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Summary 
Regional Climate Models (RCMs) coupled with General Circulation Models (GCMs) are among the 
most important tools to generate future climate projections. The output of these models is used for 
various effect studies, such as the effect of climate change on discharge characteristics. To simulate 
the discharge, hydrological models are used. These models need reliable precipitation, temperature 
and data to calculate the potential evapotranspiration as input. These datasets are simulated by the 
RCMs and are often adjusted using bias correction and/or statistical downscaling before forcing the 
hydrological models. An important improvement which has been carried out last decades is the 
increase in RCM spatial resolution. A higher resolution improves the lands surface representation 
and the possibility to simulate important small-scale precipitation. However, there are some 
constraints on increasing the RCM spatial resolution. First, this process is time consuming and 
second, a higher resolution demands significant computational resources. Therefore, it is important 
to study the balance between the effect of increasing the resolution on the model output and the 
investments needed to increase the resolution. The effect of increasing RCM spatial resolution on 
the simulated precipitation and temperature has often been studied. However, the effect of 
increasing RCM spatial resolution on simulated discharges has been rarely explored. Previous studies 
expected beforehand that an increase in RCM spatial resolution leads to better simulated discharges. 
However, these studies concluded that the effect of RCM spatial resolution on discharge 
characteristics depend on the size of the catchment, the topography of the catchment and the 
hydrological model choice. This has led to the following research objective: 

To assess the sensitivity of discharge characteristics to RCM spatial resolution (12.5, 25 and 50 km) 
simulated by different versions of HBV having different parameterizations for catchments with 
different characteristics (sizes and topography) in the Rhine basin. 
 
To assess the sensitivity of discharge characteristics to RCM spatial resolution, the total model 
performance is obtained. This total model performance is reflected by the ratio of the mean and 
standard deviation of the simulated discharge for the three RCM resolutions and the mean and 
standard deviation of the observed discharge. The influence of the RCM resolution on the total 
model performance is analysed for four sub-catchments in the Rhine catchments having different 
characteristics (sizes and topography), the Main (large and lowland), the West Alpine (large and 
mountainous), Kinzig (small and lowland) and Reuss Seedorf (small and mountainous). Further, to 
obtain the sensitivity of discharge characteristics to RCM spatial resolution when simulated by 
different hydrological models, different versions of HBV are used. These versions are the calibrated, 
semi-calibrated an un-calibrated HBV model having the same model structure, but different 
parameter sets. Therefore, not the choice of hydrological model, but the choice of hydrological 
model – parameter estimation is analysed. 

However, not only the total model performance is analyzed. The RCM spatial resolution is one of the 
many components which need to be chosen within the modeling chain. Other choices are for 
example the choice of bias correction technique and the choice of hydrological model. Each choice 
leads to a different model output and therefore a different total model performance. To make sure 
that the results showing the sensitivity of discharge characteristics to RCM spatial resolution are 
really caused by the change in spatial resolution and not influenced by other aspects, no bias 
correction or statistical downscaling are applied on the output of the RCMs.  Further, the two most 
important contributions to the total model performance are the hydrological model performance 
and the RCM performance. To be able to understand the results of the total model performance, the 
contribution of the hydrological model performance and RCM performance are analysed as well. The 
hydrological model performance is obtained by comparing the simulated discharges forced with 
observed meteorological data to observed discharge data. The RCM performance is analysed by 
comparing the simulated discharge forced with RCM data to the simulated discharges forced with 
observed meteorological data. The RCM performance is further analysed by comparing the output of 
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the RCM, namely the simulated precipitation, temperature and potential evapotranspiration 
(calculated using the Makkink method) with the observed meteorological data. 
 
To be able to analyse the total model performance, the hydrological model performance and the 
RCM performance, some other choices needed to be made as well. First, the RCM RACMO has been 
selected having three different spatial resolutions (12.5, 25 and 50 km). This RCM is forced with re-
analysis data which show a clear representation of historical climate conditions. Therefore, 
comparison with observations is possible. Second, the hydrological model HBV-96 has been selected 
since this model is often used for hydrological modelling. Third, the selected study area is the Rhine 
catchment since among others a lot of observed datasets are available for this catchment. At last, 
although this study does not focus on climate change impacts, both low and high flow conditions are 
considered in the validation since RCMs are often applied for climate change impact studies. 

The results show that the topography does not influence the sensitivity of discharge characteristics 
to RCM spatial resolution. The discharge characteristics are not sensitive to RCM spatial resolution in 
terms of hydrological model – parameter estimation. Only the size of the sub-catchments influences 
the sensitivity of discharge characteristics to RCM spatial resolution. In general, an increase in RCM 
spatial resolution leads to a small increase in total model performance for the two larger sub-
catchments West Alpine and Main. This conclusion is supported by previous research as well. 
Further, this increase in total model performance is larger for high discharges than for annual 
discharges. Only for low discharges this increase is not observed. Beforehand it was expected that 
the increase in total model performance of smaller sub-catchments when increasing the RCM spatial 
resolution would be larger. The reason for this is that an increase in RCM spatial resolution leads to a 
better representation of small scale precipitation patterns. For catchments having a size of around 
20000 km2 and for the runoff evolution of a daily timescale, the fine-scale distribution of 
precipitation within the catchment is less important. However, for smaller sub-catchments it would 
be expected that the fine scale precipitation is more important. This study did analyse smaller sub-
catchments, Reuss Seedorf (836 km2) and Kinzig (928 km2) where this appeared to be not the case. 
The reason for this could be that no bias correction has been applied in this research. Previous 
research concluded that another advantage of an increase in RCM spatial resolution is that this leads 
to biases which are less spatially variable and more systematic and therefore easier to correct.  
 
In conclusion, this study shows that for larger sub-catchments an increase in RCM spatial resolution 
results in a small increase in total model performance. Further, the hydrological model choice and 
topography are not relevant for the sensitivity of discharge characteristics to the increase of RCM 
spatial resolution. It is recommended to focus further research on the dependency of the bias 
correction method and increase in RCM spatial resolution. Furthermore, in order to generalize the 
findings, it would be good to analyse performances at least for pairs of catchments with similar 
characteristics to evaluate whether the results are random or do apply to similar catchments. At last, 
if the total model performance shows an increase or decrease when increasing the RCM spatial 
resolution, this is not necessarily caused by only the changes in spatial RCM resolutions. These 
results can as well be influenced by for example a very low performance of the hydrological model 
or a bias correction method.  
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1 Introduction 
Extreme weather events can lead to floods and droughts which can cause a lot of social and 
economic damage. Because of the consequences of floods and droughts, it is important to study the 
effect of climate change on discharge characteristics (van der Linden & Mitchell, 2009). To study this 
effect, a set of scenarios, called the Representative Concentration Pathways, are developed which 
describe four different 21st century pathways of GHG (greenhouse gas) emissions and atmospheric 
concentrations, air pollutant emissions and land use (IPCC, 2014). These scenarios are used as input 
for General Circulation Models (GCMs) which simulate among others climate change projections. 
However, when the spatial resolution of a GCM is too coarse to force a hydrologic model for a 
smaller catchment, dynamical downscaling can be applied: the output of the GCM is used as 
boundary condition to force Regional Climate Models (RCMs) with a certain spatial resolution. These 
RCMs simulate many climate aspects including temperature and precipitation. The output of the 
RCMs is adjusted using a bias correction and/or statistical downscaling before it is used as input for 
hydrological models. These hydrological models are used to simulate the discharge in a river (te 
Linde, et al., 2010). This modeling process is called the ‘climate impact modeling chain’ (Clark, et al., 
2016). 
 

1.1 State of the art 
One of the important aspects in the ‘climate impact modeling chain’ is the spatial resolution of 
Regional Climate Models (RCMs). Last decade the spatial RCM resolution is increased because a 
higher resolution improves the land surface representation and the possibility to simulate important 
small-scale precipitation (Olsson, Berg, & Kawamura, 2014). However, there are some constraints on 
increasing the RCM spatial resolution. In general, the process to develop a higher RCM spatial 
resolution is time consuming (Meijgaard, 2017). Further, the simulations at a higher resolution 
demand significant computational resources (Prein, et al., 2013). The RCM spatial resolution is one 
of the many components which need to be chosen within the ‘climate impact modeling chain’. Other 
choices are for example the choice of bias correction technique and the choice of hydrological model. 
Each choice leads to a different simulated output and therefore a different model performance. 
Therefore, it is first important to study the effect of these different choices on the model output to 
quantify the spread of plausible discharges. Second, it is relevant to have insight in the balance 
between the effect of improving certain components on the range of discharges and the time and 
cost that need to be invested to improve these components, such as the bias correction method or 
the hydrological model choice. Most of the effects of certain choices have been studied already. 
However, the sensitivity of discharge characteristics to RCM spatial resolution has been rarely 
explored (Mendoza, et al., 2016). It is important to study the sensitivity of discharge characteristics 
to RCM spatial resolution. If a lower RCM spatial resolution leads to the same simulated discharge 
characteristics as a higher RCM spatial resolution, it could be recommended to focus further 
research on improving other components instead of increasing the RCM spatial resolution. In this 
study the topic of interest is the sensitivity of discharge characteristics to RCM spatial resolution. 
 

1.1.1 Previous research about RCM spatial resolution 
The choice of RCM spatial resolution determines how precipitation and other hydrologic variables 
are represented in highly heterogeneous regions (Mendoza, et al., 2016). The effect of RCM spatial 
resolution on discharges has been rarely studied. However, the effect of RCM spatial resolution on 
precipitation has been studied by (Graham, Andréasson, & Carlsson, 2007), (Kleinn, et al., 2005), 
(Dankers, et al., 2007), (Prein, et al., 2013) and (Olsson, Berg, & Kawamura, 2014). In general, these 
studies conclude that a higher RCM spatial resolution results in a better performance of simulated 
precipitation. Moreover, Olsson et al. (2014) concluded that the higher spatial resolution (6 km) is 
nearly unbiased for precipitation when compared to the 50 km resolution (Olsson, Berg, & 
Kawamura, 2014). Further, (Graham, Andréasson, & Carlsson, 2007) concluded that a higher RCM 
spatial resolution resulted in biases that were more systematic and less spatially variable in RCM 
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simulated precipitation and temperature when compared to the lower resolution. In terms of 
temperature, Graham et al. (2005) concluded that a higher RCM spatial resolution resulted in a 
better simulated temperature in mountainous regions. 
 
There are three studies that have focused not only on the effect of RCM spatial resolution on 
precipitation and temperature, but as well on discharge. Kleinn et al. (2005) studied the Rhine 
catchment and concluded that the high-resolution RCM CHRM (14 km) did not significantly improve 
the discharge performance of the hydrologic simulations compared to the low-resolution RCM (56 
km), not even in the catchments in the Alpine having large differences in altitude. This is related to 
the way the precipitation is aggregated in the hydrological model. The mean precipitation is more 
important than the fine-scale distribution within the catchment. The coarser RCM resolution (56 km) 
is sufficient for driving the hydrological model when the whole Rhine basin is considered and when a 
catchment wide bias correction is applied to the precipitation fields. However, when considering 
smaller catchment sizes, these catchments could significantly profit from higher RCM spatial 
resolution (Kleinn, et al., 2005). Dankers et al. (2007) concluded that in local and sub-basin scale, the 
12-km data yield better results in hydrological model performance than the 50-km resolution. 
However, at larger spatial scales the differences between high- and low-resolution RCM climate data 
and the observations are averaged out, resulting in a similar performance of the hydrological model. 
Further, the 12-km data led to a better representation of extreme discharge levels compared to the 
50-km resolution (Dankers, et al., 2007). When looking at the differences in discharge simulated by 
different hydrologic models, Mendoza et al. (2016) concluded that the degree of improvement or 
degradation in hydrological model performance when increasing the RCM spatial resolution depends 
on the combination of the hydrologic model and the basin. Only the runoff ratio (basin-averaged 
mean annual discharge divided by the basin-averaged mean annual precipitation) shows an 
improvement when increasing RCM resolution. Further Mendoza et al. (2016) concluded that the 
sensitivity of discharge characteristics to horizontal RCM resolution is ‘large’, regardless of which 
hydrological model is chosen (Mendoza, et al., 2016). ‘Large’ is unquantified. In summary, the three 
studies  by Kleinn et al. (2005), Dankers et al. (2007) and Mendoza et al. (2016) show that the choice 
of spatial RCM resolution influences the performance of simulated discharge. However, this 
influence depends on the hydrological model choice and the size and characteristics of the 
catchment. 

1.1.2 Components within ‘climate impact modeling chain’ 
As explained in section 1.1, apart from the choice of the RCM having a certain spatial resolution, 
there are many other components within the climate impact modeling chain which need to be 
chosen (Clark, et al., 2016). To be able to distinguish the influence of different choices of 
components on the model output, an overview of these different choices of components is given. 
Further, an overview is given of the different choices made by Kleinn et al. (2005), Dankers et al. 
(2007) and Mendoza et al. (2016). 
 
1: RCM 
As previously explained, when a GCM is too coarse to force a hydrological model, a downscaling 
technique is applied. In this approach the output of the GCM is used as boundary condition to force 
Regional Climate Models (RCM) with a higher spatial resolution. The RCMs can as well be forced by 
re-analysis data instead of GCMs. Re-analysis data are simulated historic climate conditions 
produced by a numerical weather prediction model that assimilates observations from the past. 
When a RCM is forced with re-analysis data as boundary condition instead of GCM data, the output 
is a clear representation of historical climate conditions (Dee, et al., 2016). 
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2: Preparation of data to force a hydrological model 
As previously explained, the fourth step is to run the RCM and to prepare the RCM output before 
forcing a hydrological model. The RCM output suffers from climatic biases within the data related to 
incomplete knowledge of certain processes in the atmosphere and ocean (Görgen, et al., 2010). 
Therefore, the RCM output is prepared by applying a bias correction which leads to a better 
representation of the current climate conditions. This correction reduces the uncertainty within the 
RCM data (Kleinn, et al., 2005). 
 
Further, there are necessary limitations of the spatial and temporal resolution of the RCMs when 
forcing the hydrological model (Görgen, et al., 2010). The RCM output is grid based while a 
hydrological model can be grid based, often with another horizontal resolution than the RCMs, or 
divided in sub-catchments. For each sub-catchment or grid cell the hydrological model needs one 
spatial mean value of the required forcing data (precipitation, temperature e.d.). There are different 
methods to derive this spatial mean value. Often a statistical downscaling technique is chosen. This 
technique makes use of statistical relationships to link the RCM output to for example observations 
to provide higher resolution outputs (Görgen, et al., 2010). The terms statistical downscaling and 
bias correction are both used interchangeably. In this research the terms are used as described in 
above section. 
 
Last, some hydrological models not only need precipitation and temperature data, but potential 
evapotranspiration (PET) data as well as forcing input. Both temperature and precipitation data can 
be obtained from the RCMs output or meteorological stations. However, PET needs to be calculated 
using for instance Penman-Monteith (Monteith, 1965), Thorntwaite’s equation (Thornthwaite, 1948) 
or Penman-Wendling (Berglöv, et al., 2009). 
 
3: Hydrological models 
The last step is to simulate discharge using hydrological models. There are many different types of 
hydrological models which can be chosen. For example, the hydrological models vary based on the 
level of complexity in terms of space, time and processes. The difference in space depends on the 
spatial discretization of the catchment. A model can be lumped, semi-distributed or distributed. In 
terms of time, the time-step can vary (for example hourly or daily). In terms of process description, 
there are physical-based models, conceptual models and empirical models (Görgen, et al., 2010). 
Further, the models are different based on the modeling objectives (simulation or forecast) (Görgen, 
et al., 2010). In general, hydrological models should be sufficiently detailed to capture the most 
important processes to simulate runoff, but not too detailed because computation time would then 
be wasted or data availability is too limited (Booij, 2005). The process description of the hydrologic 
model is called the hydrologic model structure (Clark, et al., 2016). 
 
According to Booij (2005) the most appropriate model to study climate change impacts on river 
flooding at catchment scale is a conceptual model (Booij, 2005). Conceptual models make use of 
equations which are based on physics involved in the hydrological system, but are not too complex 
and are therefore a perfect combination of the need for simplicity and the need for a physical basis 
(Diermanse, 2001). However, the disadvantage of conceptual models is that first the parameter 
values are derived by calibration and cannot be derived from direct measurements. This is because 
conceptual models are usually lumped on a relative large catchment scale (Diermanse, 2001). 
Second, it is assumed that a model, when calibrated for a certain period, can be applied for future 
climate conditions. However, this assumption might not be valid since models have a high 
dependency on the climate of a calibration period (Wagener, et al., 2003). Third, a conceptual model 
can lead to over-parameterization. This means that because of a large number of parameters, 
different parameter combinations can give equally good output performances (Booij, 2005). At last, 
the parameter values might compensate for errors in the input datasets. 
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Overview choices made by other researches 
As described in the previous sections, there are different choices which need to be made. Table 1 
shows that different choices (1 to 3 are made by Dankers et al. (2007), Kleinn et al. (2005) and 
Mendoza et al. (2016) within their studies about the effect of RCM spatial resolution on discharge 
characteristics. Each choice will influence the effect of RCM spatial resolution on discharge 
characteristics. Because of this influence or dependency, it is difficult to relate the results only to 
changes in RCM spatial resolution. 

Morover, in the researches of Dankers et al. (2007), Kleinn et al. (2005) and Mendoza et al. (2016), 
some other choices need to be made as well. These aspects are choices depending on the research 
objective and (practical) conditions and are not influencing the model output. First, the study area 
which is selected varies in size, location and other characteristics. Second, the type of discharge can 
be focused on annual, high or low flow conditions. Third, the aspects where the analysis of the 
model performance is based on can vary. For example, the mean of the 10% highest simulated 
discharges can be compared to the mean of the 10% highest observed discharge (Gupta, et al., 2009) 
and (Görgen, et al., 2010). These choices are represented in Table 1 as well (4 to 6). Based on this 
Table 1 it can be seen that the results of the three studies cannot be compared because other 
choices are made for the study area and method to analyze the model performance. 

Table 1: Choices made by Dankers et al. (2007), Kleinn et al. (2005) and Mendoza et al. (2016) for their studies about effects 
of RCM spatial resolution on discharge characteristics 

  Dankers, et al., 2007 Kleinn, et al., 2005 Mendoza, et al., 2016 

1.1 RCM HIRHAM CHRM WRF 

1.2 RCM Resolutions 12-km and 50-km 14-km and 56-km 4-km, 12-km and 36-km 

1.3 RCM Forcing Re-analysis data Re-analysis data Re-analysis data 

2.1 Bias correction/ 
Downscaling method 

Inverse distance 
interpolation scheme 

Basin mean bias-correction & 
bilinear interpolation 

Nearest neighbor 
interpolation 

2.2 PET calculation Penman-Monteith - - 

3.1 Hydrological model 
structure 

LISFLOOD WaSiM-ETH 1 km PRMS, VIC, Noah-LSM, Noah-
MP 

3.2 Calibrated model? Yes Yes calibrating hydrological 
models to highest RCM spatial 
resolution 

4.1 Study catchment Upper Danube Rhine Colorado 

4.2 Catchment sizes 3803 km
2
 

4047 km
2 

5915 km
2
 

25624 km
2
 

25664 km
2
 

131244 m
2
 

13000 km
2 

18000 km
2
 

25000 km
2
 

27000 km
2
 

145000 km
2
 

748 km
2
 

1468 km
2
 

1819 km
2
 

5 Type of discharge Mean annual, low, high Mean annual and daily Mean annual, low, high  

6 Aspects where the 
analysis of the model 
performance is based 
on 

- Daily runoff averaged 
over a period of 30 
years 

- Return level plots based 
on a generalised 
extreme value (GEV) 
distribution fit to annual 
maxima 

- Annual cycle of mean 
monthly discharge 
averaged over a period 
from 1987-1994 

- Daily mean runoff 
averaged over a period 
from 1987-1994 

- Distribution function of 
daily runoff 

- Standard devation of l 
runoff  (month – to – 
month) 

- Runoff ratio (basin-
averaged mean annual 
runoff / basin-averaged 
mean annual 
precipitation) (water 
balance) 

- Center time of runoff 
(timing) 

- Flow duration curve mid-
segment slope 

- Flow duration curve low-
segment volume 
(baseflow volume) 
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1.2 Research objective 
As explained, it is important to study the sensitivity of discharge characteristics to spatial RCM 
resolution. Kleinn et al. (2005), Dankers et al. (2007) and Mendoza et al. (2016) conclude that the 
sensitivity of discharge characteristics to RCM spatial resolution depends on the catchment 
size/topography and hydrological model. As shown in Table 1, the three studies cannot be compared 
and the results cannot be related to only the change in RCM spatial resolution since some choices 
might have influenced the results. To be able to clarify the influence of the catchment 
size/topography and hydrological model, these aspects need to vary while other components, such 
as the bias correction, need to be fixed. This leads to the following research objective: 
 
To assess the sensitivity of discharge characteristics to RCM spatial resolution (12.5, 25 and 50 km) 
simulated by different versions of HBV having different parameterizations for catchments with 
different characteristics (sizes and topography) in the Rhine basin. 
 
In the following section the choices of components as described in section 1.1.2 are explained 
considering this research. The numbers in brackets refer to the numbers in Table 1. 
 
1: RCM 
For this research the RCM ‘RACMO’ has been selected (1.1). This RCM can suffer from imperfections. 
Therefore, the performance of the RCM will be analyzed (shown in section 2: Preparation of data to 
force a hydrological model). Further, the RCM is forced by re-analysis data instead of GCM outputs 
(1.2). When forcing the RCM using re-analysis data, the errors within the GCM are not influencing 
the simulated discharge. Moreover, since the re-analysis data shows a clear representation of 
historical climate conditions, the simulated discharge forced by the RCM can be compared to 
observed discharges from the same historical climate conditions. It is important to realize that it is 
not possible to compare daily data since it is very difficult to assimilate the precipitation as fallen in 
reality because precipitation strongly varies in space and time (Meijgaard, 2017) (Kysely et al.,  2016). 
However, since re-analysis data gives a clear representation of historical data, analyses are possible 
when averaging the discharge over a couple of days. Further, the RCM RACMO forced by re-analysis 
data is available for three spatial resolutions (1.3), namely 12.5, 25 and 50 km for the period 1979-
2013 (ESGF, 2016). More information about RCM RACMO is given in 2.2. 
 
2: Preparation of data to force a hydrological model 
The hydrological model is forced by the RCM RACMO output (precipitation (P) and temperature (T)). 
To get insight in the ‘RCM performance’ (1.1), the simulated discharge obtained from re-analysis 
RCM data is compared to the simulated discharge obtained from observed precipitation and 
temperature. Additionally, these two forcing meteorological datasets are compared as well. In 
general, hydrological models need to be forced with potential evapotranspiration (PET) (2.2). The 
method to calculate PET will be the same for each of the selected models to reduce the influence of 
the different methods on the model output. The chosen method is Makkink (explained in section 
3.2). Further, no statistical downscaling and bias corrections are applied for the input data. This 
means that no correction is applied for the imperfections of the RCM output leading to a less good 
representation of the climate conditions. However, the advantage is these correction methods 
cannot influence the sensitivity of discharge characteristics to RCM spatial resolution. 
 
3: Hydrological models 
To study the influence of the hydrological model choice and to be able to simulate the discharges, 
the hydrological model HBV-96 (SMHI, 2006) is selected which is a catchment-specific calibrated 
conceptual model. First, this model is selected because it is available at Deltares. Second, HBV-96 is 
often used in studies for the Rhine catchment, such as in the Rheinblick 2050 project. At last, 
conceptual models are often selected for climate impact studies (1.1.2). 



15 
 

The hydrological model performance consists of at least two main components, the model structure 
(3.1) and the parameter (3.2) performance. This research focusses on the parameter performance 
since only one hydrological model is considered and hence hydrological model structure 
performance cannot be assessed. To get insight in the influence of the parameter performance on 
the model output, the effect of calibration can be analyzed by applying three versions of HBV-96, 
called the non-calibrated, semi-calibrated and calibrated HBV-96 model. It is important to keep in 
mind that the model structure performance (3.1) and the parameter performance (3.2) might be 
influencing each other. More information about the hydrological model is given in section 2.3. 
 
4: Study area 
The Rhine catchment as study area has been chosen for different reasons (4.1). First, a lot of 
observed discharge, precipitation and temperature data measured at different locations are 
available (section 2.4). Second, many research groups have studied the Rhine catchment. The most 
recent study is Rheinblick 2050 which main research question is: What are the impacts of future 
climate change on discharge of the Rhine River and its major tributaries? (Görgen, et al., 2010). Third, 
HBV-96 is immediately applicable for the Rhine catchment. At last, the Rhine catchment is divided in 
sub-catchments having different sizes and characteristics (4.2). More information about the Rhine 
catchment is given in 2.1. 
 
5: Specific discharge characteristics 
This study focusses on the sensitivity of low flow conditions, high flow conditions and annual flow 
conditions to RCM spatial resolution. Although this study does not focus on climate change impacts, 
both low and high flow conditions are chosen since RCMs are often applied for climate change 
impact studies. Therefore, it is important to know the effect of RCM spatial resolution on low and 
high discharges as well (5). 

1.3 Research questions 
The sensitivity of discharge characteristics to RCM spatial resolution depends on the size of the 
catchment, the topography (mountainous or lowland) and the hydrological model choice. Therefore, 
to achieve the objective, the objective is split into three research questions all focusing on one of the 
specific aspects. 
 
1. What is the sensitivity of discharge characteristics to RCM spatial resolution when looking at 

different catchment sizes? 
2. What is the sensitivity of discharge characteristics to RCM spatial resolution when looking at 

different catchment topographies (mountainous or lowlands)? 
3. What is the sensitivity of discharge characteristics to RCM spatial resolution when looking at the 

three versions of the hydrological model HBV-96? 
 

1.4 Outline report 
In chapter 2, more background is given about the different selected components in this research. 
These components are the Rhine catchment, the selected RCM RACMO, the hydrological model HBV 
and the selected observed datasets which are used to analyse the simulated discharges. In chapter 3, 
the method to answer the three research questions is given. In chapter 4, the different results are 
shown. In chapter 5 a discussion is given where the results of this research are compared to previous 
research. At last, in chapter 6 the conclusion and recommendations are described.   
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2 Case study 
In this section more background information is given about the different choices made in this 
research. First more information about the Rhine catchment and sub-catchments is given. Second, 
more information about the RCM RACMO is given. Third, in section 2.3 a description of the 
hydrological model HBV-96 is given. At last, the observed data are described. 
 

2.1 Rhine catchment 
The Rhine is the primary connection of one of the most important economic regions of Europe. The 
Rhine discharges to the Rotterdam Harbor. The human population of the basin equals around 58 
million people. The Rhine River has a total length of about 1250 km with a drainage area of 185 260 
km2. The average discharge is about 2300 m3/s and there are nine countries which are partly or 
entirely situated in the Rhine catchment (Uehlinger, et al., 2009).  About 55% of the Rhine 
catchment is in German territory, about 25% in Switzerland, France and the Netherlands together 
and the rest of the catchment is part of Belgium, Luxembourg, Austria, Lichtenstein and Italy 
(Görgen, et al., 2010). The altitudinal range of the catchment from sea-level to the Alpine part is 
more than 4000 m. The Rhine catchment is divided in 6 regions based on altitude, namely Alpine 
Rhine, the High Rhine, the Upper Rhine, the Middle Rhine, the Lower Rhine and the Delta Rhine as 
shown in Figure 1 (Görgen, et al., 2010). The main tributaries are the Aare (17679 km2), the Neckar 
(12616 km2), Main (24833 km2) and Moselle (27262 km2) (Demirel, Booij, & Hoekstra, 2014). 
 

 
Figure 1: Altitude of Rhine catchment and with main tributaries of the Rhine (Görgen, et al., 2010) 
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Figure 2: RACMO2.0 model domain, the area between the red 
and blue line is the boundary relaxation zone (Lenderink, et al., 
2003) 

2.2 RCM RACMO 
The Regional Atmospheric Climate Model 
(RACMO2.0) has been developed by the Royal 
Netherlands Meteorological Institute (KNMI). 
In total there are three RACMO versions:   
RACMO2.0, RACMO2.1 and RACMO2.2. In this 
section the development of RACMO2.0 to 
RACMO2.2 is described. 
 
In 2001 RACMO2.0 (Figure 2) has been 
developed having a horizontal resolution of 
approximately 49 km. This RACMO2.0 is based 
on the physical parameterization ECMWF, cycle 
cy23r4 (European Centre for Medium-Range 
Weather Forecast) and is forced by the GCM 
ECHAM5 model. The report by Lenderink et al. 
(2003) provides more information. To 
investigate the quality of RACMO2.0, the 
model was driven by boundary conditions 
given by the ECMWF ERA15 reanalysis data. 
Precipitation is one of the variables with the 
largest uncertainty in climate models, due to the large number of parameterized processes involved 
in the simulation. Total precipitation consists of convective (sub grid) and stratiform (large-scale) 
precipitation (Kysely, et al., 2016). RACMO2.0 underestimates summer precipitation which appears 
to be related to the underestimation of convective rain events. Over sea much more convective 
precipitation is produced when compared to land. Further, the extreme values of daily precipitation 
amounts are overestimated. Moreover, the vertical structure of the clouds seems unrealistic. The 
low-level cloud fraction is low and the middle level cloud cover seems overestimated (Lenderink, et 
al., 2003). 
 
To improve the shortcomings of RACMO2, in 2005 RACMO2.1 has been developed. The horizontal 
resolution of RACMO2.1 is 25 km. The most important changes were the implementation of a new 
parameterization of the deep convection, a new prognostic cloud scheme and a change in the land 
surface scheme to allow more for soil drying (van Meijgaard, et al., 2008). Shortcomings of 
RACMO2.1 are the warm and dry bias in Eastern Europe. In general, RACMO2.1 is found to be a very 
good model, scoring best in an inter-comparison between 15 European climate models (Christensen, 
et al., 2010). 
 
In 2008 RACMO2.1 has been updated to RACMO2.2. Two changes were implemented. First, the 
existing boundary-layer scheme has been extended with a prognostic variable for turbulent kinetic 
energy. Further, the soil hydrology has been more refined by introducing spatial heterogeneity into a 
number of soil parameters. The horizontal spatial resolution of RACMO2.2 is 12.5 km (van Meijgaard, 
et al., 2012).  
 
The three RACMO versions can all be run for the three different RCM spatial resolutions, namely 
12.5 km, 25 km and 50 km. In this research, the newest RACMO2.2 has been used to simulate the 
datasets for the three different horizontal resolutions. This means that changes between the output 
can only be explained in the context of RACMO2.2 (Meijgaard, 2017). 
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2.3 Hydrological model HBV-96 
The HBV model has been developed by Bergström at the Swedish Meteorological and Hydrological 
Institute (SMHI) in 1972. The HBV model is a conceptual, rainfall-runoff model and can be used as a 
semi-distributed or lumped model (Bergström, 1976). Since the 70s many versions of the HBV model 
have been developed and the model has been used in more than 60 countries. However, there were 
some shortcomings and therefore in 1993 the Swedish Association of River Regulation Enterprises 
(VASO) and SMHI initiated a major revision of the structure of the HBV model leading to HBV-96 as 
shown in Figure 3 (Lindström, et al., 1997).  The description in this section is based on the version 
HBV-96. However, only the parts are described which are relevant for the HBV Rhine application 
based on the SHMI report (Berglöv, et al., 2009). 
 

 
Figure 3: Schematic representation of the HBV-96 model for one sub-catchment (Hegnauer, et al., 2014) after (Lindström, et 
al., 1997) 
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General: input and discretization 
The model used in this study uses daily precipitation, temperature and potential evapotranspiration 
data as input. The Rhine catchment is divided in sub-catchments. These sub-catchments are further 
divided into zones based on elevation. The elevation zones can be further divided into different 
vegetation zones (forested and non-forested areas). These sub-divisions are only possible in the 
precipitation and snow routine and the soil routine (Berglöv, et al.,2009).  
 
1: precipitation and snow routine 
The precipitation, which is the input of the model, is separated in snow and rainfall using a threshold 
temperature TT [⁰C]. The calculations for precipitation and snow are made for each 
elevation/vegetation zone within the sub catchment. The snow accumulates resulting in a snowpack. 
The snowpack is assumed to retain melt water as long as the amount does not exceed a certain 
fraction of the snow. The snow starts to melt according to the melting factor CFMAX [mm/⁰C * day] 
depending on the same threshold temperature TT [⁰C]. The rainfall and snow melt infiltrate into the 
ground (soil module) (Berglöv, et al., 2009). Further, the potential evapotranspiration is calculated. 
First the long-term mean monthly potential evapotranspiration is calculated based on the Penman-
Wendling approach. Second, the mean monthly potential evaporation is adjusted to daily values 
using the daily temperature (Berglöv,  et al., 2009). In this research another method for calculating 
the PET is used (3.2). 
 
3: soil routine 
The soil routine controlls which part of the rainfall and melt water is stored in the soil, evaporates or 
forms excess water. The soil routine consists of the soil moisture zone (SMZ) and includes three 
parameters, namely the β (-), LP (-) and the FC (mm). The actual evaporation equals the potential 
evaporation if the actual soil moisture divided by the maximum soil moisture storage FC (mm) is 
above the LP (-). The LP (-) is the limit of water storage for potential evaporation and a fraction of FC 
(mm). A linear reduction is used when the actual soil moisture divided by the maximum soil storage 
FC (mm) is below the LP (-). This shows that the actual evaporation is mainly dependent on the soil 
moisture conditions (SMHI, 2006). Further, the β (-) determines which part of the rainfall directly 
contributes to the response function and which part increases the soil moisture storage. The FC (mm) 
determines the maximum soil moisture storage (Berglöv,  et al., 2009). 

4: response routine 
The excess water from the soil moisture zone enters the response routine. There are two zones 
within the response routine, the upper zone (UZ) and the lower groundwater zone (LZ). The excess 
water from the soil moisture zone will be added to the storage in the upper zone (UZ). From the 
upper zone, water percolates to the lower reservoir according to the parameter PERC (mm/day) as 
long as there is water in the upper reservoir. From the upper non-linear response zone (UZ) water 
leaves the model as fast runoff. From the lower linear groundwater zone (LZ), water leaves the 
model as slow runoff. Using a transformation function, the timing and distribution of the resulting 
runoff is further modified Berglöv,  et al., 2009).. 
 
5: routing 
In this routine the runoff of different sub-basins is linked using a simplified Muskingum approach. 
The river channel in each sub-catchment is divided into a number of segments, given by the 
parameter LAG (day). Each segment will correspond to a delay of one time step.  The parameter 
DAMP describes the damping of the hydrograph along the river. If the DAMP is zero, the shape of 
the hydrograph will remain the same, so the outflow from a segment equals the inflow to the same 
segment during the preceding time step (Berglöv,  et al., 2009). 
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The calibrated HBV-96 model 
The parameter values for this research for the HBV-96 model structure are based on a study by 
Winsemius et al. (2013). This study derived the parameter uncertainty for HBV-96 using the 
Generalized Likelihood Uncertainty Estimation (GLUE) method. The GLUE method is used to asses 
and to reflect the parameter uncertainty, contained in the selection of the model parameters. For 
each sub-catchment first 5 or 6 calibration parameters were selected. For each sub-catchment 
Monte Carlo simulations are performed. The philosophy of GLUE is that instead of finding one 
optimal parameter set, multiple behavioral sets are selected. Based on different measures such as 
the Nash-Sutcliff and Relative Volume Error, the parameter sets that meet the constraints of the 
measures are selected as ‘behavioral sets’. Figure 4 giving an overview of the NS value of each sub-
catchment (Hegnauer, et al., 2013). The datasets which have been used for the calibration are 
HYRAS 2.0 for precipitation and E-OBS v4 for temperature and a discharge dataset from the German 
Federal States, combined with the HYMOG dataset (section 2.4 (Winsemius, et al., 2013)). 
 

 
Figure 4: Overall performance of the HBV-96 model. The NS values are the optimum values for all parameter sets. This is not 
the NS value that corresponds to the final parameter sets per se, but it gives a good impression of the overall performance. 
Areas in grey were not calibrated. Calibration period 01-01-1985 to 31-12-2006 (Hegnauer, et al.,  2013) 

  



21 
 

2.4 Datasets 
As described in section 2.3, the hydrological models are forced by both observed data (precipitation 
(P), temperature (T) and potential evapotranspiration (PET)) and RCM RACMO data at three different 
resolutions. This leads to four different simulated discharge series. These simulated discharge series 
are then compared to observed discharge (Q) data. First the observed datasets are described and 
second the RCM RACMO data are explained. An overview of the datasets is given in Table 2. 
 
Table 2: Overview of datasets used in this research 

Type of dataset Source of 
dataset 

Start of time period End of time 
period 

Temporal 
resolution 

Spatial 
resolution 

Observed Q BAFU 
(Switzerland) 

1974 
(different per station) 

01-01-2011 Hourly Station based 

Observed Q BFG (Germany) 1989 
(different per station) 

01-01-2008 Hourly Station based 

Observed P HYRAS  01-01-1977 31-12-2006 Daily  ~ 25 km
 

0.25 degree 

Observed shortwave 
downward radiation 

HYRAS 01-01-1974 31-12-2006 Daily ~ 25 km
 

0.25 degree 

Observed T EOBS  01-01-1955 31-08-2016 Daily ~ 25 km
 

0.25 degree 

RCM P, T & shortwave 
downward radiation 

RACMO 01-01-1979 31-12-2015 Daily 50 km, 25 km
 

and 12.5 km 

 
2.4.1 Observed data 
Precipitation data 
As observed precipitation data HYRAS 2.0 gridded dataset has been selected. This dataset contains a 
large set of observations for the period 1951-2006 from different countries. The dataset has been 
constructed by the Deutsche Wetterdienst (Rauthe, et al., 2013). The dataset has a resolution of 
0.25 degree and a daily temporal resolution. It is based on 6200 precipitation station located in 
Germany and the neighboring countries. To calculate the gridded data set from station data, the 
REGNIE method has been used. This method is a combination of multiple linear regression 
considering orographic conditions (longitude, latitude, height above sea level, exposition and 
mountain slope) and inverse distance weighting (Rauthe, et al., 2013). 
 
Potential evapotranspiration (PET) 
PET cannot be observed but need to be calculated based on observed data. In this research the 
Makkink method has been used, which means that observed temperature data and shortwave 
radiation data are needed. The choice for this method is explained in section 3.2. The ‘observed’ PET 
is available for the period between 1974 and 2006 because of the availability of the dataset at 
Deltares. 
 
Temperature data 
For observed temperature data, the KNMI’s 0.25 degree gridded E-OBS version 4.0 has been used. 
This dataset contains observations for the period 1955-2016. This dataset is grid based. The dataset 
has been transformed from station based to grid based by first interpolating the monthly mean 
temperature using three-dimensional thin-plate splines, then interpolating the daily anomalies using 
kriging with an external drift and then combining the monthly and daily estimates. The anomalies 
are obtained by calculating the difference between the daily observation and the monthly mean 
(Haylock, et al., 2008). The external drift is used to incorporate elevation dependencies (Goovaerts, 
2000). 
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Discharge data 
For the discharge stations the datasets collected by the BfG from the German Federal States for the 
period 01-11-1989 to 01-11-2007 are used (hourly) (BfG, 2017) . This dataset contains 102 discharge 
stations located in Germany. Further, 32 discharge locations are obtained from BAFU (Bundesambt 
Für Umwelt) containing hourly data from 01-01-1974 to 01-01-2011 (BAFU, 2012). 
 
2.4.2 RACMO RCM data 
The RACMO RCM has been forced by reanalysis data resulting in datasets for three resolutions, 
namely 12.5 km, 25 km and 50 km. The datasets have been downloaded from the CORDEX project 
(ESGF, 2016). As explained, the hydrological models HBV-96 and PCR-GLOBWB need precipitation, 
temperature and potential evapotranspiration (PET) as input data. The potential evapotranspiration 
need to be calculated separately using the Makkink method (section 3.2). Table 3: Overview datasets 
simulated by the RCM RACMOTable 3 gives an overview of the datasets of precipitation and 
temperature and the dataset needed to calculate the PET. 
 
Table 3: Overview datasets simulated by the RCM RACMO and used in this research 

Dataset Unit Time period 

Precipitation (kg m
-2

 s
-1

) 01-01-1979 – 31-12-2015 

Temperature (K) 01-01-1979 – 31-12-2015 

Surface downward shortwave radiation (W m
-2

) 01-01-1979 – 31-12-2015 

 

  



23 
 

3 Method 
In this chapter the method to achieve the objective of this research is described. The objective of 
this research is divided into three research questions. The first four sections (3.1 to 3.4) of this 
method are needed as preparation for this thesis. In section 3.1 the selection of the sub-catchments 
is described.  Further, before running the hydrological models, the datasets need to be prepared. 
This is described in section 3.2. In section 3.3 the sensitivity analysis and calibration of HBV is 
described and in section 3.4 the selection of the three different HBV-96 models is given. In section 
3.5 the method to analyze the sensitivity of discharge characteristics to RCM spatial resolution is 
given, leading to the results of the three research questions. 
 

3.1 Selection sub-catchments 
As described in section 0, the sensitivity of discharge characteristics to RCM resolution depends on 
the catchment size/characteristics and the hydrological model. To assess the sensitivity of discharge 
characteristics to RCM resolution, different catchments are selected. According to the Rheinblick 
report, the Rhine catchment is divided in seven sub-catchments (Görgen, et al., 2010). However, it is 
important that the selected catchments for the analysis are not influenced by catchments upstream. 
This leads to five different catchments which can be selected (Table 4). The selection is based on five 
criteria and the results of these criteria are shown in Table 4 as well. It can be concluded that for the 
Alpines the West Alpine fulfills most criteria and for the lowlands the Main fulfills most criteria. 
 
Table 4: The five catchments which are not influenced by catchments upstream and the 5 criteria per catchment 

Catchments 
in the Rhine 

1: Variety in 
topography 

2: Relative 
slope (-) 

3: Number of 
qualified 
discharge 
stations 

4: Discharge 
stations located at 
outlet catchment 

5: Size of 
catchment 
(Demirel, Booij, & 
Hoekstra, 2014) 

Main Lowlands 0.00543 9 Yes 24833 km
2
 

Moselle Lowlands 0.00767 16 No 27262 km
2
 

Neckar Lowlands 0.00783 11 No 12616 km
2
 

East Alpine Alpines 0.02468 5 Yes 16051 km
2
 

West Alpine Alpines 0.02804 24 yes 17679 km
2
 

 
1: Variety in topography 
Kleinn et al. (2005) concluded that ‘even in high-altitude Alpine catchments’ the stream discharge 
performance did not significantly improve when increasing the RCM resolution. To verify this 
conclusion, from the five catchments which are not influenced by upstream catchments, catchments 
are selected based on the topography. One catchment is selected in the mountainous Alpines (East 
or West Alpine) and one catchment is selected in the lowlands part of the Rhine catchment (Main, 
Moselle or Neckar). 
 
2: Relative slope 
Second, the two catchments are selected based on the largest (mountainous Alpines) or lowest 
(lowlands) difference in altitude (      ) of the river relative to the area in km2 of the sub-
catchment (     ). This relative slope (    ) is calculated as follows: 
 

     
  

√ 
  (Equation 1) 

 
As shown in Table 4, the Main is located in the lowlands and has the smallest relative slope. The 
West Alpine is located in the Alpines and has the largest relative slope. Based on this criterium the 
Main and West Alpine are most suitable to select. 
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3: Quality of the discharge stations 
Third, since the simulated discharges are compared to the observed discharges, the selection of the 
two catchments is based on the availability of observed discharge stations within the catchments. In 
total there are 134 discharge stations available in the Rhine catchment containing data from 01-01-
1974 to 01-01-2011. However, it depends on the discharge station if data is available for the total 
period. A discharge station has been approved as being ‘good’ if there is less than 20% missing data 
and if the minimum observed discharge is above zero. Based on these criteria the Moselle and West 
Alpine are most suitable to choose. 
 
4: Discharge stations located at outlet catchment 
Fourth, to be able to compare the simulated discharge by HBV-96 against the observed discharge, it 
is important that the discharge station is located at the outlet of the HBV-96 sub catchment which is 
the case for the Main, West Alpine and East Alpine. 
 
5: Size of the catchment 
Fifth, the studies by Dankers  et al. (2007), Mendoza et al. (2016) and Kleinn et al. (2005) explain that 
the sensitivity of discharge characteristics to RCM spatial resolution depends on the catchment size. 
Therefore, it is important to select two catchment sizes, namely a ‘large’ catchment and a ‘small’ 
catchment. The definition of ‘large’ and ‘small’ is based on the sizes of the catchments as studied by 
Dankers  et al. (2007), Mendoza et al. (2016) and Kleinn et al. (2005) to make sure that the definition 
of ‘large’ and ‘small’ is around the same to make comparison possible. The large catchments of these 
studies vary between 13000 km2 and 27000 km2 with an average of 22381 km2. Based on these sizes 
the Main and the West Alpine are most suitable to select. 
 
Apart from the ‘large’ catchments, two smaller catchments are selected as well. The smaller 
catchments which are studied by Dankers  et al. (2007), Mendoza et al. (2016) and Kleinn et al. (2005)  
vary between the 700 km2 and 6000 km2 with an average of 2971 km2.  The selected ‘smaller’ 
catchments are located within the Main and the West Alpine to make sure that the modeled 
characteristics of the catchments are around the same and can therefore be compared. It is 
important that these smaller catchments are located upstream as well to decrease the influence of 
upstream catchments. Further, the quality of the discharge stations and the size of the catchments 
(criteria 3 and 4) are used for selection. The smaller sub-catchments need to have a size between 
700 km2 and 6000 km2. Based on these criteria for the West Alpine the smaller sub-catchment 
Reuss-seedorf (836 km2) has been selected and for the Main the sub-catchment Kinzig (928 km2) has 
been selected. Figure 5 shows the selected larger and smaller catchments. 
 

 
Figure 5: Selected large catchments Main (24833 km

2
) and West Alpine (17679 km

2
) and smaller catchments Kinzig (928 

km
2
) and Reuss-Seedorf (836 km

2
) 
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3.2 Preparation of datasets 
The hydrological models are forced by observed data (HYRAS) and RCM RACMO datasets (50 km, 25 
km and 12.5 km). The input data needed for the hydrological model HBV-96 is precipitation 
(mm/day), temperature (⁰C) and potential evapotranspiration (mm/day). The observed precipitation 
and temperature are already converted to the needed units. However, the RCM RACMO datasets 
consist of precipitation (kg m-2 s-1) and temperature (K). Therefore, these datasets need to be 
converted to precipitation (mm/day) and temperature (°C). Further, the potential 
evapotranspiration (PET) needs to be calculated since PET cannot be observed and is not simulated 
by the climate model. To calculate the potential evapotranspiration, the Makkink method has been 
selected. This method has been chosen because the observed (HYRAS) potential evapotranspiration 
has been calculated based on the Makkink method. Further, the method required limited input 
variables (only temperature and shortwave downward radiation). Other observed datasets to 
calculate PET using another method were not available. PET has been calculated using equation 2 
(Rijtema, 1959). A detailed calculation of PET in (mm/day) can be found in appendix (A). 
 

     
 

   
 

         

    
   (Equation 2) 

 
-    shortwave downward radiation     (W m-2) 
-   slope of function of vapour pressure versus air temperature (hPa °C-1) 
-    density of water      (kg m-3) 
-   heat of vaporization      (J kg -1) 
-   psychometric constant      (hPa °C-1) 

 
Spatial aggregation datasets 
After the conversion of the datasets to the necessary units and the calculation of 
PET, the datasets need to be spatially aggregated. The RACMO datasets (spatial 
resolution of ~ 50 km, ~ 25 km and ~ 12.5 km) and the observed datasets HYRAS 
and EOBS (spatial resolution of ~ 25 km) are grid based. However, the hydrological 
model HBV-96 simulates daily discharge for 148 sub-catchments of the Rhine 
instead of grids (te Linde et al., 2008). For each sub-catchment HBV-96 needs one 
spatial mean value of the required forcing data (precipitation, temperature and 
potential evapotranspiration). Since the grids of the RACMO datasets and observed 
datasets do not perfectly fit the sub catchments of the hydrological model, spatial 
aggregation is needed as shown in Figure 6 (Görgen, et al., 2010). There are several 
methods and in this research the area weighted average method is chosen. This 
means that values for one sub-catchment are calculated by weighted averaging all 
grid cells (RCM/observed data) within a given sub-catchment. Appendix B shows 
figures of the different RACMO layers on top of the hydrological model. 
 
Further, in this research the HBV-96 model is used which is as well used in the GLUE analysis. The 
observed P and T datasets (HYRAS and EOBS) have been used for the GLUE analysis as well. HBV-96 
applies an elevation correction to correct for the difference in DEM (digital elevation map) of the 
HYRAS dataset and the average central elevation height of the stations in each sub catchment. For 
the RACMO datasets the average sub-catchment elevations have been calculated by spatially 
aggregating the RACMO DEM. Using this height, the similar height correction method is applied as 
for HYRAS while running HBV-96. The average height for each catchment can vary up to 400 m in the 
Alpines between the three RACMO datasets mutually having a different spatial resolution and the  
HYRAS dataset. When applying a lapse rate of 0.6 ⁰C / 100 m, this difference in height can lead to a 
temperature difference of 2.4 ⁰C between the four datasets for one sub-catchment. 

Figure 6: 
Example of the 
intersection of a 
grid layer and a 
sub-catchment  
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3.3 Sensitivity analysis and calibration 
As described in section 3.2, Makkink is selected as method to calculate the potential 
evapotranspiration. However, since HBV-96 has been calibrated by using the Penman-Wendling 
approach and by adjusting the mean monthly PET (Görgen, et al., 2010), the HBV-96 model has to be 
recalibrated. As described in section 3.1, only the Main and West Alpine are used for analysis. 
Therefore, only these two catchments are calibrated for the new calculated PET. To perform a 
robust calibration, first a sensitivity analysis is performed. 
 
3.3.1 Sensitivity analysis 
The sensitivity analysis gives insight in the parameters which have the highest influence on model 
performance and therefore are most suitable to calibrate. To perform a sensitivity analysis, first the 
parameters to include are selected. Second, the sub-catchments for the sensitivity analysis are 
selected. Third, the ‘starting’ values and the ranges of the parameters for the sensitivity analysis are 
determined. Fourth, the objective function to analyze the sensitivity of the parameters is selected. 
 
Selection of parameters 
In previous studies, several parameters have been calibrated in the HBV model for the Rhine basin 
(Table 5). Based on these studies, several parameters are selected to include in a sensitivity analysis. 
The calibrated parameters used in the GLUE study are selected and the parameters which are 
calibrated in more than three studies for the Rhine. The selected parameters are fc, khq, perc, beta, 
alfa, lp, tt, cfmax and k4. 
 
Table 5: Calibration parameters of HBV-96 previous research for the Rhine 

 Definition Unit 1 2 3 4 5.1 5.2 6 

Fc Maximum value of the soil moisture storage (mm) (mm) X X X X  X  

KHQ Recession rate (1/day) X X X X X X X 

Perc Percolation of water to the lower reservoir (mm/day)  X X X X X X 

Beta Control for the increase in soil moisture for every mm of 
precipitation 

(-)  X X X  X X 

Alpha Parameter for the non-linear behaviour in the response function (-)  X  X    

Lp Soil moisture value above which evapotranspiration reaches its 
potential value 

(-)  X  X  X  

tt Threshold temperature to define at which temperature snow 
melt occurs 

(⁰C)   X X  X X 

cfmax The melting factor (mm/day/⁰C)   X X X X X 

K4 Linear outflow coefficient (-)    X X X X 

maxbas Time base of the triangular distribution in the transformation 
function 

(days)    X   X 

Pcalt Lapse rate parameter for precipitation (-)    X    

RFCF Rainfall correction factor (-)    X   X 

Dttm Value tob e added tot t to give the threshold temperature for 
snow melt 

(⁰C)    X    

Ttint Total length of temperature interval in which part of P that is 
considered to be snow decreases linearly from 1 at the lower end 
to 0 at upper end 

(⁰C)    X    

Cflux Maximum capillary flow from upper response box to soil 
moisture zone 

(mm/day)    X    

1 (te Linde et al., 2008) 4 (SMHI, 2006) 

2 (Winsemius, et al., 2013) 5 (Kersbergen, 2016) 5.1 calibration, 5.2 sensitivity analysis 

3 (Hegnauer, et al., 2013) 6 (Berglöv, et al., 2009) 
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Selection of sub-catchments 
After the parameters are selected, it is important to select the sub-catchments for sensitivity 
analysis. As explained previously, only the Main and the West Alpine are calibrated. Therefore, the 
sensitivity analysis is performed only for these two catchments. Figure 7 and Figure 8 show that 
these two catchments consist of several sub-catchments. The sensitivity analysis and the calibration 
for these sub-catchments are performed by using observed discharge time-series. However, as 
shown in Figure 7 and Figure 8 there are less discharge stations than sub-catchments. Therefore, the 
sub-catchments upstream of one discharge station are grouped. This results in the same number of 
groups as discharge stations. The sensitivity analysis and the calibration are performed for each 
group using the discharge station located at the outlet of the group. The grouped sub-catchments 
and observed discharge stations are shown in Figure 7 and Figure 8. 
 
Starting values of parameters 
The sensitivity analysis is performed by changing the parameter values from the current starting 
value (100%) to lower values (to 50%) and higher values (150%) by steps of 10%. However, the 
starting parameter values need to be defined. These starting (100%) parameter values are based on 
the parameter values as obtained by the GLUE calibration. However, the GLUE calibration led to 
different parameter sets for each sub-catchment even if this sub-catchment is part of the same 
group with one outlet discharge station. In this research the sub-catchments belonging to one group, 
are calibrated together. Therefore, the parameters as calibrated by GLUE are recalculated leading to 
one parameter set for one group. This new parameter set is then used for sensitivity analysis and as 
starting parameter set for the calibration. The new parameters are calculated by first giving a weight 
to each sub-catchment based on the area and second by calculating the average parameter value 
based on this weight. 
 

 
Figure 7: The Main with grouped sub-catchments. Each colour represents a group of sub-catchments. The white marked 
discharge stations are used for calibration. The orange marked discharge stations are used for both calibration and analysis 
of results 
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Figure 8: West Alpine with grouped sub-catchments. Each colour represents a group of sub-catchments. The orange marked 
discharge station number 8 is only used for analysis, number 1 for both analysis and calibration 

Objective function 
The sensitivity analysis is performed by changing the parameter values and then analysing the effect 
of changing the values on the model performance. For this analysis, the objective function KGE (Kling 
Gupta Efficiency) is selected. In section 3.3.2 the choice for the KGE is explained. The optimal value 
of KGE is 1 when representing the best model performance. Figure 9 shows an example of the 
sensitivity analysis. Based on this analysis most sensitive parameters are selected for calibration. 
Less calibration parameters reduce the computational time, increase the convergence time and 
decrease the chance of over-parameterization. Over-parameterization might lead to multiple 
acceptable parameter sets instead of a single optimal parameter set. Per group the parameters are 
selected which result in a KGE changing more than 10%. When this results in a selection of four or 
five parameters, these parameters are selected for calibration. However, when there are less or 
more parameters sensitive than four or five parameters, the objective function NSE (Nash Sutcliffe) 
is used as well (section 3.3.2). Additionally, the parameters are selected which lead to a change in 
NSE of more than 15%. When there are still too many or not enough sensitive parameters, the four 
most sensitive parameters are selected. 
 

 
Figure 9: Example of the sensitivity analysis for one sub-catchment 
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3.3.2 Calibration and Validation 
Based on the sensitivity analysis, the calibration parameters are selected for the different grouped 
sub-catchments as shown in Figure 7 and Figure 8. These parameters are calibrated following four 
different aspects; optimization algorithm, objective function, termination criteria and calibration 
period (Gupta & Sorooshian, 1995). In this the aspect parameter ranges is added. These aspects are 
described in this section. 
 
Optimization algorithm 
First, for calibration the Shuffled Complex Evolution method developed at the University of Arizona 
(SCE-UA) is chosen because it is a robust and effective calibration method. One of the most 
important concepts the SCE-UA is based on is that this method allows more ‘regions of attraction’. 
This prevents the model for finding a local optimum parameter set instead of a global optimum 
parameter set. Another concept is that the calibration method is a combination of deterministic and 
stochastic approaches (Duan, Sorooshian, & Gupta, 1994).  The advantage of the deterministic part 
is that the algorithm uses the results of the previous run to improve the next parameter set instead 
of running 10000 randomly generated parameter sets without memorizing previous gained 
knowledge (totally stochastic). Jeon et al. (2014) compared the SCE-UA method and the Genetic 
Algorithm (GA) method. They recommended using the SCE-UA calibration method when the model 
simulation does not take a long time and the user does have sufficient time for an optimization 
program to search for the best values of calibration parameters (Jeon, Park, & Engel, 2014). The 
calibration procedure is done by using Spotpy in Python (Houska, et al., 2015). 
 
Objective Function 
Second, after the optimization method is chosen, the objective function is selected. This objective 
function is used to calculate the model performance for each generated parameter set during 
calibration. The Nash-Sutcliffe Efficiency (NSE) is most widely used for calibration and evaluation of 
hydrological models with observed data. The MSE (Mean Squared Error) and NSE are closely related 
and can be calculated as follows (Gupta, et al., 2009), where        is the observed discharge,       

̅̅ ̅̅ ̅̅ ̅ 
represents the mean of the observed discharge and        the simulated discharge. 
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Although the NSE is commonly used for calibration, there is one concern. The NSE has an 
oversensitivity to peak discharges and can therefore better be used to evaluate only high-discharge 
simulation efficiency (Muleta, 2012). It is now generally accepted that the calibration of hydrological 
models should be approached as multi-criteria framework.  
 
This can be done by combining multiple objective functions to one objective function. This method is 
often used to be able to use a single-criterion automated search algorithm, such as the SCE-UA. 
However, when combining multiple criteria in evaluation, it has to be considered that these criteria 
are mathematically related. For example, the NSE can be decomposed into separated components. 
This gives a better understanding into how different criteria are interrelated and what the 
contribution is of different components causing a particular model performance to be ‘good’.  Gupta 
et al. (2009) decomposed the NSE to analyse the relative importance of different components in the 
context of hydrological modelling. As a result of this decomposition, the KGE objective function has 
been developed. One advantage can be that the different components are having the same weight. 
The KGE can be calculated as follows (Gupta, et al., 2009): 
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Where   is the linear correlation coefficient,   the of ratio between the relative variability in the 
simulated and observed values and   is the ratio between the mean simulated and mean observed 
discharges, i.e. it represents the bias. 
 
Parameter ranges 
Third, for each calibration parameter a lower boundary and upper boundary is defined. The 
calibration parameters differ per grouped sub-catchments and depend on the results of the 
sensitivity analysis. The boundaries are based on the boundaries as given within the GLUE report and 
the SMHI report. These values can vary between Germany and Switzerland (Winsemius, et al., 2013) 
(Hegnauer, et al., 2013) & (SMHI, 2006). In general, the given values as defined by the GLUE report 
are used as shown in Table 6. 
 
Table 6: Parameter ranges for Switzerland and Germany for the nine selected calibration parameters 

 alfa beta cfmax fc k4 khq lp perc tt 

 (-) (-) (mm/day/⁰C) (mm) (-) (1/day) (-) (mm/day) (⁰C) 

Switzerland 0.2 -1.2 0 - 4 1 - 6 10 - 350 0.001 – 0.1 0.01 - 1 0.3 - 1 0.5 – 5.5 -3 - 1 

Germany 0.2 -1.2 0 - 4 1 - 6 100 - 500 0.001 – 0.1 0.01 - 1 0.3 - 1 0.5 – 5.5 -2 - 2 

 
Number of iterations 
Fourth, it is decided how many calibration runs are needed for the calibration. When using the SCE-
UA method, the number of runs depends on the number of runs needed to reach convergence. In 
this research the maximum number of runs is 10000 per sub-catchments. According to van den 
Tillaart et al. (2013), the amount of iterations is 4000 per sub-catchment for eight calibrating 
parameters for HBV (Tillaart, Booij, & Krol, 2013). 
 
Calibration and validation period 
Fifth, the calibration and validation periods need to be defined. In this research the split-sample test 
is used which means that the available observed time series is split into two segments, one is used 
for calibration and one for validation (Klemes, 1986). This method is chosen since the observed data 
for Switzerland consist of a period of 34 years and for Germany 19 years. To have enough dry and 
wet years in the calibration, the calibration period should be at least 10 to 15 years according to 
SMHI. The dataset for Swiss is split into two segments of 17 years. The dataset for Germany is split 
into a calibration period of 10 years and a validation period of 9 years. The calibration and validation 
period is seen in Figure 7 and Figure 8. 
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3.4 Three versions of the HBV-96 model 
As explained in section 0 the hydrological model choice influences the model output and therefore 
the total model performance. The hydrological model performance is mainly influenced by the 
model structure performance and the parameter performance. To get insight in the parameter 
performance of HBV-96, the effect of calibration is analysed by comparing three versions of HBV-96. 
Further, when comparing the simulated discharges of the different versions of HBV-96 with the 
simulated discharges of different RCM spatial resolutions, the importance of RCM spatial resolution 
can be compared to the importance of calibration. The three versions are called the calibrated, semi-
calibrated and non-calibrated HBV-96 version. The difference between the three models is the 
defined parameter set. 

First, the parameter set for the non-calibrated HBV-model was based on the default parameter 
values for Swedish conditions obtained from the SMHI manual of HBV-96 (SMHI, 2006). The non-
calibrated HBV model uses the same parameter values for each sub-catchment leading to one 
parameter set for the whole Rhine catchment. Second, between 1997 and 2004 the German Federal 
Institute of Hydrology (BfG) set up and calibrated the HBV model for the river Rhine in cooperation 
with Rijkswaterstaat. However, this model did not perform well when incorporated in the 
forecasting system of FEWS. The main reason was that the precipitation, temperature and 
evaporation data available for real-time applications differed from the ones used for calibration. 
Therefore, the SMHI recalibrated this model. The parameter set which is used as starting point for 
the recalibration, is selected as parameter set for the semi-calibrated model (Berglöv, German, 
Gustavsson, Harbman, & Johansson, 2009). The semi-calibrated model uses as well one parameter 
set for the whole Rhine catchment. Third, the parameters for the calibrated HBV-96 model are based 
on the calibration method as described in 3.3. This means that each of the clustered sub-catchments 
have the same parameter values but can be different for each cluster of sub-catchments. Appendix C 
shows the values of the different parameter sets for the calibrated HBV model, the semi-calibrated 
HBV model and the un-calibrated HBV model. 
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3.5 Analysis of total model performance 
This section provides a method to answer the three sub-questions. In section 3.5.1, a general 
framework is given about the analysis of the sensitivity of discharge characteristics to RCM spatial 
resolution when looking at topography, size of the catchment and hydrological model parameter 
estimation. In section 3.5.2 the method to quantify the analysis in the first section is given. This 
quantification is based on the total model performance. In section 3.5.3, different components 
which influence the total model performance and therefore the sensitivity of discharge 
characteristics to RCM spatial resolution, are described. 
 
3.5.1 General framework 
As described in section 0, the sensitivity of discharge characteristics to spatial RCM resolution 
depends on the topography (1), the size (2) of the catchment and the hydrological model (3). The 
topography (1) and size of the catchments (2) are found in the four selected sub-catchments as 
shown in Table 7. The hydrological model – parameter estimation (3) is based on the three HBV-96 
versions (calibrated, semi-calibrated and un-calibrated version). Further, as explained in section 0, 
the analysis is performed for low flow (A), high flow (B) and annual discharge (C). 
 
Table 7: Overview sub-catchments with characteristics 

Sub-catchment Topography (1) Size (2) 

Main Lowland (hilly) Large 

Kinzig Lowland (hilly) Small 

West Alpine Mountainous Large 

Reuss-seedorf Mountainous Small 

 
The sensitivity of discharge characteristics to RCM spatial resolution is analyzed by comparing the 
change in total model performance when increasing the RCM spatial resolution. This model 
performance is based on the comparison between       and           (Table 8). The method to 
quantify the model performance is given in section 3.5.2. 
 
Table 8: Definition of  two discharge series in this research 

 Definition 

     Observed discharge time series 

         Simulated discharge time series obtained by HBV-96 forced with RCM RACMO  data in three RCM spatial 
resolutions (50 km, 25 km and  12.5 km) 

 
In summary, for each of the version of the hydrological model – parameter estimation (3), the       
and            are compared for the combinations A, B, C and for the different aspects topography 
(1) and size of the catchment (2). In the end the third aspect hydrological model – parameter 
estimation (3) is analysed by comparing the three versions of HBV-96. Figure 10 gives an overview of 
the different combinations. 

 
Figure 10: General framework for analysing the sensitivity of RCM spatial resolution on discharge characteristics 
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3.5.2 Quantification of the total model performance by statistical analysis 
To quantify the sensitivity of discharge characteristics to RCM spatial resolution, the total model 
performance is calculated for each RCM spatial resolution based on a statistical analysis for annual 
discharge, high flows and low flows. No time series analysis is performed since it is not possible to 
compare daily re-analysis data with the daily observed data as explained in section 0. 
 
Annual discharge 
For the annual analysis both the mean ( ) and the standard deviation ( ) are calculated for the 
observed daily discharge and the simulated daily discharge. The ratio between the      and the      
gives insight in the bias. The ratio between the       and the      gives insight in the relative 
variability in the simulated and observed values (Gupta et al., 2009). If the ratio is equal to one, the 
mean or standard deviation of the two series are equal to each other. If the ratio is above 1, it 
means that the mean or standard deviation of the observed discharge is overestimated. If the ratio is 
below 1, it means that the mean or standard deviation of the observed discharge is underestimated. 
 

         
    

      
 

 

         
    

      
 

High flows 
To analyse the high flows, the flow duration curve (FDC) is used. In the FDC the empirical cumulative 
frequency of discharges is plotted against the percentage of time that the discharge is equalled or 
exceeded (Tallaksen & Lanen, 2004). The exceedance percentile for high flows is 10% (Q10) (Görgen, 
et al., 2010). The 10% highest simulated discharges (       ) are compared to the 10% highest 
observed discharges (       ). If the curve of the simulated discharges is above the curve of the 
observed discharges, the high flow is overestimated. Further, the ratio of the mean and the standard 
deviation are calculated for the high flows. The high flows are defined as high flows when        . 

Low flows 
For low flows the exceedance percentile is 90% (Q90) (Görgen, et al., 2010). When comparing 10% 
lowest simulated discharges         to the 10% lowest observed discharges (       ), 
information is obtained about the over- or underestimation of the low flows. Further, the ratio of 
the mean and the standard deviation are calculated for the low flows. The low flows are defined as 
low flows when       . 

3.5.3 Contribution of different components to total model performance 
As explained in section 3.5.1 and 3.5.2, the sensitivity of RCM spatial resolution to discharge 
characteristics when looking at the topography (1) and size of the catchment (2) is determined by 
analysing the change in total model performance when increasing the spatial resolution. The 
hydrological model – parameter estimation (3) is analysed by comparing the change in model 
performance for the three different HBV-96 models. 

As explained in section 1.1.2 different choices are made within the modelling chain. These different 
choices influence the model output and therefore the total model performance. To understand 
which component contributes to the total model performance, the total model performance is 
divided into the hydrological model performance (1.1) and the RCM RACMO performance (1.2) as 
shown in Figure 11. When multiplying the two ratios indicating these two performances, the ratio of 
the total model performance (1) is shown. The hydrological model performance (1.1) is influenced 
mainly by model structure performance (1.1.1) and the parameter performance (1.1.2). In this 
section the difference between the performances is explained and the method to quantify these 
performances. The purpose of this analysis is to better understand the total model performance and 
therefore the sensitivity of discharge characteristics to RCM spatial resolution. 
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Figure 11: Overview of contribution of hydrological model and RCM RACMO performance to total model performance 

Table 9: Definition of the three discharge series as used in this research 

 Definition 

     Observed discharge time series 

                 Simulated discharge time series obtained by HBV-96 forced with observed meteo data (P, T , PET) 

         Simulated discharge time series obtained by HBV-96 forced with RCM RACMO  data for three RCM 
spatial resolutions (50 km, 25 km and  12.5 km) 

 
1.1 Dependency of total model performance on hydrological model performance 
As shown in Figure 11, the hydrological model performance is presented by the ratio 
                     . The definition of these discharge series is given in Table 9. Since the 
simulated discharge is forced with observed meteorological data, it is assumed that the errors 
involved in the input data are negligible when assuming that the observed meteorological data 
represents the reality. It is important to keep in mind that the ratio                       both 

represents the model structure performance (1.1.1) and the parameter performance (1.1.2).  

1.1.1: Dependency of hydrological model performance on model structure performance 
As explained in section 1.1.2, the hydrological model structure suffers from imperfections because of 
for example incomplete knowledge of certain hydrological processes. The ability of the hydrological 
model structure to represent the reality as good as possible is called the model structure 
performance (1.1.1) and influences the hydrological model performance (1.1) which is determined 
when comparing      and                  . It is not possible to analyse the model structure 

performance separately since no other hydrological model structures are used in this research. 

1.1.2: Dependency of hydrological model performance on parameter performance 
The parameter performance depends on among others the calibration of hydrological models and 
quality of the input data. The parameter performance (1.1.2) influences the hydrological 
performance (1.1) as well. It is possible to analyse the parameter performance separately when 
comparing the ratio of                          of the calibrated HBV-96 model with the semi-

calibrated and un-calibrated HBV model. 

1.2: Dependency of total model performance on RCM RACMO performance 
The RCM output suffers from an imperfection related to incomplete knowledge of certain processes 
in the atmosphere and ocean resulting in climatic biases (Görgen, et al., 2010). In this research the 
RCM RACMO data are on purpose not corrected for biases to make sure that the bias correction 
does not influence the sensitivity of discharge characteristics to RCM spatial resolution. However, 
the RCM RACMO performance could be different per resolution and contributes to the total model 
performance.  Therefore, the RCM RACMO performance is analyzed by comparing the          and 
the                  as shown in Figure 11. Further, the RCM RACMO datasets precipitation (P), 
temperature (T) and potential evapotranspiration (PET) are analysed separately by comparing it to 
observed data. For the P and PET, the mean of the two datasets for 10% lowest, 10% highest and 
annual P and PET is compared. For the T, the absolute difference between observed and RACMO 
data is analysed. 



35 
 

4 Results 
In section 4.1 the results of the hydrological model performance are presented. In section 0 the RCM 
RACMO performance is analyzed. Both hydrological model performance (section 4.1) and RCM 
RACMO performance (section 0) contribute to the total model performance. In section 4.3, the 
results of the total model performance are shown. When the total model performance is analyzed, 
the results of the three research questions are given by analyzing the change in total model 
performance when increasing the spatial resolution. The first research question is to analyze the 
sensitivity of discharge characteristics to RCM spatial resolution for the size of the catchment. 
Second, the sensitivity is analyzed for the aspect topography and third for the aspect parameter 
estimation. An overview of above described structure is given in Figure 12. 

 
Figure 12: Overview structure of the chapter 'Results' where RSQ is defined as ‘research question’. The text below the 
paragraph number does not necessarily correspond to the title of the paragraph. 

4.1 Contribution of the hydrological model performance 
In this section the results of the hydrological model performance for the calibrated HBV-96 model 
are presented. This hydrological model performance is shown in two ways. In section 4.1.1 the 
results of the calibration and validation of HBV-96 are given expressing the hydrological model 
performance in the objective function Kling Gupta Efficiency. In section 4.1.2 the hydrological model 
performance of the calibrated HBV-96 model is described by the ratio                       as 

explained in section 3.5.3. 

4.1.1 Calibration and validation HBV-96 for the Main and West Alpine 
The results of the calibration and validation are presented in Figure 13 and Figure 14. As explained in 
section 3.3.2, only the Main and West Alpine are calibrated. Further, the objective function used for 
calibration is the Kling Gupta Efficiency. In Figure 13 and Figure 14, the first number represents the 
KGE for the calibration period and the second number the KGE for the validation period. The optimal 
value for KGE is 1. A value above 0.8 shows a good model performance (Rwasoka, et al., 2013). 
 

  
Figure 13: Results calibration and validation of the Main, first KGE value represents calibration, second validation. 
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Both the calibration and validation show good performances having values above 0.8. Only Pegnitz 
in the Main and the grouped sub-catchments Reusluze, Engebuoc and Muotinge show less 
performance, especially for the validation. However, the KGE still has a value above 0.74. The values 
of the parameters for each group of catchments are given in appendix D. 
 

 
Figure 14: Results calibration and validation of the West Alpine, first KGE value represents calibration, second validation 

4.1.2 Hydrological model performance HBV-96 
Figure 15 shows the hydrological model performance of the calibrated HBV-96 model. The 
hydrological model performance contributes to the total model performance. Therefore, it is 
important to pay attention to the low hydrological model performances. If the ratio of 
                      is equal to one, a perfect model performance for the mean or standard 

deviation is shown. If the ratio is between 0.8 and 1.2 a good model performance is reflected (black 
lines in Figure 15). The black circles reflect the model performance which are less good, namely 
below 0.8 or above 1.2 for the calibrated HBV model. In total, there are eight situations where the 
hydrological model performance is less good for the calibrated HBV model. However, in general the 
performance is good having a value between 0.8 and 1.2, especially for the annual discharges. 

In depth analysis of low hydrological model performances of the calibrated HBV-96 model 
The hydrological model performance is influenced by both the model structure performance and 
parameter performance (section 3.5.3). In other words, when analysing the model structure 
performance and parameter performance, the low hydrological model performances can be clarified. 
Since no other model structure is analysed in this research, only insight in the parameter 
performance is obtained. This is done by comparing the hydrological model performance of the 
semi-calibrated and un-calibrated HBV-96 model to the calibrated HBV-96 model. The model 
performances of the other two versions of HBV-96 are represented in Figure 15 as well. 

If the hydrological model performance of the semi- or un-calibrated HBV model shows a value closer 
to 1 than the calibrated model does, the assumption can be made that when adjusting the 
parameter values of the calibrated model, the performance of the calibrated model still can improve. 
However, it is important to realise that this assumption depends on the chosen method to analyse 
the model performance and the type of discharge (low, high, annual) to analyse the performance. 
Further, since the model structure is equal for the three versions of HBV-96, the difference in 
performance between the three versions of HBV-96, can only be caused by differences in parameter 
values. Of course the hydrological model performance is influenced by a combination of the model 
structure and parameter performance and therefore the exact contribution of both cannot be 
quantified. 
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In the eight situations where the hydrological model performance of the calibrated HBV-96 model is 
below 0.8 or above 1.2, there are four situations where the semi-calibrated HBV model or un-
calibrated HBV model shows a better performance. First, for the standard deviation of the high 
discharge for Reuss-Seedorf the un-calibrated model shows a ratio closer to 1 than the calibrated 
model. For the mean of the low discharge of the Main, the semi-calibrated model shows a large 
underestimation and the un-calibrated model an overestimation. Because of this over- and 
underestimation, there is a possibility that a certain parameter value combination from the semi- 
and un-calibrated model leads to a better hydrological model performance. Further, for the standard 
deviation of the low discharge for Main the un-calibrated model shows a ratio closer to 1 than the 
calibrated model. At last, for the mean of the low discharge for Kinzig, again the semi- and un-
calibrated model together might lead to a model performance closer to 1. 

The difference in hydrological model performance between the three versions of HBV-96 is caused 
by parameters having different values. It is interesting to first analyse which parameters cause the 
low hydrological model performance of the calibrated model for the 8 situations as shown in the 
black circles. Second, it is interesting to compare the parameter values for the three HBV-96 versions 
when the semi- or/and un-calibrated models show better performances. This insight can help to 
improve the HBV model in further research. The results of this analysis are found in appendix E. 
 

 
Figure 15: hydrological model performance for the calibrated, semi-calibrated and un-calibrated HBV-96 presented by the 
ratio of simulated discharge forced with observed meteorological data and the observed discharge. If the ratio is 1 a perfect 
model performance is presented and between 0.8 and 1.2 a good model performance is presented (black lines). The black 
circles show the performances for the calibrated model below 0.8 or above 1.2. Some performances are very low and out of 
the presented range. Main: semi-calibrated model, standard deviation of high discharge (2.3), Kinzig: semi-calibrated 
model, standard deviation low discharge (2.3), standard deviation of high discharge (2.6). The μ represents the mean and 
the σ the standard deviation of the annual, low or high discharge. 
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4.2 Contribution of the RCM RACMO performance 
In this section the RCM RACMO performance is analyzed by determining the ratio          
                 as shown in Figure 16. The RCM RACMO performance contributes to the total 

model performance. The lowest RCM spatial resolution is referred to as R50, the middle resolution 
as R25 and the highest resolution as R12. In general, only for West Alpine, Reuss-Seedorf and Main 
the mean of the low discharge shows a good performance (between 0.8 and 1.2). Further, the 
discharge is in general overestimated by the RCM RACMO since most ratios show a value above 1. 
However, there are some exceptions. First, for the West Alpine the mean of the low discharge 
underestimates the simulated discharge forced with observed meteorological data.  Reuss-Seedorf 
overestimates the discharges, except for the standard deviation of the low discharge. Kinzig shows 
an underestimation or good performance for the R50. Figure 16 shows that Reuss-Seedorf in general 
shows the best RCM RACMO performance. 
 

 
Figure 16: RCM RACMO performance for the four different catchments. The μ represents the mean and the σ the standard 
deviation of the annual, low or high discharge. R50 is the lowest RCM spatial resolution, R25 the middle and R12 the 
highest. If the ratio is 1, a perfect RCM RACMO model performance is presented and above 0.8 and below 1.2 a good model 
performance is presented (black lines).  Some performances are very low and out of the presented range. Kinzig: standard 
deviation of the high discharge (R25:2.06). The ratio is calculated for a period of 16 years (1990-2006). 

In depth analysis of RCM RACMO performance 
The results of the RCM RACMO performance are further analysed by comparing the RACMO mean of 
the low, high and annual precipitation, temperature and potential evapotranspiration to the mean 
of the observed precipitation (P), temperature (T) and potential evapotranspiration (PET). Low is 
defined as the 10% lowest amounts of P, T and PET and high as the 10% highest amounts of P, T and 
PET. This analysis gives insight in possible relations between performance of the meteorological data 
and the RCM RACMO performance. The P and PET are represented by the ratio of the simulated P or 
PET and the observed P or PET. However, the temperature is analysed by representing the absolute 
difference between the mean of the observed and simulated temperature in degrees Celsius. Only 
the mean of the data is analysed since it is difficult to link the standard deviation of meteorological 
data to the standard deviation of the discharge in a sub-catchment. Further, the number of 
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simulated dry days is analysed as well. The analysis is first performed for West Alpine and Reuss 
Seedorf located in the West Alpine (mountainous) and second for Main and Kinzig in Germany 
(lowlands) because the hydrological characteristics differ between mountainous and lowland areas. 
It is important to notice that the P, T and PET together contribute to the RCM RACMO performance 
and it is therefore not possible to quantify the influence of the three datasets separately. 

 
Figure 17: RCM RACMO meteorological data (P, PET (Makkink), T) compared to the observed data (P, PET (Makkink), T) for 
both the West Alpine and Reuss Seedorf. The P and PET are presented as ratio of the RCM data and the observed data. The 
temperature is presented as difference between RCM data and observed data. Further, the number of dry days over the 
period 1990-2006 is presented. R50 is the lowest RCM spatial resolution, then R25 and then R12 

West Alpine and Reuss Seedorf 
Figure 16 shows that for West Alpine and for Reuss Seedorf the mean of the annual and high 
discharge is overestimated. For West Alpine the mean for the low discharge is underestimated. For 
Reuss-Seedorf the mean of the low discharge shows a very good performance for R50 and R25 and 
an underestimation for R12. 

Both West Alpine and Reuss Seedorf are located in the mountainous West Alpine. In this area there 
is a lot of snowfall resulting in snow melt during summer time. Therefore, the high discharge occurs 
in summer time and the low discharge in winter time. During winter time, the temperatures can 
drop below the temperature value where precipitation is defined as snowfall. For the West Alpine 
this threshold temperature is -3.5 ⁰C and for Reuss Seedorf -3.9 ⁰C. The mean of the observed 10% 
lowest temperatures for the West Alpine is below the -4 ⁰C and for Reuss Seedorf below -13 ⁰C 
showing that the mean of the observed low temperature has reached the threshold where 
precipitation is defined as snow. Figure 17 shows that both Reuss Seedorf and West Alpine show an 
underestimation of the temperature during winter time (mean of the low temperature). This means 
that the precipitation is more often defined as snowfall instead of rainfall leading to a lower 
discharge in wintertime. Figure 16 shows indeed an underestimation of the mean of the low 
discharge during winter time. The mean of the low temperature is more underestimated for West 
Alpine than for Reuss Seedorf which can explain why the low discharge is more underestimated for 
West Alpine than for Reuss Seedorf. 

The overestimation of the mean annual discharge and high discharge for West Alpine and Reuss 
Seedorf is more difficult to clarify. When observing the amount of dry days as presented in Figure 17, 
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it can be observed that there are too many wet days simulated by the RCM RACMO for both West 
Alpine and Reuss Seedorf. This means that the RCM in shows a ‘drizzling effect’. This leads to a larger 
amount of precipitation which is evaporated leading to a decrease in discharge. This aspect can 
therefore not clarify the overestimated discharges for West Alpine and Reuss Seedorf. Further, an 
overestimation of the discharge could be clarified by an overestimation of the mean precipitation. 
For Reuss Seedorf the precipitation is indeed overestimated by the R25 and R12 RCM RACMO, 
leading to an overestimation of the discharge of especially the R25 and R12. For West Alpine there is 
a small overestimation of the mean precipitation which could explain the overestimated discharge. 

In general, the amount of potential evapotranspiration (PET) is lower during wintertime and higher 
during summer time. For West Alpine the mean of the 10% lowest PET (winter time) is 
underestimated which could lead to an overestimation of discharge in wintertime. However, the low 
discharge is underestimated for West Alpine. The mean of the PET for the annual and high amounts 
is simulated very well (between 0.95 and 1.05) which cannot clarify the overestimation of the annual 
and high discharge. For Reuss Seedorf on the other hand, the mean of the annual and high PET is 
slightly underestimated leading to an overestimation of discharge which can be seen in Figure 16. 

At last, it is interesting to clarify the difference between the three RCM spatial resolutions in 
simulated discharges for both West Alpine and Reuss Seedorf. For West Alpine, the performance of 
the simulated mean of the annual and high discharge increases with increasing RCM spatial 
resolution. This increase is shown for the precipitation and PET as well. Only for the temperature the 
lowest RCM spatial resolution seems to show the best performances. For Reuss Seedorf, the lowest 
RCM spatial resolution (R50) shows the best performance in simulating the mean of the discharge, 
followed by the R12. The difference in performance between the three RCMs is shown in the mean 
of the precipitation as well. The temperature and potential evapotranspiration do not show this 
fluctuation. 
 
Main and Kinzig 
Figure 16 shows that the mean of the discharge is overestimated by the RCM RACMO for Main. For 
Kinzig the R25 and R12 in general highly overestimate the mean of the simulated discharge, while 
the R50 simulates the mean of the discharge very well or underestimate it.  
 
Both Main and Kinzig are located in the lowlands (still quite hilly). This means that the high 
discharges occur in wintertime and the low discharges in summertime because the contribution of 
snowmelt to the discharge is much lower than for the sub-catchments located in the West Alpines. 
For this reason the amount of precipitation will have a higher influence on the simulated discharge 
compared to the other two sub-catchments in the West Alpines. When observing the amount of dry 
days as shown in Figure 18, this amount of dry days is highly underestimated by the RCM RACMO for 
Kinzig. This means that the RCM in general keeps ‘dripping’. This leads to a larger amount of 
precipitation which is evaporated leading to a lower discharge. However, since the discharge for 
Kinzig is overestimated, this cannot be clarified by the amount of simulated dry days. For Main the 
amount of simulated dry days shows that the lowest RCM resolution R50 overestimates the amount 
of dry days, the R25 overestimates the amount of dry days slightly and the highest RCM resolution 
underestimates the amount of dry days. This would suggest that for the R50 and R25 the amount of 
discharge is overestimated (less water that evaporates) and for R12 is underestimated. The 
discharge indeed shows that the discharge is overestimated for R50 and R25. The discharge for R12 
is as well overestimated, but less than for the R25 and R50. This can be caused by the PET. Further, 
Figure 18 shows that the mean of the precipitation of Main is overestimated for the annual and high 
discharge. This can as well clarify the overestimation of the discharge. For Kinzig, Figure 18 shows 
that the mean of the precipitation is overestimated for the R25 and R12 and is underestimated for 
the R50. This could clarify the overestimation (R25 and R12) and underestimation (R50) of the 
simulated discharge. 
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Figure 18: RCM RACMO meteorological data (P, PET (Makkink), T) compared to the observed meteorological data (P, PET 
(Makkink), T) for both the Main and Kinzig. The P and PET are presented as ratio of the RCM data and the observed data. 
The temperature is presented as difference between RCM data and observed data. Further, the amount of dry days over the 
period 1990-2006 is presented. R50 is the lowest RCM spatial resolution, then R25 and then R12 

The temperature will mainly influences the discharge in wintertime since the value of the 
temperature then can drop below the temperature value where precipitation is defined as snowfall. 
Therefore, especially the influence of the 10% of the lowest temperature on the winter discharge 
(high discharge) is interesting. For both Main and Kinzig, the temperature is underestimated, mainly 
the 10% of the lowest temperature. An underestimation leads to an underestimation of the 
discharge. Since the mean of the high discharge (winter) for both Main and Kinzig is overestimated, 
this underestimation of the temperature does not clarify the overestimation of the discharge. 

An underestimation of the PET leads to more discharge.  The low PET occurs during wintertime and 
therefore affects the high discharge (high discharges occur in wintertime) and the high PET occurs 
during the summertime affecting the low discharge. For Main the mean of the low PET is 
underestimated which could clarify the overestimation of the mean of the high discharge. For Kinzig 
the mean of the annual and high PET is underestimated and for the lowest 10% PET the mean is 
highly underestimated. This could explain why the mean of the discharges for Kinzig (R25 and R12) 
are overestimated.  

When analyzing the differences between the three RCM versions, for Main, the R12 shows the best 
performance of the mean of the simulated discharges, followed by the R25 and then the R50. These 
differences between the three RCM resolutions are also observed for the precipitation and potential 
evaporation. However, for the temperature the R50 shows the best performance. For Kinzig it can be 
seen that in general the R50 shows the best performance for the precipitation, PET and temperature. 
This could suggest why the R50 shows the best performance of the mean of the simulated discharge 
as well. However, the sudden increase in overestimation of the mean of the low discharge (summer 
time) for R25 is not reflected by the P and the PET, but only by the underestimation of the high 
temperature (summer time) for R25. However, it is unclear how this underestimation relates to the 
low discharge in summer time since the temperature especially influences the snowfall in wintertime.  
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4.3 (Sensitivity of) total model performance 
First in section 4.3.1, the results of the total model performance are analyzed. The total model 
performance is represented by the ratio                 , representing the ratio of the simulated 
discharge (HBV forced with RCM RACMO data) and the observed discharge. Second, the results of 
the three sub-questions are given (4.3.2). In other words, the sensitivity of discharge characteristics 
to RCM spatial resolution for the size of the catchment, the topography of the catchment and the 
parameter estimation are shown. 

4.3.1 Total model performance 
Table 10, Table 11, Table 12 and Table 13 show the total model performances (1) for the four sub-
catchments. The total model performance is coloured red if the ratio showing the performance is 
below 0.8 or above 1.2. These tables show that there are only a few situations showing a good total 
model performance having a ratio between the borders of 0.8 and 1.2. In general, the discharge is 
overestimated by HBV-96 for the three resolutions for the annual and high discharge and 
underestimated for the low discharges. Further, especially the mean and standard deviation of the 
low discharge show very bad performances. 
 
Both the hydrological model performance                       and RCM RACMO performance 
                          contribute to the total model performance                . As explained in 
section 3.5.3, when multiplying both ratios which represent the hydrological model performance 
and RCM RACMO performance, the ratio of the total model performance is shown. Therefore, if 
both the hydrological model performance and RCM RACMO performance show an over- or 
underestimation of the discharge, both performances are strengthening each other. On the other 
hand, if one performance shows an overestimation and the other an underestimation, both 
performances are compensating for each other’s under- or overestimation. The contribution of the 
hydrological model performance (1.1) and RCM RACMO performance (1.2) to the total model 
performance (1) are analysed per sub-catchment. 
 
West Alpine 
Table 10 shows the total model performance (1), the hydrological model performance (1.1) and the 
RCM RACMO performance (1.2) for West Alpine. In general, the total model performance (1) shows 
that the discharge is overestimated for both the mean and standard deviation. Only the mean of the 
low discharge is underestimated. Further, the total model performance is good showing ratios 
between 0.8 and 1.2 for the mean of the annual and low discharge. 
 
Table 10: West Alpine: Total model performance (1), hydrological model performance (1.1) (the same for each RCM spatial 
resolution) and RCM RACMO performance (1.2) 

   (1) 
 

(1.1) 
 

(1.2) 
 

   (1) (1.1) (1.2) 

Mean annual Q 

R50 1.19 0.97 1.23 

STD annual Q 

R50 1.76 1.05 1.67 

R25 1.14 0.97 1.17 R25 1.66 1.05 1.58 

R12 1.07 0.97 1.10 R12 1.54 1.05 1.46 

Mean low Q 

R50 0.85 0.94 0.91 

Std low Q 

R50 1.64 1.13 1.45 

R25 0.78 0.94 0.83 R25 1.69 1.13 1.50 

R12 0.80 0.94 0.85 R12 1.46 1.13 1.29 

Mean high Q 

R50 1.45 1.03 1.41 

Std high Q 

R50 2.10 1.91 1.10 

R25 1.37 1.03 1.32 R25 2.46 1.91 1.29 

R12 1.28 1.03 1.24 R12 2.44 1.91 1.28 

 
The hydrological model performance (1.1) shows an underestimation and the RCM RACMO 
performance shows an overestimation of the mean of the annual discharge (Table 10). Therefore, 
both performances compensate for each other when contributing to the total model performance. 
For the other type of discharges, both hydrological model performance and RCM RACMO 
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performance are strengthening each other. The low total model performance is mainly caused by 
the contribution of the low performance of the RCM RACMO since the hydrological model 
performance is in general very good. Only for the standard deviation of the high discharge the low 
total model performance is mainly caused by the contribution of the low hydrological model 
performance. 

Reuss Seedorf 
Table 11 shows the total model performance (1), hydrological model performance (1.1) and RCM 
RACMO performance (1.2) of Reuss Seedorf. In terms of total model performance, the mean of the 
annual and high discharge and the standard deviation of the annual discharge are overestimated. 
The other types of discharges are underestimated. The total model performance is in general very 
low, showing ratios fluctuating between 0.2 and 1.5. 

Table 11: Reuss Seedorf: Total model performance (1), hydrological model (1.1) (the same for each RCM spatial resolution) 
and RCM RACMO performance (1.2) 

 
 

 (1) (1.1) (1.2)  
 

 (1) (1.1) (1.2) 

Mean annual Q 

R50 1.08 0.92 1.18 

STD annual Q 

R50 1.25 1.13 1.11 

R25 1.32 0.92 1.43 R25 1.52 1.13 1.34 

R12 1.09 0.92 1.19 R12 1.35 1.13 1.19 

Mean low Q 

R50 0.36 0.34 1.04 

Std low Q 

R50 0.21 0.32 0.66 

R25 0.35 0.34 1.03 R25 0.21 0.32 0.65 

R12 0.32 0.34 0.92 R12 0.21 0.32 0.65 

Mean high Q 

R50 1.14 1.04 1.10 

Std high Q 

R50 0.94 0.76 1.25 

R25 1.36 1.04 1.31 R25 0.94 0.76 1.25 

R12 1.20 1.04 1.15 R12 0.93 0.76 1.23 

 
For the mean annual discharge, the mean of the low discharge and the standard deviation of the 
high discharge, the hydrological model performance (1.1) shows an underestimation of the 
discharge and the RCM RACMO performance (1.2) shows an overestimation. This means that these 
performances are compensating each other. It is interesting to notice that the hydrological model 
performance for the standard deviation of the high discharge shows a ratio of 0.76 and for the RCM 
RACMO performance a ratio of 1.25. Since both performances are compensating each other, this 
combination results in a good total model performance of 0.94. For the other three types of 
discharge, both performances are strengthening each other. Further, in three situations the total 
model performance is mainly caused by the low hydrological model performance and not the RCM 
RACMO performance, namely for the mean and standard deviation of the low discharge and the 
standard deviation of the high discharge. 

Main 
Table 12 shows the total model performance (1), the hydrological model performance (1.1) and the 
RCM RACMO (1.2) performance for the Main. For Main the total model performance shows that the 
discharges are overestimated. Only the standard deviation of the low discharge is underestimated. 
 
Table 12: Main: Total model performance (1), hydrological model performance (1.1) (the same for each RCM spatial 
resolution)and RCM RACMO performance (1.2) 

 
 

 (1) (1.1) (1.2)  
 

 (1) (1.1) (1.2) 

Mean annual Q 

R50 1.48 0.98 1.51 

STD annual Q 

R50 1.45 0.89 1.63 

R25 1.48 0.98 1.52 R25 1.35 0.89 1.52 

R12 1.36 0.98 1.39 R12 1.23 0.89 1.38 

Mean low Q 

R50 1.98 1.51 1.31 

Std low Q 

R50 0.63 0.45 1.38 

R25 1.97 1.51 1.30 R25 0.74 0.45 1.63 

R12 1.69 1.51 1.12 R12 0.73 0.45 1.60 

Mean high Q 

R50 1.49 0.90 1.66 

Std high Q 

R50 1.56 1.12 1.39 

R25 1.42 0.90 1.58 R25 1.40 1.12 1.25 

R12 1.31 0.90 1.45 R12 1.18 1.12 1.06 
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Table 12 shows that both hydrological model performance and RCM RACMO performance show an 
overestimation of the mean of the low discharge and the standard deviation of the high discharge. In 
other words, both performances are strengthening each other. For the other type of discharges, 
both performances are compensating for each other’s performance. Further, the total model 
performance is mainly influenced by the low RCM RACMO performance. Only the hydrological 
model performance of the mean and standard deviation of the low discharge is not good and 
therefore influencing the total model performance more than the RCM RACMO performance. 
 
Kinzig 
Table 13 shows the total model performance (1), the hydrological model performance (1.1) and the 
RCM RACMO performance (1.2) for Kinzig. The total model performance shows an overestimation of 
the discharges for the spatial RCM resolution R25 and R12 and an underestimation for the lowest 
resolution R50. Only the mean of the low discharge is underestimated for the three spatial 
resolutions. 
 
In general, the RCM RACMO performance and hydrological model performance are compensating 
each other performances. The performances are only strengthening each other for the mean of the 
low discharge and the mean and standard deviation of the annual and low discharge when 
considering the lowest RCM spatial resolution R50. In general, the RCM RACMO performance 
influences the contribution to the total model performance the most because the hydrological 
model performance shows a good performance. Only for the mean of the low discharge and 
standard deviation of the low discharge, the hydrological model performance is very low leading to a 
larger influence on the total model performance. 

Table 13:Kinzig: Total model performance (1), hydrological model performance (1.1) and RCM RACMO performance (1.2) 

 
 

 (1) (1.1) (1.2)  
 

 (1) (1.1) (1.2) 

Mean annual Q 

R50 1.00 0.95 1.06 

STD annual Q 

R50 0.95 0.99 0.96 

R25 1.52 0.95 1.60 R25 1.58 0.99 1.59 

R12 1.57 0.95 1.66 R12 1.79 0.99 1.80 

Mean low Q 

R50 0.32 0.38 0.84 

Std low Q 

R50 1.09 1.47 0.74 

R25 0.64 0.38 1.67 R25 2.12 1.47 1.44 

R12 0.47 0.38 1.22 R12 1.78 1.47 1.21 

Mean high Q 

R50 0.93 0.93 1.00 

Std high Q 

R50 0.89 1.12 0.79 

R25 1.45 0.93 1.57 R25 1.90 1.12 1.70 

R12 1.62 0.93 1.74 R12 2.31 1.12 2.07 

4.3.2 Sensitivity of discharge characteristics to RCM spatial resolution 
In this section the results of the total model performance are given representing the sensitivity of 
discharge characteristics to RCM spatial resolution in terms of catchment size (1), topography (2) 
and parameter estimation (3). To classify the results leading to more structured analysis, two types 
of indicators are formulated with accompanying assumptions. 

1. The sensitivity: The sensitivity shows the change in total model performance when increasing or 
decreasing the RCM spatial resolution. The total model performance is categorized as very 
sensitive if the changes in ratios are above 0.2. The discharge is categorized as sensitive if the 
changes in ratios are between the 0.1 and 0.2 and as insensitive if the ratios are below 0.1. 

2. The direction: In general it is expected that a higher RCM spatial resolution leads to a better 
total model performance. This sequence of the three RCM spatial resolutions in terms of total 
model performance is called the direction. 
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Figure 19: The total model performance in terms of ratio of the mean μ (above) and standard deviation σ (below) of the 
annual, low or high discharge for West Alpine (large and mountainous), Reuss Seedorf (small and mountainous), Main 
(large and lowland), Kinzig (small and lowland). R50 is the lowest RCM spatial resolution, R25 the middle and R12 the 
highest. If the ratio is 1, a perfect model performance is presented and above 0.8 and below 1.2 a good model performance 
is presented (black lines).  Some types of discharges do not show all results because of a very low performance. Standard 
deviation of the high discharge: (Kinzig R25 1.9, R12: 2.31) (West Alpine: R50: 2.1, R25: 2.46, R12: 2.44). Mean low 
discharge: (Main: R50 1.98, R25: 1.97). Standard deviation of low discharge (Kinzig: R25: 2.12). 

Sensitivity in terms of size and topography of the sub-catchment 
Figure 19 shows that the total model performance of Kinzig is very sensitive to changes in RCM 
spatial resolution, since the ratios are varying a lot. Reuss-Seedorf is only very sensitive for the mean 
and standard deviation of the high discharge and for the standard deviation of the annual discharge. 
For the other type of discharges, Reuss-Seedorf is not sensitive at all. Further, West Alpine and Main 
are both showing the same sensitivity patterns. Only for the mean of the low discharge Main is much 
more sensitive than West Alpine and for the standard deviation of the low discharge the West Alpine 
is more sensitive. Both catchments are quite sensitive having values between 0.1 and 0.4. In general, 
no clear sensitivity patterns are observed in terms of catchment size or topography of the catchment. 
However, the two larger catchments Main and West Alpine show the same sensitivity patterns. 
 
When looking at the direction of the total model performance for the four selected sub-catchments 
in Figure 19, it can be seen that in general for the two larger catchments West Alpine and Main the 
performances increases with increasing RCM spatial resolution. However, the smaller catchments 
Kinzig and Reuss Seedorf show in general that the lowest RCM spatial resolution R50 shows the best 
total model performance. For Kinzig the second best performance is in general for the middle RCM 
spatial resolution (R25) and the worst performance for the R12. For Reuss Seedorf on the other hand, 
the highest RCM spatial resolution (R12) shows the second best performance and the R25 shows the 
worst total model performance. 
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However, there are a few exceptions. For West Alpine the R50 performs best for the ratio of the 
standard deviation for high discharges and the mean of the low discharges, followed by R12 and 
then R25. At last the standard deviation of the low discharge shows that the R12 performs best, 
followed by the R50 and at last the R25. For Reuss-Seedorf the exceptions are as follows: In terms of 
the ratio of the standard deviation for high and low discharge, the performance of R50, R25 and R12 
are among the same. Further, for the mean of the low discharge the R50 shows the best results, but 
then followed by the R25 instead of the R12. For Kinzig, there are two exceptions. The ratio of the 
standard deviation of the low discharge shows that the R12 shows the second-best results followed 
by the R25. Further, for the ratio of the mean of the low discharges the middle resolution R25 
performs best and the lowest resolution R50 worst. For Main there are no exceptions. 
 
Sensitivity in terms of parameter estimation of HBV-96 

 
Figure 20: Total model performance of the annual discharge for the four selected sub-catchments. CA: calibrated HBV 
model. SC: semi-calibrated HBV model. UC: un-calibrated HBV model. For the standard deviation of the semi-calibrated HBV 
model for Main, the value of the ratio of R50 is 2.62. For the standard deviation of the semi-calibrated HBV model for 
Kinzig, the value of the ratio of R25 is 2.6 and R12 is 2.92. 

When analysing the sensitivity of total model performance to RCM spatial resolution for the three 
versions of HBV as shown in Figure 20, it can be seen that for West Alpine and Reuss Seedorf the 
semi-calibrated HBV-96 model is most sensitive for changes in RCM spatial resolution, followed by 
the un-calibrated version and then the calibrated HBV model. For Main and Kinzig it can be analysed 
that there is little difference between the sensitivity of model performance to RCM spatial resolution 
for the three different versions of HBV. 
 
When analysing the direction of the total model performance, Figure 20 shows for West Alpine and 
Main that in general the total model performance increases with increasing RCM spatial resolution 
for the three versions of HBV. Only the semi-calibrated HBV model for West Alpine shows that the 
total model performance decreases slightly from spatial resolution R25 to R12. For Main the ratio of 
the mean shows a slightly decrease in total model performance from R50 to R25. For Kinzig it can be 
observed that an increase of the RCM spatial resolution leads to a decrease of the total model 
performance for the three HBV models. For Reuss Seedorf Figure 20 does not show a clear trend for 
the change of  total model performance when increasing the RCM spatial resolution at all for the 
three different HBV models.  
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Figure 21: Flow Duration Curve for West Alpine. The left figure represents the FDC for the whole discharge time series, the 
middle for the 30% lowest discharge and the right for the 30% highest discharge. CA means calibrated HBV model. SC 
means semi-calibrated HBV model and UC means un-calibrated HBV model. The green line represents the observed 
discharge series 

Figure 21 shows the flow duration curve (FDC) for West Alpine for the three HBV versions and the 
three RCM spatial resolutions. These FDC can be compared to the FDC of the observed discharge. 
For the 30% of the highest discharge the same observations are made as based on Figure 20: It can 
be seen that increasing the RCM spatial resolution leads to a simulated discharges closer to the 
observed discharges for the three HBV versions. However, for the 30% of the lowest discharges, the 
lowest RCM spatial resolution R50 (blue line) shows a better FDC followed by the R25. 

 
Figure 22: Flow Duration Curve for Main. The left figure represents the FDC for the whole discharge time series, the middle 
for the 30% lowest discharge and the right for the 30% highest discharge. CA means calibrated HBV model. SC means semi-
calibrated HBV model and UC means un-calibrated HBV model. The green line represents the observed discharge series 

Figure 22 shows the FDC of the Main and shows the same conclusions as presented by Figure 20. 
Namely, the FDC of the simulated discharge is closer to the FDC of the observed discharge for the 
highest RCM spatial resolution, followed by the R25 and then the R50 for all three HBV-96 versions. 
 

 
Figure 23: Flow Duration Curve for Kinzig. The left figure represents the FDC for the whole discharge time series, the middle 
for the 30% lowest discharge and the right for the 30% highest discharge. CA means calibrated HBV model. SC means semi-
calibrated HBV model and UC means un-calibrated HBV model. The green line represents the observed discharge series 

Figure 23 shows the FDC of Kinzig and shows the same conclusions as presented by Figure 20. The 
lowest RCM spatial resolution R50 (blue lines) shows the best performance for all the three versions 



48 
 

of the HBV model. This is followed by the R25 (black lines) and at last the R12 shows the best 
performance (red line). This is the situation for the low and high discharges. 

 

Figure 24: Flow Duration Curve for Reuss Seedorf. The left figure represents the FDC for the whole discharge time series, the 
middle for the 30% lowest discharge and the right for the 30% highest discharge. CA means calibrated HBV model. SC 
means semi-calibrated HBV model and UC means un-calibrated HBV model. The green line represents the observed 
discharge series 

Figure 24 shows the FDC of Reuss Seedorf for the three versions of HBV and the three RCM spatial 
resolutions. For the low discharge it can be seen that the calibrated HBV model shows FDC which are 
much better than the semi-calibrated and un-calibrated HBV model. However, for the high discharge 
again no clear trend can be observed which is shown in Figure 20 as well. 

Above figures give not only insight in the sensitivity of total model performance to RCM spatial 
resolution for the three HBV models. The effectiveness of increasing RCM spatial resolution can as 
well be compared to the effectiveness of calibrating the HBV model. For the West Alpine it is 
observed that increasing the RCM spatial resolution shows a clear improvement of total model 
performance, while calibrating the HBV model only shows an improvement for the standard 
deviation and when not taking into account the semi-calibrated model. For Reuss Seedorf nothing 
can be said about the effect of calibrating in comparison to the effect of increasing the RCM spatial 
resolution since no clear trends are obtained. For Main it can be seen that both increasing the RCM 
spatial resolution and calibrating the HBV model lead to an increase of total model performance. In 
general, Main is more sensitive to the calibration which means that calibrating is more effective for 
Main than increasing the RCM spatial resolution. For Kinzig it is analysed that calibrating the HBV 
model leads to an increase in model performance except for the standard deviation of the semi-
calibrated HBV model. Increasing the RCM spatial resolution leads to a decrease of total model 
performance. This suggests that calibrating is more effective than increasing the RCM spatial 
resolution for Kinzig. 
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5 Discussion 
In section 5.1 the results of the sensitivity of discharge characteristics to RCM spatial resolution are 
compared to previous research. In section 5.2 the RCM RACMO performance is compared to 
previous research and in section 5.3 the hydrological model performance is analysed. In section 5.4 
the observed discharge and meteorological data are discussed. In section 5.5 the general potential of 
this research is described partly based on the discussion given in the sections before. In section 5.6 
the limitations of this research are given, partly based on the discussion given in the sections before. 

5.1 Sensitivity of discharge characteristics to RCM spatial resolution 
Section 4.3 shows the results of the sensitivity of discharge characteristics to RCM spatial resolution 
in terms of catchment size, catchment topography and parameter estimation. These results are 
compared to literature. 
 
Catchment size 
Kleinn et al. (2005) analyzed four different sub-catchments of the river Rhine having sizes similar to 
the larger selected sub-catchments in this research (Main and West Alpine). Kleinn et al. (2005) 
concluded that the simulated discharges driven by the higher RCM spatial resolution (14 km) 
correlate better to the observations than the lower RCM spatial resolution (56 km). However, the 
impact of RCM spatial resolution for runoff is not as remarkable as for precipitation (Kleinn, et al., 
2005). This study shows as well an increase in total model performance when increasing the RCM 
spatial resolution for the larger catchments (Main and West Alpine). Dankers et al. (2007) studied as 
well catchments having sizes comparable to the West Alpine and the Main and concluded that for 
the annual discharge the performance of the hydrological model is more or less the same for the 
different RCM spatial resolutions. Since the study area is different for Dankers et al. (2007) this could 
explain why the results are slightly different. However, all three studies agree that the influence of 
increasing the resolution on model performance is much smaller than beforehand expected. 
 
While Kleinn et al. (2005) did not study the effect of RCM spatial resolution on simulated discharges 
for smaller sub-catchments, Kleinn et al. (2005) expected that smaller sub-catchments would benefit 
more from an increase in RCM spatial resolution than larger sub-catchments. The reason for this is 
that an increase in RCM spatial resolution leads to a better representation of small scale 
precipitation patterns. For larger catchment of several thousand square-kilometres and for the 
runoff evolution of a daily timescale, the fine-scale distribution of precipitation within the catchment 
is less important than for smaller sub-catchments (Kleinn, et al., 2005). However, for the two smaller 
sub-catchment Reuss Seedorf (836 km2) and Kinzig (928 km2), this study does not support this 
expectation by Kleinn et al. (2005). One of the reasons could be that Kleinn et al. (2005) performed a 
bias correction method for both precipitation and temperature, while this study did not. Graham et 
al. (2005) concluded that a finer RCM spatial resolution resulted in biases of temperature and 
precipitation that were more systematic and less spatially variable. Olsson et al. (2014) supported 
this by concluding that the bias was steadily reduced or remained unchanged when increasing the 
resolution. This shows that catchments might profit more from an increase in RCM spatial resolution 
when a bias correction is applied. 
 
Both Dankers et al. (2007) and this study analysed the influence of increasing RCM spatial resolution 
on high discharges events. Dankers et al. (2007) conclude that the different sub-catchments profit 
from the increase of RCM resolution when analysing high discharge events. The results in this study 
show for the Main and West Alpine as well that the high discharge shows a larger profit from 
increasing RCM spatial resolution than the annual discharge. However, this is not supported by the 
smaller sub-catchments Reuss Seedorf (836 km2) and Kinzig (928 km2). These two smaller sub-
catchments are five times smaller than the smallest sub-catchments (4500 km2) as analysed by 
Dankers et al. (2007) which might explain the differences in results. 
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Topography of the catchment 
Kleinn et al. (2005) conclude that even the high-altitude Alpine catchments do no significantly 
improve the discharge performance when increasing RCM spatial resolution. In general, in the 
Alpines the biases are larger of precipitation and temperature and there are errors in the altitudinal 
distribution of the precipitation. Therefore, it would be expected that especially in the Alpines 
(mountainous region) the simulated discharge would benefit from an increase in RCM spatial 
resolution. This study showed for the West Alpine that an increase in RCM spatial resolution led to a 
small increase in total model performance. However, this study did not support this for Reuss 
Seedorf. In summary, both studies show that mountainous regions do not profit more from an 
increase in RCM spatial resolution than sub-catchments located in lowlands. 
 
Hydrological model - parameter estimation 
Mendoza et al. (2016) compared (among others) the effect of RCM spatial resolution on simulated 
discharges for four different hydrological models. Mendoza et al. (2016) did not apply a bias 
correction method but calibrated the four selected hydrological models for the meteorological data 
simulated by the highest RCM spatial resolution. Mendoza et al. (2016) concluded that increasing 
the RCM spatial resolution has large effects on the portrayal of hydrologic change at an annual basis, 
regardless which hydrologic model structure was selected. Moreover, the effect of RCM horizontal 
resolution on hydrologic change may overwhelm the uncertainty from hydrological model choice 
(Mendoza, et al., 2016). However, it can be questioned if it can indeed be concluded that increasing 
the RCM spatial resolution leads to a better simulation of the discharge if the hydrological models 
are calibrated for the highest RCM spatial resolution. On the other hand, the conclusion about the 
hydrological model choice is supported by this study. The three versions of HBV are showing the 
same sensitivity to RCM spatial resolution for the three selected sub-catchments. It is important to 
realise that in this study the parameter estimation is analysed and not the model structure. 

5.2 RCM performance 
In terms of precipitation, Olsson et al. (2014) concluded that a higher RCM spatial resolution led to 
an increase in overestimation of the amount of wet days. This analysis is supported by this study for 
all four selected sub-catchments. The reason for this is that the grids are aggregated to the sub-
catchments. A higher RCM spatial resolution leads to more grid cells which are aggregated for one 
sub-catchment leading to a bigger chance that there will be at least one grid cell showing more than 
0 mm of precipitation. This leads to less simulated dry days.  
 
Olsson et al. (2014) further concluded that in general no positive impact was analysed on monthly 
total precipitation amounts when increasing the spatial resolution. Only for short-term variability 
and extreme rainfall events, the agreement with observations increased with increasing resolution. 
Further, Dankers et al. (2007) concluded as well that the extreme rainfall events were better 
represented by the high RCM spatial resolution (12 km) than the low spatial RCM resolution (56 km). 
Kleinn et al. (2005) did apply a bias correction for precipitation and concluded that the coarser RCM 
resolution captures the main precipitation features, where the higher resolution captures the 
smaller scale patterns as well. An increase in RCM resolution introduces considerable spatial 
variations in the precipitation fields. In summary, a higher RCM spatial resolution leads to a better 
representation of the extreme precipitation events and a better representation of the smaller scale 
patterns. In this research the small scale patterns were not analysed since the amounts of 
precipitation were aggregated to one sub-catchment and therefore no comparison is possible. The 
extreme rainfall events are partly analysed depending on the definition of extreme. In this research 
the 10% of the highest amount of precipitation are analysed. For West Alpine and Main the increase 
in resolution led to a very small increase in precipitation performance. For Kinzig this increase was 
much larger. However, for Reuss Seedorf no increase was analysed in precipitation performance 
when increasing RCM spatial resolution. One of the reasons could be that in this research the 
amount of precipitation was aggregated to one sub-catchment therefore leading to other results. 
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Only Graham et al. (2005) explicitly analysed the increase of RCM spatial resolution and the 
influence on simulated temperature. Especially in the mountainous regions, the simulated 
temperature profit from the increased resolution. In this study this is result is not supported.  
However, this could be explained by the fact that Graham et al. (2005) applied a bias correction 
method, while this study did not. As explained by Kleinn et al. (2005) in the altitudinal regions a 
larger bias of precipitation and temperature was observed. Further, as explained by Graham et al. 
(2005), an increase in resolution leads to more systematic and less spatially variable biases. This 
suggests that especially in the Alpines, the temperature could benefit from a bias correction leading 
to an increase in temperature performance when applying the bias correction. 

5.3 Hydrological model performance 
The hydrological model performance consists mainly of the parameter performance and model 
structure performance. Other contributions to the hydrological model performance are the input 
data and the temporal resolution. Unfortunately, it was not possible to analyze the model structure 
performance since no other hydrological model is used in this research. However, even if another 
model was used, it is very difficult to quantify the contribution of the different aspects in the 
structure to the hydrological model performance. 
 
Further, insight in the parameter performance is obtained by comparing the three versions of the 
HBV model. By comparing the different parameter values, it can be determined which parameter 
influences the parameter performance. However, often different parameters are dependent on each 
other and therefore the combination of parameters instead of individual parameter values lead to a 
clarification of the parameter performance. The analysis of the parameter values in this research are 
only based on individual parameter values. The dependency is not analyzed and therefore it is not 
quantified which parameter value contribute to what extent to the parameter performance. Insight 
in the influence of the parameters can be obtained by performing a sensitivity analysis. However, 
that is out of the scope of this research. 

5.4 Quality of the observed data 
Quality of the observed discharge data 
The observed discharge data is in this research assumed to perfectly match the reality. However, 
most of the discharge data as used in this thesis is derived from measured water levels and 
calculated using a Q-H relation (Winsemius, Verseveld, Weerts, & Hegnauer, 2013). The Q-h 
relations are often outdated or do not take into account some processes such as high water events 
(Tillaart S. v., 2010). This leads to an error in the observed discharges. 

Further, for the discharge station Aare-Untersighenthal, there are many missing values. In general, 
these missing values are representing the higher peak discharges. During the analysis, the days 
having missing values are skipped for both the observed discharge time series and the simulated 
time series. However, since most of the missing values are peak values, the mean and standard 
deviation of the 10% highest discharge in the analysis might be in reality belonging to the 20 or 30% 
highest discharge. 
 
At last, the operational water management and the reservoirs and locks are not taken into account 
in the HBV model (Kleinn, et al., 2005). However, these measures are influencing the observed 
discharge data. Therefore, the simulated discharge might over- or underestimates the amount of 
real discharge. When the HBV model for a certain sub-catchment always overestimates the 
discharge, this can be caused by the fact that the ‘anthropogenic influences’ are not taken into 
account in the HBV model. 
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Quality of the observed meteorological data 
The discharges are both simulated by using RACMO RCM data as input data and observed 
precipitation and temperature data. The observed precipitation data is the dataset known as HYRAS 
data. This dataset is a gridded dataset having a spatial resolution of 1 km2. This gridded dataset is 
based on 6200 precipitation stations within the spatial domain covering the river basins in Germany 
and neighboring countries (Rauthe, et al., 2013). In this research the HYRAS data is assumed to 
reflect the reality. It is good to keep in mind that there are uncertainties within this dataset. The 
calibration in this study is based on the HYRAS dataset. This means that the calibration might have 
corrected the uncertainties in the HYRAS dataset by adjusting certain parameters. Further, this 
means that these uncertainties are as well corrected for the RACMO RCM data while these 
uncertainties might not exist in the RACMO dataset. One of the reasons for the uncertainties within 
the HYRAS dataset is as follows: The precipitation stations are all located on a certain height. 
However, when aggregating the locations to a gridded dataset, it is important that this difference in 
height is taken into account since the wind speed influences the precipitation and wind is different 
for different altitudes (Zhihua & Mingqin, 2007). For the HYRAS dataset a multiple linear regression 
tool is used to correct for the elevation (Rauthe, et al., 2013). I think it is better to use the tool as 
described by (Davids, et al., 2015) where first the stations are brought down to a reference level and 
then increased again to the used topography. 

5.5 General potential of this research 
As explained in section 1.1.2, many decisions need to be made within the modeling chain, such as 
the choice of RCM spatial resolution and bias correction method. Each choice leads to another result 
and therefore another model performance. So far, previous researchers on this topic show 
contradictory results. This research used the philosophy to keep the methods as simple as possible 
to make sure that observed differences in model performance are for sure caused by differences in 
RCM spatial resolution and are not influenced by for example a bias correction method. Further, 
since the influence of some components (hydrological model performance) cannot be neglected, the 
total model performance was decomposed to analyze the different performances as well. Therefore, 
it can be referred where the values of the total model performance comes from. This makes it much 
easier to compare the results to other researches and to draw conclusions about the influence of 
RCM spatial resolution on discharge characteristics. 

5.6 General limitations of research 
In this study one hydrological model (HBV) and three different resolutions (RCM RACMO) are studied 
for sub catchments in the Rhine having different characteristics. Due to the limitation of time (the 
master thesis takes 20 weeks, 30 European Credits) and available RCM resolutions forced with 
reanalysis data, it is impossible to compare more resolutions and hydrological models for more than 
one study area. Therefore, it can be questioned if the sensitivity of discharge characteristics to RCM 
spatial resolution is quantified well enough when only using 3 RCM spatial resolutions. Further, the 
results about the hydrological model use are only based on the parameter estimation of the 
hydrological model. Therefore, nothing is said about the hydrological model structure. Further, since 
no bias correction method is applied, other studies where the bias correction is applied could have 
other results. Moreover, it is important to keep in mind that studies using other hydrological models 
and another RCM can show other results. 
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6 Conclusions and recommendations 
The conclusion of this thesis consists of two parts. The first part consists of answering the three sub-
questions about the sensitivity of discharge characteristics to RCM spatial resolution when looking at 
the size of the sub-catchment (question 1), the topography of the sub-catchment (question 2) and 
hydrological model (question 3). The second part provides some general conclusions. 
 

6.1 Conclusion research questions 
Research question 1: Size of the sub-catchment 
The two larger catchments West Alpine and Main show an increase in total model performance for 
annual, high and low discharges when increasing the RCM spatial resolution. For the two smaller 
catchments Kinzig and Reuss Seedorf, the lowest RCM spatial resolution shows the best 
performance for all discharge characteristics. For Kinzig the R25 (middle resolution) shows the 
second best total model performance for all discharge characteristics and for Reuss Seedorf the R12 
(highest resolution) shows the second best total model performance. In conclusion, the two larger 
sub-catchments show an increase in total model performance when increasing the RCM spatial 
resolution, while the two smaller sub-catchments do not.  
 
Further, when analysing the sensitivity of discharge characteristics to RCM spatial resolution, the 
two larger sub-catchments West Alpine and Main are sensitive to changes in RCM spatial resolution 
and are showing the same change in total model performance when increasing the resolution. For 
the two smaller catchments, no relation is found. In general, Kinzig is much more sensitive to 
changes in RCM spatial resolution than Reuss Seedorf. At last, for the Main, West Alpine and Kinzig 
the high discharges are more sensitive to changes in RCM spatial resolution than the annual 
discharges and low discharges. For Reuss Seedorf the annual discharge is most sensitive. In 
conclusion, the two larger sub-catchments are showing the same sensitivity patterns and for the two 
smaller sub-catchments no relation has been observed. 
 
Both the RCM RACMO performance and hydrological model performance contribute to the total 
model performance. When only analysing the RCM RACMO performance, the RCM RACMO 
performance as well increases with increasing RCM spatial resolution. This shows that the 
conclusions are not influenced by the hydrological model performance. When analysing the output 
of the RCM RACMO model, the precipitation, temperature and potential evapotranspiration can 
clarify the results as shown by the simulated discharges of the RCM RACMO. 
 
Research question 2: Topography of the sub-catchment 
When analysing the sensitivity of discharge characteristics to RCM spatial resolution in terms of 
topography, no relations are found. It was expected based on the study by Kleinn et al. (2005) that 
the sub-catchments located in the Alpines would benefit more from an increase in RCM spatial 
resolution than the sub-catchments located in the lowlands. The West Alpine shows indeed an 
increase in total model performance. However, the same increase is observed for the Main. Reuss 
Seed does not show an increase in total model performance at all. It is concluded that the increase 
in RCM spatial resolution has more to do with the catchment size than the fact that it is located in 
the mountainous region. In conclusion, the influence of RCM spatial resolution on discharge 
characteristics is independent of the topography of the catchment. Both the RCM RACMO 
performance and hydrological model performance contribute to the total model performance. 
When only analysing the RCM RACMO performance, the same conclusions are drawn. When 
observing the absolute total model performance, the performance is very low for the four sub-
catchments. Kleinn et al. (2005) concluded that the performance of the sub-catchments located in 
the Alpine are in general much lower than the performances for the lowlands. Kleinn et al. (2005) 
applied a bias correction while this study did not. For this study the performances of all sub-
catchments is low. 
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Research question 3: Hydrological model – parameter estimation 
The hydrological model performance contributes to the total model performance and therefore 
influences the results. When the hydrological model performance is low for a certain discharge 
characteristics, the influence of the RCM spatial resolution on the total model performance is bigger 
since both performances are strengthening each other. However, in this research it is observed that 
the hydrological model performance does not influence the sensitivity of discharge characteristics to 
RCM spatial resolution, but only the absolute value of the total model performance. 
 
When analysing the sensitivity of discharge characteristics to RCM spatial resolution for the three 
versions of HBV, it is concluded that for the Main, West Alpine and Kinzig the sensitivity is the same 
for the three different versions. For the Main and West Alpine the total model performance 
increases when increasing the RCM spatial resolution for all three versions of HBV. For Kinzig the 
total model performance decreases when increasing the RCM spatial resolution for the three 
versions of HBV. Only for Reuss Seedorf the sensitivity is different for the three hydrological model 
versions. The lowest RCM spatial resolution shows the best performance, followed by the R12 for 
the semi-calibrated and calibrated model and followed by the R25 for the un-calibrated model. In 
general, the change in total model performance when increasing the spatial resolution does not 
depend on the hydrological model – parameter estimation. 
 
Further, the results of the sensitivity of discharge characteristics to RCM spatial resolution in terms 
of hydrological model – parameter estimation give as well insight in the effectiveness of increasing 
the RCM spatial resolution compared to the effectiveness of calibrating the HBV model. For the West 
Alpine for all three versions of HBV, an increase RCM spatial resolution leads to an increase in total 
model performance. If calibrating HBV leads to an increase in total model performance, depends on 
the RCM spatial resolution. For the Main both calibrating and increasing the RCM spatial resolution 
lead to an increase of total model performance. For Kinzig the calibration leads to an increase in 
total model performance, while the increase of RCM spatial resolution leads to a decrease in total 
model performance. For Reuss Seedorf there is no clear trend at all. These observations are as well 
supported when only analysing the RCM RACMO performance. It is concluded that for the lowlands 
the calibration of the hydrological model is more effective than increasing the RCM spatial resolution. 
For the mountainous sub-catchments no clear conclusion is drawn. This could be partly because the 
hydrological model structure of HBV in general is less good for mountainous sub-catchments. 

6.2 Conclusion research objective 
The research objective of this study thesis is as follows: 

To assess the sensitivity of discharge characteristics to RCM spatial resolution (12.5, 25 and 50 km) 
simulated by different versions of HBV having different parameterizations for catchments with 
different characteristics (sizes and topography) in the Rhine basin. 
 
In this research it is concluded that there is no clear relation between the total model performance 
and the RCM horizontal resolution. The topography of the sub-catchment does not influence the 
sensitivity of discharge characteristics (annual, high and low discharges) to RCM spatial resolution. 
The discharge characteristics are not sensitive to RCM spatial resolution in terms of hydrological 
model – parameter estimation. Only the size of the sub-catchments influences the sensitivity of 
discharge characteristics to RCM spatial resolution. In general, an increase in RCM spatial resolution 
leads to an increase in total model performance for the two larger sub-catchments West Alpine and 
Main. This increase is larger for high discharges instead of the annual discharge and lower for the 
low discharges. Further, these two catchments are both showing the same changes in total model 
performance when increasing the RCM spatial resolution and are therefore called both sensitive. 
Additionally, it depends on the catchment if calibrating or increasing the RCM spatial resolution is 
more effective in terms of simulating discharge characteristics. The two catchments in the lowlands 
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(Main and Kinzig) are in general more sensitive to calibration than for the increase in RCM spatial 
resolution. The two catchments in the Alpines are less sensitive for calibration than the two 
catchments in the lowlands, however, for these two catchments no clear conclusions can be drawn.  
Moreover, when analyzing the absolute total model performance it can be concluded that the 
performance is low (presented by a ratio above 1.2 and below 0.8), especially for the low and high 
discharges. 
 
Apart from a conclusion about the sensitivity of discharge characteristics to RCM spatial resolution, 
another conclusion is drawn as well. The results of the hydrological model performance and RCM 
RACMO performance showed that they are strengthening and compensating each other 
performances and together contribute to the total model performance. This means that in general 
no conclusion can be drawn on the total model performance only. A very good example is the total 
model performance of the standard deviation of the low discharge for Kinzig where the hydrological 
model performance shows a ratio of 1.47 and the RCM RACMO performance a ratio of 0.74. Both 
performances are compensating each other leading to a total model performance of 1.09 which is 
very good. This example shows very clearly that when not decomposing the total model 
performance, it cannot be concluded that the total model performance showing certain changes in 
discharge characteristics when changing the RCM spatial resolution, are mainly caused by the 
changes in spatial RCM resolutions. These results can as well be influenced by for example a very 
bad performance of the hydrological model or bias correction method. This explains why different 
researches may come up with different conclusions. 
 
When comparing above conclusion to the presented discussion in chapter 0, an observation can be 
added to the general discussion about the sensitivity of discharge characteristics to RCM spatial 
resolution. In terms of sensitivity of discharge characteristics to RCM spatial resolution, it is analysed 
that only for the two larger sub-catchments an increase in RCM spatial resolution leads to an 
increase in total model performance (although this performance is still very low). However, as 
explained by Kleinn et al. (2005), it would be expected that especially smaller sub-catchments can 
benefit from an increase in RCM spatial resolution. The reason for this is that Kleinn et al. (2005) 
concluded that an increase in RCM spatial resolution leads to a better representation of small scale 
precipitation patterns. For larger catchment of several thousand square-kilometres and for the 
runoff evolution of a daily timescale, the fine-scale distribution of precipitation within the catchment 
is less important than for smaller sub-catchments (Kleinn, et al., 2005). However, this study did not 
support this expectation. Graham et al. (2005) concluded that a finer RCM spatial resolution resulted 
in biases of temperature and precipitation that were more systematic and less spatially variable. 
Olsson et al. (2014) supported this by concluding that the bias was steadily reduced or remained 
unchanged when increasing the resolution. Kleinn et al. (2005) did apply a bias correction while this 
study did not. When combining these aspects, it is expected that, especially smaller sub-catchments, 
only profit from an increase in RCM spatial resolution when a bias correction is applied. The larger 
sub-catchment already profit from an increase in RCM spatial resolution although the performance 
only slightly increases. This suggests that as well the larger sub-catchments could benefit from a bias 
correction. 
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6.3 Recommendations 
Based on above conclusions and the discussion, several recommendations are formulated. First, the 
hypothesis is formulated that, especially smaller sub-catchments, seems to only benefit from an 
increase in RCM spatial resolution when applying a bias correction. Previous researches indeed 
concluded that an increase in RCM spatial resolution leads to less spatially variable biases. However, 
there is no research that analyzed the effect of a bias correction method in combination or 
independent of increasing the RCM spatial resolution for smaller sub-catchments.  It is interesting to 
focus further research on this topic. What is the effect of bias correction on total model 
performance for smaller and larger sub- catchments and is this bias correction necessary to simulate 
more realistic discharges? What is the effect of the combination of the bias correction and increase 
of RCM spatial resolution on total model performance for smaller and larger sub-catchments? In 
other words, is the application of a bias correction necessary when profit from an increase in RCM 
spatial resolution? 

Second, in this research four sub-catchments are analyzed all having a different combination of size 
and topography. It would be interesting in further research to analyze different catchments having 
the same characteristics and size. This analysis gives insight if the RCM RACMO performance and 
hydrological model performance are showing the same values for different type of discharges for the 
same type of sub-catchments. This would give a better insight in the effect of changing RCM spatial 
resolution on simulated discharges. 

Third, as explained in section 4.1.2 and appendix E, the difference between the three versions of 
HBV-96 are the parameter values. To be able to improve HBV-96 for future research, it is interesting 
to analyze if the different parameters are dependent of each other and therefore contribute 
together to the hydrological model performance. Moreover, which of the parameters are most 
interesting? This could be analyzed by performing a large sensitivity analysis. 

Fourth, it is recommended to analyze the hydrological model structure as well. In this research only 
the parameter performance is analyzed since no second hydrological model is taken into account. It 
is concluded that the parameter estimation does not influence the increase of total model 
performance when increasing RCM spatial resolution. However, to be able to say something about 
the hydrological model performance in total, the exact same circumstances need to be analyzed for 
another hydrological model. Only then a good insight is obtained about the sensitivity of discharge 
characteristics to RCM spatial resolution in terms of hydrological models.  

Fifth, it would be interesting as well to analyze the effect on discharge simulation when first 
aggregating the highest RCM spatial resolution R12 to R50 and then compare this aggregation to the 
original R50. Does the R50 than includes more detail and what is the influence on simulating the 
discharge? 

Sixth, as shown in appendix E, the actual evaporation influences the simulated discharge. Normally, 
another method to calculate the potential evapotranspiration is used in HBV. It is interesting to 
compare the method of calculating the PET and to analyze the effect on the model performance. 

At last, it is highly recommended to have a critical attitude against the contribution of the different 
type of performances to the total model performance. This means that for example a high total 
model performance can be caused by a RCM performance which shows an overestimation of the 
discharge and a hydrological model performance which shows an underestimation of the discharge 
leading to a compensation of each other’s over- and underestimation. This means that conclusions 
based on the total model performance are in fact caused by other aspects than assumed. 
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Appendix 

 A: Makkink calculation 
To calculate the Potential evapotranspiration, Makkink has been selected. The Potential 
evapotranspiration (kg m-2 s-1) is calculated using the following equations. 
 

     
 

   
 

         

   
 (Equation 1) 

 
In this equation the following variables are represented as shown in Table 14 
 
Table 14: The different variables as shown in the equation to calculate Makkink (Rijtema, 1959) 

Variable Definition Unit Value Source 

   Surface downward shortwave radiation (W m-2)  RCM RACMO 

  density of water (kg m-3) 1000  

  heat of vaporization (J kg -1)  Equation 2 

  psychometric constant (hPa °C-1)  Equation 3 

  slope of function of vapour pressure versus 
air temperature 

(hPa °C-1)  Equation 4 

 
The latent heat of vaporization   is calculated using   which is the observed daily temperature in °C. 
 

                     (Equation 2) 
 

The psychometric constant   has been calculated using equation 3 where   is the observed daily 
temperature in °C. 

                 (Equation 3) 
 

The slope of the function of vapour pressure versus air temperature   is calculated using equation 4, 
where    is the saturation vapour pressure (equation 5) and   is the observed daily temperature 
in °C. 

  
         

          
           (Equation 4) 

 
The saturation vapour pressure    has been calculated using equation 5, where   is the observed 
daily temperature in °C. 

            (
     

       
) (Equation 5) 
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B: HBV layers with three RCM versions 

 
Figure 25: Main (left) and West Alpine (right), from top to down RCM spatial resolution R50 - R25 - R12  
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C: Parameter values of the three HBV versions 
Table 15 shows values of the parameters for the different HBV models, the calibrated (CA), the semi-
calibrated (SC) and the un-calibrated (UC) HBV model. Only the parameter values are shown having a 
different value for the three HBV-96 versions. Further, it is important to keep in mind that some 
parameters for the calibrated HBV model have different values for each sub-catchment. 

Table 15: Parameter values of the three HBV versions. The value with underscore is not given and therefore assumed 

  CA SC UC  

Parameter Source 1 2 3 1: (Winsemius, Verseveld, Weerts, & Hegnauer, 2013) 
2: (Berglöv, German, Gustavsson, Harbman, & Johansson, 2009) 
3: (SMHI, 2006) 

1: Precipitation and snow routine 
pcalt Mm/⁰C 0 0.1 0.1 Lapse rate parameter for precipitation is applied to adjust to the current 

altitude 

sfcf - 1 1.1 1 Snowfall correction factor 

tti ⁰C 2 2 0.5 Temperature interval for rain/snow mixing 

fosfcf - 0.8 1 0.8 Factor that will be multiplied by SFCF for zones of type forest 

cfmax mm/⁰C 
/day 

3.5 3.5 3 The melting factor per day 

dttm ⁰C 0 0 -0.5 Dttm + tt = Threshold temperature for snow melt 

ecalt - 0 0 0.1 Elevation adjustment to allow for a decrease in potential evaporation 
with elevation 

ered - 1 0 0 Used to reduce actual evaporation when interception is included in the 
computation in order to avoid values of total actual evaporation (sum of 
soil and interception evaporation) which are too large. 

icfo  4 1.5 0 Introduces an interception storage. From this storage, evaporation equal 
to potential evaporation will occur as long as water is available 

2: Soil routine 
lp - 0.7 0.9 1 Soil moisture value above which evapotranspiration reaches its potential 

value 

beta - 2 2.5 1 Control for the increase in soil moisture for every mm of precipitation 

cevpfo - 1.2 1 1.15 Correction factor for potential evaporation in forest zones 

3: Response routine 
perc mm/day 0.5 2 0.5 Percolation capacity from upper to lower response box  slow 

responding reservoir 

k4 day
-1

 0.01 0.05 0.01 Recession coefficient lower reservoir  slow responding reservoir 

khq day
-1

 0.09 0.2 0.09 Recession coefficient from the upper box water discharge equals hq  
fast responding reservoir = upper box 

alfa - 1 1 0.9 Measure of the non-linearity, typically in the order of 1  fast 
responding reservoir = upper box 

cflux Mm/day 0 0 0.5 Maximum capillary flow from upper response box to soil moisture zone 

epf - 0 0.02 0 Potential evaporation may be reduced during rainfall events by: Epot * 
e^(-epf*P) 

4: routing 
maxbas - 0.042 0.5 1 The time base of the triangular distribution 
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D: Results calibrated parameters 
In appendix D the results for the calibration are shown. Each table shows the calibrated sub-
catchment groups in the first column, the criteria for the KGE and NSE where the selection of the 
calibration parameters is based on in the second and third column and the results of the calibrated 
parameters in the other columns. 

Table 16: Values for different parameter values obtained from calibration Main 

 KGE NSE Alfa Beta Fc K4 Khq Lp perc 

Unit   - - mm - 1/day - mm/day 

Main1 8% 15%   134.331   0.127 0.898 2.713 

Main2 3% 1%  2.471 182.218 0.028 0.083   0.602 

Rednitz, Aisch, Regnitz, Main3, Main4, 
Main5, Tauber, Main6 

10% 15%   189.467 0.002 0.052  1.173 

Pegnitz 18% 15% 0.293 0.627 419.260 0.003 0.084   2.002 

FrSaale 12% 15%   231.006 0.047 0.144   1.999 

Kinzig 10% 15%   219.312 0.083 0.112   5.498 

Main7 1% 1%  3.991 499.399     0.300  

Nidda 10% 15%  1.073 309.501   0.117 0.302 0.505 

Main8 0.5% 0.5%   100.060 0.100    

 
Table 17: Values of different parameter values obtained from calibration West Alpine 

 KGE NSE tt Cfmax Alfa Beta Fc K4 Khq Lp perc 

Unit   ⁰C mm - - mm - 1/day - mm/day 

Thunersee, Aare1 10% 15%     0.001   0.752 0.036 0.874 0.734 

Emme 5% 10%  5.997 0.533       0.206   1.713 

KleineEmme, 
Limmat_reus, 
Sihlzuer, Lintmoll, 
Lintwees, Limmzuer 

2.5% 5%    0.002   0.068 0.747 2.360 

Aare2 0.5% 0.5%      0.023 0.116   4.170 

Orbeorbe, Areuboud, 
Broypaye, Canasugi, 
Zihlgamp, Aarebrue 

1% 1%  5.968   18.199     

Reuss-seedorf 5% 10% -2.993 5.296       0.152   0.505 

Muotinge, Engebuoc, 
Reusluze 

2.5% 5%  1.017     0.095 0.207   0.502 
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E: Analysis HBV model structure and HBV parameter values 
In section 4.1.2 the hydrological model performance                        is analysed for the four 
selected sub-catchments and the three versions of HBV-96 (Figure 26). There are eight situations as 
presented by the black circles where the hydrological model performance of the calibrated HBV-96 
model is low (ratio below 0.8 or above 1.2). The hydrological model performance is influenced by 
both the model structure performance and parameter performance (section 3.5.3). Since no other 
model structure is analysed in this research, only insight in the parameter performance is obtained. 
This is done by comparing the hydrological model performance of the semi-calibrated and un-
calibrated HBV-96 model to the calibrated HBV-96 model as shown in section 4.1.2. The differences 
in hydrological model performance between the three versions of HBV-96 are caused by parameters 
having different values. In this appendix the parameter values of the three versions of HBV are 
compared for the eight situations where the calibrated HBV model shows a low performance. This 
comparison can give insight in which parameters are causing this low performance and which 
parameters are explaining the difference in hydrological model performance between the three HBV 
versions. It is important to keep in mind that the parameters could be dependent of each other and 
therefore, it could be an interaction between different parameters which lead to the observed 
differences.  

 
Figure 26: hydrological model performance for the calibrated, semi-calibrated and un-calibrated HBV-96 presented by the 
ratio of simulated discharge forced with observed meteorological data and the observed discharge. If the ratio is 1 a perfect 
model performance is presented and between 0.8 and 1.2 a good model performance is presented (black lines). The black 
circles show the performances for the calibrated model below 0.8 or above 1.2. Some performances are very low and out of 
the presented range. Main: semi-calibrated model, standard deviation of high discharge (2.3), Kinzig: semi-calibrated 
model, standard deviation low discharge (2.3), standard deviation of high discharge (2.6). The μ represents the mean and 
the σ the standard deviation of the annual, low or high discharge. 
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West Alpine 
The West Alpine is located in the mountainous Alpines. In this area there is a lot of snowfall resulting 
in snow melt during summer time. Therefore, the high discharge occurs in summer time and the low 
discharge in winter time (Figure 27). For the West Alpine the hydrological model performance of the 
standard deviation of the high discharge is analysed (Figure 26). 
 

 
Figure 27: The observed and simulated discharge of West Alpine for 1985. The missing values of the observed discharge and 
the corresponding days for the simulated discharges are not used in the analsysis. 

 
1: Precipitation and snow routine 
When looking at the actual evaporation as shown in Figure 28, the calibrated model shows more 
outliers leading to a higher standard deviation. This might be the explanation for the higher standard 
deviation of the high discharges. 
 

 
Figure 28: Actual evaporation West Alpine for three model versions in summer time in 1989 

 
The outliers for the calibrated model might be caused by the parameter values as shown in Table 18. 
The lower (lp) value for the calibrated model means that the actual evaporation has sooner reached 
the value of the potential evaporation leading to more actual evaporation compared to the other 
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models. Further, the (fc) is much lower for the calibrated HBV model. The ratio of actual evaporation 
and potential evaporation is based on the actual soil moisture divided by the (fc). A lower (fc) means 
that the decrease or increase of the actual soil moisture has a higher influence on the ratio of the 
actual evaporation and the potential evaporation. This leads to a faster increase or decrease in 
actual evaporation. 
 
Table 18: Parameter values evaporation routine West Alpine 

West Alpine Calibrated Semi-calibrated Un-calibrated 

Fc (mm) 21.209 200 200 

Lp (-) 0.7 0.9 1.0 

Reuss-Seedorf 

For Reuss-Seedorf the mean of the low discharge and the standard deviation of the low and high 
discharge are analyzed. Figure 29 shows that in general the calibrated HBV model simulates 
discharges more equal to the observed discharges than the semi- and un-calibrated HBV model. 
Further, since Reuss-Seedorf is located in the Alpines, it is mainly a snow-fed sub-catchment having 
high discharges during summer. 
 

 
Figure 29: observed discharge (black line) and simulated discharges by 3 HBV versions for Reuss-Seedorf. 

 
1: precipitation and snow routine 
Table 19: Differences in parameter values for the three versions of HBV for the precipitation and snow routine 

Reuss-Seedorf Calibrated Semi-calibrated Un-calibrated 

tt -2.993 0 0 

tti 2 2 0.5 

dttm 0 0 -0.5 

Pcalt 0 0.1 0.1 

 
The parameters (tt) and (tti) together determine from which threshold precipitation falls as snow, 
rain or a mix according to the following equation: 
 

                        
                     

                           
 

These equations and parameters (Table 19) show that below T = -3.993 ⁰C the precipitation falls as 
snowfall for the calibrated model, for the semi-calibrated model below T = -1 ⁰C and for the un-
calibrated model below T = -0.25 ⁰C meaning that there is much more snowfall for the semi- and un-
calibrated model resulting in a thicker snowpack than for the calibrated HBV model (Figure 30). 
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Figure 30: snowpack Reuss-Seedorf 

The snow melt starts for the calibrated HBV model much sooner in the year (T > -2.993 ⁰C) than for 
the un-calibrated (T > -0.5 ⁰C) and semi-calibrated (T > 0 ⁰C) HBV model resulting in the high 
discharge in April as shown in Figure 29. However, in winter time (low discharges) the temperature 
does not exceed the 0 ⁰C for Reuss-Seedorf which explains that for the semi-calibrated HBV model 
no snow melt occurs during the winter period and for the un-calibrated HBV model only a bit snow 
melt occurs during the winter period leading to less discharge than for the calibrated HBV model. 
Especially when this is as well linked to the fact that most of the precipitation during the winter 
period falls as snow for the semi- and un-calibrated HBV model accumulating the snowpack but not 
resulting in discharge. This explains that the underestimation of both the mean and standard 
deviation of the low discharge is much higher for the semi-calibrated HBV model followed by the un-
calibrated HBV model than for the calibrated HBV model. However, the calibrated HBV 
underestimates the low discharge as well. These parameters (tt), (tti) and (dttm) could be improved 
to decrease the underestimation. 
 
In summer time the discharge consists of melt water and precipitation. The standard deviation of the 
high discharges is underestimated by the calibrated HBV model, overestimated for the semi-
calibrated HBV model and simulated as good for the un-calibrated model. This is explained by 
looking at the precipitation (Figure 31). The calibrated HBV model has a standard deviation of 3.95 
while the standard deviation of the semi-calibrated model is 7.27 and of the un-calibrated HBV 
model 6.72 over a period of 19 years. Further, the total amount of rainfall is 21701 mm for the 
calibrated model, 39966 for the semi-calibrated model and 36963 for the un-calibrated model. The 
reason that the amount of rainfall is much lower for the calibrated HBV model is because of the 
parameter (pcalt). The (pcalt) is the lapse rate which corrects precipitation with 0.1 for each 100 
meter increase in height. As explained in section 2.3, each sub-catchment is divided into elevation 
zones instead of having one height. Therefore, for each elevation zone this (pcalt) is applied for the 
amount of precipitation. For the Main the differences in precipitation are much smaller since these 
sub-catchments are much flatter having a lower difference in elevation. The reason that the total 
amount of precipitation and the standard deviation of precipitation is higher for the semi-calibrated 
model in comparison to the un-calibrated HBV model could be because of the temperature range 
defining when precipitation consists of a mix of snow and rain (-1 to 1 for semi-calibrated and -0.25 
and 0.25 for un-calibrated). 
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Figure 31: Precipitation Reuss-Seedorf for the three HBV models 

 
2: evaporation routine 
Table 20: Differences in parameter values for the three versions of HBV for the evaporation routine 

Reuss-Seedorf Calibrated Semi-calibrated Un-calibrated 

Fc (mm) 12.459 200 200 

Lp (-) 0.7 0.9 1.0 

Icfo (-) 4 1.5 0 

Ered (-) 1 0 0 

 
In the summer period there is two times more actual evaporation for the calibrated HBV model then 
for the semi-calibrated HBV model and four times more actual evaporation then for the un-
calibrated model as shown in Figure 32. This explains that during the summer period there is more 
runoff for the semi-calibrated and un-calibrated HBV model as shown in Figure 29. This as well 
explains why in general the high discharges are overestimated more by the semi- and un-calibrated 
HBV model. 
 

 
Figure 32: Actual evaporation for Reuss-Seedorf in the year 1995 

 
The reason there is more actual evaporation in the calibrated model, is because of the parameter 
(fc) and (lp). The parameter (fc) (maximum soil moisture storage) is much lower than for the semi- 
and un-calibrated HBV model. This means that the actual soil moisture divided by the fc (-) sooner 
reaches the value of lp (-). When the value of lp is reached, the actual evaporation is equal to the 
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potential evaporation. The value of lp is lowest for the calibrated model and highest for the un-
calibrated model. 
 
However, another explanation for the actual evaporation difference is that the parameter (icfo) 
introduces an interception storage. From this storage, evaporation equal to potential evaporation 
will occur as long as water is available. This value is zero for the un-calibrated model, 1.5 for the 
semi-calibrated model and 4 for the calibrated model. The parameter (ered) is used to reduce the 
actual evaporation when interception is included which is 1 for the calibrated model and 0 for the 
semi-calibrated model which shows that the actual evaporation of the calibrated model is reduced. 
It is unclear how this reduction of evaporation is calculated. However, the combination of these 
parameters could explain the differences in actual evaporation. 
 
Main 
For the Main two different types of discharges are observed, the mean and standard deviation of the 
low discharge. For the Main the high discharges occur in winter time and the low discharges in 
summer time. This is because Main is more rain-fed than snow-fed. 

1: Precipitation and snow routine 
The rainfall data is the same for the three different models. This means that it is not the rainfall 
occurring in Main which is causing the difference in low discharge. Further, for the Main the low 
discharge occurs in summer time which means that the snow routine cannot have influenced the 
low discharge. In summer time, the amount of actual evaporation is for semi-calibrated HBV model 
slightly higher than for the calibrated model. This could be part of the reason why the mean low 
discharge is underestimated by the semi-calibrated HBV model. However, the difference between 
the over- and underestimation is that big that it is assumed this is not the only cause. Further, the 
standard deviation of the calibrated model is 0.45, for the semi-calibrated model 1.22 and for the 
un-calibrated model 1.02. This cannot clarify the difference in standard deviation of the low 
discharge simulated by the different models. 
 
 
3: Response routine 
Within the response routine, the low discharge mainly consists of slow runoff. The equation to 
calculate the slow runoff is as follows where k4 is the recession coefficient and LZ the water content 
of the lower store: 

        
 
Table 21 shows that the recession coefficient is highest for the calibrated model, followed by the 
semi-calibrated model and then the un-calibrated model. This parameter would suggest that the low 
discharge is highest for the calibrated model, followed by the semi-calibrated model and then the 
un-calibrated model. However, that is not what the model performance suggests. The parameter 
(perc) shows the amount of water percolating from the upper soil to the lower storage. This value 
would as well suggest that there is more water in the lower storage leading to low discharges for the 
calibrated model. 
 
Table 21: Main: parameters of the response routine for the three HBV versions 

Main Calibrated Semi-calibrated Un-calibrated 

K4 (day-1) 0.1 0.05 0.01 

Perc (mm/day) 3.349 2 0.5 

Beta 1.168 2.5 1.0 

 
For the Main it is difficult to determine the cause of the low hydrological model performance. This 
suggests that the difference is mainly caused by the low discharges upstream of Main. 



71 
 

Kinzig 
For Kinzig the mean low discharge is analysed because it is highly underestimated by the calibrated 
HBV model, slightly underestimated by the semi-calibrated model and overestimated by the un-
calibrated model. 

1: Precipitation and snow routine 
Figure 33 shows that in general the evaporation of the calibrated model (mean of 1.5 mm and total 
of 9407 mm) is higher than the actual evaporation of the semi-calibrated model (mean of 1.47 mm 
and total of 9204 mm) and even higher from the un-calibrated model (mean of 1.0 mm and total of 
6459 mm). This could explain why the low discharges in summertime are highly underestimated by 
the calibrated model, followed by the semi-calibrated model and overestimated by the un-calibrated 
model. 

 
Figure 33:Actual evaporation Kinzig for the three versions of HBV for the summertime in 1990 

These differences in evaporation are explained by the parameters (fc) and (lp) as shown in Table 22. 
The lower (lp) value means that the actual evaporation has sooner reached the value of the 
potential evaporation leading to more evaporation. Further, it means that the slope of the line as 
shown in Figure 33 is steeper as well, meaning that, if the (fc) is around the same, the amount of 
evaporation is higher for the same amount of actual soil moisture.  

Table 22: Parameters Kinzig which determine the evaporation 

Kinzig Calibrated Semi-calibrated Un-calibrated 

Fc (mm) 219.312 200 200 

Lp (-) 0.632 0.9 1.0 

 


