each
analysis to partition exactly once. The results of many other models are similar
to these ones. For every model and constant split size there seems to be one
best split count. To the left and to the right of this best number the execution
times increase. For instance, a split count of 3 would be optimal for anderson3
with the given split size, while at5 performs better with split size 4. We explain
the decrease of execution time (from split count 2 to the optimal split count)
by a better distribution of work. Also the partitioning/splitting time does not
increase linearly with the number of partitions to be created (split count), but

56

5.4. INFLUENCE OF SPLIT SIZE AND SPLIT COUNT

0 3 6 9 12 15
split count

200
220
240
260
280
300
320
340

tim
e

(s
)

anderson3
split size 1000000

nr of
splits

1

0 3 6 9 12 15
split count

14

16

18

20

22

tim
e

(s
)

at5
split size 500000

nr of
splits

1

Figure 5.8: Execution times plotted against the split count with a constant split size of
1,000,000 and 500,000 for models anderson3 and at5 respectively. In every run of
both models the split size was exceeded exactly once during each execution.

slower. Therefore, creating more partitions might be beneficial. The increase of
execution time for split counts higher than the optimal one could be explained
by additional splitting time on the one hand and the amount of duplicate work
and additional communication on the other hand. Also idle times might become
a problem. If too many partitions are created, the proportion of time for the
actual reachability analysis might decrease as compared to the amount of time
that the synchronization, communication with other workers and the duplicate
work takes.

Figure 5.9 shows results of analyses of model at7. The execution time is
plotted against the number of splits and the split count. Furthermore, two plots
show results with a split size of 500,000, the other ones with a split size of
1,000,000. Markers give information about split count and number of splits,
depending on which variable is used on the x-axis. The number of splits gives
the number of times that a BDD needed to be partitioned (exceeded the split
size). This means that in a run with e.g. 2 splits and a split count of 3, four split
variables had to be found during the entire analysis.

When the split size is 500,000, the execution time increases with the number
of splits and decreases as the split count increases. In this case, a higher split
count also results in more splits. From this we can conclude that a high split
count can be beneficial, if the partitions that are created are small or at least do
not grow fast during following iterations such that the high split count results
in less splits.

With a higher split size (1,000,000) at7 splits at most three times. The

57

5.4. INFLUENCE OF SPLIT SIZE AND SPLIT COUNT

0 2 4 6 8
number of splits

110
115
120
125
130
135
140
145

tim
e

(s
)

at7
split size 500000

split
count

2
3
4
6
8

0 2 4 6 8
split count

110
115
120
125
130
135
140
145

tim
e

(s
)

at7
split size 500000

nr of
splits

3
4
5
6
8

0 1 2 3 4
number of splits

80

90

100

110

120

tim
e

(s
)

at7
split size 1000000

split
count

2
3
4
6
8
15

0 3 6 9 12 15
split count

80

90

100

110

120

tim
e

(s
)

at7
split size 1000000

nr of
splits

2
3

Figure 5.9: Execution times plotted against the number of splits and split count with split size
500,000 and 1,000,000. The markers indicate the corresponding split count or
number of splits.

fastest computation is the one with a split count of 2 and 3 splits. Runs with
a higher split count had to partition two times and execution times increase
with the split count. The fact that the execution with split count 2 is fastest
– although it had to split three instead of two times – could be explained by
a better timing of the partitioning procedure. In this case, the first time the
BDD’s size reaches the split size only two partitions are created. This means
that only two workers are active, which need to exchange nodes and have to
wait for each other to finish an iteration (all workers need to synchronize, but it
is unlikely that idle workers finish after active workers). Only when a partition
again exceeds the size of 1,000,000 nodes, a third partition is created and an
additional worker will be active.

We can also observe that the analyses with a higher split size are faster for
this model.

For model collision4 (Figure 5.10) the differences between execution times
of runs with different split sizes are smaller than those of at7. As opposed to
model at7, here, a split count of 4 is the best choice for both split sizes. With

58

5.5. VALIDATION

split size 500,000 split count 3 increases the execution time significantly. The
same is true for split count 2 when the split size is 1,000,000. Although no
significant correlation between final node count and execution time could be
found in general, in this case the high execution time could still be caused by
an increase of nodes. For most runs of collision4 the final number of nodes is
less than 200,000. When split size and split count are chosen to be 1,000,000
and 2, this number is more than 1,100,000.

0 1 2 3 4 5 6
number of splits

40

45

50

55

60

65

70

tim
e

(s
)

collision4
split size 500000

split
count

2
3
4
6
8

0 2 4 6 8
split count

40

45

50

55

60

65

70

tim
e

(s
)

collision4
split size 500000

nr of
splits

4
5

0 1 2 3 4
number of splits

30

40

50

60

70

80

tim
e

(s
)

collision4
split size 1000000

split
count

2
3
4
6
8
15

0 3 6 9 12 15
split count

30

40

50

60

70

80

tim
e

(s
)

collision4
split size 1000000

nr of
splits

2
3

Figure 5.10: Execution times plotted against the number of splits and split count with split size
500,000 and 1,000,000. The markers indicate the corresponding split count or
number of splits. The number of splits indicates the number of times that a parti-
tion’s BDD exceeded the split size and the partitioning procedure was initialized.

To conclude, there is no general best combination of split size and split count
for all models based on the variables we monitored. The underlying structure
of the model also plays an important role.

5.5 Validation

As a measurement of the validity of our implementation we used the final num-
bers of states that were computed when performing reachability analyses on the

59

5.5. VALIDATION

models. We compared these values with the reported results from [10,11,40].
For most executions using our implementation the state counts were equal to
those calculated with DistBDD or Sylvan. However, some runs resulted in state
counts that deviated by a few states (usually less than ten) from the reported
correct numbers. This happened sometimes, when many partitions were cre-
ated during the analysis due to a high split count. We suspect that this is caused
by synchronization issues during the exchange of non-owned states. However,
due to the fact that this happens only in a few cases, we observed this issue
only after finishing the benchmarks. Therefore, it is not yet resolved in the
implementation.

60

Chapter 6

Conclusion and recommendations

6.1 Conclusion

6.1.1 How can principles of vertical partitioning be combined

with existing multi-core model checking solutions?

In our work we combined the multi-core symbolic model checker Sylvan with
the vertical partitioning approach for distributed reachability analysis of Grum-
berg et al. As there was no implementation of their vertical partitioning ap-
proach that we know of, we based our design on the algorithms described
in [34], including the cost function which is used for finding suitable split vari-
ables. The local reachability analyses are done by a modified version of Sylvan.
We added functionality to synchronize and exchange data between processes
and machines (via MPI).

Parallelization was one of the bottlenecks of [34]. Grumberg et al. paral-
lelized some parts of the function to find a split variable, but this was done on
multiple single core machines and not by multiple cores on a single machine.
By using Sylvan and multi-core hardware we added the possibility to parallelize
on a single machine. Our multi-core solution enables us to keep some parallel
computations local and thereby avoid additional network traffic.

Compared to DistBDD, network latency is not the bottleneck of our final
design. In each iteration of reachability analysis processes need to synchronize
a few times (see Figures 4.1 and 4.2) to exchange data. This means that in our
approach larger chunks are sent at once, but also that during the calculation
of next states no communication takes place. The drawback of this design is
that all processes have to synchronize for exchanging non-owned states. This

61

6.1. CONCLUSION

results in idle times during which the machine’s capacities are not fully utilized.
Another difference compared to DistBDD is, that in our design an analysis is
kept on a single or few machines as long as possible (depending on the split
size), whereas DistBDD uses all available machines right from the beginning.
The main advantage of keeping analyses on one or few machines is that there
is no or little network traffic. Of course, this way also less hardware recourses
are utilized.

The greatest shortcoming of our current design and implementation is the
fact that each worker process can only receive one BDD partition during an
entire reachability analysis. As a consequence, low split sizes can cause runs
to terminate before finishing the reachability analysis, because no worker pro-
cesses are left to receive partitions. Especially analyses of large models might
benefit from lower split sizes, because this could result in better load balancing.
As seen in section 5.3 it can be profitable to not occupy the entire capacity of
one machine but to distribute work among machines. Even if this means that
more work needs to be done in total and more communication is necessary,
memory access might be faster, which can decrease the total computation time.
The implementation of this feature should be simple. One option is to merge
new partitions and their corresponding split functions with a worker’s current
BDD partition and split function – provided that there is still enough memory
available. After this, the worker could proceed as if he had received only one
partition in total. Another – or additional – option is to increase the split size
during runtime, when too many partitions are created.

As described in chapter 5 our design was able to achieve good results, even
compared with existing approaches. The benchmarks show that vertical parti-
tioning is suitable for application in a multi-core distributed environment.

6.1.2 How do different configurations regarding the parti-

tioning policy affect the overall performance of the re-

sulting system?

The execution of analyses using our design depends on two parameters, split
size and split count. The former indicates when a worker will split its BDD
(number of nodes), while the latter determines how many partitions will be
created while splitting.

The analysis of our benchmark results clearly shows that the choice of ap-
propriate split sizes and split counts is the challenge of our algorithm. When

62

6.1. CONCLUSION

taking the results of all analyzed models into account, no correlation between
both variables and the total execution time could be observed. For some models
either high or low split sizes resulted in better results, for others there was no
significant difference at all. The same is true for the value for the split count.
As described in section 6.1.1 executions with a small split size and a large split
count at the same time could not always be finished due to the mentioned limi-
tations of our implementation. The best choice of both variables is different for
each model. We could not find a relation between the size of the model and
both factors.

The total execution time may depend on the number of duplicate nodes
after partitioning, which may correlate with the number of non-owned states
that need to be exchanged afterwards. Also the size of partitions on different
machines may vary considerably such that bad load balancing and idle times
may cause longer execution times.

In our benchmarks we did not monitor any values during the analyses but
only final results like total execution time, number of nodes and number of
states. Because no definitive conclusions can be drawn about when to use which
parameter values, more research on this would be valuable. This could include
measurements of e.g. the total number of nodes in each iteration (the sum of
all machines), the split, idle, and communication times as well as message sizes
and the overall network traffic (more about recommendations in section 6.2).
Based on this, split size and split count could (dynamically) be adjusted.

6.1.3 How does the proposed method scale with the size of

the graph and the number of machines used?

To test the scalability of our design, we performed several analyses using models
of different sizes. We repeated the analyses while changing the number of
available machines and keeping the configurations regarding split count and
split size the same.

In general, our results show that the number of involved machines alone has
nearly no influence on the total computation time. Although many machines
may be available, not all of them need to be utilized for a computation. Some of
them may synchronize with others, but the worker processes on those machines
may never receive a BDD. These worker processes stay idle. As discussed in
section 5.3 only up to a second of the total execution time is caused by idle
workers. E.g. when ten workers are active at the end of an analysis, it does not

63

6.2. FUTURE WORK

matter for the execution time whether ten machines were available or twenty.
Therefore, not the number of machines but the number of active workers needs
to be observed.

For very small models we can observe from our benchmarks that it is not
advisable to analyze these in a distributed environment. By “very small” we
mean models that can be analyzed on a single machine within fractions of a
second. The overhead generated by partitioning and synchronizing between
machines is too large compared to the total execution time. Larger model,
however, can benefit from partitioning.

As stated earlier, we cannot make general assumptions about the correlation
between execution time and number of active workers. Some models could be
analyzed faster when more partitions were created and hence more machines
were utilized. For other models it was the other way round. Often, however,
we could not observe any correlation between both factors.

Our design does not utilize the involved machine’s capacities as well as Dist-
BDD. Results of DistBDD often show good results on a single machine and a
peek when using two machines. After that the execution times decrease as
more machines are involved. Similar to DistBDD computations using our de-
sign often achieved the fastest results on a single worker machine. Analyses
on two machines (plus one master machine) took longer in most of the cases,
but on average the time difference is smaller as compared to DistBDD. This in-
dicates that communication overhead is less in our design. When using more
than two worker machines, there is no clear tendency, while this is the case for
DistBDD. The performance of PartBDD depends highly on the defined split size
and split count as mentioned earlier and due to the fact that a worker process
could only receive one BDD during an execution, very large models (mostly
Petri Nets) could not be analyzed. When this limitation was removed, a better
utilization of hardware capacity could be achieved.

6.2 Future Work

Next to the improvements mentioned above there are a few aspects we would
recommend for future research.

The first topic regards the splitting procedure. We did not monitor the split
variables that were chosen with respect to the underlying variable ordering. It
might be possible that the variable is likely to be in the “upper” half or 2

3 of all

64

6.2. FUTURE WORK

split variables, because variables from the other half or third would result in
many duplicate nodes. If this is the case, the splitting time could be decreased
by taking only a part of the set of variables into account when searching for a
suitable split variable. Furthermore, our implementation parallelizes the com-
putation of φ ∧ x and φ ∧ ¬x (where φ is a BDD and x is a split candidate),
but it is not possible to do this also in parallel for different split variable x.
This computation of partitions for multiple split variables at the same time was
done in [8]. They managed to do this by distributing the work over multiple
machines.

Another question which would be interesting to answer is, if it is possible to
gain insights into the structure of a model’s BDD and to automate the selection
of split size and split count, based on the findings. For this, it would be useful to
monitor some selected models in more detail and to compare them with each
other with respect to e.g.:

• idle, splitting and communication times

• message size

• duplicate nodes and number of nodes after each iteration (per machine
and/or totals)

• size of the transition relation

In our experiments some analyses needed many short iterations to finish, for
others there were less iterations, but each one took longer. If might be ben-
eficial to partition a BDD with grows fast earlier than one that grows slowly.
If predictions about the growth of a BDD during reachability analysis could be
made, this algorithm might compete more successfully with other approaches.

Although no best configuration of our program could be determined, which
is suited for each model, our final recommendation is to use a split size of
500,000 and a split count of 2. Over all models, PartBDD achieved the best re-
sults with these values (see an overview of several configurations in Figure 6.1).

65

0 0.1 1 10 100 1000
time (s)

DistBDD, Sylvan, linear

0

0.1

1

10

100

1000
tim

e
(s

)
Pa

rtB
D

D

split size 500000
split count 2

DistBDD
Sylvan
Linear

0 0.1 1 10 100 1000
time (s)

DistBDD, Sylvan, linear

0

0.1

1

10

100

1000

tim
e

(s
)

Pa
rtB

D
D

split size 1000000
split count 2

DistBDD
Sylvan
Linear

0 0.1 1 10 100 1000
time (s)

DistBDD, Sylvan, linear

0

0.1

1

10

100

1000

tim
e

(s
)

Pa
rtB

D
D

split size 500000
split count 3

DistBDD
Sylvan
Linear

0 0.1 1 10 100 1000
time (s)

DistBDD, Sylvan, linear

0

0.1

1

10

100

1000
tim

e
(s

)
Pa

rtB
D

D

split size 1000000
split count 3

DistBDD
Sylvan
Linear

0 0.1 1 10 100 1000
time (s)

DistBDD, Sylvan, linear

0

0.1

1

10

100

1000

tim
e

(s
)

Pa
rtB

D
D

split size 500000
split count 4

DistBDD
Sylvan
Linear

0 0.1 1 10 100 1000
time (s)

DistBDD, Sylvan, linear

0

0.1

1

10

100

1000

tim
e

(s
)

Pa
rtB

D
D

split size 1000000
split count 4

DistBDD
Sylvan
Linear

Figure 6.1: Execution times of PartBDD plotted against execution times of Sylvan, DistBDD and
linear execution. Each plot shows the execution times of models with PartBDD for a
specific split size and split count. The configurations of each program were as follows.
PartBDD: 32 machines, 1 process per machine, 16 threads per process. DistBDD:
32 machines, 16 threads per machine. Sylvan: 1 machine with 16 threads. Linear:
1 machine with 1 thread. The best mean speedup was achieved with split size 500,000
and split count 2 (speedup = time PartBDD/time DistBDD|Sylvan|Linear).

Bibliography

[1] D. Lam and B. Cozzarin, “The joint strike fighter / f-35 program a canadian
technology policy perspective,” vol. 28, p. 45, 03 2014.

[2] E. Pastor, O. Roig, J. Cortadella, and R. M. Badia, Petri net
analysis using boolean manipulation. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1994, pp. 416–435. [Online]. Available: http:
//dx.doi.org/10.1007/3-540-58152-9 23

[3] C. Dong and P. Molitor, “What graphs can be efficiently represented
by bdds?” in Proceedings of the International Conference on Computing:
Theory and Applications, ser. ICCTA ’07. Washington, DC, USA:
IEEE Computer Society, 2007, pp. 128–134. [Online]. Available:
http://dx.doi.org/10.1109/ICCTA.2007.133

[4] T. Dijk and J. Pol, “Sylvan: Multi-core decision diagrams,” in
Proceedings of the 21st International Conference on Tools and Algorithms
for the Construction and Analysis of Systems - Volume 9035. New York,
NY, USA: Springer-Verlag New York, Inc., 2015, pp. 677–691. [Online].
Available: http://dx.doi.org/10.1007/978-3-662-46681-0 60

[5] K. Milvang-Jensen and A. J. Hu, BDDNOW: A Parallel BDD Package.
Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 501–507.
[Online]. Available: http://dx.doi.org/10.1007/3-540-49519-3 32

[6] M. Chung and G. Ciardo, “Saturation NOW,” in 1st International Confer-
ence on Quantitative Evaluation of Systems (QEST 2004), 27-30 September
2004, Enschede, The Netherlands, 2004, pp. 272–281. [Online]. Available:
http://dx.doi.org/10.1109/QEST.2004.1348041

[7] M.-Y. Chung and G. Ciardo, “A dynamic firing speculation to speedup dis-
tributed symbolic state-space generation,” in Proceedings 20th IEEE In-

67

http://dx.doi.org/10.1007/3-540-58152-9_23
http://dx.doi.org/10.1007/3-540-58152-9_23
http://dx.doi.org/10.1109/ICCTA.2007.133
http://dx.doi.org/10.1007/978-3-662-46681-0_60
http://dx.doi.org/10.1007/3-540-49519-3_32
http://dx.doi.org/10.1109/QEST.2004.1348041

BIBLIOGRAPHY

ternational Parallel Distributed Processing Symposium, April 2006, pp. 10
pp.–.

[8] T. Heyman, D. Geist, O. Grumberg, and A. Schuster, “Achieving Scalability
in Parallel Reachability Analysis of Very Large Circuits,” in Proceedings of
the 12th International Conference on Computer Aided Verification, ser. CAV
’00. London, UK, UK: Springer-Verlag, 2000, pp. 20–35. [Online].
Available: http://dl.acm.org/citation.cfm?id=647769.734107

[9] M.-Y. Chung and G. Ciardo, “A pattern recognition approach for
speculative firing prediction in distributed saturation state-space
generation,” Electron. Notes Theor. Comput. Sci., vol. 135, no. 2, pp.
65–80, Feb. 2006. [Online]. Available: http://dx.doi.org/10.1016/j.
entcs.2005.10.019

[10] W. H. M. Oortwijn, T. van Dijk, and J. C. van de Pol, “A Distributed Hash
Table for Shared Memory,” in Proceedings of the 11th International Confer-
ence on Parallel Processing and Applied Mathematics (PPAM 2016), Revised
Selected Papers., Krakow, Poland, ser. Lecture Notes in Computer Science,
vol. 9574. London: Springer Verlag, September 2015, pp. 15–24.

[11] W. Oortwijn, T. v. Dijk, and J. v. d. Pol, “Distributed binary decision
diagrams for symbolic reachability,” in Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software,
ser. SPIN 2017. New York, NY, USA: ACM, 2017, pp. 21–30. [Online].
Available: http://doi.acm.org/10.1145/3092282.3092284

[12] K. Andreev and H. Räcke, “Balanced Graph Partitioning,” in Proceedings
of the Sixteenth Annual ACM Symposium on Parallelism in Algorithms and
Architectures, ser. SPAA ’04. New York, NY, USA: ACM, 2004, pp. 120–
124. [Online]. Available: http://doi.acm.org/10.1145/1007912.1007931

[13] G. Ciardo, Y. Zhao, and X. Jin, “Parallel symbolic state-space
exploration is difficult, but what is the alternative?” in Proceedings 8th
International Workshop on Parallel and Distributed Methods in verifiCation,
PDMC 2009, Eindhoven, The Netherlands, 4th November 2009., 2009, pp.
1–17. [Online]. Available: http://dx.doi.org/10.4204/EPTCS.14.1

[14] S. Orzan, J. van de Pol, and M. Valero Espada, “A State Space Distribution
Policy Based on Abstract Interpretation,” Electron. Notes Theor. Comput.

68

http://dl.acm.org/citation.cfm?id=647769.734107
http://dx.doi.org/10.1016/j.entcs.2005.10.019
http://dx.doi.org/10.1016/j.entcs.2005.10.019
http://doi.acm.org/10.1145/3092282.3092284
http://doi.acm.org/10.1145/1007912.1007931
http://dx.doi.org/10.4204/EPTCS.14.1

BIBLIOGRAPHY

Sci., vol. 128, no. 3, pp. 35–45, Apr. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.entcs.2004.10.017

[15] G. Karypis and V. Kumar, “METIS – Unstructured Graph Partitioning and
Sparse Matrix Ordering System, Version 2.0,” Tech. Rep., 1995.

[16] D. Yan, J. Cheng, Y. Lu, and W. Ng, “Effective techniques
for message reduction and load balancing in distributed graph
computation,” CoRR, vol. abs/1503.00626, 2015. [Online]. Available:
http://arxiv.org/abs/1503.00626

[17] O. Grumberg, T. Heyman, and A. Schuster, “A Work-Efficient
Distributed Algorithm for Reachability Analysis,” in Computer Aided
Verification, 15th International Conference, CAV 2003, Boulder, CO, USA,
July 8-12, 2003, Proceedings, 2003, pp. 54–66. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-45069-6 5

[18] InfiniBand Trade Association, “Architecture Specification, Release 1.3,”
2015. [Online]. Available: http://www.infinibandta.org

[19] S. Hong, S. Depner, T. Manhardt, J. Van Der Lugt, M. Ver-
straaten, and H. Chafi, “PGX.D: A fast distributed graph processing
engine,” in Proceedings of the International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis, ser. SC ’15. New
York, NY, USA: ACM, 2015, pp. 58:1–58:12. [Online]. Available:
http://doi.acm.org/10.1145/2807591.2807620

[20] Y. Guo, A. L. Varbanescu, D. Epema, and A. Iosup, “Design and experimen-
tal evaluation of distributed heterogeneous graph-processing systems,” in
2016 16th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), May 2016, pp. 203–212.

[21] C. P. Inggs and H. Barringer, “Effective state exploration for model check-
ing on a shared memory architecture,” Electronic Notes in Theoretical Com-
puter Science, vol. 68, no. 4, pp. 605–620, 10 2002.

[22] A. Narayan, J. Jain, M. Fujita, and A. Sangiovanni-Vincentelli,
“Partitioned ROBDDs – a Compact, Canonical and Efficiently Manipulable
Representation for Boolean Functions,” in Proceedings of the 1996
IEEE/ACM International Conference on Computer-aided Design, ser. ICCAD

69

http://dx.doi.org/10.1016/j.entcs.2004.10.017
http://arxiv.org/abs/1503.00626
http://dx.doi.org/10.1007/978-3-540-45069-6_5
http://www.infinibandta.org
http://doi.acm.org/10.1145/2807591.2807620

BIBLIOGRAPHY

’96. Washington, DC, USA: IEEE Computer Society, 1996, pp. 547–554.
[Online]. Available: http://dl.acm.org/citation.cfm?id=244522.244894

[23] S. Edelkamp, P. Kissmann, and Álvaro Torralba, “Lex-partitioning: A
new option for BDD search,” in Proceedings First Workshop on GRAPH
Inspection and Traversal Engineering, GRAPHITE 2012, Tallinn, Estonia, 1st
April 2012., 2012, pp. 66–82. [Online]. Available: http://dx.doi.org/10.
4204/EPTCS.99.8

[24] J. V. Sanghavi, R. K. Ranjan, R. K. Brayton, and A. L. Sangiovanni-
Vincentelli, “Binary decision diagrams on network of workstations,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/ERL
M96/9, 1996. [Online]. Available: http://www2.eecs.berkeley.edu/
Pubs/TechRpts/1996/2969.html

[25] W. Townsend and M. Thornton, “Partial binary decision diagrams,” in
SOUTHEASTERN SYMPOSIUM ON SYSTEM THEORY, vol. 34, 2002, pp.
422–425.

[26] S. Iyer, D. Sahoo, C. Stangier, A. Narayan, and J. Jain, Improved
Symbolic Verification Using Partitioning Techniques. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 410–424. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-39724-3 35

[27] C. Y. Lee, “Representation of switching circuits by binary-decision
programs,” Bell System Technical Journal, vol. 38, no. 4, pp. 985–999,
1959. [Online]. Available: http://dx.doi.org/10.1002/j.1538-7305.1959.
tb01585.x

[28] C. E. Shannon, “The synthesis of two-terminal switching circuits,” The Bell
System Technical Journal, vol. 28, no. 1, pp. 59–98, Jan 1949.

[29] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.
[Online]. Available: http://dx.doi.org/10.1109/TC.1986.1676819

[30] R. R. Tucci, “Binary Decision Diagrams are a Subset of Bayesian
Nets,” Tech. Rep. quant-ph/0209009, Sep 2002. [Online]. Available:
http://cds.cern.ch/record/578844

70

http://dl.acm.org/citation.cfm?id=244522.244894
http://dx.doi.org/10.4204/EPTCS.99.8
http://dx.doi.org/10.4204/EPTCS.99.8
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/2969.html
http://www2.eecs.berkeley.edu/Pubs/TechRpts/1996/2969.html
http://dx.doi.org/10.1007/978-3-540-39724-3_35
http://dx.doi.org/10.1002/j.1538-7305.1959.tb01585.x
http://dx.doi.org/10.1002/j.1538-7305.1959.tb01585.x
http://dx.doi.org/10.1109/TC.1986.1676819
http://cds.cern.ch/record/578844

BIBLIOGRAPHY

[31] H. R. Andersen, “An introduction to binary decision diagrams,” Lecture
notes, available online, IT University of Copenhagen, 1997.

[32] C. Baier, B. R. Haverkort, H. Hermanns, J. P. Katoen, and M. Siegle,
Validation of Stochastic Systems: A Guide to Current Research, ser. Lecture
Notes in Computer Science. Springer Berlin Heidelberg, 2004. [Online].
Available: https://books.google.nl/books?id=2xmiaQt POoC

[33] F. Somenzi, “Binary decision diagrams,” in Calculational System Design,
volume 173 of NATO Science Series F: Computer and Systems Sciences. IOS
Press, 1999, pp. 303–366.

[34] O. Grumberg, T. Heyman, N. Ifergan, and A. Schuster, Achieving Speedups
in Distributed Symbolic Reachability Analysis Through Asynchronous Com-
putation. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp.
129–145. [Online]. Available: http://dx.doi.org/10.1007/11560548 12

[35] “Open MPI: Open Source High Performance Computing,” 2017. [Online].
Available: https://www.open-mpi.org/

[36] “The Message Passing Interface (MPI) standard.” [Online]. Available:
http://www.mcs.anl.gov/research/projects/mpi/

[37] R. Pelánek, “Beem: Benchmarks for explicit model checkers,” Model
Checking Software, pp. 263–267, 2007.

[38] “Model Checking Contest @ Petri Nets 2015,”
https://mcc.lip6.fr/2015/models.php, 2015. [Online]. Available:
https://mcc.lip6.fr/2015/models.php

[39] “The Distributed ASCI Supercomputer 5,” 2015. [Online]. Available:
http://www.cs.vu.nl/das5

[40] T. van Dijk, A. Laarman, and J. van de Pol, Multi-Core BDD Operations
for Symbolic Reachability, ser. Electronic Notes in Theoretical Computer
Science. ELSEVIER, 9 2012, pp. 127–143.

71

https://books.google.nl/books?id=2xmiaQt_POoC
http://dx.doi.org/10.1007/11560548_12
https://www.open-mpi.org/
http://www.mcs.anl.gov/research/projects/mpi/
https://mcc.lip6.fr/2015/models.php
http://www.cs.vu.nl/das5

Appendix A

Split Size and Split Count

73

0 6 12 18 24 30
number of partitions

3

4

5

6

7

8

tim
e

(s
)

adding2
split
count

2
3
4
6
8
15
31

0 3 6 9 12 15
number of splits

3

4

5

6

7

8

tim
e

(s
)

adding2
split
count

2
3
4
6
8
15
31

0 6 12 18 24 30
number of partitions

20

30

40

50

60

70

80

tim
e

(s
)

adding6
split
count

2
3
4
6
8
15
31

0 3 6 9 12 15
number of splits

20

30

40

50

60

70

80
tim

e
(s

)
adding6

split
count

2
3
4
6
8
15
31

0 6 12 18 24 30
number of partitions

1

2

3

4

5

6

tim
e

(s
)

anderson1
split
count

2
3
4
6
8
15
31

0 1 2 3 4
number of splits

1

2

3

4

5

6

tim
e

(s
)

anderson1
split
count

2
3
4
6
8
15
31

0 6 12 18 24 30
number of partitions

500

1000

1500

tim
e

(s
)

anderson3
split
count

2
3
4
6
8
15

0 1 2 3 4
number of splits

500

1000

1500

tim
e

(s
)

anderson3
split
count

2
3
4
6
8
15

0 4 8 12 16 20
number of partitions

0

5

10

15

20

25

30

tim
e

(s
)

anderson6
split
count

2
3
4
6
8
15
31

0 2 4 6 8 10
number of splits

0

5

10

15

20

25

30

tim
e

(s
)

anderson6
split
count

2
3
4
6
8
15
31

0 3 6 9 12 15
number of partitions

0
20
40
60
80

100
120
140
160

tim
e

(s
)

anderson8
split
count

2
3
4
6
8
15
31

0 1 2
number of splits

0
20
40
60
80

100
120
140
160

tim
e

(s
)

anderson8
split
count

2
3
4
6
8
15
31

0 3 6 9 12 15
number of partitions

0.6

0.8

1

1.2

1.4

1.6

1.8

tim
e

(s
)

at1
split
count

2
3
4
6
8
15
31

0 1 2
number of splits

0.6

0.8

1

1.2

1.4

1.6

1.8

tim
e

(s
)

at1
split
count

2
3
4
6
8
15
31

0 3 6 9 12 15
number of partitions

60

70

80

90

100

tim
e

(s
)

at6
split
count

2
3
4
6
8
15

0 1 2 3 4
number of splits

60

70

80

90

100

tim
e

(s
)

at6
split
count

2
3
4
6
8
15

0 6 12 18 24 30
number of partitions

1

2

3

4

5

6

7

tim
e

(s
)

collision3
split
count

2
3
4
6
8
15
31

0 5 10 15 20 25
number of splits

1

2

3

4

5

6

7

tim
e

(s
)

collision3
split
count

2
3
4
6
8
15
31

0 6 12 18 24 30
number of partitions

10
20
30
40
50
60
70
80

tim
e

(s
)

collision4
split
count

2
3
4
6
8
15

0 3 6 9 12
number of splits

10
20
30
40
50
60
70
80

tim
e

(s
)

collision4
split
count

2
3
4
6
8
15

0 6 12 18 24 30
number of partitions

140
150
160
170
180
190
200
210
220

tim
e

(s
)

collision5
split
count

2
3
4
6
8

0 4 8 12 16
number of splits

140
150
160
170
180
190
200
210
220

tim
e

(s
)

collision5
split
count

2
3
4
6
8

0 6 12 18 24 30
number of partitions

0.5

1

1.5

2

2.5

3

3.5

tim
e

(s
)

lamport2
split
count

2
3
4
6
8
15
31

0 1 2 3 4 5 6
number of splits

0.5

1

1.5

2

2.5

3

3.5

tim
e

(s
)

lamport2
split
count

2
3
4
6
8
15
31

0 5 10 15 20 25
number of partitions

5

10

15

20

25

tim
e

(s
)

lamport6
split
count

2
3
4
6
8
15
31

0 5 10 15 20 25
number of splits

5

10

15

20

25

tim
e

(s
)

lamport6
split
count

2
3
4
6
8
15
31

0 3 6 9 12 15
number of partitions

0

20

40

60

80

tim
e

(s
)

lamport8
split
count

2
3
4
6
8
15
31

0 1 2 3 4
number of splits

0

20

40

60

80
tim

e
(s

)
lamport8

split
count

2
3
4
6
8
15
31

0 6 12 18 24 30
number of partitions

0.5

1

1.5

2

tim
e

(s
)

scheduleworld1
split
count

2
3
4
6
8
15
31

0 1 2 3
number of splits

0.5

1

1.5

2

tim
e

(s
)

scheduleworld1
split
count

2
3
4
6
8
15
31

0 6 12 18 24 30
number of partitions

40

50

60

70

80

tim
e

(s
)

scheduleworld3
split
count

2
3
4
6
8
15

0 1 2 3 4 5 6 7
number of splits

40

50

60

70

80

tim
e

(s
)

scheduleworld3
split
count

2
3
4
6
8
15

	Introduction
	Challenges for Distributed Model Checking
	Locality
	Workload balancing
	Communication Overhead
	Bandwidth/Network

	Related Work
	Distributed Explicit Graph Analysis
	Symbolic Model Checking

	Research Questions

	Preliminaries on Symbolic Model Checking
	Binary Decision Diagrams
	BDD Operations
	BDD Partitioning
	Horizontally Partitioned BDDs
	Vertically Partitioned BDDs

	Method
	Validation
	Performance Measurement

	Designing and Implementing Distribution and Communication Algorithm
	Algorithm Overview
	Splitting and Sending a BDD
	Finding the Split Variable
	Exchanging Non-Owned States
	Updating the List of Split Variables
	Determining the Status and Termination
	Implementation Details
	Functionality from Sylvan
	Sending and Receiving BDDs with MPI

	Experimental Evaluation
	Overall performance
	Number of Final Nodes
	Communication Overhead
	Network Traffic Caused by Idle Workers
	Network Traffic Caused by Active Workers

	Influence of Split Size and Split Count
	Validation

	Conclusion and recommendations
	Conclusion
	How can principles of vertical partitioning be combined with existing multi-core model checking solutions?
	How do different configurations regarding the partitioning policy affect the overall performance of the resulting system?
	How does the proposed method scale with the size of the graph and the number of machines used?

	Future Work

	Split Size and Split Count

