
UNIVERSITY OF TWENTE

MASTER THESIS

Identify and extract entities from
bibliography references in a free text

Author:
Mattia CHENET

Supervisors:
Dr. Ir. Rieks OP DEN AKKER

Prof. Dr. Dirk HEYLEN

Advisors:
Zubair AFZAL

Dr. Marius DOORNENBAL

A thesis submitted in fulfilment of the requirements
for the degree of Human Computer Interaction and Design

in the

Human Media Interaction
University of Twente

September 7, 2017

https://www.utwente.nl/en/
http://hmi.ewi.utwente.nl/
http://department.university.com

i

University of Twente

Abstract
Faculty of electrical engineering, mathematics and computer science

University of Twente

Human Computer Interaction and Design

Identify and extract entities from bibliography references in a free text

by Mattia CHENET

Elsevier is the world’s largest scientific publishing company. It owns a database
named Scopus that stores a multitude of scientific papers, books and manuscripts.
Besides scientific documents, author’s profiles are also stored. Author’s profiles con-
tain information such as documents published and the number of citations that an
author gets on his works from other scientific publication. Sometimes scientific ar-
ticles are missing or the number of citation can be lower than the author expected.
There are several reasons why a scientific report is missing in the author profile or
the number of a citation can be lower than expected. One of those is because the
document can be out of policy and therefore not yet referenced in the database. In
such cases the author can contact the Scopus customer service by email including
the reference of the missing scientific document. These references are written within
the text of the email using several styles and are often incomplete. Sometimes the
year of publication is missing, only the first author is mentioned, or the title is not
complete.
Elsevier is developing a technology that aims to support the Customer Service oper-
ator to a faster understanding of the problem behind a missing scientific document
record. In order to understand and automate those problems, such as automatic
recognition out of policy papers, the machine has to be able to understand which
documents are referenced within the text of the emails. In order to extract the right
entities and retrieve the correct document mentioned in the free text, such as emails
or web forms, this research project has been divided into three main steps. The first
step is to identify the parts of a text that refer to a bibliographic referent, the reference
text. The second step is to identify the components of a reference text or references’
entities, e.g. author name(s), title, year of publication, journal name, etc. The third
step is to find a match with the referent in the text and the real document according
to the components identified.
All of the above have led to the following question: can each of these steps be done
fully automatically using machine learning approaches in order to retrieve the cor-
rect scientific document included by the reference in the email?
This report presents the answer to this question. It focuses on references’ entities
recognition in emails data, considered free text. It has been found that narrowing
down the problem by dividing and classifying the email’s sentences that contain
the references and subsequently performing entities extraction on these sentences,
it is possible to obtain a good performance in terms of the reference entities extrac-
tion. By having good accuracy on entities recognition it is possible to recognize and
retrieve the corrected scientific document mentioned within an unstructured (free)
text.

https://www.utwente.nl/en/
https://www.utwente.nl/en/eemcs/
http://department.university.com

ii

Acknowledgements
In order to carry out this research project, many people help me, therefore I want to
thank them.
At first, my advisor at Elsevier, Afzal Zubair that follow me during the whole exper-
iment. He is patient and capable to teach me how to develop an NLP software, he
made me thinking about each step to take it by sharing his knowledge and experi-
ence with me, beyond a supervisor is also an amazing teacher.
I want to thanks, my University Supervisors Rieks Op Den Akker and Dirk Heylen
that first helping me contact Elsevier for this interesting project and then follow and
help me to carry out this final report by supervising the process and the work done
here in Elsevier.
I want to thank Marius Doornenbal, my boss and advisor in Elsevier to gave me this
opportunity to be part and work with amazing people in the Content and Innova-
tion Department.
Umesh, Zhemin, Saber, Ricardo, Thimeos, Yi, Arthur, Alexandros and in particular
Sergios Petridis, Kayal Deep and Eustratiadis Panagiotis, the NLP specialists that be-
sides enjoy together everyday morning stand up meetings, they also help me with
advice on action to take during the development process of this experiment.
Last but not least my desk-mate Marialaura, she took care of me during this 6 month
of internship.

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 What is a reference . 2
1.2 Structured text and unstructured text . 2

1.2.1 Structured text . 2
APA style . 3
MLA style . 4

1.2.2 Unstructured text . 5
1.3 Introduction to Elsevier and Scopus database 6

1.3.1 Scopus costumer service . 6
1.4 Introduction to machine learning . 7

1.4.1 Natural language processing and text mining 8
1.5 Research question and challenges . 8

1.5.1 Research question . 8
1.5.2 Challenges . 9

1.6 Contribution . 9
1.7 Overview . 10

2 Related Works 11
2.1 Information extraction from scientific manuscript 11
2.2 Rules-based approach . 12
2.3 Machine learning model-based approach 13

2.3.1 Cermine . 14
2.3.2 Grobid . 15
2.3.3 Crossref . 16

2.4 Summary . 17

3 Data 18
3.1 Customer emails . 18

3.1.1 Sample of emails selected . 18
3.2 Introduction to Brat annotation tool . 19

3.2.1 Entities and references annotated 20

4 Methods 21
4.1 Approach motivation . 21
4.2 Reference Sentence Classification . 22

4.2.1 Sentence tokenization . 22
4.2.2 Preprocessing . 24
4.2.3 Description of features . 24
4.2.4 Binary classifier . 27

iv

4.2.5 Random Forests . 28
4.2.6 Support vector Machines . 30

4.3 Ensemble for entities extraction . 31
Ensemble Majority . 32
Ensemble Majority Weighted . 33

5 Results 34
5.1 Performance sentence tokenization of email 35
5.2 Binary classifier for sentences and features performance 36
5.3 Ensemble on entities extraction . 36

5.3.1 Title extraction performance . 37
5.3.2 Authors extraction performance 38
5.3.3 Journal extraction performance 38
5.3.4 Volume extraction performance 38
5.3.5 Year extraction performance . 39
5.3.6 DOI extraction performance . 39
5.3.7 Pages extraction performance . 39
5.3.8 Issue extraction performance . 40
5.3.9 Publisher extraction performance 40
5.3.10 Editor extraction performance 40
5.3.11 Issn extraction performance . 41

6 Discussion 42
6.1 Discussion on sentence tokenization results 42
6.2 Discussion on Binary classifier results 43
6.3 Discussion on ensemble results . 43

7 Conclusion and Future works 45
7.1 Conclusion . 45
7.2 Future works . 46

Bibliography 47

v

List of Figures

1.1 Goal of the experiment . 2
1.2 An example of bibliography . 3
1.3 An example of journal reference APA style 4
1.4 An example of journal reference APA style 4
1.5 An example of journal reference MLA style 4
1.6 An example of web reference MLA style 5
1.7 Differences between unstructured text and structure text 6
1.8 An Example of author profile . 7

2.1 Rule-based approach entities extraction 12
2.2 Rule-based approach for bibliography recognition 12
2.3 Cermine entities recognition . 14
2.4 Work flow of Cermine . 15
2.5 Grobid entities recognition . 15
2.6 Work flow of Grobid . 16
2.7 Work flow of Crossref . 17

3.1 Types of emails . 19
3.2 Entities annotation with Brat . 19

4.1 Approach for entities extraction . 22
4.2 Example of table for bag of word count 25
4.3 TF-IDF formula . 26
4.4 Examples of idf values . 26
4.5 Binary classifier work flow . 28
4.6 Matrix decision tree . 29
4.7 Matrix Random forests . 29
4.8 An example of bagging . 30
4.9 Example of two classes . 31
4.10 Example of possible hyperplane . 31
4.11 Margin of hyperplane . 31
4.12 Classification . 31
4.13 Ensemble work flow majority . 32
4.14 Ensemble work flow weighted . 33

vi

List of Tables

3.1 Entities annotated . 20

4.1 Tokenizer implemented . 24
4.2 Sentences label . 24
4.3 Example of Bow 2-gram for the words car and auto in the Reuters col-

lection of 806,791[25] . 25
4.4 Textual features . 27

5.1 Text tokenization . 35
5.2 Binary classifiers performance . 36
5.3 Total scores . 37
5.4 Total scores per average on sentences . 37
5.5 Title extraction performances . 37
5.6 Author extraction performances . 38
5.7 Journal extraction performances . 38
5.8 Volume extraction performances . 38
5.9 Year extraction performances . 39
5.10 DOI extraction performances . 39
5.11 Pages extraction performances . 39
5.12 Issue extraction performances . 40
5.13 Publisher extraction performances . 40
5.14 Editor extraction performances . 40
5.15 Issn extraction performances . 41

vii

Dedicated to Mum, Dad, and Brother.
To the many friends that I met on my way during those 2 years

of abroad studies.

1

Chapter 1

Introduction

Elsevier is a Scientific publications leading company established in 1880. Every year
it publishes more than 420,000 scientific articles, book and manuscripts. Besides
publishing and printing journals and articles Elsevier has several products that po-
sition it as the leading information provider for the scientific and corporate research
community. One of these products is Scopus.
Scopus is the largest abstract citation database of peer-review literature. It stores
information about scientific documents and authors. For each author it provides in-
formation such as published documents or number of citations that an author got
from other scientific publications.
Sometimes, in the author’s profile of Scopus, it occurs that not all published articles
are referenced or the number of citations is lower than expected. This can happen
for several reasons, for example, the article might still be in the production phase,
hence, not already published. Alternatively the article might be out of policy doc-
ument, hence, not referenced on Scopus database. In this case the author might
contact the Scopus customer service by email, wondering why his profile is not up
to date. Inside the email’s text, the author will include the reference to the document
that is missing in his profile. These references, written in the email text, do not fol-
low any style and are often incomplete.
Sometimes entities such as year of publication is missing, only the first author is
mentioned, or the title is not complete.
Because of this problem, Elsevier is in the process of developing technology that will
help the Scopus customer service to automatically identify a problem behind an out
of policy or still in production document and consequentially reducing its requests
backlog.
In order to automatize and solve these problems, at first, the machine has to un-
derstand which document is contained in informal text or unstructured text such as
emails.
In other words, we have to be able to process unstructured(or free) text in order to
understand to which document is referring the author in the email.
Therefore this experiment is decomposed in three main step.
The first step, in this matching process, will identify those parts of the text that refers
to a bibliographic referent, the reference text. The second step is to identify the enti-
ties that compose the reference text, such as author name(s), title, year of publication,
journal name, and other entities when they exist.
The third step is to normalize the data extracted and match them with the referent
document.
We trained and used several machine learners and pre-trained algorithm, tested
their performances on references recognition and later entities extraction.
In the following first chapter, an introduction to references, structure and unstruc-
tured text is given. Machine learning and natural language processing are briefly

Chapter 1. Introduction 2

introduced. This chapter concludes with the research questions addressed through-
out this experiment, the challenges met and the contribution that this experiment
can bring to Scopus customer service and can lead to the development of other au-
tomated systems.

FIGURE 1.1: Goal of the experiment

1.1 What is a reference

The scientific community uses certain pre-defined rules to represent a reference or a
citation within the text of scientific article, book or publication:

1. In-text references or in-text citation when you refer to, summarize, paraphrase,
or quote form another source. For every in-text citation refer to a list of refer-
ences at the end of the document called “bibliography”.

2. A Bibliography is by definition a list of source materials that are used or con-
sulted in the preparation of a work or that are referred to in the text. The list is
composed by references or items [11].

3. Bibliography items or bibliography references is the actual piece of text where
the information about the source is given.

1.2 Structured text and unstructured text

1.2.1 Structured text

By "structured text" is refer to text that has a predefined structure and it follows
certain conventions. A reference collects information about the source mentioned in
the document on both printed and web site sources. The components or entities of a
reference change according to the source, if is referring either to a printed document
or a web site.
In general, a reference comprehend the entities as follow:

• author name

• title of the publication (and the title of the article if it’s a magazine or encyclo-
pedia)

• date of publication

• the place of publication of a book

Chapter 1. Introduction 3

• the publishing company of a book

• the volume number of a magazine or printed encyclopedia the page number(s)

The information about the Web sites source follow this rules:

• author and editor names (if available)

• title of the page (if available)

• the company or organization who posted the webpage

• the Web address for the page (called a URL)

• the last date you looked at the page

When the author collects all the information about the sources, he will put them
in a list at the end of the document. This list, also known as bibliography, contains all
the source’s references and for each reference the relative entities mentioned briefly
above.
Each reference’s entity is mentioned in the Bibliography according to the style that
an author chooses. There are several styles that authors can choose to describe
the bibliography[26], APA style (American Psychology Association) and MLA style
(Modern Language Associate) are the two styles broadly used for describing bibli-
ographies. Below these styles are explained in details.

FIGURE 1.2: An example of bibliography with 3 references

APA style

Each style defines the way how a reference should be written. The APA style [4] pre-
scribes that the authors names should be alphabetized by the last name of the first
author of each work. If more than one author is cited, each author has to be sepa-
rate by commas alphabetically, the last name for each author it should be mentioned
followed by the initials of the first and the middle name. If there are more than six
authors cited after the sixth it will be follow from “et al.” (“and others” from Latin
language) After the authors it should follow by the publication year, than the title of
the source with the source (Journal or book) followed in italic style. The number of
the volume followed by the issue in round brackets and the pages (referring by p. if
is one pp. if is a range of pages) are the last element in the reference.
Those rules are applied on cited web sites as well. APA for web sites. uses the same
style with the authors followed by the date of publishing in brackets, the article title

Chapter 1. Introduction 4

in italic style and the retrieved Url.

FIGURE 1.3: An example of journal reference APA style

FIGURE 1.4: An example of web reference APA style

MLA style

MLA style [2] includes the author’s name, the title of the article, the name of the jour-
nal, the series number/type of the journal (if given), the volume number (if given),
the issue number (if given), the year of publication, the page numbers of the article.
The author should be written as plain text First and Last name divided by comma
followed by the initial middle name. The title is contained in quotes followed by the
journal title in italic style the volume and the issue separated by a dot. Finally, the
year as round brackets and the ranges of pages of the journal.
Web sites citation use the style for authors and the title as the same of above, fol-
lowed by the website title in italic style, the publisher of the website and the date of
the published article.

FIGURE 1.5: An example of journal reference MLA style

Chapter 1. Introduction 5

FIGURE 1.6: An example of web reference MLA style

Those styles and many others are used for listing the references in the bibliog-
raphy. The bibliography therefore is considered a structure text because it follows
those rules that aim to standardize it for different purposes such as indexing and
analytics.

1.2.2 Unstructured text

The unstructured text refers to text that is not standardised or organised in a pre-
defined manner. Is considered unstructured text or free text, the text that can type
in an email, web-forms, instant messages or social media posting such as tweets or
Facebook post, where the user liberally decides how to structure it and which rules
to follow. Mining of unstructured text delivers new insights by uncovering previ-
ously unknown information, detecting patterns and trends, and identifying connec-
tions between seemingly unrelated pieces of data [32]. Natural language processing
software and other automated tools are typically used to prepare the unstructured
text in such a way that also machine and systems can understand it and process it.
Because the language usually is different and vague is necessary, at first, understand
the context is an essential step in the mining process. The content is also reviewed
for word frequency and other patterns. Tagging is performed to label various pieces
of text-derived data so it can be categorised and grouped in ways that are most likely
to deliver useful information. Once the text has converted into data, it can be anal-
ysed and evaluated for relevance and importance. Below are shown some examples
of an unstructured text and structured text that we face during this research project.
In the left squares the unstructured text. In bold are shown the reference’s entities
that we have to extract from the unstructured text.

Chapter 1. Introduction 6

FIGURE 1.7: Differences between unstructured text and structure text.
A: unstructured text, in bold the entities to extract; B: structure text

(MLA style)

1.3 Introduction to Elsevier and Scopus database

Elsevier publishes approximately 420,000 articles annually in 2,500 journals includ-
ing impactful journals such as Tetrahedron, Cell and The Lancet. Elsevier not only
publishes paper scientific journals and documents but also produce and develop
software products such as ScienceDirect, Reaxys and Scopus, digital libraries that
give access to millions of scientific documents to companies and researchers.
In this way, Elsevier is positioning itself as the leading information provider for the
scientific and corporate research community. Scopus, for example, is the largest ab-
stract and citation database of peer-reviewed literature: scientific journals, books
and conference proceedings. Delivering a comprehensive overview of the world’s
research output in the fields of science, technology, medicine, social sciences, and
arts and humanities. Scopus features smart tools to track, analyse and visualize re-
searchers. Scopus database containing abstracts and citations for academic journal
articles. It covers nearly 22,000 titles from over 5000 publishers, of which 20,000 are
peer-review journals in the scientific, technical, medical and social sciences. It stores
more than 35 million authors profile and approximately 70 million scientific docu-
ments. In the following session we are going to describe the workflow of Scopus
Customer service and how the technology developed in this research project aim to
support it.

1.3.1 Scopus costumer service

Scopus is used from more the 3,000 academic, government and corporate institu-
tions.
As briefly mentioned above Scopus store approximately 35 million authors profile.
Authors profile stores several types of information, in particular the articles and
documents that an author has been published and the amount of citations that each
work got from other scientific experiments. Due to all this great number of people
that use Scopus and the amount of information that is stored, in the author’s pro-
file, occasionally some scientific documents are missing or the number of citation is
lower then expected. Scopus, therefore, has a customer service that gives support to

Chapter 1. Introduction 7

customers (authors) by helping them to understand why a paper is missing or why
the number of citation is lower than how it should be. These problems can happen
for two reasons: the article that is citing is not listed in Scopus, also known as out of
policy papers, or the article can be still in production phase and consequentially not
fully published.
All the process of correction is made by emails exchange, where authors will include
the reference of the document in question. The procedure to verify and correct these
kinds of problems is not immediate but, instead is extremely time-consuming for
both the customer service operator and the author. Between a correction of a prob-
lem can pass weeks or even months depending on several factors. For example, if
the requests backlog of the Customer service is higher, the customer service operator
will take more time to answer to all of them.
Elsevier is developing technologies that aim to improve the Scopus customer experi-
ence by reducing the requests backlog on problems classification , hence, increasing
the customer service operator efficiency. In order to automatically identify problems
such as out of policy paper or missing citations, at first, the machine has to under-
stand which document the author includes in the email text. Therefore this research
project focuses on reference’s entities recognition and extraction. By extracting the
reference’s entities with high accuracy we are able to retrieve the correct scientific
document mentioned in the email. Just in 2016, the Scopus customer service received
more than 74,000 emails, more than 200 emails per day. This final project takes inspi-
ration from this amount of data that every day the customer service received from
their customer. Furthermore, when the machine will be able to automatically iden-
tify the scientific document in the unstructured text it will be possible to develop
and automate the resolution of problems such as identity out of policy papers or docu-
ments that still in the production phase, without using any Scopus customer service
operator efforts, hence decreasing the Scopus customer service requests backlog.

FIGURE 1.8: An Example of author profile

1.4 Introduction to machine learning

Machine learning and data mining are applied in a lot of different areas. Machine
learning is used, for example, in retail for targeting advertising, in finance banks

Chapter 1. Introduction 8

analyse their past data to build models to use in credit applications, fraud detection
and stock market analysis [6]. In manufacturing, learning models are used for op-
timisation, control and troubleshooting. In medicine, learning programs are used
for medical diagnosis. In telecommunications, call patterns are analysed for net-
work optimisation and maximising the quality of the service. In science, significant
amounts of data can only be interpreted fast enough by computers. All the volume
of information in the worldwide web is enormous and steadily growing, searching
for relevant information cannot be done manually.
Machine learning is part of artificial intelligence. To be intelligent, a system should
learn from the changing environment. Therefore, the system can learn and adapt to
such changes, so the designer does not need to provide solution to all the possible
cases [1].
Our case scenario suits perfectly as a typical machine learning problem. The refer-
ences and his entities are written in many forms and styles; there are no rules to write
the references in emails. We build a system that adapts and recognise the reference
and its entities with high accuracy, leveraging machine learning techniques. Clas-
sify and extract references and its entities on text is also known as Natural language
processing and text mining problem.

1.4.1 Natural language processing and text mining

When it comes to analysing unstructured data sets, a range of methodologies are
used. Text mining, often referred as text analytics is by definition a process or prac-
tice of examining large collections of written resources to generate new informa-
tion[23]. In other words, the goal of text mining is to discover relevant information
in a text by transforming it into data that can be used for further analysis. The pri-
mary goal of text mining is to find relevant information that is possibly unknown
and hidden in the context of other information. Text mining accomplishes this by
using several methodologies; Natural language processing is one of them. Natu-
ral Language processing, also known with the abbreviations NLP, is a component
of text mining that uses a variety of methodologies to decipher the ambiguities in
human language. NLP performs a particular kind of linguistic analytics such as
automatic summarisation, part-of-speech tagging, disambiguation, entity extraction
and relation extraction. Text mining and NLP are commonly used together for dif-
ferent purposes, as, one of the most common applications, called sentiment analysis,
is applied to social media monitoring, where an analysis is performed on a pool of
user-generated content to understand mood, emotions and awareness related to a
topic. This experiment will use NLP techniques along with text mining to gain in-
sight and to extract features that will help us to understand the information from
unstructured text.

1.5 Research question and challenges

1.5.1 Research question

The main research question is summarized below, together with several subsequent
sub questions

Given unstructured text, text that can be fetch in emails, web-forms, instant mes-
sages or social media posting where is contain information about references or cita-
tions, how can machine learning approaches perform on the task of recognize and

Chapter 1. Introduction 9

extracting entities such as Title, Authors, Journal Title, Volume, Issue, year, pages
and others when those are mentioned in the unstructured text.

To carry out some experiments to try answering this question, following two
sub-questions are also crucial to consider:

1. Can we identify a snippet in the unstructured text that is consider as containing
a reference?

2. How can we identify and extract the entities that belong to the reference con-
tain in the snippet of unstructured text?

1.5.2 Challenges

To answer to the research and the sub-questions listed above, there are several chal-
lenges to be addressed.
At first, as mentioned before and shown in the figure 1.7, this research project deal
with unstructured text, the text can be written in several ways or styles, therefore is
difficult to process with heuristics-based algorithms because the cases are too many.
Moreover, there will be some parts of it that are unuseful and others that will contain
the information that we want to extract. Therefore, the first challenge will be exclud-
ing those parts of the text that are not valuable for the purpose of this experiment.
We want to perform entities extraction on the part of the text where the reference
is contained. This leads to a challenging task which is how the text will be split
for subsequent reference identification. When this portion of text will be defined by
tokenizing the text in snippets (or sentences), the second challenge will be, hence,
classify each sentence as containing the reference or not.
In order to understand which documents are mentioned in the unstructured text,
each sentence predicted as containing a reference it is taken in input for entities ex-
traction. The last challenge will be the output normalization of each entity in order
to retrieve the correct paper.

1.6 Contribution

This final project will bring the following contributions :

1. An example of how machine learning approaches can deal with unstructured
text, aiming to leads to subsequent solution in order to automate and improve
the efficiency of the customer service, such as automatically identity out of
policy scientific article or still in production document.

2. How to build a golden-set from raw data. We deal with emails, therefore,
we will start building our golden-set starting with raw data by performing
annotation and use them in input for training the models.

3. Several approaches for dealing with unstructured text are given. Set of features
for identifying references in a free text are proposed. These features can bring
insight to the researcher for subsequent experiments.

Chapter 1. Introduction 10

1.7 Overview

Chapter 2 will explain how information extraction on scientific papers and doc-
uments theory is developed and used in different scenarios by other researchers.
Subsequently, a discussion on how different methods are applied to handle entities
extraction and related tasks is given, including both rules-based approaches and ma-
chine learning-based approaches.
Chapter 3 describe the data used for build the golden-set how we select our subset
of emails, how and why we annotated those emails and which tools we used.
Our methodology and details of our experiments can be found in Chapter 4, which
covers the features involved in our experiments and which kinds of machine learn-
ing models we use. In Chapter 5, results of the experiments are explained for both
our binary classifiers and ensemble methods, along with the systems that we se-
lected for perform entities extraction evaluation. In Chapter 6 discussions on the
results obtained from the experiment are described. This report ends with conclu-
sion and future work of this research in Chapter 7.

11

Chapter 2

Related Works

2.1 Information extraction from scientific manuscript

Scientific literature is becoming larger day by day. As a consequence, finding rel-
evant information and relevant papers have become more difficult [26]. Therefore
scientific community is constantly developing methods and tools to extract informa-
tion from scientific documents. Their goal is building systems that help scientist to
find the right information they are looking for.
Although a scientific article is a structured document, extract the right information
is still challenging due to the different style of writing each document section. There
are many approaches that focus on extracting information from scientific articles.
Scientific articles are structured documents, there are several conventions to follow
for writing them correctly. Using machine learning techniques or heuristics for ex-
tracting information allows utilizing the metadata extracted for subsequent use for
analysis or assist the automatic index creation for digital libraries such as Scopus or
Google Scholar. We studied two types of approaches to information extraction in
scientific documents, rules based approach that apply heuristics techniques such as
regular expression or logic programming and machine learning approaches such as
text mining combined with natural language processing.
Most of the works often do not process the entire input document. Some works fo-
cus on extracting information from part of the section such as parts of the abstract,
which is considered unstructured text as Dasigi, Pradeep et al. did in [10] and Lin et
al. in [19].
Zhang, Xiaoli, et al. in [36] and Zou et al. in [37] focus their experiments on the
extraction of information from part of the bibliography to classify and extract ref-
erence information. Other works focus on extracting more portions of the whole
article, especially in PDF files like in CERMINE[34] which is a system based on a
modular workflow, who is loosely coupled architecture allows for individual com-
ponent evaluation and adjustment. Studied solutions are usually based on heuristics
and machine learning techniques.
This chapter will go through the studies that were carried out with the aim to get
suggestions on the approach to follow for reach the goal of our research experiment
on unstructured texts. At first, rules and machine learning studied approaches are
explained and some example are given. Lastly, this Chapter, explain in deep how
the three selected systems for evaluation on entities extraction work.

Chapter 2. Related Works 12

2.2 Rules-based approach

Giuffrida et al. in [12] used a rules-based methodology to extract metadata from
structured files written in a dynamically typed concatenative programming lan-
guage called PostScript. PostScript is used in electronic and desktop publishing
areas as a page description language [16]. Constantin et al. [7] proposed PDFX.
This tool is used for converting a scientific document in PDF format to XML lan-
guage. It allows extracting metadata from references in the Bibliography and other
necessary metadata from full structured texts. Pdf-extract [27] is an open-source tool
developed by Crossref lab it identifies, at first, the region of the scientific document
and later it extracts the related metadata. It uses a combination of visual cues and
content traits to perform structural analysis that determines the regions of PDF doc-
uments such as columns, headers, footers and sections, detect references sections
and extract individual references with the related entities.

FIGURE 2.1: Rule-based approach on entities extraction from Pdf-
extract[27]

FIGURE 2.2: Rule-based approach on bibliography recognition from
Pdf-extract[27]

Chapter 2. Related Works 13

2.3 Machine learning model-based approach

Machine learning approaches are more employed than the rule-based ones when it
comes to extracting metadata from scientific documents. They are more popular be-
cause they can be applied to several types of structured text thanks to their capabili-
ties of adapting to a changing environment such as different document’s structures.
Most of them use the same approach that Pdf-extract follows, by firstly dividing the
document into regions and later perform metadata extraction according to the re-
gion of the document. For example, Han et al. in [14] and CRIS systems proposed
by Kovacevic et al. [18] extract metadata from portions of scientific documents in
PDF format by applying two-stage classification of text-lines with the use of Sup-
port Vector Machines (SVMs) in combination with text-related features. These tools
classify at first the region of the document using geometric features and then they
extract the related metadata. Lu et al. [21] use a combination of both machine learn-
ing algorithm and rule-based approaches in order to obtain volume level, issue level
and others articles metadata. In their approach, the pages are first parsed by the
OCRed algorithm, a rule-based pattern matching used for volume, issue, title, and
range of pages, while article metadata is extracted using SVM and both geometric
and textual features extracted from the content. Structural SVM approach was used
in [36] by Zhang, Xiaoli et al. They compared structural SVM with conventional
SVM observing that structural SVM and Conditional Random Fields (CRF) achieve
about the same accuracies at token and chunk levels, showing that structural SVM
has more advantages than the traditional ones.
Other experiments use different classification algorithms such as Hidden Markov
Models (HMM), neural classifiers, Maximum Entropy and CRF. Marinai [24] extracts
metadata from PDF by employing neural classifier for zone classification. Cui and
Chen [9] use HMM classifier to extract metadata from PDF scientific documents.
Kern et al. [17] can extract a basic set of metadata from PDF documents using an
enhanced Maximum Entropy classifier. GROBID proposed by Lopez [20] is a sys-
tem that analyzes and extracts metadata from scientific texts in PDF format. It uses
CRF in order to extract document’s metadata, full text and a list of parsed biblio-
graphic references. ParsCit, by Luong et al. [22] uses CRF for extracting the logical
structure of scientific documents, including the references from the bibliography.
Zou, Jie et al. in [37] compared SVM and CRF approaches for reference parsing
from HTML structured files. They first divided the experiment into 2 tasks. First,
they locate the reference using LibSVM tool. An SVM classifier was assigned each
zone a probability value for being a reference zone. The authors, title and other 5
entities were extracted from the reference by parsing it using two classifiers SVM
and CRF for evaluating one method against the other. Lin, Ryan proposed a CRF
implementation in [19] to automatically identify the results-conclusions section in
biomedical abstracts. They used different sets of features such as NE features, NER
numerical normalization & pattern extraction, tense feature and WUF & WBF fea-
tures (unigram and bigram word frequency). Tkaczyk, Dominika et al. propose
CERMINE [34] an open-source system for extracting structured metadata from sci-
entific articles in a born-digital form. CERMINE use several implementations dived
in 3 parts a Basic structure recognition, the metadata extraction through an SVM clas-
sifier and simple rule-based approaches for the extraction of entities such as article
title and author affiliation. Cermine is able to recognize Bibliography and entities
extraction using K-means clustering and CRF models. In 2017 Pradeep Dasigi et
al. proposed in [10] a deep learning model for identifying structure within experi-
ment narratives in scientific literature. They took this problem as a sequence labeling

Chapter 2. Related Works 14

approach and they labeled clauses within experiment narratives to identify the dif-
ferent parts in the document. The dataset consists of paragraphs taken from open
access PubMed papers labeled with rhetorical information as a result of our pilot an-
notation. Their model is a Recurrent Neural Network (RNN) with Long Short-Term
Memory (LSTM) cells that label clauses. The clause representations are computed by
combining word representations using a novel attention mechanism that involves a
separate RNN. The model was comparing LSTMs where the input layer has simple
or no attention against CRF model showing that LSTMs could reach slightly better
performances.

2.3.1 Cermine

As mentioned above Cermine by Dominika Tkaczyk et al.[34] was developed by the
researcher of the University of Warsaw in 2015. Cermine from the name Content Ex-
tRactor and MINEr is an open-source Java library and a web service for extracting
metadata and content from PDF file comprehending scientific content. The system
implementation of most steps is based on supervised and unsupervised machine
learning techniques, which permit Cermine to adapt to numerous styles and layout
for extract the correct information. The authors wanted the algorithm to extract in-
formation from several types of structured documents despite gaining a respectable
performance. Cermine can not only extract metadata from PDF scientific article but
also from affiliation and references string. It achieved an average F-score of 77.5%
on meteadata extraction form several types of structured document. Cermine eval-
uation was compared with similar systems showing better performance for most
of metadata extraction types. Here in the table below are described which type of
metadata Cermine recognize and extract from the scientific documents.

FIGURE 2.3: Cermine entities recognition[34]

Cermine and the bibliography entities extraction tool was selected in our evalu-
ation for his ability to adapt and maintain good performances on the extraction on
several styles a layout of strings. It comes with Jar library downloadable from its
github repository1.

1https://github.com/CeON/CERMINE

Chapter 2. Related Works 15

FIGURE 2.4: Work flow of Cermine[34]

2.3.2 Grobid

Grobid developed in 2011 by Patrice Lopez [20] perform bibliographic data extrac-
tion from scholar articles combine with a multi-level term extractions. Grobib was
one of the first libraries that were developed for the purpose to show the power of
machine learning involved in bibliography data extraction in scholarly articles. This
tool is one of the standards adopt by digital library community for parsing bibliog-
raphy references with respectable performances and high accuracy as shown in the
table below

FIGURE 2.5: Grobid entities recognition form scientific document[20]

The automatic extraction of bibliographical data is a challenging task because,
as mentioned in the previous sections, even if scientific documents and bibliogra-
phies are considered as a structured text, they present a high variability of the for-
mats. Grobid it comes with several functionalities that perform document’s meta-
data extraction from differents parts of scientific documents text such as affiliation
extraction, header extraction and bibliography references extraction. In this research
project, we make use of references and entities extraction functionality. References

Chapter 2. Related Works 16

and entities extraction functionality is based on several Conditional Random Fields
(CRF) models.As shown in Figure 2.6, the CRF citation model includes other CRF
models implemented by cascade in order to extract the right entity in the biblio-
graphic reference using the associated CRF algorithm. The evaluation of Grobid
was carried out with the reference CORA dataset[35], a publicly available dataset
that comprehends more than 1200 training examples for cited references. Grobid
showed a reliable level of accuracy 95,7% per citation field and 78.9% per citation
instance. Moreover, when it extracts the entities from the bibliography a consoli-
dation step is implemented. The consolidation step is about sending a request to
Crossref web service for each extracted citation[8] in order to correct the entities ex-
tracted from the reference. If Grobid successfully identifies the title and the year, for
example, Crossref will possibly retrieve the correct full publisher’s metadata. These
metadata are then used for correcting the extracted fields and for enriching the re-
sults. Interestingly, the instance accuracy for citations goes up to almost 5%, from
78.9% up to 83.2%. Is possible to use Grobid as a jar library, downloadable from its
GitHub repository2.

FIGURE 2.6: Work flow of Grobid[20]

2.3.3 Crossref

Crossref API from Crossref [8] works differently than others system mentioned above.
As explained before Crossref API was used by Grobid for consolidating its output
on the entities extracted from the bibliography. Crossref is an official not-for-profit
membership association for publishers, established in 2000. It provides reference
linking services for over 62 million scholarly content items such as journal articles,
research reports, data sets, and official publications. This is achieved by connecting
a unique Digital Object Identifier (DOI) to the metadata about the object, such as a
URL, indicating where the object can be found. Crossref works like Scopus database,
it does not store full-text scientific content but interlinks millions of items from a va-
riety of content types. Crossref offer severals services, one of these is Crossref API3.
Crossref API allows querying the Crossref database by giving it in input strings that
contain bibliography references. The reference string does not to be necessarily a

2https://github.com/kermitt2/grobid
3https://github.com/CrossRef/rest-api-doc

Chapter 2. Related Works 17

well-written references. Moreover, the system allows for input consecutively more
references at the same time. At first, the input string is parsed using machine learn-
ing techniques, then, the system tries to match the reference string with the meta-
data that are stored in the database. Another peculiarity of Crossref API, that comes
really helpful in this research project, was the score of sureness that Crossref API
retrieve beside the document’s metadata. For each request, Crossref score indicates
how much is sure about the entities retrieved. For example, If the score is higher
than 105 means that the metadata retrieved are the corrected ones, otherwise, if the
score is lower the metadata retrieved might be the wrong ones.

FIGURE 2.7: Work flow of Crossref

2.4 Summary

In summary, many efforts were made on entities extraction from bibliography ref-
erences. Those works are done primarily for helping the scientific community to
retrieve information faster and contribute to building better digital libraries. Some
works use heuristic approaches, others machine learning techniques, and some of
them a combination of both. All of them, at first parse the document to understand
the structure of it, later they proceed by extracting the metadata. Especially Cermine
and Grobid use machine learning approach that at first parse and categorised the
different portions of the scientific document and sub sequentially perform metadata
extraction according to the related part of the report. Grobid also uses a consolida-
tion step that involves the use of Crossref API to correct and validate the entities ex-
tracted. Those three tools reached almost the perfection when it comes to extracting
metadata from scientific structure documents. This research project will test them on
entities extraction from unstructured text, and later, their output will be combined to
improve their performances and get the right entities in order to retrieve the correct
document mentioned in the unstructured text.

18

Chapter 3

Data

3.1 Customer emails

In order to use machine learning approach to entities extraction from the unstruc-
tured text, we have to understand which source of data we are facing and which
types of data we can use in order to reach the research project goal. At first, a study
on available golden-sets was carried out. There are many golden sets available for
free downloading that are used for training systems that perform entities extrac-
tion from scientific papers. Cora dataset [35], for example, includes 1878 objects of
bibliographical information about scientific articles. Another dataset broadly used
for training such systems is UMass dataset [3]. The UMass citation field extraction
dataset provides labels and segments for extracted citations from articles found on
arxiv.org. On the other hand, unstructured text or free text is considered text that
does not follow any predefined structure, hence Cora and UMass datasets are use-
less for the purpose of this experiment because they store structured bibliography
references. Therefore, emails data fit perfectly for our case scenario. Emails are un-
structured text, there are no convention that define how the text should be written.
In order to build the reference set, we are going to train and evaluate our system us-
ing a sample from the 74.000 emails that Scopus customer service received in 2016.
Not all 74.000 emails are usable for this project. The data presented noise, for ex-
ample, some emails are structured such as:” Unsupported message type - delivery-
status, message attachment discarded”, others contain just the link of the reference.
Therefore, a selection of a good sample is needed, a set of approximately 1000 emails
will be selected and annotated using the Brat Annotation tool, an Open source soft-
ware design for text annotation, that allows for annotation of entities in text seg-
ments such as sentences and words [30]. The evaluation set for this experiment is
produced by annotating each email according to the snippet of text where the refer-
ence is contained. Inside each snippet annotated as a reference, we annotated also
the severals elements that compose the reference, the entities such as authors, title,
journal and other entities when they were mentioned inside the reference.

3.1.1 Sample of emails selected

Finding the correct way to choose the sample of 1000 emails for annotation was not
an easy task. We had to be careful to comprehend all possible cases while choosing
our sample because the performance of our system strongly depends on the sample
that will be selected. For example, if the sample selected contains just well-written
reference the system will be able to recognize and perform entities extraction just
on those well-written snippets in the text. On the other hand, if the sample con-
tains too much noise the system will be not able to reach reasonable performances.
The optimum case will be selecting those emails from the reference that is written

Chapter 3. Data 19

just mentioning few entities to the well written reference. Therefore, we choose to
perform our selection by applying a regular expression that was matching if in the
email was containing a year. According to the observation that was performed on
the emails data we notice that if in the text was contained a year it was probable
that the email was including a reference. Therefore, if in the text was contained the
string with a year the email was included in our sample, otherwise was discarded.
From 74.000 email, slightly more than 20.000 was including a year-string. From those
20.000 randomly 1000 sample was selected for manual annotation.

FIGURE 3.1: Example of emails contained in the 74.000 set.
A: email selected for the reference set, B and C: examples of discarded

emails

3.2 Introduction to Brat annotation tool

Manually-curated golden standard annotations are a prerequisite for the evalua-
tion and training of the state of the art tools for most Natural Language processing
tasks[30]. Brat annotation tool is a web-based open source tool for text annotation
supported by natural language processing technology[30]. The annotation is one of
the most time-consuming components of many NLP research efforts; this task had to
be precise and curated in order to use the data later in input for training a machine
learning algorithm. As an example, from the sample of 1000 email files, it took two
weeks to annotate 400 of them. Brat is fully configurable, runnable as a local server,
can be set up to help most of the text annotation job such as name entity recognition,
dependency syntax and verb frames.

FIGURE 3.2: Entities annotation with Brat

Brat allows marking the span of text by simply selecting it with the mouse by
¨dragging¨ or by double-clicking with the mouse. We used Brat for annotating the
references in the text of each email and the subsequent entities that were mentioned.

Chapter 3. Data 20

3.2.1 Entities and references annotated

Each email was analysed manually, and each reference was annotated with its subse-
quent entities. In total, we annotated 400 emails from the subset of 1000 previously
chosen. In this 400 emails, 171 was containing at least one reference. In these 171
files, 452 references were annotated. In some emails, there was mentioned just one
reference, and in others, more than one, in our annotated set 39% of the emails con-
tain more than one reference. Moreover, in some references were include all the
entities, in others year was missing (258 out of 452 references), not all the authors
were mentioned, or title was not completed. In the table below is shown the overall
types of entities discovered and marked in our reference set. Overall we annotated
324 Titles, 1116 Authors entities, 194 Journal Titles, 174 Volumes number, 258 Years
entities, 81 Doi, 178 Pages-Range entities, 105 Issue number, 25 Publishers, 24 Edi-
tors and 30 Issn numbers.

TABLE 3.1: Entities annotated

Entity Explanation
Title The title of the scientific document

Authors The authors that carried out the experiment

Journal
The name of the journal where
the article is published

Volume The number of the volume in the journal

Year
The year when the document is
been published

Doi
A digital object identifier, a unique alphanumeric
string to identify content and provide persistent link
to its location on the internet

Pages The range of pages of the journal where is been published

Issue
The issue number refers to how many times
that periodical has been published

Publisher The name of the publisher
Editor The name of the editor

ISSN
The International Standard Serial number that
identifies the title of serial publications

21

Chapter 4

Methods

4.1 Approach motivation

Reference recognition and entities extraction is a studied problem when extract-
ing information from structured text such as bibliography references. In our case
scenario, we are facing unstructured text, and this makes our problem similar but
slightly more challenging. When we deal with structure text is possible to find pat-
terns due to the several conventions that scientific community use to write a scien-
tific document. On the other hand, the layout and the personalisation that humans
utilise when they write a paper, make the content and the style of scientific articles
different one of each other, hence, also structure text and documents come in various
forms. That’s why machine learning approaches are involved in information extrac-
tion on structured documents.
This same case we have when it comes to deal with unstructured text. We know that
in some part of the text is contained the information that we have to extract but we
do not know where exactly is it along the text and which style is written. In other
words, the approach that supports the studied experiments can suggest us the meth-
ods to follow. Our first goal is to localise those portions of text that contain the piece
of information we are looking for: the reference.
In details, the approach followed by most of the experiments previously studied is
localise the interested portion of the document and then perform subsequent infor-
mation extraction. For example, Cermine and Grobid follow exactly this approach
when it comes to performing entities extraction from bibliography references. A sci-
entific document has several sections such as abstract, introduction, related works
and at the end the bibliography. At first, those systems perform section recognition,
the system parses the document, and according to the section, it uses an individual
model to extract the right information. For example, when the system recognises the
bibliography in the document, it will use a predefined model to get the correct meta-
data from the references in the bibliography. It is not wise to use the same model for
extract information in each section because, as example, the bibliography it has cer-
tainly a different structure than the abstract.
This scenario is similar in our case; the reference in the free text is likely to appear
in just some parts of the text. As an example, the reference will appear most likely
in the body of the email. Therefore, we have to localise at first this part of the text
where the reference is contained, as Cermine and Grobid do when they have to ex-
tract references from a bibliography in a structured document.
But how we can separate the email chunks in order to perform entities extraction in
the right piece of text? To answer this question, we have to understand how we can
optimally split our email into parts in order to not lose valuable information. Free
or unstructured text, in this case, emails, are written in paragraph or sentences. The
reference will appear in one sentence or paragraph, Is very rare that entities of the

Chapter 4. Methods 22

same reference are mentioned one separate each other in different parts of the text.
This assumption is very useful to our experiment because we know that we can di-
vide the text to keep a reference in just one sentence or snippet.
This research project, then, is divided in two main task. The first task is about nar-
rowing down the problem, splitting the text and classify those snippets as containing
the reference or not. The second task will be subsequent entities extraction on those
snippets classified as containing the reference.
The implementation of the machine learning classifiers and ensemble algorithms
were developed using two different software utilised by NLP community. For what
concerns the classification task we made use of Weka [13] a Data Mining Software
from the Waikato University that collects machine learning algorithms and tools for
data pre-processing, classification, regression, clustering and many others. Weka
was adopted for tried out different types of classification in combination with sev-
eral sets of features. After testing the classification algorithm with Weka, we proceed
to implement the models (SVM and Random Forest) with Python and Sklearn toolkit
[29] for evaluating them with the whole set of data build with manual annotation.
Python in combination with other libraries was used to implement the ensemble
models and the evaluation.

FIGURE 4.1: Approach for entities extraction

4.2 Reference Sentence Classification

4.2.1 Sentence tokenization

Tokenization, in lexical analysis and text mining, is the process of breaking the text
into snippets, a snippet can be a word, a phrase, a single symbol or other meaningful
element called tokens. The tokens, then, will be used toward subsequent input for
further processing such as parsing or text mining [5]. In this research experiment,
the tokens are used in input to "learn" the classifier that will predict if the snippet
or token it contains a reference. That’s why the tokenization task is essential. We
have to split the text in order to get the optimum snippet that can be used in input
to teaching to the classifier what is a snippet that contains the reference and what is
not. Therefore, the first problem that we have to face is deciding how to split the text
in order to get the proper snippet.
If we split the text too early we con “broke” the information. On the other hand, if
we split into wide portion we will have too much noise and our classifier will per-
form with poor scores.

Chapter 4. Methods 23

In other words, if for example, we decide to split the email with a single line, we
might be able to recognize the header or the footer of the email but we might break
the reference string. Sub sequentially when we are going to extract the entities in the
tokenized reference we might be not able to extract all the entities and then will be
difficult to retrieve the correct scientific document.
If instead, we are going to tokenize the text into wider snippet we might take in in-
put more the one reference, which can be tricky for two reasons: some parts of the
snippet can contain useless information, therefore we are adding noise to our data
set. The second problem is the case of having two references inside the same snip-
pet or token. This it will lead to others problem in the next task when we are going
to extract the entities, it will be impossible to know which entities belong to which
reference.
Therefore, the tokenization of emails in sentences is an essential step for the sake
of this experiment. What we aim to reach with this tokenization step is the opti-
mum case where a single reference is contained in a single snippet. In this case,
we are able to narrow down the problem and perform a correct entities extraction
and subsequent accurate scientific document retrieval. Therefore, five different type
of tokenizer were implemented. Each type split the sentence with different rules,
each tokenizer was tested and evaluated according to the set of emails annotated.
The tokenize sentence was compared with the snippet of the reference annotated by
keeping track of the reference string contained in one tokenize snippet.

1. Natural language Toolkit(NLTK) sentence tokenizer in combination with Punk-
tSentence Tokenizer were the first tokenizers implemented. NLTK is a plat-
form for building Python programs to work with human language data, it
comes with a suite of text processing libraries [5]. We used PunktSentence
Tokenizer which is an instance of the NLTK sentence tokenizer, pertained with
a dataset of abbreviations in English language. It is able to recognize whether
there is an abbreviation such as Dr. or Mr. in the text, hence, it tries to tokenize
the sentence according to punctuation avoiding the punctuation contained in
those abbreviations.

2. Regex tokenizer, it makes use of regular expression, a language that use pat-
terns to match on text. Thanks to regular expression is possible to define rules
that match portions of text [33] . The regular expression applied to the to-
kenizer was tokenize the emails by matching a dot follow by a space and a
subsequent capital letter.

3. Length tokenizer, tokenize the text considering the total length of the email
and then divide the text into 3 equal parts. This 3 parts of the text are then
considered as sentences (or snippets).

4. Multiple sentence tokenizer, tokenize the sentence whether a double newline
char is matched (“\n\n”) along the text.

Tokenizing the text that defines a sentence is a challenging task. When we con-
sider a paragraph usually the punctuation is essential, indeed, a comma or a dot
usually are the boundaries that define a sentence or a paragraph. On the other hand,
the reference contains several commas and dot that define the several entities. There-
fore the presence of the reference in the text could trick the tokenizer if it just looks
at the punctuation in the text.

Chapter 4. Methods 24

Tokenizer Explanation
PunktSentence

Tokenizer
Tokenize the text looking at the punctuation

avoiding abbreviation
NLTK Sentence

tokenizer
Use an instance of PunktSentence Tokenizer

and English language from NLTK library
Regex

tokenizer
Tokenize the text by matching

the dot follow by a space and a capital letter
Lenght

tokenizer (1/3)
Tokenize the text by deviding the text

3 equal parts
Multiline
tokenizer

Tokenize the text by matching
double new line char ("\n\n")

TABLE 4.1: Tokenizer implemented

4.2.2 Preprocessing

Machine learning models approach classification problem by applying mathematical
analysis and finding patterns along with data. If the data provided are well struc-
tured the model will perform as expected. On the other hand, if the data present
noise or are not well prepared, for example, by including mistakes, the model will
not predict the correct output. Therefore the quality of data is a crucial aspect when
it comes to applying machine learning techniques.
Our problem is about reference recognition; this is a typical classification problem.
The model has to be able to recognize whether or not the sentence is containing a
reference. We are going to tackle this problem by applying supervised learning. Su-
pervised learning is a type of machine learning algorithm that uses a known dataset
also know as training set. The model learns from the training set and then tested on
unseen data. The training data includes input data and response values called also
ground truth when the data information are provided by direct observation. From
it, the supervised learning algorithm seeks to build a model that can make predic-
tions of the response values for a new dataset. A test dataset is used to validate the
model for getting the performances. Larger the dataset is higher and accurate the
model will be. In the context of our research project, we preprocess each tokenized
email. According to the annotation, a file was selected if was including a reference,
from a single one to many. Each sentence of the email was marked with a 1 if in the
sentence was contain a reference or with a 0 otherwise.

TABLE 4.2: Sentences label

Sentence
with references

Title: Nonlinear seismic analysis of unsymmetric-plan
structures retrofitted by hysteretic damped braces
\nAuthor: Fabio Mazza\nBulletin of Earthquake Engineering\n
Volume 14, Issue 4, pages 1311-1331, 2016

Sentence
without
reference

This paper is already published on the website of
Bulletin of Earthquake Engineering
(http://link.springer.com/article/10.1007/s10518-016-9873-z)

4.2.3 Description of features

In order to teach a classifier how to predict if a sentence includes a reference or not,
we have to convert the original text, in this case, sentences, to a format which can be

Chapter 4. Methods 25

interpreted by computers and fed into our machine learning model. The sentence
classifier is a crucial element of this experiment, hence, we need to propose some
features sets and extract as much useful information as possible from each sentence
in the email. Text mining provides a collection of techniques that allow us to derive
actionable insights from these data. One of the basic features extracted is Bag-of-
Words (BoW) model.

In order to get a baseline of our classifier, a Bag-of-Words model was performed
on the sentences. Bag of words is an algorithm that counts how many times a word
appears in a document. Is applied in text mining mostly to compare documents and
gauge their similarities for application like search, document classification and topic
modelling. BoW list words with word counts per sentence; the output is a table
where the words and sentences become vectors, each row is a word, each column
is the sentence and each cell is a word count. Each of the sentences in the corpus is
represented by columns of equal length. Those are word count vectors, an output
stripped context.

FIGURE 4.2: Example of table for bag of word count on 4 terms in the
Reuters collection of 806,791 documents[25]

Not only Bow word level count was performed, char level count was imple-
mented and tested with the classifier. BoW char level works the same as the word
but instead of counting by words is counting by char. The sentence is tokenized
by chars and each occurrence is vectorized in the table as is we did with the words.
Moreover, N-gram takes into account the char that occur after and before the char se-
lected and also those are included in the vectorized table as shown in the table below.

Doc1 Doc2 Doc3
ca 15 2 13
ar 10 2 10
au 2 22 17
ut 1 8 10
to 1 3 20

TABLE 4.3: Example of Bow 2-gram for the words car and auto in the
Reuters collection of 806,791[25]

Subsequently to BoW, Term frequency inverse document frequency (TF-IDF) fea-
ture model was implemented. TF-IDF is another way to judge a sentence through
words and chars contained in the text. The difference between BoW and TF-IDF is
that BoW measure frequency and TF-IDF measure relevance, with TF-IDF, words
are given weight. First TF-IDF measures the number of times that words appear
in a given sentence (like BoW do). Although words such as “and” or “the” ap-
pear frequently in the text those are systematically discounted. That is the inverse-
document-frequency part. The more a word appears through the sentences the less

Chapter 4. Methods 26

valuable it is. Each word or character TF-IDF relevance is a normalized data format
that also adds up to one. That is intended to leave only the frequent and distinctive
words as markers. The word-frequency are calculated with the formula in the figure
below, the weight of a word or char i contained in a document j is given by the num-
ber of occurrences tf multiplied by the logarithm of the total number of documents
N divided by the total number of documents that contain the word or char i, tfi,j is
the term frequency of term i in document j, the number of times that term i occurs
in document j. wi,j is the tf-idf weight of word i in document j.

FIGURE 4.3: TF-IDF formula

TF-IDF applied in our case scenario it well-fit. If we consider an email, a ref-
erence and the combination of both, in the email will use the same language with
conjunction, verbs and adverbs. On the other hand when it comes to writing the
reference the language change. the case where a sentence contains the reference will
appear with terms that are not used in the other part of the emails, hence TF-IDF
increase significantly the performance of the classifier.

FIGURE 4.4: Examples of idf values on 4 terms in the Reuters collec-
tion of 806,791 documents[25]

The third sets of features implemented were syntactic-textual feature. These fea-
tures know as part-of-speech(POS) tags, aim to recognise whether occur a noun or
a verb in the text. The text, or in this case, the sentence, is first split in word token
and the nouns, verbs and other syntactic entities are substituted within the text, for
example, if a word is a noun it will substitute with “NN” if is a verb with “VV”.
Then the text in output is analysed by counting the number of occurrence of noun
and verbs. In our particular case, we want to find relevance when in a sentence
are include more nouns than verbs. Indeed in a reference is more likely to contain
noun such as authors name, journals names or cities name than verbs. POS fea-
ture was combined with shallow-textual features. Shallow features provide a lot of
information that can help our classification task, hence that information can be eas-
ily obtained by checking on the text their appearance or counting. In other words,
punctuation, for example, is crucial in our case because if we consider a reference is
likely to contain a lot of it. Counting comma or dots can boost the performance of
our classifier. Several punctuation-based features are implemented. Other features

Chapter 4. Methods 27

such as year count or capital letters ratio are included. In the table below we can
observe all of them.

TABLE 4.4: Textual features

Feature Category Feature name Explanation

Shallow-textual
features

Paragraph-Lenght Count the number of words in the setence

Capital Percentage
The percentage of words that
start with capital letter

Number-count The count of numbers in the setence
Dot-count The number of dot in the sentence
Comma-count The number of comma in the setence
Other
punctuation-Count

The number of other punctuation
except for comma and dot

End-with -dot
A boolean value that indicates
if the sentence ends with dots or not

End-with -colon
A boolean value that indicates
if the sentence ends with colon or not

Year-count
A boolean value indicating if a year
between 1800 and 2100
exists in the sentence

Round Brackets
count

The number of round brackets
in the sentence

If journal word
exists

A boolean value that indicating
if the word "Journal"
appear in the sentence or not

If volume word
exists

A boolean value that indicating
if the word "Volume"
appear in the sentence or not

If article word
exists

A boolean value that indicating
if the word "Article"
appear in the sentence or not

If issue word
exists

A boolean value that indicating
if the word "Issue"
appear in the sentence or not

If title word
exists

A boolean value that indicating
if the word "Title"
appear in the sentence or not

Double quotes
count

The number of double quotes that appear
in the setence

Syntactic-textual
features

NN-ratio The percentage of words marked as noun
VV-ratio The percentage of words marked as verbs

4.2.4 Binary classifier

All these features, mentioned in the previous section, in combination with the la-
belled sentences are use as input for training a binary classifier. As briefly explained
above, the binary classifier is essential for the goal of our experiment, the approach
inspired by previous studies, it helps to narrow down the problem by focusing the
entities extraction in the portion of the text where exists the reference.In order to

Chapter 4. Methods 28

train the classifier, the reference set or golden set has to be divided into training data
and test data. The training data are the data that the classifier learn from. Instead,
the test data are used for evaluating the performances of the model. Therefore the
reference set was divided into two part: 80% of it was selected randomly as a train-
ing set, the rest 20% as the test set. At first k-fold-cross validation was performed on
the entire data sets in order to evaluate the binary classifier. K-fold-cross validation
is a technique to evaluate predictive models by splitting the original dataset into a
training set to train the model, and a test set to evaluate it. It is often applied to get
accurate performances with a limited amount of data. The data were divided into
k subsets, the train and the test are repeated k times. Each time, one of the k sub-
sets is used as the test set; the other k-1 subsets are put together to form a training
set. According to the size of our reference set, we evaluate the model using 5-fold
cross validation. When we reach respectable performances, we trained the classifier
with all the 80% of data and we tested it with the 20% unseen data selected as a
test set. Two different classifiers were compared Random Forest and Support Vector
Machines(SVMs).

FIGURE 4.5: Binary classifier work flow

4.2.5 Random Forests

Random Forest or Random Decision Forest is considering as an ensemble learning
method for classification and regression. Is it studied that the combination of learn-
ing models increases the classification accuracy, this method is call Bagging (or boot-
strap aggregating). Random Forest has multiple Decision Tree, each of it performs
a particular output that will be combined with others Decision Tree the output that
receives more votes will be selected as the true one. In other words, the main idea
of Bagging is to average noisy and unbiased models to create a model with lower
variance. Therefore, Random Forest algorithm works as an extensive collection of
correlated decision trees. Random Forest, it creates multiple Decision Trees and then
combines their output for the best one. In the matrix below is shown the aim of ran-
dom forest. Let’s suppose that the matrix S is a matrix with training sample that we
submit to the algorithm to create a classification model, the fa1 . . . fan is the feature
extracted from the text. For example, fa1 is the feature a for the first sample and
again the fbn is the feature B of the Nth sample. The C, in the last column, is the
training class, in this research project, the label of the sentence is 1 if it contains a
reference 0 otherwise.

Chapter 4. Methods 29

FIGURE 4.6: Matrix decision tree

From this sample set, random forest it creates many others subsample with ran-
dom values. For example, as shown in the figure below, the sample 1 it takes the
elements 12, 15, 35, and again in the sample 2 it selects the elements 2, 20, 6 and
other random elements. From each of those subset, random forest it creates a de-
cision tree. Each of these decision tree has its own output, which with each of this
output will create a decision ranking.

FIGURE 4.7: Matrix Random forests

In other words, each decision tree has an output of the predicted class, the output
will be ranked per the majority of the votes of each decision tree. For example, if the
Random Forest is composed of four decision tree as the figure below show us, the
prediction of each decision tree will be combined and the class that take more votes
is the one selected.

Chapter 4. Methods 30

FIGURE 4.8: An example of bagging

Random Forest classification algorithm was implemented because it takes the
groups of features and tries to apply them each one separately so the features they
do not depend on one to each other. When it comes to combining features TF-IDF,
syntactic-textual feature and shallow-text features, we wanted to understand if the
classifier was deducing better by considering the features one independent to the
others as in the case of Random forest or when the features were considered depen-
dent on each other in the case of Support Vector Machine (SVM).

4.2.6 Support vector Machines

A support vector machine (SVM) is machine learning algorithm that analyzes data
for classification and regression analysis. SVM is a supervised learning method that
looks at data and sorts it into one of two categories. It is a discriminative classi-
fier formally defined by a separating hyperplane [15]. In this algorithm, we plot
each data item as a point in n-dimensional space (where n is a number of features)
with the value of each feature being the value of a particular coordinate. Then, we
perform classification by finding the hyper-plane that differentiate the two classes.
Suppose some given data points each belong to one of two classes, the goal is to
decide which class a new data point will appertain to. In support vector machine,
a data point is a view as a p-dimensional vector, and the solution will find the line
called hyperplane that separates the two classes. For example, as shown in the fig-
ure below we have some separable binary sets, we have x1 and x2 feature and we
want to classify if an element is a square or a circle. In our real scenario, will be the
sentence classify as contain the reference or not.

Chapter 4. Methods 31

FIGURE 4.9: Ex-
ample of two

classes

FIGURE 4.10: Ex-
ample of possible

hyperplane

The goal is to design a hyperplane that classifies all training vectors into two
classes, find the line that separates the elements in the plot. The best choice to draw
the line that leaves the maximum margin from both classes. By margin, we mean
the distance between the line and the closest element as mark as z1 and z2 shown in
the figure below.

FIGURE 4.11:
Margin of hy-

perplane
FIGURE 4.12: Classifi-

cation

In this example, we can clearly see that z2 is grater then z1, hence, the margin is
higher in the case of the green hyperplane. The hyperplane is defined by an equa-
tion. This equation will define the boundaries of the class and will predict if a new
data point is considered a circle (class 1) or a square (class 2). This works the same
with our sentences except that our features dimensionality is more higher. If you
want have a deeper explanation on how SVMs works, please refer at this document
[31].

4.3 Ensemble for entities extraction

In summary, at first the text is tokenized in sentences. From each sentence we extract
the features that we use as input to the classifier. The binary classifier will predict
if the sentence is containing a reference or not. If the classifier finds a reference in
the sentence the next step will be performed entities extraction to retrieve the correct

Chapter 4. Methods 32

paper mentioned in the unstructured text. By taking inspiration from previous stud-
ies we wanted at first evaluate such systems that performs entities extraction from
structured text. Those tools that use machine learning approaches are learned with
several types of data and they were developed aiming to adapt to several layouts.
The sentence predicted as contain the reference, hence, is parsed from Cermine[34],
Grobid[20] and Crossref API [8] order to get their output on the sentence contacting
the reference. Those systems were performing quite good according to the entities
that was extracted. We observed that Cermine was performing well when it comes
to recognize entities that contain number such as year, pages, volume number. On
the other hand, Grobid was better on Authors recognition, Crossref instead was re-
trieving the right paper when in the sentence contain the reference with the entities
well mentioned. As Random Forest teach us we decide to create our own system to
get better performance on entities extraction from unstructured text by combining
the output of those three systems. This methodology is called ensemble and is a
technique that combine the models to produce improved results. Ensemble meth-
ods usually produces more accurate solutions than a single model would. After the
normalization on each system output, two model was produced. The first one, by
simple bagging or majority vote, the second one is a smarter version of the first one
that essentially gives weight of each output according to the results observed dur-
ing the evaluation of the three systems. The two model was, then, evaluated by
comparing them with the others systems showing interesting improvements.

Ensemble Majority

The input of the first model is the output of Grobid-Cermine-Crossref. To combine
their output, we developed an algorithm that normalizes the entities extracted from
each system and by using the similarity between strings, it combines the entities into
one single output. In other words, the sentence classified as a reference is given in
input to Grobid, Cermine and Crossref. Each system gives back as output the en-
tities that it recognized in the sentence. The algorithm at first combine the entities
extracted in one single array grouped by type of entity. If the same entity is recog-
nized by more the one system, is taken as the true entity otherwise is discarded.

FIGURE 4.13: Ensemble work flow majority

Chapter 4. Methods 33

Ensemble Majority Weighted

The second model is smarter. Was observed that between that system Cermine was
performing better on extracting entities that contain numbers (Chapter 5) such as
pages, year, and volume. On the other hand, Crossref is able to extract a multitude
of entities and overall its performance is slightly better than the others. Moreover, it
gives also the relevance score. The relevance score is the percentage of the level of
sureness on the retrieved entities. Was observed that if the score is higher than 105
the retrieved entities are the correct ones. Inspired by those results, the models by
the majority was upgraded. When it comes to extracting numeric entities an higher
weight to the output of Cermine is given. On the other hand, when the relevance
score of Crossref is higher than 105 the model returns just the entities that Crossref
retrieve.

FIGURE 4.14: Ensemble work flow weighted

34

Chapter 5

Results

In this chapter, we presents the results that we got from all the sub-experiments that
were carried out in order to reach the final research goal of entities extraction from
unstructured text. We had, at first, to find a way to tokenize in snippets the unstruc-
tured text. Five different types of tokenization were performed and the results are
shown in the tables below in this Chapter. By tokenize the free text we aim to split
the text in a manner that a reference was contained in a single snippet. In this way,
we could classify each sentence as containing the sentence without excluding any
information. On this purpose, we developed a binary classifier. We had to extract
some feature form each snippet in order to teach, to the binary classifier, how a refer-
ence in unstructured text looks like. We carry out four different type of features and
apply them first individually and then together. We try two types of binary classifier
Support Vector Machines(SVMs) and Random Forest. Scores are given for both the
models, applied to the four sets of features. When the sentence was predicted as
containing a reference was given in input at first to the three systems, Grobid, Cer-
mine and Crossref in order to perform entities extraction, the consequent results are
assumed in this chapter. Finally, the output of those tree systems is combined and
two models are carried out with the consequent results explained below.

Results are given in two different formats; sentence tokenization results are given
through percentage of references recognized per sentence. Subsequently, machine
learning techniques are applied, hence, the results are expressed by recall, precision
and f1-score.

F1-score is used in statistical analysis to measure the accuracy of the system. It
considers both the precision and recall measures of the test to compute the score. If
we consider our classification problem, we have to classify if a sentence is a refer-
ence or not. For example, let’s consider that our dataset is a list of 100 sentences, half
of which are containing a reference and the other half that does not contain it, we
have to give back this list of all 50 sentences that are including a reference, but being
careful to not accidentally include sentences that does not have it.
Having high precision means that when you do say that some sentences do contain
a reference, you are usually right about it. This is about how many sentences in the
list are actually containing the reference, out of all the ones that are returned in the
list.

Precision =
TP

TP + FP

Chapter 5. Results 35

Having high recall means that you can identify most of the sentences that contain
the reference. This is about how many sentences that include a reference are added
to the list, out of all the ones that exist.

Recall =
TP

TP + FN

These two calculation are not the same if the list contains just one single sentence
that has a reference we will have very high precision since the only sentence listed
is actually containing a reference. On the other hand, we will have very low recall:
there are other 49 sentences that are including a reference. But in the list, there just
one retrieved. Ideally, the optimum case would have a list with all the sentences that
include a reference while being careful to not accidentally include some which are
not. If we reach that we would have both high precision and recall.

When we are measuring how well we are doing, it is often useful to have a single
number that describe the performance. We could define a number to be, for instance,
the mean of precision and recall. This is exactly what F1-score is.

F1 = 2 ∗ 1
1

recall
+

1

precision

= 2 ∗ precision ∗ recall
precision+ recall

The only reason why we use the harmonic mean is because we’re taking the aver-
age of ratios (percentages), and in that case the harmonic mean is more appropriate
than the arithmetic one.

5.1 Performance sentence tokenization of email

References found
per snippet

(Tot references: 452)

sentences
with reference

sentences
without referenc

PunktSentence
Tokenizer

186 (41%) 163 2253

NLTK Sentence
Tokenizer

145 (32%) 105 2173

Regex
Tokenizer

194 (42%) 169 2477

Lenght
Tokenizer (1/3)

356 (78%) 150 243

Multiline
Tokenizer

424 (93%) 343 1488

TABLE 5.1: Text tokenization

The sentence tokenization was the first task performed for this experiment. As men-
tioned in the previous chapter four different type of tokenizer were implemented,

Chapter 5. Results 36

in the table above show the results that each tokenizer reach. The results show re-
spectively the number of total references from the annotated dataset 452, the total
references found by tokenizing the text with respectively NLTK PunktSentence to-
kenizer, NLTK sentence tokenizer, regex tokenizer, length tokenizer and multi line
tokenizer which is the one that was performing better than the other.

5.2 Binary classifier for sentences and features performance

Four types of features are extracted from each tokenized sentence. Each group of
features is evaluated separately. Then a combination between TF-IDF, shallow and
syntactic textual is also given.

The binary classifier takes in input the sentence extracted from the tokenization
performed in the previous task, features are then extracted from the sentence and
give in input to the binary classifier that it tries to predict if is the sentence contain
a reference or not. Two binary classifiers were implemented SVM and Random For-
est. The scores show that SVM along with TF-IDF features performs better than the
other.
In this task, the goal was about reaching a better recall than precision. With high
recall, we are sure that all the possible sentences containing references are retrieved.
It better to perform entities extraction on sentences missed classified as containing
reference instead to lose information by missed classify sentences containing a ref-
erence.

TABLE 5.2: Binary classifiers performance

SVM Random Forest
Features Recall Precision F-Score Recall Precision F-Score

Bag of words 0.9430 0.7464 0.8333 0.6981 0.9585 0.8078
Shallow-Syntactict
textual features

0.8787 0.9235 0.9006 0.8275 0.9523 0.8856

TF-IDF 0.91044 0.9472 0.9284 0.6935 0.9347 0.7962
TF-IDF+textual 1.0 0.9516 0.9752 0.8709 0.9890 0.9262

5.3 Ensemble on entities extraction

Once that the sentence was predicted as contain a reference, is given in input to the
ensemble method that combines the output of Cermine, Grobid and Crossref, in a
single one. Therefore, the performances of those systems are shown in comparison
with the models implemented that use ensemble method by majority votes and by
weighted votes. In this task, we aim to reach good accuracy in order to be sure
to retrieve the corrected document, mentioned in the email. For each system, two
performances table are given, respectively the first one shown the score of recall, pre-
cision and F1-score, by counting the overall number of true positive, false positive
and false negative, also known as the macro score. The second table is calculated by
averaging the recall, precision and F1-score of each sentence, micro score.

Chapter 5. Results 37

TABLE 5.3: Total scores

Macro score
Precision Recall F-Score

EnsembleWe 0.8776 0.7036 0.7810
EnsembleMa 0.9519 0.6193 0.7504
Crossref 0.7122 0.7122 0.7122
Cermine 0.6868 0.4666 0.5844
Grobid 0.6396 0.5573 0.5956

TABLE 5.4: Total scores per average on sentences

Micro score
Precision Recall F-Score

EnsembleWe 0.7297 0.6051 0.6387
EnsembleMa 0.7744 0.5381 0.6156
Crossref 0.5624 0.5624 0.5624
Cermine 0.6251 0.4647 0.5018
Grobid 0.6399 0.4488 0.5058

In the following sections the performance of the systems tested are shown. Per
each entity extracted the precision, recall and F-score are given. For each score table,
is also explained the amount of data used for each entity to carry out the perfor-
mance evaluation.

5.3.1 Title extraction performance

TABLE 5.5

Title
Precision Recall F-Score

EnsembleWe 0.9130 0.9545 0.9333
EnsembleMa 0.9705 0.8988 0.9333
Crossref 0.7083 0.7083 0.7083
Grobid 0.7058 0.7755 0.7390
Cermine 0.6402 0.9741 0.7726

Title extraction evaluation was performed with total 324 titles appearing in 338 sen-
tences containing references, both of ensemble methods majority and weighted per-
form remarkably good reaching 0.93 of correct title extraction from unstructured
text.

Chapter 5. Results 38

5.3.2 Authors extraction performance

TABLE 5.6

Authors
Precision Recall F-Score

EnsembleWe 0.8791 0.7132 0.7875
EnsembleMa 0.9294 0.7078 0.8036
Crossref 0.7888 0.7888 0.7888
Grobid 0.8463 0.7401 0.7896
Cermine 0.8647 0.3239 0.4713

Authors extraction evaluation was performed with 1116 authors in our reference set.
Surprisingly the majority method scored slightly better than the others, with 0.80 of
F-score. Crossref, Grobid and weighted methodology are also performing great with
0.78 of F-score.

5.3.3 Journal extraction performance

TABLE 5.7

Journal
Precision Recall F-Score

EnsembleWe 0.9290 0.8397 0.8821
EnsembleMa 0.9561 0.6770 0.7927
Crossref 0.7070 0.7070 0.7070
Grobid 0.5103 0.5963 0.5500
Cermine 0.5820 0.7692 0.6626

Journals title extraction evaluation was performed with 194 Journals titles. The
weighted method performed better than the others systems reaching 0.88 of F-score.

5.3.4 Volume extraction performance

TABLE 5.8

Volume
Precision Recall F-Score

EnsembleWe 0.8771 0.7246 0.7936
EnsembleMa 0.9560 0.5878 0.7280
Crossref 0.7441 0.7441 0.7441
Grobid 1.0 0.0394 0.0759
Cermine 0.605 0.8768 0.7159

Volume extraction evaluation was performed with 174 volume numbers annotated
in our reference set. The weighted method performed better than the others systems
reaching 0.79 of F-score. Also, the others systems perform relatively well. Cermine
reaches 0.74, the majority votes method 0.72 and Cermine 0.71 of F-score.

Chapter 5. Results 39

5.3.5 Year extraction performance

TABLE 5.9

Year
Precision Recall F-Score

EnsembleWe 0.9642 0.9000 0.9310
EnsembleMa 0.9890 0.8372 0.9068
Crossref 0.6774 0.6774 0.6774
Grobid 0.7663 0.7557 0.7610
Cermine 0.7354 0.7846 0.7592

The year extraction evaluation was carried out with 258 years annotated in our ref-
erence set. On this extraction, we reached satisfying results, the weighted methods
and the majority one got respectively 0.93 and 0.90 of F-score.

5.3.6 DOI extraction performance

TABLE 5.10

DOI
Precision Recall F-Score

EnsembleWe 1.0 0.8961 0.9452
EnsembleMa 1.0 0.8961 0.9452
Crossref 0.7012 0.7012 0.7012
Grobid 1.0 0.0649 0.1219
Cermine 0.8837 1.0 0.9382

Doi extraction evaluation was performed with 81 annotated doi entities. Doi is
pretty easy to recognise because his structure is unique and standardized. There-
fore we reached remarkable results. Both majority and weighted ensemble methods
got 0.94 of F-score. Another remarkable score is the 0.93 F-score of Cermine.

5.3.7 Pages extraction performance

TABLE 5.11

Pages
Precision Recall F-Score

EnsembleWe 0.8547 0.7142 0.7782
EnsembleMa 0.9870 0.4871 0.6523
Crossref 0.6569 0.6569 0.6569
Grobid 0.5348 0.2690 0.3579
Cermine 0.7192 0.8541 0.7809

Page extraction evaluation is performed with 178 page entities marked in the refer-
ence set. Surprisingly the system that reached more accuracy is Cermine with 0.78
of F-score.

Chapter 5. Results 40

5.3.8 Issue extraction performance

TABLE 5.12

Issue
Precision Recall F-Score

EnsembleWe 0.7872 0.4404 0.5648
EnsembleMa not retr. not retr. not retr.
Crossref 0.6800 0.6800 0.6800
Grobid not retr. not retr. not retr.
Cermine not retr. not retr. not retr.

Issue extraction evaluation was performed with total 105 annotated entities. Unfor-
tunately not all the systems were able to recognize the Issue in unstructured text,
this influenced the performance of the others systems. Grobid and Cermine didn’t
retrieve the entity, hence, the majority method couldn’t retrieve it as well.

5.3.9 Publisher extraction performance

TABLE 5.13

Publisher
Precision Recall F-Score

EnsembleWe 0.6153 0.4705 0.5333
EnsembleMa 1.0 0.0952 0.1739
Crossref 0.2272 0.2272 0.2272
Grobid 0.4827 0.5600 0.5185
Cermine not retr. not retr. not retr.

Publisher extraction evaluation was performed with total 25 annotated entities. Due
to the number of entities annotated the performances are not higher. The system that
performs better is the weighted one with 0.53 of F-score.

5.3.10 Editor extraction performance

TABLE 5.14

Editor
Precision Recall F-Score

EnsembleWe 1.0 0.2222 0.3636
EnsembleMa 0.0 0.0 0.0
Crossref 0.0 0.0 0.0
Grobid 0.075 0.3333 0.1224
Cermine not retr. not retr. not retr.

Editor extraction evaluation was performed with total 24 annotated entities. Same
as for the publisher, due to the number of entities annotated the performances are
not higher. The system that performs better is the weighted one with 0.36 of F-score.

Chapter 5. Results 41

5.3.11 Issn extraction performance

TABLE 5.15

Issn
Precision Recall F-Score

EnsembleWe 0.7333 0.5789 0.6470
EnsembleMa not retr. not retr. not retr.
Crossref 0.4642 0.4642 0.4642
Grobid not retr. not retr. not retr.
Cermine not retr. not retr. not retr.

Issn extraction evaluation is given according to the 30 annotated ISSN entities in our
reference set. Not all the systems were able to recognize the ISSN entity because
usually doesn’t occur in structured references.

42

Chapter 6

Discussion

In this chapter, we will discuss the results obtained on this research project. Firstly,
we will have some discussion about the tokenization on the text. Secondly, we will
discuss the obtained scores of the binary classifiers with the four set of features ex-
tracted, on both models SVM and Random Forest. Finally, we discussed on the
ensemble method and the performances achieved while performing entities extrac-
tion.

6.1 Discussion on sentence tokenization results

The first challenge addressed was the email text tokenization. As mentioned above
along the report we implemented four different kinds of tokenizer. At first, we made
use both tokenizer implemented by NLTK Sentence tokenizer and PunktSentence
tokenizer. Unluckily we obtained bad performances, indeed, respectively 32% and
41% of the total references were tokenized correctly (an entire reference per sentence
). Although PunktSentence tokenizer and NLTK Sentence tokenizer are broadly
used and praised from the NLP and text mining community, in our case had poor
results because we are dealing with text that contains references, and a reference
usually include a lot of punctuation. Even though both tokenizers are trained for
escape punctuation for abbreviation such as Dr. or Mr., they are not trained for es-
cape punctuation contained in the reference used to divided the entities such as the
comma or dots that are used to separate the Authors names. We observed that by
applying strong rules on the tokenization, poor results were obtained. When we ap-
plied the Regex tokenizer the score achieved was about 42%.
According to the results obtained with those tokenizers, we decide to apply wicker
rules. Length tokenization was implemented. reaching 78% of correct tokenization.
Finally, we tried to split the text whenever a double newline char was encountered
(“\n\n”). Out of overall 452 references, 424 was correctly tokenized (93%). This
result indicates that most of the customers start a new paragraph when they are
about to write the reference in the email. When it comes to including the reference
in the text, usually the customer press double times the enter button recognizable
by the computers with the sequence of chars “\n\n”.Although we reach satisfying
performance by applying this kind of tokenization, it can be tricky when it comes
to recognize and extract entities from other types of unstructured text such as so-
cial networks posts. This style of writing it will be likely to appear most on emails
text than social networks post, for example. A solution will be applying the Punk-
tSentence tokenization. The PunktSentence tokenizer is an unsupervised trainable
model, this means that it can be trained for skipping another kind of punctuation.
By training the PunktSentence tokenizer to skip reference punctuation we will be
able to split the sentence in a better method, reaching better scores than Multiline
tokenizer.

Chapter 6. Discussion 43

6.2 Discussion on Binary classifier results

From the performance, shown in Chapter 5 we can evaluate the performances of
two different classifiers that was implemented along with the set of features of Bag-
of-Words, TF-IDF, shallow-textual and syntactic-text features. From the results, we
can observe that the combination of TF-IDF and shallow-textual and syntactic-text
features was performing better than the others.
Bag-of-Words were the first set of feature that was implemented. It was imple-
mented to get a base line score on our preprocessed data. According to the obser-
vation of the data, we produce the shallow and syntactic textual features reaching
better performances that our baseline, 83% against 90% of F1-score. Textual fea-
tures are still too general for proper understand unstructured text, although 90% of
f1-score still consider an acceptable performance we wanted to obtain even better
performances since the classification process is essential for achieve good results on
the entities extraction task, our research goal, .
Therefore, as briefly mentioned in Chapter 4, we thought that email text is likely
to contain the same terms when we are not referring to a reference. On the other
hand, when we are mentioning the reference the terms changes. Therefore, IT-IDF
improved the performances of the classifier up to 92% F1-score.
We proceed a combination of those last sets of features. The main object of this clas-
sification task was to reach as much recall as possible, in order to be sure to perform
entities extraction on all the possible sentences. Although a sentence can be miss-
classify as contain references even if it does not, the ensemble model will return no
entities if in the sentence there is no one. On the other hand, lose information by
miss-classify a sentence with reference, as a sentence without reference, is certainly
worst.
Two different classifiers were evaluated and compared: SVM and Random Forest.
SVM classifier shows better performances than Random forest. This is due to the
high dimension that we use with the features. Bag-of -Words and TF-IDF are high-
dimensional sparse data because SVM classifiers are better suited to high dimen-
sional data than the Random Forest. This is the reason why we obtained better
performances applying SVMs than Random Forest.

6.3 Discussion on ensemble results

We will proceed by discussing the scores on entities extraction. The We started by
evaluating the performance of Grobid, Cermine and Crossref. The evaluation was
not an easy job, all their output when the entity is extracted, come out in several
formats. For example, Grobid retrieve the author entity by separating the names in
different arrays, Crossref retrieves them in well structure dictionary [28], Cermine,
instead returns a simple string. Therefore a normalization step was needed in order
to evaluate the systems in the correct way. Another difficult task was the evaluation
of Crossref. As you may notice the scores of Crossref are equal on recall and preci-
sion. This is due to the same amount of false positive and false negative that it col-
lected during the evaluation process. Crossref, indeed, when it processes the string
with the references it does not try to extract the entities directly from the string but
it parse it and sub sequentially retrieve all the entities that are stored in its database.
If it gives back the correct paper than it will have all true positive entities, and when
it returns the wrong one it will have all false positive for all the wrong entities that
it retrieves with the same amount of false negative for the entities that it could not

Chapter 6. Discussion 44

guesses.
Two models were carried out with the ensemble method. The first model use bag-
ging or majority votes, where the votes are treated with the same weights, hence, by
applying majority we reach a good result in term of precision, less in term of recall,
because the model was taking as true entity when all the systems, or the majority,
was returning the same one. The second model, act with a slightly smarter algo-
rithm the votes are weighed according to the observation made during the testing
process. In this manner, we could raise the recall and get better performance.

45

Chapter 7

Conclusion and Future works

In this final report, we illustrate the process to perform entities extraction from un-
structured text, including text tokenization, sentence classification and entities ex-
traction. With this research project, we wanted to show an end-to-end process start-
ing with raw data and finishing with the correct entities extraction, in order to re-
trieve the right document mentioned in the unstructured text.
In the coming "Conclusion" section, we explain how our research questions are an-
swered. And at the end, we describe some future works that can be developed and
can probably improve the performance of the system.

7.1 Conclusion

For our main research question, "Given unstructured text containing scientific articles
references, how can machine learning approaches perform on the task to recognise and extract
reference entities?". The answer has been given through the approach that has been
followed in the research. The problem has been narrowed down to perform entities
extraction to the piece of text that is containing the reference.
There were two crucial steps for being able to recognise the reference in the free text,
and to be able to answer the first subquestion which was: "How can we identify a
snippet in the unstructured text where the reference contains itself?". Firstly we applied
text tokenisation, being careful not to break the reference while dividing the text into
snippets, and later performed reference recognition on those portions of the text. By
devideing the text into snipetts containing entire refernces, It is possible to brake
the text in order to train a machine learning classifier. We showed that by combining
textual and TF-IDF features, it was possible to receive great performances on the sen-
tence classification. Both precision and recall were necessary for correctly classifing
a sentence as containing a reference. But with a high recall, we are sure to consider
all the possible sentences that can include a reference. For example, if a sentence is
without a reference but is classified as containing a reference, in the next step when
the sentence is parsed for entities extraction, no reference’s component will return.
When the snippet or sentence in the text has been classified as containing a refer-
ence, we had to extract the several entities to be able to retrieve the right scientific
document.
We answer, hence, to the second sub-question: "How can we identify and extract ref-
erence entities contained in a snippet of unstructured text?". Firstly, we tested the three
pre-trained systems, Grobid [20], Cermine [34] and Crossref [8], that performs en-
tity extraction on structured text such as bibliography and string references. All of
these systems are implemented with machine learning techniques that can adapt to
several types of text structures. We observed that they were able to extract refer-
ence entities sufficiently and we opted for a model that was combining their output,
also called ensemble method, to obtain a better performance. Two models were

Chapter 7. Conclusion and Future works 46

produced. The first one connects the different output by majority votes. With this
method we reached good precision, beating the others systems on almost all entities
extraction from free text.
The second model is slightly smarter, according to the observation of the entities ex-
traction performances, obtained by the three systems Cermine, Grobid and Crossref
and considering the "sourness" score that Crossref retrieved, votes were weighted.
In this way, the recall was increased, and better performances in term of F-score was
achieved.
This research project is a starting point, and it will lead to automating Scopus Cus-
tomer service tasks. In order to fully automate tasks such as identification of "out of
policy" documents, or documents that are still in the production phase (and there-
fore not referenced in Scopus database), the machine, at first, has to recognise the
scientific document mentioned in the free text or for the case of Scopus customer
service, in emails. The good performance, in terms of accuracy, on entities recogni-
tion shows the value of this methodology, followed in this research project.

7.2 Future works

By applying machine learning on unstructured text containing scientific references,
we can extract the entities with great accuracy.
On the other hand, several aspects of this system can be improved. Firstly, more data
are needed for gain a better evaluation on those entities that appear less frequently
in our reference set. Another major step that can considerably improve the perfor-
mance of the system is the tokenization phase.
Even though we could reach good performances on our data by tokenizing the text
whenever was occurring a multiline character (“\n\n”) this scenario typically hap-
pen when we consider emails text. When we are writing an email, for example, we
are used to splitting the sentences or paragraph by including an empty line. The
same occurred in this case; when the Author was about to add the reference in the
email was pressing double time the "enter" button and then was including the ref-
erence. On the other hand, when it comes to deal with other unstructured text such
as web forms or social media post we will not have the same case because usually
the character and space are limited. Therefore, NLTK PunktSentence tokenizer [5]
can be trained to escape such as punctuation that occurs in the reference, hence,
tokenizes the text in a better manner.

47

Bibliography

[1] Ethem Alpaydin. Introduction to machine learning. MIT press, 2014.

[2] Modern Language Association of America. MLA handbook for writers of research
papers. Modern Language Association of America, 2010.

[3] Sam Anzaroot and Andrew McCallum. “A new dataset for fine-grained cita-
tion field extraction”. In: (2013).

[4] American Psychological Association et al. Publication manual. American Psy-
chological Association, 1983.

[5] Steven Bird. “NLTK: the natural language toolkit”. In: Proceedings of the COL-
ING/ACL on Interactive presentation sessions. Association for Computational Lin-
guistics. 2006, pp. 69–72.

[6] Johan Bollen, Huina Mao, and Xiaojun Zeng. “Twitter mood predicts the stock
market”. In: Journal of computational science 2.1 (2011), pp. 1–8.

[7] Alexandru Constantin, Steve Pettifer, and Andrei Voronkov. “PDFX: fully-
automated PDF-to-XML conversion of scientific literature”. In: Proceedings of
the 2013 ACM symposium on Document engineering. ACM. 2013, pp. 177–180.

[8] Crossref. URL: https://www.crossref.org/blog/python-and-ruby-
libraries-for-accessing-the-crossref-api/.

[9] Bin-Ge Cui and Xin Chen. “An improved hidden Markov model for literature
metadata extraction”. In: Advanced Intelligent Computing Theories and Applica-
tions (2010), pp. 205–212.

[10] Pradeep Dasigi et al. “Experiment Segmentation in Scientific Discourse as Clause-
level Structured Prediction using Recurrent Neural Networks”. In: arXiv preprint
arXiv:1702.05398 (2017).

[11] Barbara Gastel and Robert A Day. How to write and publish a scientific paper.
ABC-CLIO, 2016.

[12] Giovanni Giuffrida, Eddie C Shek, and Jihoon Yang. “Knowledge-based meta-
data extraction from PostScript files”. In: Proceedings of the fifth ACM conference
on Digital libraries. ACM. 2000, pp. 77–84.

[13] Mark Hall et al. “The WEKA data mining software: an update”. In: ACM
SIGKDD explorations newsletter 11.1 (2009), pp. 10–18.

[14] Hui Han et al. “Automatic document metadata extraction using support vec-
tor machines”. In: Digital Libraries, 2003. Proceedings. 2003 Joint Conference on.
IEEE. 2003, pp. 37–48.

[15] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. “Overview of super-
vised learning”. In: The elements of statistical learning. Springer, 2009, pp. 9–41.

[16] Peter Hurley et al. “Introduction to PostScript”. In: A Sun User’s Guide. Springer,
1992, pp. 84–106.

https://www.crossref.org/blog/python-and-ruby-libraries-for-accessing-the-crossref-api/
https://www.crossref.org/blog/python-and-ruby-libraries-for-accessing-the-crossref-api/

BIBLIOGRAPHY 48

[17] Roman Kern et al. “TeamBeam-meta-data extraction from scientific literature”.
In: D-Lib Magazine 18.7/8 (2012).

[18] Aleksandar Kovačević et al. “Automatic extraction of metadata from scientific
publications for CRIS systems”. In: Program 45.4 (2011), pp. 376–396.

[19] Ryan TK Lin et al. “Using conditional random fields for result identification
in biomedical abstracts”. In: Integrated Computer-Aided Engineering 16.4 (2009),
pp. 339–352.

[20] Patrice Lopez. “GROBID: Combining automatic bibliographic data recogni-
tion and term extraction for scholarship publications”. In: Research and Ad-
vanced Technology for Digital Libraries (2009), pp. 473–474.

[21] Xiaonan Lu et al. “A metadata generation system for scanned scientific vol-
umes”. In: Proceedings of the 8th ACM/IEEE-CS joint conference on Digital li-
braries. ACM. 2008, pp. 167–176.

[22] Minh-Thang Luong, Thuy Dung Nguyen, and Min-Yen Kan. “Logical struc-
ture recovery in scholarly articles with rich document features”. In: Multimedia
Storage and Retrieval Innovations for Digital Library Systems 270 (2012), p. 2.

[23] Christopher D Manning, Hinrich Schütze, et al. Foundations of statistical natural
language processing. Vol. 999. MIT Press, 1999.

[24] Simone Marinai. “Metadata extraction from PDF papers for digital library in-
gest”. In: Document Analysis and Recognition, 2009. ICDAR’09. 10th International
Conference on. IEEE. 2009, pp. 251–255.

[25] IC Mogotsi. Christopher d. manning, prabhakar raghavan, and hinrich schütze: In-
troduction to information retrieval. 2010.

[26] Colin Neville. The complete guide to referencing and avoiding plagiarism. McGraw-
Hill Education (UK), 2010.

[27] Pdf-extract. URL: http://labs.crossref.org/pdfextract/.

[28] Jacob Perkins. Python text processing with NLTK 2.0 cookbook. Packt Publishing
Ltd, 2010.

[29] Scikitlearn. URL: http://scikit-learn.org/.

[30] Pontus Stenetorp et al. “BRAT: a web-based tool for NLP-assisted text annota-
tion”. In: Proceedings of the Demonstrations at the 13th Conference of the European
Chapter of the Association for Computational Linguistics. Association for Compu-
tational Linguistics. 2012, pp. 102–107.

[31] Johan AK Suykens and Joos Vandewalle. “Least squares support vector ma-
chine classifiers”. In: Neural processing letters 9.3 (1999), pp. 293–300.

[32] Ah-Hwee Tan et al. “Text mining: The state of the art and the challenges”. In:
Proceedings of the PAKDD 1999 Workshop on Knowledge Disocovery from Advanced
Databases. Vol. 8. sn. 1999, pp. 65–70.

[33] Ken Thompson. “Programming techniques: Regular expression search algo-
rithm”. In: Communications of the ACM 11.6 (1968), pp. 419–422.

[34] Dominika Tkaczyk et al. “CERMINE: automatic extraction of structured meta-
data from scientific literature”. In: International Journal on Document Analysis
and Recognition (IJDAR) 18.4 (2015), pp. 317–335.

[35] Melanie Weis, Felix Naumann, and Franziska Brosy. “A duplicate detection
benchmark for XML (and relational) data”. In: Proc. of Workshop on Information
Quality for Information Systems (IQIS). 2006.

http://labs.crossref.org/pdfextract/
http://scikit-learn.org/

BIBLIOGRAPHY 49

[36] Xiaoli Zhang et al. “A structural SVM approach for reference parsing”. In:
BMC bioinformatics 12.3 (2011), S7.

[37] Jie Zou, Daniel Le, and George R Thoma. “Locating and parsing bibliographic
references in HTML medical articles”. In: International journal on document anal-
ysis and recognition 13.2 (2010), pp. 107–119.

	Abstract
	Acknowledgements
	Introduction
	What is a reference
	Structured text and unstructured text
	Structured text
	APA style
	MLA style

	Unstructured text

	Introduction to Elsevier and Scopus database
	Scopus costumer service

	Introduction to machine learning
	Natural language processing and text mining

	Research question and challenges
	Research question
	Challenges

	Contribution
	Overview

	Related Works
	Information extraction from scientific manuscript
	Rules-based approach
	Machine learning model-based approach
	Cermine
	Grobid
	Crossref

	Summary

	Data
	Customer emails
	Sample of emails selected

	Introduction to Brat annotation tool
	Entities and references annotated

	Methods
	Approach motivation
	Reference Sentence Classification
	Sentence tokenization
	Preprocessing
	Description of features
	Binary classifier
	Random Forests
	Support vector Machines

	Ensemble for entities extraction
	Ensemble Majority
	Ensemble Majority Weighted

	Results
	Performance sentence tokenization of email
	Binary classifier for sentences and features performance
	Ensemble on entities extraction
	Title extraction performance
	Authors extraction performance
	Journal extraction performance
	Volume extraction performance
	Year extraction performance
	DOI extraction performance
	Pages extraction performance
	Issue extraction performance
	Publisher extraction performance
	Editor extraction performance
	Issn extraction performance

	Discussion
	Discussion on sentence tokenization results
	Discussion on Binary classifier results
	Discussion on ensemble results

	Conclusion and Future works
	Conclusion
	Future works

	Bibliography

