

Master thesis

Routing and scheduling of the parking

enforcement in Amsterdam

Author: Jan Groeneveld

ARS | Traffic & Transport Technology

Supervisor: D.G. Speekenbrink

University of Twente

Supervisor: Dr. Ir. J.M.J. Schutten

Supervisor: Dr. Ir. M.R.K. Mes

Graduation date: 18.10.2017

Master thesis – Jan Groeneveld

Management summary
In December 2016, Egis Parking Services B.V. (EPS), who was hired by the municipality of Amsterdam to

manage the parking enforcement within Amsterdam, tasked ARS T&TT (ARS) with the development of a

planning tool that supports their work. The Smart Parking unit of ARS started to work on this project and

additionally, requested a separate research on how such a planning tool can be developed. From February

2017 until September 2017, we conducted this research.

The idea behind the parking enforcement is that more parking visitors pay the parking fee. Whenever a

parking visitor in Amsterdam wants to pay the parking fee, the visitor has to register the license plate of

his/her car. The license plate is uploaded to a database afterwards. The on-street agents of EPS visit

different neighborhoods of Amsterdam, i.e., they drive through neighborhood in parking enforcement

vehicles (PEVs) and scan parked cars in different neighborhoods. During this process, the license plates of

the parked cars are uploaded to a different database. By comparing both databases, it can be determined

whether a visitor, whose car was scanned by a PEV, paid the parking fee. If a visitor did not pay, a penalty

charge notice (PCN) is generated. For some exceptional cases, it is required that another agent who

follows the PEVs on a scooter (PEF) checks the parked car on-site.

The output of our routing algorithm is a schedule of all neighborhood visits for all PEVs. In order to do

this in a smart manner, we have to consider EPS’ objective. The municipality of Amsterdam measures EPS’

performance regarding the parking enforcement based on two Key Performance Indicators (KPIs): the

payment rate, which is the ratio between paying visitors and all visitors, and the control chance, which is

the probability that a non-paying visitor receives a PCN. From the control chance target, we can derive the

number of PCNs that is needed in order to meet the control chance target. This number is called the PCN

target, which we use instead of the control chance. Concerning the evaluation of EPS’ performance, it is

important that every neighborhood belongs to one of 10 KPI areas. Within one KPI period, which lasts

three months, EPS has to meet certain targets of the KPI that are determined by the municipality. The

municipality of Amsterdam takes random samples of neighborhoods and examines the payment rate.

Whenever the payment rate measured by the municipality is below the pre-set target, the PCN target is

considered. The rationale behind this is that EPS cannot directly influence the payment behavior of the

visitors and therefore they have to show that their effort of fining the non-payers is at least high enough.

If both targets are below the pre-set targets, then the KPI area is in a malus state and EPS will receive a

fine. If in all KPI areas at least one of the targets is met, then EPS receives a bonus for those KPI areas

where the payment rate exceeds the pre-set target. Apart from the KPI targets, EPS tries to visit every

neighborhood once a week. Therefore, we derive the following three priorities in the following order:

1. Meet either the payment rate target or the PCN target of every KPI area.

2. Maximize the control chance in chosen KPI areas in order to eventually increase the payment rate

and maximize the performance bonus.

3. Visit every neighborhood once a week.

Finally, it is required that our routing algorithm does not only maximize the number of PCNs but also

takes these priorities into account. For that reason, we do not only consider the expected number of PCNs

that can be obtained by visiting a neighborhood but also the neighborhood’s Target Factor and Visit Day

Factor, which take the mentioned priorities into account. Since the routing algorithm requires inputs, we

first have to compute:

 Travel times (the travel time from one neighborhood to another)

 Service Times (the time that is needed to scan a neighborhood)

 Number of PCNs (the expected number of PCNs by visiting a neighborhood)

 Margin of error (an increase of the KPI targets to account for uncertainty)

For predicting the number of PCNs, we concluded that it is required to know the following ratios:

 The occupancy ratio, which is the ratio between occupied parking spots and all parking spots in a

neighborhood at a given time

 The PCN ratio, which is the ratio between PCNs and all scans in a neighborhood at a given time

This PCN ratio can also be split into the visitor ratio, which is the ratio of visitor scans (scanned cars that

belongs to paying or non-paying visitors) and all scans, and the non-paying ratio, which is the ratio of all

non-paying visitor scans (PCNs) and all visitor scans. Our prediction model (or forecasting method) is

based on an estimation of this occupancy ratio and a neural-network based prediction for the PCN ratio.

Multiplying the number of parking spots with the occupancy ratio and the PCN ratio results in our forecast

of the number of PCNs. This research also contains an extensive data analysis of the PCN ratio. We

observed in our data analysis that:

 The PCN ratio depends on the time of the day

Master thesis – Jan Groeneveld

 The PCN ratio depends on the weekday

 The PCN ratio does not depend on the weather

 The payment rate increased from approximately 89% to 90% within one year (1.6.2016-1.6.2017)

The routing algorithm that we present in this research, first creates a solution based on a greedy

algorithm and then tries to optimize this solution by constructing new solutions based on an ant

colonization optimization (ACO) algorithm. Since it is possible to visit one neighborhood multiple times a

day, one ingredient of our greedy algorithm is very important, namely the stability function. Our proposed

stability function accounts for the fact that when the PEVs goes to a neighborhood that has been visited

already the same day, it is possible that some non-paying visitors from the earlier visit are still in that

neighborhood. Even though we show that the ACO algorithm performs well for one vehicle, it had

difficulties to find better solutions than the greedy algorithm when 12 vehicles are deployed, which is the

standard number of vehicles used by EPS (from Monday to Saturday). Finally, we perform a sensitivity

analysis, a simulation study, and compare our prediction model and routing algorithm to the ones

currently used at ARS. We prove that our neural network has a more accurate prediction (+4%) regarding

the PCN ratio and that our routing algorithm leads to better results (+34%) than the current

implementation of ARS algorithm when the same inputs are used (assuming that our stability function is

correct). We are confident that our planning tool improves the current situation at EPS by automating the

planning process, increasing the number of obtained PCNs, and faster reaching the KPI targets. This will

finally lead to less fines and more rewards. Furthermore, we have shown that our greedy algorithm can

create a planning for 90 days within 6 hours.

We recommend ARS to make use of our presented greedy algorithm with our presented parameter

settings in combination with our neural network forecast. Finally, we have different ideas for future

research. The most important ones are to investigate in the parking duration of non-paying (or at least

paying) visitors in order to improve the stability function and to develop a more accurate method to

estimate the occupancy ratio. Furthermore, we advise to do keep observing and analyzing the travel times

because it seems that they are underestimated.

Master thesis – Jan Groeneveld

Preface
With this thesis, I am not only finishing my master program but also my entire study period at the

University of Twente. On the one hand that makes me sad because I am closing a great period of my life,

during which I have learned a lot about the world of industrial engineering, lived in three different

countries, and I have met and worked with very special people. On the other hand, I am happy that I

succeeded, I am proud to present my master thesis and I am looking forward to the future.

I thank ARS T&TT and Rolf Appel for the opportunity and giving me such an interesting project. Even

though I never expected that one day I would optimize parking enforcement, I really liked the technical

challenges that came with it. In this regard I also thank Ahmad Al Hanbali, who supervised my bachelor

thesis and helped me finding this project.

My special thanks go to my supervisor Dennis Speekenbrink at ARS T&TT, who made always time for

feedback and discussions despite of his busy agenda. It was a pleasure working with you and your critical

thoughts and feedback were most helpful.

Of course, I also owe a great deal of thanks to my supervisors Marco and Martijn. You both spent a lot of

time in proof-reading and finding every grammatical, writing, or essential error and answered my emails

in no time. After hearing about other students’ experiences, I know that this should not be taken for

granted.

Lastly, I thank my friends and family who accepted and supported my decision to live and study abroad

and visited me even when I was living in Portugal or Mexico. That also included my girlfriend Ellian, for

whom I am most grateful. You always supported and comforted me during the stressful periods of my

master program and motivated me to keep going.

Master thesis – Jan Groeneveld

Definitions & Notations
: An optimization technique that is inspired by the pheromone trails

that ants leave, in order to attract other ants to the ways that used to work well in the past.

 The company where the research is conducted and which provides traffic and transport

technology solutions to businesses and government.

 The middle point of a neighborhood based on the scans of 3 months.

 An arc routing problem in which the route of a postman that has to

deliver mail to different streets is optimized.

 The average number of PCNs within a not-paid-for parking hour, which is estimated.

: A pre-set target regarding the control chance that is determined by the

municipality for one KPI area regarding one KPI period.

 The company that is responsible for most of the operational aspects of on-

street fiscal parking in Amsterdam, such as on-street parking meter enforcement.

 A type of performance measurement that evaluates the success of an

organization or of a particular activity.

 A recurring period of three months within which the KPI targets must be met.

 The 10 different areas in Amsterdam that are measured.

 Include the PCN target, which is derived from the control chance target, and payment rate

target.

 A small geographical unit within a KPI area.

The ratio between non-paying visitors and all visitors in a neighborhood at a given

time.

 In this thesis we limit the parking enforcement to the activities related to the on-

street parking meters in Amsterdam.

 The ratio between the occupied parking spots and all parking spots in a neighborhood

at a given time.

 A scooter that is driven by a parking enforcement follow-

up agent that go to the parked cars that need further investigation and/or where a PCN must be issued

locally.

 A vehicle that is driven by a parking enforcement agent and that

scans parked cars.

 Indicates the time interval of a certain region (independent from KPI area and

neighborhood) during which visitors have to pay for parking.

 The ratio between paying visitors and all visitors in a neighborhood at a given time.

: The performance of the payment rate in a KPI area, which is measured by

dividing the current payment rate by the payment rate target.

 A pre-set target regarding the payment rate that is determined by the municipality

for one KPI area regarding one KPI period.

 A parking fine that is issued whenever a non-paying parking visitor is

detected.

 The performance of the number of PCNs in a KPI area, which is measured by dividing

the current number of PCNs by the PCN target.

 The ratio between non-paying visitor scans and all scans in a neighborhood at a given time.

 A target that is derived from the control chance target. Indicates the number of PCNs that has

to be achieved in a KPI within a KPI period.

 Parking enforcement agent who drives the PEV.

 Parking enforcement agent who drives the PEF.

 The time needed to scan a certain neighborhood.

 A parameter that determines how important the KPI areas get after they have

reached one of the KPI targets.

 A problem in which many vehicle have to maximize the rewards

within a certain a time by choosing a set of vertices and the sequence of visiting them.

Master thesis – Jan Groeneveld

: A parameter that restricts the travel distance between two scheduled

neighborhoods.

 The time needed to travel from the center point of a neighborhood to the center point of

another neighborhood.

 A parameter that reduces the accounted travel time when the PEV leaves a break

location.

 A parameter that restricts the travel time between two scheduled

neighborhoods.

 A problem in which a salesman has to travel to a certain set of cities

and the travelled distance has to be minimized by choosing the best sequence of visits.

 The ratio between visitor scans and all scans in a neighborhood at a given time.

 A scan of car that belongs to a paying or non-paying visitor.

 The same problem as the TSP but usually with multiple vehicles.

 A database that contains all important payment parking information.

 A bonus that increases when the payment rate target is exceed. The bonus is only

given when the control chance and the payment rate target are met.

 A parameter that determines the fraction non-paying visitors that stay at a visited

neighborhood for a certain amount of time.

 A parameter that determines whether a swap is performed.

 A parameter that determines the growth of the visit day function.

Master thesis – Jan Groeneveld

1 Introduction ... 1
1.1 Context ... 1
1.2 Problem identification .. 3
1.3 Research scope ... 4
1.4 Problem approach .. 4

2 Current situation ... 6
2.1 Routing .. 6
2.2 Planning .. 11
2.3 Conclusion .. 12

3 Literature ... 13
3.1 Problem review ... 13
3.2 Routing heuristics ... 15
3.3 Input models ... 19
3.4 Conclusion .. 23

4 Computation of inputs.. 25
4.1 Challenges of the historical data ... 25
4.2 Margin of error ... 25
4.3 PCN prediction .. 27
4.4 Travel times .. 47
4.5 Service times ... 48
4.6 Conclusion .. 48

5 Routing algorithm ... 49
5.1 Planning horizon... 49
5.2 Notation .. 49
5.3 Objective function .. 50
5.4 Routing algorithm ... 55
5.5 Conclusion .. 63

6 Results ... 64
6.1 Design of experiment ... 64
6.2 Prediction models ... 65
6.3 Sensitivity analysis .. 66
6.4 Simulation study ... 74
6.5 Improvement of current situation .. 76
6.6 Conclusion .. 77

7 Conclusion and Recommendations .. 78
7.1 Contribution to the literature ... 78
7.2 Practical conclusion .. 79

8 References ... 82

9 Appendix ... 85

Master thesis – Jan Groeneveld

1

This project is part of the Master program Industrial Engineering and Management at the University of

Twente. It has a limited time span of 6 months. We conduct this research at the Smart Parking business

unit of ARS Traffic & Transport Technology. Within this research, we develop a planning tool to support

the parking enforcement activities that concern the on-street parking in Amsterdam. In this thesis, we

denote these activities as parking enforcement.

This first chapter provides an introduction to this research. Section 1.1 introduces the stakeholders who

are involved in this project and describes core activities associated with parking enforcement. In Section

1.2, we identify the problem this research addresses. Finally, we define the scope of this research in

Section 1.3 and explain our approach to tackle this problem including our research questions in Section

1.4.

In order to better understand the background of this research, this section describes the stakeholders

involved in the parking enforcement and how the parking enforcement in Amsterdam is executed and how

its performance is currently measured.

In this research project about the parking enforcement in Amsterdam, there are three important

stakeholders: the municipality of Amsterdam, ARS Traffic & Transport Technology (ARS), and Egis Parking

Services B.V. (EPS).

ARS is a company in The Hague that provides traffic and transport technology solutions to business and

governments. Since 1997 it is active in its home market, the Netherlands, but also internationally (ARS

T&TT, 2017). Concerning on-street parking, ARS is a partner in a joint venture with Egis Project, called

Egis Parking Services B.V. (EPS). EPS operates from the shared service center in Amsterdam. In January

2016, the municipality of Amsterdam hired EPS to manage all operational aspects of on-street fiscal

parking, such as for permit management, ticket machine maintenance, and parking enforcement. In

December 2016, EPS tasked ARS with developing a planning tool regarding the parking enforcement in

Amsterdam.

Amsterdam has over 140,000 on-street parking spaces, dispersed amongst 10 fiscal parking areas. Each

of these areas is divided into neighborhoods. In total there are 538 neighborhoods with different sizes

(see Figure 1) of which 320 have fiscal (paid) parking.

Figure 1 – Fiscal parking neighborhoods in Amsterdam

Master thesis – Jan Groeneveld

2

Every visitor who travels to Amsterdam by

car and parks in a fiscal parking space has

to pay a parking fee. The fee depends on

the time the vehicle remains in the parking

space and the parking space itself. A visitor

can pay the parking fee through several

electronic systems, such as parking meters,

mobile payment, call-payment, and online

visitor registration. The payment

information of these systems, including the

vehicle’s license plate, is uploaded to a

“Parking Rights Database” (PRDB).

Parking enforcement vehicles (see Figure 2)

drive through the neighborhoods, scan

parked cars in the fiscal parking space, and

take pictures of these. We further denote

these vehicles as PEVs and their driver as PEV drivers. While scanning, the license plates of the parked cars

are uploaded to a central system, which stores the recognized license plates. By comparing both

databases, it can be determined which visitors did not pay a parking fee so that a Penalty Charge Notice

(PCN) can be issued. The amount of the PCN is the sum of a fixed amount (the penalty) and one hour of

the parking fee that should have been paid for that parking spot. In general, parked cars as scanned by

the PEV can be classified as:

 Parking permit holders

 Exceptions

 Visitors

o Paying visitors

o Non-paying visitors

 Domestic

 International

o Unclear situation

Parked cars with a parking

permit belong to inhabitants

that pay on a long-term basis.

Some vehicles are exempted

from parking payment because

they are considered as

exceptions (e.g., loading/

unloading vehicles and

emergency vehicles). For this

research, the most important

groups are the domestic and

international visitors who did

not pay for their parking and

visitors whose situation is

unclear at first sight. Domestic

non-paying visitors receive a

PCN that is issued

automatically. This automatic

process is not possible for

international non-paying visitors.

That is why an off-street agent will contact a follow-up parking enforcement agent who drives with a

scooter to the location of the international car to issue a PCN on-site (see Figure 3). As for the PEV, in this

research, we denote the scooters as PEFs and their drivers as PEF drivers. For some vehicles, it is unclear if

they paid for their parking. Possible reasons are that the license plate is unreadable in the provided

images or it is unclear whether there is a loading/unloading process. Since it has to be determined

whether the vehicle belongs to a visitor that did not pay, these unclear parking situations require an on-

site visit of the PEF driver as well. At this moment, there is a 1-to-1 relation between the PEVs and PEFs,

i.e., one PEF follows one PEV. If a visitor receives a second PCN and did not pay the first one, the

municipality may request that a wheel clamp is placed on the vehicle.

Figure 2 – Parking enforcement vehicle

Figure 3 – Scanning process

Master thesis – Jan Groeneveld

3

The purpose of parking enforcement is to ensure that citizens and visitors pay for their parking. The

municipality of Amsterdam measures this by means of a Key Performance Indicator (KPI), namely the

“payment rate”. The payment rate is the willingness of visitors (non-permit holders) to pay for their

parking. In other words, it is the ratio of paying visitors in relations to the total number of visitors. In this

research, we denote it as the payment rate and not payment ratio because this is the term that is currently

used at ARS. The municipality measures the payment rate in all 10 fiscal parking areas for a period of 3

months by taking random samples. In this research, we denote these areas as KPI areas and the 3 month

period as the KPI period. The performance of EPS with regards to the parking enforcement is evaluated by

the payment rate that the municipality measures for every KPI in a KPI period. Unfortunately, there is no

direct relationship between the parking enforcement and the payment rate because it is unknown to what

extent the parking enforcement affects the payment rate. In theory, it could happen that EPS does a great

job and every visitor who does not pay a parking fee gets a PCN but the payment rate does not increase.

Even though, this is very unlikely because the general assumption is that people pay for parking if the

chance of getting a fine is too high. This assumption, that enforcement influences the payment rate, is

confirmed in the literature, as Adiv and Wang (1987) show that parking non-compliance level increases as

the level of enforcement decreases. Peliot (2004) indicates that this phenomenon can be described as a

relational economic choice (portfolio choice), i.e., the driver asses the risk of getting a fine and the

amount of the fine versus the regular parking costs. This theory is confirmed by Adiv and Wang (1987)

and Elliot and Wright (1982) in an empirical study. Since it is not desirable for the municipality to increase

the amount of the PCNs or the parking fee, they want to increase the risk of getting a fine (PCN). For that

reason, the municipality does not only consider the payment rate but also the “control chance”, which is

the probability that non-paying visitors receive a PCN. Only if the payment rate is not met, the municipality

will consider the control chance as a means to establish that “enough” effort has been put into

enforcement. Only when for all KPI areas either the payment rate or control chance target has been

achieved, the municipality will give EPS a performance bonus for any KPI area where the payment rate

exceeds the pre-set target (not for the control chance). Note that every KPI area has different targets for

the payment rate and control chance. These targets increase after every KPI period (up to certain

maximum values).

In this section, we define the problem which enables us to formulate an approach to tackle the problem.

In the context of this thesis, EPS has two planning tasks, namely the daily routing of the PEVs and the staff

scheduling. Currently, EPS handles both planning tasks manually. Since capacity is limited and

enforcement targets are rising, there is a need for an automated planning tool that delivers the following

three outputs:

 PEV routing: The planning of the daily PEV routes indicates at which time drivers need to be in a

certain neighborhood. Obviously, this will require inputs to determine realistic and smart routes.

 Staff scheduling: The staff has to be assigned to the vehicles. This can be done separately from

the PEV routing.

 Estimation of the KPI results: An indication to what extent the KPI targets will be met at the end of

the KPI period. This supports the decision process with regards to the needed capacity for the

short term.

The goal of this planning tool is to increase the efficiency of the available capacity and reducing the effort

of manual scheduling. Increasing efficiency is always linked to an objective. As we derive from Section

1.1.3, it is the objective to meet either the targets of the payment rate or the control chance in all KPI

areas. Furthermore, EPS wants to visits every neighborhood once a week. In fact, EPS has an order of

priority with regards to their targets:

1. Meet either the payment rate target or the control chance target of every KPI area.

2. Maximize the control chance in chosen KPI areas in order to eventually increase the payment rate

and maximize the performance bonus.

3. Visit every neighborhood once a week.

As a higher number of PCNs means that EPS is performing better with regards to the control chance (the

exact formula will be explained in Section 2.1.8), the planning tool has to maximize the numbers of PCNs

in such a way that the required KPI targets are met in all KPI areas and eventually a performance bonus is

achieved.

Master thesis – Jan Groeneveld

4

ARS has started the development of such a planning tool in December 2016. This thesis, which started in

February 2017, can be seen as a part of this project that aims to develop a more accurate and smarter

planning tool that is supported by scientific literature.

In this section, we discuss which aspects we do and do not consider in this project. The objective of this

graduation project is to create a planning tool for the parking enforcement in Amsterdam. In Section 1.2,

we stated that the planning tool should deliver the PEV routing, the staff scheduling, and an estimation of

the KPI results. The staff scheduling, however, is an independent smaller and less crucial problem and

therefore we only focus on the development of a routing algorithm that determines the daily routing of

the PEVs and also estimates the KPI results. The development of this planning tool involves three main

steps:

First, before creating any outputs, we need inputs for the routing algorithm. To this end, we have to

analyze which inputs are needed. For example, we need to know how long it takes to travel between the

neighborhoods and how long it takes to scan one. Furthermore, we need to know how many PCNs we

expect to generate when scanning a neighborhood. For the development of these inputs, we can make

use of the literature, the knowledge of EPS, and data of all parked cars that were scanned since January of

2016.

Second, we develop the routing algorithm. This routing determines for every PEV the sequence of

neighborhood visits (including the time). The routing algorithm implies also embedding this algorithm in

a programming platform. EPS requires that the total computational time must not exceed a daily limit of

six hours. Apart from the routing, the routing algorithm needs to estimate whether the KPI targets will be

met at the end of the KPI period.

Third, the planning tool needs to be validated afterwards, such that the functionality and contribution of

the tool can be proven.

Consequently, the planning tool consists of useable input data and a routing algorithm that is embedded

in an application. In this regard, there are some related aspects that are beyond the scope of this

research. First of all, we only assign drivers to neighborhoods and not to streets. Even though we do have

data of all scans since January of 2016 including GPS coordinates, EPS asks for a system that is based on

neighborhoods. The reason behind it is that a street based planning is too strict and cannot be executed

accurately it practice. A neighborhood routing gives EPS more flexibility. Additionally, creating street-

based routes would increase the solution space of the problem and therefore the computation time.

Furthermore, we do not consider decisions made on an online operational level, i.e., we do not take

dynamic aspects into account. For instance, if an accident occurs, the original route is not adjusted. Such

online changes require detailed real-time instructions (e.g., a navigation tool in the car) but this is

currently not possible. Neither, do we make decisions on a strategic level such as reducing the number of

PEVs. Nevertheless, the capacity might change in the future and therefore we use number of deployed

PEVs as a parameter. Furthermore, we do not consider reducing the number of PEFs and assigning them

to multiple PEVs because we focus on the routing of the PEVs. Moreover, we do not consider the fact that

visible presence of the PEV possibly prevents parking violations (comparable with the presence of police

cars preventing possible crimes).

This section describes the plan of approach of this research, which also includes the research questions.

Before introducing all research questions, we present our research goal, as concluded in Section 1.2:

“Develop a planning tool for the parking enforcement that maximizes the number of PCNs in such a way

that the required KPI targets are met in all KPI areas and eventually a payment rate bonus is achieved”

From this research goal, we derive research questions, which are discussed in the following chapters:

Chapter 2 – Current situation

This chapter describes the current situation of the planning and routing. By conducting interviews and

reviewing the available data, we answer the following two questions:

 How does the current routing of the PEVs look like?

 How does the current planning process look like?

Master thesis – Jan Groeneveld

5

Chapter 3 – Literature

This chapter introduces the required literature of this thesis. First of all, we want to know if this problem

or similar ones have been introduced to the literature and how these problems have been tackled and

solved. Furthermore, we investigate how inputs for the routing algorithm can be developed by using

available data. Furthermore, we are interested in theories about the parking and payment behavior of

visitors. Consequently, we answer the following questions:

 What is known in the literature about problems regarding the routing of parking enforcement or

similar routing problems?

o Which solution methods does the literature suggest?

 What is known in the literature about the parking and payment behavior?

 What is known in the literature about developing input data?

o What is known about travel times or speed models?

o What is known about prediction models?

For the purpose of this literature research, we use Scopus and Google Scholar.

Chapter 4 – Computation of inputs

This chapter analyzes the gathered data and investigates patterns and statistical characteristics in order to

compute inputs that can be used for the routing algorithm. We answer the following questions:

 How can we use the historical data to develop inputs for the routing algorithm?

In order to answer these questions, we first clean the available data and make some transformations if

necessary. Afterwards, we analyze the data to find patterns and develop a data model. By means of this

data model, we create inputs for the planning tool.

Chapter 5 - Routing algorithm

Within this chapter, we design a routing algorithm that can be embedded in the planning tool.

Furthermore, we discuss the choices with regards to the algorithm and the strategies behind it.

 What kind of algorithm is most suitable for this problem?

 How can we measure the performance of the algorithm?

Chapter 6 - Results

In this chapter, we analyze the results of the planning tool to make sure that this tool is actually working

and improving the current situation.

 To what extent is the proposed planning tool improving the current situation?

Chapter 7 – Conclusion and Recommendations

This chapter summarizes the project, discusses important points, indicates possibilities for future studies,

and finally lists our recommendations.

Master thesis – Jan Groeneveld

6

This chapter describes the current situation of the routing (Section 2.1) and planning process (Section 2.2)

at EPS. This chapter is based on interviews with the manager and drivers from EPS and data that they

provided.

In this section, we describe the routing of the PEVs in terms of different routing characteristics proposed

by Van der Heijden and Van der Wegen (2011). These general characteristics are applicable to every

routing problem.

The fleet consists of a certain number of homogenous PEVs and PEFs, which is set a priori. Currently, one

PEF is assigned to one PEV and 12 of both are used in the daily operations. A vehicle can be unavailable

due to maintenance or other reasons. Every morning the vehicles are refuelled.

The fleet of PEVs and PEFs starts and finishes the daily routes at the same depot. In between, the drivers

have breaks, which are further explained in Section 2.1.5. For these breaks, the fleet may return to the

depot or to two extra break locations, which are exclusively used for breaks. The fleet must take every

break at one of the three possible break locations. The break locations are scheduled based on the

shortest extra travel time with regards to the scheduled route. Figure 4 shows all neighborhoods, the

depot (marked in red), and the two break points (marked in green).

Figure 4 – Overview of neighborhoods, the depot, and the two break locations

The “customers” in this problem are the 10 KPI areas with certain KPI targets that have to be met.

Achieving the KPI targets, which is further explained in Section 2.1.8, involves the PEV visiting the

neighborhoods within these KPI areas in order to scan the parked cars. Every KPI area is divided into

several neighborhoods with different sizes. As mentioned in the Section 1.3, we consider the

neighborhoods globally and not every specific street in it. According to EPS, the number of visitors and

their payment behavior is affected by various factors, such as the time of the day, weather, holidays,

markets, special days of sale, and short-term events. Chapter 3 discusses what is known in the literature

Master thesis – Jan Groeneveld

7

about factors influencing the number of visitors and the payment behavior. The data analysis of these

factors is part of Chapter 4. This analysis helps us to make predictions about how many PCNs we can

expect when scanning a neighborhood. The time that a PEV driver needs to scan a neighborhood, is

denoted as the service time. The service time depends on the average speed of the PEV and the length of

the route within the neighborhood. The PEV drivers indicate that these service times are time-dependent

due to traffic congestion. Chapter 4 deals with estimation of this service time and the prediction of the

expected PCNs while scanning. Since it is possible to go more than once a day to one neighborhood but it

is not possible to issue multiple PCNs on one day for the same vehicle, another problem arises, namely:

How many PCNs can we expect the second time? Or more correctly: How many non-paying visitors remain

on the parking spot until the next visit? This problem is discussed further in Section 4.3.4.

Regarding the locations of the neighborhoods, the neighborhoods have the shape of polygons and ARS

has the GPS coordinates of polygons’ edge points. The sizes, shapes, and number of corner points are

different for every neighborhood. ARS created an extra GPS coordinate for every neighborhood that is the

center point of all scans during 3 months and therefore we denote this point as center point.

As for the service time, the travel times between two neighborhoods depend on the distance between the

neighborhoods and the average speeds of the PEV.

The speed is influenced by time-dependent traffic congestion. Note that we do not consider the allowed

speeds of the streets since we do not consider streets in this research. Moreover, due to one-way streets

or one-way traffic congestions, the speeds might be directed, i.e., it matters if the PEV goes from

neighborhood i to j or from j to i. Chapters 4 discusses whether it is necessary and possible to include

this.

The distance between two neighborhoods depends on the last scanned street of the previous scheduled

neighborhood and the first scanned street of the following neighborhood. ARS created a distance matrix

using the center point of every neighborhood that we explained in Section 2.1.3. This distance matrix

considers the actual distance traveling through all streets from one center point to another. This leads to

a problem because the center point lies within the neighborhood. Therefore, this distance includes also

the distance between the point when the PEV enters or leaves the scheduled neighborhood and its center

point. Consequently, if we measure the distance between the two centers points of the two

neighborhoods, we will calculate twice the redundant distance from the entry/exit point of the

neighborhood and its center point. This distance, however, is difficult to determine as it depends on the

last scanned street of the previous neighborhood and the first scanned street of the following

neighborhood. Chapter 4 further discusses this problem and the development of useful travel time input.

Furthermore, we must not forget that the PEV keeps scanning parked cars while traveling to other

neighborhoods. For instance, the PEV travels through other neighborhoods to get to the next destined

neighborhood. However, in that case, the PEV drivers mostly use through-streets that are less dense with

regards to the number of PCNs. In Chapter 4, we also answer the question whether it is useful to include

this phenomenon.

In order to create proper routes, we have to take several time restrictions due to shifts, breaks and

parking regimes into account. Regarding the shifts, there are three regular shifts from every day of the

week:

Regular shifts (from Monday until Sunday):

 Day shift: 8.00-16.30

 Evening shift: 15.30-23.40

 Night shift: 23.30-4.00

However, there is also on additional shift on Sundays due to different parking regimes:

Additional shift (on Sundays):

 Sunday afternoon shift: 11.30-20.00

Even though on Sundays there are additional Sunday afternoon shifts, the total number of deployed PEVs

is usually less on Sundays than during the week.

At the start of every shift, the drivers get a briefing at the depot. The drivers of the day shift also have to

refuel the vehicles. When the day shift ends, the PEV driver of the evening shift drives with a scooter to the

current location of the PEV, then they switch, and the driver of the day shift returns with the scooter. The

shift change occurs between 16.00 and 16.15 and requires 15 minutes at the same location. Therefore,

Master thesis – Jan Groeneveld

8

the PEV driver must not have a visit that starts before 16.00 and finishes after 16.15. The shift change

from evening to night shift is done at the depot, hence we do not have to take it into account. Except for

the night shift, all shifts including one 20-minute break and one 35-minute break. The night shift drives

without a break. EPS decided to vary break times a bit in order to spread the breaks around and to avoid

moments in which no PEV is driving around. The reason behind this is that it lead to visitors not paying

during break times of the PEV drivers. Currently, this is done by means of the vehicle number, where even

numbers have one break regime, and uneven numbers have another. The break times are as follows:

Even numbers:

 Dayshift breaks: 11.30 – 12:05 and 13.45 – 14.05

 Evening shift breaks: 18.15 – 18.50 and 21.15 – 21.35

 Sunday afternoon shift breaks: 14.15 – 14:35 and 17.00 – 17.35

Uneven numbers:

 Dayshift breaks: 11.15 – 11.50 and 14.00 – 14.20

 Evening shift breaks: 17.45 – 18.20 and 20.45 – 21:05

 Sunday afternoon shift breaks: 14.00 – 14.20 and 16.45 – 17.20

Even though EPS uses fixed break times, we can use a tolerance of 15 minutes to increase the flexibility of

the planning. The PEV driver should choose the break location which leads to the shortest total travel

time. The PEF drivers have to do the follow-up work. Correspondingly they go to the same break location

and their breaks start a bit later than the ones of the PEV drivers.

Furthermore, there are different parking regime times, which indicate at which time a visitor has to pay a

parking fee. The parking regimes times of Amsterdam can be seen in Table 1.

Centrum A Monday - Sunday 09.00-24.00

 B Monday - Sunday 09.00-04.00

Nieuw-West Monday - Saturday 09.00-19.00

Noord A Monday - Saturday 09.00-19.00

 B Monday - Sunday 12.00-19.00

 C Monday - Sunday 09.00-24.00

Oost 1/ Oost 2 A Monday - Saturday 09.00-19.00

 B Monday - Saturday 09.00-21.00

 C Monday - Saturday 09.00-24.00

West 1 A Monday - Saturday 09.00-24.00

 B Monday - Sunday 09.00-24.00

West 2 A Monday - Saturday 09.00-24.00

 B Monday - Saturday 09.00-19.00

Zuid 1 A Monday - Saturday 09.00-19.00

 B Monday - Saturday 09.00-21.00

 C Monday - Saturday 09.00-24.00

Zuid 2 A Monday - Saturday 09.00-21.00

 B Monday - Saturday 09.00-24.00

 C Monday - Friday 09.00-19.00

Zuid Oost Monday - Sunday 09.00-21.00

Table 1 – Parking regime times

Master thesis – Jan Groeneveld

9

Sometimes the parking regime times differ within one KPI area. Therefore, some of them are split into two

or three subareas. ARS already assigned the neighborhoods to different parking regimes.

We do not have restrictions with regards to the length of the route. The route is only restricted by the time

as mentioned before.

Cost factors are factors that need to be minimized. In a usual VRP, this would be the travel times or travel

distances. As we further explain in Section 2.1.8, the maximization of the number of PCNs is the crucial

output in this routing problem. Even though EPS has no interest in minimizing the travel distances, it is

important that the travel distances are reasonable such that the PEF driver can still follow the PEV on the

scooter. A smart maximization of the number of PCNs will automatically minimize travel times to some

extent to improve the efficiency of the route. Nevertheless, it could be interesting to keep track of the

travel distances for two reasons. First, the routes will not have the same amount of kilometers. So

assuming all PEV are interchangeable, at a later time it may make sense to arrange vehicles amongst

schedules such that they do not all reach their next maintenance requirement at the same time. Second, if

we assume that some vehicles have less range than others (e.g., electric vehicles) it may be useful to

assign specific vehicles to routes with less travel distance. Therefore, the travel distance would be nice to

have but should not impact the core of the routing algorithm.

As already mentioned in Section 1.2 the most important KPI for the municipality is the payment rate, the

fraction of visitors that pay for parking. The problem of this KPI is that we do not have the information of

all visitors. The number of paying visitors is known as they are saved in the PRDB. Logically, the non-

paying visitors are not registered in the PRDB. Only those non-paying visitors are known that are scanned

and issued with a PCN but these are not all of them. Basically, the payment rate (p) should be measured

with the following formula:

p =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠
,

but since we do not know the number of non-paying visitors, it is measured with the following formula:

p =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠
.

Therefore, we can only estimate the payment rate for a certain sample of scans. For example, a PEV starts

to scan a small neighborhood with 100 parking spots at time t = 0. After 10 minutes at t = 10, the PEV has

scanned all 90 cars. Out of these 90 cars, 40 cars had a parking permit and 50 cars were visitors. 10 of

these visitors, did not pay the parking fee and will receive a PCN. Assuming that nobody left a parking

spot or arrived to the parking spot within these 10 minutes, we can make the following conclusions from

this example:

 The occupancy ratio is 90%, which is the ratio between occupied parking spaces and the total

number of parking spaces

 The visitor ratio is 50/90%, which is the ratio between visitor scans (all scanned cars that

belong to a paying or non-paying visitors) and all scans

 The non-paying ratio is (40/50%), which is the ratio between non-paying visitors and all

visitors (equal to 1-p)

In this context, we thought of a pyramid (see Figure 5) that explains the components of the number of

PCNs. If we consider a specific time interval and take the known number of parking spots N, multiply it by

the occupancy ratio S/N (number of scans divided by number of parking spots), by the visitor ratio V/S

(number of visitors divided by the number of scans), and then by the non-paying ratio 1-p, then we get

the number of PCNs. Therefore, the number of PCNs can be expressed as PCN = N*(S/N)*(V/S)*(1-p) or

PCN = V*(1-p). As mentioned in Section 2.1.3, the number of visitors (or the visitor ratio) and payment rate

are affected by different factors, which we investigate in Chapter 3 and Chapter 4.

Master thesis – Jan Groeneveld

10

Figure 5 – Pyramid showing the factors on the number of PCNs

Regarding the number of PCNs, approximately 10% of the PCNs that are immediately generated are

removed afterwards. A common reason for this is that a visitor pays the parking fee but registers the

wrong license plate and therefore receives a PCN. After a complaint, these PCNs will be deleted and

therefore not accounted with regards to the KPI targets. Within this research, we only consider the number

correctly issued PCNs.

As stated in Section 1.2, EPS tries to increase the control chance in order to eventually increase the

payment rate and show the municipality that the enforcement effort is at least high enough. The control

chance is supposed to indicate the fraction of non-paying visitors that are “caught” and issued a PCN.

However, the municipality, and consequently also EPS, computes the control chance (c) by dividing the

number of correctly issued PCNs in a KPI area by the estimated number of not-paid-for visitor parking

hours. Consequently, this means that the control chance is not a probability. More accurately, we should

call it the average number of PCNs per not-paid-for visitor parking hour. This could be improved by

dividing the number of not-paid-for visitor hours by the average parking duration of non-paying visitors.

However, since this is the way the performance is measured by the municipality and EPS, we continue

explaining how this number is estimated. For this purpose, the municipality uses the payment rate (p).

First, they estimate the total number of visitor parking hours by dividing the paid-for visitor parking

hours, which can be retrieved from the PRDB, by the payment rate:

Visitor parking hours =
𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑝
.

In order to estimate the number of not-paid-for parking hours, they subtract the paid-for visitor parking

hours from the total number of visitor parking hours:

𝑛𝑜𝑡 𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 =

𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑝
− 𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 =

(
1

𝑝
− 1) ∗ 𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 .

Finally, the formula of the control chance (c) is:

c =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐶𝑁𝑠

(
1

𝑝
−1) ∗ 𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

.

The measured payment rate, the control chance target (𝑐𝑡𝑎𝑟𝑔𝑒𝑡), and the paid-for visitor parking hours can

be inserted in the formula. By doing so, the number of PCNs needed in every KPI area for the 3 month of

the KPI period can be estimated. This number is called the PCN target:

Number of
PCNs

Number of visitors

Number of scans

Number of parking spots

Master thesis – Jan Groeneveld

11

 PCN target = ctarget ∗ (
1

p
− 1) ∗ paid for visitor parking hours.

Since the PCN target is always derived from the control chance target, we always refer to the PCN target

and the payment rate whenever we speak about KPI targets further in this research.

There is one major problem with regards to the KPI targets, namely the fluctuation of the payment rate

and the paid-for visitor parking hours. Both can be estimated but a false estimation can lead to not

achieving the PCN target. Every KPI period, the municipality measures the payment rate by taking random

samples to check whether the target is reached. The size of the samples and when and where they are

taken is unknown. Consequently, EPS has the problem that they do not know which payment rate the

municipality finally uses to measure their performance. This makes it difficult to set a fixed PCN target.

The good thing is that EPS can estimate the payment rate based on a large number of recent scans,

namely all scans of their daily planned routes. As the daily planned routes are not planned randomly, one

can say that they use non-random samples but with large sample sizes to represent the entire population

of the KPI areas. The paid-for visitor parking hours are based on historic data saved in the PRDB. We will

tackle the uncertainty problem of the payment rate and the paid-for visitor hours in Chapter 4.

Considering the KPI targets, a KPI area can have one of the three following statuses:

 Malus – None of the targets is reached. In this case there is a fine for the difference between the

control chance target and the actual performance since the effort of EPS is not big enough.

 Neutral – The PCN target is reached and the payment rate measured by the municipality does not

exceed the

 Bonus – The payment rate measured by the municipality exceeds the payment rate target.

Note that EPS only receives a bonus for a KPI area if none of the KPI areas has a malus status. In this

regard, it is important to remember that due to the uncertainty of the KPI targets it is possible that they

turn out to be lower than expected at the end of the KPI period (further discussed in Chapter 4). Finally, as

already mentioned in Section 1.2, the objective of the routing follows a certain order of priority:

1. Meet either the payment rate target or the PCN target (respectively the control chance) of every

KPI area (bring all KPI areas at least to a neutral status).

2. Maximize the PCN target in chosen KPI areas in order to eventually increase the payment rate and

maximize the performance bonus.

3. Visit every neighborhood once a week.

The order of these priorities must not be interpreted as a sequence of actions, i.e., first we only act on the

first priority, then on the second, and finally on the third. All priorities should rather be taken into account

at all times. Even though the third point of the priority list (“visit every neighborhood once a week”) is only

a soft constraint, it is important to visit all neighborhoods in order to collect data. Otherwise, the

following scenario might happen:

KPI area A consists of 5 neighborhoods A1, A2, A3, A4, and A5. The daily measured payment rate of KPI

area A is below the required payment target. Consequently, the PEVs have to scan this area to reach the

PCN target. If the PEV drivers know that it is likely that they can issue a lot of PCNs in the neighborhoods

A1 and A2, they will probably drive there, in order to reach the PCN target faster. If they keep doing this,

they create blind spots because they do not scan neighborhoods A3, A4, and A5 anymore. Hence, they do

not collect data of the payment rate in these neighborhoods. These blind spots are dangerous since they

lead to a misconception of average payment rate of the entire KPI area. If the municipality measures the

payment rate only in one of these “blind spot neighborhoods” (A3, A4, A5), it might happen that the

payment rate that is measured by the municipality is actually lower than expected. Considering the

formula of the PCN target, this target increases with a lower payment rate. In the end, this could lead to

EPS not meeting neither of the KPI targets.

In this section, we briefly explain how EPS currently manages the planning of the PEV routes.

EPS determines the staff scheduling for one year. Normally, they deploy around 12 PEVs from Monday to

Saturday and less on Sundays. For one shift with 12 PEVs, they usually need 28 people: 12 driving the

PEVs, 12 driving the PEFs, and 4 operating as off-street agents. For the night shift, EPS usually schedules

only one PEV. If they know that there will be a shortage of drivers in the next two week, they can hire

extra drivers from an external company.

EPS needs to determine the tasks of the staff and the routes of the PEVs for the following day on a daily

basis. The PEV routes are based on recent scan results. Every day, EPS receives the results regarding the

scans, PCNs, and payment rate of the previous day. Furthermore, they receive how many paid-for parking

Master thesis – Jan Groeneveld

12

hours there have been in the previous week (Tuesday till Monday) every Tuesday. As described in Section

2.1.8, they use all this recent data to estimate both KPI targets of the current KPI period. EPS adjusts the

PCN targets every day such that they know many PCNs they should have issued until the day of the

planning. For instance, if they estimated that the PCN target of KPI area A is 900 at the end of the KPI

period, which is day 90, then they would have required 400 if today was day 40. This means that they

assume in this planning that every day they can issue the same number of PCNs. Every day, they plan the

routes for the next day as follows:

1. The results of the past two days are analyzed.

2. They check whether all drivers are available for the next day. Reasons for not being available are

holidays, illness, or appointments.

3. The availability of the PEVs and PEFs is checked. Sometimes they are unavailable due to

maintenance or damage.

4. They determine the routes by assigning the PEV drivers to certain neighborhoods that they should

visit between the breaks. The routes are based on the analysis of the last days, the results of the

KPI targets, and their priority order as discussed in Section 2.1.8.

Even though the planning is done one day in advance, it can still happen that employees are suddenly

unavailable the following day. In this case, employees who were initially scheduled to operate as an off-

street agent need to drive a PEV, to ensure that the capacity of the PEVs is efficiently used.

We conclude from the current situation that there are several inputs needed for routing algorithm.

 KPI targets: Every 3 months the fixed KPI targets for the payment rate and control chance

(respectively PCN target) are changed. The PCN target is recomputed every day to ensure that it

contains the most recent data.

 Available capacity: In this project, the capacity depends on the availability of PEVs, PEFs, and

shifts. On the one hand, this includes daily information concerning the available staff and

equipment. On the other hand, this includes a staff roster, which is set a priori.

 Restrictions: We have several restrictions, such as the parking regime of the neighborhoods, the

shifts and break times of the drivers. Also, the drivers must return in the end to the depot and for

their two breaks, they have to go to one of the three break locations.

 The expected number of PCNs: We want to know how many PCNs can be expected when a specific

neighborhood is scanned at a certain time.

 Service time: The service time is the time needed to scan a neighborhood at a certain time.

 Travel times: In order to calculate the time needed for every route, we need to calculate the travel

time from one neighborhood to another at a certain time.

Regarding all these inputs, the three inputs service times, travel times, and future PCNs have yet to be

established. Since we have historical data available of all scans made since 1.1.2016, we can use this data

to develop inputs that can be used for the routing algorithm. In should be taken into account that the

travel and service time both depend on the travel speed and consequently on traffic congestion. The

expected number of PCNs is more complicated, as it involves more factors and probably not all of them

are measured in the current data set, such as weather circumstances. Regarding the expected number of

PCN, the question how long visitors that already received a PCN remain at the same parking spots, needs

to be answered. Furthermore, we have to solve the problem concerning the uncertainty of the PCN targets.

The development of all these inputs is the scope of Chapter 4. The objective and the design of the routing

algorithm are discussed in Chapter 5.

Master thesis – Jan Groeneveld

13

This chapter presents the findings of our literature research. Section 3.1 discusses similar routing

problems in the literature and Section 3.2 possible solution approaches. Furthermore, Section 3.3

contains information about speed models, prediction models, and factors that influence parking and

payment behavior.

In this section, we review the literature regarding our problem such that we can define the problem and

find solution approaches for it. In our literature research, we only found one article that deals with the

routing of parking enforcement (searching method is shown in Appendix A). Summerfield, Dror, and

Cohen (2015) state that the problem of designing an online parking enforcement algorithm that

maximizes the revenue collection has not yet been introduced to their knowledge. Summerfield et al.

(2015) model the task of designing parking permit inspection routes as a revenue collecting Chinese

Postman Problem. The original Chinese Postman Problem (CPP) aims to find the shortest route for a

postman with the requirement that the postman covers every street (denoted as edge or arc) at least once

(Gendreau & Laporte, 1994) and returns to the start location. In the problem of Summerfield et al (2015),

every edge has certain weights. Since not every edge has to be traversed, it is the goal to maximize the

total amount. We also know that in Portugal a research group is working on a similar problem with

weighted arcs in the parking enforcement. Considering this problem as an arc routing problem (such as

the CPP) with weighted arcs is a logical approach in most countries, as they plan routes for walking agents

going through streets (similar to the postman). In this research, however, we consider the neighborhoods

within a city and therefore our problem focusses on nodes (also denoted as vertices). Nevertheless, for

future studies, this (weighted) arc routing problem might be interesting. For instance, once the routing of

all neighborhoods is done, algorithms to solve the CPP could create the route within a neighborhood. To

this end, we can use different variations like:

 Open CPP: postman does not return to the original destination (Thimbleby, 2003).

 Windy or directed CPP: edges are directed, meaning that it matters in which direction you are

traversing the street (Eiselt, Gendrau & Laporte, 1994).

 Mixed CPP: edges can be both directed and undirected (Wang, Yan, Hollister & Zhu, 2008).

 Multiple CPP: Multiple postmen have to traverse each street once such that every street has only

one postman assigned to it, except for the starting street (Zhang, 2011).

If we only considered one car in one neighborhood, the problem would be an undirected CPP and

therefore solvable in polynomial time (Gendreau & Laporte, 1994). This is interesting because in the

future, one might want to plan also the routes within the scheduled neighborhood. Since the problem is

then solvable in polynomial time, this could probably be implemented as an online application

A well-known problem that does consider the optimal route planning of nodes is the Travel Salesman

Problem (TSP). The TSP deals with a salesperson that has to travel to every given city exactly once and

return to the starting city. As for the CPP, it is the objective to minimize the total travel distance (Graham,

Joshi & Pizlo, 2000). Unlike the CPP, the TSP has to visit once every node (in this case: neighborhoods)

instead of every edge (e.g., streets). As for the CPP, there is also a multiple version of the TSP, the mTSP,

where every node has to be visited once by one salesman (Bektas, 2005). The mTSP seems to be a better

fit as we have to schedule multiple vehicles. Again, there are a lot of different variations defined for the

TSP and mTSP. The most widely studied generalization is the vehicle routing problem (VRP) in which the

car has limited capacity and has to deliver goods to the customer at the nodes (Braekers, Ramaekers &

Van Nieuwenhuyse, 2016). Braekers et al. (2016, p.304) state that the VRP is one of the most widely

studied topics in Operations Research and also present a list with different characteristics of the VRP that

were most often reviewed in the last years:

 Capacitated vehicles

 Heterogeneous vehicles

 Time windows

 Backhauls

 Multiple depots

 Recourse allowed

 Multi-period time horizon

 Precedence and coupling constraints

Master thesis – Jan Groeneveld

14

 Subset covering constraints

 Split deliveries allowed

 Stochastic demands

 Unknown demands

 Time-dependent travel times

 Stochastic travel times

 Unknown travel times

 Dynamic requests

Unfortunately, these variations are still focused on minimizing the travel time and number of vehicles,

whereas we strive to maximize the number of PCNs in every neighborhood. However, these variations are

still relevant because we also have to deal, for instance, with time-dependent travel times and multiple

depots (break locations).

Another interesting variation of the VRP is the milk collection problem. Claassen and Hendriks (2007)

modeled the milk collection problem as a periodical VRP (PVRP). PVRP considers a planning period of T

days instead of a single day. Therefore, clients are not necessarily visited every day. The demand of

customers can be different for every customer at every day and the frequency of visits can be different for

every customer. They do not minimize the travel time but minimize the weighted sum of deviations on

demand level. Our problem is also a periodic problem (if we choose to make a planning for the whole KPI

period) and the neighborhoods can be visited more than once during the KPI period. However, in our case,

one neighborhood can even be visited more than once a day. Even though the milk collection problem

comes closer to the problem of this research, this problem deals with capacity, which we can neglect.

Moreover, minimizing the deviation of demand and maximizing the number of PCNs are not quite the

same. Nevertheless, some parts of this article might be useful.

Another generalization of the TSP, namely the Traveling Salesman Problem with Profit (TSPwP), seems to

be a better fit. Feillet, Dejax, and Gendreau (2005, p.189) discuss three different variations:

1. Both objectives, profit and travel costs, are combined in the objective function; the aim is to find a

circuit tour that minimizes travel costs minus collected profit

2. The travel cost objective is stated as a constraint; the aim is to find a circuit tour that maximizes

collected profit such that travel costs do not exceed a preset value.

3. The profit objective is stated as a constraint: the aim is to find a circuit that minimizes travel

costs and whose collected profit is not smaller than a preset value.

As we want to maximize the amount of PCNs and we are restricted by the length of a shift, we choose the

second option which they call the orienteering problem (OP). Furthermore, they state that the OP can be

found in the literature under different names such as selective TSP (STSP) or the maximum collection

problem (MCP). However, Feillet et al. (2005) explains that the OP and MCP differs from these as the OP is

generally defined as a path rather than a circuit. However, by “adding a dummy arc from the destination to

the origin of the paths makes the two problems equivalent” (Feillet et al., 2005, p.189). Even though the

route has to finish at one particular depot, there are three locations (including the depot) where a break

can be held. Therefore, it might be better to consider the problem including different break locations as

separate paths instead of one circuit tour. For example, a circuit tour that starts and finishes at the depot

(point A) and that includes two breaks, one at point B and one at point C, could be described as three

paths (A->B, B->C, and C->A). Note that in our problem the break location should be chosen while

constructing the route. As for TSP, there is a multiple-variant of the OP or MCP called the team

orienteering problem (TOP) (Chao et al., 1996) or the multiple tour maximum collection problem (MTMCP)

(Butt & Ryan, 1997). In the literature, we find the following applications:

 Scheduling maintenance technicians problem (Tang, Miller-Hooks & Tomastik, 2007)

 Tourist route planning problem (Gavalas et al., 2015; Vansteenwegen et al., 2009a;

Vansteenwegen et al., 2009b; Vansteenwegen et al., 2009c)

 Bank robber problem (Awerbuch, Azar, Blum & Vempala, 1998)

 Home fuel delivery problem (Tang & Hooks, 2005)

 Athlete recruiting problem (Tang & Hooks, 2005)

Verbeeck et al. (2014b) present some generalizations of the TOP that include time windows and time-

dependent (and/or stochastic) rewards, travel times, and services times. Considering the mathematical

structure, the OP has a set of vertices, which are connected by edges. In order to travel these edges a

certain travel time is needed. Unlike the TSP, time is limited and therefore it is the goal to visit a selected

set of vertices in such a way that the total collected score is maximized (Verbeek, Aghezzaf &

Vansteenwegen, 2014). Usually, the vertices in the OP are visited at most once (Vansteenwegen et al.,

2011). In our problem, we do not have this constraint since the PEVs may go to the same neighborhoods

Master thesis – Jan Groeneveld

15

multiple times a day. The usual OP “is a combination of the knapsack problem (KP) and the traveling

salesperson problem” (Verbeeck, Sörensen & Aghezzaf, 2014a). The knapsack problem maximizes an

objective function by choosing items subject to a packing constraint (Hochbaum, 1995). That mean it is a

combination of the selection of nodes and the determination of the sequence of these selected nodes.

Since we do not have the constraint that a node is only chosen at most once a day, we have an additional

scheduling problem because it is also required to determine the number of times a selected node is

visited a day. Furthermore, in case that a node is visited multiple times a day, the reward that can be

obtained during a visit depends on the time-difference to the earlier visit, hence the rewards are inter-

related. The reason behind this is that one visitor can receive at most one PCN a day, therefore the

expected reward at a node decreases after it has been visited. In addition, we consider time-dependent

service times, travel times, and rewards and a periodical planning. Due to different parking regime times

of the neighborhoods, we also have to take different time windows into account. As mentioned before in

this section, our problem also requires visiting three possible break locations and therefore it is also a

kind of multi-depot problem. Finally, we call this generalization the time-dependent and periodical TOP

with multiple visits and multiple constraints, which we denote as the TD-PTOPMVMC. To the best of our

knowledge, such a generalization is not discussed in the literature. Especially, the TOP with multiple visits

are an interesting contribution to the literature, as it could have different applications, such as various

inspection, collection, or salesmen problems. The problem could be further extended to a Mixed TOP

(Vansteenwegen, Souffria & Van Oudheusden, 2011) that includes also the number of PCNs that are

generated while traveling from one neighborhood to another.

Regarding the running time complexity, the TSP and VRP are known to be NP-hard. As stated before, in

order to solve the TOP, not only the determination of the route is required but also the selection of the

subset of nodes that will be visited. Because of this added element of complexity, it follows that the TOP

is also NP-hard (Butt & Ryan, 1999). With another added element of complexity due to the multiple visits,

the same holds logically for the TOPMV. The additional impact of breaks on the running time is discussed

by Kok, Hans, Schutten, and Zijm (2010). They state that if the number of existing entries without breaks

was O(np), the total number of entries with at most one break scheduled would be O(n2p). Analogously,

considering 4 breaks would result in the running time complexity of O(n5p). This leads to the question

whether this problem is solvable by an exact algorithm. It is known that exact algorithms can only solve

NP-hard problems with relatively small instances and that heuristic are the more reliable approach in

practical instances (Cordeau, Gendreau, Hertz, Laporte & Sormany, 2004). An exact algorithm to solve the

TOP, using column generation, has been published by Butt and Ryan (1999). They were able to solve

problems with up to 100 vertices and stated that the “solution procedure works well on realistic size

problems, particularly when the number of nodes visited in any tour is relatively small” (Butt & Ryan,

1999, p.440). In their case, the average number of nodes per tour for 100 nodes was 3. In our case, we

have 320 neighborhoods with probably more than 20 nodes per tour, a time-period of 90 days and

multiple breaks at different break locations. Intuitively, it seems unlikely that an exact algorithm can solve

this problem in reasonable time. Besides, an exact solution cannot be executed in practice as it is unlikely

that they always arrive at the scheduled neighborhood in time. Consequently, we choose to apply heuristic

algorithms, which are discussed in the Section 3.2.

As stated in 3.1 we are looking for a heuristic approach to solve our problem. This section first introduces

the basic principles of routing heuristics in Section 3.2.1 and then presents literature dealing with solving

TOP or MTMCP as our generalization is not yet introduced to the literature.

Cardeau et al. (2005) state that VRP heuristics usually combine some of the following four components:

1. Constructive heuristics

2. Improvement heuristics

3. Population mechanisms

4. Learning mechanisms

Except for the capacity constraint, the TOP is strongly related to the VRP and therefore we can apply the

same heuristics and mechanisms. To this end, we briefly introduce the concepts of these four components

before presenting heuristics that have been proven to be effective for TOP problems.

Constructive heuristics, as the name implies, construct an initial solution. Often, improvement heuristics

are then applied to find better solutions than the initial solution. The combination does not necessarily

mean that one improvement heuristic is applied on one constructed solution. It is also possible to use one

or more improvement procedures on one or more solutions. Improvement heuristics can be divided into

Master thesis – Jan Groeneveld

16

(local optimum) heuristics and metaheuristics. The local optimum heuristics function in a descent mode

until a local optimum (maximum or minimum) is reached. Metaheuristics, on the other hand, work in such

a way that they try to avoid being trapped in a local optimum. Therefore, these heuristics sometimes

accept worse or even infeasible solutions. Three well-known metaheuristics are tabu search, simulated

annealing (SA), and variable neighborhood search (VNS), which will also be discussed in Section 3.2.2. SA

is inspired from annealing in metallurgy and therefore works with cooling parameters. While exploring

more and more solutions, these cooling parameters decrease the probability of accepting worse solutions.

The tabu search always chooses the best neighbor that is not on the tabu list and adds this neighbor to

the tabu list. The tabu list usually has a limited length and deletes the oldest ones from the list. Since the

tabu list prohibits going back to old solutions, the tabu search avoids getting stuck in local optima, and is

therefore a metaheuristic. In the VNS, introduced by Mlandenovic and Hansen (1997), the neighborhood

structure is able to change while exploring solutions. These heuristics are often combined with each other

or other heuristics.

Another kind of heuristics is population-based, which belong to the class of evolutionary algorithms (EA).

The widest known population-based algorithm is the genetic algorithm (GA). The classical GA is a

metaheuristic that operates on a population of solutions called chromosomes or individuals. In each

iteration (generation), the following operations are applied k times (Cardeau et al., 2005; Kumar et al.,

2005):

1. Select two parent chromosomes

2. Use crossover operators to generate two offspring from these parents

3. Apply a random mutation to each offspring with a small probability

4. Remove the 2k worst elements of the population and replace them with the 2k offspring

The idea of combining solutions to generate new ones is also used in the adaptive memory procedure

(AMP), which was introduced by Rochat and Taillard (1995). The only difference is that they can generate

new solutions from more than two parents (Golden et al., 1997).

Learning mechanisms are heuristics that are inspired by different learning paradigms in the world. For

instance, neural network models, which are inspired by the way how the brain works. Another example

are ant colonization optimization (ACO), which belong to the ant colonization optimization algorithms.

The ACO algorithms are inspired by the way ants collect food. Ants use trails of pheromone to mark their

travel paths. As time passes, the best paths will have the strongest trail since more and more ants are

using these paths.

A lot of different heuristics have been introduced to solve different variations of OP, MTMCP, TOP,

MTMCP, and the selective traveling salesman problem (STSP). In this section, we describe the most

important ones. Gendreau, Laporte & Semet (1998) describe some difficulties when applying heuristic

approaches to the OP. They state that “profits and distances are independent and a good solution with

respect to one criterion is often unsatisfactory with respect to the other” (Gendreau et al., 1998, p.540).

This makes it hard to accurately select nodes. Furthermore, Vansteenwegen (2009a) indicates that the

most difficult OP instances to solve are those where the selected number of nodes is a little more than

half of the total number of nodes. According to Vansteenwegen et al. (2011), the best-performing TOP

algorithms are discussed in Tang and Miller-Hooks (2005), Archetti et al. (2007), Ke et al. (2008),

Vansteenwegen et al. (2009c), and Souffriau et al. (2010). The computational results of these algorithms

are shown in Table 2.

Table 2 – Summary of the best-performing TOP algorithms (Vansteenwegen et al., 2011, p.5)

Master thesis – Jan Groeneveld

17

Concerning these articles, Vansteenwegen (2009b) argues that the local search moves used in these TOP

solutions are not effective when applied to TOPTW because they include local search moves that become

useless when time windows are considered. In our case the time windows are quite the same except for

the evenings and Sundays (see Table 1 in Section 2.1.5), therefore this is not a problem. On the other

hand, all the travel time, service time, and expected number of PCNs are time-dependent and that means

that by applying local search techniques, such as swapping, we need to calculate the whole route again

and have to take into account that no time restrictions are violated. Moreover, as explained in Section

2.1.3, visiting a neighborhood has influences on other visits of the neighborhood if they are on the same

day. Therefore, local search moves will be difficult to implement but we do consider these algorithms as

well (except for the article of Archetti et al. (2007) because is not accessible for us) to get a broader

impression of possible solution heuristics.

Vansteenwegen et al. (2011) state that there are four articles published in the literature that deal with the

TOP with time windows. We do not include the exact algorithm from Boussier et al. (2007) in our research

because we focus on heuristic approaches, as stated in Section 3.2.1. However, we add another

interesting article about a simulated annealing heuristic from Lin and Yu (2015). Therefore, we add the

following four articles to the four articles from Table 2:

 Montemanni & Gambardella (2009): An ACO algorithm for the hierarchical TOP with time windows

 Vansteenwegen et al. (2009b): Iterated local search heuristic for the TOP with time windows

 Tricoire et al. (2010): VNS algorithm for the multi-period OP with multiple time windows

 Lin & Yu (2015): Simulated annealing heuristic for the multi-constraint TOP with multiple time

windows

In the following, we discuss the algorithms of these eight articles.

Tang and Miller-Hooks (2005) apply a tabu search heuristic embedded in an AMP, which we introduced in

Section 3.2.1., to the TOP. However, instead of reviewing this article, we review the article from Tang,

Miller-Hooks & Tomastik (2007) because they use the same approach and extend the TOP by considering

time-dependency and a periodical planning, which fits better to our problem.

Tang et al. (2007) tackle the problem of scheduling technicians for planned maintenance. They consider a

planning period of 3 weeks and time-dependent rewards to better describe the reality. Greater rewards are

assigned to locations that have not been maintained for a longer time. The travel times between locations

and service times at every location are different but not time-dependent. Their approach includes three

AMP steps:

1. Partial solution generation and storage:

Partial solutions are defined as one single tour of the m tours. First, a set of partial solutions is

generated and stored. The first non-depot vertex is randomly chosen. Random vertices are added

in between a pair of vertices, which depends on a ratio with regards to the added tour duration

and the added reward.

2. Solutions construction:

Afterwards, solutions are constructed by combining partial solutions. The selection preference is

biased to those single tours with preferred objective values. All constructed solutions are

improved by tabu search afterwards. Both random and greedy procedures are applied in the

neighborhood solution exploration.

3. Partial solution update:

The solutions maintained in the adaptive memory are updated with these improvements. Low-

reward tours in the adaptive memory are replaced by the improved tours.

Montemanni and Gambardella (2009) apply an ACO heuristic to the team orienteering problem with time

windows. They define their problem as a hierarchical TOP, which requires the same input as the TOP does

but it requires a set of non-overlapping elementary paths, which have an ordered sequence of nodes

starting from node 1 and ending at node n.

The construction phase is performed by sending out all ants sequentially. Iteratively, every ant goes

probabilistically from node i to node j based on the pheromone trail and the desirability. The pheromone

Master thesis – Jan Groeneveld

18

trails contain the trails of previous ants that travelled there and indicate how good this path has been in

the past. The desirability is a formula regarding the associated profit, the distance, and the time window

of node j. The possible nodes for j are selected out of a set of feasible nodes, which still need to be visited

and are within the time window. Note that only the best ant, which collected the most rewards, is allowed

to leave a trail that is updated to all arcs. While the ant builds the solution, the pheromone trail is updated

as well. Each ant removes pheromone trails of the visited arcs to make sure that there is a variety of

generated solutions. Afterwards, the constructed solutions are being optimized by a local search

algorithm. They apply a CROSS exchange procedure that exchanges two sub-chains of customers of the

giant tour.

Ke et al. (2007) also apply ACO but to the regular TOP without any time-dependencies or time windows.

They state that sending the ants sequentially results in the best results. Furthermore, they performed a

benchmark of their algorithm with the one of the Archetti and Tang et al. (2005) with the result that the

quality of their solution could compete with the others but with a much faster computational time. The

results can be seen in Appendix B. Another interesting aspect of their approach is that in their heuristic

function they include the angle at neighborhood i between the way to the depot n and the next

neighborhood j. By doing so, the algorithm can send the driver in the desired direction. First leaving the

depot and then forcing the driver more towards the depot.

Verbeeck et al. (2014a) apply ACO to a TOP with time-dependent travel times. They speed up the time-

dependent insertion procedure by using a local evaluation metric. Verbeeck et al. (2014b) tackle the TOP

with time-windows and time-dependent and stochastic rewards and time-dependent travel times by using

a greedy randomized adaptive search procedure and a stochastic version of the ACO.

Lin and Yu (2015) apply an SA heuristic, which we briefly introduced in Section 3.2.1., for the multi-

constraint TOP with multiple time windows. Their heuristic starts by creating a random initial solution.

Afterwards, the initial solution is optimized by means of SA including a swap, insertion, or inversion

procedure in every iteration. Additionally, they add a restart strategy as an extra diversification to avoid

local optima. They state that sometimes accepting worse solutions is not enough to escape the local

optima. The current temperature, which determines the probability of accepting worse solutions,

decreases after every iteration. The algorithm restarts if the current best solution has not improved for a

pre-determined number of consecutive temperature decreases. Once the algorithm restarts, the current

temperature is reset to the initial temperature and a new initial solution is generated randomly to initiate

a new SA run. They show that SA with a restart strategy is a promising heuristic method to solve multi-

constraint TOP with multiple time windows and that the restart strategy enhances the performance of the

SA.

Tricoire, Romauch, Doerner and Hartl (2010) deal with a multi-periodic TOP with multiple time windows

and use a VNS. Before applying the VNS, they first construct solutions. To this end, they use the best

insertion heuristic. The insertion heuristic is based on two criteria. One is the lowest increase in distance

and the other one the lowest increase in time. The feasibility of the insertions is checked by means of an

exact feasibility algorithm, which operates in polynomial time. Afterwards, VNS is applied to improve the

initial solution. A stopping condition can be a limit on computational time, the number of iterations, or

the number of iterations without improvement. They apply the number of iterations as a stopping

criterion. For every iteration of the VNS algorithm, an improvement method that depends on the number

of iterations, that have been performed already (iteration 1-8: cross-exchange, iteration 9-12: optional

exchange, iteration 13-17: optional exchange), uses random nodes to create a new solution. If the new

solution is better, it replaces the initial solution. In a benchmark, they show that their VNS algorithm is a

viable option for all kind of orienteering problems, with or without time windows.

Souffria et al. (2010) use a path relinking metaheuristic in combination with a greedy randomized

adaptive search procedure because path relinking heuristics have been proved to work well on knapsack

problems. Their approach works as follows:

Master thesis – Jan Groeneveld

19

While the number of iterations without improvement is not exceeded:

1. Construct: The construction heuristic is based on a greedy randomized adaptive search

procedure. This procedure depends on a “greediness” parameter that lies between 0 and 1. This

parameter indicates the level between randomness (0) and greediness (1). The parameter is

determined randomly before the construction.

2. Local search: The local search algorithm uses 2-Opt, swap, replace and insert procedures until a

local optimum is reached.

3. Link to elites: This procedure combines the solution, that was constructed and improved in the

prior two phases, with one of the solutions out of the elite pool. The two solutions are first

combined, then adapted, and finally improved to create a new feasible solution. This procedure is

done for all possible combinations, therefore for all members of the pool of elites.

4. Update elite pool: The best solution found in the prior step is considered for the insertion into the

pool of elite solutions. If the pool is full, it replaces the worst elite solution if it leads to an

improvement. Every solution is assigned to an age and it increases with every time the “Link to

elites” is performed. At a certain age, the solution is deleted from the pool.

Vansteenwegen et al. (2009b) apply an iterated local search heuristic algorithm to the TOPTW with the

purpose of developing an electric tour guide. The electric tour guide required a short computation time

and therefore they chose an algorithm that is very simple, fast, and effective. They achieved this goal with

an average performance gap of 1.8% to the best-known solutions and the average computation time is

more than a 100 times faster than the best-known solutions. Gavalas et al. (2014, p.19) state that it is “the

fastest known algorithm proposed for the TOPTW”. Their approach includes an insert step in combination

with a shaking step to escape from local optima that perform performs very well on a large and diverse

set of the instance.

The insertion step adds one by one new visits to a tour. Before a new visit can be added, the time windows

need to be checked for feasibility. A feasible node with the cheapest insertion time will be inserted. For

each node, a ratio is calculated that incorporates the profit and the delay of adding this node. Afterwards,

a shake step is used to escape from local optima. In this shake step, random node(s) are removed in every

tour to make space for nodes that might improve the solution.

This section addresses the development of the three inputs: scanning time, travel time, and the number of

PCNs. As scanning time and travel time both depend on speed, Section 3.3.1 is about speed models. The

number of PCNs is more complicated because some factors are yet to be determined and finally we have

to analyze the impact of all factors. Therefore, Section 3.3.2 discusses possible factors from the literature,

and Section 3.3.3 presents data analysis tools and prediction models.

As described in Chapter 2, a speed model, which also accounts for traffic congestion, is required for the

estimation of the service time and travel time.

Kok, Hans and Schutten (2012) used a speed model to calculate travel times of a VRP. In order to avoid

traffic congestion, they use time-dependent travel times as an input for their VRP. They state that peak

hours depend on location and time of the day, therefore “traffic congestion avoidance is all about not

being at the wrong place at the wrong time” (Kok et al., 2012, p.1). Therefore, their speed model accounts

for traffic congestion depending on time and location. They introduce four different strategies regarding

the calculations of the shortest paths and finally the travel times of the VRP as can be seen in the

following Table 3.

Table 3 – Travel time strategies by Kok et al. (2012)

Master thesis – Jan Groeneveld

20

Their results have proven that accounting for traffic congestion leads to more reliable travel times in

terms of punctuality at the customer locations. They also indicate that avoiding traffic congestion leads to

improved routes in terms of traveled time.

In our case, we do not have to calculate the shortest path because we can make use of an existing

distance matrix. Nevertheless, we can use this model by making the travel times of the TOP time-

dependent to avoid the traffic congestion in Amsterdam. However, we do not consider such a big network

as in the research of Kok et al. (2012) and therefore it is questionable if it is necessary for us to let the

traffic congestion depend on different locations within Amsterdam. An alternative model was introduced

by Verbeeck et al. (2014a) who also use a time-dependent speed model but their model accounts for

different arc categories:

 Always busy

 Morning peak

 Two peaks a day

 Evening peak

 Seldom traveled

Assigning every arc to such a category might be useful for our problem as well.

This section discusses what the literature provides about factors that have a possible impact on the

number of PCNs. In Section 2.1.8, we concluded that the number of PCNs can be derived from the number

of visitors and the payment rate and that the number of visitors can also be derived from the occupancy

ratio of the parking spots and the visitor ratio of all scans. Since it is also possible to visit a neighborhood

more than once during a day, it is interesting to know how long visitors, who do not pay, stay at the same

parking spot. To this end, we investigate what is written in literate about parking and payment behavior.

As already mentioned in Section 1.1.3, Peliot (2004) states that the choice whether to pay for parking

depends on the amount of the fine, the risk of getting caught, and the regular parking costs. We already

consider the control chance and therefore the risk of getting caught. As discussed in Section 1.2, the

amount of the fine consists of a fixed amount plus one-hour parking fee. Both the fee and the fine cannot

be changed. However, it might be interesting to investigate if differences of the parking fee in different

neighborhoods influence the payment behavior.

Summerfield et al. (2015), who consider the parking enforcement problem as a CPP, use two probabilities

in their model. The first is a Bernoulli distribution that indicates whether a car is parked in a parking

space. For the Bernoulli distribution, they experiment with occupancy ratios of the parking space from

90% until 100%. Lower occupancy ratios decrease the revenue of a route. However, with these lower

occupancy ratios the parking enforcement agents could actually finish their routes earlier as they did not

have to investigate 100% of the parking spots. This does not apply to our case due to the fact that the PEV

passes the parking spots regardless of whether the parking spot is occupied or not. The second

distribution Summerfield et al. (2015) use is a triangle distribution that represents the distribution of the

time between the parking of a car and the return of its owner. They assume that everybody is a visitor

that pays but not everybody returns in time to their car. The authors use parking permit times between 30

and 120 minutes and a memory of the parking enforcement agent. There are two memory options:

1. Wait on-site for parked cars that are about to expire

2. Go back to the parked cars that were about to expire

This memory option is not relevant for us, as the PEV driver does not know when the parked cars are

about to expire because they just scan the license plates and have no immediate access to the PRDB,

which contains the payment information.

Aikoh, Abe, Kohsaka, Iwata, and Shoji (2012) investigate the factors influencing visitors going to suburban

open space areas near a northern Japanese city. Even though visitors going to suburban spaces is not

quite the same as going to Amsterdam or another big city, their results are quite interesting for us. They

used a multiple regression analysis to analyze social factors and meteorological factors, such as:

 Day of the week and holidays

 School vacation

 Rain, Snow

 Temperature

 Weather conditions at the departure site

 Weather forecasts

Master thesis – Jan Groeneveld

21

They state that the day of the week and holidays have the biggest influence on the number of visitors.

Moreover, the results seem to depend on the season of the year. For instance, higher temperatures

increase the number of visitors in the green season but they have an opposite effect in the snow season

as they expect snow in the snow season. Their results also show that not only the weather but also the

weather forecast affects the number of visitors in the summer. Furthermore, school vacations, rain at

departure site and depth of snow influenced the number of visitors in the winter.

Probably some of these factors also play a role in the number of visitors of Amsterdam. However, not all

people who visit Amsterdam are actual visitors in a touristic sense but also business people. Probably the

number of business people does not depend that much on seasons and the weather as it is the case for

tourists. It could be that their number is affected by economic growth or special business events.

This section deals with how to make a prediction model from available data. First of all, it is important to

understand the data set. In the field of prediction models, we have a matrix representing a data set. This

matrix consists of several columns representing either a feature or an output. The rows are filled with

observations that provide information about the features, the output, and more importantly their relation

to each other. Features can be either quantitative or qualitative (Jain, Murty & Flynn, 1999):

 Quantitative features

 Continuous values (e.g., weight)

 Discrete values (e.g., the number of computers)

 Interval values (e.g., the duration of an event)

 Qualitative features

 Nominal or unordered (e.g., color)

 Ordinal (e.g., qualitative evaluations of temperature (“cool” or “hot”))

An output can also be quantitative or qualitative. In our case, we have quantitative outputs because we

want to know the number of visitors and the probability that they pay for a given space and time period.

To this end, we discuss different prediction models for quantitative outputs later in this section but first

we address the field of the clustering analysis.

A clustering analysis helps to better understand a data set by investigating its observations and

establishing certain patterns. A pattern can be a represented as a multidimensional vector or a point in a

multidimensional space that measures an output (Jain, Murty & Flynn, 1999). For instance, looking at the

number of traffic jams in a big city and the hour of the day, one could probably find patterns that show an

increase in the morning and afternoon. Xu and Wunsch (2005) state that it is essential to classify the

observations of the data into a set of categories or clusters. Clustering analysis is an unsupervised

(unlabeled) classification, i.e. the names of the clusters are unknown. The objective of clustering analysis

is to group a given collection of unlabeled patterns into meaningful clusters.

Xu and Wunsch (2005) divide clustering algorithms into four tasks.

1. Feature selection:

Sometimes the data needs some kind of transformation. Even simple transformations “can yield

significantly improved clustering results” (Jain, Murty & Flynn, 1999, p.7). Furthermore, it is not

necessary to use all available features. The feature selection is the process of selecting the most

effective subset of original features in order to reduce the number of dimensions. By doing so, the

results of the clustering and the pattern representation can be improved. A well-known method of

feature selection is the primary component analysis (PCA), also called the Karhunen-Loeve

transformation. The objective of the PCA is to select only the most important features that say the

most about the variance of the data set. By not considering the other features in the data analysis,

the dimensions of the data set are reduced.

2. Clustering algorithm:

The next step is applying a clustering algorithm in order to cluster the data. There are several

different algorithms due to the fact that there are many different types of data. These algorithms

format clusters by using proximity measures and constructing a criterion function. We consider

especially the algorithms that deal with clustering of time series and geographical clustering.

Anderson (2009) use kernel density estimation and K-means clustering for clustering road

Master thesis – Jan Groeneveld

22

accident hotspots. Liao (2005) discusses relocation clustering, agglomerative hierarchical

clustering, K-means, fuzzy c-means, and self-organizing maps for clustering time series.

3. Validation of clusters:

After clustering, we can validate whether these clusters are appropriate. The assessments should

be objective without having preferences for any algorithm or outcome.

4. Results interpretation:

The ultimate goal of clustering is to provide users with meaningful insights from the original data.

Xu and Wunsch (2005) present these steps in a figure (Figure 6). All steps are inter-related due to

feedback pathways.

Figure 6 – Clustering analysis procedure (Xu & Wunsch, 2005)

We can use these steps as a framework for our data analysis.

A common way to develop prediction models for quantitative outputs are regression models (Larsen &

Marx, 2012). Regressions models analyze the effect of the independent variables, also called predictors or

features, on the outcome variable. A regression analysis can include one (simple regression) or more

predictors (multiple regression). The relationship between predictors and the outcome variable can be

linear, curvilinear, or nonlinear. For the prediction of probabilities, logistic regressions can be applied. For

numerical outputs usually a (multiple) linear regression or nonlinear regression is used.

There are also machine learning techniques that are using regression models such as artificial neural

networks. These networks are inspired by the architecture of biological neural networks (Mair et al.,

2000). Every network consists of neurons which are interconnected by strings. A neuron receives an input

which is associated with a weight. If the sum of these weighted inputs exceed a certain threshold, the

neuron fires and creates a positive or

negative output for other neurons in

the network. This process stops when

one or more outputs are generated.

An example of this process is shown

in Figure 7. This example shows n

inputs. If the threshold is exceeded,

the output becomes 1, otherwise, it is

0. If an output is incorrect, a process

called backpropagation starts. In this

process, the output is corrected by

adjusting the weights. In this way, the

networks learn from a data set.

Sarkar, Ghalia, Wu, and Bose (2009) applied a neural network to predict fiber diameters by using different

inputs. In this case they use a multilayer network as proposed by White (1992). A multilayer network has

hidden layers between the original input and the final output variable(s). These hidden layers are

functions that use the previous inputs to create an intermediate output node, which can be used as an

input for another hidden layer or for the final output variable. Within one hidden layer there can be many

layer nodes. It is also hard to tell how many layers and nodes a neural network should have because in the

end the neural network determines what happens in the layer nodes within the layer. Sarkar et al. (2009)

Figure 7 – An example of a neural network (Mair et al., 2000)

Master thesis – Jan Groeneveld

23

determine the number of nodes and layers by conducting experiments. The results were 12 nodes in the

first hidden layer and 7 nodes in the second one. The final neural network can be seen in Figure 8.

Figure 8 – An applied neural network with hidden layers (Sarkar et al., 2009)

Le Cun et al. (2012) have some recommendation for applying a neural network. For instance, shuffling the

data set helps the network to learn faster from unexpected samples (LeCun et al. 2012) and normalization

of the presented input data can also increase the learning process. It is well-known that, the data set

should be split into a training set and a test set, in order to avoid overfitting, i.e., the neural network

learns too much from the data set in a sense that it also learns from outliers and noise instead of creating

a general applicable prediction model. Furthermore, White (1992) and LeCun et al. (2012) state the use of

too many parameters and too many layers can also lead to overfitting.

Another prediction model is introduced by Van Urk, Mes and Hans (2013). They use a prediction model for

an application, which is quite similar to our planning tool, namely the development of a decision support

application for the Dutch Aviation Police and Air Support unit for routing their helicopters in anticipation

of unknown future incidents. Their research is similar as it involves a forecasting method and a routing

method that maximizes the likelihood of being close to a future crime. Even though parking violation and

crime are not quite the same, the principle can be applied here as well. The second part of their research

also deals with a kind of TOP but they combine it with a Location Covering Problem (LCP), as the

helicopters have to cover certain areas to intervene quickly in case of emergencies. For us, the LCP is not

relevant, as we do not deal with that kind of emergencies. More interesting, however, is the first part

regarding the forecasting. In order to predict future crime intensity, they use a forecast based on the

moment of the day, days of the week, and months of the year, which have an impact on the crime rates.

They convert every past incident in order to use this information for future predictions. To this effect, they

use two conversion factors, namely the FactorMonth (month, hour) and the FactorWeekday (weekday,

hour). Additionally, they apply generalization techniques because they assume that an incident at one

specific location and time is similar to the neighboring areas and some time periods around the incident.

Analogously, they apply this for the time dimension. This model with some modifications can be used for

this research as well. The incidents can be replaced by the number of PCNs and it would be required to

check whether the generalization also applies in our case. A similar approach is discussed in the master

thesis of van Hal (2015). In this research, the forecasting method is based on the fact that the relative

distribution of incidents regarding the Netherlands does not depend on time. For that reason, the

forecasting method is split into a time problem, which is solved by linear regression with different time-

related factors, and a space problem, which is solved by means of the kernel density method.

This chapter discussed a number of articles that tackle a similar routing problem. We defined our problem

as a team orienteering problem with a periodic planning horizon, time windows, and time-dependent

(and/or stochastic) travel times, service times, and rewards. This problem is in the literature also known

as the scheduling maintenance technicians’ problem, tourist route planning problem, bank robber

problem, home fuel delivery problem, and athlete recruiting problem.

Moreover, we concluded that we use a heuristic approach due to the problem’s complexity (NP-hard) and

the incapability of finding an exact solution. We discussed different algorithms that can be used to solve

such a problem:

 Tabu search embedded in an adaptive memory procedure

 Ant colonization optimization

 Simulated annealing

 Variable neighborhood search

Master thesis – Jan Groeneveld

24

 Path relinking heuristic with a greedy randomized adaptive search procedure

 Iterated local search heuristic

Furthermore, we addressed the topic of input models. We learned from other articles that including time-

dependency in speed models improves the routing problem in such a way that the reliability and the travel

time are increased. Looking for factors that might influence the number of PCNs, we found that the

number of visitors seems to depend on time and meteorological circumstances. The payment rate is

described as a portfolio model in which the visitors assess the costs of the fee versus the costs of getting

a fine, and the probability of getting a fine.

In order to actually analyze the data with regards to these factors, we presented a clustering framework.

Finally, we discussed different options to predict the expected number of PCNs, such as regression

models, neural networks, and two other forecasting models that were applied to similar problems.

Master thesis – Jan Groeneveld

25

The objective of this chapter is to compute the necessary inputs that are needed for our routing

algorithm. For all inputs that are time-dependent, we apply interpolation to make predictions across

different time periods. We have access to a database that contains information (such as time, GPS

location, and whether it was a PCN) of all parked cars that were scanned by EPS between the beginning of

2016 and today. As part of a prior analysis, ARS has computed travel times, service times, and expected

number of PCNs for their own routing algorithm. We use these inputs to compare them to our approach.

Also, ARS encountered some challenges due to gaps in the data.

Section 4.1 discusses the quality of the source data and examines ways to cope with it which are further

elaborated in the subsequent sections. Section 4.2 tackles the question of the size of the error margin

with regards to the KPI targets, which has been discussed in Section 2.1.8. In Section 4.3, we present our

prediction of the expected number of PCNs. Section 4.4 explains how the travel times are computed.

Lastly, Section 4.5 discusses our approach to estimate the service times.

In this section, we discuss the challenges that ARS already had encountered of using historical data to

predict future results. One of these challenges is that PEV drivers did not always scan all parking spots of

the assigned neighborhoods in the past. We denote the scanning of a neighborhood also a visit. Since it is

the intention to make predictions about the future number of PCNs of visits, in which all parking spots are

scanned, it is difficult to make predictions based on visits, in which only a fraction of the neighborhood is

scanned. Let us say that on a random day, we have the following information of a visit of one

neighborhood:

 200 parking spots

 100 scans

 4 PCNs

 Service time of 10 minutes

While these figures precisely indicate that 4 PCN’s were issued, we cannot conclude that the total number

of potential PCNs in that neighborhood was since we do not know if all parking spaces of the

neighborhood have been scanned. This applies equally for the service time and the apparent occupancy

ratio. If the neighborhood was actually fully scanned, then the occupancy ratio would be 50%. This could

be a realistic value for some neighborhoods, but for busy areas, such as “Centrum”, this is very unlikely. In

conclusion, we cannot derive from the data to what extend the neighborhood has been scanned. This

problem could be handled in a better way if the occupancy ratio of the neighborhood was known. Let us

assume that the occupancy ratio was 80% in that neighborhood at that time. With this information, we can

estimate that 160 parking spaces should have been scanned, meaning that only 62.5% (100 scans/160

expected scans) of the neighborhood were scanned. This information enables us to extrapolate the

number of PCNs and the service time by multiplying them with 1.60 (160/100). This is the approach that

ARS used with the assumption that the occupancy ratio of all neighborhoods is 80% at any time. The

problem with this approach is that this assumption is not based on data but on the expert opinion of EPS.

Moreover, an extrapolation is not a perfect solution in this case, as the fractions of the neighborhood

differ from each other. For instance, if the PEV driver only scans one shopping street of a neighborhood,

which is attractive in terms of the number of PCNS, it will result in an overestimation of the number of

PCNs of that neighborhood due to the extrapolation.

In this section, we calculate a margin of error for the two KPI targets: the payment rate target and the PCN

target. As already stated in Section 2.1.8, EPS has the problem that both KPI targets depend on uncertain

variables. Therefore, we estimate in this section a margin of error for the payment rate in Section 4.2.1

and the PCN target in Section 4.2.2.

The problem of the payment rate is that EPS performance regarding this target is based on the payment

rate measurements of the municipality. The measurements of the municipality are similar to the scanning

process of EPS. And while it is known that the municipality’s sample size is much smaller than one of EPS,

which reduces the accuracy, the time and place of these measurements are unknown. Yet, these

Master thesis – Jan Groeneveld

26

measurements are used to conclude on the payment rate for the whole KPI period of that KPI area. Since

EPS scans a lot of parked cars during the KPI period, with a generally good geographical distribution, they

have a good estimation of the actual payment rate of every KPI area. However, it might happen that the

relatively small sample of the municipality is taken in a neighborhood that is considered to be an outlier at

that time. An example from the past is a summer day when a lot of people went swimming in a

neighborhood, where the parking meter was broken. Therefore, there were more visitors than normal, and

also they did not pay in large part which caused the payment rate measured by the municipality to be very

much lower than expected. Or conversely, EPS overestimated the payment target that the municipality

would derive and met neither of the KPI targets in that KPI period. Even though these extreme cases can

hardly be consistently prevented, we want to account for this uncertainty. We achieve this by increasing

the payment rate target by a margin of error. The method with which we determine the margin of error is

described below.

As said, EPS scans a large number of parked cars in all KPI areas with a good distribution over time and

location. Therefore, we assume that the measurement of EPS represents the true value of the payment rate

for all KPI areas. This payment rate is denoted as p. The payment rate of the municipality’s sample is

denoted as X/n, where n is the sample size and X is the number of paying visitors within this sample. In

the following, we want to determine the margin of error, which is the half width of the confidence interval

d. For this purpose, we use a reliability (denoted as 𝛼) of 95%. The size of d should be big enough that we

can conclude that the payment rate of the municipality’s sample is higher than the true value of payment

rate minus the margin of error d, therefore: 𝑝 − 𝑑 ≤
X

n
.

Since the distribution of the payment rate is the probability that visitors of a certain sample pay, we can

apply a binomial distribution. Larsen and Marx (2012) describe the binomial distribution with the

following formula:

P (−d ≤
X

n
− 𝑝 ≤ 𝑑) = 1 − 𝛼 .

In order to determine d, we can use their formula for estimating the sample size n and solve it for d:

𝑛 =
𝑍𝛼/2

2

4𝑑2 𝑑 =
𝑍𝛼/2

2√𝑛
,

where 𝑍𝛼

2

 is the value of the standard normal distribution function for which 𝑃(𝑍 ≥ 𝑧𝛼

2

) =
𝛼

2
 . Even though

the sample size is unknown beforehand, we do know the sample sizes of three quartiles in 2016. We use

the minimal value instead of the average value of the three samples as our sample size n because we

rather have a margin of error that is too big than too small. With this formula, we are able to say that if d

is, for instance, 2% and the payment rate measured by EPS is 90%, it will mean that with a reliability of 95%

the payment rate of the sample measured by the municipality is at least 88%. The results of the margin of

error for all KPI areas are presented in Table 4.

KPI area
Minimal sample (n) Margin of error of the payment rate target (d)

Centrum 3,581 1.64%

Nieuw-West 1,763 2.33%

Noord 1,054 3.02%

Oost-1 1,288 2.73%

Oost-2 2,148 2.11%

West-1 1,982 2.20%

West-2 2,227 2.08%

Zuid-1 3,337 1.70%

Zuid-2 2,116 2.13%

Zuidoost 418 4.79%

Table 4 – Margin of error calculation

In Section 4.2.2, we determine also the margin of error of the PCN target.

Master thesis – Jan Groeneveld

27

Determining the upper bound for the PCN target is more complicated, as the PCN target depends on the

control chance target (c), the payment rate (p), and also the number of paid-for visitor hours (h). We

consider two different PCN targets. The first one is the basic PCN target that is the PCN target that EPS

uses today, which is based on the EPS’ estimation of payment rate p and the paid-for visitor hours h:

Basic PCN target = 𝑐 ∗ ℎ ∗ (
1

p
− 1) .

The second PCN target is the worst case and the upper bound of the PCN target that copes with the

uncertainty of the municipality’s payment rate and the paid-for visitor hours. To this end, we have to

consider the case that the municipality’s payment rate has the lowest value and the paid-for visitor hours

has the highest value that we would expect. The number of paid-for visitor hours that EPS uses is the

same that the municipality uses. However, the exact number of paid-for visitor hours are unknown until

the end of the KPI period. But since weekly updates of the paid-for visitor hours are available, EPS uses

these to predict the total paid-for visitor hours of the entire period. Unfortunately, we do not have access

to this data. Therefore, we assume that the number of paid-for visitor hours is at most 10% higher than

expected. We choose such a high number, which leads to a 10% increase of the basic PCN target, in order

to rather overestimate than underestimate this variability. It is important that this percentage will be

replaced on the long-term by a variability that is derived from data. As determined in Section 4.2.1, the

minimal value of the municipality’s payment rate is the payment rate measured by EPS p minus the margin

of error d. By inserting the worst case values for h and p in the basic PCN target, we compute the upper

bound of the PCN target as follows:

PCN target upper bound = 𝑐 ∗ 1.1ℎ ∗ (
1

p−d
− 1) .

Now, we would like to express the upper bound of the PCN target in terms of the basic PCN target.

Therefore, we introduce two variables that increase the basic PCN target. The first one is 𝑢𝑝 and increases

the basic PCN target due to the uncertainty of the payment rate. The second one is 𝑢𝑝 and increases the

basic PCN target due to the uncertainty of the paid-for visitor hours (𝑢ℎ). Finally, our objective is to

compute the PCN target upper bound as follows:

PCN target upper bound = Basic PCN target ∗ 𝑢ℎ ∗ 𝑢𝑝.

Since the PCN target increases linearly with h, 𝑢ℎ is equal to 1.1. In order to compute 𝑢𝑝, we form the

following equation by inserting the previous two formulas in the last one:

ℎ ∗ 𝑐 ∗ (
1

𝑝
− 1) ∗ 1.1 ∗ 𝑢𝑝 = 𝑐 ∗ 1.1ℎ ∗ (

1

𝑝+𝑑
− 1).

Solving this equation leads to:

𝑢𝑝 =
(1−𝑝−𝑑)∗𝑝

(𝑝+𝑑)∗(1−𝑝)
.

As we have now determined the two values of the variables 𝑢ℎ and 𝑢𝑝, we can multiply these with the basic

PCN target in order to compute the upper bound of the PCN target.

This section describes our approach on how to predict the expected number of PCNs, which is the number

of PCNs that will be generated if one should scan a full neighborhood at specific times in the future. In

this research, we use the terms forecast and prediction model interchangeably. As stated in Section 2.1.8,

we want to predict the expected number of PCNs for a future visit to a neighborhood by multiplying the

Master thesis – Jan Groeneveld

28

number of parking spots by our predictions of the occupancy ratio, the visitor ratio, and the non-paying

ratio. The product of the visitor ratio and the non-paying ratio is equal to the PCN ratio. This approach

solves the problem of not knowing to what extent the neighborhoods have been visited. Additionally, the

different ratios can be replaced easily. This can be useful if in the future new ratios will be computed due

to more or better data. Moreover, we include the parking regime, which was already retrieved by ARS, in

our forecast by setting the PCN ratio of the parking hours without a fiscal parking regime to 0.

In Section 4.3.1, we first analyze the data of historic scans with regards to the visitor ratio and non-paying

ratio. Section 4.3.2 presents our prediction model of the PCN ratio, including the visitor ratio and non-

paying ratio, and Section 4.3.3 our estimation of the occupancy ratio. Finally, Section 4.3.4 tackles the

question how long the visitors that receive a PCN stay in the same neighborhood.

For the purpose of the data analysis, we collect scan data of one year between 1.6.2016 and 1.6.2017. At

the time of this analysis, this period encompasses the most recent source data available, and a one year

period is considered sufficient for taking into account seasonal trends. Moreover, we prefer the recent

data because it is more reliable due to the fact that there have been some organizational changes.

We choose to aggregate the scan data for every hour of the year and every neighborhood, as we want to

look for certain patterns regarding the neighborhoods, hours, weekdays, weeks, month, and the weather.

For every hour in a neighborhood, we retrieve the number of scans, visitors, and PCNs in order to derive

the visitor ratio, the non-paying ratio, and the PCN ratio. We start by analyzing the ratios with regards to

different time dimensions. Figure 9 shows the behavior of the ratios with regards to the week of the year.

Figure 9 – Week diagram of visitor, non-paying, and PCN ratio

From Figure 9, we observe one big increase of the non-paying ratio at the end of the year 2016, probably

due to Christmas and New Year. We cannot distinguish clear patterns in terms of seasons or months from

this figure. However, we can clearly see that the non-paying ratio and the PCN ratio are decreasing over

time. That means that more and more visitors are paying for their parking. This is an interesting

observation. As EPS regularly adapts its current strategies to increase enforcement output, this effect

could be due to changes in their enforcement approach. In Figure 10, we look at whether we can see if

there is a relationship between the efforts of EPS and the payment rate. We consider the KPI area

“Centrum” as it has the most scan data available. Figure 10 shows the average payment rate per week and

the effort of EPS in terms of the absolute number of scans.

Master thesis – Jan Groeneveld

29

Figure 10 – Number of scans, number of PCNs, and average payment rate per week in “Centrum”

In line what we have seen in Figure 9, the payment rate is increasing with time. Probably the payment rate

does not increase linearly as it converges towards 100%. However, Figure 10 shows the linear increase of

the payment rate in order to give us an impression to what extent the payment rate increased during that

year every week. It appears that the payment rate is increased by 0.02% (absolute number) every week.

Moreover, Figure 10 shows that the number of scans and number of tickets increases every week. In

Figure 10, we see that some peaks of the payment rate and the number of scans seem to be askew and

others seem to be aligned. Consequently, although we determine that the enforcement efforts and

payment rate both increase, we cannot conclude that there is a causal relation between the two metrics.

As a next step, we want to have a look at a smaller time dimension. Figure 11 shows how the different

ratios behave for the different hours of a day.

Figure 11 – Hour diagram of visitor, non-paying, and PCN ratio

We clearly see that the visitor ratio and the non-paying ratio depend quite heavily on the hour of the day.

In the night there are less visitors, however, relatively more visitors do not pay for parking. Note that the

scans at night can only be measured in a few neighborhoods of the KPI area “Centrum”. It seems that in

the noon there are the most visitors with a slightly increasing non-paying ratio. Even though the number

is smaller, we see that there is an impact of the hour on the PCN ratio as is varies between approximately

0.6% and 1.8%.

Master thesis – Jan Groeneveld

30

Figure 12 shows the influence of the weekday. It appears that the ratios are quite the same within the

week from Monday to Friday. The visitor ratio does not change a lot, however, on Saturday the visitor ratio

seems to be lower. In the weekend, more visitors do not pay, which leads to a peak of the PCN ratio on

Sunday (day 1) as the visitor ratio is also relatively high.

Figure 12 – Weekday diagram of visitor, non-paying, and PCN ratio

Now, we want to investigate if we see the same patterns when combining the hour of the day and the

weekday. This is presented in Figure 13.

Figure 13 – Weekday and hour diagram of visitor, non-paying, and PCN ratio

We clearly see that the patterns during the week regarding the hour of the day stay the same during

weekdays, but are different on Saturday and Sunday. Especially on Sunday in the morning around 10.00,

there is an extreme peak of the visitor ratio and therefore also of the PCN ratio. According to the parking

regime times, there are only three neighborhoods that have paid parking before 12.00 on Sundays and

therefore the few numbers of scans in this neighborhood have a strong impact on this diagram. Next to

the fact that there are only a few scans, we assume that most visitors do not know that there is a parking

regime at that time or they know that this area is usually not scanned at that time. Moreover, the

Saturdays miss the usual visitor peak around noon. Finally, we conclude that the hour pattern that we

observed in Figure 11 stays more or less the same during the week and are different on Saturday and

Sundays. Therefore, we derive the following time clusters, which we use for some parts of this analysis

and in Section 4.3.2.

Master thesis – Jan Groeneveld

31

Day periods:

 Morning (9.00-11.00)

 Noon (11.00-15.00)

 Afternoon (15.00-17.00)

 Evening (17.00-21.00)

 Late evening (21.00-0.00)

 Night (0.00-4.00)

These periods are especially derived from the behavior of the PCN ratio in Figure 11. Even though the

noon and afternoon could be considered as one cluster, we divide into two because although the PCN

ratio remains more or less the same, the visitor ratio is decreasing and the non-paying ratio is increasing.

Week periods:

 During the week (Monday-Friday)

 Saturday

 Sunday

After having analyzed the time dependency, let us consider the spatial impact. First let us have a look at

the absolute numbers of scans and PCNs to get an impression where EPS scans the most and where the

most PCNs are obtained. Figure 14 shows a heat map that highlights the regions with the most scans and

most PCNs in Amsterdam.

Number of scans Number of PCNs

Figure 14 – Heat maps of the absolute numbers of scans and PCNs between 1.6.2016 and 1.6.2017

We see that the most scans have been especially in the center of the map. This is due to fact that not all

neighborhoods of Amsterdam have fiscal parking (see Figure 15).

Figure 15 – Fiscal parking spots in Amsterdam

We distinguish three hotspots that are highlighted in yellow. Interestingly, it appears that there are two of

these scanning hot spots are in line with the PCN hot spots that can be seen on the right of Figure 14, but

one which is not. It seems that the PCN ratio of the third scanning hot spot is lower. Therefore, we

continue our analysis by looking at the ratios of the neighborhoods instead. Figure 16 shows the hot

spots with regards to the visitor ratio, non-paying ratio, and PCN ratio.

Master thesis – Jan Groeneveld

32

Visitor ratio

Non-paying ratio

PCN ratio

Figure 16 – Heat maps of the average visitor, non-paying, and PCN ratio between 1.6.2016 and 1.6.2017

The PCN ratio hotspots that we see in the north of all maps in Figure 16 belong to the KPI area “Noord”

and are neighborhoods with only a few parking spaces and a few scans that have a strong impact on this

heat map. We see that there are less visitors paying in the center of the map. In combination with a

slightly higher visitor ratio in the west; this leads to higher PCN ratio in that area.

As Figure 16 does not include the time aspect, we created a new heat map that shows the behavior of the

PCN ratio regarding the different day periods. This heatmap is shown in Figure 17.

Master thesis – Jan Groeneveld

33

Morning (9.00-11.00) Noon (11.00-15.00)

Afternoon (15.00-17.00) Evening (17.00-21.00)

Late evening (21.00-0.00) Night (0.00-4.00)

Figure 17 – Heat maps of average PCN ratio for all neighborhoods in different time periods between

1.6.2016 and 1.6.2017

From Figure 17, we make the following observations:

 There are two hotspots in the north of the map that remain constantly until their parking regime

is over.

 In the morning, the PCN ratio is higher in the center of the map and then decreases over time.

 The noon, afternoon, and evening are for all neighborhoods more or less the same.

 The later it gets, the less neighborhoods are highlighted because a lot of neighborhoods do not

have a parking regime after 21.00.

Neglecting the two outliers in the north, which belong to the KPI area “Noord”, and the fact that the

neighborhoods have differing parking regimes, we conclude from Figure 17 that space and the hour of

the day are independent with regards to the hour patterns, which we observed before.

Let us now check whether this conclusion is correct by looking at the hourly patterns of the different KPI

areas. Figure 18 presents the impact of the hour on the ratios of all KPI areas except for “Noord”, which is

shown separately in Figure 19 due to its higher ratios. The night hours are excluded because only a few

neighborhoods in the KPI area “Centrum” have a parking regime at that time.

Master thesis – Jan Groeneveld

34

Figure 18 – KPI area (excluding “Noord”) and hour diagram of average visitor, non-paying, and PCN ratio

(between 9.00 and 24.00) between 1.6.2016 and 1.6.2017

Figure 19 – Hour diagram (between 9.00 and 24.00) of average visitor, non-paying, and PCN ratio for KPI

area “Noord” between 1.6.2016 and 1.6.2017

In Figure 18 and Figure 19, we see that KPI area “Noord” has generally a higher visitor ratio and also the

PCN ratio at any time. This explains why it was consistently highlighted in Figure 17. Moreover, we see

that in most KPI areas the non-paying ratio decreases after 9.00 a bit and then increases until the night.

This increase, however, is different for all areas. Whereas the increase of the non-paying ratio is merely

visible for KPI area “West-1”, the non-paying rate of “Nieuw-West” and “Noord” goes from 0.1 up to 0.2 and

therefore increases by roughly 100%. The visitor ratio behaves more or less the same for most KPI areas.

The visitor ratio has one or two peaks after each other around noon and then decreases towards the

night. Again “Nieuw-West” and “Noord” show a different behavior as they have another peak in the

evening. It seems that our conclusion is correct, except that not only the KPI area “Noord” but also “Nieuw-

West” behaves differently.

Let us now have a look at the weekdays. We exclude Sundays because on Sundays only some

neighborhoods of “Centrum” and “Zuidoost” have a parking regime. The ratios are shown in Figure 20. It

appears that “Nieuw-West”, “Noord”, “Oost-2”, “Zuid-2”, and “Zuidoost” have higher visitor ratios. This

could be explained by less parking decks in these KPI areas, which leads to more visitors on the street.

Another reason could be that these KPI areas lay further away from the center of Amsterdam and the KPI

areas in the center, such as “Centrum”, have generally more parking permits.

Master thesis – Jan Groeneveld

35

Figure 20 - KPI area and weekday diagram of visitor, non-paying, and PCN ratio

All KPI areas show an increase of the non-paying ratio towards Saturday. However, the KPI areas

“Zuidoost”, “Centrum”, “Nieuw-West” show the strongest increase. We consider these as two KPI clusters

because “Zuidoost” and “Centrum” have a Sunday parking regime. The visitor ratio seems to decrease on

Saturday except for “Noord”. In line with what we have observed seen in Figure 17, Figure 18, and Figure

20, consider “Noord” as a separate cluster. Finally, we conclude the following four KPI clusters with

regards to the behavior of the ratios.

 Noord

 Nieuw-West

 Zuidoost and centrum

 West-1, West-2, Zuid-1, Zuid-2, Oost-1, Oost-2

Even though these clusters provide insights about the general behavior of a KPI area, not all

neighborhoods within a KPI area behave the same. Since it is too time consuming to analyze the ratios of

every single neighborhood, we think of two methods to give more insights about the different

neighborhoods.

Find outliers within a KPI area

In this method, we look for neighborhood outliers and classify them in certain neighborhoods groups in

order to explain their behavior with additional explanatory variables. These neighborhoods groups are:

 Nightlife

 Shopping

 Industry

 Business

 Houses

 Sports

The classification can be done with the support of EPS for a limited number of neighborhoods. In order

find these outliers, we consider all neighborhood within a KPI area. Then, we write down the most

noticeable outliers with regards to the ratios that cannot be explained by a small number of scans. Figure

21 shows an example, where we consider the KPI area “Centrum” and the different numbers on the x-axis

show all neighborhoods that belong to “Centrum”.

Master thesis – Jan Groeneveld

36

Figure 21 - KPI area and neighborhood diagram of visitor, non-paying, and PCN ratio

In this figure, we visually derive the following PCN ratio outliers: 61, 71, 79, 93, and 201. Analogously, we

determine the outliers for all KPI areas. For all 10 KPI areas, we have found 43 neighborhoods that we

consider outliers. The results of EPS’ area classification of these 43 neighborhoods are: 6 in nightlife area,

7 in industrial area, 0 in business area, 17 in living area, 11 in shopping area, and 2 in an area with sport

fields. We use the classification of these outliers later in Section 4.3.2.

PCA and K-means clustering

In this method, we investigate whether there are neighborhood clusters that behave the same without

considering their location or the KPI area they belong to. With regards to the neighborhoods, we are

interested in four different behaviors:

1. The behavior of the average visitor ratio regarding the hour of the day.

2. The behavior of the average non-paying ratio regarding the hour of the day.

3. The behavior of the average visitor ratio regarding the day of the week.

4. The behavior of the average non-paying ratio regarding the day of the week.

We consider the different behaviors regarding the hours and weekdays and not at the day period and

weekday clusters that we distinguished before because now we want to see if there are neighborhoods

that behave differently regarding the different hours and weekdays. Since we analyze the neighborhoods

separately and not the average of all neighborhoods or one KPI area, it may happen that some

neighborhoods have only a little number of scans. Therefore, we rank the 320 neighborhoods with an

active parking regime by the number of scans, starting with the fewest. It appears that the first 11

neighborhoods have less than 362 scans within one year (1.6.2016-1.6.2017) and the 12
th

neighborhood

has 1557. We filter out the first 11 neighborhoods because we consider the number of scans too little in

order to make conclusions about a weekday or hour pattern.

Now, let us start with the behavior of the average visitor ratio regarding the hour of the day in order to

explain our approach. From our data, we can retrieve the average visitor ratio for every hour of the day for

every neighborhood. We exclude the night hours because only a few neighborhoods have a parking

regime at that time. Thus, a neighborhood’s behavior regarding the visitor ratio during the day can be

modelled as a vector that starts at with hour 0 (9.00-10.00) and ends with hour 14 (23.00-24.00). The

dimension of this vector is 1x15. Now, we want to compare all neighborhood vectors in order to see if

there are cluster groups that behave the same and whether there are outliers that behave differently. To

this end, we make use of the primary component analysis (PCA). The PCA is often used in statistics to

reduce the variables of a data set to a smaller set of variables called principal components (Daszykowski,

Master thesis – Jan Groeneveld

37

Kaczmarek, Vander Heyden & Walczak, 2007). The principal components, which define a new coordinate

system, are the outcome of maximizing the description of the data variance. The number of principal

components is determined before but “usually the first few PCNs are enough to represent the data

structure well” (Daszykowski et al., 2007, p.1). The PCA is often applied to combine correlated variables

such that in the end the data set only exists of uncorrelated variables. In our case, we choose to reduce

our data set to two principal components. This enables us to visualize the two-dimension data set in a

scatter plot. But we have to check whether this is enough to represent our data structure well enough.

The goal of this approach is to assign neighborhoods to certain clusters with regards to their four

behaviors, we mentioned earlier, or to define them as outliers. Figure 22 contains the coordinate system

that is created in the reduction of the PCA and a scatter plot that shows all neighborhoods whose visitor

ratio has a similar behavior regarding the hour of the day. The exact values of the x- and y- coordinates of

this scatter plot do not matter because they contain the values of the newly created coordinate system,

which do not provide additional nor useful insight for us.

Figure 22 – Scatter plot of the neighborhoods regarding the average visitor ratio of all neighborhoods for

every hour of the day with colors showing the results of the K-means clustering analysis

Figure 22 shows the neighborhood points in three different colors. These colors show three clusters,

which are created by the K-means clustering method. K-means clustering requires a data set and a pre-

determined number K (Anderson, 2009). The K-means clustering creates a number of so-called centroids

that is equal to K. These centroids are placed randomly in the scatterplot. Every point in the data set is

assigned to one of the centroids and takes the same color as the assigned centroid (in Figure 22: red,

blue, and green). Afterwards, the location of the centroids is improved iteratively in such a way that the

square of the Euclidian distance is minimized. A drawback of the K-means clustering is that it does not

necessarily find the best possible outcome because its result might be a local optimum. However, for this

purpose it serves well enough because we only want to find the obvious cluster that we see and can

manually change them if necessary. We experiment with the value for K until we have marked the clusters

that we visually derive from the scatter plot. Therefore, the number of different colors varies in the

following figures. In Figure 22, K is equal to 3 and it marks the 309 neighborhoods that we see in the

scatterplot. Figure 23 shows the original vector of the red centroid. The x-axis shows the hour of the day

starting with hour 0 (9.00-10.00) and ending with hour 14 (23.00-24.00). The y-axis shows the difference

between the value of the visitor ratio and the average of the day, such that 0 is the average of all

neighborhoods of a day. Due to this normalization, we see immediately whether the visitor ratio of the

neighborhood performs above or below its average in a certain hour.

Figure 23 - Diagram showing the hour vector of the visitor ratio of the blue centroid

From Figure 23, we conclude that all 272 neighborhoods (marked in red) behave similar to the vector

shown in Figure 23 and the rest do not. Since the cluster contains the majority of the neighborhoods, we

expect to see this behavior in the average visitor ratio of all neighborhoods, which was shown in Figure

11. And indeed, the behavior of the visitor ratios is very much the same. We consider that as a validation

Master thesis – Jan Groeneveld

38

for using two principal components because the majority of coordinates in our new created coordinate

system is able to represent the same effect that we have seen before. For that reason, we continue

applying this method to the visitor ratio regarding the weekdays and the non-paying ratio regarding the

hours and weekdays with different values for K varying between 2 and 6. The colors that are used are: red,

blue, green, yellow, grey, and black.

Figure 24 shows the scatterplot of average visitor ratio of all neighborhoods regarding the day of the

week in four colors. Concerning the weekdays, we do not consider Sundays because only a few

neighborhood have a parking regime then.

Figure 24 - Scatter plot of the neighborhoods regarding the average visitor ratio of all neighborhoods for

every day of the week

We define the red points with 287 neighborhoods as one cluster. Figure 25 shows the weekday vector of

the red cluster.

Figure 25 - Diagram showing the weekday vector of the visitor ratio of the red and blue centroid

Figure 26 shows the average non-paying ratio of all neighborhoods for every hour of the day in four

colors.

Figure 26 - Scatter plot of the neighborhoods regarding the average non-paying ratio of all neighborhoods

for every hour of the week

Master thesis – Jan Groeneveld

39

This time, we visually derive three noticeable clusters from Figure 26: red with 193 neighborhoods, blue

with 40 neighborhoods, and blue with green neighborhoods. The vectors of these clusters are shown in

Figure 27.

Figure 27 - Diagram showing the hour vector of the non-paying ratio of the red, green, and blue centroid

Finally, Figure 28 shows the average non-paying ratio of all neighborhoods for every day of the week in

five clusters.

Figure 28 - Scatter plot of the neighborhoods regarding the average non-paying ratio of all neighborhoods

for every day of the week

We define the red and yellow cluster to be one cluster, which has 247 neighborhoods, but we exclude the

red colored outlier at the bottom of the figure. Figure 29 shows the weekday vector of the red centroid

and yellow centroid.

Figure 29 - Diagram showing the weekday vector of the non-paying ratio of the red centroid and yellow

centroid

We have seen that the visitor ratio and non-paying ratio of the neighborhoods do not follow the same

behavior regarding the hour of the day the weekday. These results will be used later in Section 4.3.2.2.

Next to time and space, we analyze the impact of the weather in Amsterdam on the ratios. We retrieve the

weather data from the KNMI website (2017). Unfortunately, the weather data of the city of Amsterdam is

not available in this source. That is why, we use the weather data of the airport Schiphol, which is close to

Amsterdam. From the available data, we choose to analyze the average temperature, number of sun

hours, the precipitation hours, and the relative humidity of a day. Figure 30 shows the influence of the

temperature on the ratios.

Master thesis – Jan Groeneveld

40

Figure 30 - Temperature diagram of visitor, non-paying, and PCN ratio

Figure 31 shows how the ratios behave regarding the number of sun hours in a day.

Figure 31 – Sun hour diagram of visitor, non-paying, and PCN ratio

Figure 32 presents the impact of the number of precipitation hours in a day on the ratios.

Figure 32 – Precipitation hour diagram of visitor, non-paying, and PCN ratio

Figure 33 shows how the relative humidity of the day affects the ratios.

Master thesis – Jan Groeneveld

41

Figure 33 – Relative humidity diagram of visitor, non-paying, and PCN ratio

From these figures we cannot distinguish any patterns. One might expect that, for instance, people are

less willing to pay if it is raining but this is not the case.

In the next section, we use the results of data analysis for our prediction model.

This section describes our approach of predicting the PCN ratio. Section 4.3.2.1 discusses a naive

prediction) that serves as a benchmark model for our main prediction model that we present in Section

4.3.2.2.

This section develops a naive prediction (also denoted as Naive Forecast), which serves as a benchmark

for our prediction model introduced in Section 4.3.2.2. This benchmark model is directly derived from the

findings of our data analysis.

In the data analysis, we concluded that time and space is independent within four KPI areas clusters:

 Noord

 Nieuw-West

 Centrum, Zuidoost

 West-1, West-2, Zuid-1, Zuid-2, Oost-1, Oost-2

Within these clusters time and space are independent in a sense that the visitor and non-paying ratio

increase and decrease the same regarding the hours of a day and days of a week. Inspired by the work of

van Hal (2015), which we explained in Section 3.3.3.2, we make a naive forecast by using factors that are

based on time or location.

 Spatial factor:

o Neighborhood factor

 Time factors:

o Day period factor

o Week period factor

o Week factor

We multiply these different factors with a base PCN ratio of 1.485%, which is the average PCN ratio of all

scans between 01.06.2016 and 01.06.2017. We only consider the PCN ratio because in the end it is the

product of the non-paying ratio and the visitor ratio and in Section 4.3.1 we only regarded them

separately because we wanted to analyze the different behaviors of those two. The neighborhood factor

adjusts the PCN ratio regarding the different neighborhood (e.g. if neighborhood 20 is below average,

then the factor will be below 1). The day period factor adjusts the base line value regarding the day period

clusters (Morning, Noon, Afternoon, Evening, Late Evening, and Night). For instance, the value in the

morning would be above one because we expect the PCN ratio to be higher than average in the morning.

Master thesis – Jan Groeneveld

42

The week period factor does the same for week period clusters (During week, Saturday, and Sunday). The

week factor is different from the other factors. In Section 4.3.1, we did not see any noticeable clusters

regarding the weeks. However, we did see a time series effect, namely that the non-paying ratio decreases

over time. Therefore, the week factor can rather be considered as a week function, which decreases over

time. Finally, our naive forecast works as follows:

PCN ratio = Base PCN ratio * Neighborhood factor * Day period factor * Week period factor * Week factor

We compute the three time factors for all four KPI areas clusters that we distinguished in Section 4.3.1.

First, we compute the average PCN ratio for the different week periods and day periods. Afterwards, we

divide the values by their average (e.g. the PCN ratio of the weekday period “During Week” is divided by

the average of all week periods “During Week”, “Saturday”, and “Sunday”). The result is a factor that

indicates if the PCN ratio increases or decreases at that time in this KPI area. Table 5 shows the so-called

“week period factor” for all KPI areas and different week periods.

KPI areas Sunday Saturday During Week

Centrum and Zuidoost 1.389 1.211 0.863

Nieuw-West 0 1.198 0.964

Noord 2.476 1.095 0.762

West-1, West-2, Zuid-1, Zuid-2, Oost-1, Oost-2 4.287 1.071 0.987

Table 5 – The results of the week period factor for each KPI area cluster

The results of the hour clusters are shown in Table 6.

KPI areas Afternoon Evening Late Evening Morning Night Noon

Centrum and Zuidoost 1.161 1.025 0.677 1.032 1.079 1.257
Nieuw-West 0.997 1.233 2.120 0.962 0 0.902
Noord 1.085 1.114 2.484 0.739 0 0.963
West-1, West-2, Zuid-1,
Zuid-2, Oost-1, Oost-2 1.091 0.906 0.664 1.282 0 1.232

Table 6 - The results of the day period factor for each KPI area cluster

Likewise, we compute the neighborhood factor. The results are shown in Appendix C.

As we have seen in Section 4.3.1, the payment rate increased every week within the year between

01.06.2016 and 01.06.2017 with 0.02% (absolute number). Therefore, the week factor is equal to

0.9998x, where x is the difference in weeks between the current week and the starting week, which is the

first week of June 2016. Finally, let us consider an example. The PCN ratio of neighborhood 20 (in

“Centrum”) at 10.00 am on a Tuesday in the third week of June is equal to:

𝑃𝐶𝑁 𝑟𝑎𝑡𝑖𝑜 = 0.01485 (𝑏𝑎𝑠𝑒 𝑙𝑖𝑛𝑒 𝑃𝐶𝑁 𝑟𝑎𝑡𝑖𝑜) ∗ 1.083 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 0.863 (𝑤𝑒𝑒𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝑓𝑎𝑐𝑡𝑜𝑟)

∗ 1.032 (𝑑𝑎𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑓𝑎𝑐𝑡𝑜𝑟) ∗ 0.9996 (𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟: 0.9998 ∗ (3 − 1)) = 1.418%.

As our prediction model, we choose to apply a neural network model because neural network models are

very efficient in solving different regression models. Moreover, we can add the number of weeks and years

in order to include the fact that the non-paying ratio decreases over time. In addition, other techniques

have problems because there is no data available for some neighborhoods at certain times. Neural

networks perform well despite these gaps due to generalization as long as the data set is big enough.

Building a neural network requires different design choices. The different design choices and conclusions

that we made are discussed throughout this section.

As a loss function, we use the absolute mean error as it is easy to interpret. When training the data set

with the absolute mean error and the mean squared error in short trails, the absolute mean error

outperformed the mean squared error with regards to both error measurements. This is probably due to

the fact that the mean squared error has the disadvantage of weighing outliers too much. Other loss

functions also have the disadvantage that they do not allow 0 as an output or require a time series model.

Even though we have discussed that there is indeed a decrease of the non-paying ratio, our prediction

model is mainly a regression problem.

Master thesis – Jan Groeneveld

43

As a data set, we consider the same as we used for the data analysis. This data set contains all separate

hours that a neighborhood was scanned of one year (1.6.2016-1.6.2017). Initially, we had considered also

to separate the data into four different data sets for every KPI area but this decreases the performance of

the network; probably, because the individual data sets become too small.

In this data set, we filter out all hours that have less than 106 scans. The reasoning behind that is that we

only want to keep the ratios of the separate hours (visitor ratio, non-paying ratio, and the PCN ratio) that

have a margin of error of 0.05 and a confidence of 70% (the sample size formula is discussed in Section

4.2.1). If we choose a smaller margin of error or a higher confidence, the required number of scans will

increase. Since we still need enough data to train our model, we choose these values and consider them

acceptable to train the network. However, there is a problem with this number of scans because some

neighborhoods have only a few parking spots and consequently the visits there count only a few scans.

Due to this filtering out the hours with less than 106 scans, the entire neighborhoods disappear from the

data set. We trust that the generalization of the network, will cope with these gaps.

As mentioned in Section 3.3.3.2, LeCun et al. (2012) states that shuffling the data set helps because the

network learns faster from unexpected samples. Moreover, we do no use the full data set to train our

neural network because after training the model, we want to test the model. Therefore, we split up the

data into a training set (80%) and a test set (20%). Having a separate test data set, helps us to avoid

overfitting, i.e., the neural network learns too much from the data set in a sense that it also learns from

outliers and noise instead of creating a general applicable prediction model. The bigger the gap between

the performance of the training and test set, the bigger the problem of overfitting is because the network

cannot apply the model to unseen data. Due to the overfitting problem, we only consider the results of the

test set in order to compare our results.

Before introducing our inputs and outputs, we introduce the different normalizations that we used for the

inputs. The normalization of the variables speeds up the learning process of the neural network because

the variables are presented in a way that is easier to understand for the network. We use 3 different kinds

of normalizations:

 N1: Value – average of all values. This normalization returns the values in such a way that the

average is 0.

 N2: Value/average of all values. This normalization only works for positive values. Returns small

positives values, where the average is 1.

 N3: We apply a min max normalization for the week number. The week number is equal to: the

week number of the year + 52 * the number of the year (year 2016= 1, year 2017 = 2). By

applying a min max normalization, it returns a value between 0 and 1:

𝑊𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 – 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟
.

For our neural network, we include the average visitor ratio and non-paying ratio of the hour of the day

and day of the week. In that way, the network can learn from both of these ratios and we can apply our

neighborhood clusters based on the behavior of the two ratios regarding hours and weekdays (see Section

4.3.1). As we use these neighborhood clusters, we do not consider the KPI area clusters from Section

4.3.1. As output variables, we consider the following two options:

1. We predict the PCN ratio, which is the number of PCNs divided by the number of scans.

2. We predict the absolute number of PCNs and use the absolute number of scans as an input.

We choose the second as it leads to a better performance of the network. Moreover, we add the different

clusters that we observed in Section 4.3.1 by giving them a value of 0 or 1. Our final input set includes the

following variables, annotated with the normalization method that is applied:

 The average visitor ratio of the neighborhood (N2)

 The average non-paying ratio of the neighborhood (N2)

 The average visitor ratio of the week period (N2)

 The average non-paying ratio of the week period (N2)

 The average visitor ratio of the day period (N2)

 The average non-paying ratio of the day period(N2)

 The week number (N3)

 The number of scans (N2)

Master thesis – Jan Groeneveld

44

 Clusters:

o Morning (0,1)

o Noon (0,1)

o Afternoon (0,1)

o Evening (0,1)

o Late evening (0,1)

o Night (0,1)

o Weekday (0,1)

o Saturday (0,1)

o Sunday (0,1)

o The seven different neighborhoods clusters with regards to their behavior during the

different week periods and day periods (0,1)

o Night regime (0,1)

o Sunday regime (0,1)

During our experiments it appeared that the N2 normalization works slightly better than the N1

normalization. We also considered adding more variables but these variables did not improve of even

decrease the performance of the prediction results. In the end, we excluded the following variables:

 Neighborhood clusters (Nightlife, Shopping, Industry, Business, Houses, and Sports)

 KPI area clusters

 The average visitor ratio of the KPI area

 The average non-paying ratio of the KPI area

 The coordinates (in order to include an additional spatial factor)

The design of the network regarding the number of hidden layers and the nodes within a layer provides

infinitive possibilities. White (1992) and LeCun et al. (2012) state the use of too many parameters and too

many layers can lead to overfitting. And indeed, we experienced that using more than 2 hidden layers

leads to better results regarding the train data set but worse results regarding the test data set. Using one

hidden layer leads to slightly worse results than using two; consequently we use 2 hidden layers. The

number of nodes in the hidden layers is based on experiments; in the end we choose 120 and 70 hidden

nodes respectively for our two hidden layers.

The activation function of a layer determines the output of the hidden layers. The performance of the

activation function is based on the different input variables and the final desired output. After

experimenting with different activation functions, we use an activation function called “Rectified linear

units” because it shows the best performance for our data set. The definition of this function is: F(x) =

max(x, 0). In our case, it simply means that the output is equal to the input because we do not have

negative input variables.

As discussed in Section 4.3.2.2.3, the output of our neural network are the expected number of PCNs,

which we want to compute now for all neighborhoods, hours, weekdays, and week numbers.

While computing inputs for our routing algorithm with the proposed neural network, we notice some

strange values. On the one hand, we sometimes have negative outputs, which should not be possible as

the number of PCNs cannot be negative. On the other hand, we find extremely high outputs. Some of

them even exceed the number of scans, which is not possible. By taking a closer look at the negative

values, it seems that they occur whenever there is no parking regime since 98% of the cases happen

between 0.00 and 4.00 am, when most neighborhoods do not have a parking regime. As the algorithm

checks also for the parking regime times, these values would never be used and are therefore not an

issue. The extremely high numbers of PCNs that we found, however, are a problem. These outcomes

belong to neighborhoods that were not part of the training nor the test set, as we filtered out the hours

with less than 106 scans. We hoped that the generalization of the neural network would compute reliable

numbers anyways. Basheer and Hajmeer (2000) describe that it is good to have an evaluation set next to

the training and test set in order to see how well the generalization of the network works. In our case, this

could be done by taking some specific observations (e.g., a few neighborhoods or one specific hour) out

of the original data set. These excluded observations would form the evaluation set. Afterwards, the

remaining data set can be split into the test and training set. By doing so, the prediction model, which is

trained on the training set, can be tested for overfitting on the test set and its generalization capabilities

can be evaluated by means of the evaluation set.

Master thesis – Jan Groeneveld

45

If we would have done this, it might have been a better choice to keep some variables such as the GPS

coordinates in the network because of the additional spatial input, which helps the neural network if some

neighborhoods are unknown.

Finally, we decide to train the network again (without an evaluation set) with the PCN ratio as an output.

This leads to fewer strange values but still some negative values (due to the fact that there is no parking

regime) and some values still seem very high (but still within possible limits). Therefore, we keep this

network but replace all negative values with zeros. Further in this research, we denote this forecast as the

Neural Network A forecast. Also, we create a second version, which is denoted as the Neural Network B

forecast. This forecast is the same except that the PCN ratios of the unknown neighborhoods are replaced

by the PCN ratio of their neighbors.

In Section 2.1.8, we defined the occupancy ratio as the number of scanned vehicles divided by the number

of parking spots. With this ratio and the number of parking spots in a neighborhood, we can predict the

number of scans in a neighborhood. As explained in Section 4.1, due to the problem that in the past the

neighborhoods have not been scanned entirely, it is difficult to make predictions about the occupancy

ratio. If every neighborhood was visited entirely, we could divide the number of scans of a visit by the

number of parking spots to determine the occupancy ratio. Since this is not possible, we use an

approximation.

In the past, ARS has created a data set of all visits from 2016. From this data, we only consider those

visits, where the number of scans is more than 70% of the parking spaces of the neighborhood. By doing

so, we strive to exclude the visits when the neighborhood was not scanned fully. However, this approach

is biased because it could be that sometimes the occupancy ratio is actually below 70%. This would lead to

an overestimation of the occupancy ratio. Since ARS assumes in their algorithm that all neighborhoods

have an occupancy ratio of 80% and Amsterdam is a well-known crowded city, we choose the threshold of

70%. The average occupancy ratio and standard deviation for all KPI areas based on the remaining visits

are shown in Table 7. The standard deviation will be used later in Chapter 6.

KPI area Average Occupancy ratio
Standard deviation of
Occupancy ratio

Centrum 84.5% 1.60%

Nieuw-West 84.9% 1.81%

Oost-1 78.3% 0.86%

Oost-2 79.5% 1.04%

West-1 81.7% 1.03%

West-2 81.7% 1.14%

Zuid-1 81.4% 1.06%

Zuid-2 83.4% 1.15%

Noord 82.7% 1.33%

Zuidoost 82.7% 1.33%

Table 7 – Occupancy ratio of all KPI areas

In this table, we replaced the values for “Noord” and “Zuidoost” by the average ratio and standard

deviation of the whole data set because at first they had illogically high values due to much fewer scans.

Unlike the PCN ratio, we do not separate between different time intervals because this approach is only a

rough estimation and therefore it does not make sense to make it very precise. We see that these values

are close to the estimation of ARS as they have used 80% for all KPI areas. Since we assume that there are

differences between the KPI areas and that our approach is more accurate than the one of ARS, we choose

to use the results from Table 7 as the occupancy ratio.

Master thesis – Jan Groeneveld

46

This section tackles the question how long the non-paying parking visitors stay in a neighborhood. This is

an essential question in order to deal with the TOP with multiple visits. As explained in Section 2.1.3,

visitors can only receive a PCN once a day. If every non-paying visitor stayed at a neighborhood until the

end of the day, it would never make sense to return to a neighborhood the same day. Since this is not the

case, let us consider a more likely example:

We predict that in a certain neighborhood on a given day there are 6 non-paying visitors, respectively

PCNs, at 9.00 and 4 at 11.00. Based on this information, we would expect 10 PCNs by visiting the

neighborhood at 9.00 and 11.00. However, in reality it could happen that 3 of the 4 non-paying visitors at

11.00 have already been scanned at 9.00. Since they cannot receive a second PCN, the expected number

of PCNs at 11.00 would be 1 (and 7 of both visits). In this section, we explain our approach how to deal

with this problem.

It is logical that there is no data about the parking duration of non-paying visitors because visitors who do

not pay are not registered. On the other hand, in theory, there is data about the parking duration of

visitors that do pay. Next to the fact that the paid-for parking hours are not the same as actual parking

hours, it is very difficult to make predictions about the relationship between the parking duration of

paying and non-paying visitors. One might argue that non-paying visitors stay shorter because they do not

want to take the risk of getting a fine. On the other hand, some non-paying visitors probably do stay all

day because they estimate that the fine and the parking costs of a day a roughly the same. Anyhow, the

data of the paying visitors is saved in the PRDB (see Section 1.1.2), which is, unfortunately, not accessible

to us. Consequently, we have no data and therefore we develop a method, which we explain by using the

example from before.

First, we compute the number of non-paying visitor that overlap according to our prediction. In this

example, there are 6 visitors at 09.00 and 4 visitors at 11.00. The overlap in visitors between the two

hours is 4. This gives us an estimate of the number of non-paying visitors that potentially remain in the

neighborhood for this duration of 2 hours. However, we do not assume that 100% of these potential

visitors remain in this neighborhood. Therefore, we apply a percentage that is based on the time

difference between the two visits ∆𝑡, which is the difference of the finish time of the previous visit and the

start time of the new visit. The finish time is chosen because it gives us an indication when the

neighborhood was seen for the last time and we do not know in which sequence the streets within the

neighborhood are driven. If we would know that the sequence was always the same, then we would

consider the start time of the previous visit. Finally, our stability function is the following:

𝑆(∆𝑡) = (𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)∆𝑡 .

By performing experiments, we chose the Stability Parameter to be equal to 0.4. We explain the design of

this function and the choice of the Stability Parameter by means of Figure 34, which shows the

percentages of the remaining visitors and new visitors for ∆𝑡 between 0 and 5.

Figure 34 – Stability of the parking population for 5 hours with a Stability Parameter equal to 0.4.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

P
e

rc
e

n
ta

ge
 o

f
vi

si
to

rs

Hour difference to previous visit

Stability of parking population

Percentage of
remaining visitors

Percentage of new
visitors

Master thesis – Jan Groeneveld

47

With regards to Figure 34, it shows the effect that we aimed for. At the beginning the percentage of

remaining visitors if high such that it is not worth to visit the neighborhood again but after 2 hours the

neighborhood becomes more attractive again. This function was confirmed by the expert opinion of ARS.

Since the percentage of remaining visitors’ decreases exponentially over time, this means that the time

that these visitors arrive and leave actually depend on the last visit. We make the assumption here that the

visitors just arrived when the neighborhood was visited previously. Even though this is obviously not true,

we make this assumption in order to prevent that the same neighborhood is visited shortly afterwards.

Whenever data about the parking duration of the non-paying visitors (or at least paying visitors) is

available, this function can be derived by fitting the duration hours to a certain distribution (e.g. Normal

distribution). Since the probability that the visitors are still in the neighborhood at a certain time t can be

expressed as 𝑃(𝑋 ≥ 𝑡), this probability can computed by means of the cumulative function: 1 − 𝐹𝑋(𝑡).

This section explains our approach to determine the travel times between the neighborhoods and break

locations, which can be used in the routing algorithm.

As discussed in Section 2.1.4, we have 2 different types of GPS positions of the neighborhoods: the edge

points of the neighborhood in shape of a polygon and the center point, which is the center point of the

locations of all scans. To compute the travel times between 2 neighborhoods we have contemplated using

the closest edge points of the neighborhoods as start/end points. This approach is unfeasible because the

edge points may lie in areas that are not accessible by car, such as parks or water. Using such positions in

automated route finding would likely result in errors or inefficient routes that do not actually start from a

neighborhood edge. This problem almost never appears when using the center points.

This approach does have a downside that there is an overlap with the service time: the travel time includes

per definition only the time between the two assigned neighborhoods and our approach includes also the

time from the center point to the edge. And this occurs at both ends of the automatically calculated route.

The length of this redundant distance depends on the size of the neighborhood and the streets that the

PEV driver chooses and therefore it is not possible to compute exactly how big this redundant distance is.

After experimentation with the routing algorithm using this approach, it was found that a valid

approximation of the redundant distance depends on too many variables. Also, it was found that actual

travel times vary quite a bit. This, in combination with the usability aspect that a planning should be

achievable, we decide to keep the redundant distance. This creates reasonable “upper bounds” (w.r.t.

travel time) in the planning, so that the planning has extra buffer for unexpected delays, and the

enforcement team is not regularly confronted with a shift in which they could not achieve the planned

results.

As mentioned in Section 3.3.1, it is important to account for traffic congestion in order to have more

reliable travel times but also to avoid traffic congestion. By accounting for rush hours, we strive to have

shorter travel distances during the rush hours. Furthermore, the travel routes must not include highways

because the PEF drivers are not allowed to enter these with the scooter. This has two consequences. It can

happen that the PEF driver cannot do the follow-up work for all cars that he/she is assigned to or that the

cars are already gone by the time he/she gets there. Another benefit of not taking highways is that by

driving through the city, the PEVs can also scan cars while travelling. Because of limited time, we do not

further investigate how many PCNs can be expected for all the travelling routes, however, it is a nice

bonus to have. Moreover, we prefer to have directed speeds, as in the city of Amsterdam it does matter if

the PEVs are driving from the depot to “Centrum” or the other way around.

The travel times are calculated from/to the center points (see Section 2.1.4) of each neighborhood and

from/to the break locations. We have used the “HERE” database. For every 2-neighbourhood relation there

are four different travel times: a journey in each direction (A->B and B->A), and for both journeys one

during and one outside the rush hours. According to ANWB (2017), the time between 6.30-9.30 and

15.30-19.00 are considered to be rush hours in Amsterdam.

As stated in the introduction of this chapter, during the routing algorithm we apply interpolation when a

journey overlaps with more than one time period. For example, the PEV starts driving during the rush hour

at 9.20 and the travel time takes longer than 10 minutes. That means that the journey is within and

outside the rush hour. For this example, we would compute the travel time by means of interpolation:

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 = 10 𝑚𝑖𝑛 + 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑛𝑜 𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟) ∗
𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟) − 10 𝑚𝑖𝑛

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟)

Master thesis – Jan Groeneveld

48

The service time is the time that the PEV driver needs to scan one assigned neighborhood. The service

time starts when the driver enters the neighborhood and ends when the driver leaves it. The entry and

exit point depend on the neighborhood that was visited before, respectively afterwards and on the route

that is driven inside the neighborhood. Since we do not take the street level into account, we do not

determine where the entry and exit point are. As explained in Section 4.1, ARS estimated the service times

by extrapolating the historical data based on the number of scans. We use a different approach that does

not include extrapolating due to the reasons we discussed in Section 4.1. Our approach is based on the

length of streets that the PEV drives through when visiting a neighborhood and its average speed during

and outside the rush hours.

In order to compute the average speed that the PEV drives through a neighborhood within and outside the

rush hours, we assume that this speed is equal to the travel time of that the PEV needs to travel from this

neighborhood to the nearest neighborhood within and outside the rush hours. Therefore, we derive the

speeds from the travel speeds that we calculate in Section 4.4. From the open location platform “HERE”,

we retrieve the total length of all streets within a neighborhood. With this information, the distance that a

car needs to drive through every street of the neighborhood exactly once can be computed. However, the

actual route within a neighborhood is probably more than that, as it is highly unlikely that the PEV goes

through every street exactly once. In order to do so, the driver would need to solve the Chinese Postman

Problem, which we discussed in Section 3.1.1. And even then, some streets needs to be driven twice if it is

a dead end or the streets are so wide that the PEV cannot scan both sides at the same time.

Consequently, we assume that this fact increases the actual driven distance. However, not all streets in a

neighborhood contain fiscal parking spots and therefore it might not be necessary to drive through all

streets. In order to account for both affects, we introduce an adjustment factor that gives an indication to

what extent all streets of the neighborhood are driven.

Finally, the service time can be computed by means of the computed speeds and the length of streets

within a neighborhood.

In this chapter, we have computed and estimated the different inputs that are required for the routing

algorithm in Chapter 5, such as the margin of error for the KPI targets, the expected number of PCNs, the

service times, and the travel times. We have introduced the stability function, which helps the algorithm to

deal with expected number of PCNs when a neighborhood is scanned multiple times a day. Furthermore,

we had to overcome different challenges of the scan data and we developed a prediction model for the

number of PCNs that is based on the visitor ratio, non-paying ratio, and occupancy ratio of neighborhoods

at different times. We learned from the data analysis that there are three clusters regarding the weekdays

and six clusters regarding the hours of the day. Analyzing the weeks, we found no obvious seasonal

pattern; however, we did see that the payment rate and the effort in terms of the number of scans and

number of PCNs are increasing every week. We presented two prediction models for the PCN ratio of a

visit. One approach is relatively straightforward and the other one is based on a neural network. We have

shown that both approaches are more accurate than the current prediction model of ARS. However, in

Chapter 6, we will show which prediction model works the best in combination with the routing algorithm.

Moreover, we will use the travel time and number of scans that we computed in this chapter. We will not

use our service times of the neighborhoods because we need to determine the adjustment factor to get an

accurate input. The good thing about this adjustment factor is that it can be adjusted manually for every

neighborhood. If in practice it seems that only half of the service time is needed, the adjustment factor

can simply be reduced by 50%. However, it is very difficult to find a good value for this factor because

every neighborhood is different and also the driving behavior of every PEV driver. This determination

requires testing over a longer time period, which lies out of the scope of this thesis. Therefore, the

determination of adjustment factor can be studied in the future and we use the duration computed by ARS

for our routing algorithm. Next to that, also the stability function and the margin of error that we used for

the paid-for visitor hours, and the occupancy ratio should be further studied in the future. Even though

the occupancy ratio is derived from that, it should be replaced on the long-term by a more accurate

approach.

Master thesis – Jan Groeneveld

49

In this chapter, we design the routing algorithm that creates the routes for the PEVs. Section 5.1 discusses

the planning horizon of the algorithm, Section 5.2 explains the notation that is used throughout this

chapter, Section 5.3 deals with the objective function of the algorithm in order to evaluate different

solutions, and Section 5.4 describes how the algorithm works.

Before choosing the best algorithm, we need to determine the planning horizon of this problem. Currently

EPS always makes a planning for the next day with regards to the targets they have to reach until the end

of the KPI period, which consists of 90 days. Therefore, it would be possible to create a planning that

works in the same manner. However, EPS requires also an assurance whether the targets will be met at the

end of the KPI period. By estimating whether the targets will be met, EPS can adjust their capacity

accordingly. Whether our planning tool includes this estimation of the KPI targets depends on the

planning horizon. We can think of three options for the planning horizon of our planning tool.

Option 1 creates a planning for the whole KPI period before the KPI period starts. That means that the

computation time is not an issue since it happens before the KPI period has even started. This option also

enables to estimate whether the KPI targets are met at the end of the three months. Unfortunately, this

option has a big disadvantage due to the fact that recent data is not taken into account. Consequently, it

can happen that different the actual payment rate and the actual number of PCNs are lower than expected

but it would not be possible to adjust the planning.

Option 2 makes a new planning every day until the end of the KPI period. It is similar to the rolling

horizon planning, where every day a new planning is created for a fixed number of days. However, the

objective is not to always create routes for 90 days but only until the end of the KPI period. Meaning that

at the first day it plans for 90 days and at day 40 it plans for the remaining 50 days. This brings the

advantage that it is also sensitive to recent changes, plus it also enables a KPI indication. On the

downside, the computation times are high as the maximum planning horizon is 90 days and the planning

is done on a daily basis.

Option 3 creates a new planning every day based on recent data. The computation time would be

relatively low as the planning is done daily for only one day. Due to the limited planning horizon, it is not

possible to give an accurate estimation of the KPI results over the entire KPI period but it would be

possible to make a poor estimation based on extrapolating historic averages.

An overview of these options is given in Table 8:

Option 1: Planning for all

days before KPI period

No Yes None (because computed

before)

Option 2: Daily planning

until the end of KPI period

Yes Yes Long

Option 3: Daily planning

for a day

Yes Poor Short

Table 8 – Planning options

Every option has a disadvantage. For our approach, we choose option 2 because having an estimation of

the KPI targets in combination with including recent data and changes is the benefit that EPS requires as it

helps them in their long-term planning. However, we have to limit the computation time to 6 hours.

Option 1 also enables the estimation of the KPI targets but it is not that accurate as it is not based on

recent data.

This section explains the notation that we use throughout this chapter to describe the routing algorithm.

Note that we consider the entire time span of one day to be from 9.00, which is equivalent to 9 am of the

scheduled day, until 28.00, which is equivalent to 4 am of the following day. The routing algorithm

Master thesis – Jan Groeneveld

50

provides an enforcement planning that schedules visits of neighborhoods, i.e., that a neighborhood is

scanned at a certain time.

Every visit is defined by the number of the neighborhood j (1…J), the number of the KPI area a (1…A), the

day of the planning period n (1…N), the weekday d (1…7), the starting time 𝑡 (between 9.00 am and

28.00), the finish time 𝑡𝑓 (between 9.00 and 28.00), the week number w (1…W), the year y (1…Y), and the

number of the PEV m (1…M). Therefore, every visit is denoted as 𝑣𝑗,𝑎,𝑛,𝑑,𝑡,𝑡𝑓,𝑤,𝑦,𝑚. For the purpose of

simplicity, we denote the visits in this chapter as 𝑣𝑗,𝑛,𝑡,𝑚 because it is possible to derive the KPI area a from

neighborhood j and the weekday d, the week number w, and the year y from the planned day n, and the

finish time 𝑡𝑓 from the start time 𝑡. We denote this visit also as current visit because later in this chapter

we also need information about the prior visit and the sequential visit. The prior visit describes the last

time that neighborhood j was visited before the current visit 𝑣𝑗,𝑛,𝑡,𝑚. The neighborhood j has to be the

same in this case but the vehicle (or PEV) m and planned day n not necessarily. Likewise, the sequential

visit describes the next visit of neighborhood j after the current visit. We use an additional variable x in

order to denote whether we consider the current (x=0), prior (x=-1), or sequential visit (x=1).

Consequently, we denote every visit as 𝑣𝑗,𝑛,𝑡,𝑚,𝑥. We provide an overview of this notation in Table 9.

j number of the neighborhood 1…J

a KPI area 1…A

n day of the planning period 1…N

d weekday 1…7

t starting time between 9.00 and 28.00

𝑡𝑓 finish time between 9.00 and 28.00

w week number 1…W

y year 1…Y

m number of the PEV 1…M

x visit information -1,0,1

Table 9 – Notation table of the indices of a visit

Whenever we require the value of a certain index of a visit, we do this by putting 𝑣𝑗,𝑛,𝑡,𝑚,𝑥 in its index. For

instance, the finish time of the visit of neighborhood 15 by PEV 3 on day 4 at 12.00 can be expressed as

𝑡𝑓 𝑣15,4,12.00,3,0
. The finish time of the visit that is prior to that one can be described as 𝑡𝑓 𝑣15,4,12.00,𝑚,−1

. Let us

say that the prior visit started at 9.00 and was done by PEV 1, then we can denote the finish time also as

𝑡𝑓 𝑣15,4,9.00,1,0
 (the prior visit can also be denoted as a current visit).

In this section, we introduce our objective function that determines the added value of visiting a

neighborhood. This objective function only considers current visits because a prior or sequential visit is

always a current visit just at a different time.

In this section, we use the terms payment rate performance, PCN performance, payment rate target, and

PCN target. As explained in Section 2.1.8, the problem of the KPI targets is that they are to some extent

uncertain. To cope with this uncertainty, we calculated upper bounds of KPI targets in Section 4.2. By

comparing the EPS’ measurements of the payment rate and number of PCNs to these upper bounds, we

determine the payment rate performance and PCN performance. Regarding the performance, it is

important to remember (as explained in Section 2.1.8) that a KPI area can have a malus, neutral, or bonus

status. This is important because of the priorities that need to be considered when choosing a

neighborhood:

1. Meet either the payment rate target or the PCN target (respectively the control chance) of every

KPI area (bring all KPI areas at least to a neutral status).

2. Maximize the PCN target in chosen KPI areas in order to eventually increase the payment rate and

maximize the performance bonus.

3. Visit every neighborhood once a week.

Master thesis – Jan Groeneveld

51

As mentioned in Section 2.1.8, this priority list shows only the importance of these objectives from EPS’

objective. This does not mean that first our only objective is priority number one and after this objective is

met, the second priority is the new objective, and after that finally the third. We rather want an algorithm

that incorporates all priorities at any time such that the priorities are met in a balanced manner even

though the focus should still lie on the first priorities. Therefore, we explain our approach of quantifying

this priority list in this section.

An intuitive approach would be to compute the amount of euro that is gained by visiting a neighborhood

at a certain time. Let us consider three cases where the visited neighborhood lies in a KPI area with a

malus, neutral, and bonus status.

Malus status:

Since both targets are not met in a KPI, EPS would receive a fine based on the difference to the PCN target.

If a neighborhood within that KPI area is visited, the number of PCNs will increase and therefore the fine

will decrease. For that reason, it is possible to compute the reward of a visit depending on how much the

fine is decreased.

Bonus status:

In case that it has a bonus status, we could calculate the improvement of the bonus that occurs by visiting

the neighborhood. However, we concluded in Section 4.3.1 that we cannot quantify the relationship

between visits (number of scans) and the payment rate. Therefore, we would have to make an assumption

about this relationship. However, even then, a bonus is only given if no KPI area is in a malus status, i.e.,

the reward is likely to be 0 for the longest time of the KPI period.

Neutral status:

There are two possibilities that a KPI area has a neutral status. The first case occurs when the number of

PCNs is below the target and the payment rate is exactly equal to the target. In this rare case, the amount

of euro that is gained is computed as for KPI areas with a bonus status. The second and more common

case is that the PCN target is met and the payment rate is not. In this case, the reward would be 0 until

the payment rate exceeds the target. However, for this purpose we require again the impact of a visit on

the payment rate.

We decide not to use an approach based on the reward (positive or negative) in euro because we lack the

information about the impact of a visit on the payment rate and therefore cannot compute the euro value

for a visit within a bonus KPI area. Even if it would be possible, the value would be probably much lower

than the value of visiting a neighborhood of a malus KPI area. Moreover, the reward for visiting a

neighborhood within a neutral status would be 0 until the payment target is reached. For that reason, it is

likely that neighborhoods of such a KPI area are not visited for a long time. Additionally, the third priority

that a neighborhood should be visited once a week is ignored. This leads additionally to an unbalance of

visited neighborhoods within the KPI areas.

Therefore, we developed an alternative approach that accounts for the three priorities by computing a

priority score. The idea is to attach a weight on the expected number of PCNs of a visit. This weight

incorporates the three priorities by using two factors. One factor is called the Target Factor, which

includes the first two priorities and is further explained in Section 5.3.1. The other factor is called the Visit

Day Factor, which incorporates priority three and is explained in Section 5.3.2. The formula of the priority

score is explained in Section 5.3.3.

This section introduces the Target Factor, which is very important as it represents the need of visiting a

KPI area. Every neighborhood belongs to a KPI area that has certain targets. If the targets of the KPI area

are met (neutral or bonus status), the Target Factor will be between 0 and 1 in order to make this

neighborhood less attractive. Whenever the target of this KPI area is not met (malus status), the Target

Factor will be between 1 and 2 such that the neighborhoods within that KPI area become more attractive.

We limit the factor to 2 because even though the neighborhood where the number of PCNs is achieved is

important, it should not overrule the fact that the actual number of PCNs is still the most important thing.

The Target Factor is based on the current number of PCNs and the current payment rate. By dividing the

current number of PCNs with the upper bound of the PCN target (see Section 4.2), we compute the PCN

performance. For instance, if the upper bound of the PCN target is 1000 and the number of PCNs is 600,

then the PCN performance would be 60%. Whenever a neighborhood is visited, the current number of

PCNs is updated, such that the Target Factor takes the new PCN performance into account. We refer to

this as updating the KPI matrix. We compute the payment rate performance the same as we do for the

PCN performance. An historic example of the performances of both KPIs for all KPI areas can be seen in

Figure 35.

Master thesis – Jan Groeneveld

52

Figure 35 – Visualization of the KPI targets

Our objective is to increase the number of PCNs such that the payment rate increases eventually in the

future. With regards to Figure 35 that means that the performance dots of the KPI areas first move to the

right and then upwards. The payment rate performance has a usually a value around 1 because the

current payment rate is in most cases 1 or 2% smaller or higher than the target. The PCN performance is

quite different as it can be 0 (e.g. 0/20000) or above 1 if the target is already reached but the KPI area is

still being visited since EPS wants to visit all KPI areas regularly. For small KPI areas such as “Noord” it can

happen that the number of PCNs is even higher than twice the target. The Target Factor includes to what

extent the target is exceeded. As one can see in this example, we limit the ratios to 2 because we decide

that it does not matter if, for instance, the PCN performance is 2.1 or 2.2. Plus by using a maximum value

of 2, the range of not-meeting the targets (0, 1) and meeting the targets (1, 2) have the same size, which

is useful for our Target Factor computation. From Figure 35, we can derive four groups of KPI areas: those

who have reached both targets, no targets, and one of the targets. These groups can be seen in Table 10:

1 Neither of the targets is met Oost-1, Zuid-1, Nieuw-West, Centrum

2a Only PCN target is met Zuidoost, Noord

2b Only Payment rate target is met West-1, Zuid-2, West-2, Oost-2

2c Both targets are met None

Table 10 – KPI areas divided into priority groups

As mentioned before, the Target Factor of the KPI areas that have not met their targets (group 1) get a

value above 1 and those that did (group 2a, 2b, and 2c) get a value below 1. Consequently, the objective

function of the visits either decreases or increases, which makes the visits in these neighborhoods more

or less attractive. We compute the Target Factor of group 1 and group 2 (a, b, and c) differently:

No target is met (group 1)

If both targets are not met, we only consider the PCN performance in order to compute the Target Factor

because that is the performance that can be influenced directly. So again, by focusing on the PCN

performance, the performance dot of the KPI area (see Figure 35) moves more to the right (and eventually

Master thesis – Jan Groeneveld

53

upwards). Since the PCN performance varies between 0 and 2, we compute the Target Factor by

subtracting the PCN performance from 2:

𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 = 2 − 𝑃𝐶𝑁𝑟𝑎𝑡𝑖𝑜 .

At least one target met (group 2a, 2b, and 2c)

For those KPI areas that did not meet one of the targets, we want to include both targets for two reasons.

Additionality to the upper bound that we use for both targets (see Section 4.2), an increase of the PCN

performance increases the probability that the PCN target is reached in case the payment rate

measurement of the municipality is even lower than expected in the worst case. We also want to increase

the payment rate performance because this performance is the essential one for achieving a bonus. A

combination of both targets could be done by a multiplication, such as:

𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 = (2 − 𝑃𝐶𝑁𝑟𝑎𝑡𝑖𝑜) ∗ (2 − 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜).

However, this would mean that we multiply a number between 0 and 1 with a number between 0 and 2

because at least one target is met. Consequently, the product could be bigger than 1 (e.g.: 1.80*0.95 =

1.71), which should not happen. Therefore, we divide this number by a Target Reached Parameter, which

needs to be at least 2, in order to make sure that the Target Factor is below 1. This Target Reached

Parameter can also be bigger than 2 in order to make these KPI areas even less attractive in comparison

with group 1. During our experiments, we found that 2 is a good value for the Target Reached Parameter,

which we also discuss further in Section 6.2.1.4. Finally, we compute the Target Factor for these KPI areas,

as follows:

𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =
(2− 𝑃𝐶𝑁𝑟𝑎𝑡𝑖𝑜) ∗ (2−𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜)

(Target Reached Parameter)
.

Let us explain in the following why this formula shows the desired effect for all of the groups when using

a Target Reached Parameter equal to 2. Take into account that the payment rate performance varies

usually only between 0.9 and 1.1 whereas the PCN performance usually varies between 0 and 1.2.

Group 4 (payment rate performance ≥ 1 & PCN performance ≥ 1) is the least important group as already

both targets are met. Therefore, we multiply two values between 0 and 1 and divide it by 2, hence the

number is between 0 and 0.5.

Group 2 (payment rate performance < 1 & PCN performance ≥ 1) is less important than group 3 (payment

rate performance ≥ 1 & PCN performance < 1) because both reached the target but only group 3 has the

possibility to get a performance bonus. Since usually the PCN performance has a lower value (if the PCN

target is not met) than the payment rate performance (if the payment rate target is not met), the Target

Factor for group 3 is automatically higher.

The Target Factors for example of Figure 35 with a Target Reached Parameter equal to 2 are shown in

Table 11.

Oost-1 1.794

Zuid-1 1.792

Centrum 1.750

Nieuw-West 1.571

West-1 0.866

Zuid-2 0.799

Oost-2 0.727

West-2 0.714

Zuidoost 0.468

Noord 0

Table 11 – Targets Factors of all KPI areas

Master thesis – Jan Groeneveld

54

As one can see “Noord” has a Target Factor of 0 in this example. As we explain later in Section 5.4.2, this

means that all neighborhoods that belong to “Noord” would not be visited anymore. If the Target Factor is

indeed 0, we do not see the need that neighborhoods this KPI area still have to be visited. However, in

some cases the algorithm has no feasible options to go to, which is also caused by excluding KPI areas

with a Target Factor of 0. For that reason, we always replace a Target Factor of 0 with a very little number,

namely 0.001, in order to prevent these edge cases.

The Visit Day Factor is a factor that we introduce in order to present the desire of EPS to visit every

neighborhood at least once a week. As for the Target Factor, we do not want the Visit Day Factor to

exceed 2 because the number of PCNs should still be the most important thing. Unlike the Target Factor,

the Visit Day Factor only varies between 1 and 2. The rationale behind it is that the neighborhood will be

more attractive if it has not been visited for a longer period but not less attractive if it has been visited

recently, for example on the same day. EPS has no restriction policy about how many times a

neighborhood may be visited on a day. Consequently, the Visit Day Factor 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0
 depends on the planned

day of the current visit of neighborhood j, which (as explained in Section 5.2) is defined as 𝑛𝑣𝑗,𝑛,𝑡,𝑚,0
, and

the previous one 𝑛𝑣𝑗,𝑛,𝑡,𝑚,−1
. Note that the PEV of the last visit 𝑚𝑣𝑗,𝑛,𝑡,𝑚,−1

 and the current visit 𝑚𝑣𝑗,𝑛,𝑡,𝑚,0
 do not

necessarily have to be the same. The Visit Day Factor measures the attractiveness of the neighborhood in

terms of day difference those two visits: ∆𝑛= 𝑛𝑣𝑗,𝑛,𝑡,𝑚,0
− 𝑛𝑣𝑗,𝑛,𝑡,𝑚,−1

, which must be a positive integer. The Visit

Day Factor is 1 if the neighborhood has been visited already on the same day. Then, the Visit Day Factor

increases exponentially because it is still fine if the neighborhood has not been visited in 2 or 3 days.

However, when the difference approaches 7 days, the Visit Day Factor should increase faster. At day 7, the

visit day reaches a value of 2 and then stops because we do not want that it overrules all other aspects

and in the end it is a only soft constraint and does not have the first priority. The Visit Day Factor is

determined by the following function f(∆𝑛):

f(∆𝑛)= min (2, 1 + (
∆𝑛

7
)

(𝑉𝑖𝑠𝑖𝑡 𝐷𝑎𝑦 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

) ,

where the Visit Day Parameter is a parameter that determines the growth of the exponential function. We

have chosen a Visit Day Parameter of 5, to realize the desired effect of our function. The outcome of this

function for 0 until 9 days without a visit is shown in Figure 36.

Figure 36 – Visit day function with a Visit Day Parameter equal to 5

For our analysis, we count the average number of times that a neighborhood is not visited once a week.

That means that this count starts, whenever a neighborhood is not visit after one week and is increases by

one if the same neighborhood is neither visited the next day the count increases further.

Apart from decreasing the number of average times that a neighborhood is not visited once a week, the

Visit Day Factor also increases the variability of the route. This is beneficial for EPS because otherwise

visitors might observe a pattern if some routes would be the same.

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0 1 2 3 4 5 6 7 8 9

V
is

it
 d

ay
 f

ac
to

r

Number of days without visit

Visit day factor

Visit day factor

Master thesis – Jan Groeneveld

55

Finally, we compute the priority score by multiplying the number of expected PCNs, which is denoted as

𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

 (see Section 5.4.2), by the Target Factor and Visit Day Factor. Therefore, the objective function for

all days and vehicles is expressed as:

𝑚𝑎𝑥 ∑ ∑ 𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

∗ 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
∗ 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

𝑀

𝑚=1

𝑁

𝑛=1

.

This priority score will be essential for our routing algorithm.

We choose to construct the route planning by means of an ant colonization optimization algorithm (ACO)

because the benchmark of Ke et al. (2007) (see Appendix B) shows that for the team orienteering problem

the ACO algorithm shows similar or better results in terms of the objective function in comparison with

other algorithms but with a better computational time. Additionality, the ACO algorithm is a constructive

metaheuristic that strives to find a global optima. This is convenient for us, since local search

improvement techniques are difficult to apply to our problem and without applying a metaheuristic, the

algorithm would get stuck in local optima. An example of a local search technique is simulated annealing

(SA) (see Section 3.2.1). SA looks for a neighborhood solution of a constructed solution. For instance, a

neighborhood solution can be built by exchanging one visit with a new or already scheduled visit (also

denoted as swap). In the following, we explain why such a swap is difficult to implement:

We have constructed a planning for one day for 12 PEVs. Now, we want to change the neighborhood of a

certain visit of PEV 6 and let him go to another neighborhood. In that case, we have to follow these steps:

1. Recompute the travel times, service times, and expected number of PCNs for all visits after this

one due to the fact that all starting times change.

2. Check whether no restrictions are violated:

a. a neighborhood must not be visited at the same time

b. the return to the depot, the breaks, and the shift change must happen within a certain

time window

c. a neighborhood must not be visited, if there is no parking regime

3. Recompute the expected number of PCNs of all visits that go to the same neighborhoods as those

that were adjusted neighborhoods in step 1. This is due to the fact that the start and finish times

of the visits change and the calculation of the remaining visitors, as we explain in detail in Section

5.4.2, is based on the finish times of prior visits.

4. Do the same as step 3 for the visits that also go to the newly added neighborhood.

5. Compute the total change of the number of PCNs and update the KPI matrix with the current

number of PCNs of each KPI area (see Section 5.3.1).

Compute the change of new priority score and in case that there is no improvement, swap back.

This shows that there is a lot of recomputation and feasibility checking for considering a swap. That

means that methods like simulated annealing would be possible; however, they would be very time

consuming. For that reason, we choose an ACO algorithm, because, as discussed in Section 3.2.2.2, it

finds one best route by constructing many possible routes and learning iteratively which routes between

neighborhoods (denoted as arcs), performed well in the past. Even though we do not apply a

metaheuristic improvement technique, we do apply a 2-Opt swap, similar to Verbeeck et al. (2014a) in

order to prevent unnecessary zigzag routes, which probably seem illogical or inefficient to the PEV drivers.

Unlike Verbeeck et al. (2014a), we apply this 2-Opt swap while constructing a solution whenever a

neighborhood is scheduled. The fact that it happens during the construction phase reduces the impact on

other visits and therefore the recomputation time. This 2-Opt swap exchanges the two previously

scheduled visits of the current PEV, if the saved travel time is above a certain Swap Threshold. If due to

the swap the reduction of the travel time in percentages is lower than the decrease of PCNs or if the time

after the swap is bigger than before, we will swap back the visits. The rationale behind this is it is

essential that the swap actually saves time and that we enough time is saved to earn the loss of PCNs

back. We choose 1 minute for our Swap Threshold because it seems as a reasonable threshold that has to

be exceeded. A lower threshold would lead to more unsuccessful swaps (visits are swapped back

afterwards) and would increase the computation time. Another swap that we apply during the construction

Master thesis – Jan Groeneveld

56

of a solution is our break location swap. Because it is not known which neighborhood the PEV visits after

going to a break location, it can happen that not the best break location is chosen in terms of travel

distance. Therefore, the break location is swapped afterwards with another break location, if the travel

time decreases. The benefits of these swaps are further explained in Chapter 6.

Figure 37 shows an overview of the general concept that explains how our algorithm works. We denote a

day planning as one planning with all routes of all vehicles for one planned day, where M is the total

number of vehicles. The algorithm creates such a day planning for every day, starting from day n until a

certain day N. For every day, our algorithm performs many iterations, where the number of iterations I is a

pre-determined parameter. One iteration contains one day planning. Every planned day starts by first

setting the pheromone values of all arcs to a pre-determined initial value. Afterwards, I iterations are

performed. At the end of each iteration, the pheromones of the arcs will be updated to create a learning

effect. Since this update is a core process of our algorithm, it is highlighted in Figure 37 and will be

further discussed in Section 4.3.3. For every day, we keep the iteration that led to the best result. We send

our ants, which are equal to the vehicles, sequentially as proposed in the algorithm of Montemanni and

Gambardella (2009) and Ke et al. (2007). Ke et al. (2007) also tried different methods but the sequential

approach seemed to perform the best.

Before going into detail on how the route of every ant is build, we denote the following terms:

 BreakTime: is the starting time of the next break

 BreakFlexibility: is the tolerance of being early or late, which is at the moment 15 minutes

 DayStartTime: the time at which the day starts and the ant leaves the depot

 DayFinishTime: the time at which the day finishes and the ant has to return to the depot

 Neighborhood (j): the next assigned neighborhood

 TravelTimeToNeighborhood: the travel time from the current neighborhood to the new

neighborhood

 TravelTimeToBreakLocation: the travel time to go back to the nearest break location

 TravelTimeToDepot: the travel time from the current neighborhood to the depot

 CurrentTime: the time of the decision

 ServiceTime: the time that is needed to scan a neighborhood

 ShiftChange: the time when the drivers switch the shift and therefore the PEV switches the driver

 Cycle: the time period between two BreakTimes, the DayStartTime and the BreakTime of the first

break, or the BreakTime of the last break and the DayFinishTime

 CycleStartTime: start time of the current Cycle

 CycleFinishTime: finish time of the current Cycle

The routing algorithm takes into account all time restrictions as explained in Section 2.1.5, such as break

times, start and finish time of the day, and the shift change. Therefore, the time needs to be updated after

every step. As explained in Section 5.3.1, it is also required to update the KPI matrix after a visit. Figure

38 shows the route planning of an ant. This route planning is performed differently in the first iteration.

We choose to build a greedy solution in the first iteration and use the ACO algorithm afterwards. In Figure

38, there are two more core decisions of our algorithm that are highlighted in Figure 38 that work

differently in the first iteration. We discuss these further in Section 5.4.1 and Section 5.4.2.

For every day in range (n,N):

 Replace pheromone values by pre-determined initial pheromone values

For every iteration (1, I):

For every ant (1,M):

 Create a route planning

 save iteration if it is the best one

Figure 37 – General concept of our ACO routing algorithm

Master thesis – Jan Groeneveld

57

This section describes the strategy that distributes the PEVs to different KPI areas. This distribution is

needed so that not all ants start at the same location and do not cross their routes all the time. This

distribution occurs whenever an ant leaves the break location. Since the set of neighborhoods where the

ant is allowed to go to afterwards is limited (as we explain in Section 5.4.2.1), the focus of the ant lies on

the KPI area, where it is distributed to. For that reason, this distribution strategy is essential with regards

to meeting the KPI area targets. One might argue that the vehicles can also be distributed to a certain

neighborhood instead of a certain KPI area. We tried two approaches based on the K-means clustering

techniques, as explained in Section 4.3.1. In the first approach, we determine a number of clusters, which

is equal to the number of vehicles k, based on the GPS coordinates of the neighborhoods. Figure 39

shows a scatter plot with 12 different symbols that shows the result of this approach in a scatter plot. The

crosses show the centroids of the different clusters.

For every ant:

Start

Depending on the time, the ant chooses one of the following options:

If (ShiftTime ≤ CurrentTime < ShiftTime+BreakFlexibility):

 Ant stops for 15 minutes

 Update Time (go back to start)

Else if (BreakTime-BreakFlexibility ≤ CurrentTime+TimeToBreakLocation < BreakTime+BreakFlexibility):

 Ant goes to the nearest break location

 Update Time (go back to start)

Else if (FinishTime-BreakFlexibility ≤ CurrentTime+TimeToDepot)

If ant is at break location (including depot):

 Ant is and within that KPI

area and adds it to the route

 Consider break location swap

 Update time and KPI matrix (go back to start)

Else:

 Ant out of a set of nearest neighborhoods (set of

neighborhoods is explanation in Section 5.4.2.1)

If (previous two visits are no break locations and no shift changes) and (decrease of travel

times is bigger than no decrease of the objective function):

 Switch previous two neighborhoods

 Update time and KPI matrix (go back to start)

 Else:

 Update Time and KPI matrix (go back to start)

Else:

 Ant goes back to depot and finishes the route

 Set time to DayStartTime (go to next ant

Figure 38 – Route planning of one ant

Master thesis – Jan Groeneveld

58

Figure 39 – Results of K-means clustering based on GPS coordinates

Even though the results seems logical, this approach only considers the GPS location. In order to generate

clusters that include also the priority score of the neighborhoods, we came up with a second approach. In

this approach, we create as many duplicates of the neighborhoods as the amount of their priority score

(e.g. if there the priority score is 40, we make 40 duplicates of this neighborhoods). By running the K-

means clustering again, we get the result as shown in Figure 40.

Figure 40 – Results of K-means clustering based on GPS coordinates and the priority score

Comparing the results, we can see that they very similar. In some cases, it is necessary though that more

PEVs are deployed in certain KPI areas to make sure that the PCN target is reached. We conclude that this

approach distributes the PEVs to the KPI areas in a manner that is too balanced such that not all PCN

targets are reached in the end of the KPI period. This could be probably solved by a smarter clustering

algorithm. However, we decide to use the KPI areas as pre-set clusters, which means that we “only” have to

determine how many PEVs are send to every KPI area.

With our distribution approach, we want to avoid that on the one hand the distribution is too balanced. On

the other hand, it is also not desirable that only the KPI areas that did not meet the targets are prioritized

because this would lead to a very unbalanced routing. If, for instance, a KPI area has reached the payment

rate target at the beginning of the KPI period, it would not be visited anymore. This is bad because we

might never satisfy the requirement that the neighborhoods of every KPI area should be visited regularly.

The target is to visit every neighborhood once a week. Additionally, by not going to a KPI area, we do not

know the current payment rate of that area. This contradicts our claim that the measurements of the PEVs

are the true value of the payment rate, as described in Section 4.2.1. Therefore, we choose a method that

is based on the Target Factor and area size ratio, which is the ratio of the PCN target of a KPI area in

comparison to the sum of all PCN targets. The area size ratio is a useful addition to the Target Factor

because the Target Factor only considers the ratios but not the absolute numbers. By means of the area

size ratio, we can express the need for more cars in KPI areas that have higher PCN targets (such as

“Centrum”). For instance, if on day 0 the Target Factor for KPI area “Centrum” and “Noord” are both 0, we

prefer to send more PEVs to “Centrum” because the absolute PCN target is much higher.

Master thesis – Jan Groeneveld

59

As explained in Section 5.3.1, the Target Factor can become 0.001 in case the PCN performance is twice

as big as the PCN target. In this rare case, we consider it acceptable that PEVs do not get a starting point

in that KPI area anymore since it is safe to say that the PCN target is met.

Our approach of distributing the ants computes a distribution array whenever an ant leaves the break

location. This distribution array has the same length as the number of PEVs. When, for instance, PEV 3

leaves the break location, it goes to the KPI area that has the third index in the distribution array. In the

following, we explain how this distribution array is computed. We start by creating an array with all KPI

areas by adding clockwise the nearest KPI area, starting with “Centrum”: “Centrum”, “Oost-1”, “Oost-2”,

“Zuidoost”, “Zuid-2”, “Zuid1”, “Nieuw-West”, “West-2”, “West-1”, “Noord”. The reasons behind this is that it

can happen that during the day a PEV is suddenly distributed to another KPI area and this KPI are should

not be on the side of the city (e.g. “West-2” and “Zuidoost”).

Due to two requirements of EPS, we decided to make the first PEV different from the other PEVs. One

requirement is that one night shift is needed and the other is one particular neighborhood in the

“Centrum” needs to be visited 6 times a day (except for Sunday). By sending the first PEV always to that

specific neighborhood, including the night shift, we satisfy both requirements. This means that the

number of PEVs allocated to “Centrum” has to be at least 1. The number of allocated PEVs is computed as

follows:

1. For every KPI area, we multiply the Target Factor with the area size ratio to compute an adjusted

Target Factor.

2. We compute a percentage for each KPI area by dividing the adjusted Target Factor of each area by the

sum of all adjusted Target Factors.

3. Afterwards, the percentages are multiplied by the number of PEVs that day and are rounded to

calculate the number that we want to send to this KPI area.

The results for the example of Figure 35 are shown in Table 12 for 12 PEVs.

Centrum 1.750 0.331 0.578 39.1% 4.692 5

Oost-1 1.794 0.104 0.186 12.6% 1.508 2

Oost-2 0.727 0.036 0.026 1.8% 0.215 0

Zuidoost 0.468 0.012 0.005 0.4% 0.046 0

Zuid-2 0.799 0.065 0.052 3.5% 0.425 0

Zuid-1 1.792 0.230 0.412 2.79% 3.349 3

Nieuw-

West

1.547 0.052 0.081 5.5%
0.657

1

West-2 0.714 0.056 0.040 2.7% 0.327 0

West-1 0.866 0.111 0.096 6.5% 0.781 1

Noord 0.001 0.004 0 0% 0 0

Table 12 – Computation of the number of allocated PEVs with 12 PEVs

This approach does not always work in a sense that sometimes more or less PEVs are allocated than there

are available due to the rounding. In case too many PEVs are allocated, this problem is solved by

subtracting a PEV from KPI areas with the biggest difference between the rounded allocated number of

PEVs and the real allocated number of PEVs. Considering the example in Table 12, that would be “West-2”

(2-1.508 = 0.492). Whenever there are less allocated PEVs than needed, we add one PEV to the KPI with

smallest difference between the rounded number of allocated PEV plus one and the real number of

allocated PEVs. Considering the example in Table 12, that would be “Zuid-2” (1-0.425 = 0.575). If the

number of allocated PEVs for “Centrum” is 0, one PEV has to be added, which may lead to subtracting a

PEV from another KPI area.

In the end, an array is filled by going through Table 12 and add sequentially one of the KPI areas that have

a number of allocated PEVs that is at least 1. Thereafter, the KPI areas with at least 2 are added. This goes

on until the array is filled. In this case it happens after 2 iterations and we get the following list:

Master thesis – Jan Groeneveld

60

Centrum, Oost-1, Oost-2, Zuid-2, Zuid-1, Nieuw-West, West-2, West-1, Centrum, Oost-1, Zuid-2, Nieuw-

West.

The next chosen neighborhood depends on two things: the criteria of choosing a neighborhood and the

set of neighborhoods from which the neighborhood is chosen. Both depend on the current iteration. In

Section 5.4.2.1, we explain how the set of considered neighborhoods is determined. Section 5.4.2.2

described our desirability function and Section 5.4.2.3 the probability function for our ACO algorithm.

Whenever an ant chooses the next neighborhood out of a certain set of neighborhoods, there are three

possible sets that can be considered:

1. All neighborhoods within a KPI area.

2. All neighborhoods that can be reached within a pre-set travel distance, which is denoted as Travel

Distance Restriction.

3. All neighborhoods.

The ant chooses one of the neighborhoods of Set 1, whenever an ant leaves the break location. Set 2 is

considered, whenever the ant is not at a break location. We call this set also the nearest neighborhood set.

The reason for choosing neighborhoods within a pre-set travel distance is that the PEF drivers that follow

the PEVs on scooters cannot follow whenever the distance gets to large. The pre-set travel distance should

therefore depend on the average speed of the PEFs. We choose to set this parameter to 1500 meters

because that results in routes that seem manageable for the PEF drivers. Whenever no feasible

neighborhoods can be found in Set 1 or Set 2, the ant considers Set 3 as a kind of backup set.

In the first iteration, the ant chooses the neighborhood based on the result of the greedy function (see

Section 5.4.2.2). Thereafter, it considers both the greedy function and the pheromone trails, as explained

in Section 5.4.2.3. There is only an exception for Set 3. Whenever, the backup set is considered, the

choice is only based on the greedy function, because we do not update the pheromone trails of all

possible arcs to safe computation time.

Our desirability function is a greedy function that divides the priority score of a visit by the time that is

needed to visit the neighborhood. It is an adjusted version of the one that Ke et al. (2008) are using.

Concerning the travel time from a break location b to the next neighborhood j, we use the accounted

travel time, which is raw travel time reduced by a pre-set Travel Time Reduction parameter. The rationale

behind it is to distribute the neighborhoods farther away from the break locations. In addition, the follow-

up work for the PEF driver does not start right away, which gives him a bit spare time. We choose this

value to be equal to 10 minutes, because this seems as a reasonable head start for the PEV driver.

However, the accounted travel time may never exceed another pre-set parameter, namely Travel Time

Restriction. The purpose of this is to restrict the travel time, whenever the ant chooses out of all possible

neighborhoods (Set 3, see Section 5.4.2.1). We set this value equal to 15 minutes. If it turns out that these

values, lead to routes that cannot be managed, these parameters can be adjusted easily.

However, the time does not only include the accounted travel time from neighborhood i to neighborhood j

but also the service time from neighborhood j and the travel time from neighborhood j to the next break

location b (or the depot depending on the shift). The latter, however, is not always important. When a shift

starts, the PEV should or even must distance itself from the break location in order to avoid that it only

drives close to the break location. The closer the time gets to the break time, the more important the

travel time to the break location gets. Therefore, we use a progress factor 𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
, which depends on the

finish time and weekday of the visit. The progress factor determines how strong the travel time weighs

within the desirability function and is computed as follows:

𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
=

𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑂𝑓 𝑉𝑖𝑠𝑖𝑡 − 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑦𝑐𝑙𝑒

𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑦𝑐𝑙𝑒 – 𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 𝑃𝑒𝑟𝑖𝑜𝑑
.

The desirability function of a visit is denoted as 𝜂𝑣𝑗,𝑛,𝑡,𝑚,0
 and can be denoted as:

Master thesis – Jan Groeneveld

61

𝜂𝑣𝑗,𝑛,𝑡,𝑚,0
=

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝑣𝑗,𝑛,𝑡,𝑚,0

𝑐𝑖,𝑗,𝑡,𝑑 + 𝑠𝑗,𝑡,𝑑 + 𝑐𝑗,𝑏𝑗,𝑡,𝑑 ∗ 𝑝𝑣𝑗,𝑛,𝑡,𝑚,0

,

where 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝑣𝑗,𝑛,𝑡,𝑚,0
 is the increase of the priority score by visit 𝑣𝑗,𝑛,𝑡,𝑚,0, 𝑐𝑖,𝑗,𝑡,𝑑 is the accounted travel

time from neighborhood i to neighborhood j, at time t, on weekday d, 𝑠𝑗,𝑡,𝑑 is the service time at

neighborhood j, at time t, on weekday d, and 𝑐𝑗,𝑏𝑗,𝑡,𝑑 is the travel time from neighborhood j to the to the

closest break location from neighborhood j, which is 𝑏𝑗.

As explained in Section 5.3.3, the priority score of a visit depends on the expected number of PCNs

𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

, the Target Factor 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
, and the Visit Day Factor of a visit 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

. We introduced the term

expected number of PCNs of a visit because this number is not always equal to the forecasted number of

PCNs 𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
. In fact, the expected number of PCNs is unknown until all visits of the day are scheduled.

The reasons for this is that it is possible that another visit is scheduled in the same neighborhood on

same day but earlier. Therefore, we have to estimate the number of visitors that received a PCN during the

earlier visit and still remain at the neighborhood, which we denote as 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0
. The expected number of

PCNs is for that reason computed as follows: 𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

 = 𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
- 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0

. In the same way it can happen that

by scheduling a visit the expected number of PCNs of a later visit in the same neighborhood on the same

day can be decreased. For that reason, we introduce the current increase of the expected number of PCNs

(denoted as ∆𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
′), which accounts for both phenomena: the decrease of expected number of PCNs of

the current visit due to a prior visit and the decrease of the expected number of PCNs of a later visit due

to the current visit. The exact computation of this increase is shown with an example in Appendix D. Note

that it is obligatory that whenever a PEV driver visits a neighborhood, the driver has to scan the

neighborhood fully. However, there is one exception when the visit starts in neighborhood with a parking

regime but the parking regime stops during the visit. In these cases the driver is allowed to go to the

neighborhood anyways until the parking regime is over. The reason behind this is that in the last minutes

of the parking regime, we expect a higher PCN ratio than usual (according to EPS’ experiences).

In conclusion, the desirability is finally determined as follows:

If (CurrentTime+TravelTime+ServiceTime+TimeToBreakLocation > BreakTime+BreakFlexibility) OR

(CurrentTime+TravelTime+ServiceTime+TimeToDepot > FinishTime) OR

(TravelTime>TravelTimeMaximum):

𝜂𝑣𝑗,𝑛,𝑡,0
 = 0,

Else:

𝜂𝑣𝑗,𝑛,𝑡,0
 =

∆
𝑃𝑣𝑗,𝑛,𝑡,𝑚,0

′ ∗ 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
∗𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

𝑐𝑖,𝑗,𝑡,𝑑+𝑠𝑗,𝑡,𝑑+𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
∗𝑐𝑗,𝑏𝑗,𝑡,𝑑

.

As mentioned in Section 5.4.2.1, in the first iteration only the desirability function is used to choose the

next neighborhood from Set 1 or Set 2. At the end of the first iteration, the pheromone trails are updated

the first time as we describe in Section 5.4.3. Afterwards, the probability function of the ACO algorithm is

applied to find better solutions than the first greedy solution as we explain in Section 5.4.2.3.

In the ACO approach the ant does not always choose the “most desirable” solution but goes

probabilistically from neighborhood i to neighborhood j, whereby node j is from a set of considered

neighborhoods j ∊ N(i), as determined in Section 5.4.2.1. The choice depends on the probability of node j,

which is based on two factors: the desirability 𝜂𝑣𝑗,𝑛,𝑡,0
 and the pheromone trails 𝜏𝑖,𝑗. The pheromone trails

depend on the pheromone value on the arc between neighborhood i and j, which is updated after every

iteration as explained in Section 5.4.3. The probability 𝑝𝑖𝑗 is for all neighborhoods determined as follows:

Master thesis – Jan Groeneveld

62

𝑝𝑖𝑗𝑗 ∊ N(i) =
𝜏𝑖,𝑗

𝛼 ∗𝜂𝑣𝑗,𝑛,𝑡,0

𝛽

∑ (𝜏𝑖,𝑙
𝛼 ∗𝜂𝑣𝑙,𝑛,𝑡,0

𝛽
)

0

𝑙 ∊ N(i)

 ,

where 𝛼 and 𝛽 are used to control the importance of the pheromone trails and the desirability.

All neighborhoods j ∊ N(i), are ranked according to their probabilities. Afterwards, a random number is

generated with a uniform distribution between 0 and 𝑄0. Q0 is a randomness parameter, which determines

how big the generated numbers can be. If the random generated number is smaller than the 𝑝𝑖𝑗 of the

first neighborhood in the ranked set, the first neighborhood is chosen. If this is not the case, a new

number is generated and compared to 𝑝𝑖𝑗 of the second neighborhood. This continues until a

neighborhood is chosen. In the very rare case that in the end no neighborhood is selected, the first ranked

neighborhood is chosen. 𝑄0 decreases after every iteration by the decrease parameter 𝐷𝑄0
, such that the

neighborhoods with the most probability are more likely to be added to the route. The rationale behind it

is that in the beginning many different solutions are explored but towards the end we want the ants to

choose the best option in terms of the computed probability 𝑝𝑖𝑗.

The first iteration of every day creates a solution of the route planning based on the greedy algorithm.

The objective function of this day planning is saved as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑒𝑒𝑑𝑦. The greedy solution serves as a

benchmark solution, which we strive to exceed. The performance of the day planning of all iterations

afterwards are measured by comparing it to the greedy solution:

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑒𝑒𝑑𝑦
.

The solution with the best performance is saved as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡 and 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡. Since the greedy

solution is the first created solution, it is the first best solution. We strive to maximize the best

performance by updating the visited arcs with a pheromone trail after every iteration. The update of the

pheromone trail is essential to the algorithm as it teaches the ants, which combination of neighborhoods

worked well in the past iterations. This section introduces three different update strategies.

Due to our generalization of the TOP that allows to visit neighborhoods multiple times and also includes

other additional constraints, there is no ACO algorithm in the literature that tackles the same problem.

However, we decided to derive our first updating strategy from the work of Montemanni and Gambardella

(2009), who develop an ACO algorithm for the TOP with time windows. In their algorithm, only the ant

that produced the best solution since the beginning of the computation, which we denoted as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡,

is allowed to leave a pheromone trail. The reason behind it is that the best route is memorized, and in the

future, ants will generate new (and hopefully better) solutions that are similar to this route. For that

reason, we also update the pheromone of the visited arcs, only whenever a best solution is achieved. If an

arc is visited more than once, it only counts as one visit. The pheromone trails are denoted as 𝜏𝑖,𝑗, where i

and j present the arc between neighborhood i and j. The initial value is denoted as 𝜏0. The updating rule is

the following:

𝜏𝑖,𝑗 = (1 − ρ) ∗ 𝜏𝑖,𝑗 + ρ ∗ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡,

where p regulates the strengths of the pheromone that is left by the best solution. After the first iteration,

this update is applied the first time. In this case, the initial value 𝜏0𝑖,𝑗 determines the attractiveness of the

arcs that have not been visited by the greedy solution in comparison with the ones that have been. Since

the 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡 of the greedy solution is per definition equal to 1, we choose 𝜏0 to be smaller than 1

in order to attract more ants to the greedy solution. The exact value will be determined in Chapter 6.

Moreover, during the construction of a route, every ant decreases the pheromone trails of the arcs that is

has used to prevent that arcs are visited too many times and to stimulate the exploration of new

solutions. The rule is determined by:

𝜏𝑖,𝑗 = (1 − 𝜓) ∗ 𝜏𝑖,𝑗 + 𝜓 ∗ 𝜏0,

Master thesis – Jan Groeneveld

63

where 𝜓 is the evaporation parameter that regulates the decrease of the pheromone trace. We do not want

the ants to visit neighborhoods many times because it decreases the exploration, plus it decreases also

the performance of the solution as discussed in Section 5.4.2. If there is no improvement after the

iteration, the pheromones are not updated but restored, meaning that the decrease during the solution

building does not apply for the next solution.

For this strategy, we slightly adjusted Update Strategy 1. In this strategy, the arcs are updated after every

solution instead of updating the arcs only after an improvement of the 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡. After every iteration all

visited arcs are updated according to the formula:

𝜏𝑖,𝑗 = (1 − ρ) ∗ 𝜏𝑖,𝑗 + ρ ∗ 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.

Update Strategy 3 is another variation of Update Strategy 1. The difference is that the ants are considered

separately. Not the best solution of all ants together counts but the best solution of every ant separately.

The rationale behind this is that the allocation to KPI areas should be the same in most cases for all

iterations. When the same ant is send to the same KPI area every iteration, we can measure the objective

function of this ant. Every ant has therefore a separate performance that is compared to the greedy

solution of that ant. By doing so, we also increase the pheromone trails of arcs that have been visited by a

single well-performing ant even though most ants performed worse. If an arc is visited by more than one

ant that achieved a personal best score, then the one with the higher score may set the trail. Regarding

the update of the best solutions or all solutions, we can either use the updating rule as described in

Strategy 1 or 2 for this strategy.

In this chapter, we presented our planning approach that is based on our desirability function and our

ACO algorithm. We discussed our objective function, and how the PEV are distributed and their routes are

created. Throughout this chapter, we introduced a lot of different parameters and strategies. The

introduced parameters, namely the Target Reached Parameter, the Visit Day Parameter, the Swap

Threshold, the Travel Distance Restriction, the Travel Time Restriction, and the Travel Time Reduction

should be tested and adjusted if needed. For that reason, we call them manager decision parameters. The

results of our algorithm will be presented in Chapter 6.

Master thesis – Jan Groeneveld

64

In this chapter, we discuss the results of our prediction model, introduced in Chapter 4, and our routing

algorithm, introduced in Chapter 5. In Section 6.1, we setup the design of our experiments. Section 6.2

discusses the accuracy of the different prediction models. Section 6.3 shows the results of our sensitivity

analysis and Section 6.4 the results of our simulation. Finally, Section 6.5 demonstrates that our planning

tool improves the current situation.

This section introduces the experiments that are performed in this Chapter. In that regard, we first list the

outputs with which we evaluate the different experiments in Section 6.1.1 and the parameter values that

we introduced in Chapter 4 and 5 in Section 6.1.2. Finally, Section 6.1.3 discusses the questions that we

are going to answer in this chapter and how we will answer them.

In Section 5.3.3, we presented our objective function, which determines a priority score for every visit.

This function can also be used to compute the priority score of all routes of one scheduled day. Next to

this objective function, we compute the travel distance and count the average number of times that a

neighborhood is not visited once a week, as explained in Section 5.3.2. In the end, we evaluate the results

by the following outputs that are computed for every planned day:

 Objective function

 Number of PCNs

 Number of scans

 Travelled distance (in km)

 The average number of times that a neighborhoods is not visited once a week

 Algorithm running time

Regarding the number of PCNs and scans, we differ between the forecasted number and the simulated

number. All outputs present the forecasted number if it is not explicitly said that they values are

simulated.

In Chapter 5, we presented two algorithms: the greedy algorithm, which selects sequential visits based on

the desirability alone, and the ACO algorithm, which builds on the greedy algorithm to search for a better

global optimum. In that regard, we introduced various parameters throughout Chapter 4 and 5. The

parameter values introduced in Chapter 4 are based our assumption and confirmed by the expert opinion

of ARS. On the long-term these values should be replaced by values that are derived from data. The

parameter values introduced in Chapter 5 are based on management decisions and can be adjusted by the

management after evaluating the results in practice. In the following, we present the chosen parameter

values that we already introduced in earlier sections:

 Parameters that are based on expert opinion:

o Stability Parameter = 0.4 (see Section 4.3.4)

o Margin of error for the number of paid-for visitor hours = 0.1 (see Section 4.2.2)

 Parameters that are based on a management decision:

o Target Reached Parameter = 2 (see Section 5.3.1)

o Visit Day Parameter = 5 (see Section 5.3.2)

o Swap Threshold = 1 minute (see Section (5.4)

o Travel Distance Restriction = 1500 meters (see Section 5.4.2.2)

o Travel Time Restriction = 15 minutes (see Section 5.4.2.2)

o Travel Time Reduction = 10 minutes (see Section 5.4.2.2)

In this section, we design the experiments that we will perform in this chapter. Section 1.4 stated the

research question that we want to show in this chapter whether our planning tool improves the current

Master thesis – Jan Groeneveld

65

situation. For that purpose, we divide this question into four sub question that we will answer in this

chapter:

1. Which prediction model is the most accurate?

In order to answer this question, we use our prediction models and the one of ARS to forecast the number

of PCNs for the same data set as in Section 4.3.2.2. We only consider the first weeks of the data set

(weeks 24 to 42 2016) in order to make sure that this data is also included in the prediction model of

ARS. Otherwise, the ARS forecast would have the disadvantage of not knowing the data.

2. How sensitive are the results regarding the parameter values and functions that we implemented?

This question is answered by performing a sensitivity analysis (Section 6.2), in which we analyze the

impact of changes of some essential elements of our greedy and ACO algorithm on the routes and

forecasted outputs.

3. Which combination of routing algorithm and prediction model lead to the best results?

By simulating the number of PCNs independently from the prediction model, we are able to compare

routes that are based on a different routing algorithm and a different prediction model. The combination

that leads to the best simulated results in terms of the number of PCNs will be considered as the best.

4. Does our planning tool improve the current situation?

We answer this question in Section 6.5 by answering the following two questions:

a. To what extent does our planning tool improve the current situation at EPS?

b. To what extent does our planning tool improve the current planning tool of ARS?

Question 4a is difficult to answer as the best scenario would be to execute our routes in practice. Even

then, the results cannot be compared to results of the routes that EPS would have planned without our

planning tool. Therefore, we show on average the number of PCNs that our planning tool would produce

and compare it to the average number of PCNS of the historical scans of EPS.

We answer Question 4b by inserting the same inputs and compare the output of both routing algorithm to

see which routing algorithm performs better with regards to the number of PCNs.

In Section 4.3.2.2, we discussed the benefit of the mean absolute error (MSE) that it is easy to interpret.

For that reason, we compare in this section the following prediction models based on the MSE:

 Naive forecast (see Section 4.3.2.1)

 Neural Network A forecast (contains the original PCN ratios based on our neural network as

presented in Section 4.3.2.2),

 Neural Network B forecast (some neighborhood predictions of the Neural Network A forecast are

replaced by their nearest neighbor)

 ARS forecast

Since the same data set is used in Section 4.3.2.2, which contains only the known neighborhoods, neural

network A and B are the same. The results of the three prediction models are shown in Table 13.

Mean absolute error in
comparison with data set

Improvement in comparison
with ARS forecast

ARS forecast 0.008973 0%

Naive forecast 0.008741 2.26%

Neural network forecast (A
and B)

0.008615 3.99%

Table 13 – Results of forecasting methods

From these results, we conclude that our naive forecast and our neural network forecast give a more

accurate prediction than the one of ARS, namely 2.26%, respectively 3.99% more accurate in terms of the

MSE. Even though the absolute difference in the MSE seems very small, it has an impact for a big number

of scans, with which EPS is dealing daily. However, a more accurate forecast does not necessarily mean

that the obtained results in reality will be higher. This will be discussed further in our simulation study in

Section 6.4.

Master thesis – Jan Groeneveld

66

In this section, we analyze the impact of some essential parts of our algorithm and discuss the results

regarding the greedy and the ACO algorithm. As a forecast method, we mainly use our Neural Network A

forecast in combination with our occupancy ratio (see Section 4.3.3).

In the section, we experiment with the some parts of our algorithm to see how the results of the greedy

algorithm is affected, such as:

 The stability function

 The Travel Distance Restriction

 The neighborhood swap and break location swap

 The Target Reached Parameter and Visit Day function

In Section 4.3.4, we introduced the stability function, which is determined as: 𝑆(∆𝑡) = 0.4∆𝑡 (Stability

Parameter = 0.4). This function reduces exponentially over time. The lower the outcome of the function,

the lower the number of remaining non-paying visitors that we still expect at a neighborhood since the

previous visit. This assumption is crucial to our planning as it has a big influence on the routes and the

outcomes. Figure 41 shows the route of one shift created by the greedy algorithm using the stability

function, as we introduced it in Section 4.3.4.

Figure 41 – Route that does take the stability function into account as determined in Section 4.3.4

Vehicle 4 starts in the morning at the depot, which is the break location at the top of the figure (break

locations are marked with green points). We know that the vehicle goes to the middle of the figure and

scans neighborhoods and takes a break once at break location 2 (at the bottom of the figure) and once at

the depot. It is not interesting for us here how the vehicle travels exactly but to see that some

neighborhoods are visited multiple times, as shown by more than 2 arcs are connected to it. By manually

checking the route, we see that no neighborhood is visited twice before returning to a break location the

first time.

Now, let us create a route, where we assume that there is no such thing as non-paying visitors staying at a

neighborhood. By ignoring the stability function, we assume that the algorithm will send the PEV to only a

few neighborhoods but multiple times a day. This assumption is confirmed in Figure 42, which shows the

new route for same shift as in Figure 41.

Master thesis – Jan Groeneveld

67

Figure 42 – Route that does not take the stability function into account

This time we see that less neighborhoods are visited within the same shift. This is due to the fact that

neighborhoods are visited multiple times a day. By checking manually the route, we know that one

neighborhood is even visited four times before the vehicles returns for the first break. This is the

consequence of not having the stability function that we introduced. For some regions, it might be the

case that the parking duration of non-paying visitors is short enough that this route would actually be the

best but we assume that this is not the case. However, it is important to do further research on the

parking duration of non-paying visitors.

Let us now consider what happens if the stability function results in very high values such that it is almost

never attractive to go back to a visited neighborhood. As discussed in Section 6.2.2, it is not possible to

set a constraint that ants are not allowed to visit a neighborhood multiple times a day as this would at

some point remove all feasible options for the ant when planning a large number of routes. Therefore, we

use a linear stability function that returns values close to 1: 𝑆(∆𝑡) = max (1 − 0.1∆𝑡 , 0), which leads to less

neighborhoods that are visited multiple times a day. The resulting route of the same shift is shown in

Figure 43.

Figure 43 – Route that is based on a linear stability function

With this linear function, we see that no neighborhood is visited twice. This leads to a strong reduction in

the number of PCNs.

Master thesis – Jan Groeneveld

68

The reason of this sensitivity analysis is only to show the impact of our exponential stability function. We

conclude from this analysis that the stability function has a strong impact on the routes and therefore the

number of PCNs and that this function is an important implementation to deal with the multiple visits of

neighborhoods. However, further research the stability function is required by investigating how long non-

paying visitors (or at least paying visitors) stay at a parking spot.

In Section 5.4.2.1, we introduced the Travel Distance Restriction, which determines the size of the

neighborhood set from which the ant chooses the next neighborhood. This restriction is necessary

because otherwise it can happen that the distances between two neighborhoods become too large such

that the PEF driver is not able to follow the PEV anymore. The consequence of this is that the PEF cannot

do all the follow-up work that is needed and therefore the effective number of PCNs is reduced. We set the

value to 1500 meters because that seems as a reasonable restriction. In the following, we compare the

results of a route with a Travel Distance Restriction of 1500 meters to the routes with a Travel Distance

Restriction of 500 and 5000 meters. Table 14 shows the results of the greedy algorithm based on the

Neural Network A forecast.

500 1228 195126 4385 17.76

1500 954 194277 3444 6.8

5000 1258 203303 4269 19.54

Table 14 – Sensitivity analysis of the Travel Distance Restriction (Neural Network A forecast)

Table 14 shows that the route with a Travel Distance Restriction of 5000 meters leads to a better solution

with regards to the number of PCNs than the one with a restriction of 1500 meters. The reason for that is

that there are less restrictions, i.e., there are more neighborhoods to choose from at each planning step.

This enables the PEV to get to neighborhoods that seem to be very attractive in terms of the number of

PCNs and consequently the priority score. It should be questioned whether the number of PCNs can

actually be increased by such an amount if the distances become this large. A reason for that could be

due to an underestimation of the travel times, which we discussed in Section 4.4. Even though one might

assume that the results of the Travel Distance Restriction of 500 should be more similar to results with a

restriction of 1500 meters than 5000 meters, this is not the case. The reason for this is that with a Travel

Distance Restriction of 500 meters it often happens that there is no feasible available option within that

distance. When that happens, the ant chooses out of all neighborhoods, as explained in Section 5.4.2.1.

Choosing out of all options is similar to choosing the options within a large travel distance, such as 5000

meters, which explains the similarity between those two.

We wonder if this effect is the same when using another forecast (e.g. the ARS forecast). Logically, we

cannot compare the number of PCNs and scans of two different forecasts but we can investigate whether

the effect is the same. The results based on the ARS forecast are shown in Table 15.

500 1235 189564 2706 8.25

1500 1043 213997 2863 4.69

5000 1377 211306 3189 10

Table 15 - Sensitivity analysis of the Travel Distance Restriction (ARS forecast)

From comparing both tables, we conclude first of all that the ARS forecast is faster than the Neural

Network A forecast. This is due to the fact that the Neural Network A forecast checks the parking regime

while computing. In the ARS forecast, this is already included in the forecast. This can be easily adjusted

in the future by already integrating the parking regime in the forecast.

Furthermore, it appears that the Travel Distance Restriction parameter had a bigger impact on the results

when using the Neural Network A forecast. We still see the difference of PCNs between the restriction of

1500 and 5000 meters but not that strong. Looking at the results of the restriction of 500 and 5000

Master thesis – Jan Groeneveld

69

meters, we observe that they are still similar in terms of the travel distance and the algorithm running

time. However, the number of PCNs for the routing algorithm with a travel distance of 500 meters

performs with the ARS forecast much worse than the one with a restriction of 5000 meters.

Generally, we conclude that a higher Travel Distance Restriction leads to more PCNs and requires more

computation time. In this regard, it is important to analyze in practice which distances the PEF can handle

in order to extend this restriction. When increasing the Travel Distance Restriction, it seems that both

forecasts lead to longer travel distances (for the ARS forecast the distances are even longer) but that the

benefit of traveling more is bigger for the Neural Network A forecast because it increases relatively more

than for the ARS forecast. A reason for that could be that the PCN hotspots that cause the large travel

distances, are bigger for the Neural Network A forecast.

In our algorithm, we also introduced two swap mechanisms: a neighborhood swap and a break location

swap. The idea of the neighborhood swap is to swap two neighborhoods if the saved travel time of the

resulting route is above a certain threshold (in our case 1 minute). Note that a swap is not performed if

the improvement of the travel time in percentages is lower than the loss in percentages of the number of

PCNs. An example of a successful swap is shown in Figure 44.

Figure 44 – Comparison of route without neighborhood swap (left) and with neighborhood swap (right)

In this figure, the PEV comes from the left side. Comparing the route without a swap and with a swap, we

see that the swap is successful because the “zigzag” is removed. The idea of the break location swap is

the same. The only difference is that the swap is always performed if the travel time is reduced (no matter

how much). PCNs are not involved in this decision, since in our algorithm no PCNs are obtained at the

break locations. In reality, longer travel times probably lead to more PCNs by scanning on the way which

we do not quantify at the moment but we assume that generally it is better to have shorter travel times.

During our experiments, we have seen that the neighborhood swap rarely improves the route in terms of

the priority score or the number of PCNs. In most cases, the outcome is slightly worse (usually less than

0.1%). This is due to the fact that the saved time apparently does not bring enough time to find new PCNs.

However, as we explained in Section 5.4, we prefer this setting because even though the outcome might

be slightly worse, the route is more logical to the PEV driver. Furthermore, the saved time can additionally

serve as a buffer, which makes the routes more likely to be managed in time. Moreover, in Section 4.4, we

assumed that the travel times are underestimated. If that is the case, zigzags will be more inefficient and

swaps will become more effective and save more time. Another interesting fact that we observed is that

the break location swap, can actually decrease the performance of the route. This seems rather strange

because, as we mentioned earlier, the break location swap only saves time and does not decrease the

number of PCNs. However, sometimes this is the case because the swap does not save enough time to

visit an extra neighborhood and the expected forecasts of the visits are actually lower due to an earlier

arrival. When the PEV arrives earlier to the destined neighborhoods, it can happen that the obtained

number of PCNs become less. Moreover, due to the fact that the swap occurs during the solution building,

the time reduction can lead to a different route which does not necessarily leads to an improved route in

terms of the number of PCNs.

In the end, we keep both swaps because despite of the fact that sometimes the number of PCNs is slightly

decreased, they make the routes more customer friendly and save travel time.

Master thesis – Jan Groeneveld

70

In this section, we consider the Target Reached Parameter and the Visit Day Factor function. Additionally,

we show whether our algorithm actually meets the KPI targets within 90 days based on our forecast. The

Target Reached Parameter determines to what extent the KPI areas that did not reach the targets should

be prioritized (see Section 5.3.1). The Visit Day Factor function determines to what extent the focus of the

algorithm lies on the neighborhoods that have not been visited once a week (see Section 5.3.2).

During our experiments, we made an interesting observation. Even though the the forecasted number of

PCNs is higher when using our Neural Network A forecast than when using the ARS forecast (this is not

only the case for the forecasted number but also for the simulation, as we show in Section 6.4.2), we

noticed that the forecasted number of PCNs in “Centrum” are on the long-term lower when we apply the

Neural Network A forecast instead of the ARS forecast. Generally, we cannot compare these outputs due

to fact that different forecasting methods are used. However, if the reason behind it is that the Neural

Network A forecast has a lot of PCN hotspots close to “Centrum”, which pull the PEVs out of this KPI area,

this could be a problem because it leads to less scans in “Centrum”. In this section, we will also

investigate whether this is a problem.

Let us first consider the results of the routing algorithm based on the ARS forecast. When creating a

planning for 90 days for the highest PCN targets that we know of, we see that the Target Factor 2 works

well in that sense that all targets are met. We choose to increase these PCN targets to see if the routing

can still handle these fictive targets. The results are shown in Table 16.

PCN

Target

60000 7800 850 20000 6700 22000 8500 37000 11000 3700

PCN

Current

61552 11413 923 27510 9508 29512 13085 50484 15301 3599

Payment

Rate

Target

0.81 0.88 0.88 0.87 0.8 0.81 0.81 0.92 0.86 0.81

Payment

Rate

Current

0.79 0.9 0.87 0.85 0.79 0.79 0.8 0.85 0.85 0.84

Average number of neighborhoods without a visit once a week: 34.39

Table 16 – KPI matrix after a planning of 90 days with a Target Reached Parameter of 2, a limited Visit

Day Factor, and the ARS forecast

Table 16 shows the basic KPI targets and not the upper bounds that we computed for our algorithm (see

Section 4.2). We see that the basic PCN target of “Centrum” is met. However, the upper bound, which is

72663 (computed with a high margin of error for the number of paid-for visitor hours of 0.1), is not met

in this case. Since, 60000 is a very challenging and fictive PCN target, which is 14% higher than the

highest historical target for “Centrum” that we know of (52741), and in our simulation in Section 6.4.2 we

show that the simulated number of PCNs is 6.8% higher than the forecasted number of PCNs based on the

ARS forecast, we consider “Centrum” as a reached target. The KPI area “Zuidoost” is the only KPI area that

does not meet the basic PCN target but this is due to the fact that the payment rate target is met at the

beginning of the KPI period. Furthermore, we derive from this table that the average number of

neighborhoods without a visit once a week is 34.39. A part of these neighborhoods belong to the KPI area

“Noord”, which has a quite low PCN target and therefore this KPI area does not need to be visited very

often.

Furthermore, we are interested to see what happens if the Visit Day Factor function is unlimited. This

means that the Visit Day Factor is not limited to 2 anymore and will increase very fast after one week

without a visit. This will force the algorithm to go there and will eventually overrule all other aspects. The

results are shown in Table 17.

Master thesis – Jan Groeneveld

71

PCN Target 60000 7800 850 2000

0

6700 2200

0

8500 3700

0

1100

0

3700

PCN

Current

61436 11384 1027 2730

8

9627 2956

9

1283

1

5017

1

1524

5

3171

Payment

Rate

Target

0.81 0.88 0.88 0.87 0.8 0.81 0.81 0.92 0.86 0.81

Payment

Rate

Current

0.79 0.9 0.87 0.85 0.79 0.79 0.8 0.85 0.85 0.84

Average number of neighborhoods without a visit once a week: 23.88

Table 17 - KPI matrix after a planning of 90 days with a Target Reached Parameter of 2 and an unlimited

Visit Day Factor, and the ARS forecast

We see that the targets are met more or less to the same extent. This can be validated since the average

forecasted number of PCNs is now 2464, which is 13 PCNs less (-0.52%) than the average that we achieved

with a limited visit day factor. However, the daily average number of neighborhoods that have not been

visited once a week is lower. This number decreased from 34.39 to 23.88 (-30.56%) by applying the

unlimited Visit Day Factor. In the end, the management of EPS (or ARS) has to decide whether this is an

improvement. In our opinion, the unlimited Visit Day Factor seems to be preferable. Even more so because

it increases the variability of the routes, which is beneficial for EPS because non-paying visitors are not

able to predict the routes (see Section 5.3.2).

Let us now consider the results based on the Neural Network A forecast with the unlimited Visit Day

Factor in Table 18.

PCN

Target

60000 7800 850 2000

0

6700 2200

0

8500 3700

0

1100

0

3700

PCN

Current

55895 12327 2906 2700

5

1113

6

3145

4

1482

1

5403

7

1782

1

6766

Payment

Rate

Target

0.81 0.88 0.88 0.87 0.8 0.81 0.81 0.92 0.86 0.81

Payment

Rate

Current

0.79 0.9 0.87 0.85 0.79 0.79 0.8 0.85 0.85 0.84

Table 18 – KPI matrix after a planning of 90 days with a Target Reached Parameter of 2 and an unlimited

Visit Day Factor, and the Neural Network A forecast

As mentioned in the beginning, the basic PCN target in “Centrum” is not met but the forecasted average

daily number of PCNs for all KPI areas with the Neural Network A forecast is 138 higher (2602 PCNs on

average). Although the basic PCN target of “Centrum” is not met in this case, we are confident that our

algorithm based on the Neural Network A forecast will meet the realistic future targets of EPS, because:

 the PCN target of “Centrum” is 14% higher than the highest historical PCN target

 we know from Section 6.4.2 that the simulated number of PCNs is 9.5% more than the number of

PCNs that is predicted by the Neural Network A forecast

 we know from Section 6.5.1 that we are using less shifts than EPS uses on average.

Consequently, we do not consider the observation that we made in the beginning (the less PCNs in

“Centrum” with the Neural Network A forecast) to be a problem.

When increasing the Target Reached Parameter to 3, the number of forecasted PCNs in “Centrum” is

increased to 57087 and therefore closer to the target. However, the average number of forecasted PCNs is

Master thesis – Jan Groeneveld

72

lower (2558 PCNs on average) due to the fact that more and more vehicles are forced to “Centrum” as it is

the only KPI area that did not meet the upper bounds of the KPI targets. The unbalanced distribution of

the PEVs leads to an oversaturation of the “Centrum”, which finally leads to the smaller number of PCNs.

This can also be seen in Figure 45.

Figure 45 – A 90 day planning showing the number of daily PCNs and the number of PEVs that are

assigned to “Centrum”

This figure shows for every planned day how many PEVs are assigned to “Centrum” and how many PCNs

are forecasted that day. We see that towards the end of the KPI period more and more PEVs are assigned

to “Centrum” as its PCN target is not met. Furthermore, we observe that the oversaturation that is caused

by the many PEV drivers in “Centrum” leads to less PCNs towards the end. Note that the high number of 7

or 8 assigned PEVs to “Centrum” is an exception that is caused by the fictive high PCN target.

If the planning tool would not create a new planning every day, it would be interesting to consider

assigning the PEVs on the long term. In this regard, it would be required to compute the average

forecasted number of PCNs that is obtained in a KPI area by assigning X (1…12) PEVs to the KPI area. The

more PEVs are assigned to one KPI area, the lower is the average number of PCNs of one PEV. Thereafter,

these computations could be used to optimize the distribution of the PEVs to the different KPI areas for a

certain period of time (e.g., one week or the entire KPI period).

Finally, we conclude that in our opinion the best overall performance is achieved with an unlimited Visit

Day Factor and a Target Reached Parameter of 2. Even though the fictive target of 60000 in “Centrum” was

not met with the Neural Network A forecast, we are confident that it will manage the realistic future

targets of the municipality, which are assumed to be lower (the highest historical target that we know of

was 52741). It is also important to further investigate the variability of the paid-for visitor hours because

the assumption of 10% that we use now increases the PCN target by 10% (see Section 4.2.2). This

especially effects the PCN target of “Centrum” because it already the highest PCN target.

When making routes for 12 PEVs (also denoted as vehicles or ants), which is the usual amount of vehicles

that EPS uses, with our ACO algorithm, we had some difficulties to find better solutions than the solution

of the greedy algorithm (denoted as greedy solution), which is the solution of the first iteration. After

trying different parameters and update strategies, we wonder whether the number of deployed PEVs has

an impact on the performance of the ACO algorithm. For that reason, we considered making a route for

only one vehicle, and indeed we received good results with the following parameter values (parameters

are introduced in Section 5.4.2 and Section 5.4.3):

 Update Strategy 1

 ρ = 0.90

 𝜓 = 0.95

 𝑄0 = 0.4

 𝐷𝑄0
 = 0.1

Master thesis – Jan Groeneveld

73

 𝜏0= 0.8

 α = 1

 𝛽 = 2

 Number of iterations = 10

The outcomes for one vehicle are shown in Table 19.

Day Iteration Number Of PCNs Priority score Improvement compared to greedy solution

1 1 254 508.12 0%

1 2 272 543.70 7%

1 3 257 513.66 1%

1 4 291 582.45 15%

1 5 278 555.44 9%

1 6 264 528.04 4%

1 7 266 531.96 5%

1 8 300 600.23 18%

1 9 282 563.56 11%

1 10 306 612.28 20%

Table 19 – Results of the ACO algorithm for one vehicle

We derive from this table that the priority score (and also the number of PCNs) increases with the number

of iterations. After 10 iterations, the solution is already improved by 20%. We conclude that the ant is

indeed learning and that our ACO algorithm works at least for one vehicle. Unfortunately, this learning

effect seems to vanish when we create routes for more vehicles with the same parameter settings. Figure

46 shows the improvement towards the greedy algorithm for 1, 2, 3, and 7 vehicles in 10 iterations.

Figure 46 – Results of the ACO algorithm for 1, 2, 3, 7, and 12 vehicles

From Figure 46, we conclude that the learning effect decreases with the number of vehicles. We have

observed that for 7 vehicles, the greedy solution is rarely improved. For 12 vehicles, it is sometimes

possible to find an improvement; however, it takes a lot of time and only improves the solution by roughly

1%. For many vehicles the results retrieved by our Update Strategy 3 (Section 5.4.3.3), which updates the

pheromones separately for all PEVs, seems to perform a bit better. Nevertheless, the results are still not

good enough to significantly improve the solution. As a next step, we want to investigate what happens

when (too) many vehicles are used.

One logical explain could be that with more deployed PEVs, also more PEVs are deployed to the same KPI

area (for instance “Centrum”). When many ants share the same KPI area, the learning effect that always

Master thesis – Jan Groeneveld

74

applies for one single ant gets more complicated. For instance, in the past the first ant has learned a new

route that improves the results. However, it might happen that the second ant changes its route within

this iteration and visits some nodes that the first ant would have travelled to. Therefore, the learning

effect of the first ant becomes in this example useless.

Furthermore, there could be another reason that leads to a decrease of the learning effect. Amsterdam

has 320 neighborhoods with an active parking regime. If a neighborhood must not be visited more than

once a day and 12 vehicles are scheduled, every vehicle can visit 26.67 (320/12) neighborhoods on

average. With our current parameter settings and inputs, every vehicle visits around 45-50 neighborhoods

a day. The first vehicle visits around 65-70 neighborhoods due to the additional night shift (see Section

5.4.1). Although ants return to visited neighborhoods due to the high desirability and not because there is

no other choice, this means that it is even required that neighborhoods are visited multiple times a day.

This is also the reason that the algorithm does not work when 12 vehicles are used and a neighborhood

must not be visited more than once a day. If we assume that every vehicle visits on average 45

neighborhoods a day, then only 7.11 vehicles (320/45) will be required to visit all neighborhoods once.

After 7 vehicles, one could say that Amsterdam gets “oversaturated” and therefore neighborhoods have to

be visited at least a second time. We wonder if this is the reason for the decrease of the performance of

the ACO algorithm. As discussed in Section 6.2.1.1, we know that the stability function influences the

number of times that a desirable neighborhood is visited on a day. Therefore, we want to investigate

whether a different stability function that leads to fewer multiple visits of a neighborhoods increases the

performance of the ACO algorithm for 12 vehicles. For this purpose, we choose the following linear

stability function: 𝑆(∆𝑡) = max (1 − 0.1∆𝑡 , 0), which leads to less neighborhoods visited multiple times a day,

as shown in Section 6.2.1.1. During our experiments with different parameters and a different update

strategy, we managed to improve the greedy solution by 3% after 10 iterations with the following

parameter setting:

 Update Strategy 3

 ρ = 0.95

 𝜓 = 0.95

 𝑄0 = 0.4

 𝐷𝑄0
 = 0.1

 𝜏0= 0.8

 α = 1

 𝛽 = 2.5

 Number of iterations = 10

As we see that the ACO algorithm can improve the greedy solution when using another stability function,

we conclude that the stability function has an impact on the performance of the ACO algorithm. Since

there is a reason for our stability function, changing it is not an option. We assume that this improvement

that occurs due to changing the stability function has the same cause that we experienced before with

less PEVs, namely that there are less multiple visits of neighborhoods a day. Apparently the ACO

algorithm performs better when the problem is more similar to the original TOP without multiple visits

than our proposed generalization with multiple visits. It seems that the pheromones of the ACO algorithm

cannot deal with the multiple visits as good as our greedy algorithm. Therefore, we conclude that the ACO

algorithm might not be the best choice to deal with this new generalization. Since the entire problem

especially with the multiple visits is very time-related, it might help to apply time-dependent pheromones,

which was already done by Jiang, Chen, Ma, and Deng (2011). However, even though the time-dependency

would be included in the learning effect, it is not guaranteed that time-dependent pheromones would

really lead to an improvement regarding the multiple visits. Considering the greedy algorithm, the

algorithm could be improved by adding a saturation factor that determines how many neighborhoods

have been visited already in that area around the considered neighborhood at a certain time.

Finally, we conclude that even if the ACO algorithm leads to a better result than the greedy algorithm, the

improvement is very little for the usual number of deployed PEVs (smaller than 1%). If we want to apply the

ACO algorithm with 10 iterations, it means that the computation time for one route is more than 10 times

larger (10 iterations + 10 times a pheromone update). Therefore, we choose only to consider the greedy

algorithm further in this chapter.

In this simulation study, we want to show the impact of different forecasting methods on the performance

of the routes created by the greedy algorithm. We only consider our greedy algorithm, since we have

shown in Section 6.2.2 that the ACO algorithm did not significantly improve the results for 12 vehicles.

The following five different prediction models are compared:

Master thesis – Jan Groeneveld

75

1. Poor forecast (i.e., same PCN ratio for all neighborhoods at any time)

2. ARS forecast

3. Naive forecast

4. Neural Network A forecast

5. Neural Network B forecast

Except for the ARS forecast (because it is not our forecast) all forecasts are based on the occupancy ratio,

as determined in Section 4.3.3. We run the experiments for three weeks. In the data analysis (see Section

4.3.1), we have shown that the PCN prediction is not influenced by the week number, except for the very

small decline of the non-paying ratio. We consider three weeks enough to get accurate averages. The

structure of our simulation, will be the following:

For each of the five prediction models:

1. We create a forecast for three weeks

2. We create routes for three weeks using our greedy algorithm

3. We simulate the number of PCNs for every visit of the planned routes

4. We evaluate the results based on the simulated number of PCNs and not on the forecasted

number of PCNs.

Section 6.3.1 explains how we simulate the number of PCNs and Section 6.3.2 discusses the results of this

simulation study.

In this section, we explain how we are going to simulate the number of PCNs. It is our general idea to

simulate values for the PCN ratio and the occupancy ratio. Thereafter, the number of parking spots are

multiplied by these ratios, in order to simulate the expected number of PCNs. For this purpose, we have to

find a suitable distribution for both ratios.

We start with the PCN ratio, where we consider the PCN ratios of the same data set that we used in

Chapter 4. The problem of finding a suitable distribution for PCN ratio of a certain hour in a certain

neighborhood is that the PCN ratio of this data set depends on different factors such as time and space.

For that reason, we divide the historical PCN ratios by the different factors that we determined for our

naive forecast (see Section 4.3.2.1). By doing so, we normalize the historical PCN ratios such that they do

not depend on time nor space anymore and we can look for a suitable distribution. We find that the

normalized PCN ratios follow a mixed lognormal distribution (for more details, see Appendix E). This

enables us to simulate values for the normalized PCN ratio. Since the normalized PCN ratio is not needed

but the PCN ratio that depends on a specific time and neighborhood, we have to multiply these simulated

normalized PCN ratios by the different factors. This process is the same as computing the naive forecast

(Section 4.3.2.1), except that the base line PCN ratio is now replaced by the simulated and normalized

PCN ratio.

For the occupancy ratio, we do not find a distribution but assume a normal distribution. The reason

behind this is that the occupancy ratio is still more an assumption rather than a ratio retrieved from data.

Therefore, it does not make sense to try to fit it to a certain distribution. Regarding the normal

distribution, we use the average and standard deviation that we computed in Section 4.3.3.

In conclusion, the simulated number of PCNs is the same as the naive forecast, except for the important

difference that the base line PCN ratio and the occupancy ratio are simulated and not averages.

In this section, we present the results of our simulation study. Table 20 shows the forecasted and

simulated results (average number of scans, average number of PCNs, and the average PCN ratio) of the

routes that are based on the different forecasting methods. The forecasted outputs are based on the

different applied forecasting method but the simulated outputs and the average distance travelled are

independent. Therefore, we use the independent outputs to compare the different prediction models. As

discussed in Section 6.3.1, the only difference between the number of PCNs of the simulation and the

naive forecast is that the first one is based on simulated values and the latter on total averages. This

means that the longer the simulation runs, the smaller the difference between the forecasted and

simulated number of PCNs gets. We used this fact as a validation for the simulation accuracy after three

weeks. More importantly, that means that the algorithm based on the naive forecast has an advantage

because on average its forecasted number of PCNs is closer to the “truth” of the simulation. Table 20

proves that indeed the difference between the forecasted and simulated number of PCNs is the smallest

for the naive forecast.

Master thesis – Jan Groeneveld

76

Naive 815 186043 3496 0.0188 189940 3468 0.0182

Poor 807 227685 3165 0.0139 232511 2774 0.0098

ARS 906 184315 2631 0.0142 189040 2809 0.0149

Neural Network A 839 178874 3150 0.0176 182857 3450 0.0189

Neural Network B 831 174047 3241 0.0186 178278 3334 0.0187

Table 20 – Results of our simulation study using our greedy algorithm with different prediction models

Furthermore, we observe that the algorithm based on the poor forecast, logically tries to maximize the

number of scans as the PCN ratio is everywhere the same. It succeeds in having the highest number of

forecasted and simulated scans but not in the number of PCNs.

Finally, we consider our proposed Neural Network A forecast as the best forecast in terms of the

simulated number of PCNs and average PCN ratio. Therefore, we will use this forecast further in this

chapter.

In this section, we validate whether our routing algorithm actually improves the current situation. For this

purpose, compare the number of PCNs that we expect from our planning tool with the historic number of

PCNs of EPS in Section 6.4.1 and we compare our algorithm to the current algorithm of ARS in Section

6.4.2. Based on the results of Section 6.3.1.4 and Section 6.3.2, we use our greedy algorithm with an

unlimited Visit Day Factor.

Due to the limited time of this research, it is not possible to run our routes in practices to see if they lead

to an improvement. Therefore, we compare the historical results of EPS of 90 days (01.01.2017-

31.03.2017) with a planning that we create for 90 days.

During the 90 days, EPS obtained on average 2104 PCNs per day, whereas our algorithm produces 2601

PCNs per day with the Neural Network A forecast, which we showed in Section 6.2 is the most accurate.

Even though this shows an improvement of 23.62%, we have to take into account that this approach has

some limitations. First of all, we cannot yet determine the accuracy of, for instance, the computed travel

times, service times, occupancy ratio, and the stability function because they have not been tested in

practice yet. Another point is that maybe during this period, the number of paying visitors was relatively

high, which led to less PCNs. The uncertainty of this approach, does not necessarily mean that the

forecasted number of 2601 PCNs would be lower in practice but it could be the case. One thing, we can

say more about is the number of deployed PEVs. Our algorithm schedules 12 PEVs on usual weekdays

(Monday till Saturday) with one night shift. On Sunday, 3 PEVs do only the Sunday shifts, which we

described in Section 2.1.4. That means, on average we use 10.7 vehicles a day for these selected days.

The number of vehicles that EPS uses, changes daily but we can compute how many PEVs they schedule on

average. It appears that they use on average 11.5 PEVs a day and therefore more. In spite of the

limitations, we assume that EPS would perform better in terms of the number of PCNs. In addition, we

have shown in Section 6.2.1.4 that our planning tool does not only lead to a high number of PCNs but also

that we are certain that it will meet the future KPI targets. Even though we cannot make prediction about

the increase of the payment rate in the future, which finally leads to a bigger performance bonus,

achieving more PCNs and performing better with regards to the PCN target decreases the likelihood of EPS

getting a fine for not meeting one of the KPI targets.

Apart from that, we experienced during the computation that it takes 6 hours and 42 seconds to make

such a planning, which is more or less equal to the 6 hour constraint we had. By further optimization of

the computational efficiency, we are confident that the constraint will not be exceeded.

Master thesis – Jan Groeneveld

77

In this section, we compare our routing algorithm with the one of ARS by creating routes based on the

same inputs (including also the same forecast). In order to have a valid comparison between the two

algorithms, we compare the routes from Monday till Saturday with 12 vehicles and without a night shift.

Based on the outputs we retrieved from the ARS routing algorithm for one week (24.08.-30.08.2017), we

compare both routes regarding the number of PCNs. The results are shown in Table 21.

Weekday

Number of PCNs Improvement

 ARS algorithm Our algorithm Absolute in %

Thursday 1766 2447 681 39%

Friday 2061 2411 350 17%

Saturday 2376 2981 605 25%

Monday 1619 2457 838 52%

Tuesday 1787 2411 624 35%

Wednesday 1674 2417 743 44%

Total 11283 15124 3841 34%

Table 21 - Results of the number of PCNs comparing ARS algorithm to our algorithm

We conclude that our algorithm outperforms the current ARS algorithm by 34% for the weekdays Monday

until Saturday. There are several explanations for this difference. First of all ARS uses a 4-hour-no-visit

constraint of the neighborhoods but we use the stability function, which allows the PEV to return to

neighborhoods more often although the expected number of PCNs will be less. Replacing this hard

constraint by a soft constraint gives the algorithm more flexibility. However, this is based on the

assumption that our stability function is correct. Another reason can be a better distribution of the

vehicles. Moreover, the routing algorithm of ARS uses no Travel Distance Restrictions but always considers

the eight nearest neighborhoods. In most cases, there are more neighborhoods within 1500 meters so our

algorithm considers more options, while in some cases, it considers less due to this approach.

Furthermore, we introduced the two swap methods and the progress factor, which can also lead to an

improvement.

The 34% improvement shows that our algorithm clearly outperforms the implementation of ARS algorithm

at its current state. This finally leads to more PCNs, meeting the targets faster, and more importantly less

fines and more rewards for EPS.

In this chapter, we have tackled four sub questions regarding our original research question whether our

planning tool improves the current situation. Throughout this chapter, we have shown that our stability

function and Travel Time Restriction have a big impact on the routes and its results. Therefore, it is

important to do further research on the stability function and see in practice to what extent the Travel

Time Restriction can be increased (regarding the speed limitations of the PEV). Furthermore, we stated

that we are convinced that our algorithm will manage to meet future KPI targets and that the unlimited

visit day factor is probably preferable because the average number of neighborhoods that are not visited

once a week is reduced by 30.56% and the number of forecasted PCNS only by 0.52%.

Unfortunately, we experienced that the ACO algorithm has difficulties to improve the solution of the

greedy algorithm, when many PEVs (for instance 12) are deployed. We assume that one reason for this is

that with more deployed PEVs, ants start to “steal” visits from the desired path of other ants. Another

reason is that the number of neighborhoods with multiple visits increases. Apparently the ACO algorithm,

which shows good results for the original TOP in the literature and in our case for a little number of PEVs,

cannot handle the multiple visits as good as the greedy algorithm.

Moreover, we have shown that our Neural Network A forecast is the most accurate forecast with regards to

the PCN ratio in comparison with the presented prediction models and that it also leads to the most PCNs

in our simulation scenario.

Furthermore, we are convinced that EPS benefits from our planning tool but the routes of our algorithm

need to be tested in practice before we can proof it. However, we did prove (assuming that our stability

function is correct) that our greedy algorithm leads to 34% more PCNs than the current ARS algorithm

when the same inputs are used.

Master thesis – Jan Groeneveld

78

In Section 1.4, we stated different research questions, which we tackled within the chapters of this

research. In Chapter 2, we analyzed the current situation at EPS with regards to the routing and planning

process. Chapter 3 covered the literature about different routing problems, prediction models, and

theories about parking and payment behavior. In Chapter 4, we developed all inputs including a neural

network prediction model based on historical data. These inputs were needed for our routing algorithm,

which we designed in Chapter 5. Finally, we discussed the results of our prediction model and our routing

algorithm in Chapter 6.

In this chapter, we reflect about the contribution of this research to the literature in Section 7.1 and we

discuss the practical conclusion for ARS and EPS, including limitations and recommendations, in Section

7.2

We introduced this routing problem as a new research problem, namely the TD-PTOPMVMC. This problem

is a new generalization of the TOP in which we have multiple constraints, time-dependent inputs, a

periodic planning horizon, and nodes (in this case neighborhoods) that can be visited multiple times a

day. In order to deal with multiple visits, we introduced a stability function, which determines how many

non-paying visitors, who already received a PCN, stay in the parking spot after a certain amount of time.

This function decreases exponentially over time. Consequently, after a certain amount of time it makes

sense to return to an attractive neighborhood the same day. To the best of our knowledge, this problem is

new to the literature and it is also the first research to solve the parking enforcement problem on a large

scale. The research of Summerfield et al. (2015) tackles the parking enforcement problem on a street level

my solving the CPP with rewards. Next to the parking enforcement, this problem (at least the TOP with

multiple visits) could have different applications, such as different patrol, inspection, or collection

problems. Furthermore, we can think of a salesman problem, where, for instance, an ice cream salesman

visits different locations and returns to a certain neighborhood after enough time has passed.

In order to solve this problem, we presented a routing algorithm that creates a solution based on a greedy

algorithm and then tries to optimize this solution by constructing new solutions based on an ACO

algorithm Even though, we showed that the ACO algorithm performed well for one vehicle, it had

difficulties finding better solutions than the greedy function for 12 vehicles, which is the standard number

of used vehicles by EPS (from Monday to Saturday). It seems that too many vehicles lead to an

oversaturation, which leads to decrease of the learning effect of the ants. One possible reason is that ants

start to “steal” visits from the desired path of other ants. Another reason is that this oversaturation leads

to more multiple visits of neighborhoods the same day and we concluded that the ACO algorithm works

better with less multiple visits and therefore when the problems is more similar to the original TOP

(without multiple visits).

Apart from that, we have shown an approach of how to perform a data analysis. In our data analysis, we

split the PCN ratio in its components, namely the visitor ratio and non-paying ratio, in order to analyze

different effects regarding different time-, space-, or weather-related factors towards these ratios. In our

opinion, this was a useful approach to gain a lot of specific insights. In this regard, we also showed the

usefulness of clustering techniques, such as K-means clustering and the principal component analysis.

Furthermore, we have shown how a neural network can be applied to such a regression problem and

which variables may be interesting to consider. To train our neural network, we used a test and training

set to optimize the design of our training network based on the results of the test set. We have learned

that adding an evaluation set to the test and training set, can be a valuable supplement to test the

generalization capacity of the network. This is also discussed by Basheer and Hajmeer (2000). In our case,

this could be done by taking some specific observations (e.g., a few neighborhoods or one specific hour)

out of the original data set. These excluded observations would form the evaluation set. Afterwards, the

remaining data set can be split in the test and training set and results of the trained model can be tested

for overfitting on the test set and the generalization capabilities of the neural network can be evaluated

based on the evaluation set.

Another interesting aspect, is our method to compute the upper bounds for the KPI targets. Uncertainty

concerning specific targets, has a broad field of applications, which might be valuable to the literature.

Master thesis – Jan Groeneveld

79

This section contains a summary of the conclusions made in this research (Section 7.2.1), our limitations

(7.2.2), and recommendations (7.2.3) that are relevant for EPS.

This section briefly summarizes the conclusions of this research that are relevant for EPS. For more

detailed conclusions regarding the research questions, we refer to the conclusions of the specific

chapters.

In this research, we tackled the routing problem of EPS who require a planning tool that plans the routes

for their scanning vehicles (denoted as PEVs) for a certain KPI period. It is also required to give an

indication that all KPI targets of certain KPI areas will be met until the end of this KPI period. The targets

are met by visiting a neighborhood, i.e., scanning all parked vehicles in a neighborhood. The owners of

parked cars who did not pay for parking, receive a fine, which is called a PCN. In this research, we

developed a planning tool by designing and implementing a routing algorithm in a Python platform and

computed inputs that this algorithm uses. Our most important input is our prediction model to compute

the expected number of PCNs. In this regard, we came up with the idea of predicting the number of PCNs

by predicting the occupancy ratio and the PCN ratio and multiplying them by the number of parking spots

in a neighborhood. The advantage of this is that, for instance, the occupancy ratio can be replaced

afterwards.

Next to that, we found in our data analysis that the weather has no impact on the PCN ratio. However, we

did see that the hour of the day and weekday have a strong impact. Furthermore, we showed that the

payment rate has increased from approximately 89% to 90% within one year (1.6.2016-1.6.2017).

Finally, we presented our results in Chapter 6. We have proven that our neural network has a more

accurate prediction than the current implementation of the ARS forecast (4%) and that our routing

algorithm leads to better results (34%) than the current ARS routing algorithm within the constraint of 6

hours.

This section discusses the limitations of our research. First of all, we had to make some assumptions. The

first example is the variability of the paid-for parking hours, which we used for determining the upper

bound of our PCN target (see Section 4.2.2). The second example is more important as it concerns the

stability function, which is based on our assumption the expert opinion of ARS. Preferably, this function

should be derived from data and estimated separately for every neighborhood. Unlike the stability

function, the occupancy ratio is derived from data but not in a very accurate manner. A more accurate and

time- and space dependent estimation is desirable. Both, the stability function and occupancy ratio, have a

strong impact on the number of PCNs, therefore it is important to prioritize these in the future research.

Another limitation is that the planning has not been tested in practice yet. Especially for the travel time,

the service time (scan duration), and the occupancy ratio, this leads to an uncertainty in the realization of

the planning that the planning tool provides.

Moreover, there are some limitations that come with the design of our planning tool. For example, the

commitment to computing the routes every day, leads to the problem that the algorithm cannot make a

long term planning because the next day the planning will be recomputed. This limits, for instance, the

possibilities regarding the distribution of the PEVs, on which we further elaborate in Section 7.2.3.

Furthermore, we designed the algorithm to create the routes on a neighborhood level. Even though this is

a requirement of EPS because they want to scan entire neighborhoods in the future, this limits the

capability of the algorithm. If the routing was determined on a street level, the algorithm would have more

flexibility due to a bigger solution space. However, a bigger solution space would also increase the

complexity and computation time of the problem. Moreover, it would have been possible to include the

number of scans and PCNs that are made while travelling to a scheduled neighborhood even with

operating on a neighborhood level. Such an approach would have presented the reality better but would

have also increased the complexity of the problem by making it a mixed TOP, as described in Section 3.1.

In the end, we did not choose such an approach because it would have required an extensive data analysis

of every single street (instead of every neighborhood). Regarding our data analysis of the neighborhoods

and computation of the service time and the occupancy ratio, we had to deal with another limitation,

namely that the PEVs did not always scan the neighborhoods entirely in the past. This was already

encountered by ARS. If this had been the case, it would have been relatively easy to make predictions

about the service times and also the occupancy ratio of neighborhoods.

Master thesis – Jan Groeneveld

80

First of all, we recommend ARS to make use of our presented greedy algorithm (see Chapter 5) with the

parameter values, as presented in Section 6.2.1, in combination with a Neural Network A forecast (see

Section 4.3.2.2). Furthermore, we recommend to use an unlimited Visit Day Factor due to the results of

the sensitivity analysis (see Section 6.3.1.4).

From the limitations, we derive that still more research is required to derive the occupancy ratio and

stability function from data. The occupancy ratio could be derived more accurately by reconstructing the

streets that the PEVs have driven in the past and then dividing the number of scans (without double scans)

in a street by the number of parking spots that the street has. In order to derive the stability function from

data, historic data about the parking duration of non-paying (or at least paying) visitors is needed. In

Section 4.3.4, we explained how this could be done. This data about the parking duration could also be

used for the control chance. In Section 2.1.8, we discussed that the control chance is not a probability but

the average number of PCNs within a not-paid-for parking hour. If the not-paid-for parking hours are

divided by the average parking duration of a non-paying visitor, it would be possible to estimate the

probability that a non-paying visitor is actually fined with a PCN.

Furthermore, we discussed in Section 4.4, that the travel times should be further investigated because it

seems that they are underestimated. In practice, it is important to keep inspecting the travel times and

also the service times and make adjustments when there are unexplained significant differences.

Regarding the service times, we developed a method to compute them in Section 4.5. This could be an

alternative to the current method. In order to implement this, more data is required to determine the

adjustment factors for each neighborhood. At least one full scan of a neighborhood would be needed as a

start. Thereafter, the factor could be adjusted and improved continuously. At some point when there is

enough data of the visits, in which the neighborhood is scanned fully, it makes sense to consider applying

a neural network to compute the service times.

Apart from the inputs, there are other points that should be considered in the future. In order to further

improve the algorithm, we have the following ideas, which do not necessarily result in better solutions.

Within this research, we developed an algorithm that created routes for the vehicles sequentially due to

results of our findings in the literature. However, these findings were about the TOP, whereas we

introduced a new generalization of the TOP with multiple visits. Due to our sequential approach,

sometimes later visits of other vehicles have to be updated. With a parallel planning, this would not be

necessary and the computation time would be reduced. However, it is not clear if this would increase or

decrease the performance of the routes. As mentioned in Section 6.2.2, it could be interesting to add a

saturation factor to the desirability function, which takes the number of recent visited neighborhoods that

surround the considered neighborhood into account. This would help the greedy algorithm to go to

neighborhoods where it has more feasible options to go to afterwards. Another, possibility is to assign

every vehicle to certain neighborhoods at the beginning of the day. This would require a smart clustering

algorithm that finds the best neighborhoods for every vehicle. Afterwards, the routing problem would not

be a team orienteering problem but an orienteering problem since the routing of every vehicle would be

considered as independent problems. For that reason, no recomputation due to latter visits would be

required and maybe the metaheuristics would work better. However, it could also lead to a worse

performance due to the limited neighborhoods options for every vehicle. We are certain though that the

computation time would be reduced. In order to improve our proposed ACO algorithm, one might

consider using time-dependent pheromones, since the entire problem especially with the multiple visits is

very time-related. However, even though the time-dependency would be included in the learning effect, it

is not guaranteed that time-dependent pheromones would really lead to an improvement regarding the

multiple visits. Next to that, EPS could also consider other constructive heuristics (e.g., adaptive search).

Regarding our distribution strategy that we presented in Section 5.4.1, one might consider it also as a

separate scheduling problem. If we did not create schedules on a daily basis but on a weekly basis, then it

would be possible to schedule the KPI areas that needs to be visited for one week. This would probably

lead to a more balanced distribution due to the fact that the algorithm could determine not to visit one

KPI area today but for example the day after tomorrow.

As an alternative to the Visit Day Factor and the Target Factor, we discussed in Section 5.3 that one might

also consider that every visit leads to a reward in euros if the fine of a KPI area is decreased. We argued

that it is not possible to send the vehicles only based on the amount of euros to a neighborhood because

neighborhoods in a KPI area with a neural or bonus status would never be visited because we do not have

a direct impact on the payment rate. However, it would be possible to make an assumption that a certain

number of scans increases the payment rate by a certain amount. Additionally, a visit could decrease the

margin of error of the payment rate. The more a neighborhood is scanned, the smaller should be the

difference between the payment rate of EPS and the municipality (see Section 4.2.1). By reducing the

Master thesis – Jan Groeneveld

81

margin of error of the payment rate, the bonus would actually be increased, but the problem remains that

if not all KPI areas are at least in a neural state, no bonus is given.

In the future, the rule for receiving a PCN might be changed such that visitors can receive two PCNs on

one day. If this is the case, the stability function needs to be adjusted because visiting neighborhoods a

second time would not be a bad thing. Even more so, because neighborhoods that resulted in high

number of PCNs during the first visit, would become even more attractive for a second visit. This,

however, would preferable require an online algorithm that takes the actual number of PCNs of the first

visit into account. This would mean that when the PEV drives through a neighborhoods and knows this

visit resulted in an extraordinary high number of PCNs, that it would make sense to visit that

neighborhood immediately afterwards again.

In Section 3.1, we presented also another idea for such an online application. In the future, one might

consider to plan also the routes for the PEV within a scheduled neighborhood. For that reason, an exact

algorithm for the Chinese postman problem could be applied. Since this problem is small enough to be

solved to optimality in reasonable time, this could be implemented as an online or offline application.

With an online application, the algorithm could take unexpected problems on the way into account and

therefore adjust the route within the neighborhood in order be on time for the next scheduled

neighborhood. Furthermore, we mentioned the mixed TOP, which does not only assign weights to nodes

(neighborhoods) but also to the arcs (travel route between two neighborhoods). If the parking spots that

are scanned by using a certain travel route are known, then it would be possible to make a prediction or

estimation about the expected number of PCNs in this route. However, the occupancy ratio and PCN ratio

of these parking spots, would require an additional analysis.

Master thesis – Jan Groeneveld

82

Adiv, A., & Wang, W. (1987). On-street parking meter behavior (No. UMTRI-86-37).

Aikoh, T., Abe, R., Kohsaka, R., Iwata, M., & Shoji, Y. (2012). Factors influencing visitors to suburban open

space areas near a northern Japanese city. Forests, 3(2), 155-165.

Amsterdam. (2017, July 6). About parking regime in Amsterdam. Retrieved from Amsterdam Web site:

https://www.amsterdam.nl/parkeren-verkeer/parkeertarieven

Anderson, T. K. (2009). Kernel density estimation and K-means clustering to profile road accident

hotspots. Accident Analysis & Prevention, 41(3), 359-364.

ANWB. (2017, July 6). About traffic congestion in the Netherlands. Retrieved from ANWB Web site:

https://www.anwb.nl/verkeer/nederland/verkeersinformatie/dagelijkse-drukke-trajecten

Archetti, C., Hertz, A., & Speranza, M. G. (2007). Metaheuristics for the team orienteering

problem. Journal of Heuristics, 13(1), 49-76.

ARS T&TT. (2017, February 1). About ARS. Retrieved from ARS T&TT Web site: http//www.ars-

traffic.com/about-ars

Awerbuch, B., Azar, Y., Blum, A., & Vempala, S. (1998). New approximation guarantees for minimum-

weight k-trees and prize-collecting salesmen. SIAM Journal on Computing, 28(1), 254-262.

Basheer, I. A., & Hajmeer, M. (2000). Artificial neural networks: fundamentals, computing, design, and

application. Journal of microbiological methods, 43(1), 3-31.

Bektas, T. (2006). The multiple traveling salesman problem: an overview of formulations and solution

procedures. Omega, 34(3), 209-219.

Boussier, S., Feillet, D., & Gendreau, M. (2007). An exact algorithm for team orienteering problems. 4OR:

A Quarterly Journal of Operations Research, 5(3), 211-230.

Braekers, K., Ramaekers, K., & Van Nieuwenhuyse, I. (2016). The vehicle routing problem: State of the art

classification and review. Computers & Industrial Engineering, 99, 300-313.

Butt, S. E., & Ryan, D. M. (1999). An optimal solution procedure for the multiple tour maximum collection

problem using column generation. Computers & Operations Research, 26(4), 427-441.

Chao, I., Golden, B. L., & Wasil, E. A. (1996). The team orienteering problem. European Journal of

Operational Research, 88(3), 464-474.

Claassen, G. D. H., & Hendriks, T. H. (2007). An application of special ordered sets to a periodic milk

collection problem. European Journal of Operational Research, 180(2), 754-769.

Cordeau, J. F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J. S. (2005). New heuristics for the vehicle

routing problem. In Logistics systems: design and optimization (pp. 279-297). Springer US.

M. Daszykowski, K. Kaczmarek, Y. Vander Heyden, B. Walczak (2007), Robust statistics in data analysis - A

review, Chemometrics and Intelligent Laboratory Systems, 85(2), 203-219.

Eiselt, H. A., Gendreau, M., & Laporte, G. (1995). Arc routing problems, part I: The Chinese postman

problem. Operations Research, 43(2), 231-242.

Elliot, J. R., & Wright, C. C. (1982). The collapse of parking enforcement in large towns: some causes and

solutions. Traffic Engineering & Control, 23(HS-033 448).

Feillet, D., Dejax, P., & Gendreau, M. (2005). Traveling salesman problems with profits. Transportation

science, 39(2), 188-205.

Gavalas, D., Konstantopoulos, C., Mastakas, K., & Pantziou, G. (2014). A survey on algorithmic approaches

for solving tourist trip design problems. Journal of Heuristics, 20(3), 291-328.

Gavalas, D., Konstantopoulos, C., Mastakas, K., Pantziou, G., & Vathis, N. (2015). Heuristics for the time

dependent team orienteering problem: Application to tourist route planning. Computers & Operations

Research, 62, 36-50.

Gendreau, M., Laporte, G., & Semet, F. (1998). A tabu search heuristic for the undirected selective

travelling salesman problem. European Journal of Operational Research, 106(2-3), 539-545.

Golden, B. L., Laporte, G., & Taillard, É. D. (1997). An adaptive memory heuristic for a class of vehicle

routing problems with minmax objective. Computers & Operations Research, 24(5), 445-452.

Master thesis – Jan Groeneveld

83

Graham, S. M., Joshi, A., & Pizlo, Z. (2000). The traveling salesman problem: A hierarchical model. Memory

& cognition, 28(7), 1191-1204.

Hochbaum, D. S. (1995). A nonlinear knapsack problem. Operations Research Letters, 17(3), 103-110.

Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys

(CSUR), 31(3), 264-323.

Jiang, B. B., Chen, H. M., Ma, L. N., & Deng, L. (2011). Time-dependent pheromones and electric-field

model: a new ACO algorithm for dynamic traffic routing. International Journal of Modelling, Identification

and Control, 12(1-2), 29-35.

Ke, L., Archetti, C., & Feng, Z. (2008). Ants can solve the team orienteering problem. Computers &

Industrial Engineering, 54(3), 648-665.

KNMI. (2017, June 22). About weather data of specific days. Retrieved from KNMI Web site:

http://projects.knmi.nl/klimatologie/daggegevens/

Kok, A. L., Hans, E. W., Schutten, J. M. J., & Zijm, W. H. M. (2010). Vehicle routing with traffic congestion

and drivers' driving and working rules.

Kok, A. L., Hans, E. W., & Schutten, J. M. J. (2012). Vehicle routing under time-dependent travel times: the

impact of congestion avoidance. Computers & operations research, 39(5), 910-918.

Kumar, M., Husian, M., Upreti, N., & Gupta, D. (2010). Genetic algorithm: Review and

application. International Journal of Information Technology and Knowledge Management, 2(2), 451-454.

Larsen, R. J., & Marx, M. L. (2012). An introduction to mathematical statistics and its applications (Vol. 5).

Englewood Cliffs, NJ: Prentice-Hall.

LeCun, Y. A., Bottou, L., Orr, G. B., & Müller, K. R. (2012). Efficient backprop. In Neural networks: Tricks of

the trade (pp. 9-48). Springer Berlin Heidelberg.

Liao, T. W. (2005). Clustering of time series data—a survey. Pattern recognition, 38(11), 1857-1874.

Lin, S. W., & Vincent, F. Y. (2015). A simulated annealing heuristic for the multiconstraint team

orienteering problem with multiple time windows. Applied Soft Computing, 37, 632-642.

Mair, C., Kadoda, G., Lefley, M., Phalp, K., Schofield, C., Shepperd, M., & Webster, S. (2000). An

investigation of machine learning based prediction systems. Journal of Systems and Software, 53(1), 23-

29.

Mladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & operations

research, 24(11), 1097-1100.

Montemanni, R., & Gambardella, L. M. (2009). An ant colony system for team orienteering problems with

time windows. Foundation Of Computing And Decision Sciences, 34(4), 287.

Petiot, R. (2004). Parking enforcement and travel demand management. Transport Policy, 11(4), 399-411.

Rochat, Y., & Taillard, É. D. (1995). Probabilistic diversification and intensification in local search for

vehicle routing. Journal of heuristics, 1(1), 147-167.

Sarkar, K., Ghalia, M. B., Wu, Z., & Bose, S. C. (2009). A neural network model for the numerical prediction

of the diameter of electro-spun polyethylene oxide nanofibers. Journal of materials processing

technology, 209(7), 3156-3165.

Souffriau, W., Vansteenwegen, P., Berghe, G. V., & Van Oudheusden, D. (2010). A path relinking approach

for the team orienteering problem. Computers & operations research, 37(11), 1853-1859.

Summerfield, N. S., Dror, M., & Cohen, M. A. (2015). City streets parking enforcement inspection

decisions: The Chinese postman’s perspective. European Journal of Operational Research, 242(1), 149-

160.

Tang, H., & Miller-Hooks, E. (2005). A tabu search heuristic for the team orienteering problem. Computers

& Operations Research, 32(6), 1379-1407.

Tang, H., Miller-Hooks, E., & Tomastik, R. (2007). Scheduling technicians for planned maintenance of

geographically distributed equipment. Transportation Research Part E: Logistics and Transportation

Review, 43(5), 591-609.

Thimbleby, H. (2003). The directed Chinese postman problem. Software: Practice and Experience, 33(11),

1081-1096.

Tricoire, F., Romauch, M., Doerner, K. F., & Hartl, R. F. (2010). Heuristics for the multi-period orienteering

problem with multiple time windows. Computers & Operations Research, 37(2), 351-367.

Master thesis – Jan Groeneveld

84

Van der Heijden, M.C., van der Wegen, L.L.M. (September 2011). Logistiek Management [lecture guide].

Department of Industrial Engineering and Management, University of Twente, Enschede.

Van Hal, K. (February 2015). When and Where to Fly and Stand by (Unpublished master thesis).

Department of Industrial Engineering and Management, University of Twente, Enschede.

Vansteenwegen, P. (2009a). Planning in tourism and public transportation. 4OR: A Quarterly Journal of

Operations Research, 7(3), 293-296.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009b). Iterated local search for

the team orienteering problem with time windows. Computers & Operations Research, 36(12), 3281-3290.

Vansteenwegen, P., Souffriau, W., Berghe, G. V., & Van Oudheusden, D. (2009c). Metaheuristics for tourist

trip planning. In Metaheuristics in the service industry (pp. 15-31). Springer Berlin Heidelberg.

Vansteenwegen, P., Souffriau, W., & Van Oudheusden, D. (2011). The orienteering problem: A

survey. European Journal of Operational Research, 209(1), 1-10.

Van Urk, R., Mes, M. R., & Hans, E. W. (2013). Anticipatory routing of police helicopters. Expert systems

with applications, 40(17), 6938-6947.

Verbeeck, C., Sörensen, K., Aghezzaf, E. H., & Vansteenwegen, P. (2014a). A fast solution method for the

time-dependent orienteering problem. European Journal of Operational Research, 236(2), 419-432.

Verbeeck, C., Aghezzaf, E. H., & Vansteenwegen, P. (2014b, November). Solving the Stochastic Time-

Dependent Orienteering Problem. In MOSIM 2014, 10ème Conférence Francophone de Modélisation,

Optimisation et Simulation.

Wang, J., Yan, R., Hollister, K., & Zhu, D. (2008). A historic review of management science research in

China. Omega, 36(6), 919-932.

White, H. (1992). Artificial neural networks: approximation and learning theory. Blackwell Publishers, Inc.

Zhang, J. (2011, August). Modeling and Solution for Multiple Chinese Postman Problems. In International

Conference on Computer Science, Environment, Ecoinformatics, and Education (pp. 520-525). Springer

Berlin Heidelberg.

Master thesis – Jan Groeneveld

85

In scopus, we look for “street parking enforcement” and only found two articles. Only one of these articles

seems interesting and therefore we extend the search by deleting the word “street”. By doing so we find

48 articles of which only one article seems to be related to routing problems. This becomes clear when we

add the search word “routing” (“parking enforcement”AND”routing”) because only that one remains, which

is the same as we found previously. It seems that there is only one article regarding this problem, which is

called “City streets parking enforcement inspection decisions: The Chinese postman’s perspective”

(Summerfield, Dror & Cohen, 2015).

Table 22 – Benchmark of Ke et al. (2008) showing the rewards obtained by different algorithms

Table 23 - Benchmark of Ke et al. (2008) showing the computation times of different algorithms

Master thesis – Jan Groeneveld

86

GeoId Neighborhood factor

2 2.895

3 2.419

4 1.622

5 2.870

6 1.996

7 2.643

8 1.579

9 2.157

10 0.764

11 1.094

12 1.021

13 0.803

15 1.186

16 1.801

17 1.306

18 0.911

19 2.538

20 1.083

21 1.406

22 1.354

23 0.983

24 0.862

25 0.858

26 1.242

27 0.961

28 2.132

29 1.660

30 0.812

31 0.515

33 0.431

35 0.584

36 0.364

37 0.471

38 0.886

39 0.890

40 4.025

41 1.277

42 2.083

43 3.439

44 1.830

45 1.782

46 0.781

Master thesis – Jan Groeneveld

87

47 0.684

48 0.664

49 0.803

50 0.736

51 1.078

53 1.887

54 1.243

55 0.642

56 0.856

57 1.021

58 0.970

60 0.524

61 4.948

62 2.978

63 1.285

64 0.624

65 0.528

66 0.488

67 0.810

68 0.595

69 0.481

70 1.008

71 1.927

72 0.693

73 0.529

74 0.743

75 0.622

76 0.706

77 0.675

78 0.826

79 1.609

80 0.493

81 0.767

82 0.453

83 0.939

84 0.873

85 1.201

86 0.992

87 1.135

88 0.934

89 1.237

90 0.942

91 0.687

92 0.617

Master thesis – Jan Groeneveld

88

93 1.763

94 0.861

95 1.509

96 0.641

98 0.923

99 0.876

100 0.839

101 1.180

102 1.023

103 0.872

104 0.879

105 0.724

106 0.755

107 0.476

108 0.578

109 0.495

110 0.443

111 0.551

112 0.543

113 1.800

114 1.070

115 1.436

116 0.694

117 0.622

118 0.765

120 0.806

121 2.173

122 0.665

123 0.695

124 0.574

125 0.553

126 0.274

127 1.767

128 1.909

129 0.570

130 0.803

131 0.698

132 1.408

133 1.914

134 0.664

135 1.287

136 1.094

137 2.018

138 0.692

Master thesis – Jan Groeneveld

89

139 0.612

140 0.474

142 0.598

143 0.918

144 0.789

145 0.583

147 0.825

148 0.679

149 0.841

150 0.542

151 0.813

152 0.703

153 1.365

154 1.178

155 0.990

156 0.767

157 0.820

158 0.751

159 0.872

160 0.941

161 1.316

162 0.735

163 0.836

164 0.546

165 0.568

166 0.982

167 0.569

168 1.813

169 3.925

170 2.199

171 2.312

172 1.372

173 1.647

175 2.124

176 2.573

177 0.757

180 3.009

181 1.541

182 0.000

183 2.185

184 1.141

186 3.515

187 0.404

201 1.988

Master thesis – Jan Groeneveld

90

202 0.876

203 0.732

204 1.646

206 1.070

207 0.399

208 0.662

211 1.669

212 4.435

213 2.428

214 1.799

215 0.444

216 0.555

217 0.767

222 0.900

223 0.965

224 0.664

225 3.156

226 0.959

227 1.032

228 0.653

229 0.753

230 0.396

233 5.957

234 2.086

235 2.791

236 12.684

237 4.144

238 5.979

253 3.083

266 0.515

267 1.248

268 1.009

273 0.946

274 1.597

275 3.543

276 2.215

277 0.805

278 1.867

279 1.488

280 2.035

281 1.458

282 1.673

283 6.002

284 2.671

Master thesis – Jan Groeneveld

91

294 1.039

295 0.815

297 1.342

298 2.140

301 1.593

303 1.669

304 1.366

305 2.461

309 1.934

310 1.041

311 1.654

312 0.758

314 0.943

315 0.742

316 1.477

317 0.943

318 1.343

319 0.629

320 0.785

321 1.336

322 1.960

323 0.864

324 0.961

325 0.680

328 11.295

329 3.115

330 5.540

334 1.977

335 0.523

336 0.909

337 1.407

338 0.984

339 0.686

340 1.492

341 0.647

342 0.538

343 2.955

344 3.564

345 5.615

346 1.304

347 9.099

349 0.967

351 4.535

353 2.660

Master thesis – Jan Groeneveld

92

398 1.796

406 0.000

433 1.440

435 2.764

436 1.994

437 0.660

438 3.864

439 2.768

440 2.747

441 1.605

442 1.186

475 4.192

476 1.117

477 0.667

478 0.866

479 0.538

480 0.501

481 1.105

482 0.447

483 0.419

485 2.380

486 0.460

487 0.544

488 1.656

489 0.461

490 1.061

491 1.029

492 0.866

493 0.521

498 1.701

502 2.272

503 1.852

504 1.441

506 3.875

507 1.443

508 2.823

509 3.860

510 1.820

511 0.678

512 1.427

513 2.438

514 2.258

515 1.681

516 4.428

Master thesis – Jan Groeneveld

93

518 2.687

519 2.082

523 2.104

526 0.744

527 1.559

528 3.112

529 1.288

530 1.148

531 1.903

534 2.858

535 1.608

536 1.505

537 1.644

539 6.501

Table 24 – Table of the neighborhood factor

Let us consider an example to explain how the current increase of the expected number of PCNs due to a

visit is computed:

Neighborhood 15 has at any time t a service time of 30 minutes (𝑠15,𝑡,𝑑 = 30min) and the number of PCNs

is always predicted to be 10 (𝑃𝑣15,3,𝑡,𝑚,0
= 10). On a given day, neighborhood 15 is scanned between 10:30

and 11:00 by PEV 1 (𝑣15,3,10.30,1,0). We consider to visit neighborhood 15 another time with PEV 2 starting at

14:00 (𝑣15,3,14.00,2,0). For the stability function, we need to determine the visit time between these two visits.

As we explained in Section 5.2, the difference of the start of the visit at 14:00 and finish time of the prior

one, can be denoted as: 𝑡𝑣15,3,14.00,𝑚,0
− 𝑡𝑓𝑣15,3,14.00,𝑚,−1

. The time between the two visits is 3 hours. As a next

step, we need to estimate how many visitors that received a PCN between 10:30 and 11:00 are still at the

neighborhood, since they do not get a second PCN and therefore we have to subtract these. We denote

the number of visitors that remain until 𝑣𝑣𝑗,𝑛,𝑡,0
 as 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0

. Let us say that 𝑅𝑣15,3,14.00,𝑚,0
 is 2 in this example.

Therefore, we can only expect 8 PCNs between 14:00 and 14:30. We denote this updated value as

𝑃′𝑣15,3,14.00,𝑚,0
, which is equal to 𝑃𝑣15,3,14.00,𝑚,0

− 𝑅𝑣15,3,14.00,𝑚,0
. If we want now to add another visit of another PEV at

13:00, it gets more complex, because not only do we have to estimate 𝑅𝑣15,3,13.00,𝑚,0
, but also the decrease of

PCNs for the visit that is scheduled afterwards at 14:00. This decrease of PCNs of the visit at 14.00 is

expressed as 𝑅𝑣15,3,13.00,𝑚,1
. If we do visit the neighborhood at 13:00, we have to update the number of

PCNs of the latter visit at 14:00 by applying: 𝑃′𝑣15,3,13.00,𝑚,1
 = 𝑃𝑣15,3,13.00,𝑚,1

− 𝑅𝑣15,3,13.00,𝑚,1
.

As discussed in Section 4.3.4, we compute 𝑅𝑣𝑗,𝑛,𝑡,0 by using the overlap of PCNs of these two visits and

stability function 𝑆(∆𝑡) to compute the fraction of non-paying visitors that still remain. Since ∆𝑡 is equal to

𝑡𝑣𝑗,𝑛,𝑡,𝑚,𝑥
− 𝑡𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

, 𝑆(∆𝑡) is computed as follows:

𝑆(∆𝑡) = 1 − 0.4
(𝑡𝑣𝑗,𝑛,𝑡,𝑚,𝑥−𝑡𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

)

𝑂𝑣𝑗,𝑛,𝑡,𝑥
 computes the overlap Of PCNs between the current visit and the previous visit. This is important

because the potential number of non-paying visitors that remains depends on the forecasted number of

PCNs of both visits. If we forecast only 1 PCN for the prior visit and 5 for second, then there is only 1 non-

paying visitor who might still remain. The overlap is computed as follows:

𝑂𝑣𝑗,𝑛,𝑡,𝑥
= max (𝑃𝑣𝑗,𝑛,𝑡,𝑚,𝑥 − 𝑃𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

, 0)

Finally, the number of remaining visitors for the later visit 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0
 is:

Master thesis – Jan Groeneveld

94

𝑅𝑣𝑗,𝑛,𝑡,𝑥
= 𝑂𝑣𝑗,𝑛,𝑡,𝑚,𝑥

 ∗ 𝑆(𝑡𝑣𝑗,𝑛,𝑡,𝑚,𝑥
− 𝑡𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

)

So, whenever a neighborhood is considered, the ant uses the updated value of PCNs, which is the

forecasted number of PCNs minus the remaining visitors from the prior visit.

 𝑃′𝑣𝑗,𝑛,𝑡,𝑚,𝑥 = 𝑃𝑣𝑗,𝑛,𝑡,𝑚,𝑥 − 𝑅𝑣𝑗,𝑛,𝑡,𝑚,𝑥
.

If the neighborhood has been visited afterwards that day, we need to add the decrease due to the

remaining number of non-paying visitors that influences the visit afterwards:

𝜂𝑣𝑗,𝑛,𝑡,0
 =

(𝑃′𝑣𝑗,𝑛,𝑡,0
−𝑅𝑣𝑗,𝑛,𝑡,1

)∗ 𝑇𝑣𝑗,𝑛,𝑡,0
∗𝑉𝑣𝑗,𝑛,𝑡,0

𝑐𝑖,𝑗,𝑡,𝑑+𝑠𝑗,𝑡,𝑑+𝑝𝑣𝑗,𝑛,𝑡,0
∗𝑐𝑗,𝑏𝑗,𝑡,𝑑

.

However, it can also happen that a visit has already been decreased before. In that case we only have to subtract the
difference of the old updated and new updated PCNs, which is:

∆𝑈𝑝𝑑𝑎𝑡𝑒𝑣𝑗,𝑛,𝑡,𝑚,1
 = 𝑃𝑜𝑙𝑑

′
𝑣𝑗,𝑛,𝑡,𝑚,1

-𝑃𝑛𝑒𝑤
′

𝑣𝑗,𝑛,𝑡,𝑚,1
.

Therefore, ∆𝑈𝑝𝑑𝑎𝑡𝑒𝑣𝑗,𝑛,𝑡,𝑚,1
 is either 0 or a positive number. Finally, the increase of expected number of PCNs

is determined as follows:

∆
𝑃𝑣𝑗,𝑛,𝑡,𝑚,0

′ = 𝑃′𝑣𝑗,𝑛,𝑡,𝑚,0
− ∆𝑈𝑝𝑑𝑎𝑡𝑒𝑣𝑗,𝑛,𝑡,𝑚,1

After having normalized all historical PCN ratios of the data set and filtering out the excluding all scans

below 106 scans due to the same reasoning as in Section 4.3.2.2, we plot the frequencies of each PCN

ratio, i.e., how many times a certain PCN ratio occurs in the data set. This plot is shown in Figure 47.

Figure 47 – Frequency of the normalized PCN ratio in the data set

From this figure, we conclude two things. Apparently 14.89% of all observations have a PCN ratio of 0. It

does not seem that these zeros belong to a certain group of neighborhoods or time period. Not regarding

the zeros, the distribution seems to follow a lognormal distribution. Therefore, we say that 14.89% of the

simulated PCN ratios will have a ratio equal to 0. For the other 85.11%, we investigate whether they are

indeed distributed according to a lognormal distribution. This will be the case if the lognormal function of

the PCN ratios is normally distributed. Figure 48 shows the outcome of this investigation.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0

0
.0

1

0
.0

2

0
.0

3

0
.0

4

0
.0

5

0
.0

6

0
.0

7

0
.0

8

0
.0

9

0
.1

0
.1

1

0
.1

2

0
.1

3

0
.1

4

0
.1

5

0
.1

6

0
.1

7

Fr
eq

u
en

cy

Normalized PCN ratio

Frequency of normalized PCN ratio

Master thesis – Jan Groeneveld

95

Figure 48 – The lognormal values of the normalized value in comparison with a normal distribution

Figure 48 shows the lognormal values of the distribution of our normalized data set and compares it to a

normal distribution with a mean of -4.266 and standard deviation of 0.649. It seems that indeed the

lognormal values are normally distributed even though it is slightly skewed to the right. In addition with

the fact that 14.89% of the ratios will be zeros, we conclude that our normalized data set is follows a

mixed lognormal distribution.

Finally, our simulation works as follows:

We generate a random number between 0 and 1. If the number is below 0.1489, the PCN ratio is 0.

Otherwise, we generate a new number. For this value, we apply an inverse lognormal function. This gives

us a random value that is distributed according to our found distribution.

0

1000

2000

3000

4000

5000

6000

7000

8000

-7.2 -6.9 -6.6 -6.3 -6 -5.7 -5.4 -5.1 -4.8 -4.5 -4.2 -3.9 -3.6 -3.3 -3 -2.7 -2.4 -2.1 -1.8

Fr
eq

u
en

cy
 o

f
LN

 d
at

a
se

t

PCN ratio of LN data set

Comparing LN data set to normal distribution

Our dataset

Normal
distribution

