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Management summary 
In December 2016, Egis Parking Services B.V. (EPS), who was hired by the municipality of Amsterdam to 

manage the parking enforcement within Amsterdam, tasked ARS T&TT (ARS) with the development of a 

planning tool that supports their work. The Smart Parking unit of ARS started to work on this project and 

additionally, requested a separate research on how such a planning tool can be developed. From February 

2017 until September 2017, we conducted this research. 

The idea behind the parking enforcement is that more parking visitors pay the parking fee. Whenever a 

parking visitor in Amsterdam wants to pay the parking fee, the visitor has to register the license plate of 

his/her car. The license plate is uploaded to a database afterwards. The on-street agents of EPS visit 

different neighborhoods of Amsterdam, i.e., they drive through neighborhood in parking enforcement 

vehicles (PEVs) and scan parked cars in different neighborhoods. During this process, the license plates of 

the parked cars are uploaded to a different database. By comparing both databases, it can be determined 

whether a visitor, whose car was scanned by a PEV, paid the parking fee. If a visitor did not pay, a penalty 

charge notice (PCN) is generated. For some exceptional cases, it is required that another agent who 

follows the PEVs on a scooter (PEF) checks the parked car on-site.  

The output of our routing algorithm is a schedule of all neighborhood visits for all PEVs. In order to do 

this in a smart manner, we have to consider EPS’ objective. The municipality of Amsterdam measures EPS’ 

performance regarding the parking enforcement based on two Key Performance Indicators (KPIs): the 

payment rate, which is the ratio between paying visitors and all visitors, and the control chance, which is 

the probability that a non-paying visitor receives a PCN. From the control chance target, we can derive the 

number of PCNs that is needed in order to meet the control chance target. This number is called the PCN 

target, which we use instead of the control chance. Concerning the evaluation of EPS’ performance, it is 

important that every neighborhood belongs to one of 10 KPI areas. Within one KPI period, which lasts 

three months, EPS has to meet certain targets of the KPI that are determined by the municipality. The 

municipality of Amsterdam takes random samples of neighborhoods and examines the payment rate. 

Whenever the payment rate measured by the municipality is below the pre-set target, the PCN target is 

considered. The rationale behind this is that EPS cannot directly influence the payment behavior of the 

visitors and therefore they have to show that their effort of fining the non-payers is at least high enough. 

If both targets are below the pre-set targets, then the KPI area is in a malus state and EPS will receive a 

fine. If in all KPI areas at least one of the targets is met, then EPS receives a bonus for those KPI areas 

where the payment rate exceeds the pre-set target. Apart from the KPI targets, EPS tries to visit every 

neighborhood once a week. Therefore, we derive the following three priorities in the following order: 

1. Meet either the payment rate target or the PCN target of every KPI area. 

2. Maximize the control chance in chosen KPI areas in order to eventually increase the payment rate 

and maximize the performance bonus.  

3. Visit every neighborhood once a week. 

Finally, it is required that our routing algorithm does not only maximize the number of PCNs but also 

takes these priorities into account. For that reason, we do not only consider the expected number of PCNs 

that can be obtained by visiting a neighborhood but also the neighborhood’s Target Factor and Visit Day 

Factor, which take the mentioned priorities into account. Since the routing algorithm requires inputs, we 

first have to compute:  

 Travel times (the travel time from one neighborhood to another) 

 Service Times (the time that is needed to scan a neighborhood) 

 Number of PCNs (the expected number of PCNs by visiting a neighborhood) 

 Margin of error (an increase of the KPI targets to account for uncertainty) 

For predicting the number of PCNs, we concluded that it is required to know the following ratios: 

 The occupancy ratio, which is the ratio between occupied parking spots and all parking spots in a 

neighborhood at a given time 

 The PCN ratio, which is the ratio between PCNs and all scans in a neighborhood at a given time 

This PCN ratio can also be split into the visitor ratio, which is the ratio of visitor scans (scanned cars that 

belongs to paying or non-paying visitors) and all scans, and the non-paying ratio, which is the ratio of all 

non-paying visitor scans (PCNs) and all visitor scans. Our prediction model (or forecasting method) is 

based on an estimation of this occupancy ratio and a neural-network based prediction for the PCN ratio. 

Multiplying the number of parking spots with the occupancy ratio and the PCN ratio results in our forecast 

of the number of PCNs. This research also contains an extensive data analysis of the PCN ratio. We 

observed in our data analysis that:  

 The PCN ratio depends on the time of the day 
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 The PCN ratio depends on the weekday 

 The PCN ratio does not depend on the weather 

 The payment rate increased from approximately 89% to 90% within one year (1.6.2016-1.6.2017) 

The routing algorithm that we present in this research, first creates a solution based on a greedy 

algorithm and then tries to optimize this solution by constructing new solutions based on an ant 

colonization optimization (ACO) algorithm. Since it is possible to visit one neighborhood multiple times a 

day, one ingredient of our greedy algorithm is very important, namely the stability function. Our proposed 

stability function accounts for the fact that when the PEVs goes to a neighborhood that has been visited 

already the same day, it is possible that some non-paying visitors from the earlier visit are still in that 

neighborhood. Even though we show that the ACO algorithm performs well for one vehicle, it had 

difficulties to find better solutions than the greedy algorithm when 12 vehicles are deployed, which is the 

standard number of vehicles used by EPS (from Monday to Saturday). Finally, we perform a sensitivity 

analysis, a simulation study, and compare our prediction model and routing algorithm to the ones 

currently used at ARS. We prove that our neural network has a more accurate prediction (+4%) regarding 

the PCN ratio and that our routing algorithm leads to better results (+34%) than the current 

implementation of ARS algorithm when the same inputs are used (assuming that our stability function is 

correct). We are confident that our planning tool improves the current situation at EPS by automating the 

planning process, increasing the number of obtained PCNs, and faster reaching the KPI targets. This will 

finally lead to less fines and more rewards. Furthermore, we have shown that our greedy algorithm can 

create a planning for 90 days within 6 hours.  

We recommend ARS to make use of our presented greedy algorithm with our presented parameter 

settings in combination with our neural network forecast. Finally, we have different ideas for future 

research. The most important ones are to investigate in the parking duration of non-paying (or at least 

paying) visitors in order to improve the stability function and to develop a more accurate method to 

estimate the occupancy ratio. Furthermore, we advise to do keep observing and analyzing the travel times 

because it seems that they are underestimated. 
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Definitions & Notations 
: An optimization technique that is inspired by the pheromone trails 

that ants leave, in order to attract other ants to the ways that used to work well in the past.  

 The company where the research is conducted and which provides traffic and transport 

technology solutions to businesses and government. 

 The middle point of a neighborhood based on the scans of 3 months. 

 An arc routing problem in which the route of a postman that has to 

deliver mail to different streets is optimized. 

 The average number of PCNs within a not-paid-for parking hour, which is estimated.  

: A pre-set target regarding the control chance that is determined by the 

municipality for one KPI area regarding one KPI period. 

 The company that is responsible for most of the operational aspects of on-

street fiscal parking in Amsterdam, such as on-street parking meter enforcement.  

 A type of performance measurement that evaluates the success of an 

organization or of a particular activity. 

 A recurring period of three months within which the KPI targets must be met.  

 The 10 different areas in Amsterdam that are measured. 

 Include the PCN target, which is derived from the control chance target, and payment rate 

target.  

 A small geographical unit within a KPI area.  

The ratio between non-paying visitors and all visitors in a neighborhood at a given 

time. 

 In this thesis we limit the parking enforcement to the activities related to the on-

street parking meters in Amsterdam. 

 The ratio between the occupied parking spots and all parking spots in a neighborhood 

at a given time.  

 A scooter that is driven by a parking enforcement follow-

up agent that go to the parked cars that need further investigation and/or where a PCN must be issued 

locally.  

 A vehicle that is driven by a parking enforcement agent and that 

scans parked cars. 

 Indicates the time interval of a certain region (independent from KPI area and 

neighborhood) during which visitors have to pay for parking.  

 The ratio between paying visitors and all visitors in a neighborhood at a given time.   

: The performance of the payment rate in a KPI area, which is measured by 

dividing the current payment rate by the payment rate target.  

 A pre-set target regarding the payment rate that is determined by the municipality 

for one KPI area regarding one KPI period. 

 A parking fine that is issued whenever a non-paying parking visitor is 

detected. 

 The performance of the number of PCNs in a KPI area, which is measured by dividing 

the current number of PCNs by the PCN target. 

 The ratio between non-paying visitor scans and all scans in a neighborhood at a given time.  

 A target that is derived from the control chance target. Indicates the number of PCNs that has 

to be achieved in a KPI within a KPI period. 

 Parking enforcement agent who drives the PEV. 

 Parking enforcement agent who drives the PEF. 

 The time needed to scan a certain neighborhood.   

 A parameter that determines how important the KPI areas get after they have 

reached one of the KPI targets.  

 A problem in which many vehicle have to maximize the rewards 

within a certain a time by choosing a set of vertices and the sequence of visiting them. 
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: A parameter that restricts the travel distance between two scheduled 

neighborhoods. 

 The time needed to travel from the center point of a neighborhood to the center point of 

another neighborhood. 

 A parameter that reduces the accounted travel time when the PEV leaves a break 

location.  

 A parameter that restricts the travel time between two scheduled 

neighborhoods. 

 A problem in which a salesman has to travel to a certain set of cities 

and the travelled distance has to be minimized by choosing the best sequence of visits.  

 The ratio between visitor scans and all scans in a neighborhood at a given time.   

 A scan of car that belongs to a paying or non-paying visitor.  

 The same problem as the TSP but usually with multiple vehicles. 

 A database that contains all important payment parking information.  

 A bonus that increases when the payment rate target is exceed. The bonus is only 

given when the control chance and the payment rate target are met. 

 A parameter that determines the fraction non-paying visitors that stay at a visited 

neighborhood for a certain amount of time.  

 A parameter that determines whether a swap is performed. 

 A parameter that determines the growth of the visit day function.  
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This project is part of the Master program Industrial Engineering and Management at the University of 

Twente. It has a limited time span of 6 months. We conduct this research at the Smart Parking business 

unit of ARS Traffic & Transport Technology. Within this research, we develop a planning tool to support 

the parking enforcement activities that concern the on-street parking in Amsterdam. In this thesis, we 

denote these activities as parking enforcement.  

This first chapter provides an introduction to this research. Section 1.1 introduces the stakeholders who 

are involved in this project and describes core activities associated with parking enforcement. In Section 

1.2, we identify the problem this research addresses. Finally, we define the scope of this research in 

Section 1.3 and explain our approach to tackle this problem including our research questions in Section 

1.4. 

 

In order to better understand the background of this research, this section describes the stakeholders 

involved in the parking enforcement and how the parking enforcement in Amsterdam is executed and how 

its performance is currently measured.  

 

In this research project about the parking enforcement in Amsterdam, there are three important 

stakeholders: the municipality of Amsterdam, ARS Traffic & Transport Technology (ARS), and Egis Parking 

Services B.V. (EPS).  

ARS is a company in The Hague that provides traffic and transport technology solutions to business and 

governments. Since 1997 it is active in its home market, the Netherlands, but also internationally (ARS 

T&TT, 2017). Concerning on-street parking, ARS is a partner in a joint venture with Egis Project, called 

Egis Parking Services B.V. (EPS). EPS operates from the shared service center in Amsterdam. In January 

2016, the municipality of Amsterdam hired EPS to manage all operational aspects of on-street fiscal 

parking, such as for permit management, ticket machine maintenance, and parking enforcement. In 

December 2016, EPS tasked ARS with developing a planning tool regarding the parking enforcement in 

Amsterdam. 

 

Amsterdam has over 140,000 on-street parking spaces, dispersed amongst 10 fiscal parking areas. Each 

of these areas is divided into neighborhoods. In total there are 538 neighborhoods with different sizes 

(see Figure 1) of which 320 have fiscal (paid) parking.  

 

Figure 1 – Fiscal parking neighborhoods in Amsterdam 
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Every visitor who travels to Amsterdam by 

car and parks in a fiscal parking space has 

to pay a parking fee. The fee depends on 

the time the vehicle remains in the parking 

space and the parking space itself. A visitor 

can pay the parking fee through several 

electronic systems, such as parking meters, 

mobile payment, call-payment, and online 

visitor registration. The payment 

information of these systems, including the 

vehicle’s license plate, is uploaded to a 

“Parking Rights Database” (PRDB).  

Parking enforcement vehicles (see Figure 2) 

drive through the neighborhoods, scan 

parked cars in the fiscal parking space, and 

take pictures of these. We further denote 

these vehicles as PEVs and their driver as PEV drivers. While scanning, the license plates of the parked cars 

are uploaded to a central system, which stores the recognized license plates. By comparing both 

databases, it can be determined which visitors did not pay a parking fee so that a Penalty Charge Notice 

(PCN) can be issued. The amount of the PCN is the sum of a fixed amount (the penalty) and one hour of 

the parking fee that should have been paid for that parking spot. In general, parked cars as scanned by 

the PEV can be classified as: 

 Parking permit holders 

 Exceptions 

 Visitors 

o Paying visitors 

o Non-paying visitors 

 Domestic 

 International 

o Unclear situation 

Parked cars with a parking 

permit belong to inhabitants 

that pay on a long-term basis. 

Some vehicles are exempted 

from parking payment because 

they are considered as 

exceptions (e.g., loading/ 

unloading vehicles and 

emergency vehicles). For this 

research, the most important 

groups are the domestic and 

international visitors who did 

not pay for their parking and 

visitors whose situation is 

unclear at first sight. Domestic 

non-paying visitors receive a 

PCN that is issued 

automatically. This automatic 

process is not possible for 

international non-paying visitors. 

That is why an off-street agent will contact a follow-up parking enforcement agent who drives with a 

scooter to the location of the international car to issue a PCN on-site (see Figure 3). As for the PEV, in this 

research, we denote the scooters as PEFs and their drivers as PEF drivers. For some vehicles, it is unclear if 

they paid for their parking. Possible reasons are that the license plate is unreadable in the provided 

images or it is unclear whether there is a loading/unloading process. Since it has to be determined 

whether the vehicle belongs to a visitor that did not pay, these unclear parking situations require an on-

site visit of the PEF driver as well. At this moment, there is a 1-to-1 relation between the PEVs and PEFs, 

i.e., one PEF follows one PEV. If a visitor receives a second PCN and did not pay the first one, the 

municipality may request that a wheel clamp is placed on the vehicle.  

Figure 2 – Parking enforcement vehicle 

Figure 3 – Scanning process 
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The purpose of parking enforcement is to ensure that citizens and visitors pay for their parking. The 

municipality of Amsterdam measures this by means of a Key Performance Indicator (KPI), namely the 

“payment rate”. The payment rate is the willingness of visitors (non-permit holders) to pay for their 

parking. In other words, it is the ratio of paying visitors in relations to the total number of visitors. In this 

research, we denote it as the payment rate and not payment ratio because this is the term that is currently 

used at ARS. The municipality measures the payment rate in all 10 fiscal parking areas for a period of 3 

months by taking random samples. In this research, we denote these areas as KPI areas and the 3 month 

period as the KPI period. The performance of EPS with regards to the parking enforcement is evaluated by 

the payment rate that the municipality measures for every KPI in a KPI period. Unfortunately, there is no 

direct relationship between the parking enforcement and the payment rate because it is unknown to what 

extent the parking enforcement affects the payment rate. In theory, it could happen that EPS does a great 

job and every visitor who does not pay a parking fee gets a PCN but the payment rate does not increase. 

Even though, this is very unlikely because the general assumption is that people pay for parking if the 

chance of getting a fine is too high. This assumption, that enforcement influences the payment rate, is 

confirmed in the literature, as Adiv and Wang (1987) show that parking non-compliance level increases as 

the level of enforcement decreases. Peliot (2004) indicates that this phenomenon can be described as a 

relational economic choice (portfolio choice), i.e., the driver asses the risk of getting a fine and the 

amount of the fine versus the regular parking costs. This theory is confirmed by Adiv and Wang (1987) 

and Elliot and Wright (1982) in an empirical study. Since it is not desirable for the municipality to increase 

the amount of the PCNs or the parking fee, they want to increase the risk of getting a fine (PCN). For that 

reason, the municipality does not only consider the payment rate but also the “control chance”, which is 

the probability that non-paying visitors receive a PCN. Only if the payment rate is not met, the municipality 

will consider the control chance as a means to establish that “enough” effort has been put into 

enforcement. Only when for all KPI areas either the payment rate or control chance target has been 

achieved, the municipality will give EPS a performance bonus for any KPI area where the payment rate 

exceeds the pre-set target (not for the control chance). Note that every KPI area has different targets for 

the payment rate and control chance. These targets increase after every KPI period (up to certain 

maximum values).  

 

In this section, we define the problem which enables us to formulate an approach to tackle the problem.  

In the context of this thesis, EPS has two planning tasks, namely the daily routing of the PEVs and the staff 

scheduling. Currently, EPS handles both planning tasks manually. Since capacity is limited and 

enforcement targets are rising, there is a need for an automated planning tool that delivers the following 

three outputs:  

 PEV routing: The planning of the daily PEV routes indicates at which time drivers need to be in a 

certain neighborhood. Obviously, this will require inputs to determine realistic and smart routes.  

 Staff scheduling: The staff has to be assigned to the vehicles. This can be done separately from 

the PEV routing.  

 Estimation of the KPI results: An indication to what extent the KPI targets will be met at the end of 

the KPI period. This supports the decision process with regards to the needed capacity for the 

short term. 

The goal of this planning tool is to increase the efficiency of the available capacity and reducing the effort 

of manual scheduling. Increasing efficiency is always linked to an objective. As we derive from Section 

1.1.3, it is the objective to meet either the targets of the payment rate or the control chance in all KPI 

areas. Furthermore, EPS wants to visits every neighborhood once a week. In fact, EPS has an order of 

priority with regards to their targets: 

1. Meet either the payment rate target or the control chance target of every KPI area. 

2. Maximize the control chance in chosen KPI areas in order to eventually increase the payment rate 

and maximize the performance bonus.  

3. Visit every neighborhood once a week. 

As a higher number of PCNs means that EPS is performing better with regards to the control chance (the 

exact formula will be explained in Section 2.1.8), the planning tool has to maximize the numbers of PCNs 

in such a way that the required KPI targets are met in all KPI areas and eventually a performance bonus is 

achieved. 
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ARS has started the development of such a planning tool in December 2016. This thesis, which started in 

February 2017, can be seen as a part of this project that aims to develop a more accurate and smarter 

planning tool that is supported by scientific literature.  

 

In this section, we discuss which aspects we do and do not consider in this project. The objective of this 

graduation project is to create a planning tool for the parking enforcement in Amsterdam. In Section 1.2, 

we stated that the planning tool should deliver the PEV routing, the staff scheduling, and an estimation of 

the KPI results. The staff scheduling, however, is an independent smaller and less crucial problem and 

therefore we only focus on the development of a routing algorithm that determines the daily routing of 

the PEVs and also estimates the KPI results. The development of this planning tool involves three main 

steps: 

First, before creating any outputs, we need inputs for the routing algorithm. To this end, we have to 

analyze which inputs are needed. For example, we need to know how long it takes to travel between the 

neighborhoods and how long it takes to scan one. Furthermore, we need to know how many PCNs we 

expect to generate when scanning a neighborhood. For the development of these inputs, we can make 

use of the literature, the knowledge of EPS, and data of all parked cars that were scanned since January of 

2016.  

Second, we develop the routing algorithm. This routing determines for every PEV the sequence of 

neighborhood visits (including the time). The routing algorithm implies also embedding this algorithm in 

a programming platform. EPS requires that the total computational time must not exceed a daily limit of 

six hours. Apart from the routing, the routing algorithm needs to estimate whether the KPI targets will be 

met at the end of the KPI period.  

Third, the planning tool needs to be validated afterwards, such that the functionality and contribution of 

the tool can be proven.   

Consequently, the planning tool consists of useable input data and a routing algorithm that is embedded 

in an application. In this regard, there are some related aspects that are beyond the scope of this 

research. First of all, we only assign drivers to neighborhoods and not to streets. Even though we do have 

data of all scans since January of 2016 including GPS coordinates, EPS asks for a system that is based on 

neighborhoods. The reason behind it is that a street based planning is too strict and cannot be executed 

accurately it practice. A neighborhood routing gives EPS more flexibility. Additionally, creating street-

based routes would increase the solution space of the problem and therefore the computation time. 

Furthermore, we do not consider decisions made on an online operational level, i.e., we do not take 

dynamic aspects into account. For instance, if an accident occurs, the original route is not adjusted. Such 

online changes require detailed real-time instructions (e.g., a navigation tool in the car) but this is 

currently not possible. Neither, do we make decisions on a strategic level such as reducing the number of 

PEVs. Nevertheless, the capacity might change in the future and therefore we use number of deployed 

PEVs as a parameter. Furthermore, we do not consider reducing the number of PEFs and assigning them 

to multiple PEVs because we focus on the routing of the PEVs. Moreover, we do not consider the fact that 

visible presence of the PEV possibly prevents parking violations (comparable with the presence of police 

cars preventing possible crimes).  

 

This section describes the plan of approach of this research, which also includes the research questions.  

Before introducing all research questions, we present our research goal, as concluded in Section 1.2: 

 

“Develop a planning tool for the parking enforcement that maximizes the number of PCNs in such a way 

that the required KPI targets are met in all KPI areas and eventually a payment rate bonus is achieved” 

 

From this research goal, we derive research questions, which are discussed in the following chapters: 

Chapter 2 – Current situation 

This chapter describes the current situation of the planning and routing. By conducting interviews and 

reviewing the available data, we answer the following two questions: 

 How does the current routing of the PEVs look like? 

 How does the current planning process look like? 
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Chapter 3 – Literature 

This chapter introduces the required literature of this thesis. First of all, we want to know if this problem 

or similar ones have been introduced to the literature and how these problems have been tackled and 

solved. Furthermore, we investigate how inputs for the routing algorithm can be developed by using 

available data. Furthermore, we are interested in theories about the parking and payment behavior of 

visitors. Consequently, we answer the following questions: 

 What is known in the literature about problems regarding the routing of parking enforcement or 

similar routing problems? 

o Which solution methods does the literature suggest? 

 What is known in the literature about the parking and payment behavior? 

 What is known in the literature about developing input data? 

o What is known about travel times or speed models? 

o What is known about prediction models? 

For the purpose of this literature research, we use Scopus and Google Scholar.  

Chapter 4 – Computation of inputs 

This chapter analyzes the gathered data and investigates patterns and statistical characteristics in order to 

compute inputs that can be used for the routing algorithm. We answer the following questions: 

 How can we use the historical data to develop inputs for the routing algorithm? 

In order to answer these questions, we first clean the available data and make some transformations if 

necessary. Afterwards, we analyze the data to find patterns and develop a data model. By means of this 

data model, we create inputs for the planning tool.  

Chapter 5 - Routing algorithm 

Within this chapter, we design a routing algorithm that can be embedded in the planning tool. 

Furthermore, we discuss the choices with regards to the algorithm and the strategies behind it. 

 What kind of algorithm is most suitable for this problem? 

 How can we measure the performance of the algorithm? 

Chapter 6 - Results 

In this chapter, we analyze the results of the planning tool to make sure that this tool is actually working 

and improving the current situation.  

 To what extent is the proposed planning tool improving the current situation? 

Chapter 7 – Conclusion and Recommendations 

This chapter summarizes the project, discusses important points, indicates possibilities for future studies, 

and finally lists our recommendations.  
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This chapter describes the current situation of the routing (Section 2.1) and planning process (Section 2.2) 

at EPS. This chapter is based on interviews with the manager and drivers from EPS and data that they 

provided.  

 

In this section, we describe the routing of the PEVs in terms of different routing characteristics proposed 

by Van der Heijden and Van der Wegen (2011). These general characteristics are applicable to every 

routing problem.  

 

The fleet consists of a certain number of homogenous PEVs and PEFs, which is set a priori. Currently, one 

PEF is assigned to one PEV and 12 of both are used in the daily operations.  A vehicle can be unavailable 

due to maintenance or other reasons. Every morning the vehicles are refuelled.  

 

The fleet of PEVs and PEFs starts and finishes the daily routes at the same depot. In between, the drivers 

have breaks, which are further explained in Section 2.1.5. For these breaks, the fleet may return to the 

depot or to two extra break locations, which are exclusively used for breaks. The fleet must take every 

break at one of the three possible break locations. The break locations are scheduled based on the 

shortest extra travel time with regards to the scheduled route. Figure 4 shows all neighborhoods, the 

depot (marked in red), and the two break points (marked in green).  

 

Figure 4 – Overview of neighborhoods, the depot, and the two break locations 

 

The “customers” in this problem are the 10 KPI areas with certain KPI targets that have to be met. 

Achieving the KPI targets, which is further explained in Section 2.1.8, involves the PEV visiting the 

neighborhoods within these KPI areas in order to scan the parked cars. Every KPI area is divided into 

several neighborhoods with different sizes. As mentioned in the Section 1.3, we consider the 

neighborhoods globally and not every specific street in it. According to EPS, the number of visitors and 

their payment behavior is affected by various factors, such as the time of the day, weather, holidays, 

markets, special days of sale, and short-term events. Chapter 3 discusses what is known in the literature 
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about factors influencing the number of visitors and the payment behavior. The data analysis of these 

factors is part of Chapter 4. This analysis helps us to make predictions about how many PCNs we can 

expect when scanning a neighborhood. The time that a PEV driver needs to scan a neighborhood, is 

denoted as the service time. The service time depends on the average speed of the PEV and the length of 

the route within the neighborhood. The PEV drivers indicate that these service times are time-dependent 

due to traffic congestion. Chapter 4 deals with estimation of this service time and the prediction of the 

expected PCNs while scanning. Since it is possible to go more than once a day to one neighborhood but it 

is not possible to issue multiple PCNs on one day for the same vehicle, another problem arises, namely: 

How many PCNs can we expect the second time? Or more correctly: How many non-paying visitors remain 

on the parking spot until the next visit? This problem is discussed further in Section 4.3.4.  

Regarding the locations of the neighborhoods, the neighborhoods have the shape of polygons and ARS 

has the GPS coordinates of polygons’ edge points. The sizes, shapes, and number of corner points are 

different for every neighborhood.  ARS created an extra GPS coordinate for every neighborhood that is the 

center point of all scans during 3 months and therefore we denote this point as center point.  

 

As for the service time, the travel times between two neighborhoods depend on the distance between the 

neighborhoods and the average speeds of the PEV. 

The speed is influenced by time-dependent traffic congestion. Note that we do not consider the allowed 

speeds of the streets since we do not consider streets in this research. Moreover, due to one-way streets 

or one-way traffic congestions, the speeds might be directed, i.e., it matters if the PEV goes from 

neighborhood i to j or from j to i. Chapters 4 discusses whether it is necessary and possible to include 

this. 

The distance between two neighborhoods depends on the last scanned street of the previous scheduled 

neighborhood and the first scanned street of the following neighborhood. ARS created a distance matrix 

using the center point of every neighborhood that we explained in Section 2.1.3. This distance matrix 

considers the actual distance traveling through all streets from one center point to another. This leads to 

a problem because the center point lies within the neighborhood. Therefore, this distance includes also 

the distance between the point when the PEV enters or leaves the scheduled neighborhood and its center 

point. Consequently, if we measure the distance between the two centers points of the two 

neighborhoods, we will calculate twice the redundant distance from the entry/exit point of the 

neighborhood and its center point. This distance, however, is difficult to determine as it depends on the 

last scanned street of the previous neighborhood and the first scanned street of the following 

neighborhood. Chapter 4 further discusses this problem and the development of useful travel time input.  

Furthermore, we must not forget that the PEV keeps scanning parked cars while traveling to other 

neighborhoods. For instance, the PEV travels through other neighborhoods to get to the next destined 

neighborhood.  However, in that case, the PEV drivers mostly use through-streets that are less dense with 

regards to the number of PCNs. In Chapter 4, we also answer the question whether it is useful to include 

this phenomenon.  

 

In order to create proper routes, we have to take several time restrictions due to shifts, breaks and 

parking regimes into account. Regarding the shifts, there are three regular shifts from every day of the 

week:  

Regular shifts (from Monday until Sunday): 

 Day shift: 8.00-16.30 

 Evening shift: 15.30-23.40 

 Night shift: 23.30-4.00 

However, there is also on additional shift on Sundays due to different parking regimes: 

Additional shift (on Sundays): 

 Sunday afternoon shift:  11.30-20.00 

Even though on Sundays there are additional Sunday afternoon shifts, the total number of deployed PEVs 

is usually less on Sundays than during the week. 

At the start of every shift, the drivers get a briefing at the depot. The drivers of the day shift also have to 

refuel the vehicles. When the day shift ends, the PEV driver of the evening shift drives with a scooter to the 

current location of the PEV, then they switch, and the driver of the day shift returns with the scooter. The 

shift change occurs between 16.00 and 16.15 and requires 15 minutes at the same location. Therefore, 
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the PEV driver must not have a visit that starts before 16.00 and finishes after 16.15. The shift change 

from evening to night shift is done at the depot, hence we do not have to take it into account. Except for 

the night shift, all shifts including one 20-minute break and one 35-minute break. The night shift drives 

without a break. EPS decided to vary break times a bit in order to spread the breaks around and to avoid 

moments in which no PEV is driving around. The reason behind this is that it lead to visitors not paying 

during break times of the PEV drivers. Currently, this is done by means of the vehicle number, where even 

numbers have one break regime, and uneven numbers have another. The break times are as follows: 

Even numbers: 

 Dayshift breaks: 11.30 – 12:05 and 13.45 – 14.05 

 Evening shift breaks: 18.15 – 18.50 and 21.15 – 21.35 

 Sunday afternoon shift breaks: 14.15 – 14:35 and 17.00 – 17.35 

Uneven numbers: 

 Dayshift breaks: 11.15 – 11.50 and 14.00 – 14.20 

 Evening shift breaks: 17.45 – 18.20  and 20.45 – 21:05 

 Sunday afternoon shift breaks: 14.00 – 14.20 and 16.45 – 17.20 

Even though EPS uses fixed break times, we can use a tolerance of 15 minutes to increase the flexibility of 

the planning. The PEV driver should choose the break location which leads to the shortest total travel 

time. The PEF drivers have to do the follow-up work. Correspondingly they go to the same break location 

and their breaks start a bit later than the ones of the PEV drivers.  

Furthermore, there are different parking regime times, which indicate at which time a visitor has to pay a 

parking fee. The parking regimes times of Amsterdam can be seen in Table 1.  

Centrum A Monday - Sunday 09.00-24.00 

 B Monday - Sunday 09.00-04.00 

Nieuw-West  Monday - Saturday 09.00-19.00 

Noord A Monday - Saturday 09.00-19.00 

 B Monday - Sunday 12.00-19.00 

 C  Monday - Sunday 09.00-24.00 

Oost 1/ Oost 2 A Monday - Saturday 09.00-19.00 

 B Monday - Saturday 09.00-21.00 

 C Monday - Saturday 09.00-24.00 

West 1  A Monday - Saturday 09.00-24.00 

 B Monday - Sunday 09.00-24.00 

West 2 A Monday - Saturday 09.00-24.00 

 B Monday - Saturday 09.00-19.00 

Zuid 1 A Monday - Saturday 09.00-19.00 

 B Monday - Saturday 09.00-21.00 

 C Monday - Saturday 09.00-24.00 

Zuid 2 A Monday - Saturday 09.00-21.00 

 B Monday - Saturday 09.00-24.00 

 C Monday - Friday 09.00-19.00 

Zuid Oost  Monday - Sunday 09.00-21.00 

Table 1 – Parking regime times 
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Sometimes the parking regime times differ within one KPI area. Therefore, some of them are split into two 

or three subareas. ARS already assigned the neighborhoods to different parking regimes.  

 

We do not have restrictions with regards to the length of the route. The route is only restricted by the time 

as mentioned before.  

 

Cost factors are factors that need to be minimized. In a usual VRP, this would be the travel times or travel 

distances. As we further explain in Section 2.1.8, the maximization of the number of PCNs is the crucial 

output in this routing problem. Even though EPS has no interest in minimizing the travel distances, it is 

important that the travel distances are reasonable such that the PEF driver can still follow the PEV on the 

scooter. A smart maximization of the number of PCNs will automatically minimize travel times to some 

extent to improve the efficiency of the route. Nevertheless, it could be interesting to keep track of the 

travel distances for two reasons. First, the routes will not have the same amount of kilometers. So 

assuming all PEV are interchangeable, at a later time it may make sense to arrange vehicles amongst 

schedules such that they do not all reach their next maintenance requirement at the same time. Second, if 

we assume that some vehicles have less range than others (e.g., electric vehicles) it may be useful to 

assign specific vehicles to routes with less travel distance. Therefore, the travel distance would be nice to 

have but should not impact the core of the routing algorithm. 

 

As already mentioned in Section 1.2 the most important KPI for the municipality is the payment rate, the 

fraction of visitors that pay for parking. The problem of this KPI is that we do not have the information of 

all visitors. The number of paying visitors is known as they are saved in the PRDB. Logically, the non-

paying visitors are not registered in the PRDB. Only those non-paying visitors are known that are scanned 

and issued with a PCN but these are not all of them. Basically, the payment rate (p) should be measured 

with the following formula: 

p =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 + 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠
, 

but since we do not know the number of non-paying visitors, it is measured with the following formula: 

p =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑝𝑎𝑦𝑖𝑛𝑔 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑎𝑛𝑛𝑒𝑑 𝑣𝑖𝑠𝑖𝑡𝑜𝑟𝑠 
. 

Therefore, we can only estimate the payment rate for a certain sample of scans. For example, a PEV starts 

to scan a small neighborhood with 100 parking spots at time t = 0. After 10 minutes at t = 10, the PEV has 

scanned all 90 cars. Out of these 90 cars, 40 cars had a parking permit and 50 cars were visitors. 10 of 

these visitors, did not pay the parking fee and will receive a PCN.  Assuming that nobody left a parking 

spot or arrived to the parking spot within these 10 minutes, we can make the following conclusions from 

this example: 

 The occupancy ratio is 90%, which is the ratio between occupied parking spaces and the total 

number of parking spaces 

 The visitor ratio is 50/90%, which is the ratio between visitor scans (all scanned cars that 

belong to a paying or non-paying visitors) and all scans 

 The non-paying ratio is (40/50%), which is the ratio between non-paying visitors and all 

visitors (equal to 1-p) 

In this context, we thought of a pyramid (see Figure 5) that explains the components of the number of 

PCNs. If we consider a specific time interval and take the known number of parking spots N, multiply it by 

the occupancy ratio S/N (number of scans divided by number of parking spots), by the visitor ratio V/S 

(number of visitors divided by the number of scans),  and then by the non-paying ratio 1-p, then we get 

the number of PCNs. Therefore, the number of PCNs can be expressed as PCN = N*(S/N)*(V/S)*(1-p) or 

PCN = V*(1-p). As mentioned in Section 2.1.3, the number of visitors (or the visitor ratio) and payment rate 

are affected by different factors, which we investigate in Chapter 3 and Chapter 4.  
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Figure 5 – Pyramid showing the factors on the number of PCNs 

Regarding the number of PCNs, approximately 10% of the PCNs that are immediately generated are 

removed afterwards. A common reason for this is that a visitor pays the parking fee but registers the 

wrong license plate and therefore receives a PCN. After a complaint, these PCNs will be deleted and 

therefore not accounted with regards to the KPI targets. Within this research, we only consider the number 

correctly issued PCNs.  

As stated in Section 1.2, EPS tries to increase the control chance in order to eventually increase the 

payment rate and show the municipality that the enforcement effort is at least high enough. The control 

chance is supposed to indicate the fraction of non-paying visitors that are “caught” and issued a PCN. 

However, the municipality, and consequently also EPS, computes the control chance (c) by dividing the 

number of correctly issued PCNs in a KPI area by the estimated number of not-paid-for visitor parking 

hours. Consequently, this means that the control chance is not a probability. More accurately, we should 

call it the average number of PCNs per not-paid-for visitor parking hour. This could be improved by 

dividing the number of not-paid-for visitor hours by the average parking duration of non-paying visitors. 

However, since this is the way the performance is measured by the municipality and EPS, we continue 

explaining how this number is estimated. For this purpose, the municipality uses the payment rate (p). 

First, they estimate the total number of visitor parking hours by dividing the paid-for visitor parking 

hours, which can be retrieved from the PRDB, by the payment rate:  

Visitor parking hours =  
𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑝
. 

In order to estimate the number of not-paid-for parking hours, they subtract the paid-for visitor parking 

hours from the total number of visitor parking hours: 

𝑛𝑜𝑡 𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 =  

𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

𝑝
−  𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 =  

(
1

𝑝
− 1) ∗  𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠 . 

Finally, the formula of the control chance (c) is: 

c =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝐶𝑁𝑠

(
1

𝑝
−1) ∗ 𝑝𝑎𝑖𝑑 𝑓𝑜𝑟 𝑣𝑖𝑠𝑖𝑡𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠

. 

The measured payment rate, the control chance target (𝑐𝑡𝑎𝑟𝑔𝑒𝑡), and the paid-for visitor parking hours can 

be inserted in the formula. By doing so, the number of PCNs needed in every KPI area for the 3 month of 

the KPI period can be estimated. This number is called the PCN target: 

Number of 
PCNs

Number of visitors

Number of scans

Number of parking spots
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 PCN target =  ctarget ∗ (
1

p
− 1) ∗  paid for visitor parking hours. 

Since the PCN target is always derived from the control chance target, we always refer to the PCN target 

and the payment rate whenever we speak about KPI targets further in this research.  

There is one major problem with regards to the KPI targets, namely the fluctuation of the payment rate 

and the paid-for visitor parking hours. Both can be estimated but a false estimation can lead to not 

achieving the PCN target. Every KPI period, the municipality measures the payment rate by taking random 

samples to check whether the target is reached. The size of the samples and when and where they are 

taken is unknown. Consequently, EPS has the problem that they do not know which payment rate the 

municipality finally uses to measure their performance. This makes it difficult to set a fixed PCN target. 

The good thing is that EPS can estimate the payment rate based on a large number of recent scans, 

namely all scans of their daily planned routes. As the daily planned routes are not planned randomly, one 

can say that they use non-random samples but with large sample sizes to represent the entire population 

of the KPI areas. The paid-for visitor parking hours are based on historic data saved in the PRDB. We will 

tackle the uncertainty problem of the payment rate and the paid-for visitor hours in Chapter 4.  

Considering the KPI targets, a KPI area can have one of the three following statuses:  

 Malus – None of the targets is reached. In this case there is a fine for the difference between the 

control chance target and the actual performance since the effort of EPS is not big enough. 

 Neutral – The PCN target is reached and the payment rate measured by the municipality does not 

exceed the  

 Bonus – The payment rate measured by the municipality exceeds the payment rate target. 

Note that EPS only receives a bonus for a KPI area if none of the KPI areas has a malus status. In this 

regard, it is important to remember that due to the uncertainty of the KPI targets it is possible that they 

turn out to be lower than expected at the end of the KPI period (further discussed in Chapter 4). Finally, as 

already mentioned in Section 1.2, the objective of the routing follows a certain order of priority:  

1. Meet either the payment rate target or the PCN target (respectively the control chance) of every 

KPI area (bring all KPI areas at least to a neutral status). 

2. Maximize the PCN target in chosen KPI areas in order to eventually increase the payment rate and 

maximize the performance bonus.  

3. Visit every neighborhood once a week. 

The order of these priorities must not be interpreted as a sequence of actions, i.e., first we only act on the 

first priority, then on the second, and finally on the third. All priorities should rather be taken into account 

at all times. Even though the third point of the priority list (“visit every neighborhood once a week”) is only 

a soft constraint, it is important to visit all neighborhoods in order to collect data. Otherwise, the 

following scenario might happen: 

KPI area A consists of 5 neighborhoods A1, A2, A3, A4, and A5. The daily measured payment rate of KPI 

area A is below the required payment target. Consequently, the PEVs have to scan this area to reach the 

PCN target. If the PEV drivers know that it is likely that they can issue a lot of PCNs in the neighborhoods 

A1 and A2, they will probably drive there, in order to reach the PCN target faster. If they keep doing this, 

they create blind spots because they do not scan neighborhoods A3, A4, and A5 anymore. Hence, they do 

not collect data of the payment rate in these neighborhoods. These blind spots are dangerous since they 

lead to a misconception of average payment rate of the entire KPI area. If the municipality measures the 

payment rate only in one of these “blind spot neighborhoods” (A3, A4, A5), it might happen that the 

payment rate that is measured by the municipality is actually lower than expected. Considering the 

formula of the PCN target, this target increases with a lower payment rate. In the end, this could lead to 

EPS not meeting neither of the KPI targets.  

 

In this section, we briefly explain how EPS currently manages the planning of the PEV routes.  

EPS determines the staff scheduling for one year. Normally, they deploy around 12 PEVs from Monday to 

Saturday and less on Sundays. For one shift with 12 PEVs, they usually need 28 people: 12 driving the 

PEVs, 12 driving the PEFs, and 4 operating as off-street agents. For the night shift, EPS usually schedules 

only one PEV. If they know that there will be a shortage of drivers in the next two week, they can hire 

extra drivers from an external company. 

EPS needs to determine the tasks of the staff and the routes of the PEVs for the following day on a daily 

basis. The PEV routes are based on recent scan results. Every day, EPS receives the results regarding the 

scans, PCNs, and payment rate of the previous day. Furthermore, they receive how many paid-for parking 
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hours there have been in the previous week (Tuesday till Monday) every Tuesday. As described in Section 

2.1.8, they use all this recent data to estimate both KPI targets of the current KPI period. EPS adjusts the 

PCN targets every day such that they know many PCNs they should have issued until the day of the 

planning. For instance, if they estimated that the PCN target of KPI area A is 900 at the end of the KPI 

period, which is day 90, then they would have required 400 if today was day 40. This means that they 

assume in this planning that every day they can issue the same number of PCNs. Every day, they plan the 

routes for the next day as follows: 

1. The results of the past two days are analyzed. 

2. They check whether all drivers are available for the next day. Reasons for not being available are 

holidays, illness, or appointments.  

3. The availability of the PEVs and PEFs is checked. Sometimes they are unavailable due to 

maintenance or damage. 

4. They determine the routes by assigning the PEV drivers to certain neighborhoods that they should 

visit between the breaks. The routes are based on the analysis of the last days, the results of the 

KPI targets, and their priority order as discussed in Section 2.1.8. 

Even though the planning is done one day in advance, it can still happen that employees are suddenly 

unavailable the following day. In this case, employees who were initially scheduled to operate as an off-

street agent need to drive a PEV, to ensure that the capacity of the PEVs is efficiently used.   

 

We conclude from the current situation that there are several inputs needed for routing algorithm. 

 KPI targets: Every 3 months the fixed KPI targets for the payment rate and control chance 

(respectively PCN target) are changed. The PCN target is recomputed every day to ensure that it 

contains the most recent data.  

 Available capacity: In this project, the capacity depends on the availability of PEVs, PEFs, and 

shifts. On the one hand, this includes daily information concerning the available staff and 

equipment. On the other hand, this includes a staff roster, which is set a priori.  

 Restrictions: We have several restrictions, such as the parking regime of the neighborhoods, the 

shifts and break times of the drivers. Also, the drivers must return in the end to the depot and for 

their two breaks, they have to go to one of the three break locations.  

 The expected number of PCNs: We want to know how many PCNs can be expected when a specific 

neighborhood is scanned at a certain time.  

 Service time: The service time is the time needed to scan a neighborhood at a certain time.  

 Travel times: In order to calculate the time needed for every route, we need to calculate the travel 

time from one neighborhood to another at a certain time.  

Regarding all these inputs, the three inputs service times, travel times, and future PCNs have yet to be 

established. Since we have historical data available of all scans made since 1.1.2016, we can use this data 

to develop inputs that can be used for the routing algorithm. In should be taken into account that the 

travel and service time both depend on the travel speed and consequently on traffic congestion. The 

expected number of PCNs is more complicated, as it involves more factors and probably not all of them 

are measured in the current data set, such as weather circumstances. Regarding the expected number of 

PCN, the question how long visitors that already received a PCN remain at the same parking spots, needs 

to be answered. Furthermore, we have to solve the problem concerning the uncertainty of the PCN targets. 

The development of all these inputs is the scope of Chapter 4. The objective and the design of the routing 

algorithm are discussed in Chapter 5.   



Master thesis – Jan Groeneveld 

 

 

13 

 

 

This chapter presents the findings of our literature research. Section 3.1 discusses similar routing 

problems in the literature and Section 3.2 possible solution approaches. Furthermore, Section 3.3 

contains information about speed models, prediction models, and factors that influence parking and 

payment behavior. 

 

In this section, we review the literature regarding our problem such that we can define the problem and 

find solution approaches for it. In our literature research, we only found one article that deals with the 

routing of parking enforcement (searching method is shown in Appendix A). Summerfield, Dror, and 

Cohen (2015) state that the problem of designing an online parking enforcement algorithm that 

maximizes the revenue collection has not yet been introduced to their knowledge. Summerfield et al. 

(2015) model the task of designing parking permit inspection routes as a revenue collecting Chinese 

Postman Problem. The original Chinese Postman Problem (CPP) aims to find the shortest route for a 

postman with the requirement that the postman covers every street (denoted as edge or arc) at least once 

(Gendreau & Laporte, 1994) and returns to the start location. In the problem of Summerfield et al (2015), 

every edge has certain weights. Since not every edge has to be traversed, it is the goal to maximize the 

total amount. We also know that in Portugal a research group is working on a similar problem with 

weighted arcs in the parking enforcement. Considering this problem as an arc routing problem (such as 

the CPP) with weighted arcs is a logical approach in most countries, as they plan routes for walking agents 

going through streets (similar to the postman). In this research, however, we consider the neighborhoods 

within a city and therefore our problem focusses on nodes (also denoted as vertices). Nevertheless, for 

future studies, this (weighted) arc routing problem might be interesting. For instance, once the routing of 

all neighborhoods is done, algorithms to solve the CPP could create the route within a neighborhood. To 

this end, we can use different variations like: 

 Open CPP: postman does not return to the original destination (Thimbleby, 2003). 

 Windy or directed CPP: edges are directed, meaning that it matters in which direction you are 

traversing the street (Eiselt, Gendrau & Laporte, 1994). 

 Mixed CPP:  edges can be both directed and undirected (Wang, Yan, Hollister & Zhu, 2008). 

 Multiple CPP: Multiple postmen have to traverse each street once such that every street has only 

one postman assigned to it, except for the starting street (Zhang, 2011). 

If we only considered one car in one neighborhood, the problem would be an undirected CPP and 

therefore solvable in polynomial time (Gendreau & Laporte, 1994). This is interesting because in the 

future, one might want to plan also the routes within the scheduled neighborhood. Since the problem is 

then solvable in polynomial time, this could probably be implemented as an online application  

A well-known problem that does consider the optimal route planning of nodes is the Travel Salesman 

Problem (TSP). The TSP deals with a salesperson that has to travel to every given city exactly once and 

return to the starting city. As for the CPP, it is the objective to minimize the total travel distance (Graham, 

Joshi & Pizlo, 2000). Unlike the CPP, the TSP has to visit once every node (in this case: neighborhoods) 

instead of every edge (e.g., streets).  As for the CPP, there is also a multiple version of the TSP, the mTSP, 

where every node has to be visited once by one salesman (Bektas, 2005). The mTSP seems to be a better 

fit as we have to schedule multiple vehicles. Again, there are a lot of different variations defined for the 

TSP and mTSP. The most widely studied generalization is the vehicle routing problem (VRP) in which the 

car has limited capacity and has to deliver goods to the customer at the nodes (Braekers, Ramaekers & 

Van Nieuwenhuyse, 2016). Braekers et al. (2016, p.304) state that the VRP is one of the most widely 

studied topics in Operations Research and also present a list with different characteristics of the VRP that 

were most often reviewed in the last years: 

 Capacitated vehicles 

 Heterogeneous vehicles 

 Time windows 

 Backhauls 

 Multiple depots 

 Recourse allowed 

 Multi-period time horizon 

 Precedence and coupling constraints 
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 Subset covering constraints 

 Split deliveries allowed 

 Stochastic demands 

 Unknown demands 

 Time-dependent travel times 

 Stochastic travel times 

 Unknown travel times 

 Dynamic requests 

Unfortunately, these variations are still focused on minimizing the travel time and number of vehicles, 

whereas we strive to maximize the number of PCNs in every neighborhood. However, these variations are 

still relevant because we also have to deal, for instance, with time-dependent travel times and multiple 

depots (break locations).  

Another interesting variation of the VRP is the milk collection problem. Claassen and Hendriks (2007) 

modeled the milk collection problem as a periodical VRP (PVRP). PVRP considers a planning period of T 

days instead of a single day. Therefore, clients are not necessarily visited every day. The demand of 

customers can be different for every customer at every day and the frequency of visits can be different for 

every customer. They do not minimize the travel time but minimize the weighted sum of deviations on 

demand level. Our problem is also a periodic problem (if we choose to make a planning for the whole KPI 

period) and the neighborhoods can be visited more than once during the KPI period. However, in our case, 

one neighborhood can even be visited more than once a day. Even though the milk collection problem 

comes closer to the problem of this research, this problem deals with capacity, which we can neglect. 

Moreover, minimizing the deviation of demand and maximizing the number of PCNs are not quite the 

same. Nevertheless, some parts of this article might be useful. 

Another generalization of the TSP, namely the Traveling Salesman Problem with Profit (TSPwP), seems to 

be a better fit. Feillet, Dejax, and Gendreau (2005, p.189) discuss three different variations: 

1. Both objectives, profit and travel costs, are combined in the objective function; the aim is to find a 

circuit tour that minimizes travel costs minus collected profit 

2. The travel cost objective is stated as a constraint; the aim is to find a circuit tour that maximizes 

collected profit such that travel costs do not exceed a preset value. 

3. The profit objective is stated as a constraint: the aim is to find a circuit that minimizes travel 

costs and whose collected profit is not smaller than a preset value. 

As we want to maximize the amount of PCNs and we are restricted by the length of a shift, we choose the 

second option which they call the orienteering problem (OP). Furthermore, they state that the OP can be 

found in the literature under different names such as selective TSP (STSP) or the maximum collection 

problem (MCP). However, Feillet et al. (2005) explains that the OP and MCP differs from these as the OP is 

generally defined as a path rather than a circuit. However, by “adding a dummy arc from the destination to 

the origin of the paths makes the two problems equivalent” (Feillet et al., 2005, p.189). Even though the 

route has to finish at one particular depot, there are three locations (including the depot) where a break 

can be held. Therefore, it might be better to consider the problem including different break locations as 

separate paths instead of one circuit tour. For example, a circuit tour that starts and finishes at the depot 

(point A) and that includes two breaks, one at point B and one at point C, could be described as three 

paths (A->B, B->C, and C->A). Note that in our problem the break location should be chosen while 

constructing the route. As for TSP, there is a multiple-variant of the OP or MCP called the team 

orienteering problem (TOP) (Chao et al., 1996) or the multiple tour maximum collection problem (MTMCP) 

(Butt & Ryan, 1997). In the literature, we find the following applications: 

 Scheduling maintenance technicians problem (Tang, Miller-Hooks & Tomastik, 2007) 

 Tourist route planning problem (Gavalas et al., 2015; Vansteenwegen et al., 2009a; 

Vansteenwegen et al., 2009b; Vansteenwegen et al., 2009c) 

 Bank robber problem (Awerbuch, Azar, Blum & Vempala, 1998) 

 Home fuel delivery problem (Tang & Hooks, 2005) 

 Athlete recruiting problem (Tang & Hooks, 2005) 

Verbeeck et al. (2014b) present some generalizations of the TOP that include time windows and time-

dependent (and/or stochastic) rewards, travel times, and services times. Considering the mathematical 

structure, the OP has a set of vertices, which are connected by edges. In order to travel these edges a 

certain travel time is needed. Unlike the TSP, time is limited and therefore it is the goal to visit a selected 

set of vertices in such a way that the total collected score is maximized (Verbeek, Aghezzaf & 

Vansteenwegen, 2014). Usually, the vertices in the OP are visited at most once (Vansteenwegen et al., 

2011). In our problem, we do not have this constraint since the PEVs may go to the same neighborhoods 
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multiple times a day. The usual OP “is a combination of the knapsack problem (KP) and the traveling 

salesperson problem” (Verbeeck, Sörensen & Aghezzaf, 2014a). The knapsack problem maximizes an 

objective function by choosing items subject to a packing constraint (Hochbaum, 1995). That mean it is a 

combination of the selection of nodes and the determination of the sequence of these selected nodes. 

Since we do not have the constraint that a node is only chosen at most once a day, we have an additional 

scheduling problem because it is also required to determine the number of times a selected node is 

visited a day. Furthermore, in case that a node is visited multiple times a day, the reward that can be 

obtained during a visit depends on the time-difference to the earlier visit, hence the rewards are inter-

related. The reason behind this is that one visitor can receive at most one PCN a day, therefore the 

expected reward at a node decreases after it has been visited. In addition, we consider time-dependent 

service times, travel times, and rewards and a periodical planning. Due to different parking regime times 

of the neighborhoods, we also have to take different time windows into account. As mentioned before in 

this section, our problem also requires visiting three possible break locations and therefore it is also a 

kind of multi-depot problem. Finally, we call this generalization the time-dependent and periodical TOP 

with multiple visits and multiple constraints, which we denote as the TD-PTOPMVMC. To the best of our 

knowledge, such a generalization is not discussed in the literature. Especially, the TOP with multiple visits 

are an interesting contribution to the literature, as it could have different applications, such as various 

inspection, collection, or salesmen problems. The problem could be further extended to a Mixed TOP 

(Vansteenwegen, Souffria & Van Oudheusden, 2011) that includes also the number of PCNs that are 

generated while traveling from one neighborhood to another.  

Regarding the running time complexity, the TSP and VRP are known to be NP-hard. As stated before, in 

order to solve the TOP, not only the determination of the route is required but also the selection of the 

subset of nodes that will be visited. Because of this added element of complexity, it follows that the TOP 

is also NP-hard (Butt & Ryan, 1999). With another added element of complexity due to the multiple visits, 

the same holds logically for the TOPMV. The additional impact of breaks on the running time is discussed 

by Kok, Hans, Schutten, and Zijm (2010). They state that if the number of existing entries without breaks 

was O(np), the total number of entries with at most one break scheduled would be O(n2p). Analogously, 

considering 4 breaks would result in the running time complexity of O(n5p). This leads to the question 

whether this problem is solvable by an exact algorithm. It is known that exact algorithms can only solve 

NP-hard problems with relatively small instances and that heuristic are the more reliable approach in 

practical instances (Cordeau, Gendreau, Hertz, Laporte & Sormany, 2004). An exact algorithm to solve the 

TOP, using column generation, has been published by Butt and Ryan (1999). They were able to solve 

problems with up to 100 vertices and stated that the “solution procedure works well on realistic size 

problems, particularly when the number of nodes visited in any tour is relatively small” (Butt & Ryan, 

1999, p.440). In their case, the average number of nodes per tour for 100 nodes was 3. In our case, we 

have 320 neighborhoods with probably more than 20 nodes per tour, a time-period of 90 days and 

multiple breaks at different break locations. Intuitively, it seems unlikely that an exact algorithm can solve 

this problem in reasonable time. Besides, an exact solution cannot be executed in practice as it is unlikely 

that they always arrive at the scheduled neighborhood in time. Consequently, we choose to apply heuristic 

algorithms, which are discussed in the Section 3.2. 

 

As stated in 3.1 we are looking for a heuristic approach to solve our problem. This section first introduces 

the basic principles of routing heuristics in Section 3.2.1 and then presents literature dealing with solving 

TOP or MTMCP as our generalization is not yet introduced to the literature.  

 

Cardeau et al. (2005) state that VRP heuristics usually combine some of the following four components:  

1. Constructive heuristics 

2. Improvement heuristics 

3. Population mechanisms 

4. Learning mechanisms 

Except for the capacity constraint, the TOP is strongly related to the VRP and therefore we can apply the 

same heuristics and mechanisms. To this end, we briefly introduce the concepts of these four components 

before presenting heuristics that have been proven to be effective for TOP problems.  

Constructive heuristics, as the name implies, construct an initial solution. Often, improvement heuristics 

are then applied to find better solutions than the initial solution. The combination does not necessarily 

mean that one improvement heuristic is applied on one constructed solution. It is also possible to use one 

or more improvement procedures on one or more solutions.  Improvement heuristics can be divided into 
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(local optimum) heuristics and metaheuristics. The local optimum heuristics function in a descent mode 

until a local optimum (maximum or minimum) is reached. Metaheuristics, on the other hand, work in such 

a way that they try to avoid being trapped in a local optimum. Therefore, these heuristics sometimes 

accept worse or even infeasible solutions. Three well-known metaheuristics are tabu search, simulated 

annealing (SA), and variable neighborhood search (VNS), which will also be discussed in Section 3.2.2. SA 

is inspired from annealing in metallurgy and therefore works with cooling parameters. While exploring 

more and more solutions, these cooling parameters decrease the probability of accepting worse solutions. 

The tabu search always chooses the best neighbor that is not on the tabu list and adds this neighbor to 

the tabu list. The tabu list usually has a limited length and deletes the oldest ones from the list. Since the 

tabu list prohibits going back to old solutions, the tabu search avoids getting stuck in local optima, and is 

therefore a metaheuristic. In the VNS, introduced by Mlandenovic and Hansen (1997), the neighborhood 

structure is able to change while exploring solutions. These heuristics are often combined with each other 

or other heuristics.  

Another kind of heuristics is population-based, which belong to the class of evolutionary algorithms (EA). 

The widest known population-based algorithm is the genetic algorithm (GA). The classical GA is a 

metaheuristic that operates on a population of solutions called chromosomes or individuals. In each 

iteration (generation), the following operations are applied k times (Cardeau et al., 2005; Kumar et al., 

2005): 

1. Select two parent chromosomes 

2. Use crossover operators to generate two offspring from these parents 

3. Apply a random mutation to each offspring with a small probability 

4. Remove the 2k worst elements of the population and replace them with the 2k offspring 

The idea of combining solutions to generate new ones is also used in the adaptive memory procedure 

(AMP), which was introduced by Rochat and Taillard (1995). The only difference is that they can generate 

new solutions from more than two parents (Golden et al., 1997). 

Learning mechanisms are heuristics that are inspired by different learning paradigms in the world. For 

instance, neural network models, which are inspired by the way how the brain works. Another example 

are ant colonization optimization (ACO), which belong to the ant colonization optimization algorithms. 

The ACO algorithms are inspired by the way ants collect food. Ants use trails of pheromone to mark their 

travel paths. As time passes, the best paths will have the strongest trail since more and more ants are 

using these paths.   

 

A lot of different heuristics have been introduced to solve different variations of OP, MTMCP, TOP, 

MTMCP, and the selective traveling salesman problem (STSP). In this section, we describe the most 

important ones. Gendreau, Laporte & Semet (1998) describe some difficulties when applying heuristic 

approaches to the OP. They state that “profits and distances are independent and a good solution with 

respect to one criterion is often unsatisfactory with respect to the other” (Gendreau et al., 1998, p.540). 

This makes it hard to accurately select nodes. Furthermore, Vansteenwegen (2009a) indicates that the 

most difficult OP instances to solve are those where the selected number of nodes is a little more than 

half of the total number of nodes. According to Vansteenwegen et al. (2011), the best-performing TOP 

algorithms are discussed in Tang and Miller-Hooks (2005), Archetti et al. (2007), Ke et al. (2008), 

Vansteenwegen et al. (2009c), and Souffriau et al. (2010). The computational results of these algorithms 

are shown in Table 2. 

 

Table 2 – Summary of the best-performing TOP algorithms (Vansteenwegen et al., 2011, p.5)
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Concerning these articles, Vansteenwegen (2009b) argues that the local search moves used in these TOP 

solutions are not effective when applied to TOPTW because they include local search moves that become 

useless when time windows are considered. In our case the time windows are quite the same except for 

the evenings and Sundays (see Table 1 in Section 2.1.5), therefore this is not a problem. On the other 

hand, all the travel time, service time, and expected number of PCNs are time-dependent and that means 

that by applying local search techniques, such as swapping, we need to calculate the whole route again 

and have to take into account that no time restrictions are violated. Moreover, as explained in Section 

2.1.3, visiting a neighborhood has influences on other visits of the neighborhood if they are on the same 

day. Therefore, local search moves will be difficult to implement but we do consider these algorithms as 

well (except for the article of Archetti et al. (2007) because is not accessible for us) to get a broader 

impression of possible solution heuristics. 

Vansteenwegen et al. (2011) state that there are four articles published in the literature that deal with the 

TOP with time windows. We do not include the exact algorithm from Boussier et al. (2007) in our research 

because we focus on heuristic approaches, as stated in Section 3.2.1. However, we add another 

interesting article about a simulated annealing heuristic from Lin and Yu (2015). Therefore, we add the 

following four articles to the four articles from Table 2: 

 Montemanni & Gambardella (2009): An ACO algorithm for the hierarchical TOP with time windows 

 Vansteenwegen et al. (2009b): Iterated local search heuristic for the TOP with time windows 

 Tricoire et al. (2010): VNS algorithm for the multi-period OP with multiple time windows 

 Lin & Yu (2015): Simulated annealing heuristic for the multi-constraint TOP with multiple time 

windows 

In the following, we discuss the algorithms of these eight articles.  

 

Tang and Miller-Hooks (2005) apply a tabu search heuristic embedded in an AMP, which we introduced in 

Section 3.2.1., to the TOP. However, instead of reviewing this article, we review the article from Tang, 

Miller-Hooks & Tomastik (2007) because they use the same approach and extend the TOP by considering 

time-dependency and a periodical planning, which fits better to our problem.  

Tang et al. (2007) tackle the problem of scheduling technicians for planned maintenance. They consider a 

planning period of 3 weeks and time-dependent rewards to better describe the reality. Greater rewards are 

assigned to locations that have not been maintained for a longer time. The travel times between locations 

and service times at every location are different but not time-dependent. Their approach includes three 

AMP steps:  

1. Partial solution generation and storage:  

Partial solutions are defined as one single tour of the m tours. First, a set of partial solutions is 

generated and stored. The first non-depot vertex is randomly chosen. Random vertices are added 

in between a pair of vertices, which depends on a ratio with regards to the added tour duration 

and the added reward.  

2. Solutions construction:  

Afterwards, solutions are constructed by combining partial solutions. The selection preference is 

biased to those single tours with preferred objective values. All constructed solutions are 

improved by tabu search afterwards. Both random and greedy procedures are applied in the 

neighborhood solution exploration.  

3. Partial solution update: 

The solutions maintained in the adaptive memory are updated with these improvements. Low-

reward tours in the adaptive memory are replaced by the improved tours.  

 

Montemanni and Gambardella (2009) apply an ACO heuristic to the team orienteering problem with time 

windows.  They define their problem as a hierarchical TOP, which requires the same input as the TOP does 

but it requires a set of non-overlapping elementary paths, which have an ordered sequence of nodes 

starting from node 1 and ending at node n.  

The construction phase is performed by sending out all ants sequentially. Iteratively, every ant goes 

probabilistically from node i to node j based on the pheromone trail and the desirability. The pheromone 
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trails contain the trails of previous ants that travelled there and indicate how good this path has been in 

the past. The desirability is a formula regarding the associated profit, the distance, and the time window 

of node j. The possible nodes for j are selected out of a set of feasible nodes, which still need to be visited 

and are within the time window. Note that only the best ant, which collected the most rewards, is allowed 

to leave a trail that is updated to all arcs. While the ant builds the solution, the pheromone trail is updated 

as well. Each ant removes pheromone trails of the visited arcs to make sure that there is a variety of 

generated solutions. Afterwards, the constructed solutions are being optimized by a local search 

algorithm. They apply a CROSS exchange procedure that exchanges two sub-chains of customers of the 

giant tour.  

Ke et al. (2007) also apply ACO but to the regular TOP without any time-dependencies or time windows. 

They state that sending the ants sequentially results in the best results. Furthermore, they performed a 

benchmark of their algorithm with the one of the Archetti and Tang et al. (2005) with the result that the 

quality of their solution could compete with the others but with a much faster computational time. The 

results can be seen in Appendix B. Another interesting aspect of their approach is that in their heuristic 

function they include the angle at neighborhood i between the way to the depot n and the next 

neighborhood j. By doing so, the algorithm can send the driver in the desired direction. First leaving the 

depot and then forcing the driver more towards the depot.    

 

Verbeeck et al. (2014a) apply ACO to a TOP with time-dependent travel times. They speed up the time-

dependent insertion procedure by using a local evaluation metric. Verbeeck et al. (2014b) tackle the TOP 

with time-windows and time-dependent and stochastic rewards and time-dependent travel times by using 

a greedy randomized adaptive search procedure and a stochastic version of the ACO.  

 

Lin and Yu (2015) apply an SA heuristic, which we briefly introduced in Section 3.2.1., for the multi-

constraint TOP with multiple time windows. Their heuristic starts by creating a random initial solution. 

Afterwards, the initial solution is optimized by means of SA including a swap, insertion, or inversion 

procedure in every iteration. Additionally, they add a restart strategy as an extra diversification to avoid 

local optima. They state that sometimes accepting worse solutions is not enough to escape the local 

optima. The current temperature, which determines the probability of accepting worse solutions, 

decreases after every iteration.  The algorithm restarts if the current best solution has not improved for a 

pre-determined number of consecutive temperature decreases. Once the algorithm restarts, the current 

temperature is reset to the initial temperature and a new initial solution is generated randomly to initiate 

a new SA run. They show that SA with a restart strategy is a promising heuristic method to solve multi-

constraint TOP with multiple time windows and that the restart strategy enhances the performance of the 

SA. 

 

Tricoire, Romauch, Doerner and Hartl (2010) deal with a multi-periodic TOP with multiple time windows 

and use a VNS. Before applying the VNS, they first construct solutions. To this end, they use the best 

insertion heuristic. The insertion heuristic is based on two criteria. One is the lowest increase in distance 

and the other one the lowest increase in time. The feasibility of the insertions is checked by means of an 

exact feasibility algorithm, which operates in polynomial time. Afterwards, VNS is applied to improve the 

initial solution. A stopping condition can be a limit on computational time, the number of iterations, or 

the number of iterations without improvement. They apply the number of iterations as a stopping 

criterion. For every iteration of the VNS algorithm, an improvement method that depends on the number 

of iterations, that have been performed already (iteration 1-8: cross-exchange, iteration 9-12: optional 

exchange, iteration 13-17: optional exchange), uses random nodes to create a new solution. If the new 

solution is better, it replaces the initial solution. In a benchmark, they show that their VNS algorithm is a 

viable option for all kind of orienteering problems, with or without time windows.  

 

Souffria et al. (2010) use a path relinking metaheuristic in combination with a greedy randomized 

adaptive search procedure because path relinking heuristics have been proved to work well on knapsack 

problems. Their approach works as follows: 
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While the number of iterations without improvement is not exceeded: 

1. Construct: The construction heuristic is based on a greedy randomized adaptive search 

procedure. This procedure depends on a “greediness” parameter that lies between 0 and 1. This 

parameter indicates the level between randomness (0) and greediness (1). The parameter is 

determined randomly before the construction. 

2. Local search:  The local search algorithm uses 2-Opt, swap, replace and insert procedures until a 

local optimum is reached.   

3. Link to elites:  This procedure combines the solution, that was constructed and improved in the 

prior two phases, with one of the solutions out of the elite pool.  The two solutions are first 

combined, then adapted, and finally improved to create a new feasible solution. This procedure is 

done for all possible combinations, therefore for all members of the pool of elites. 

4. Update elite pool: The best solution found in the prior step is considered for the insertion into the 

pool of elite solutions. If the pool is full, it replaces the worst elite solution if it leads to an 

improvement.  Every solution is assigned to an age and it increases with every time the “Link to 

elites” is performed. At a certain age, the solution is deleted from the pool.  

 

Vansteenwegen et al. (2009b) apply an iterated local search heuristic algorithm to the TOPTW with the 

purpose of developing an electric tour guide. The electric tour guide required a short computation time 

and therefore they chose an algorithm that is very simple, fast, and effective. They achieved this goal with 

an average performance gap of 1.8% to the best-known solutions and the average computation time is 

more than a 100 times faster than the best-known solutions. Gavalas et al. (2014, p.19) state that it is “the 

fastest known algorithm proposed for the TOPTW”. Their approach includes an insert step in combination 

with a shaking step to escape from local optima that perform performs very well on a large and diverse 

set of the instance. 

The insertion step adds one by one new visits to a tour. Before a new visit can be added, the time windows 

need to be checked for feasibility. A feasible node with the cheapest insertion time will be inserted. For 

each node, a ratio is calculated that incorporates the profit and the delay of adding this node. Afterwards, 

a shake step is used to escape from local optima. In this shake step, random node(s) are removed in every 

tour to make space for nodes that might improve the solution.  

 

This section addresses the development of the three inputs: scanning time, travel time, and the number of 

PCNs. As scanning time and travel time both depend on speed, Section 3.3.1 is about speed models. The 

number of PCNs is more complicated because some factors are yet to be determined and finally we have 

to analyze the impact of all factors. Therefore, Section 3.3.2 discusses possible factors from the literature, 

and Section 3.3.3 presents data analysis tools and prediction models.  

 

As described in Chapter 2, a speed model, which also accounts for traffic congestion, is required for the 

estimation of the service time and travel time.  

Kok, Hans and Schutten (2012) used a speed model to calculate travel times of a VRP. In order to avoid 

traffic congestion, they use time-dependent travel times as an input for their VRP. They state that peak 

hours depend on location and time of the day, therefore “traffic congestion avoidance is all about not 

being at the wrong place at the wrong time” (Kok et al., 2012, p.1). Therefore, their speed model accounts 

for traffic congestion depending on time and location. They introduce four different strategies regarding 

the calculations of the shortest paths and finally the travel times of the VRP as can be seen in the 

following Table 3.  

 

Table 3 – Travel time strategies by Kok et al. (2012) 
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Their results have proven that accounting for traffic congestion leads to more reliable travel times in 

terms of punctuality at the customer locations. They also indicate that avoiding traffic congestion leads to 

improved routes in terms of traveled time.   

In our case, we do not have to calculate the shortest path because we can make use of an existing 

distance matrix. Nevertheless, we can use this model by making the travel times of the TOP time-

dependent to avoid the traffic congestion in Amsterdam. However, we do not consider such a big network 

as in the research of Kok et al. (2012) and therefore it is questionable if it is necessary for us to let the 

traffic congestion depend on different locations within Amsterdam. An alternative model was introduced 

by Verbeeck et al. (2014a) who also use a time-dependent speed model but their model accounts for 

different arc categories: 

 Always busy  

 Morning peak 

 Two peaks a day 

 Evening peak 

 Seldom traveled 

Assigning every arc to such a category might be useful for our problem as well.   

 

This section discusses what the literature provides about factors that have a possible impact on the 

number of PCNs. In Section 2.1.8, we concluded that the number of PCNs can be derived from the number 

of visitors and the payment rate and that the number of visitors can also be derived from the occupancy 

ratio of the parking spots and the visitor ratio of all scans. Since it is also possible to visit a neighborhood 

more than once during a day, it is interesting to know how long visitors, who do not pay, stay at the same 

parking spot. To this end, we investigate what is written in literate about parking and payment behavior. 

As already mentioned in Section 1.1.3, Peliot (2004) states that the choice whether to pay for parking 

depends on the amount of the fine, the risk of getting caught, and the regular parking costs. We already 

consider the control chance and therefore the risk of getting caught. As discussed in Section 1.2, the 

amount of the fine consists of a fixed amount plus one-hour parking fee. Both the fee and the fine cannot 

be changed. However, it might be interesting to investigate if differences of the parking fee in different 

neighborhoods influence the payment behavior.  

Summerfield et al. (2015), who consider the parking enforcement problem as a CPP, use two probabilities 

in their model. The first is a Bernoulli distribution that indicates whether a car is parked in a parking 

space. For the Bernoulli distribution, they experiment with occupancy ratios of the parking space from 

90% until 100%. Lower occupancy ratios decrease the revenue of a route. However, with these lower 

occupancy ratios the parking enforcement agents could actually finish their routes earlier as they did not 

have to investigate 100% of the parking spots. This does not apply to our case due to the fact that the PEV 

passes the parking spots regardless of whether the parking spot is occupied or not. The second 

distribution Summerfield et al. (2015) use is a triangle distribution that represents the distribution of the 

time between the parking of a car and the return of its owner.  They assume that everybody is a visitor 

that pays but not everybody returns in time to their car. The authors use parking permit times between 30 

and 120 minutes and a memory of the parking enforcement agent. There are two memory options: 

1. Wait on-site for parked cars that are about to expire  

2. Go back to the parked cars that were about to expire 

This memory option is not relevant for us, as the PEV driver does not know when the parked cars are 

about to expire because they just scan the license plates and have no immediate access to the PRDB, 

which contains the payment information.  

Aikoh, Abe, Kohsaka, Iwata, and Shoji (2012) investigate the factors influencing visitors going to suburban 

open space areas near a northern Japanese city. Even though visitors going to suburban spaces is not 

quite the same as going to Amsterdam or another big city, their results are quite interesting for us. They 

used a multiple regression analysis to analyze social factors and meteorological factors, such as: 

 Day of the week and holidays  

 School vacation 

 Rain, Snow 

 Temperature 

 Weather conditions at the departure site 

 Weather forecasts 
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They state that the day of the week and holidays have the biggest influence on the number of visitors. 

Moreover, the results seem to depend on the season of the year. For instance, higher temperatures 

increase the number of visitors in the green season but they have an opposite effect in the snow season 

as they expect snow in the snow season. Their results also show that not only the weather but also the 

weather forecast affects the number of visitors in the summer. Furthermore, school vacations, rain at 

departure site and depth of snow influenced the number of visitors in the winter.  

Probably some of these factors also play a role in the number of visitors of Amsterdam. However, not all 

people who visit Amsterdam are actual visitors in a touristic sense but also business people. Probably the 

number of business people does not depend that much on seasons and the weather as it is the case for 

tourists. It could be that their number is affected by economic growth or special business events. 

 

This section deals with how to make a prediction model from available data. First of all, it is important to 

understand the data set. In the field of prediction models, we have a matrix representing a data set. This 

matrix consists of several columns representing either a feature or an output. The rows are filled with 

observations that provide information about the features, the output, and more importantly their relation 

to each other. Features can be either quantitative or qualitative (Jain, Murty & Flynn, 1999):  

 Quantitative features 

 Continuous values (e.g., weight) 

 Discrete values (e.g., the number of computers) 

 Interval values (e.g., the duration of an event) 

 Qualitative features 

 Nominal or unordered (e.g., color) 

 Ordinal (e.g., qualitative evaluations of temperature (“cool” or “hot”)) 

An output can also be quantitative or qualitative. In our case, we have quantitative outputs because we 

want to know the number of visitors and the probability that they pay for a given space and time period.  

To this end, we discuss different prediction models for quantitative outputs later in this section but first 

we address the field of the clustering analysis. 

 

A clustering analysis helps to better understand a data set by investigating its observations and 

establishing certain patterns. A pattern can be a represented as a multidimensional vector or a point in a 

multidimensional space that measures an output (Jain, Murty & Flynn, 1999). For instance, looking at the 

number of traffic jams in a big city and the hour of the day, one could probably find patterns that show an 

increase in the morning and afternoon. Xu and Wunsch (2005) state that it is essential to classify the 

observations of the data into a set of categories or clusters. Clustering analysis is an unsupervised 

(unlabeled) classification, i.e. the names of the clusters are unknown. The objective of clustering analysis 

is to group a given collection of unlabeled patterns into meaningful clusters.  

Xu and Wunsch (2005) divide clustering algorithms into four tasks.  

1. Feature selection: 

Sometimes the data needs some kind of transformation. Even simple transformations “can yield 

significantly improved clustering results” (Jain, Murty & Flynn, 1999, p.7).   Furthermore, it is not 

necessary to use all available features. The feature selection is the process of selecting the most 

effective subset of original features in order to reduce the number of dimensions. By doing so, the 

results of the clustering and the pattern representation can be improved. A well-known method of 

feature selection is the primary component analysis (PCA), also called the Karhunen-Loeve 

transformation. The objective of the PCA is to select only the most important features that say the 

most about the variance of the data set. By not considering the other features in the data analysis, 

the dimensions of the data set are reduced.   

2. Clustering algorithm: 

The next step is applying a clustering algorithm in order to cluster the data. There are several 

different algorithms due to the fact that there are many different types of data. These algorithms 

format clusters by using proximity measures and constructing a criterion function. We consider 

especially the algorithms that deal with clustering of time series and geographical clustering. 

Anderson (2009) use kernel density estimation and K-means clustering for clustering road 
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accident hotspots. Liao (2005) discusses relocation clustering, agglomerative hierarchical 

clustering, K-means, fuzzy c-means, and self-organizing maps for clustering time series.  

3. Validation of clusters: 

After clustering, we can validate whether these clusters are appropriate. The assessments should 

be objective without having preferences for any algorithm or outcome. 

4. Results interpretation:  

The ultimate goal of clustering is to provide users with meaningful insights from the original data. 

Xu and Wunsch (2005) present these steps in a figure (Figure 6). All steps are inter-related due to 

feedback pathways.   

 

Figure 6 – Clustering analysis procedure (Xu & Wunsch, 2005) 

We can use these steps as a framework for our data analysis.  

 

A common way to develop prediction models for quantitative outputs are regression models (Larsen & 

Marx, 2012). Regressions models analyze the effect of the independent variables, also called predictors or 

features, on the outcome variable. A regression analysis can include one (simple regression) or more 

predictors (multiple regression). The relationship between predictors and the outcome variable can be 

linear, curvilinear, or nonlinear. For the prediction of probabilities, logistic regressions can be applied. For 

numerical outputs usually a (multiple) linear regression or nonlinear regression is used.  

There are also machine learning techniques that are using regression models such as artificial neural 

networks. These networks are inspired by the architecture of biological neural networks (Mair et al., 

2000). Every network consists of neurons which are interconnected by strings. A neuron receives an input 

which is associated with a weight. If the sum of these weighted inputs exceed a certain threshold, the 

neuron fires and creates a positive or 

negative output for other neurons in 

the network. This process stops when 

one or more outputs are generated. 

An example of this process is shown 

in Figure 7.  This example shows n 

inputs. If the threshold is exceeded, 

the output becomes 1, otherwise, it is 

0. If an output is incorrect, a process 

called backpropagation starts. In this 

process, the output is corrected by 

adjusting the weights. In this way, the 

networks learn from a data set.  

Sarkar, Ghalia, Wu, and Bose (2009) applied a neural network to predict fiber diameters by using different 

inputs. In this case they use a multilayer network as proposed by White (1992). A multilayer network has 

hidden layers between the original input and the final output variable(s). These hidden layers are 

functions that use the previous inputs to create an intermediate output node, which can be used as an 

input for another hidden layer or for the final output variable. Within one hidden layer there can be many 

layer nodes. It is also hard to tell how many layers and nodes a neural network should have because in the 

end the neural network determines what happens in the layer nodes within the layer. Sarkar et al. (2009) 

Figure 7 – An example of a neural network (Mair et al., 2000) 



Master thesis – Jan Groeneveld 

 

 

23 

 

determine the number of nodes and layers by conducting experiments. The results were 12 nodes in the 

first hidden layer and 7 nodes in the second one. The final neural network can be seen in Figure 8.  

 

Figure 8 – An applied neural network with hidden layers (Sarkar et al., 2009) 

Le Cun et al. (2012) have some recommendation for applying a neural network. For instance, shuffling the 

data set helps the network to learn faster from unexpected samples (LeCun et al. 2012) and normalization 

of the presented input data can also increase the learning process. It is well-known that, the data set 

should be split into a training set and a test set, in order to avoid overfitting, i.e., the neural network 

learns too much from the data set in a sense that it also learns from outliers and noise instead of creating 

a general applicable prediction model. Furthermore, White (1992) and LeCun et al. (2012) state the use of 

too many parameters and too many layers can also lead to overfitting.  

Another prediction model is introduced by Van Urk, Mes and Hans (2013). They use a prediction model for 

an application, which is quite similar to our planning tool, namely the development of a decision support 

application for the Dutch Aviation Police and Air Support unit for routing their helicopters in anticipation 

of unknown future incidents. Their research is similar as it involves a forecasting method and a routing 

method that maximizes the likelihood of being close to a future crime. Even though parking violation and 

crime are not quite the same, the principle can be applied here as well. The second part of their research 

also deals with a kind of TOP but they combine it with a Location Covering Problem (LCP), as the 

helicopters have to cover certain areas to intervene quickly in case of emergencies. For us, the LCP is not 

relevant, as we do not deal with that kind of emergencies. More interesting, however, is the first part 

regarding the forecasting. In order to predict future crime intensity, they use a forecast based on the 

moment of the day, days of the week, and months of the year, which have an impact on the crime rates. 

They convert every past incident in order to use this information for future predictions. To this effect, they 

use two conversion factors, namely the FactorMonth (month, hour) and the FactorWeekday (weekday, 

hour). Additionally, they apply generalization techniques because they assume that an incident at one 

specific location and time is similar to the neighboring areas and some time periods around the incident. 

Analogously, they apply this for the time dimension. This model with some modifications can be used for 

this research as well. The incidents can be replaced by the number of PCNs and it would be required to 

check whether the generalization also applies in our case. A similar approach is discussed in the master 

thesis of van Hal (2015). In this research, the forecasting method is based on the fact that the relative 

distribution of incidents regarding the Netherlands does not depend on time. For that reason, the 

forecasting method is split into a time problem, which is solved by linear regression with different time-

related factors, and a space problem, which is solved by means of the kernel density method.  

 

This chapter discussed a number of articles that tackle a similar routing problem. We defined our problem 

as a team orienteering problem with a periodic planning horizon, time windows, and time-dependent 

(and/or stochastic) travel times, service times, and rewards. This problem is in the literature also known 

as the scheduling maintenance technicians’ problem, tourist route planning problem, bank robber 

problem, home fuel delivery problem, and athlete recruiting problem. 

Moreover, we concluded that we use a heuristic approach due to the problem’s complexity (NP-hard) and 

the incapability of finding an exact solution. We discussed different algorithms that can be used to solve 

such a problem: 

 Tabu search embedded in an adaptive memory procedure 

 Ant colonization optimization 

 Simulated annealing 

 Variable neighborhood search 
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 Path relinking heuristic with a greedy randomized adaptive search procedure 

 Iterated local search heuristic 

Furthermore, we addressed the topic of input models. We learned from other articles that including time-

dependency in speed models improves the routing problem in such a way that the reliability and the travel 

time are increased. Looking for factors that might influence the number of PCNs, we found that the 

number of visitors seems to depend on time and meteorological circumstances. The payment rate is 

described as a portfolio model in which the visitors assess the costs of the fee versus the costs of getting 

a fine, and the probability of getting a fine.  

In order to actually analyze the data with regards to these factors, we presented a clustering framework. 

Finally, we discussed different options to predict the expected number of PCNs, such as regression 

models, neural networks, and two other forecasting models that were applied to similar problems.  
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The objective of this chapter is to compute the necessary inputs that are needed for our routing 

algorithm. For all inputs that are time-dependent, we apply interpolation to make predictions across 

different time periods. We have access to a database that contains information (such as time, GPS 

location, and whether it was a PCN) of all parked cars that were scanned by EPS between the beginning of 

2016 and today. As part of a prior analysis, ARS has computed travel times, service times, and expected 

number of PCNs for their own routing algorithm. We use these inputs to compare them to our approach. 

Also, ARS encountered some challenges due to gaps in the data.  

Section 4.1 discusses the quality of the source data and examines ways to cope with it which are further 

elaborated in the subsequent sections. Section 4.2 tackles the question of the size of the error margin 

with regards to the KPI targets, which has been discussed in Section 2.1.8. In Section 4.3, we present our 

prediction of the expected number of PCNs. Section 4.4 explains how the travel times are computed. 

Lastly, Section 4.5 discusses our approach to estimate the service times. 

 

In this section, we discuss the challenges that ARS already had encountered of using historical data to 

predict future results. One of these challenges is that PEV drivers did not always scan all parking spots of 

the assigned neighborhoods in the past. We denote the scanning of a neighborhood also a visit. Since it is 

the intention to make predictions about the future number of PCNs of visits, in which all parking spots are 

scanned, it is difficult to make predictions based on visits, in which only a fraction of the neighborhood is 

scanned. Let us say that on a random day, we have the following information of a visit of one 

neighborhood: 

 200 parking spots 

 100 scans 

 4 PCNs 

 Service time of 10 minutes 

While these figures precisely indicate that 4 PCN’s were issued, we cannot conclude that the total number 

of potential PCNs in that neighborhood was since we do not know if all parking spaces of the 

neighborhood have been scanned. This applies equally for the service time and the apparent occupancy 

ratio. If the neighborhood was actually fully scanned, then the occupancy ratio would be 50%. This could 

be a realistic value for some neighborhoods, but for busy areas, such as “Centrum”, this is very unlikely. In 

conclusion, we cannot derive from the data to what extend the neighborhood has been scanned. This 

problem could be handled in a better way if the occupancy ratio of the neighborhood was known. Let us 

assume that the occupancy ratio was 80% in that neighborhood at that time. With this information, we can 

estimate that 160 parking spaces should have been scanned, meaning that only 62.5% (100 scans/160 

expected scans) of the neighborhood were scanned. This information enables us to extrapolate the 

number of PCNs and the service time by multiplying them with 1.60 (160/100). This is the approach that 

ARS used with the assumption that the occupancy ratio of all neighborhoods is 80% at any time. The 

problem with this approach is that this assumption is not based on data but on the expert opinion of EPS. 

Moreover, an extrapolation is not a perfect solution in this case, as the fractions of the neighborhood 

differ from each other. For instance, if the PEV driver only scans one shopping street of a neighborhood, 

which is attractive in terms of the number of PCNS, it will result in an overestimation of the number of 

PCNs of that neighborhood due to the extrapolation.  

 

In this section, we calculate a margin of error for the two KPI targets: the payment rate target and the PCN 

target. As already stated in Section 2.1.8, EPS has the problem that both KPI targets depend on uncertain 

variables. Therefore, we estimate in this section a margin of error for the payment rate in Section 4.2.1 

and the PCN target in Section 4.2.2. 

 

The problem of the payment rate is that EPS performance regarding this target is based on the payment 

rate measurements of the municipality. The measurements of the municipality are similar to the scanning 

process of EPS. And while it is known that the municipality’s sample size is much smaller than one of EPS, 

which reduces the accuracy, the time and place of these measurements are unknown. Yet, these 



Master thesis – Jan Groeneveld 

 

 

26 

 

measurements are used to conclude on the payment rate for the whole KPI period of that KPI area. Since 

EPS scans a lot of parked cars during the KPI period, with a generally good geographical distribution, they 

have a good estimation of the actual payment rate of every KPI area.  However, it might happen that the 

relatively small sample of the municipality is taken in a neighborhood that is considered to be an outlier at 

that time. An example from the past is a summer day when a lot of people went swimming in a 

neighborhood, where the parking meter was broken. Therefore, there were more visitors than normal, and 

also they did not pay in large part which caused the payment rate measured by the municipality to be very 

much lower than expected. Or conversely, EPS overestimated the payment target that the municipality 

would derive and met neither of the KPI targets in that KPI period. Even though these extreme cases can 

hardly be consistently prevented, we want to account for this uncertainty. We achieve this by increasing 

the payment rate target by a margin of error. The method with which we determine the margin of error is 

described below.  

As said, EPS scans a large number of parked cars in all KPI areas with a good distribution over time and 

location. Therefore, we assume that the measurement of EPS represents the true value of the payment rate 

for all KPI areas. This payment rate is denoted as p. The payment rate of the municipality’s sample is 

denoted as X/n, where n is the sample size and X is the number of paying visitors within this sample. In 

the following, we want to determine the margin of error, which is the half width of the confidence interval 

d. For this purpose, we use a reliability (denoted as 𝛼) of 95%. The size of d should be big enough that we 

can conclude that the payment rate of the municipality’s sample is higher than the true value of payment 

rate minus the margin of error d, therefore: 𝑝 − 𝑑 ≤  
X

n
.  

Since the distribution of the payment rate is the probability that visitors of a certain sample pay, we can 

apply a binomial distribution. Larsen and Marx (2012) describe the binomial distribution with the 

following formula: 

P (−d ≤
X

n
− 𝑝 ≤ 𝑑) = 1 − 𝛼 . 

In order to determine d, we can use their formula for estimating the sample size n and solve it for d: 

𝑛 =
𝑍𝛼/2

2

4𝑑2   𝑑 =
𝑍𝛼/2

2√𝑛
, 

where 𝑍𝛼

2

 is the value of the standard normal distribution function for which 𝑃(𝑍 ≥  𝑧𝛼

2

 ) = 
𝛼

2
 . Even though 

the sample size is unknown beforehand, we do know the sample sizes of three quartiles in 2016. We use 

the minimal value instead of the average value of the three samples as our sample size n because we 

rather have a margin of error that is too big than too small. With this formula, we are able to say that if d 

is, for instance, 2% and the payment rate measured by EPS is 90%, it will mean that with a reliability of 95% 

the payment rate of the sample measured by the municipality is at least 88%. The results of the margin of 

error for all KPI areas are presented in Table 4.   

KPI area 
Minimal sample (n) Margin of error  of the payment rate target (d) 

Centrum 3,581 1.64% 

Nieuw-West 1,763 2.33% 

Noord 1,054 3.02% 

Oost-1 1,288 2.73% 

Oost-2 2,148 2.11% 

West-1 1,982 2.20% 

West-2 2,227 2.08% 

Zuid-1 3,337 1.70% 

Zuid-2 2,116 2.13% 

Zuidoost 418 4.79% 

Table 4 – Margin of error calculation 

In Section 4.2.2, we determine also the margin of error of the PCN target. 
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Determining the upper bound for the PCN target is more complicated, as the PCN target depends on the 

control chance target (c), the payment rate (p), and also the number of paid-for visitor hours (h). We 

consider two different PCN targets. The first one is the basic PCN target that is the PCN target that EPS 

uses today, which is based on the EPS’ estimation of payment rate p and the paid-for visitor hours h: 

Basic PCN target =  𝑐 ∗ ℎ ∗ (
1

p
− 1) . 

The second PCN target is the worst case and the upper bound of the PCN target that copes with the 

uncertainty of the municipality’s payment rate and the paid-for visitor hours. To this end, we have to 

consider the case that the municipality’s payment rate has the lowest value and the paid-for visitor hours 

has the highest value that we would expect. The number of paid-for visitor hours that EPS uses is the 

same that the municipality uses. However, the exact number of paid-for visitor hours are unknown until 

the end of the KPI period. But since weekly updates of the paid-for visitor hours are available, EPS uses 

these to predict the total paid-for visitor hours of the entire period. Unfortunately, we do not have access 

to this data. Therefore, we assume that the number of paid-for visitor hours is at most 10% higher than 

expected. We choose such a high number, which leads to a 10% increase of the basic PCN target, in order 

to rather overestimate than underestimate this variability. It is important that this percentage will be 

replaced on the long-term by a variability that is derived from data. As determined in Section 4.2.1, the 

minimal value of the municipality’s payment rate is the payment rate measured by EPS p minus the margin 

of error d. By inserting the worst case values for h and p in the basic PCN target, we compute the upper 

bound of the PCN target as follows: 

PCN target upper bound =  𝑐 ∗ 1.1ℎ ∗ (
1

p−d
− 1) . 

Now, we would like to express the upper bound of the PCN target in terms of the basic PCN target. 

Therefore, we introduce two variables that increase the basic PCN target. The first one is 𝑢𝑝 and increases 

the basic PCN target due to the uncertainty of the payment rate. The second one is 𝑢𝑝 and increases the 

basic PCN target due to the uncertainty of the paid-for visitor hours (𝑢ℎ). Finally, our objective is to 

compute the PCN target upper bound as follows: 

PCN target upper bound =  Basic PCN target ∗ 𝑢ℎ ∗ 𝑢𝑝.  

Since the PCN target increases linearly with h, 𝑢ℎ is equal to 1.1. In order to compute 𝑢𝑝, we form the 

following equation by inserting the previous two formulas in the last one: 

ℎ ∗ 𝑐 ∗ (
1

𝑝
− 1) ∗ 1.1 ∗ 𝑢𝑝 = 𝑐 ∗ 1.1ℎ ∗ (

1

𝑝+𝑑
− 1). 

Solving this equation leads to: 

𝑢𝑝 =
(1−𝑝−𝑑)∗𝑝

(𝑝+𝑑)∗(1−𝑝)
. 

 

As we have now determined the two values of the variables 𝑢ℎ and 𝑢𝑝, we can multiply these with the basic 

PCN target in order to compute the upper bound of the PCN target. 

 

 

This section describes our approach on how to predict the expected number of PCNs, which is the number 

of PCNs that will be generated if one should scan a full neighborhood at specific times in the future. In 

this research, we use the terms forecast and prediction model interchangeably. As stated in Section 2.1.8, 

we want to predict the expected number of PCNs for a future visit to a neighborhood by multiplying the 
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number of parking spots by our predictions of the occupancy ratio, the visitor ratio, and the non-paying 

ratio. The product of the visitor ratio and the non-paying ratio is equal to the PCN ratio. This approach 

solves the problem of not knowing to what extent the neighborhoods have been visited. Additionally, the 

different ratios can be replaced easily. This can be useful if in the future new ratios will be computed due 

to more or better data. Moreover, we include the parking regime, which was already retrieved by ARS, in 

our forecast by setting the PCN ratio of the parking hours without a fiscal parking regime to 0. 

In Section 4.3.1, we first analyze the data of historic scans with regards to the visitor ratio and non-paying 

ratio. Section 4.3.2 presents our prediction model of the PCN ratio, including the visitor ratio and non-

paying ratio, and Section 4.3.3 our estimation of the occupancy ratio. Finally, Section 4.3.4 tackles the 

question how long the visitors that receive a PCN stay in the same neighborhood. 

 

For the purpose of the data analysis, we collect scan data of one year between 1.6.2016 and 1.6.2017. At 

the time of this analysis, this period encompasses the most recent source data available, and a one year 

period is considered sufficient for taking into account seasonal trends. Moreover, we prefer the recent 

data because it is more reliable due to the fact that there have been some organizational changes.  

We choose to aggregate the scan data for every hour of the year and every neighborhood, as we want to 

look for certain patterns regarding the neighborhoods, hours, weekdays, weeks, month, and the weather. 

For every hour in a neighborhood, we retrieve the number of scans, visitors, and PCNs in order to derive 

the visitor ratio, the non-paying ratio, and the PCN ratio. We start by analyzing the ratios with regards to 

different time dimensions. Figure 9 shows the behavior of the ratios with regards to the week of the year.   

 

Figure 9 – Week diagram of visitor, non-paying, and PCN ratio 

From Figure 9, we observe one big increase of the non-paying ratio at the end of the year 2016, probably 

due to Christmas and New Year. We cannot distinguish clear patterns in terms of seasons or months from 

this figure. However, we can clearly see that the non-paying ratio and the PCN ratio are decreasing over 

time. That means that more and more visitors are paying for their parking. This is an interesting 

observation. As EPS regularly adapts its current strategies to increase enforcement output, this effect 

could be due to changes in their enforcement approach. In Figure 10, we look at whether we can see if 

there is a relationship between the efforts of EPS and the payment rate. We consider the KPI area 

“Centrum” as it has the most scan data available. Figure 10 shows the average payment rate per week and 

the effort of EPS in terms of the absolute number of scans.  
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Figure 10 – Number of scans, number of PCNs, and average payment rate per week in “Centrum” 

In line what we have seen in Figure 9, the payment rate is increasing with time. Probably the payment rate 

does not increase linearly as it converges towards 100%. However, Figure 10 shows the linear increase of 

the payment rate in order to give us an impression to what extent the payment rate increased during that 

year every week. It appears that the payment rate is increased by 0.02% (absolute number) every week. 

Moreover, Figure 10 shows that the number of scans and number of tickets increases every week. In 

Figure 10, we see that some peaks of the payment rate and the number of scans seem to be askew and 

others seem to be aligned. Consequently, although we determine that the enforcement efforts and 

payment rate both increase, we cannot conclude that there is a causal relation between the two metrics. 

As a next step, we want to have a look at a smaller time dimension. Figure 11 shows how the different 

ratios behave for the different hours of a day.  

 

Figure 11 – Hour diagram of visitor, non-paying, and PCN ratio 

We clearly see that the visitor ratio and the non-paying ratio depend quite heavily on the hour of the day. 

In the night there are less visitors, however, relatively more visitors do not pay for parking. Note that the 

scans at night can only be measured in a few neighborhoods of the KPI area “Centrum”. It seems that in 

the noon there are the most visitors with a slightly increasing non-paying ratio. Even though the number 

is smaller, we see that there is an impact of the hour on the PCN ratio as is varies between approximately 

0.6% and 1.8%.  
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Figure 12 shows the influence of the weekday. It appears that the ratios are quite the same within the 

week from Monday to Friday. The visitor ratio does not change a lot, however, on Saturday the visitor ratio 

seems to be lower. In the weekend, more visitors do not pay, which leads to a peak of the PCN ratio on 

Sunday (day 1) as the visitor ratio is also relatively high.  

 

Figure 12 – Weekday diagram of visitor, non-paying, and PCN ratio 

Now, we want to investigate if we see the same patterns when combining the hour of the day and the 

weekday. This is presented in Figure 13.   

 

Figure 13 – Weekday and hour diagram of visitor, non-paying, and PCN ratio 

We clearly see that the patterns during the week regarding the hour of the day stay the same during 

weekdays, but are different on Saturday and Sunday. Especially on Sunday in the morning around 10.00, 

there is an extreme peak of the visitor ratio and therefore also of the PCN ratio. According to the parking 

regime times, there are only three neighborhoods that have paid parking before 12.00 on Sundays and 

therefore the few numbers of scans in this neighborhood have a strong impact on this diagram. Next to 

the fact that there are only a few scans, we assume that most visitors do not know that there is a parking 

regime at that time or they know that this area is usually not scanned at that time. Moreover, the 

Saturdays miss the usual visitor peak around noon. Finally, we conclude that the hour pattern that we 

observed in Figure 11 stays more or less the same during the week and are different on Saturday and 

Sundays. Therefore, we derive the following time clusters, which we use for some parts of this analysis 

and in Section 4.3.2.  
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Day periods: 

 Morning (9.00-11.00) 

 Noon (11.00-15.00) 

 Afternoon (15.00-17.00) 

 Evening (17.00-21.00) 

 Late evening (21.00-0.00) 

 Night (0.00-4.00) 

These periods are especially derived from the behavior of the PCN ratio in Figure 11. Even though the 

noon and afternoon could be considered as one cluster, we divide into two because although the PCN 

ratio remains more or less the same, the visitor ratio is decreasing and the non-paying ratio is increasing. 

Week periods: 

 During the week (Monday-Friday) 

 Saturday 

 Sunday 

After having analyzed the time dependency, let us consider the spatial impact. First let us have a look at 

the absolute numbers of scans and PCNs to get an impression where EPS scans the most and where the 

most PCNs are obtained. Figure 14 shows a heat map that highlights the regions with the most scans and 

most PCNs in Amsterdam. 

 

Number of scans      Number of PCNs 

Figure 14 – Heat maps of the absolute numbers of scans and PCNs between 1.6.2016 and 1.6.2017 

We see that the most scans have been especially in the center of the map. This is due to fact that not all 

neighborhoods of Amsterdam have fiscal parking (see Figure 15). 

 

Figure 15 – Fiscal parking spots in Amsterdam 

We distinguish three hotspots that are highlighted in yellow. Interestingly, it appears that there are two of 

these scanning hot spots are in line with the PCN hot spots that can be seen on the right of Figure 14, but 

one which is not. It seems that the PCN ratio of the third scanning hot spot is lower. Therefore, we 

continue our analysis by looking at the ratios of the neighborhoods instead. Figure 16 shows the hot 

spots with regards to the visitor ratio, non-paying ratio, and PCN ratio.   
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Visitor ratio                                                       

 

Non-paying ratio 

 

PCN ratio 

Figure 16 – Heat maps of the average visitor, non-paying, and PCN ratio between 1.6.2016 and 1.6.2017 

The PCN ratio hotspots that we see in the north of all maps in Figure 16 belong to the KPI area “Noord” 

and are neighborhoods with only a few parking spaces and a few scans that have a strong impact on this 

heat map. We see that there are less visitors paying in the center of the map. In combination with a 

slightly higher visitor ratio in the west; this leads to higher PCN ratio in that area.  

As Figure 16 does not include the time aspect, we created a new heat map that shows the behavior of the 

PCN ratio regarding the different day periods. This heatmap is shown in Figure 17. 
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Morning (9.00-11.00)        Noon (11.00-15.00) 

 

Afternoon (15.00-17.00)         Evening (17.00-21.00) 

 

Late evening  (21.00-0.00)                Night (0.00-4.00) 

Figure 17 – Heat maps of average PCN ratio for all neighborhoods in different time periods between 

1.6.2016 and 1.6.2017 

From Figure 17, we make the following observations: 

 There are two hotspots in the north of the map that remain constantly until their parking regime 

is over. 

 In the morning, the PCN ratio is higher in the center of the map and then decreases over time.  

 The noon, afternoon, and evening are for all neighborhoods more or less the same. 

 The later it gets, the less neighborhoods are highlighted because a lot of neighborhoods do not 

have a parking regime after 21.00.  

Neglecting the two outliers in the north, which belong to the KPI area “Noord”, and the fact that the 

neighborhoods have differing parking regimes, we conclude from Figure 17 that space and the hour of 

the day are independent with regards to the hour patterns, which we observed before.  

Let us now check whether this conclusion is correct by looking at the hourly patterns of the different KPI 

areas. Figure 18 presents the impact of the hour on the ratios of all KPI areas except for “Noord”, which is 

shown separately in Figure 19 due to its higher ratios. The night hours are excluded because only a few 

neighborhoods in the KPI area “Centrum” have a parking regime at that time.  
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Figure 18 – KPI area (excluding “Noord”) and hour diagram of average visitor, non-paying, and PCN ratio 

(between 9.00 and 24.00) between 1.6.2016 and 1.6.2017 

 

Figure 19 – Hour diagram (between 9.00 and 24.00) of average visitor, non-paying, and PCN ratio for KPI 

area “Noord” between 1.6.2016 and 1.6.2017 

In Figure 18 and Figure 19, we see that KPI area “Noord” has generally a higher visitor ratio and also the 

PCN ratio at any time. This explains why it was consistently highlighted in Figure 17. Moreover, we see 

that in most KPI areas the non-paying ratio decreases after 9.00 a bit and then increases until the night. 

This increase, however, is different for all areas. Whereas the increase of the non-paying ratio is merely 

visible for KPI area “West-1”, the non-paying rate of “Nieuw-West” and “Noord” goes from 0.1 up to 0.2 and 

therefore increases by roughly 100%. The visitor ratio behaves more or less the same for most KPI areas. 

The visitor ratio has one or two peaks after each other around noon and then decreases towards the 

night. Again “Nieuw-West” and “Noord” show a different behavior as they have another peak in the 

evening. It seems that our conclusion is correct, except that not only the KPI area “Noord” but also “Nieuw-

West” behaves differently.  

Let us now have a look at the weekdays. We exclude Sundays because on Sundays only some 

neighborhoods of “Centrum” and “Zuidoost” have a parking regime. The ratios are shown in Figure 20. It 

appears that “Nieuw-West”, “Noord”, “Oost-2”, “Zuid-2”, and “Zuidoost” have higher visitor ratios. This 

could be explained by less parking decks in these KPI areas, which leads to more visitors on the street. 

Another reason could be that these KPI areas lay further away from the center of Amsterdam and the KPI 

areas in the center, such as “Centrum”, have generally more parking permits.   
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Figure 20 - KPI area and weekday diagram of visitor, non-paying, and PCN ratio 

All KPI areas show an increase of the non-paying ratio towards Saturday. However, the KPI areas 

“Zuidoost”, “Centrum”, “Nieuw-West” show the strongest increase. We consider these as two KPI clusters 

because “Zuidoost” and “Centrum” have a Sunday parking regime.  The visitor ratio seems to decrease on 

Saturday except for “Noord”. In line with what we have observed seen in Figure 17, Figure 18, and Figure 

20, consider “Noord” as a separate cluster. Finally, we conclude the following four KPI clusters with 

regards to the behavior of the ratios. 

 Noord 

 Nieuw-West 

 Zuidoost and centrum  

 West-1, West-2, Zuid-1, Zuid-2, Oost-1, Oost-2 

Even though these clusters provide insights about the general behavior of a KPI area, not all 

neighborhoods within a KPI area behave the same. Since it is too time consuming to analyze the ratios of 

every single neighborhood, we think of two methods to give more insights about the different 

neighborhoods.  

Find outliers within a KPI area 

In this method, we look for neighborhood outliers and classify them in certain neighborhoods groups in 

order to explain their behavior with additional explanatory variables. These neighborhoods groups are: 

 Nightlife  

 Shopping 

 Industry 

 Business 

 Houses 

 Sports 

The classification can be done with the support of EPS for a limited number of neighborhoods. In order 

find these outliers, we consider all neighborhood within a KPI area. Then, we write down the most 

noticeable outliers with regards to the ratios that cannot be explained by a small number of scans. Figure 

21 shows an example, where we consider the KPI area “Centrum” and the different numbers on the x-axis 

show all neighborhoods that belong to “Centrum”. 
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Figure 21 - KPI area and neighborhood diagram of visitor, non-paying, and PCN ratio 

In this figure, we visually derive the following PCN ratio outliers: 61, 71, 79, 93, and 201. Analogously, we 

determine the outliers for all KPI areas. For all 10 KPI areas, we have found 43 neighborhoods that we 

consider outliers. The results of EPS’ area classification of these 43 neighborhoods are: 6 in nightlife area, 

7 in industrial area, 0 in business area, 17 in living area, 11 in shopping area, and 2 in an area with sport 

fields. We use the classification of these outliers later in Section 4.3.2. 

PCA and K-means clustering 

In this method, we investigate whether there are neighborhood clusters that behave the same without 

considering their location or the KPI area they belong to. With regards to the neighborhoods, we are 

interested in four different behaviors: 

1. The behavior of the average visitor ratio regarding the hour of the day.   

2. The behavior of the average non-paying ratio regarding the hour of the day.   

3. The behavior of the average visitor ratio regarding the day of the week.  

4. The behavior of the average non-paying ratio regarding the day of the week. 

We consider the different behaviors regarding the hours and weekdays and not at the day period and 

weekday clusters that we distinguished before because now we want to see if there are neighborhoods 

that behave differently regarding the different hours and weekdays. Since we analyze the neighborhoods 

separately and not the average of all neighborhoods or one KPI area, it may happen that some 

neighborhoods have only a little number of scans. Therefore, we rank the 320 neighborhoods with an 

active parking regime by the number of scans, starting with the fewest. It appears that the first 11 

neighborhoods have less than 362 scans within one year (1.6.2016-1.6.2017) and the 12
th 

neighborhood 

has 1557. We filter out the first 11 neighborhoods because we consider the number of scans too little in 

order to make conclusions about a weekday or hour pattern. 

Now, let us start with the behavior of the average visitor ratio regarding the hour of the day in order to 

explain our approach. From our data, we can retrieve the average visitor ratio for every hour of the day for 

every neighborhood. We exclude the night hours because only a few neighborhoods have a parking 

regime at that time. Thus, a neighborhood’s behavior regarding the visitor ratio during the day can be 

modelled as a vector that starts at with hour 0 (9.00-10.00) and ends with hour 14 (23.00-24.00). The 

dimension of this vector is 1x15. Now, we want to compare all neighborhood vectors in order to see if 

there are cluster groups that behave the same and whether there are outliers that behave differently. To 

this end, we make use of the primary component analysis (PCA). The PCA is often used in statistics to 

reduce the variables of a data set to a smaller set of variables called principal components (Daszykowski, 
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Kaczmarek, Vander Heyden & Walczak, 2007). The principal components, which define a new coordinate 

system, are the outcome of maximizing the description of the data variance. The number of principal 

components is determined before but “usually the first few PCNs are enough to represent the data 

structure well” (Daszykowski et al., 2007, p.1). The PCA is often applied to combine correlated variables 

such that in the end the data set only exists of uncorrelated variables. In our case, we choose to reduce 

our data set to two principal components. This enables us to visualize the two-dimension data set in a 

scatter plot.  But we have to check whether this is enough to represent our data structure well enough.  

The goal of this approach is to assign neighborhoods to certain clusters with regards to their four 

behaviors, we mentioned earlier, or to define them as outliers. Figure 22 contains the coordinate system 

that is created in the reduction of the PCA and a scatter plot that shows all neighborhoods whose visitor 

ratio has a similar behavior regarding the hour of the day. The exact values of the x- and y- coordinates of 

this scatter plot do not matter because they contain the values of the newly created coordinate system, 

which do not provide additional nor useful insight for us.  

 

Figure 22 – Scatter plot of the neighborhoods regarding the average visitor ratio of all neighborhoods for 

every hour of the day with colors showing the results of the K-means clustering analysis 

Figure 22 shows the neighborhood points in three different colors. These colors show three clusters, 

which are created by the K-means clustering method. K-means clustering requires a data set and a pre-

determined number K (Anderson, 2009). The K-means clustering creates a number of so-called centroids 

that is equal to K. These centroids are placed randomly in the scatterplot. Every point in the data set is 

assigned to one of the centroids and takes the same color as the assigned centroid (in Figure 22: red, 

blue, and green). Afterwards, the location of the centroids is improved iteratively in such a way that the 

square of the Euclidian distance is minimized. A drawback of the K-means clustering is that it does not 

necessarily find the best possible outcome because its result might be a local optimum. However, for this 

purpose it serves well enough because we only want to find the obvious cluster that we see and can 

manually change them if necessary. We experiment with the value for K until we have marked the clusters 

that we visually derive from the scatter plot. Therefore, the number of different colors varies in the 

following figures. In Figure 22, K is equal to 3 and it marks the 309 neighborhoods that we see in the 

scatterplot. Figure 23 shows the original vector of the red centroid. The x-axis shows the hour of the day 

starting with hour 0 (9.00-10.00) and ending with hour 14 (23.00-24.00). The y-axis shows the difference 

between the value of the visitor ratio and the average of the day, such that 0 is the average of all 

neighborhoods of a day. Due to this normalization, we see immediately whether the visitor ratio of the 

neighborhood performs above or below its average in a certain hour. 

 

Figure 23 - Diagram showing the hour vector of the visitor ratio of the blue centroid 

From Figure 23, we conclude that all 272 neighborhoods (marked in red) behave similar to the vector 

shown in Figure 23 and the rest do not. Since the cluster contains the majority of the neighborhoods, we 

expect to see this behavior in the average visitor ratio of all neighborhoods, which was shown in Figure 

11. And indeed, the behavior of the visitor ratios is very much the same. We consider that as a validation 
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for using two principal components because the majority of coordinates in our new created coordinate 

system is able to represent the same effect that we have seen before. For that reason, we continue 

applying this method to the visitor ratio regarding the weekdays and the non-paying ratio regarding the 

hours and weekdays with different values for K varying between 2 and 6. The colors that are used are: red, 

blue, green, yellow, grey, and black.  

Figure 24 shows the scatterplot of average visitor ratio of all neighborhoods regarding the day of the 

week in four colors. Concerning the weekdays, we do not consider Sundays because only a few 

neighborhood have a parking regime then. 

 

Figure 24 - Scatter plot of the neighborhoods regarding the average visitor ratio of all neighborhoods for 

every day of the week 

We define the red points with 287 neighborhoods as one cluster. Figure 25 shows the weekday vector of 

the red cluster.  

 

Figure 25 - Diagram showing the weekday vector of the visitor ratio of the red and blue centroid 

Figure 26 shows the average non-paying ratio of all neighborhoods for every hour of the day in four 

colors. 

 

Figure 26 - Scatter plot of the neighborhoods regarding the average non-paying ratio of all neighborhoods 

for every hour of the week 
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This time, we visually derive three noticeable clusters from Figure 26: red with 193 neighborhoods, blue 

with 40 neighborhoods, and blue with green neighborhoods. The vectors of these clusters are shown in 

Figure 27. 

 

Figure 27 - Diagram showing the hour vector of the non-paying ratio of the red, green, and blue centroid 

Finally, Figure 28 shows the average non-paying ratio of all neighborhoods for every day of the week in 

five clusters.  

 

Figure 28 - Scatter plot of the neighborhoods regarding the average non-paying ratio of all neighborhoods 

for every day of the week 

We define the red and yellow cluster to be one cluster, which has 247 neighborhoods, but we exclude the 

red colored outlier at the bottom of the figure. Figure 29 shows the weekday vector of the red centroid 

and yellow centroid. 

 

Figure 29 - Diagram showing the weekday vector of the non-paying ratio of the red centroid and yellow 

centroid 

We have seen that the visitor ratio and non-paying ratio of the neighborhoods do not follow the same 

behavior regarding the hour of the day the weekday. These results will be used later in Section 4.3.2.2.  

Next to time and space, we analyze the impact of the weather in Amsterdam on the ratios. We retrieve the 

weather data from the KNMI website (2017). Unfortunately, the weather data of the city of Amsterdam is 

not available in this source. That is why, we use the weather data of the airport Schiphol, which is close to 

Amsterdam. From the available data, we choose to analyze the average temperature, number of sun 

hours, the precipitation hours, and the relative humidity of a day. Figure 30 shows the influence of the 

temperature on the ratios. 
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Figure 30 - Temperature diagram of visitor, non-paying, and PCN ratio 

Figure 31 shows how the ratios behave regarding the number of sun hours in a day. 

 

Figure 31 – Sun hour diagram of visitor, non-paying, and PCN ratio 

Figure 32 presents the impact of the number of precipitation hours in a day on the ratios.  

 

Figure 32 – Precipitation hour diagram of visitor, non-paying, and PCN ratio 

Figure 33 shows how the relative humidity of the day affects the ratios.  
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Figure 33 – Relative humidity diagram of visitor, non-paying, and PCN ratio 

From these figures we cannot distinguish any patterns. One might expect that, for instance, people are 

less willing to pay if it is raining but this is not the case.  

In the next section, we use the results of data analysis for our prediction model. 

 

This section describes our approach of predicting the PCN ratio. Section 4.3.2.1 discusses a naive 

prediction) that serves as a benchmark model for our main prediction model that we present in Section 

4.3.2.2. 

 

This section develops a naive prediction (also denoted as Naive Forecast), which serves as a benchmark 

for our prediction model introduced in Section 4.3.2.2. This benchmark model is directly derived from the 

findings of our data analysis. 

In the data analysis, we concluded that time and space is independent within four KPI areas clusters:  

 Noord 

 Nieuw-West 

 Centrum, Zuidoost 

 West-1, West-2, Zuid-1, Zuid-2, Oost-1, Oost-2 

Within these clusters time and space are independent in a sense that the visitor and non-paying ratio 

increase and decrease the same regarding the hours of a day and days of a week. Inspired by the work of 

van Hal (2015), which we explained in Section 3.3.3.2, we make a naive forecast by using factors that are 

based on time or location.  

 Spatial factor: 

o Neighborhood factor 

 Time factors: 

o Day period factor 

o Week period factor 

o Week factor  

We multiply these different factors with a base PCN ratio of 1.485%, which is the average PCN ratio of all 

scans between 01.06.2016 and 01.06.2017. We only consider the PCN ratio because in the end it is the 

product of the non-paying ratio and the visitor ratio and in Section 4.3.1 we only regarded them 

separately because we wanted to analyze the different behaviors of those two. The neighborhood factor 

adjusts the PCN ratio regarding the different neighborhood (e.g. if neighborhood 20 is below average, 

then the factor will be below 1). The day period factor adjusts the base line value regarding the day period 

clusters (Morning, Noon, Afternoon, Evening, Late Evening, and Night). For instance, the value in the 

morning would be above one because we expect the PCN ratio to be higher than average in the morning. 
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The week period factor does the same for week period clusters (During week, Saturday, and Sunday). The 

week factor is different from the other factors. In Section 4.3.1, we did not see any noticeable clusters 

regarding the weeks. However, we did see a time series effect, namely that the non-paying ratio decreases 

over time. Therefore, the week factor can rather be considered as a week function, which decreases over 

time. Finally, our naive forecast works as follows: 

PCN ratio = Base PCN ratio * Neighborhood factor * Day period factor * Week period factor * Week factor 

We compute the three time factors for all four KPI areas clusters that we distinguished in Section 4.3.1. 

First, we compute the average PCN ratio for the different week periods and day periods. Afterwards, we 

divide the values by their average (e.g. the PCN ratio of the weekday period “During Week” is divided by 

the average of all week periods “During Week”, “Saturday”, and “Sunday”). The result is a factor that 

indicates if the PCN ratio increases or decreases at that time in this KPI area. Table 5 shows the so-called 

“week period factor” for all KPI areas and different week periods.  

KPI areas Sunday Saturday During Week 

Centrum and Zuidoost 1.389 1.211 0.863 

Nieuw-West 0 1.198 0.964 

Noord 2.476 1.095 0.762 

West-1, West-2, Zuid-1, Zuid-2, Oost-1, Oost-2 4.287 1.071 0.987 

Table 5 – The results of the week period factor for each KPI area cluster 

The results of the hour clusters are shown in Table 6. 

KPI areas Afternoon Evening Late Evening Morning Night Noon 

Centrum and Zuidoost 1.161 1.025 0.677 1.032 1.079 1.257 
Nieuw-West 0.997 1.233 2.120 0.962 0 0.902 
Noord 1.085 1.114 2.484 0.739 0 0.963 
West-1, West-2, Zuid-1, 
Zuid-2, Oost-1, Oost-2 1.091 0.906 0.664 1.282 0 1.232 

Table 6 - The results of the day period factor for each KPI area cluster 

Likewise, we compute the neighborhood factor. The results are shown in Appendix C. 

As we have seen in Section 4.3.1, the payment rate increased every week within the year between 

01.06.2016 and 01.06.2017 with 0.02% (absolute number). Therefore, the week factor is equal to 

0.9998x, where x is the difference in weeks between the current week and the starting week, which is the 

first week of June 2016. Finally, let us consider an example. The PCN ratio of neighborhood 20 (in 

“Centrum”) at 10.00 am on a Tuesday in the third week of June is equal to:  

𝑃𝐶𝑁 𝑟𝑎𝑡𝑖𝑜 =  0.01485 (𝑏𝑎𝑠𝑒 𝑙𝑖𝑛𝑒 𝑃𝐶𝑁 𝑟𝑎𝑡𝑖𝑜) ∗  1.083 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 𝑓𝑎𝑐𝑡𝑜𝑟) ∗  0.863 (𝑤𝑒𝑒𝑘 𝑝𝑒𝑟𝑖𝑜𝑑 𝑓𝑎𝑐𝑡𝑜𝑟)

∗  1.032 (𝑑𝑎𝑦 𝑝𝑒𝑟𝑖𝑜𝑑 𝑓𝑎𝑐𝑡𝑜𝑟) ∗  0.9996 (𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 𝑓𝑎𝑐𝑡𝑜𝑟: 0.9998 ∗  (3 − 1)) =  1.418%. 

 

As our prediction model, we choose to apply a neural network model because neural network models are 

very efficient in solving different regression models. Moreover, we can add the number of weeks and years 

in order to include the fact that the non-paying ratio decreases over time. In addition, other techniques 

have problems because there is no data available for some neighborhoods at certain times. Neural 

networks perform well despite these gaps due to generalization as long as the data set is big enough. 

Building a neural network requires different design choices. The different design choices and conclusions 

that we made are discussed throughout this section.  

 

As a loss function, we use the absolute mean error as it is easy to interpret. When training the data set 

with the absolute mean error and the mean squared error in short trails, the absolute mean error 

outperformed the mean squared error with regards to both error measurements. This is probably due to 

the fact that the mean squared error has the disadvantage of weighing outliers too much. Other loss 

functions also have the disadvantage that they do not allow 0 as an output or require a time series model. 

Even though we have discussed that there is indeed a decrease of the non-paying ratio, our prediction 

model is mainly a regression problem.  
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As a data set, we consider the same as we used for the data analysis. This data set contains all separate 

hours that a neighborhood was scanned of one year (1.6.2016-1.6.2017). Initially, we had considered also 

to separate the data into four different data sets for every KPI area but this decreases the performance of 

the network; probably, because the individual data sets become too small.  

In this data set, we filter out all hours that have less than 106 scans. The reasoning behind that is that we 

only want to keep the ratios of the separate hours (visitor ratio, non-paying ratio, and the PCN ratio) that 

have a margin of error of 0.05 and a confidence of 70% (the sample size formula is discussed in Section 

4.2.1). If we choose a smaller margin of error or a higher confidence, the required number of scans will 

increase. Since we still need enough data to train our model, we choose these values and consider them 

acceptable to train the network.  However, there is a problem with this number of scans because some 

neighborhoods have only a few parking spots and consequently the visits there count only a few scans. 

Due to this filtering out the hours with less than 106 scans, the entire neighborhoods disappear from the 

data set. We trust that the generalization of the network, will cope with these gaps. 

As mentioned in Section 3.3.3.2, LeCun et al. (2012) states that shuffling the data set helps because the 

network learns faster from unexpected samples. Moreover, we do no use the full data set to train our 

neural network because after training the model, we want to test the model. Therefore, we split up the 

data into a training set (80%) and a test set (20%). Having a separate test data set, helps us to avoid 

overfitting, i.e., the neural network learns too much from the data set in a sense that it also learns from 

outliers and noise instead of creating a general applicable prediction model. The bigger the gap between 

the performance of the training and test set, the bigger the problem of overfitting is because the network 

cannot apply the model to unseen data. Due to the overfitting problem, we only consider the results of the 

test set in order to compare our results.  

 

Before introducing our inputs and outputs, we introduce the different normalizations that we used for the 

inputs. The normalization of the variables speeds up the learning process of the neural network because 

the variables are presented in a way that is easier to understand for the network.  We use 3 different kinds 

of normalizations: 

 N1: Value – average of all values. This normalization returns the values in such a way that the 

average is 0.   

 N2: Value/average of all values.  This normalization only works for positive values. Returns small 

positives values, where the average is 1.  

 N3: We apply a min max normalization for the week number. The week number is equal to: the 

week number of the year + 52 * the number of the year (year 2016= 1, year 2017 = 2). By 

applying a min max normalization, it returns a value between 0 and 1:  

 

𝑊𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟 – 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟−𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑤𝑒𝑒𝑘 𝑛𝑢𝑚𝑏𝑒𝑟
. 

 
For our neural network, we include the average visitor ratio and non-paying ratio of the hour of the day 

and day of the week. In that way, the network can learn from both of these ratios and we can apply our 

neighborhood clusters based on the behavior of the two ratios regarding hours and weekdays (see Section 

4.3.1). As we use these neighborhood clusters, we do not consider the KPI area clusters from Section 

4.3.1. As output variables, we consider the following two options: 

1. We predict the PCN ratio, which is the number of PCNs divided by the number of scans. 

2. We predict the absolute number of PCNs and use the absolute number of scans as an input. 

We choose the second as it leads to a better performance of the network. Moreover, we add the different 

clusters that we observed in Section 4.3.1 by giving them a value of 0 or 1. Our final input set includes the 

following variables, annotated with the normalization method that is applied: 

 The average visitor ratio of the neighborhood (N2) 

 The average non-paying ratio of the neighborhood (N2) 

 The average visitor ratio of the week period (N2) 

 The average non-paying ratio of the week period (N2) 

 The average visitor ratio of the day period (N2) 

 The average non-paying ratio of the day period(N2) 

 The week number (N3) 

 The number of scans (N2) 
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 Clusters: 

o Morning (0,1) 

o Noon (0,1) 

o Afternoon (0,1) 

o Evening (0,1) 

o Late evening (0,1) 

o Night (0,1) 

o Weekday (0,1) 

o Saturday (0,1) 

o Sunday (0,1) 

o The seven different neighborhoods clusters with regards to their behavior during the 

different week periods and day periods (0,1) 

o Night regime (0,1) 

o Sunday regime (0,1)  

During our experiments it appeared that the N2 normalization works slightly better than the N1 

normalization. We also considered adding more variables but these variables did not improve of even 

decrease the performance of the prediction results. In the end, we excluded the following variables: 

 Neighborhood clusters (Nightlife, Shopping, Industry, Business, Houses, and Sports) 

 KPI area clusters 

 The average visitor ratio of the KPI area 

 The average non-paying ratio of the KPI area  

 The coordinates (in order to include an additional spatial factor) 

 

The design of the network regarding the number of hidden layers and the nodes within a layer provides 

infinitive possibilities. White (1992) and LeCun et al. (2012) state the use of too many parameters and too 

many layers can lead to overfitting. And indeed, we experienced that using more than 2 hidden layers 

leads to better results regarding the train data set but worse results regarding the test data set. Using one 

hidden layer leads to slightly worse results than using two; consequently we use 2 hidden layers. The 

number of nodes in the hidden layers is based on experiments; in the end we choose 120 and 70 hidden 

nodes respectively for our two hidden layers. 

 

The activation function of a layer determines the output of the hidden layers. The performance of the 

activation function is based on the different input variables and the final desired output. After 

experimenting with different activation functions, we use an activation function called “Rectified linear 

units” because it shows the best performance for our data set. The definition of this function is: F(x) = 

max(x, 0). In our case, it simply means that the output is equal to the input because we do not have 

negative input variables.  

 

As discussed in Section 4.3.2.2.3, the output of our neural network are the expected number of PCNs, 

which we want to compute now for all neighborhoods, hours, weekdays, and week numbers.  

While computing inputs for our routing algorithm with the proposed neural network, we notice some 

strange values. On the one hand, we sometimes have negative outputs, which should not be possible as 

the number of PCNs cannot be negative. On the other hand, we find extremely high outputs. Some of 

them even exceed the number of scans, which is not possible. By taking a closer look at the negative 

values, it seems that they occur whenever there is no parking regime since 98% of the cases happen 

between 0.00 and 4.00 am, when most neighborhoods do not have a parking regime. As the algorithm 

checks also for the parking regime times, these values would never be used and are therefore not an 

issue. The extremely high numbers of PCNs that we found, however, are a problem. These outcomes 

belong to neighborhoods that were not part of the training nor the test set, as we filtered out the hours 

with less than 106 scans. We hoped that the generalization of the neural network would compute reliable 

numbers anyways. Basheer and Hajmeer (2000) describe that it is good to have an evaluation set next to 

the training and test set in order to see how well the generalization of the network works. In our case, this 

could be done by taking some specific observations (e.g., a few neighborhoods or one specific hour) out 

of the original data set. These excluded observations would form the evaluation set. Afterwards, the 

remaining data set can be split into the test and training set. By doing so, the prediction model, which is 

trained on the training set, can be tested for overfitting on the test set and its generalization capabilities 

can be evaluated by means of the evaluation set.   
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If we would have done this, it might have been a better choice to keep some variables such as the GPS 

coordinates in the network because of the additional spatial input, which helps the neural network if some 

neighborhoods are unknown.  

Finally, we decide to train the network again (without an evaluation set) with the PCN ratio as an output. 

This leads to fewer strange values but still some negative values (due to the fact that there is no parking 

regime) and some values still seem very high (but still within possible limits). Therefore, we keep this 

network but replace all negative values with zeros. Further in this research, we denote this forecast as the 

Neural Network A forecast. Also, we create a second version, which is denoted as the Neural Network B 

forecast. This forecast is the same except that the PCN ratios of the unknown neighborhoods are replaced 

by the PCN ratio of their neighbors. 

 

In Section 2.1.8, we defined the occupancy ratio as the number of scanned vehicles divided by the number 

of parking spots. With this ratio and the number of parking spots in a neighborhood, we can predict the 

number of scans in a neighborhood. As explained in Section 4.1, due to the problem that in the past the 

neighborhoods have not been scanned entirely, it is difficult to make predictions about the occupancy 

ratio. If every neighborhood was visited entirely, we could divide the number of scans of a visit by the 

number of parking spots to determine the occupancy ratio. Since this is not possible, we use an 

approximation.  

In the past, ARS has created a data set of all visits from 2016. From this data, we only consider those 

visits, where the number of scans is more than 70% of the parking spaces of the neighborhood. By doing 

so, we strive to exclude the visits when the neighborhood was not scanned fully. However, this approach 

is biased because it could be that sometimes the occupancy ratio is actually below 70%. This would lead to 

an overestimation of the occupancy ratio. Since ARS assumes in their algorithm that all neighborhoods 

have an occupancy ratio of 80% and Amsterdam is a well-known crowded city, we choose the threshold of 

70%. The average occupancy ratio and standard deviation for all KPI areas based on the remaining visits 

are shown in Table 7. The standard deviation will be used later in Chapter 6.  

KPI area Average Occupancy ratio 
Standard deviation of 
Occupancy ratio 

Centrum 84.5% 1.60% 

Nieuw-West 84.9% 1.81% 

Oost-1 78.3% 0.86% 

Oost-2 79.5% 1.04% 

West-1 81.7% 1.03% 

West-2 81.7% 1.14% 

Zuid-1 81.4% 1.06% 

Zuid-2 83.4% 1.15% 

Noord 82.7% 1.33% 

Zuidoost 82.7% 1.33% 

Table 7 – Occupancy ratio of all KPI areas 

In this table, we replaced the values for “Noord” and “Zuidoost” by the average ratio and standard 

deviation of the whole data set because at first they had illogically high values due to much fewer scans. 

Unlike the PCN ratio, we do not separate between different time intervals because this approach is only a 

rough estimation and therefore it does not make sense to make it very precise. We see that these values 

are close to the estimation of ARS as they have used 80% for all KPI areas. Since we assume that there are 

differences between the KPI areas and that our approach is more accurate than the one of ARS, we choose 

to use the results from Table 7 as the occupancy ratio.  
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This section tackles the question how long the non-paying parking visitors stay in a neighborhood. This is 

an essential question in order to deal with the TOP with multiple visits. As explained in Section 2.1.3, 

visitors can only receive a PCN once a day. If every non-paying visitor stayed at a neighborhood until the 

end of the day, it would never make sense to return to a neighborhood the same day. Since this is not the 

case, let us consider a more likely example: 

We predict that in a certain neighborhood on a given day there are 6 non-paying visitors, respectively 

PCNs, at 9.00 and 4 at 11.00. Based on this information, we would expect 10 PCNs by visiting the 

neighborhood at 9.00 and 11.00. However, in reality it could happen that 3 of the 4 non-paying visitors at 

11.00 have already been scanned at 9.00. Since they cannot receive a second PCN, the expected number 

of PCNs at 11.00 would be 1 (and 7 of both visits). In this section, we explain our approach how to deal 

with this problem.  

It is logical that there is no data about the parking duration of non-paying visitors because visitors who do 

not pay are not registered. On the other hand, in theory, there is data about the parking duration of 

visitors that do pay. Next to the fact that the paid-for parking hours are not the same as actual parking 

hours, it is very difficult to make predictions about the relationship between the parking duration of 

paying and non-paying visitors. One might argue that non-paying visitors stay shorter because they do not 

want to take the risk of getting a fine. On the other hand, some non-paying visitors probably do stay all 

day because they estimate that the fine and the parking costs of a day a roughly the same. Anyhow, the 

data of the paying visitors is saved in the PRDB (see Section 1.1.2), which is, unfortunately, not accessible 

to us. Consequently, we have no data and therefore we develop a method, which we explain by using the 

example from before.  

First, we compute the number of non-paying visitor that overlap according to our prediction. In this 

example, there are 6 visitors at 09.00 and 4 visitors at 11.00. The overlap in visitors between the two 

hours is 4. This gives us an estimate of the number of non-paying visitors that potentially remain in the 

neighborhood for this duration of 2 hours. However, we do not assume that 100% of these potential 

visitors remain in this neighborhood. Therefore, we apply a percentage that is based on the time 

difference between the two visits ∆𝑡, which is the difference of the finish time of the previous visit and the 

start time of the new visit. The finish time is chosen because it gives us an indication when the 

neighborhood was seen for the last time and we do not know in which sequence the streets within the 

neighborhood are driven. If we would know that the sequence was always the same, then we would 

consider the start time of the previous visit. Finally, our stability function is the following: 

 

𝑆(∆𝑡)  = (𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)∆𝑡 . 

 
By performing experiments, we chose the Stability Parameter to be equal to 0.4. We explain the design of 

this function and the choice of the Stability Parameter by means of Figure 34, which shows the 

percentages of the remaining visitors and new visitors for ∆𝑡 between 0 and 5. 

 

Figure 34 – Stability of the parking population for 5 hours with a Stability Parameter equal to 0.4. 
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With regards to Figure 34, it shows the effect that we aimed for. At the beginning the percentage of 

remaining visitors if high such that it is not worth to visit the neighborhood again but after 2 hours the 

neighborhood becomes more attractive again. This function was confirmed by the expert opinion of ARS. 

Since the percentage of remaining visitors’ decreases exponentially over time, this means that the time 

that these visitors arrive and leave actually depend on the last visit. We make the assumption here that the 

visitors just arrived when the neighborhood was visited previously. Even though this is obviously not true, 

we make this assumption in order to prevent that the same neighborhood is visited shortly afterwards. 

Whenever data about the parking duration of the non-paying visitors (or at least paying visitors) is 

available, this function can be derived by fitting the duration hours to a certain distribution (e.g. Normal 

distribution). Since the probability that the visitors are still in the neighborhood at a certain time t can be 

expressed as 𝑃(𝑋 ≥  𝑡), this probability can computed by means of the cumulative function: 1 − 𝐹𝑋(𝑡).   

 

This section explains our approach to determine the travel times between the neighborhoods and break 

locations, which can be used in the routing algorithm.  

As discussed in Section 2.1.4, we have 2 different types of GPS positions of the neighborhoods: the edge 

points of the neighborhood in shape of a polygon and the center point, which is the center point of the 

locations of all scans. To compute the travel times between 2 neighborhoods we have contemplated using 

the closest edge points of the neighborhoods as start/end points. This approach is unfeasible because the 

edge points may lie in areas that are not accessible by car, such as parks or water. Using such positions in 

automated route finding would likely result in errors or inefficient routes that do not actually start from a 

neighborhood edge. This problem almost never appears when using the center points. 

This approach does have a downside that there is an overlap with the service time: the travel time includes 

per definition only the time between the two assigned neighborhoods and our approach includes also the 

time from the center point to the edge. And this occurs at both ends of the automatically calculated route. 

The length of this redundant distance depends on the size of the neighborhood and the streets that the 

PEV driver chooses and therefore it is not possible to compute exactly how big this redundant distance is.  

After experimentation with the routing algorithm using this approach, it was found that a valid 

approximation of the redundant distance depends on too many variables. Also, it was found that actual 

travel times vary quite a bit. This, in combination with the usability aspect that a planning should be 

achievable, we decide to keep the redundant distance. This creates reasonable “upper bounds” (w.r.t. 

travel time) in the planning, so that the planning has extra buffer for unexpected delays, and the 

enforcement team is not regularly confronted with a shift in which they could not achieve the planned 

results. 

As mentioned in Section 3.3.1, it is important to account for traffic congestion in order to have more 

reliable travel times but also to avoid traffic congestion. By accounting for rush hours, we strive to have 

shorter travel distances during the rush hours. Furthermore, the travel routes must not include highways 

because the PEF drivers are not allowed to enter these with the scooter. This has two consequences. It can 

happen that the PEF driver cannot do the follow-up work for all cars that he/she is assigned to or that the 

cars are already gone by the time he/she gets there. Another benefit of not taking highways is that by 

driving through the city, the PEVs can also scan cars while travelling. Because of limited time, we do not 

further investigate how many PCNs can be expected for all the travelling routes, however, it is a nice 

bonus to have. Moreover, we prefer to have directed speeds, as in the city of Amsterdam it does matter if 

the PEVs are driving from the depot to “Centrum” or the other way around.  

The travel times are calculated from/to the center points (see Section 2.1.4) of each neighborhood and 

from/to the break locations. We have used the “HERE” database. For every 2-neighbourhood relation there 

are four different travel times: a journey in each direction (A->B and B->A), and for both journeys one 

during and one outside the rush hours. According to ANWB (2017), the time between 6.30-9.30 and 

15.30-19.00 are considered to be rush hours in Amsterdam. 

As stated in the introduction of this chapter, during the routing algorithm we apply interpolation when a 

journey overlaps with more than one time period. For example, the PEV starts driving during the rush hour 

at 9.20 and the travel time takes longer than 10 minutes. That means that the journey is within and 

outside the rush hour. For this example, we would compute the travel time by means of interpolation:   

 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 =  10 𝑚𝑖𝑛 + 𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑛𝑜 𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟) ∗
𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟) − 10 𝑚𝑖𝑛

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒 (𝑟𝑢𝑠ℎ ℎ𝑜𝑢𝑟)
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The service time is the time that the PEV driver needs to scan one assigned neighborhood. The service 

time starts when the driver enters the neighborhood and ends when the driver leaves it. The entry and 

exit point depend on the neighborhood that was visited before, respectively afterwards and on the route 

that is driven inside the neighborhood. Since we do not take the street level into account, we do not 

determine where the entry and exit point are. As explained in Section 4.1, ARS estimated the service times 

by extrapolating the historical data based on the number of scans. We use a different approach that does 

not include extrapolating due to the reasons we discussed in Section 4.1. Our approach is based on the 

length of streets that the PEV drives through when visiting a neighborhood and its average speed during 

and outside the rush hours.  

In order to compute the average speed that the PEV drives through a neighborhood within and outside the 

rush hours, we assume that this speed is equal to the travel time of that the PEV needs to travel from this 

neighborhood to the nearest neighborhood within and outside the rush hours. Therefore, we derive the 

speeds from the travel speeds that we calculate in Section 4.4. From the open location platform “HERE”, 

we retrieve the total length of all streets within a neighborhood. With this information, the distance that a 

car needs to drive through every street of the neighborhood exactly once can be computed. However, the 

actual route within a neighborhood is probably more than that, as it is highly unlikely that the PEV goes 

through every street exactly once. In order to do so, the driver would need to solve the Chinese Postman 

Problem, which we discussed in Section 3.1.1. And even then, some streets needs to be driven twice if it is 

a dead end or the streets are so wide that the PEV cannot scan both sides at the same time.  

Consequently, we assume that this fact increases the actual driven distance. However, not all streets in a 

neighborhood contain fiscal parking spots and therefore it might not be necessary to drive through all 

streets. In order to account for both affects, we introduce an adjustment factor that gives an indication to 

what extent all streets of the neighborhood are driven.  

Finally, the service time can be computed by means of the computed speeds and the length of streets 

within a neighborhood.  

 

In this chapter, we have computed and estimated the different inputs that are required for the routing 

algorithm in Chapter 5, such as the margin of error for the KPI targets, the expected number of PCNs, the 

service times, and the travel times. We have introduced the stability function, which helps the algorithm to 

deal with expected number of PCNs when a neighborhood is scanned multiple times a day. Furthermore, 

we had to overcome different challenges of the scan data and we developed a prediction model for the 

number of PCNs that is based on the visitor ratio, non-paying ratio, and occupancy ratio of neighborhoods 

at different times. We learned from the data analysis that there are three clusters regarding the weekdays 

and six clusters regarding the hours of the day. Analyzing the weeks, we found no obvious seasonal 

pattern; however, we did see that the payment rate and the effort in terms of the number of scans and 

number of PCNs are increasing every week. We presented two prediction models for the PCN ratio of a 

visit. One approach is relatively straightforward and the other one is based on a neural network. We have 

shown that both approaches are more accurate than the current prediction model of ARS. However, in 

Chapter 6, we will show which prediction model works the best in combination with the routing algorithm. 

Moreover, we will use the travel time and number of scans that we computed in this chapter. We will not 

use our service times of the neighborhoods because we need to determine the adjustment factor to get an 

accurate input. The good thing about this adjustment factor is that it can be adjusted manually for every 

neighborhood. If in practice it seems that only half of the service time is needed, the adjustment factor 

can simply be reduced by 50%. However, it is very difficult to find a good value for this factor because 

every neighborhood is different and also the driving behavior of every PEV driver. This determination 

requires testing over a longer time period, which lies out of the scope of this thesis. Therefore, the 

determination of adjustment factor can be studied in the future and we use the duration computed by ARS 

for our routing algorithm. Next to that, also the stability function and the margin of error that we used for 

the paid-for visitor hours, and the occupancy ratio should be further studied in the future. Even though 

the occupancy ratio is derived from that, it should be replaced on the long-term by a more accurate 

approach.  
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In this chapter, we design the routing algorithm that creates the routes for the PEVs. Section 5.1 discusses 

the planning horizon of the algorithm, Section 5.2 explains the notation that is used throughout this 

chapter, Section 5.3 deals with the objective function of the algorithm in order to evaluate different 

solutions, and Section 5.4 describes how the algorithm works.  

 

Before choosing the best algorithm, we need to determine the planning horizon of this problem. Currently 

EPS always makes a planning for the next day with regards to the targets they have to reach until the end 

of the KPI period, which consists of 90 days. Therefore, it would be possible to create a planning that 

works in the same manner. However, EPS requires also an assurance whether the targets will be met at the 

end of the KPI period. By estimating whether the targets will be met, EPS can adjust their capacity 

accordingly. Whether our planning tool includes this estimation of the KPI targets depends on the 

planning horizon. We can think of three options for the planning horizon of our planning tool. 

Option 1 creates a planning for the whole KPI period before the KPI period starts. That means that the 

computation time is not an issue since it happens before the KPI period has even started. This option also 

enables to estimate whether the KPI targets are met at the end of the three months. Unfortunately, this 

option has a big disadvantage due to the fact that recent data is not taken into account. Consequently, it 

can happen that different the actual payment rate and the actual number of PCNs are lower than expected 

but it would not be possible to adjust the planning.  

Option 2 makes a new planning every day until the end of the KPI period. It is similar to the rolling 

horizon planning, where every day a new planning is created for a fixed number of days. However, the 

objective is not to always create routes for 90 days but only until the end of the KPI period. Meaning that 

at the first day it plans for 90 days and at day 40 it plans for the remaining 50 days. This brings the 

advantage that it is also sensitive to recent changes, plus it also enables a KPI indication. On the 

downside, the computation times are high as the maximum planning horizon is 90 days and the planning 

is done on a daily basis.  

Option 3 creates a new planning every day based on recent data. The computation time would be 

relatively low as the planning is done daily for only one day. Due to the limited planning horizon, it is not 

possible to give an accurate estimation of the KPI results over the entire KPI period but it would be 

possible to make a poor estimation based on extrapolating historic averages.  

An overview of these options is given in Table 8: 

Option 1: Planning for all 

days before KPI period 

No Yes  None (because computed 

before) 

Option 2: Daily planning 

until the end of KPI period 

Yes Yes Long 

Option 3: Daily planning 

for a day 

Yes Poor Short 

Table 8 – Planning options 

Every option has a disadvantage. For our approach, we choose option 2 because having an estimation of 

the KPI targets in combination with including recent data and changes is the benefit that EPS requires as it 

helps them in their long-term planning. However, we have to limit the computation time to 6 hours. 

Option 1 also enables the estimation of the KPI targets but it is not that accurate as it is not based on 

recent data.  

 

This section explains the notation that we use throughout this chapter to describe the routing algorithm.  

Note that we consider the entire time span of one day to be from 9.00, which is equivalent to 9 am of the 

scheduled day, until 28.00, which is equivalent to 4 am of the following day. The routing algorithm 
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provides an enforcement planning that schedules visits of neighborhoods, i.e., that a neighborhood is 

scanned at a certain time.  

Every visit is defined by the number of the neighborhood j (1…J), the number of the KPI area a (1…A), the 

day of the planning period n (1…N), the weekday d (1…7), the starting time 𝑡 (between 9.00 am and 

28.00), the finish time 𝑡𝑓 (between 9.00 and 28.00), the week number w (1…W), the year y (1…Y), and the 

number of the PEV m (1…M). Therefore, every visit is denoted as 𝑣𝑗,𝑎,𝑛,𝑑,𝑡,𝑡𝑓,𝑤,𝑦,𝑚. For the purpose of 

simplicity, we denote the visits in this chapter as 𝑣𝑗,𝑛,𝑡,𝑚 because it is possible to derive the KPI area a from 

neighborhood j and the weekday d, the week number w, and the year y from the planned day n,  and the 

finish time 𝑡𝑓 from the start time 𝑡. We denote this visit also as current visit because later in this chapter 

we also need information about the prior visit and the sequential visit. The prior visit describes the last 

time that neighborhood j was visited before the current visit 𝑣𝑗,𝑛,𝑡,𝑚. The neighborhood j has to be the 

same in this case but the vehicle (or PEV) m and planned day n not necessarily. Likewise, the sequential 

visit describes the next visit of neighborhood j after the current visit. We use an additional variable x in 

order to denote whether we consider the current (x=0), prior (x=-1), or sequential visit (x=1). 

Consequently, we denote every visit as 𝑣𝑗,𝑛,𝑡,𝑚,𝑥. We provide an overview of this notation in Table 9. 

j number of the neighborhood 1…J 

a KPI area 1…A 

n day of the planning period 1…N 

d weekday 1…7 

t starting time between 9.00 and 28.00 

𝑡𝑓 finish time between 9.00 and 28.00 

w week number 1…W 

y year 1…Y 

m number of the PEV  1…M 

x visit information -1,0,1 

Table 9 – Notation table of the indices of a visit 

Whenever we require the value of a certain index of a visit, we do this by putting 𝑣𝑗,𝑛,𝑡,𝑚,𝑥 in its index. For 

instance, the finish time of the visit of neighborhood 15 by PEV 3 on day 4 at 12.00 can be expressed as 

𝑡𝑓 𝑣15,4,12.00,3,0
. The finish time of the visit that is prior to that one can be described as 𝑡𝑓 𝑣15,4,12.00,𝑚,−1

. Let us 

say that the prior visit started at 9.00 and was done by PEV 1, then we can denote the finish time also as 

𝑡𝑓 𝑣15,4,9.00,1,0
 (the prior visit can also be denoted as a current visit).  

 

In this section, we introduce our objective function that determines the added value of visiting a 

neighborhood. This objective function only considers current visits because a prior or sequential visit is 

always a current visit just at a different time.  

In this section, we use the terms payment rate performance, PCN performance, payment rate target, and 

PCN target. As explained in Section 2.1.8, the problem of the KPI targets is that they are to some extent 

uncertain. To cope with this uncertainty, we calculated upper bounds of KPI targets in Section 4.2. By 

comparing the EPS’ measurements of the payment rate and number of PCNs to these upper bounds, we 

determine the payment rate performance and PCN performance. Regarding the performance, it is 

important to remember (as explained in Section 2.1.8) that a KPI area can have a malus, neutral, or bonus 

status. This is important because of the priorities that need to be considered when choosing a 

neighborhood: 

1. Meet either the payment rate target or the PCN target (respectively the control chance) of every 

KPI area (bring all KPI areas at least to a neutral status). 

2. Maximize the PCN target in chosen KPI areas in order to eventually increase the payment rate and 

maximize the performance bonus.  

3. Visit every neighborhood once a week. 
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As mentioned in Section 2.1.8, this priority list shows only the importance of these objectives from EPS’ 

objective. This does not mean that first our only objective is priority number one and after this objective is 

met, the second priority is the new objective, and after that finally the third. We rather want an algorithm 

that incorporates all priorities at any time such that the priorities are met in a balanced manner even 

though the focus should still lie on the first priorities. Therefore, we explain our approach of quantifying 

this priority list in this section.   

An intuitive approach would be to compute the amount of euro that is gained by visiting a neighborhood 

at a certain time. Let us consider three cases where the visited neighborhood lies in a KPI area with a 

malus, neutral, and bonus status. 

Malus status: 

Since both targets are not met in a KPI, EPS would receive a fine based on the difference to the PCN target. 

If a neighborhood within that KPI area is visited, the number of PCNs will increase and therefore the fine 

will decrease. For that reason, it is possible to compute the reward of a visit depending on how much the 

fine is decreased.  

Bonus status: 

In case that it has a bonus status, we could calculate the improvement of the bonus that occurs by visiting 

the neighborhood. However, we concluded in Section 4.3.1 that we cannot quantify the relationship 

between visits (number of scans) and the payment rate. Therefore, we would have to make an assumption 

about this relationship. However, even then, a bonus is only given if no KPI area is in a malus status, i.e., 

the reward is likely to be 0 for the longest time of the KPI period.  

Neutral status: 

There are two possibilities that a KPI area has a neutral status. The first case occurs when the number of 

PCNs is below the target and the payment rate is exactly equal to the target. In this rare case, the amount 

of euro that is gained is computed as for KPI areas with a bonus status.  The second and more common 

case is that the PCN target is met and the payment rate is not. In this case, the reward would be 0 until 

the payment rate exceeds the target. However, for this purpose we require again the impact of a visit on 

the payment rate. 

We decide not to use an approach based on the reward (positive or negative) in euro because we lack the 

information about the impact of a visit on the payment rate and therefore cannot compute the euro value 

for a visit within a bonus KPI area. Even if it would be possible, the value would be probably much lower 

than the value of visiting a neighborhood of a malus KPI area. Moreover, the reward for visiting a 

neighborhood within a neutral status would be 0 until the payment target is reached. For that reason, it is 

likely that neighborhoods of such a KPI area are not visited for a long time. Additionally, the third priority 

that a neighborhood should be visited once a week is ignored. This leads additionally to an unbalance of 

visited neighborhoods within the KPI areas.  

Therefore, we developed an alternative approach that accounts for the three priorities by computing a 

priority score. The idea is to attach a weight on the expected number of PCNs of a visit. This weight 

incorporates the three priorities by using two factors. One factor is called the Target Factor, which 

includes the first two priorities and is further explained in Section 5.3.1. The other factor is called the Visit 

Day Factor, which incorporates priority three and is explained in Section 5.3.2. The formula of the priority 

score is explained in Section 5.3.3. 

 

This section introduces the Target Factor, which is very important as it represents the need of visiting a 

KPI area. Every neighborhood belongs to a KPI area that has certain targets. If the targets of the KPI area 

are met (neutral or bonus status), the Target Factor will be between 0 and 1 in order to make this 

neighborhood less attractive. Whenever the target of this KPI area is not met (malus status), the Target 

Factor will be between 1 and 2 such that the neighborhoods within that KPI area become more attractive. 

We limit the factor to 2 because even though the neighborhood where the number of PCNs is achieved is 

important, it should not overrule the fact that the actual number of PCNs is still the most important thing.  

The Target Factor is based on the current number of PCNs and the current payment rate. By dividing the 

current number of PCNs with the upper bound of the PCN target (see Section 4.2), we compute the PCN 

performance. For instance, if the upper bound of the PCN target is 1000 and the number of PCNs is 600, 

then the PCN performance would be 60%. Whenever a neighborhood is visited, the current number of 

PCNs is updated, such that the Target Factor takes the new PCN performance into account. We refer to 

this as updating the KPI matrix. We compute the payment rate performance the same as we do for the 

PCN performance. An historic example of the performances of both KPIs for all KPI areas can be seen in 

Figure 35.  
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Figure 35 – Visualization of the KPI targets 

Our objective is to increase the number of PCNs such that the payment rate increases eventually in the 

future. With regards to Figure 35 that means that the performance dots of the KPI areas first move to the 

right and then upwards. The payment rate performance has a usually a value around 1 because the 

current payment rate is in most cases 1 or 2% smaller or higher than the target. The PCN performance is 

quite different as it can be 0 (e.g. 0/20000) or above 1 if the target is already reached but the KPI area is 

still being visited since EPS wants to visit all KPI areas regularly. For small KPI areas such as “Noord” it can 

happen that the number of PCNs is even higher than twice the target. The Target Factor includes to what 

extent the target is exceeded. As one can see in this example, we limit the ratios to 2 because we decide 

that it does not matter if, for instance, the PCN performance is 2.1 or 2.2. Plus by using a maximum value 

of 2, the range of not-meeting the targets (0, 1) and meeting the targets (1, 2) have the same size, which 

is useful for our Target Factor computation. From Figure 35, we can derive four groups of KPI areas: those 

who have reached both targets, no targets, and one of the targets. These groups can be seen in Table 10:   

1 Neither of the targets is met Oost-1, Zuid-1, Nieuw-West, Centrum 

2a Only PCN target is met Zuidoost, Noord 

2b Only Payment rate target is met West-1, Zuid-2, West-2, Oost-2 

 

2c Both targets are met None 

Table 10 – KPI areas divided into priority groups 

As mentioned before, the Target Factor of the KPI areas that have not met their targets (group 1) get a 

value above 1 and those that did (group 2a, 2b, and 2c) get a value below 1. Consequently, the objective 

function of the visits either decreases or increases, which makes the visits in these neighborhoods more 

or less attractive. We compute the Target Factor of group 1 and group 2 (a, b, and c) differently: 

No target is met (group 1) 

If both targets are not met, we only consider the PCN performance in order to compute the Target Factor 

because that is the performance that can be influenced directly. So again, by focusing on the PCN 

performance, the performance dot of the KPI area (see Figure 35) moves more to the right (and eventually 
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upwards).  Since the PCN performance varies between 0 and 2, we compute the Target Factor by 

subtracting the PCN performance from 2:  

𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  2 −  𝑃𝐶𝑁𝑟𝑎𝑡𝑖𝑜 .  

At least one target met (group 2a, 2b, and 2c) 

For those KPI areas that did not meet one of the targets, we want to include both targets for two reasons. 

Additionality to the upper bound that we use for both targets (see Section 4.2), an increase of the PCN 

performance increases the probability that the PCN target is reached in case the payment rate 

measurement of the municipality is even lower than expected in the worst case. We also want to increase 

the payment rate performance because this performance is the essential one for achieving a bonus. A 

combination of both targets could be done by a multiplication, such as: 

 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  (2 − 𝑃𝐶𝑁𝑟𝑎𝑡𝑖𝑜)  ∗  (2 − 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜). 
 

However, this would mean that we multiply a number between 0 and 1 with a number between 0 and 2 

because at least one target is met. Consequently, the product could be bigger than 1 (e.g.: 1.80*0.95 = 

1.71), which should not happen. Therefore, we divide this number by a Target Reached Parameter, which 

needs to be at least 2, in order to make sure that the Target Factor is below 1. This Target Reached 

Parameter can also be bigger than 2 in order to make these KPI areas even less attractive in comparison 

with group 1. During our experiments, we found that 2 is a good value for the Target Reached Parameter, 

which we also discuss further in Section 6.2.1.4. Finally, we compute the Target Factor for these KPI areas, 

as follows: 

 

𝑇𝑎𝑟𝑔𝑒𝑡 𝐹𝑎𝑐𝑡𝑜𝑟 =  
(2− 𝑃𝐶𝑁𝑟𝑎𝑡𝑖𝑜) ∗ (2−𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑅𝑎𝑡𝑒𝑟𝑎𝑡𝑖𝑜)

(Target Reached Parameter)
. 

 
Let us explain in the following why this formula shows the desired effect for all of the groups when using 

a Target Reached Parameter equal to 2. Take into account that the payment rate performance varies 

usually only between 0.9 and 1.1 whereas the PCN performance usually varies between 0 and 1.2.  

Group 4 (payment rate performance ≥ 1 & PCN performance ≥ 1) is the least important group as already 

both targets are met. Therefore, we multiply two values between 0 and 1 and divide it by 2, hence the 

number is between 0 and 0.5.  

Group 2 (payment rate performance < 1 & PCN performance ≥ 1) is less important than group 3 (payment 

rate performance ≥ 1 & PCN performance < 1) because both reached the target but only group 3 has the 

possibility to get a performance bonus. Since usually the PCN performance has a lower value (if the PCN 

target is not met) than the payment rate performance (if the payment rate target is not met), the Target 

Factor for group 3 is automatically higher.   

The Target Factors for example of Figure 35 with a Target Reached Parameter equal to 2 are shown in 

Table 11. 

Oost-1  1.794 

Zuid-1  1.792 

Centrum  1.750 

Nieuw-West  1.571 

West-1  0.866 

Zuid-2  0.799 

Oost-2  0.727 

West-2  0.714 

Zuidoost  0.468 

Noord                   0           

Table 11 – Targets Factors of all KPI areas 



Master thesis – Jan Groeneveld 

 

 

54 

 

As one can see “Noord” has a Target Factor of 0 in this example. As we explain later in Section 5.4.2, this 

means that all neighborhoods that belong to “Noord” would not be visited anymore. If the Target Factor is 

indeed 0, we do not see the need that neighborhoods this KPI area still have to be visited. However, in 

some cases the algorithm has no feasible options to go to, which is also caused by excluding KPI areas 

with a Target Factor of 0. For that reason, we always replace a Target Factor of 0 with a very little number, 

namely 0.001, in order to prevent these edge cases.  

 

The Visit Day Factor is a factor that we introduce in order to present the desire of EPS to visit every 

neighborhood at least once a week. As for the Target Factor, we do not want the Visit Day Factor to 

exceed 2 because the number of PCNs should still be the most important thing. Unlike the Target Factor, 

the Visit Day Factor only varies between 1 and 2. The rationale behind it is that the neighborhood will be 

more attractive if it has not been visited for a longer period but not less attractive if it has been visited 

recently, for example on the same day. EPS has no restriction policy about how many times a 

neighborhood may be visited on a day. Consequently, the Visit Day Factor 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0
 depends on the planned 

day of the current visit of neighborhood j, which (as explained in Section 5.2) is defined as 𝑛𝑣𝑗,𝑛,𝑡,𝑚,0
, and 

the previous one 𝑛𝑣𝑗,𝑛,𝑡,𝑚,−1
. Note that the PEV of the last visit 𝑚𝑣𝑗,𝑛,𝑡,𝑚,−1

 and the current visit 𝑚𝑣𝑗,𝑛,𝑡,𝑚,0
 do not 

necessarily have to be the same. The Visit Day Factor measures the attractiveness of the neighborhood in 

terms of day difference those two visits: ∆𝑛=  𝑛𝑣𝑗,𝑛,𝑡,𝑚,0
− 𝑛𝑣𝑗,𝑛,𝑡,𝑚,−1

, which must be a positive integer. The Visit 

Day Factor is 1 if the neighborhood has been visited already on the same day. Then, the Visit Day Factor 

increases exponentially because it is still fine if the neighborhood has not been visited in 2 or 3 days. 

However, when the difference approaches 7 days, the Visit Day Factor should increase faster. At day 7, the 

visit day reaches a value of 2 and then stops because we do not want that it overrules all other aspects 

and in the end it is a only soft constraint and does not have the first priority. The Visit Day Factor is 

determined by the following function f(∆𝑛): 

 

f(∆𝑛)=  min (2, 1 + (
∆𝑛

7
)

(𝑉𝑖𝑠𝑖𝑡 𝐷𝑎𝑦 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟)

) , 

 
where the Visit Day Parameter is a parameter that determines the growth of the exponential function. We 

have chosen a Visit Day Parameter of 5, to realize the desired effect of our function. The outcome of this 

function for 0 until 9 days without a visit is shown in Figure 36. 

 

Figure 36 – Visit day function with a Visit Day Parameter equal to 5 

For our analysis, we count the average number of times that a neighborhood is not visited once a week. 

That means that this count starts, whenever a neighborhood is not visit after one week and is increases by 

one if the same neighborhood is neither visited the next day the count increases further.  

Apart from decreasing the number of average times that a neighborhood is not visited once a week, the 

Visit Day Factor also increases the variability of the route. This is beneficial for EPS because otherwise 

visitors might observe a pattern if some routes would be the same. 
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Finally, we compute the priority score by multiplying the number of expected PCNs, which is denoted as 

𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

 (see Section 5.4.2), by the Target Factor and Visit Day Factor. Therefore, the objective function for 

all days and vehicles is expressed as:  

 

𝑚𝑎𝑥 ∑ ∑ 𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

∗ 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
∗ 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

 
𝑀

𝑚=1

𝑁

𝑛=1

. 

 

This priority score will be essential for our routing algorithm.  

 

We choose to construct the route planning by means of an ant colonization optimization algorithm (ACO) 

because the benchmark of Ke et al. (2007) (see Appendix B) shows that for the team orienteering problem 

the ACO algorithm shows similar or better results in terms of the objective function in comparison with 

other algorithms but with a better computational time. Additionality, the ACO algorithm is a constructive 

metaheuristic that strives to find a global optima. This is convenient for us, since local search 

improvement techniques are difficult to apply to our problem and without applying a metaheuristic, the 

algorithm would get stuck in local optima. An example of a local search technique is simulated annealing 

(SA) (see Section 3.2.1). SA looks for a neighborhood solution of a constructed solution. For instance, a 

neighborhood solution can be built by exchanging one visit with a new or already scheduled visit (also 

denoted as swap). In the following, we explain why such a swap is difficult to implement:   

We have constructed a planning for one day for 12 PEVs. Now, we want to change the neighborhood of a 

certain visit of PEV 6 and let him go to another neighborhood. In that case, we have to follow these steps: 

1. Recompute the travel times, service times, and expected number of PCNs for all visits after this 

one due to the fact that all starting times change. 

2. Check whether no restrictions are violated:  

a. a neighborhood must not be visited at the same time 

b. the return to the depot, the breaks, and the shift change must happen within a certain 

time window 

c. a neighborhood must not be visited, if there is no parking regime 

3. Recompute the expected number of PCNs of all visits that go to the same neighborhoods as those 

that were adjusted neighborhoods in step 1. This is due to the fact that the start and finish times 

of the visits change and the calculation of the remaining visitors, as we explain in detail in Section 

5.4.2, is based on the finish times of prior visits. 

4. Do the same as step 3 for the visits that also go to the newly added neighborhood.  

5. Compute the total change of the number of PCNs and update the KPI matrix with the current 

number of PCNs of each KPI area (see Section 5.3.1). 

Compute the change of new priority score and in case that there is no improvement, swap back. 

This shows that there is a lot of recomputation and feasibility checking for considering a swap. That 

means that methods like simulated annealing would be possible; however, they would be very time 

consuming. For that reason, we choose an ACO algorithm, because, as discussed in Section 3.2.2.2, it 

finds one best route by constructing many possible routes and learning iteratively which routes between 

neighborhoods (denoted as arcs), performed well in the past. Even though we do not apply a 

metaheuristic improvement technique, we do apply a 2-Opt swap, similar to Verbeeck et al. (2014a) in 

order to prevent unnecessary zigzag routes, which probably seem illogical or inefficient to the PEV drivers. 

Unlike Verbeeck et al. (2014a), we apply this 2-Opt swap while constructing a solution whenever a 

neighborhood is scheduled. The fact that it happens during the construction phase reduces the impact on 

other visits and therefore the recomputation time. This 2-Opt swap exchanges the two previously 

scheduled visits of the current PEV, if the saved travel time is above a certain Swap Threshold. If due to 

the swap the reduction of the travel time in percentages is lower than the decrease of PCNs or if the time 

after the swap is bigger than before, we will swap back the visits. The rationale behind this is it is 

essential that the swap actually saves time and that we enough time is saved to earn the loss of PCNs 

back. We choose 1 minute for our Swap Threshold because it seems as a reasonable threshold that has to 

be exceeded. A lower threshold would lead to more unsuccessful swaps (visits are swapped back 

afterwards) and would increase the computation time. Another swap that we apply during the construction 
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of a solution is our break location swap. Because it is not known which neighborhood the PEV visits after 

going to a break location, it can happen that not the best break location is chosen in terms of travel 

distance. Therefore, the break location is swapped afterwards with another break location, if the travel 

time decreases. The benefits of these swaps are further explained in Chapter 6.  

Figure 37 shows an overview of the general concept that explains how our algorithm works. We denote a 

day planning as one planning with all routes of all vehicles for one planned day, where M is the total 

number of vehicles. The algorithm creates such a day planning for every day, starting from day n until a 

certain day N. For every day, our algorithm performs many iterations, where the number of iterations I is a 

pre-determined parameter. One iteration contains one day planning. Every planned day starts by first 

setting the pheromone values of all arcs to a pre-determined initial value. Afterwards, I iterations are 

performed. At the end of each iteration, the pheromones of the arcs will be updated to create a learning 

effect. Since this update is a core process of our algorithm, it is highlighted in Figure 37 and will be 

further discussed in Section 4.3.3. For every day, we keep the iteration that led to the best result. We send 

our ants, which are equal to the vehicles, sequentially as proposed in the algorithm of Montemanni and 

Gambardella (2009) and Ke et al. (2007). Ke et al. (2007) also tried different methods but the sequential 

approach seemed to perform the best.  

 

 

Before going into detail on how the route of every ant is build, we denote the following terms: 

 BreakTime: is the starting time of the next break 

 BreakFlexibility: is the tolerance of being early or late, which is at the moment 15 minutes 

 DayStartTime: the time at which the day starts and the ant leaves the depot 

 DayFinishTime: the time at which the day finishes and the ant has to return to the depot 

 Neighborhood (j): the next assigned neighborhood 

 TravelTimeToNeighborhood: the travel time from the current neighborhood to the new 

neighborhood 

 TravelTimeToBreakLocation: the travel time to go back to the nearest break location 

 TravelTimeToDepot: the travel time from the current neighborhood to the depot 

 CurrentTime: the time of the decision 

 ServiceTime: the time that is needed to scan a neighborhood 

 ShiftChange: the time when the drivers switch the shift and therefore the PEV switches the driver 

 Cycle: the time period between two BreakTimes, the DayStartTime and the BreakTime of the first 

break, or the BreakTime of the last break and the DayFinishTime 

 CycleStartTime: start time of the current Cycle  

 CycleFinishTime: finish time of the current Cycle 

The routing algorithm takes into account all time restrictions as explained in Section 2.1.5, such as break 

times, start and finish time of the day, and the shift change. Therefore, the time needs to be updated after 

every step. As explained in Section 5.3.1, it is also required to update the KPI matrix after a visit. Figure 

38 shows the route planning of an ant. This route planning is performed differently in the first iteration. 

We choose to build a greedy solution in the first iteration and use the ACO algorithm afterwards. In Figure 

38, there are two more core decisions of our algorithm that are highlighted in Figure 38 that work 

differently in the first iteration. We discuss these further in Section 5.4.1 and Section 5.4.2.  

For every day in range (n,N): 

 Replace pheromone values by pre-determined initial pheromone values 

For every iteration (1, I): 

For every ant (1,M): 

 Create a route planning 

             

 save iteration if it is the best one 

 

Figure 37 – General concept of our ACO routing algorithm 



Master thesis – Jan Groeneveld 

 

 

57 

 

 

 

 

This section describes the strategy that distributes the PEVs to different KPI areas. This distribution is 

needed so that not all ants start at the same location and do not cross their routes all the time. This 

distribution occurs whenever an ant leaves the break location. Since the set of neighborhoods where the 

ant is allowed to go to afterwards is limited (as we explain in Section 5.4.2.1), the focus of the ant lies on 

the KPI area, where it is distributed to. For that reason, this distribution strategy is essential with regards 

to meeting the KPI area targets. One might argue that the vehicles can also be distributed to a certain 

neighborhood instead of a certain KPI area. We tried two approaches based on the K-means clustering 

techniques, as explained in Section 4.3.1. In the first approach, we determine a number of clusters, which 

is equal to the number of vehicles k, based on the GPS coordinates of the neighborhoods. Figure 39 

shows a scatter plot with 12 different symbols that shows the result of this approach in a scatter plot. The 

crosses show the centroids of the different clusters.  

For every ant: 

Start  

Depending on the time, the ant chooses one of the following options: 

If (ShiftTime ≤ CurrentTime < ShiftTime+BreakFlexibility): 

 Ant stops for 15 minutes  

 Update Time (go back to start)    

Else if (BreakTime-BreakFlexibility ≤ CurrentTime+TimeToBreakLocation < BreakTime+BreakFlexibility): 

 Ant goes to the nearest break location  

 Update Time (go back to start)    

Else if (FinishTime-BreakFlexibility ≤ CurrentTime+TimeToDepot) 

If ant is at break location (including depot): 

 Ant is  and  within that KPI    

area and adds it to the route  

 Consider break location swap    

 Update time and KPI matrix (go back to start)    

Else:  

 Ant out of a set of nearest neighborhoods (set of 

neighborhoods is explanation in Section 5.4.2.1) 

If (previous two visits are no break locations and no shift changes) and (decrease of travel  

times is bigger than no decrease of the objective function):  

 Switch previous two neighborhoods  

 Update time and KPI matrix (go back to start)    

  Else: 

 Update Time and KPI matrix (go back to start)    

Else: 

 Ant goes back to depot and finishes the route  

 Set time to DayStartTime (go to next ant 

Figure 38 – Route planning of one ant 
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Figure 39 – Results of K-means clustering based on GPS coordinates 

Even though the results seems logical, this approach only considers the GPS location. In order to generate 

clusters that include also the priority score of the neighborhoods, we came up with a second approach. In 

this approach, we create as many duplicates of the neighborhoods as the amount of their priority score 

(e.g. if there the priority score is 40, we make 40 duplicates of this neighborhoods). By running the K-

means clustering again, we get the result as shown in Figure 40.   

 

Figure 40 – Results of K-means clustering based on GPS coordinates and the priority score 

Comparing the results, we can see that they very similar. In some cases, it is necessary though that more 

PEVs are deployed in certain KPI areas to make sure that the PCN target is reached. We conclude that this 

approach distributes the PEVs to the KPI areas in a manner that is too balanced such that not all PCN 

targets are reached in the end of the KPI period. This could be probably solved by a smarter clustering 

algorithm. However, we decide to use the KPI areas as pre-set clusters, which means that we “only” have to 

determine how many PEVs are send to every KPI area.  

With our distribution approach, we want to avoid that on the one hand the distribution is too balanced. On 

the other hand, it is also not desirable that only the KPI areas that did not meet the targets are prioritized 

because this would lead to a very unbalanced routing. If, for instance, a KPI area has reached the payment 

rate target at the beginning of the KPI period, it would not be visited anymore. This is bad because we 

might never satisfy the requirement that the neighborhoods of every KPI area should be visited regularly. 

The target is to visit every neighborhood once a week. Additionally, by not going to a KPI area, we do not 

know the current payment rate of that area. This contradicts our claim that the measurements of the PEVs 

are the true value of the payment rate, as described in Section 4.2.1. Therefore, we choose a method that 

is based on the Target Factor and area size ratio, which is the ratio of the PCN target of a KPI area in 

comparison to the sum of all PCN targets. The area size ratio is a useful addition to the Target Factor 

because the Target Factor only considers the ratios but not the absolute numbers. By means of the area 

size ratio, we can express the need for more cars in KPI areas that have higher PCN targets (such as 

“Centrum”). For instance, if on day 0 the Target Factor for KPI area “Centrum” and “Noord” are both 0, we 

prefer to send more PEVs to “Centrum” because the absolute PCN target is much higher. 
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As explained in Section 5.3.1, the Target Factor can become 0.001 in case the PCN performance is twice 

as big as the PCN target. In this rare case, we consider it acceptable that PEVs do not get a starting point 

in that KPI area anymore since it is safe to say that the PCN target is met.  

Our approach of distributing the ants computes a distribution array whenever an ant leaves the break 

location. This distribution array has the same length as the number of PEVs.  When, for instance, PEV 3 

leaves the break location, it goes to the KPI area that has the third index in the distribution array. In the 

following, we explain how this distribution array is computed. We start by creating an array with all KPI 

areas by adding clockwise the nearest KPI area, starting with “Centrum”: “Centrum”, “Oost-1”, “Oost-2”, 

“Zuidoost”, “Zuid-2”, “Zuid1”, “Nieuw-West”, “West-2”, “West-1”, “Noord”. The reasons behind this is that it 

can happen that during the day a PEV is suddenly distributed to another KPI area and this KPI are should 

not be on the side of the city (e.g. “West-2” and “Zuidoost”).  

Due to two requirements of EPS, we decided to make the first PEV different from the other PEVs. One 

requirement is that one night shift is needed and the other is one particular neighborhood in the 

“Centrum” needs to be visited 6 times a day (except for Sunday). By sending the first PEV always to that 

specific neighborhood, including the night shift, we satisfy both requirements. This means that the 

number of PEVs allocated to “Centrum” has to be at least 1. The number of allocated PEVs is computed as 

follows: 

1. For every KPI area, we multiply the Target Factor with the area size ratio to compute an adjusted 

Target Factor. 

2. We compute a percentage for each KPI area by dividing the adjusted Target Factor of each area by the 

sum of all adjusted Target Factors. 

3. Afterwards, the percentages are multiplied by the number of PEVs that day and are rounded to 

calculate the number that we want to send to this KPI area. 

The results for the example of Figure 35 are shown in Table 12 for 12 PEVs.  

Centrum  1.750 0.331 0.578 39.1% 4.692 5 

Oost-1  1.794 0.104 0.186 12.6%  1.508 2 

Oost-2  0.727 0.036 0.026 1.8% 0.215 0 

Zuidoost  0.468 0.012 0.005 0.4% 0.046 0 

Zuid-2  0.799 0.065 0.052 3.5% 0.425 0 

Zuid-1  1.792 0.230 0.412 2.79%  3.349 3 

Nieuw-

West  

1.547 0.052 0.081 5.5%  
0.657 

1 

West-2  0.714 0.056 0.040 2.7% 0.327 0 

West-1  0.866 0.111 0.096 6.5% 0.781 1 

Noord                   0.001           0.004 0 0%                  0 0 

Table 12 – Computation of the number of allocated PEVs with 12 PEVs 

This approach does not always work in a sense that sometimes more or less PEVs are allocated than there 

are available due to the rounding. In case too many PEVs are allocated, this problem is solved by 

subtracting a PEV from KPI areas with the biggest difference between the rounded allocated number of 

PEVs and the real allocated number of PEVs. Considering the example in Table 12, that would be “West-2” 

(2-1.508 = 0.492). Whenever there are less allocated PEVs than needed, we add one PEV to the KPI with 

smallest difference between the rounded number of allocated PEV plus one and the real number of 

allocated PEVs. Considering the example in Table 12, that would be “Zuid-2” (1-0.425 = 0.575). If the 

number of allocated PEVs for “Centrum” is 0, one PEV has to be added, which may lead to subtracting a 

PEV from another KPI area. 

In the end, an array is filled by going through Table 12 and add sequentially one of the KPI areas that have 

a number of allocated PEVs that is at least 1. Thereafter, the KPI areas with at least 2 are added. This goes 

on until the array is filled. In this case it happens after 2 iterations and we get the following list: 
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Centrum, Oost-1, Oost-2, Zuid-2, Zuid-1, Nieuw-West, West-2, West-1, Centrum, Oost-1, Zuid-2, Nieuw-

West. 

 

The next chosen neighborhood depends on two things: the criteria of choosing a neighborhood and the 

set of neighborhoods from which the neighborhood is chosen. Both depend on the current iteration. In 

Section 5.4.2.1, we explain how the set of considered neighborhoods is determined. Section 5.4.2.2 

described our desirability function and Section 5.4.2.3 the probability function for our ACO algorithm.  

 

Whenever an ant chooses the next neighborhood out of a certain set of neighborhoods, there are three 

possible sets that can be considered: 

1. All neighborhoods within a KPI area. 

2. All neighborhoods that can be reached within a pre-set travel distance, which is denoted as Travel 

Distance Restriction.  

3. All neighborhoods. 

The ant chooses one of the neighborhoods of Set 1, whenever an ant leaves the break location. Set 2 is 

considered, whenever the ant is not at a break location. We call this set also the nearest neighborhood set. 

The reason for choosing neighborhoods within a pre-set travel distance is that the PEF drivers that follow 

the PEVs on scooters cannot follow whenever the distance gets to large. The pre-set travel distance should 

therefore depend on the average speed of the PEFs. We choose to set this parameter to 1500 meters 

because that results in routes that seem manageable for the PEF drivers. Whenever no feasible 

neighborhoods can be found in Set 1 or Set 2, the ant considers Set 3 as a kind of backup set.  

In the first iteration, the ant chooses the neighborhood based on the result of the greedy function (see 

Section 5.4.2.2). Thereafter, it considers both the greedy function and the pheromone trails, as explained 

in Section 5.4.2.3. There is only an exception for Set 3. Whenever, the backup set is considered, the 

choice is only based on the greedy function, because we do not update the pheromone trails of all 

possible arcs to safe computation time.  

 

Our desirability function is a greedy function that divides the priority score of a visit by the time that is 

needed to visit the neighborhood. It is an adjusted version of the one that Ke et al. (2008) are using.  

Concerning the travel time from a break location b to the next neighborhood j, we use the accounted 

travel time, which is raw travel time reduced by a pre-set Travel Time Reduction parameter. The rationale 

behind it is to distribute the neighborhoods farther away from the break locations. In addition, the follow-

up work for the PEF driver does not start right away, which gives him a bit spare time. We choose this 

value to be equal to 10 minutes, because this seems as a reasonable head start for the PEV driver. 

However, the accounted travel time may never exceed another pre-set parameter, namely Travel Time 

Restriction. The purpose of this is to restrict the travel time, whenever the ant chooses out of all possible 

neighborhoods (Set 3, see Section 5.4.2.1). We set this value equal to 15 minutes. If it turns out that these 

values, lead to routes that cannot be managed, these parameters can be adjusted easily.  

However, the time does not only include the accounted travel time from neighborhood i to neighborhood j 

but also the service time from neighborhood j and the travel time from neighborhood j to the next break 

location b (or the depot depending on the shift). The latter, however, is not always important. When a shift 

starts, the PEV should or even must distance itself from the break location in order to avoid that it only 

drives close to the break location. The closer the time gets to the break time, the more important the 

travel time to the break location gets. Therefore, we use a progress factor 𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
, which depends on the 

finish time and weekday of the visit. The progress factor determines how strong the travel time weighs 

within the desirability function and is computed as follows: 

 

𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
=  

𝐹𝑖𝑛𝑖𝑠ℎ 𝑡𝑖𝑚𝑒 𝑂𝑓 𝑉𝑖𝑠𝑖𝑡 −  𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑦𝑐𝑙𝑒

𝐹𝑖𝑛𝑖𝑠ℎ 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑦𝑐𝑙𝑒 –  𝑆𝑡𝑎𝑟𝑡 𝑇𝑖𝑚𝑒 𝑜𝑓 𝐷𝑎𝑦 𝑃𝑒𝑟𝑖𝑜𝑑
. 

 

The desirability function of a visit is denoted as 𝜂𝑣𝑗,𝑛,𝑡,𝑚,0
 and can be denoted as: 
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𝜂𝑣𝑗,𝑛,𝑡,𝑚,0
=  

𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝑣𝑗,𝑛,𝑡,𝑚,0

𝑐𝑖,𝑗,𝑡,𝑑 + 𝑠𝑗,𝑡,𝑑 + 𝑐𝑗,𝑏𝑗,𝑡,𝑑   ∗ 𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
 
, 

 

where 𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒𝑣𝑗,𝑛,𝑡,𝑚,0
 is the increase of the priority score by visit 𝑣𝑗,𝑛,𝑡,𝑚,0, 𝑐𝑖,𝑗,𝑡,𝑑 is the accounted travel 

time from neighborhood i to neighborhood j, at time t, on weekday d, 𝑠𝑗,𝑡,𝑑 is the service time at 

neighborhood j, at time t, on weekday d, and 𝑐𝑗,𝑏𝑗,𝑡,𝑑  is the travel time from neighborhood j to the to the 

closest break location from neighborhood j, which is 𝑏𝑗. 

As explained in Section 5.3.3, the priority score of a visit depends on the expected number of PCNs 

𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

, the Target Factor 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
, and the Visit Day Factor of a visit 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

.  We introduced the term 

expected number of PCNs of a visit because this number is not always equal to the forecasted number of 

PCNs 𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
. In fact, the expected number of PCNs is unknown until all visits of the day are scheduled. 

The reasons for this is that it is possible that another visit is scheduled in the same neighborhood on 

same day but earlier. Therefore, we have to estimate the number of visitors that received a PCN during the 

earlier visit and still remain at the neighborhood, which we denote as 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0
. The expected number of 

PCNs is for that reason computed as follows: 𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

 = 𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
- 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0

. In the same way it can happen that 

by scheduling a visit the expected number of PCNs of a later visit in the same neighborhood on the same 

day can be decreased. For that reason, we introduce the current increase of the expected number of PCNs 

(denoted as ∆𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
′ ), which accounts for both phenomena: the decrease of expected number of PCNs of 

the current visit due to a prior visit and the decrease of the expected number of PCNs of a later visit due 

to the current visit. The exact computation of this increase is shown with an example in Appendix D. Note 

that it is obligatory that whenever a PEV driver visits a neighborhood, the driver has to scan the 

neighborhood fully. However, there is one exception when the visit starts in neighborhood with a parking 

regime but the parking regime stops during the visit. In these cases the driver is allowed to go to the 

neighborhood anyways until the parking regime is over. The reason behind this is that in the last minutes 

of the parking regime, we expect a higher PCN ratio than usual (according to EPS’ experiences).  

In conclusion, the desirability is finally determined as follows: 

 

If (CurrentTime+TravelTime+ServiceTime+TimeToBreakLocation > BreakTime+BreakFlexibility) OR 

(CurrentTime+TravelTime+ServiceTime+TimeToDepot > FinishTime) OR 

(TravelTime>TravelTimeMaximum): 

 

𝜂𝑣𝑗,𝑛,𝑡,0
   = 0, 

 
Else: 

𝜂𝑣𝑗,𝑛,𝑡,0
  = 

∆
𝑃𝑣𝑗,𝑛,𝑡,𝑚,0

′ ∗ 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
∗𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

𝑐𝑖,𝑗,𝑡,𝑑+𝑠𝑗,𝑡,𝑑+𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
∗𝑐𝑗,𝑏𝑗,𝑡,𝑑

. 

 

As mentioned in Section 5.4.2.1, in the first iteration only the desirability function is used to choose the 

next neighborhood from Set 1 or Set 2. At the end of the first iteration, the pheromone trails are updated 

the first time as we describe in Section 5.4.3. Afterwards, the probability function of the ACO algorithm is 

applied to find better solutions than the first greedy solution as we explain in Section 5.4.2.3. 

 

In the ACO approach the ant does not always choose the “most desirable” solution but goes 

probabilistically from neighborhood i to neighborhood j, whereby node j is from a set of considered 

neighborhoods j ∊ N(i), as determined in Section 5.4.2.1. The choice depends on the probability of node j, 

which is based on two factors: the desirability 𝜂𝑣𝑗,𝑛,𝑡,0
 and the pheromone trails 𝜏𝑖,𝑗. The pheromone trails 

depend on the pheromone value on the arc between neighborhood i and j, which is updated after every 

iteration as explained in Section 5.4.3. The probability 𝑝𝑖𝑗 is for all neighborhoods determined as follows: 
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𝑝𝑖𝑗𝑗 ∊ N(i) =  
𝜏𝑖,𝑗

𝛼 ∗𝜂𝑣𝑗,𝑛,𝑡,0

𝛽
 

∑ (𝜏𝑖,𝑙
𝛼 ∗𝜂𝑣𝑙,𝑛,𝑡,0

𝛽
 )

0

𝑙 ∊ N(i)

  , 

 

where  𝛼 and 𝛽 are used to control the importance of the pheromone trails and the desirability. 

All neighborhoods j ∊ N(i),  are ranked according to their probabilities. Afterwards, a random number is 

generated with a uniform distribution between 0 and 𝑄0. Q0 is a randomness parameter, which determines 

how big the generated numbers can be. If the random generated number is smaller than the 𝑝𝑖𝑗  of the 

first neighborhood in the ranked set, the first neighborhood is chosen. If this is not the case, a new 

number is generated and compared to 𝑝𝑖𝑗  of the second neighborhood. This continues until a 

neighborhood is chosen. In the very rare case that in the end no neighborhood is selected, the first ranked 

neighborhood is chosen. 𝑄0 decreases after every iteration by the decrease parameter 𝐷𝑄0
, such that the 

neighborhoods with the most probability are more likely to be added to the route. The rationale behind it 

is that in the beginning many different solutions are explored but towards the end we want the ants to 

choose the best option in terms of the computed probability 𝑝𝑖𝑗. 

 

The first iteration of every day creates a solution of the route planning based on the greedy algorithm. 

The objective function of this day planning is saved as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑒𝑒𝑑𝑦. The greedy solution serves as a 

benchmark solution, which we strive to exceed. The performance of the day planning of all iterations 

afterwards are measured by comparing it to the greedy solution:  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 
𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑒𝑒𝑑𝑦
. 

The solution with the best performance is saved as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡 and 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡. Since the greedy 

solution is the first created solution, it is the first best solution.  We strive to maximize the best 

performance by updating the visited arcs with a pheromone trail after every iteration. The update of the 

pheromone trail is essential to the algorithm as it teaches the ants, which combination of neighborhoods 

worked well in the past iterations. This section introduces three different update strategies. 

 

Due to our generalization of the TOP that allows to visit neighborhoods multiple times and also includes 

other additional constraints, there is no ACO algorithm in the literature that tackles the same problem. 

However, we decided to derive our first updating strategy from the work of Montemanni and Gambardella 

(2009), who develop an ACO algorithm for the TOP with time windows. In their algorithm, only the ant 

that produced the best solution since the beginning of the computation, which we denoted as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡, 

is allowed to leave a pheromone trail. The reason behind it is that the best route is memorized, and in the 

future, ants will generate new (and hopefully better) solutions that are similar to this route. For that 

reason, we also update the pheromone of the visited arcs, only whenever a best solution is achieved. If an 

arc is visited more than once, it only counts as one visit. The pheromone trails are denoted as 𝜏𝑖,𝑗, where i 

and j present the arc between neighborhood i and j. The initial value is denoted as 𝜏0. The updating rule is 

the following:  

𝜏𝑖,𝑗  =  (1 − ρ) ∗ 𝜏𝑖,𝑗 +  ρ ∗  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡,  

 

where p regulates the strengths of the pheromone that is left by the best solution. After the first iteration, 

this update is applied the first time. In this case, the initial value 𝜏0𝑖,𝑗  determines the attractiveness of the 

arcs that have not been visited by the greedy solution in comparison with the ones that have been. Since 

the 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡 of the greedy solution is per definition equal to 1, we choose 𝜏0 to be smaller than 1 

in order to attract more ants to the greedy solution. The exact value will be determined in Chapter 6. 

Moreover, during the construction of a route, every ant decreases the pheromone trails of the arcs that is 

has used to prevent that arcs are visited too many times and to stimulate the exploration of new 

solutions.  The rule is determined by:  

 

𝜏𝑖,𝑗 = (1 −  𝜓) ∗  𝜏𝑖,𝑗 +  𝜓 ∗ 𝜏0, 
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where 𝜓 is the evaporation parameter that regulates the decrease of the pheromone trace. We do not want 

the ants to visit neighborhoods many times because it decreases the exploration, plus it decreases also 

the performance of the solution as discussed in Section 5.4.2.  If there is no improvement after the 

iteration, the pheromones are not updated but restored, meaning that the decrease during the solution 

building does not apply for the next solution.  

 

For this strategy, we slightly adjusted Update Strategy 1. In this strategy, the arcs are updated after every 

solution instead of updating the arcs only after an improvement of the 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡. After every iteration all 

visited arcs are updated according to the formula:  

 

𝜏𝑖,𝑗  =  (1 − ρ) ∗ 𝜏𝑖,𝑗 +  ρ ∗  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.   

 

Update Strategy 3 is another variation of Update Strategy 1. The difference is that the ants are considered 

separately. Not the best solution of all ants together counts but the best solution of every ant separately. 

The rationale behind this is that the allocation to KPI areas should be the same in most cases for all 

iterations. When the same ant is send to the same KPI area every iteration, we can measure the objective 

function of this ant. Every ant has therefore a separate performance that is compared to the greedy 

solution of that ant. By doing so, we also increase the pheromone trails of arcs that have been visited by a 

single well-performing ant even though most ants performed worse.  If an arc is visited by more than one 

ant that achieved a personal best score, then the one with the higher score may set the trail. Regarding 

the update of the best solutions or all solutions, we can either use the updating rule as described in 

Strategy 1 or 2 for this strategy. 

 

In this chapter, we presented our planning approach that is based on our desirability function and our 

ACO algorithm. We discussed our objective function, and how the PEV are distributed and their routes are 

created. Throughout this chapter, we introduced a lot of different parameters and strategies. The 

introduced parameters, namely the Target Reached Parameter, the Visit Day Parameter, the Swap 

Threshold, the Travel Distance Restriction, the Travel Time Restriction, and the Travel Time Reduction 

should be tested and adjusted if needed. For that reason, we call them manager decision parameters. The 

results of our algorithm will be presented in Chapter 6. 
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In this chapter, we discuss the results of our prediction model, introduced in Chapter 4, and our routing 

algorithm, introduced in Chapter 5. In Section 6.1, we setup the design of our experiments. Section 6.2 

discusses the accuracy of the different prediction models. Section 6.3 shows the results of our sensitivity 

analysis and Section 6.4 the results of our simulation. Finally, Section 6.5 demonstrates that our planning 

tool improves the current situation.  

 

This section introduces the experiments that are performed in this Chapter. In that regard, we first list the 

outputs with which we evaluate the different experiments in Section 6.1.1 and the parameter values that 

we introduced in Chapter 4 and 5 in Section 6.1.2. Finally, Section 6.1.3 discusses the questions that we 

are going to answer in this chapter and how we will answer them.  

 

In Section 5.3.3, we presented our objective function, which determines a priority score for every visit. 

This function can also be used to compute the priority score of all routes of one scheduled day. Next to 

this objective function, we compute the travel distance and count the average number of times that a 

neighborhood is not visited once a week, as explained in Section 5.3.2. In the end, we evaluate the results 

by the following outputs that are computed for every planned day: 

 Objective function 

 Number of PCNs 

 Number of scans 

 Travelled distance (in km) 

 The average number of times that a neighborhoods is not visited once a week 

 Algorithm running time 

Regarding the number of PCNs and scans, we differ between the forecasted number and the simulated 

number. All outputs present the forecasted number if it is not explicitly said that they values are 

simulated. 

 

In Chapter 5, we presented two algorithms: the greedy algorithm, which selects sequential visits based on 

the desirability alone, and the ACO algorithm, which builds on the greedy algorithm to search for a better 

global optimum. In that regard, we introduced various parameters throughout Chapter 4 and 5. The 

parameter values introduced in Chapter 4 are based our assumption and confirmed by the expert opinion 

of ARS. On the long-term these values should be replaced by values that are derived from data. The 

parameter values introduced in Chapter 5 are based on management decisions and can be adjusted by the 

management after evaluating the results in practice. In the following, we present the chosen parameter 

values that we already introduced in earlier sections:   

 Parameters that are based on expert opinion: 

o Stability Parameter = 0.4 (see Section 4.3.4) 

o Margin of error for the number of paid-for visitor hours = 0.1 (see Section 4.2.2) 

 Parameters that are based on a management decision: 

o Target Reached Parameter = 2 (see Section 5.3.1) 

o Visit Day Parameter = 5 (see Section 5.3.2) 

o Swap Threshold = 1 minute (see Section (5.4) 

o Travel Distance Restriction = 1500 meters (see Section 5.4.2.2) 

o Travel Time Restriction = 15 minutes  (see Section 5.4.2.2) 

o Travel Time Reduction = 10 minutes (see Section 5.4.2.2) 

 

In this section, we design the experiments that we will perform in this chapter. Section 1.4 stated the 

research question that we want to show in this chapter whether our planning tool improves the current 
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situation. For that purpose, we divide this question into four sub question that we will answer in this 

chapter:  

1. Which prediction model is the most accurate?  

In order to answer this question, we use our prediction models and the one of ARS to forecast the number 

of PCNs for the same data set as in Section 4.3.2.2. We only consider the first weeks of the data set 

(weeks 24 to 42 2016) in order to make sure that this data is also included in the prediction model of 

ARS. Otherwise, the ARS forecast would have the disadvantage of not knowing the data.  

2. How sensitive are the results regarding the parameter values and functions that we implemented? 

This question is answered by performing a sensitivity analysis (Section 6.2), in which we analyze the 

impact of changes of some essential elements of our greedy and ACO algorithm on the routes and 

forecasted outputs.  

3. Which combination of routing algorithm and prediction model lead to the best results? 

By simulating the number of PCNs independently from the prediction model, we are able to compare 

routes that are based on a different routing algorithm and a different prediction model. The combination 

that leads to the best simulated results in terms of the number of PCNs will be considered as the best.  

4. Does our planning tool improve the current situation? 

We answer this question in Section 6.5 by answering the following two questions: 

a. To what extent does our planning tool improve the current situation at EPS? 

b. To what extent does our planning tool improve the current planning tool of ARS? 

Question 4a is difficult to answer as the best scenario would be to execute our routes in practice. Even 

then, the results cannot be compared to results of the routes that EPS would have planned without our 

planning tool. Therefore, we show on average the number of PCNs that our planning tool would produce 

and compare it to the average number of PCNS of the historical scans of EPS.  

We answer Question 4b by inserting the same inputs and compare the output of both routing algorithm to 

see which routing algorithm performs better with regards to the number of PCNs.  

 

In Section 4.3.2.2, we discussed the benefit of the mean absolute error (MSE) that it is easy to interpret. 

For that reason, we compare in this section the following prediction models based on the MSE:  

 Naive forecast (see Section 4.3.2.1) 

 Neural Network A forecast (contains the original PCN ratios based on our neural network as 

presented in Section 4.3.2.2), 

 Neural Network B forecast (some neighborhood predictions of the Neural Network A forecast are 

replaced by their nearest neighbor) 

 ARS forecast 

Since the same data set is used in Section 4.3.2.2, which contains only the known neighborhoods, neural 

network A and B are the same. The results of the three prediction models are shown in Table 13.  

Mean absolute error in 
comparison with data set 

Improvement in comparison 
with ARS forecast 

ARS forecast 0.008973 0% 

Naive forecast  0.008741 2.26% 

Neural network forecast (A 
and B) 

0.008615 3.99% 

Table 13 – Results of forecasting methods 

From these results, we conclude that our naive forecast and our neural network forecast give a more 

accurate prediction than the one of ARS, namely 2.26%, respectively 3.99% more accurate in terms of the 

MSE. Even though the absolute difference in the MSE seems very small, it has an impact for a big number 

of scans, with which EPS is dealing daily. However, a more accurate forecast does not necessarily mean 

that the obtained results in reality will be higher. This will be discussed further in our simulation study in 

Section 6.4. 
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In this section, we analyze the impact of some essential parts of our algorithm and discuss the results 

regarding the greedy and the ACO algorithm. As a forecast method, we mainly use our Neural Network A 

forecast in combination with our occupancy ratio (see Section 4.3.3). 

 

In the section, we experiment with the some parts of our algorithm to see how the results of the greedy 

algorithm is affected, such as: 

 The stability function  

 The Travel Distance Restriction 

 The neighborhood swap and break location swap 

 The Target Reached Parameter and Visit Day function 

 

In Section 4.3.4, we introduced the stability function, which is determined as: 𝑆(∆𝑡)  =  0.4∆𝑡 (Stability 

Parameter = 0.4). This function reduces exponentially over time. The lower the outcome of the function, 

the lower the number of remaining non-paying visitors that we still expect at a neighborhood since the 

previous visit. This assumption is crucial to our planning as it has a big influence on the routes and the 

outcomes. Figure 41 shows the route of one shift created by the greedy algorithm using the stability 

function, as we introduced it in Section 4.3.4.  

 

Figure 41 – Route that does take the stability function into account as determined in Section 4.3.4 

Vehicle 4 starts in the morning at the depot, which is the break location at the top of the figure (break 

locations are marked with green points). We know that the vehicle goes to the middle of the figure and 

scans neighborhoods and takes a break once at break location 2 (at the bottom of the figure) and once at 

the depot. It is not interesting for us here how the vehicle travels exactly but to see that some 

neighborhoods are visited multiple times, as shown by more than 2 arcs are connected to it. By manually 

checking the route, we see that no neighborhood is visited twice before returning to a break location the 

first time.  

Now, let us create a route, where we assume that there is no such thing as non-paying visitors staying at a 

neighborhood. By ignoring the stability function, we assume that the algorithm will send the PEV to only a 

few neighborhoods but multiple times a day. This assumption is confirmed in Figure 42, which shows the 

new route for same shift as in Figure 41.  
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Figure 42 – Route that does not take the stability function into account 

This time we see that less neighborhoods are visited within the same shift. This is due to the fact that 

neighborhoods are visited multiple times a day. By checking manually the route, we know that one 

neighborhood is even visited four times before the vehicles returns for the first break. This is the 

consequence of not having the stability function that we introduced. For some regions, it might be the 

case that the parking duration of non-paying visitors is short enough that this route would actually be the 

best but we assume that this is not the case. However, it is important to do further research on the 

parking duration of non-paying visitors. 

Let us now consider what happens if the stability function results in very high values such that it is almost 

never attractive to go back to a visited neighborhood. As discussed in Section 6.2.2, it is not possible to 

set a constraint that ants are not allowed to visit a neighborhood multiple times a day as this would at 

some point remove all feasible options for the ant when planning a large number of routes. Therefore, we 

use a linear stability function that returns values close to 1: 𝑆(∆𝑡) =  max (1 − 0.1∆𝑡 , 0), which leads to less 

neighborhoods that are visited multiple times a day. The resulting route of the same shift is shown in 

Figure 43. 

 

Figure 43 – Route that is based on a linear stability function 

With this linear function, we see that no neighborhood is visited twice. This leads to a strong reduction in 

the number of PCNs.  
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The reason of this sensitivity analysis is only to show the impact of our exponential stability function. We 

conclude from this analysis that the stability function has a strong impact on the routes and therefore the 

number of PCNs and that this function is an important implementation to deal with the multiple visits of 

neighborhoods. However, further research the stability function is required by investigating how long non-

paying visitors (or at least paying visitors) stay at a parking spot.  

 

In Section 5.4.2.1, we introduced the Travel Distance Restriction, which determines the size of the 

neighborhood set from which the ant chooses the next neighborhood. This restriction is necessary 

because otherwise it can happen that the distances between two neighborhoods become too large such 

that the PEF driver is not able to follow the PEV anymore. The consequence of this is that the PEF cannot 

do all the follow-up work that is needed and therefore the effective number of PCNs is reduced. We set the 

value to 1500 meters because that seems as a reasonable restriction. In the following, we compare the 

results of a route with a Travel Distance Restriction of 1500 meters to the routes with a Travel Distance 

Restriction of 500 and 5000 meters. Table 14 shows the results of the greedy algorithm based on the 

Neural Network A forecast. 

500 1228 195126 4385 17.76 

1500 954 194277 3444 6.8 

5000 1258 203303 4269 19.54 

Table 14 – Sensitivity analysis of the Travel Distance Restriction (Neural Network A forecast) 

Table 14 shows that the route with a Travel Distance Restriction of 5000 meters leads to a better solution 

with regards to the number of PCNs than the one with a restriction of 1500 meters. The reason for that is 

that there are less restrictions, i.e., there are more neighborhoods to choose from at each planning step. 

This enables the PEV to get to neighborhoods that seem to be very attractive in terms of the number of 

PCNs and consequently the priority score. It should be questioned whether the number of PCNs can 

actually be increased by such an amount if the distances become this large. A reason for that could be 

due to an underestimation of the travel times, which we discussed in Section 4.4. Even though one might 

assume that the results of the Travel Distance Restriction of 500 should be more similar to results with a 

restriction of 1500 meters than 5000 meters, this is not the case. The reason for this is that with a Travel 

Distance Restriction of 500 meters it often happens that there is no feasible available option within that 

distance. When that happens, the ant chooses out of all neighborhoods, as explained in Section 5.4.2.1. 

Choosing out of all options is similar to choosing the options within a large travel distance, such as 5000 

meters, which explains the similarity between those two.  

We wonder if this effect is the same when using another forecast (e.g. the ARS forecast). Logically, we 

cannot compare the number of PCNs and scans of two different forecasts but we can investigate whether 

the effect is the same. The results based on the ARS forecast are shown in Table 15.  

500 1235 189564 2706 8.25 

1500 1043 213997 2863 4.69 

5000 1377 211306 3189 10 

Table 15 - Sensitivity analysis of the Travel Distance Restriction (ARS forecast) 

From comparing both tables, we conclude first of all that the ARS forecast is faster than the Neural 

Network A forecast. This is due to the fact that the Neural Network A forecast checks the parking regime 

while computing. In the ARS forecast, this is already included in the forecast. This can be easily adjusted 

in the future by already integrating the parking regime in the forecast.  

Furthermore, it appears that the Travel Distance Restriction parameter had a bigger impact on the results 

when using the Neural Network A forecast. We still see the difference of PCNs between the restriction of 

1500 and 5000 meters but not that strong. Looking at the results of the restriction of 500 and 5000 
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meters, we observe that they are still similar in terms of the travel distance and the algorithm running 

time. However, the number of PCNs for the routing algorithm with a travel distance of 500 meters 

performs with the ARS forecast much worse than the one with a restriction of 5000 meters. 

Generally, we conclude that a higher Travel Distance Restriction leads to more PCNs and requires more 

computation time. In this regard, it is important to analyze in practice which distances the PEF can handle 

in order to extend this restriction. When increasing the Travel Distance Restriction, it seems that both 

forecasts lead to longer travel distances (for the ARS forecast the distances are even longer) but that the 

benefit of traveling more is bigger for the Neural Network A forecast because it increases relatively more 

than for the ARS forecast. A reason for that could be that the PCN hotspots that cause the large travel 

distances, are bigger for the Neural Network A forecast.  

 

In our algorithm, we also introduced two swap mechanisms: a neighborhood swap and a break location 

swap. The idea of the neighborhood swap is to swap two neighborhoods if the saved travel time of the 

resulting route is above a certain threshold (in our case 1 minute). Note that a swap is not performed if 

the improvement of the travel time in percentages is lower than the loss in percentages of the number of 

PCNs. An example of a successful swap is shown in Figure 44.  

  

Figure 44 – Comparison of route without neighborhood swap (left) and with neighborhood swap (right) 

In this figure, the PEV comes from the left side. Comparing the route without a swap and with a swap, we 

see that the swap is successful because the “zigzag” is removed. The idea of the break location swap is 

the same. The only difference is that the swap is always performed if the travel time is reduced (no matter 

how much). PCNs are not involved in this decision, since in our algorithm no PCNs are obtained at the 

break locations. In reality, longer travel times probably lead to more PCNs by scanning on the way which 

we do not quantify at the moment but we assume that generally it is better to have shorter travel times.  

During our experiments, we have seen that the neighborhood swap rarely improves the route in terms of 

the priority score or the number of PCNs. In most cases, the outcome is slightly worse (usually less than 

0.1%). This is due to the fact that the saved time apparently does not bring enough time to find new PCNs. 

However, as we explained in Section 5.4, we prefer this setting because even though the outcome might 

be slightly worse, the route is more logical to the PEV driver.  Furthermore, the saved time can additionally 

serve as a buffer, which makes the routes more likely to be managed in time. Moreover, in Section 4.4, we 

assumed that the travel times are underestimated. If that is the case, zigzags will be more inefficient and 

swaps will become more effective and save more time. Another interesting fact that we observed is that 

the break location swap, can actually decrease the performance of the route. This seems rather strange 

because, as we mentioned earlier, the break location swap only saves time and does not decrease the 

number of PCNs. However, sometimes this is the case because the swap does not save enough time to 

visit an extra neighborhood and the expected forecasts of the visits are actually lower due to an earlier 

arrival. When the PEV arrives earlier to the destined neighborhoods, it can happen that the obtained 

number of PCNs become less. Moreover, due to the fact that the swap occurs during the solution building, 

the time reduction can lead to a different route which does not necessarily leads to an improved route in 

terms of the number of PCNs.  

In the end, we keep both swaps because despite of the fact that sometimes the number of PCNs is slightly 

decreased, they make the routes more customer friendly and save travel time. 
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In this section, we consider the Target Reached Parameter and the Visit Day Factor function. Additionally, 

we show whether our algorithm actually meets the KPI targets within 90 days based on our forecast. The 

Target Reached Parameter determines to what extent the KPI areas that did not reach the targets should 

be prioritized (see Section 5.3.1). The Visit Day Factor function determines to what extent the focus of the 

algorithm lies on the neighborhoods that have not been visited once a week (see Section 5.3.2).  

During our experiments, we made an interesting observation. Even though the the forecasted number of 

PCNs is higher when using our Neural Network A forecast than when using the ARS forecast (this is not 

only the case for the forecasted number but also for the simulation, as we show in Section 6.4.2), we 

noticed that the forecasted number of PCNs in “Centrum” are on the long-term lower when we apply the 

Neural Network A forecast instead of the ARS forecast.  Generally, we cannot compare these outputs due 

to fact that different forecasting methods are used. However, if the reason behind it is that the Neural 

Network A forecast has a lot of PCN hotspots close to “Centrum”, which pull the PEVs out of this KPI area, 

this could be a problem because it leads to less scans in “Centrum”. In this section, we will also 

investigate whether this is a problem.  

Let us first consider the results of the routing algorithm based on the ARS forecast. When creating a 

planning for 90 days for the highest PCN targets that we know of, we see that the Target Factor 2 works 

well in that sense that all targets are met. We choose to increase these PCN targets to see if the routing 

can still handle these fictive targets. The results are shown in Table 16. 

PCN 

Target 

60000 7800 850 20000 6700 22000 8500 37000 11000 3700 

PCN 

Current 

61552 11413 923 27510 9508 29512 13085 50484 15301 3599 

Payment 

Rate 

Target 

0.81 0.88 0.88 0.87 0.8 0.81 0.81 0.92 0.86 0.81 

Payment 

Rate 

Current 

0.79 0.9 0.87 0.85 0.79 0.79 0.8 0.85 0.85 0.84 

Average number of neighborhoods without a visit once a week: 34.39 

Table 16 – KPI matrix after a planning of 90 days with a Target Reached Parameter of 2, a limited Visit 

Day Factor, and the ARS forecast 

Table 16 shows the basic KPI targets and not the upper bounds that we computed for our algorithm (see 

Section 4.2). We see that the basic PCN target of “Centrum” is met. However, the upper bound, which is 

72663 (computed with a high margin of error for the number of paid-for visitor hours of 0.1), is not met 

in this case. Since, 60000 is a very challenging and fictive PCN target, which is 14% higher than the 

highest historical target for “Centrum” that we know of (52741), and in our simulation in Section 6.4.2 we 

show that the simulated number of PCNs is 6.8% higher than the forecasted number of PCNs based on the 

ARS forecast, we consider “Centrum” as a reached target. The KPI area “Zuidoost” is the only KPI area that 

does not meet the basic PCN target but this is due to the fact that the payment rate target is met at the 

beginning of the KPI period. Furthermore, we derive from this table that the average number of 

neighborhoods without a visit once a week is 34.39. A part of these neighborhoods belong to the KPI area 

“Noord”, which has a quite low PCN target and therefore this KPI area does not need to be visited very 

often.   

Furthermore, we are interested to see what happens if the Visit Day Factor function is unlimited. This 

means that the Visit Day Factor is not limited to 2 anymore and will increase very fast after one week 

without a visit. This will force the algorithm to go there and will eventually overrule all other aspects. The 

results are shown in Table 17. 
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PCN Target 60000 7800 850 2000

0 

6700 2200

0 

8500 3700

0 

1100

0 

3700 

PCN 

Current 

61436 11384 1027 2730

8 

9627 2956

9 

1283

1 

5017

1 

1524

5 

3171 

Payment 

Rate 

Target 

0.81 0.88 0.88 0.87 0.8 0.81 0.81 0.92 0.86 0.81 

Payment 

Rate 

Current 

0.79 0.9 0.87 0.85 0.79 0.79 0.8 0.85 0.85 0.84 

Average number of neighborhoods without a visit once a week: 23.88 

Table 17 - KPI matrix after a planning of 90 days with a Target Reached Parameter of 2 and an unlimited 

Visit Day Factor, and the ARS forecast 

We see that the targets are met more or less to the same extent. This can be validated since the average 

forecasted number of PCNs is now 2464, which is 13 PCNs less (-0.52%) than the average that we achieved 

with a limited visit day factor. However, the daily average number of neighborhoods that have not been 

visited once a week is lower. This number decreased from 34.39 to 23.88 (-30.56%) by applying the 

unlimited Visit Day Factor. In the end, the management of EPS (or ARS) has to decide whether this is an 

improvement. In our opinion, the unlimited Visit Day Factor seems to be preferable. Even more so because 

it increases the variability of the routes, which is beneficial for EPS because non-paying visitors are not 

able to predict the routes (see Section 5.3.2).  

Let us now consider the results based on the Neural Network A forecast with the unlimited Visit Day 

Factor in Table 18.  

PCN 

Target 

60000 7800 850 2000

0 

6700 2200

0 

8500 3700

0 

1100

0 

3700 

PCN 

Current 

55895 12327 2906 2700

5 

1113

6 

3145

4 

1482

1 

5403

7 

1782

1 

6766 

Payment 

Rate 

Target 

0.81 0.88 0.88 0.87 0.8 0.81 0.81 0.92 0.86 0.81 

Payment 

Rate 

Current 

0.79 0.9 0.87 0.85 0.79 0.79 0.8 0.85 0.85 0.84 

Table 18 – KPI matrix after a planning of 90 days with a Target Reached Parameter of 2 and an unlimited 

Visit Day Factor, and the Neural Network A forecast 

As mentioned in the beginning, the basic PCN target in “Centrum” is not met but the forecasted average 

daily number of PCNs for all KPI areas with the Neural Network A forecast is 138 higher (2602 PCNs on 

average). Although the basic PCN target of “Centrum” is not met in this case, we are confident that our 

algorithm based on the Neural Network A forecast will meet the realistic future targets of EPS, because: 

 the PCN target of “Centrum” is 14% higher than the highest historical PCN target 

 we know from Section 6.4.2 that the simulated number of PCNs is 9.5% more than the number of 

PCNs that is predicted by the Neural Network A forecast 

 we know from Section 6.5.1 that we are using less shifts than EPS uses on average.  

Consequently, we do not consider the observation that we made in the beginning (the less PCNs in 

“Centrum” with the Neural Network A forecast) to be a problem.  

When increasing the Target Reached Parameter to 3, the number of forecasted PCNs in “Centrum” is 

increased to 57087 and therefore closer to the target. However, the average number of forecasted PCNs is 
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lower (2558 PCNs on average) due to the fact that more and more vehicles are forced to “Centrum” as it is 

the only KPI area that did not meet the upper bounds of the KPI targets. The unbalanced distribution of 

the PEVs leads to an oversaturation of the “Centrum”, which finally leads to the smaller number of PCNs. 

This can also be seen in Figure 45. 

 

Figure 45 – A 90 day planning showing the number of daily PCNs and the number of PEVs that are 

assigned to “Centrum” 

This figure shows for every planned day how many PEVs are assigned to “Centrum” and how many PCNs 

are forecasted that day. We see that towards the end of the KPI period more and more PEVs are assigned 

to “Centrum” as its PCN target is not met. Furthermore, we observe that the oversaturation that is caused 

by the many PEV drivers in “Centrum” leads to less PCNs towards the end. Note that the high number of 7 

or 8 assigned PEVs to “Centrum” is an exception that is caused by the fictive high PCN target.  

If the planning tool would not create a new planning every day, it would be interesting to consider 

assigning the PEVs on the long term. In this regard, it would be required to compute the average 

forecasted number of PCNs that is obtained in a KPI area by assigning X (1…12) PEVs to the KPI area. The 

more PEVs are assigned to one KPI area, the lower is the average number of PCNs of one PEV. Thereafter, 

these computations could be used to optimize the distribution of the PEVs to the different KPI areas for a 

certain period of time (e.g., one week or the entire KPI period).  

Finally, we conclude that in our opinion the best overall performance is achieved with an unlimited Visit 

Day Factor and a Target Reached Parameter of 2. Even though the fictive target of 60000 in “Centrum” was 

not met with the Neural Network A forecast, we are confident that it will manage the realistic future 

targets of the municipality, which are assumed to be lower (the highest historical target that we know of 

was 52741). It is also important to further investigate the variability of the paid-for visitor hours because 

the assumption of 10% that we use now increases the PCN target by 10% (see Section 4.2.2). This 

especially effects the PCN target of “Centrum” because it already the highest PCN target.  

 

When making routes for 12 PEVs (also denoted as vehicles or ants), which is the usual amount of vehicles 

that EPS uses, with our ACO algorithm, we had some difficulties to find better solutions than the solution 

of the greedy algorithm (denoted as greedy solution), which is the solution of the first iteration. After 

trying different parameters and update strategies, we wonder whether the number of deployed PEVs has 

an impact on the performance of the ACO algorithm. For that reason, we considered making a route for 

only one vehicle, and indeed we received good results with the following parameter values (parameters 

are introduced in Section 5.4.2 and Section 5.4.3): 

 Update Strategy 1  

 ρ = 0.90  

 𝜓 = 0.95 

 𝑄0 = 0.4 

 𝐷𝑄0
 = 0.1 
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 𝜏0= 0.8 

 α = 1 

 𝛽 = 2 

 Number of iterations = 10 

The outcomes for one vehicle are shown in Table 19. 

Day Iteration Number Of PCNs Priority score Improvement compared to greedy solution 

1 1 254 508.12 0% 

1 2 272 543.70 7% 

1 3 257 513.66 1% 

1 4 291 582.45 15% 

1 5 278 555.44 9% 

1 6 264 528.04 4% 

1 7 266 531.96 5% 

1 8 300 600.23 18% 

1 9 282 563.56 11% 

1 10 306 612.28 20% 

Table 19 – Results of the ACO algorithm for one vehicle 

We derive from this table that the priority score (and also the number of PCNs) increases with the number 

of iterations. After 10 iterations, the solution is already improved by 20%. We conclude that the ant is 

indeed learning and that our ACO algorithm works at least for one vehicle. Unfortunately, this learning 

effect seems to vanish when we create routes for more vehicles with the same parameter settings. Figure 

46 shows the improvement towards the greedy algorithm for 1, 2, 3, and 7 vehicles in 10 iterations. 

 

Figure 46 – Results of the ACO algorithm for 1, 2, 3, 7, and 12 vehicles 

From Figure 46, we conclude that the learning effect decreases with the number of vehicles. We have 

observed that for 7 vehicles, the greedy solution is rarely improved. For 12 vehicles, it is sometimes 

possible to find an improvement; however, it takes a lot of time and only improves the solution by roughly 

1%. For many vehicles the results retrieved by our Update Strategy 3 (Section 5.4.3.3), which updates the 

pheromones separately for all PEVs, seems to perform a bit better. Nevertheless, the results are still not 

good enough to significantly improve the solution. As a next step, we want to investigate what happens 

when (too) many vehicles are used.  

One logical explain could be that with more deployed PEVs, also more PEVs are deployed to the same KPI 

area (for instance “Centrum”). When many ants share the same KPI area, the learning effect that always 
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applies for one single ant gets more complicated. For instance, in the past the first ant has learned a new 

route that improves the results. However, it might happen that the second ant changes its route within 

this iteration and visits some nodes that the first ant would have travelled to. Therefore, the learning 

effect of the first ant becomes in this example useless.  

Furthermore, there could be another reason that leads to a decrease of the learning effect. Amsterdam 

has 320 neighborhoods with an active parking regime. If a neighborhood must not be visited more than 

once a day and 12 vehicles are scheduled, every vehicle can visit 26.67 (320/12) neighborhoods on 

average. With our current parameter settings and inputs, every vehicle visits around 45-50 neighborhoods 

a day. The first vehicle visits around 65-70 neighborhoods due to the additional night shift (see Section 

5.4.1). Although ants return to visited neighborhoods due to the high desirability and not because there is 

no other choice, this means that it is even required that neighborhoods are visited multiple times a day.  

This is also the reason that the algorithm does not work when 12 vehicles are used and a neighborhood 

must not be visited more than once a day. If we assume that every vehicle visits on average 45 

neighborhoods a day, then only 7.11 vehicles (320/45) will be required to visit all neighborhoods once. 

After 7 vehicles, one could say that Amsterdam gets “oversaturated” and therefore neighborhoods have to 

be visited at least a second time. We wonder if this is the reason for the decrease of the performance of 

the ACO algorithm. As discussed in Section 6.2.1.1, we know that the stability function influences the 

number of times that a desirable neighborhood is visited on a day. Therefore, we want to investigate 

whether a different stability function that leads to fewer multiple visits of a neighborhoods increases the 

performance of the ACO algorithm for 12 vehicles. For this purpose, we choose the following linear 

stability function: 𝑆(∆𝑡) =  max (1 − 0.1∆𝑡 , 0), which leads to less neighborhoods visited multiple times a day, 

as shown in Section 6.2.1.1. During our experiments with different parameters and a different update 

strategy, we managed to improve the greedy solution by 3% after 10 iterations with the following 

parameter setting: 

 Update Strategy 3  

 ρ = 0.95  

 𝜓 = 0.95 

 𝑄0 = 0.4 

 𝐷𝑄0
 = 0.1 

 𝜏0= 0.8 

 α = 1 

 𝛽 = 2.5 

 Number of iterations = 10 

As we see that the ACO algorithm can improve the greedy solution when using another stability function, 

we conclude that the stability function has an impact on the performance of the ACO algorithm. Since 

there is a reason for our stability function, changing it is not an option. We assume that this improvement 

that occurs due to changing the stability function has the same cause that we experienced before with 

less PEVs, namely that there are less multiple visits of neighborhoods a day. Apparently the ACO 

algorithm performs better when the problem is more similar to the original TOP without multiple visits 

than our proposed generalization with multiple visits. It seems that the pheromones of the ACO algorithm 

cannot deal with the multiple visits as good as our greedy algorithm. Therefore, we conclude that the ACO 

algorithm might not be the best choice to deal with this new generalization. Since the entire problem 

especially with the multiple visits is very time-related, it might help to apply time-dependent pheromones, 

which was already done by Jiang, Chen, Ma, and Deng (2011). However, even though the time-dependency 

would be included in the learning effect, it is not guaranteed that time-dependent pheromones would 

really lead to an improvement regarding the multiple visits. Considering the greedy algorithm, the 

algorithm could be improved by adding a saturation factor that determines how many neighborhoods 

have been visited already in that area around the considered neighborhood at a certain time. 

Finally, we conclude that even if the ACO algorithm leads to a better result than the greedy algorithm, the 

improvement is very little for the usual number of deployed PEVs (smaller than 1%). If we want to apply the 

ACO algorithm with 10 iterations, it means that the computation time for one route is more than 10 times 

larger (10 iterations + 10 times a pheromone update). Therefore, we choose only to consider the greedy 

algorithm further in this chapter. 

 

In this simulation study, we want to show the impact of different forecasting methods on the performance 

of the routes created by the greedy algorithm. We only consider our greedy algorithm, since we have 

shown in Section 6.2.2 that the ACO algorithm did not significantly improve the results for 12 vehicles. 

The following five different prediction models are compared: 
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1. Poor forecast (i.e., same PCN ratio for all neighborhoods at any time) 

2. ARS forecast 

3. Naive forecast  

4. Neural Network A forecast 

5. Neural Network B forecast  

Except for the ARS forecast (because it is not our forecast) all forecasts are based on the occupancy ratio, 

as determined in Section 4.3.3. We run the experiments for three weeks. In the data analysis (see Section 

4.3.1), we have shown that the PCN prediction is not influenced by the week number, except for the very 

small decline of the non-paying ratio. We consider three weeks enough to get accurate averages. The 

structure of our simulation, will be the following: 

For each of the five prediction models: 

1. We create a forecast for three weeks  

2. We create routes for three weeks using our greedy algorithm 

3. We simulate the number of PCNs for every visit of the planned routes 

4. We evaluate the results based on the simulated number of PCNs and not on the forecasted 

number of PCNs. 

Section 6.3.1 explains how we simulate the number of PCNs and Section 6.3.2 discusses the results of this 

simulation study. 

 

In this section, we explain how we are going to simulate the number of PCNs. It is our general idea to 

simulate values for the PCN ratio and the occupancy ratio. Thereafter, the number of parking spots are 

multiplied by these ratios, in order to simulate the expected number of PCNs. For this purpose, we have to 

find a suitable distribution for both ratios.  

We start with the PCN ratio, where we consider the PCN ratios of the same data set that we used in 

Chapter 4.  The problem of finding a suitable distribution for PCN ratio of a certain hour in a certain 

neighborhood is that the PCN ratio of this data set depends on different factors such as time and space. 

For that reason, we divide the historical PCN ratios by the different factors that we determined for our 

naive forecast (see Section 4.3.2.1). By doing so, we normalize the historical PCN ratios such that they do 

not depend on time nor space anymore and we can look for a suitable distribution. We find that the 

normalized PCN ratios follow a mixed lognormal distribution (for more details, see Appendix E). This 

enables us to simulate values for the normalized PCN ratio. Since the normalized PCN ratio is not needed 

but the PCN ratio that depends on a specific time and neighborhood, we have to multiply these simulated 

normalized PCN ratios by the different factors. This process is the same as computing the naive forecast 

(Section 4.3.2.1), except that the base line PCN ratio is now replaced by the simulated and normalized 

PCN ratio.  

For the occupancy ratio, we do not find a distribution but assume a normal distribution. The reason 

behind this is that the occupancy ratio is still more an assumption rather than a ratio retrieved from data. 

Therefore, it does not make sense to try to fit it to a certain distribution. Regarding the normal 

distribution, we use the average and standard deviation that we computed in Section 4.3.3.   

In conclusion, the simulated number of PCNs is the same as the naive forecast, except for the important 

difference that the base line PCN ratio and the occupancy ratio are simulated and not averages.  

 

In this section, we present the results of our simulation study. Table 20 shows the forecasted and 

simulated results (average number of scans, average number of PCNs, and the average PCN ratio) of the 

routes that are based on the different forecasting methods. The forecasted outputs are based on the 

different applied forecasting method but the simulated outputs and the average distance travelled are 

independent. Therefore, we use the independent outputs to compare the different prediction models. As 

discussed in Section 6.3.1, the only difference between the number of PCNs of the simulation and the 

naive forecast is that the first one is based on simulated values and the latter on total averages. This 

means that the longer the simulation runs, the smaller the difference between the forecasted and 

simulated number of PCNs gets. We used this fact as a validation for the simulation accuracy after three 

weeks. More importantly, that means that the algorithm based on the naive forecast has an advantage 

because on average its forecasted number of PCNs is closer to the “truth” of the simulation. Table 20 

proves that indeed the difference between the forecasted and simulated number of PCNs is the smallest 

for the naive forecast. 

  



Master thesis – Jan Groeneveld 

 

 

76 

 

Naive 815 186043 3496 0.0188 189940 3468 0.0182 

Poor 807 227685 3165 0.0139 232511 2774 0.0098 

ARS 906 184315 2631 0.0142 189040 2809 0.0149 

Neural Network A 839 178874 3150 0.0176 182857 3450 0.0189 

Neural Network B 831 174047 3241 0.0186 178278 3334 0.0187 

Table 20 – Results of our simulation study using our greedy algorithm with different prediction models 

Furthermore, we observe that the algorithm based on the poor forecast, logically tries to maximize the 

number of scans as the PCN ratio is everywhere the same. It succeeds in having the highest number of 

forecasted and simulated scans but not in the number of PCNs.  

Finally, we consider our proposed Neural Network A forecast as the best forecast in terms of the 

simulated number of PCNs and average PCN ratio. Therefore, we will use this forecast further in this 

chapter.  

 

In this section, we validate whether our routing algorithm actually improves the current situation. For this 

purpose, compare the number of PCNs that we expect from our planning tool with the historic number of 

PCNs of EPS in Section 6.4.1 and we compare our algorithm to the current algorithm of ARS in Section 

6.4.2. Based on the results of Section 6.3.1.4 and Section 6.3.2, we use our greedy algorithm with an 

unlimited Visit Day Factor. 

 

Due to the limited time of this research, it is not possible to run our routes in practices to see if they lead 

to an improvement. Therefore, we compare the historical results of EPS of 90 days (01.01.2017-

31.03.2017) with a planning that we create for 90 days.  

During the 90 days, EPS obtained on average 2104 PCNs per day, whereas our algorithm produces 2601 

PCNs per day with the Neural Network A forecast, which we showed in Section 6.2 is the most accurate. 

Even though this shows an improvement of 23.62%, we have to take into account that this approach has 

some limitations. First of all, we cannot yet determine the accuracy of, for instance, the computed travel 

times, service times, occupancy ratio, and the stability function because they have not been tested in 

practice yet. Another point is that maybe during this period, the number of paying visitors was relatively 

high, which led to less PCNs. The uncertainty of this approach, does not necessarily mean that the 

forecasted number of 2601 PCNs would be lower in practice but it could be the case. One thing, we can 

say more about is the number of deployed PEVs. Our algorithm schedules 12 PEVs on usual weekdays 

(Monday till Saturday) with one night shift. On Sunday, 3 PEVs do only the Sunday shifts, which we 

described in Section 2.1.4. That means, on average we use 10.7 vehicles a day for these selected days. 

The number of vehicles that EPS uses, changes daily but we can compute how many PEVs they schedule on 

average. It appears that they use on average 11.5 PEVs a day and therefore more. In spite of the 

limitations, we assume that EPS would perform better in terms of the number of PCNs. In addition, we 

have shown in Section 6.2.1.4 that our planning tool does not only lead to a high number of PCNs but also 

that we are certain that it will meet the future KPI targets. Even though we cannot make prediction about 

the increase of the payment rate in the future, which finally leads to a bigger performance bonus, 

achieving more PCNs and performing better with regards to the PCN target decreases the likelihood of EPS 

getting a fine for not meeting one of the KPI targets.  

Apart from that, we experienced during the computation that it takes 6 hours and 42 seconds to make 

such a planning, which is more or less equal to the 6 hour constraint we had. By further optimization of 

the computational efficiency, we are confident that the constraint will not be exceeded. 
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In this section, we compare our routing algorithm with the one of ARS by creating routes based on the 

same inputs (including also the same forecast). In order to have a valid comparison between the two 

algorithms, we compare the routes from Monday till Saturday with 12 vehicles and without a night shift. 

Based on the outputs we retrieved from the ARS routing algorithm for one week (24.08.-30.08.2017), we 

compare both routes regarding the number of PCNs. The results are shown in Table 21. 

Weekday 

Number of PCNs Improvement 

 ARS algorithm Our algorithm Absolute in %  

Thursday 1766 2447 681 39% 

Friday 2061 2411 350 17% 

Saturday 2376 2981 605 25% 

Monday 1619 2457 838 52% 

Tuesday 1787 2411 624 35% 

Wednesday 1674 2417 743 44% 

Total 11283 15124 3841 34% 

Table 21 - Results of the number of PCNs comparing ARS algorithm to our algorithm 

We conclude that our algorithm outperforms the current ARS algorithm by 34% for the weekdays Monday 

until Saturday. There are several explanations for this difference. First of all ARS uses a 4-hour-no-visit 

constraint of the neighborhoods but we use the stability function, which allows the PEV to return to 

neighborhoods more often although the expected number of PCNs will be less. Replacing this hard 

constraint by a soft constraint gives the algorithm more flexibility. However, this is based on the 

assumption that our stability function is correct. Another reason can be a better distribution of the 

vehicles. Moreover, the routing algorithm of ARS uses no Travel Distance Restrictions but always considers 

the eight nearest neighborhoods. In most cases, there are more neighborhoods within 1500 meters so our 

algorithm considers more options, while in some cases, it considers less due to this approach. 

Furthermore, we introduced the two swap methods and the progress factor, which can also lead to an 

improvement.  

The 34% improvement shows that our algorithm clearly outperforms the implementation of ARS algorithm 

at its current state. This finally leads to more PCNs, meeting the targets faster, and more importantly less 

fines and more rewards for EPS. 

 

In this chapter, we have tackled four sub questions regarding our original research question whether our 

planning tool improves the current situation. Throughout this chapter, we have shown that our stability 

function and Travel Time Restriction have a big impact on the routes and its results. Therefore, it is 

important to do further research on the stability function and see in practice to what extent the Travel 

Time Restriction can be increased (regarding the speed limitations of the PEV). Furthermore, we stated 

that we are convinced that our algorithm will manage to meet future KPI targets and that the unlimited 

visit day factor is probably preferable because the average number of neighborhoods that are not visited 

once a week is reduced by 30.56% and the number of forecasted PCNS only by 0.52%.  

Unfortunately, we experienced that the ACO algorithm has difficulties to improve the solution of the 

greedy algorithm, when many PEVs (for instance 12) are deployed. We assume that one reason for this is 

that with more deployed PEVs, ants start to “steal” visits from the desired path of other ants. Another 

reason is that the number of neighborhoods with multiple visits increases. Apparently the ACO algorithm, 

which shows good results for the original TOP in the literature and in our case for a little number of PEVs, 

cannot handle the multiple visits as good as the greedy algorithm.  

Moreover, we have shown that our Neural Network A forecast is the most accurate forecast with regards to 

the PCN ratio in comparison with the presented prediction models and that it also leads to the most PCNs 

in our simulation scenario.  

Furthermore, we are convinced that EPS benefits from our planning tool but the routes of our algorithm 

need to be tested in practice before we can proof it. However, we did prove (assuming that our stability 

function is correct) that our greedy algorithm leads to 34% more PCNs than the current ARS algorithm 

when the same inputs are used.  
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In Section 1.4, we stated different research questions, which we tackled within the chapters of this 

research. In Chapter 2, we analyzed the current situation at EPS with regards to the routing and planning 

process. Chapter 3 covered the literature about different routing problems, prediction models, and 

theories about parking and payment behavior. In Chapter 4, we developed all inputs including a neural 

network prediction model based on historical data. These inputs were needed for our routing algorithm, 

which we designed in Chapter 5. Finally, we discussed the results of our prediction model and our routing 

algorithm in Chapter 6.   

In this chapter, we reflect about the contribution of this research to the literature in Section 7.1 and we 

discuss the practical conclusion for ARS and EPS, including limitations and recommendations, in Section 

7.2  

 

We introduced this routing problem as a new research problem, namely the TD-PTOPMVMC. This problem 

is a new generalization of the TOP in which we have multiple constraints, time-dependent inputs, a 

periodic planning horizon, and nodes (in this case neighborhoods) that can be visited multiple times a 

day. In order to deal with multiple visits, we introduced a stability function, which determines how many 

non-paying visitors, who already received a PCN, stay in the parking spot after a certain amount of time. 

This function decreases exponentially over time. Consequently, after a certain amount of time it makes 

sense to return to an attractive neighborhood the same day. To the best of our knowledge, this problem is 

new to the literature and it is also the first research to solve the parking enforcement problem on a large 

scale. The research of Summerfield et al. (2015) tackles the parking enforcement problem on a street level 

my solving the CPP with rewards. Next to the parking enforcement, this problem (at least the TOP with 

multiple visits) could have different applications, such as different patrol, inspection, or collection 

problems. Furthermore, we can think of a salesman problem, where, for instance, an ice cream salesman 

visits different locations and returns to a certain neighborhood after enough time has passed.  

In order to solve this problem, we presented a routing algorithm that creates a solution based on a greedy 

algorithm and then tries to optimize this solution by constructing new solutions based on an ACO 

algorithm Even though, we showed that the ACO algorithm performed well for one vehicle, it had 

difficulties finding better solutions than the greedy function for 12 vehicles, which is the standard number 

of used vehicles by EPS (from Monday to Saturday). It seems that too many vehicles lead to an 

oversaturation, which leads to decrease of the learning effect of the ants. One possible reason is that ants 

start to “steal” visits from the desired path of other ants. Another reason is that this oversaturation leads 

to more multiple visits of neighborhoods the same day and we concluded that the ACO algorithm works 

better with less multiple visits and therefore when the problems is more similar to the original TOP 

(without multiple visits).  

Apart from that, we have shown an approach of how to perform a data analysis. In our data analysis, we 

split the PCN ratio in its components, namely the visitor ratio and non-paying ratio, in order to analyze 

different effects regarding different time-, space-, or weather-related factors towards these ratios. In our 

opinion, this was a useful approach to gain a lot of specific insights.  In this regard, we also showed the 

usefulness of clustering techniques, such as K-means clustering and the principal component analysis.  

Furthermore, we have shown how a neural network can be applied to such a regression problem and 

which variables may be interesting to consider. To train our neural network, we used a test and training 

set to optimize the design of our training network based on the results of the test set. We have learned 

that adding an evaluation set to the test and training set, can be a valuable supplement to test the 

generalization capacity of the network. This is also discussed by Basheer and Hajmeer (2000). In our case, 

this could be done by taking some specific observations (e.g., a few neighborhoods or one specific hour) 

out of the original data set. These excluded observations would form the evaluation set. Afterwards, the 

remaining data set can be split in the test and training set and results of the trained model can be tested 

for overfitting on the test set and the generalization capabilities of the neural network can be evaluated 

based on the evaluation set. 

Another interesting aspect, is our method to compute the upper bounds for the KPI targets. Uncertainty 

concerning specific targets, has a broad field of applications, which might be valuable to the literature.  
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This section contains a summary of the conclusions made in this research (Section 7.2.1), our limitations 

(7.2.2), and recommendations (7.2.3) that are relevant for EPS.  

 

This section briefly summarizes the conclusions of this research that are relevant for EPS. For more 

detailed conclusions regarding the research questions, we refer to the conclusions of the specific 

chapters.  

In this research, we tackled the routing problem of EPS who require a planning tool that plans the routes 

for their scanning vehicles (denoted as PEVs) for a certain KPI period. It is also required to give an 

indication that all KPI targets of certain KPI areas will be met until the end of this KPI period. The targets 

are met by visiting a neighborhood, i.e., scanning all parked vehicles in a neighborhood. The owners of 

parked cars who did not pay for parking, receive a fine, which is called a PCN. In this research, we 

developed a planning tool by designing and implementing a routing algorithm in a Python platform and 

computed inputs that this algorithm uses. Our most important input is our prediction model to compute 

the expected number of PCNs. In this regard, we came up with the idea of predicting the number of PCNs 

by predicting the occupancy ratio and the PCN ratio and multiplying them by the number of parking spots 

in a neighborhood. The advantage of this is that, for instance, the occupancy ratio can be replaced 

afterwards.  

Next to that, we found in our data analysis that the weather has no impact on the PCN ratio. However, we 

did see that the hour of the day and weekday have a strong impact. Furthermore, we showed that the 

payment rate has increased from approximately 89% to 90% within one year (1.6.2016-1.6.2017).   

Finally, we presented our results in Chapter 6. We have proven that our neural network has a more 

accurate prediction than the current implementation of the ARS forecast (4%) and that our routing 

algorithm leads to better results (34%) than the current ARS routing algorithm within the constraint of 6 

hours.  

 

This section discusses the limitations of our research. First of all, we had to make some assumptions. The 

first example is the variability of the paid-for parking hours, which we used for determining the upper 

bound of our PCN target (see Section 4.2.2). The second example is more important as it concerns the 

stability function, which is based on our assumption the expert opinion of ARS. Preferably, this function 

should be derived from data and estimated separately for every neighborhood. Unlike the stability 

function, the occupancy ratio is derived from data but not in a very accurate manner. A more accurate and 

time- and space dependent estimation is desirable. Both, the stability function and occupancy ratio, have a 

strong impact on the number of PCNs, therefore it is important to prioritize these in the future research.  

Another limitation is that the planning has not been tested in practice yet. Especially for the travel time, 

the service time (scan duration), and the occupancy ratio, this leads to an uncertainty in the realization of 

the planning that the planning tool provides.  

Moreover, there are some limitations that come with the design of our planning tool. For example, the 

commitment to computing the routes every day, leads to the problem that the algorithm cannot make a 

long term planning because the next day the planning will be recomputed. This limits, for instance, the 

possibilities regarding the distribution of the PEVs, on which we further elaborate in Section 7.2.3. 

Furthermore, we designed the algorithm to create the routes on a neighborhood level. Even though this is 

a requirement of EPS because they want to scan entire neighborhoods in the future, this limits the 

capability of the algorithm. If the routing was determined on a street level, the algorithm would have more 

flexibility due to a bigger solution space. However, a bigger solution space would also increase the 

complexity and computation time of the problem. Moreover, it would have been possible to include the 

number of scans and PCNs that are made while travelling to a scheduled neighborhood even with 

operating on a neighborhood level. Such an approach would have presented the reality better but would 

have also increased the complexity of the problem by making it a mixed TOP, as described in Section 3.1. 

In the end, we did not choose such an approach because it would have required an extensive data analysis 

of every single street (instead of every neighborhood). Regarding our data analysis of the neighborhoods 

and computation of the service time and the occupancy ratio, we had to deal with another limitation, 

namely that the PEVs did not always scan the neighborhoods entirely in the past. This was already 

encountered by ARS. If this had been the case, it would have been relatively easy to make predictions 

about the service times and also the occupancy ratio of neighborhoods. 
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First of all, we recommend ARS to make use of our presented greedy algorithm (see Chapter 5) with the 

parameter values, as presented in Section 6.2.1, in combination with a Neural Network A forecast (see 

Section 4.3.2.2). Furthermore, we recommend to use an unlimited Visit Day Factor due to the results of 

the sensitivity analysis (see Section 6.3.1.4).  

From the limitations, we derive that still more research is required to derive the occupancy ratio and 

stability function from data. The occupancy ratio could be derived more accurately by reconstructing the 

streets that the PEVs have driven in the past and then dividing the number of scans (without double scans) 

in a street by the number of parking spots that the street has. In order to derive the stability function from 

data, historic data about the parking duration of non-paying (or at least paying) visitors is needed. In 

Section 4.3.4, we explained how this could be done. This data about the parking duration could also be 

used for the control chance. In Section 2.1.8, we discussed that the control chance is not a probability but 

the average number of PCNs within a not-paid-for parking hour. If the not-paid-for parking hours are 

divided by the average parking duration of a non-paying visitor, it would be possible to estimate the 

probability that a non-paying visitor is actually fined with a PCN.  

Furthermore, we discussed in Section 4.4, that the travel times should be further investigated because it 

seems that they are underestimated. In practice, it is important to keep inspecting the travel times and 

also the service times and make adjustments when there are unexplained significant differences. 

Regarding the service times, we developed a method to compute them in Section 4.5. This could be an 

alternative to the current method. In order to implement this, more data is required to determine the 

adjustment factors for each neighborhood. At least one full scan of a neighborhood would be needed as a 

start. Thereafter, the factor could be adjusted and improved continuously. At some point when there is 

enough data of the visits, in which the neighborhood is scanned fully, it makes sense to consider applying 

a neural network to compute the service times.  

Apart from the inputs, there are other points that should be considered in the future. In order to further 

improve the algorithm, we have the following ideas, which do not necessarily result in better solutions. 

Within this research, we developed an algorithm that created routes for the vehicles sequentially due to 

results of our findings in the literature. However, these findings were about the TOP, whereas we 

introduced a new generalization of the TOP with multiple visits. Due to our sequential approach, 

sometimes later visits of other vehicles have to be updated. With a parallel planning, this would not be 

necessary and the computation time would be reduced. However, it is not clear if this would increase or 

decrease the performance of the routes. As mentioned in Section 6.2.2, it could be interesting to add a 

saturation factor to the desirability function, which takes the number of recent visited neighborhoods that 

surround the considered neighborhood into account. This would help the greedy algorithm to go to 

neighborhoods where it has more feasible options to go to afterwards. Another, possibility is to assign 

every vehicle to certain neighborhoods at the beginning of the day. This would require a smart clustering 

algorithm that finds the best neighborhoods for every vehicle. Afterwards, the routing problem would not 

be a team orienteering problem but an orienteering problem since the routing of every vehicle would be 

considered as independent problems. For that reason, no recomputation due to latter visits would be 

required and maybe the metaheuristics would work better. However, it could also lead to a worse 

performance due to the limited neighborhoods options for every vehicle. We are certain though that the 

computation time would be reduced. In order to improve our proposed ACO algorithm, one might 

consider using time-dependent pheromones, since the entire problem especially with the multiple visits is 

very time-related. However, even though the time-dependency would be included in the learning effect, it 

is not guaranteed that time-dependent pheromones would really lead to an improvement regarding the 

multiple visits. Next to that, EPS could also consider other constructive heuristics (e.g., adaptive search). 

Regarding our distribution strategy that we presented in Section 5.4.1, one might consider it also as a 

separate scheduling problem. If we did not create schedules on a daily basis but on a weekly basis, then it 

would be possible to schedule the KPI areas that needs to be visited for one week. This would probably 

lead to a more balanced distribution due to the fact that the algorithm could determine not to visit one 

KPI area today but for example the day after tomorrow.  

As an alternative to the Visit Day Factor and the Target Factor, we discussed in Section 5.3 that one might 

also consider that every visit leads to a reward in euros if the fine of a KPI area is decreased. We argued 

that it is not possible to send the vehicles only based on the amount of euros to a neighborhood because 

neighborhoods in a KPI area with a neural or bonus status would never be visited because we do not have 

a direct impact on the payment rate. However, it would be possible to make an assumption that a certain 

number of scans increases the payment rate by a certain amount. Additionally, a visit could decrease the 

margin of error of the payment rate. The more a neighborhood is scanned, the smaller should be the 

difference between the payment rate of EPS and the municipality (see Section 4.2.1). By reducing the 
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margin of error of the payment rate, the bonus would actually be increased, but the problem remains that 

if not all KPI areas are at least in a neural state, no bonus is given.  

In the future, the rule for receiving a PCN might be changed such that visitors can receive two PCNs on 

one day. If this is the case, the stability function needs to be adjusted because visiting neighborhoods a 

second time would not be a bad thing. Even more so, because neighborhoods that resulted in high 

number of PCNs during the first visit, would become even more attractive for a second visit. This, 

however, would preferable require an online algorithm that takes the actual number of PCNs of the first 

visit into account. This would mean that when the PEV drives through a neighborhoods and knows this 

visit resulted in an extraordinary high number of PCNs, that it would make sense to visit that 

neighborhood immediately afterwards again.   

In Section 3.1, we presented also another idea for such an online application. In the future, one might 

consider to plan also the routes for the PEV within a scheduled neighborhood. For that reason, an exact 

algorithm for the Chinese postman problem could be applied. Since this problem is small enough to be 

solved to optimality in reasonable time, this could be implemented as an online or offline application. 

With an online application, the algorithm could take unexpected problems on the way into account and 

therefore adjust the route within the neighborhood in order be on time for the next scheduled 

neighborhood.  Furthermore, we mentioned the mixed TOP, which does not only assign weights to nodes 

(neighborhoods) but also to the arcs (travel route between two neighborhoods). If the parking spots that 

are scanned by using a certain travel route are known, then it would be possible to make a prediction or 

estimation about the expected number of PCNs in this route. However, the occupancy ratio and PCN ratio 

of these parking spots, would require an additional analysis. 
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In scopus, we look for “street parking enforcement” and only found two articles. Only one of these articles 

seems interesting and therefore we extend the search by deleting the word “street”. By doing so we find 

48 articles of which only one article seems to be related to routing problems. This becomes clear when we 

add the search word “routing” (“parking enforcement”AND”routing”) because only that one remains, which 

is the same as we found previously. It seems that there is only one article regarding this problem, which is 

called “City streets parking enforcement inspection decisions: The Chinese postman’s perspective” 

(Summerfield, Dror & Cohen, 2015). 

 

 

Table 22 – Benchmark of Ke et al. (2008) showing the rewards obtained by different algorithms 

 

Table 23 - Benchmark of Ke et al. (2008) showing the computation times of different algorithms 
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GeoId Neighborhood factor 

2 2.895 

3 2.419 

4 1.622 

5 2.870 

6 1.996 

7 2.643 

8 1.579 

9 2.157 

10 0.764 

11 1.094 

12 1.021 

13 0.803 

15 1.186 

16 1.801 

17 1.306 

18 0.911 

19 2.538 

20 1.083 

21 1.406 

22 1.354 

23 0.983 

24 0.862 

25 0.858 

26 1.242 

27 0.961 

28 2.132 

29 1.660 

30 0.812 

31 0.515 

33 0.431 

35 0.584 

36 0.364 

37 0.471 

38 0.886 

39 0.890 

40 4.025 

41 1.277 

42 2.083 

43 3.439 

44 1.830 

45 1.782 

46 0.781 
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47 0.684 

48 0.664 

49 0.803 

50 0.736 

51 1.078 

53 1.887 

54 1.243 

55 0.642 

56 0.856 

57 1.021 

58 0.970 

60 0.524 

61 4.948 

62 2.978 

63 1.285 

64 0.624 

65 0.528 

66 0.488 

67 0.810 

68 0.595 

69 0.481 

70 1.008 

71 1.927 

72 0.693 

73 0.529 

74 0.743 

75 0.622 

76 0.706 

77 0.675 

78 0.826 

79 1.609 

80 0.493 

81 0.767 

82 0.453 

83 0.939 

84 0.873 

85 1.201 

86 0.992 

87 1.135 

88 0.934 

89 1.237 

90 0.942 

91 0.687 

92 0.617 
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93 1.763 

94 0.861 

95 1.509 

96 0.641 

98 0.923 

99 0.876 

100 0.839 

101 1.180 

102 1.023 

103 0.872 

104 0.879 

105 0.724 

106 0.755 

107 0.476 

108 0.578 

109 0.495 

110 0.443 

111 0.551 

112 0.543 

113 1.800 

114 1.070 

115 1.436 

116 0.694 

117 0.622 

118 0.765 

120 0.806 

121 2.173 

122 0.665 

123 0.695 

124 0.574 

125 0.553 

126 0.274 

127 1.767 

128 1.909 

129 0.570 

130 0.803 

131 0.698 

132 1.408 

133 1.914 

134 0.664 

135 1.287 

136 1.094 

137 2.018 

138 0.692 
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139 0.612 

140 0.474 

142 0.598 

143 0.918 

144 0.789 

145 0.583 

147 0.825 

148 0.679 

149 0.841 

150 0.542 

151 0.813 

152 0.703 

153 1.365 

154 1.178 

155 0.990 

156 0.767 

157 0.820 

158 0.751 

159 0.872 

160 0.941 

161 1.316 

162 0.735 

163 0.836 

164 0.546 

165 0.568 

166 0.982 

167 0.569 

168 1.813 

169 3.925 

170 2.199 

171 2.312 

172 1.372 

173 1.647 

175 2.124 

176 2.573 

177 0.757 

180 3.009 

181 1.541 

182 0.000 

183 2.185 

184 1.141 

186 3.515 

187 0.404 

201 1.988 
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202 0.876 

203 0.732 

204 1.646 

206 1.070 

207 0.399 

208 0.662 

211 1.669 

212 4.435 

213 2.428 

214 1.799 

215 0.444 

216 0.555 

217 0.767 

222 0.900 

223 0.965 

224 0.664 

225 3.156 

226 0.959 

227 1.032 

228 0.653 

229 0.753 

230 0.396 

233 5.957 

234 2.086 

235 2.791 

236 12.684 

237 4.144 

238 5.979 

253 3.083 

266 0.515 

267 1.248 

268 1.009 

273 0.946 

274 1.597 

275 3.543 

276 2.215 

277 0.805 

278 1.867 

279 1.488 

280 2.035 

281 1.458 

282 1.673 

283 6.002 

284 2.671 
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294 1.039 

295 0.815 

297 1.342 

298 2.140 

301 1.593 

303 1.669 

304 1.366 

305 2.461 

309 1.934 

310 1.041 

311 1.654 

312 0.758 

314 0.943 

315 0.742 

316 1.477 

317 0.943 

318 1.343 

319 0.629 

320 0.785 

321 1.336 

322 1.960 

323 0.864 

324 0.961 

325 0.680 

328 11.295 

329 3.115 

330 5.540 

334 1.977 

335 0.523 

336 0.909 

337 1.407 

338 0.984 

339 0.686 

340 1.492 

341 0.647 

342 0.538 

343 2.955 

344 3.564 

345 5.615 

346 1.304 

347 9.099 

349 0.967 

351 4.535 

353 2.660 
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398 1.796 

406 0.000 

433 1.440 

435 2.764 

436 1.994 

437 0.660 

438 3.864 

439 2.768 

440 2.747 

441 1.605 

442 1.186 

475 4.192 

476 1.117 

477 0.667 

478 0.866 

479 0.538 

480 0.501 

481 1.105 

482 0.447 

483 0.419 

485 2.380 

486 0.460 

487 0.544 

488 1.656 

489 0.461 

490 1.061 

491 1.029 

492 0.866 

493 0.521 

498 1.701 

502 2.272 

503 1.852 

504 1.441 

506 3.875 

507 1.443 

508 2.823 

509 3.860 

510 1.820 

511 0.678 

512 1.427 

513 2.438 

514 2.258 

515 1.681 

516 4.428 
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518 2.687 

519 2.082 

523 2.104 

526 0.744 

527 1.559 

528 3.112 

529 1.288 

530 1.148 

531 1.903 

534 2.858 

535 1.608 

536 1.505 

537 1.644 

539 6.501 

Table 24 – Table of the neighborhood factor 

 

Let us consider an example to explain how the current increase of the expected number of PCNs due to a 

visit is computed: 

Neighborhood 15 has at any time t a service time of 30 minutes (𝑠15,𝑡,𝑑 = 30min ) and the number of PCNs 

is always predicted to be 10 (𝑃𝑣15,3,𝑡,𝑚,0
= 10). On a given day, neighborhood 15 is scanned between 10:30 

and 11:00 by PEV 1 (𝑣15,3,10.30,1,0). We consider to visit neighborhood 15 another time with PEV 2 starting at 

14:00 (𝑣15,3,14.00,2,0). For the stability function, we need to determine the visit time between these two visits. 

As we explained in Section 5.2, the difference of the start of the visit at 14:00 and finish time of the prior 

one, can be denoted as: 𝑡𝑣15,3,14.00,𝑚,0
− 𝑡𝑓𝑣15,3,14.00,𝑚,−1

. The time between the two visits is 3 hours. As a next 

step, we need to estimate how many visitors that received a PCN between 10:30 and 11:00 are still at the 

neighborhood, since they do not get a second PCN and therefore we have to subtract these. We denote 

the number of visitors that remain until 𝑣𝑣𝑗,𝑛,𝑡,0
 as 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0

. Let us say that 𝑅𝑣15,3,14.00,𝑚,0
 is 2 in this example. 

Therefore, we can only expect 8 PCNs between 14:00 and 14:30. We denote this updated value as 

𝑃′𝑣15,3,14.00,𝑚,0
, which is equal to 𝑃𝑣15,3,14.00,𝑚,0

− 𝑅𝑣15,3,14.00,𝑚,0
. If we want now to add another visit of another PEV at 

13:00, it gets more complex, because not only do we have to estimate 𝑅𝑣15,3,13.00,𝑚,0
, but also the decrease of 

PCNs for the visit that is scheduled afterwards at 14:00. This decrease of PCNs of the visit at 14.00 is 

expressed as 𝑅𝑣15,3,13.00,𝑚,1
. If we do visit the neighborhood at 13:00, we have to update the number of 

PCNs of the latter visit at 14:00 by applying: 𝑃′𝑣15,3,13.00,𝑚,1
 =  𝑃𝑣15,3,13.00,𝑚,1

− 𝑅𝑣15,3,13.00,𝑚,1
.  

As discussed in Section 4.3.4, we compute 𝑅𝑣𝑗,𝑛,𝑡,0 by using the overlap of PCNs of these two visits and 

stability function 𝑆(∆𝑡) to compute the fraction of non-paying visitors that still remain. Since ∆𝑡 is equal to  

𝑡𝑣𝑗,𝑛,𝑡,𝑚,𝑥
− 𝑡𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

, 𝑆(∆𝑡) is computed as follows:  

𝑆(∆𝑡) = 1 − 0.4
(𝑡𝑣𝑗,𝑛,𝑡,𝑚,𝑥−𝑡𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

)

 

 

𝑂𝑣𝑗,𝑛,𝑡,𝑥
 computes the overlap Of PCNs between the current visit and the previous visit. This is important 

because the potential number of non-paying visitors that remains depends on the forecasted number of 

PCNs of both visits. If we forecast only 1 PCN for the prior visit and 5 for second, then there is only 1 non-

paying visitor who might still remain. The overlap is computed as follows:  

 

𝑂𝑣𝑗,𝑛,𝑡,𝑥
= max (𝑃𝑣𝑗,𝑛,𝑡,𝑚,𝑥 − 𝑃𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

, 0) 

Finally, the number of remaining visitors for the later visit 𝑅𝑣𝑗,𝑛,𝑡,𝑚,0
 is: 
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𝑅𝑣𝑗,𝑛,𝑡,𝑥
=  𝑂𝑣𝑗,𝑛,𝑡,𝑚,𝑥

 ∗  𝑆(𝑡𝑣𝑗,𝑛,𝑡,𝑚,𝑥
− 𝑡𝑓𝑣𝑗,𝑛,𝑡,𝑚,𝑥−1

) 

So, whenever a neighborhood is considered, the ant uses the updated value of PCNs, which is the 

forecasted number of PCNs minus the remaining visitors from the prior visit. 

 𝑃′𝑣𝑗,𝑛,𝑡,𝑚,𝑥 =  𝑃𝑣𝑗,𝑛,𝑡,𝑚,𝑥 − 𝑅𝑣𝑗,𝑛,𝑡,𝑚,𝑥
.  

If the neighborhood has been visited afterwards that day, we need to add the decrease due to the 

remaining number of non-paying visitors that influences the visit afterwards:   

𝜂𝑣𝑗,𝑛,𝑡,0
  = 

(𝑃′𝑣𝑗,𝑛,𝑡,0
−𝑅𝑣𝑗,𝑛,𝑡,1

)∗ 𝑇𝑣𝑗,𝑛,𝑡,0
∗𝑉𝑣𝑗,𝑛,𝑡,0

𝑐𝑖,𝑗,𝑡,𝑑+𝑠𝑗,𝑡,𝑑+𝑝𝑣𝑗,𝑛,𝑡,0
∗𝑐𝑗,𝑏𝑗,𝑡,𝑑

. 

However, it can also happen that a visit has already been decreased before. In that case we only have to subtract the 
difference of the old updated and new updated PCNs, which is: 

∆𝑈𝑝𝑑𝑎𝑡𝑒𝑣𝑗,𝑛,𝑡,𝑚,1
  = 𝑃𝑜𝑙𝑑

′
𝑣𝑗,𝑛,𝑡,𝑚,1

-𝑃𝑛𝑒𝑤
′

𝑣𝑗,𝑛,𝑡,𝑚,1
. 

Therefore, ∆𝑈𝑝𝑑𝑎𝑡𝑒𝑣𝑗,𝑛,𝑡,𝑚,1
 is either 0 or a positive number. Finally, the increase of expected number of PCNs 

is determined as follows: 

∆
𝑃𝑣𝑗,𝑛,𝑡,𝑚,0

′ =  𝑃′𝑣𝑗,𝑛,𝑡,𝑚,0
− ∆𝑈𝑝𝑑𝑎𝑡𝑒𝑣𝑗,𝑛,𝑡,𝑚,1

 

 

After having normalized all historical PCN ratios of the data set and filtering out the excluding all scans 

below 106 scans due to the same reasoning as in Section 4.3.2.2, we plot the frequencies of each PCN 

ratio, i.e., how many times a certain PCN ratio occurs in the data set. This plot is shown in Figure 47.  

 

Figure 47 – Frequency of the normalized PCN ratio in the data set 

From this figure, we conclude two things. Apparently 14.89% of all observations have a PCN ratio of 0. It 

does not seem that these zeros belong to a certain group of neighborhoods or time period. Not regarding 

the zeros, the distribution seems to follow a lognormal distribution. Therefore, we say that 14.89% of the 

simulated PCN ratios will have a ratio equal to 0. For the other 85.11%, we investigate whether they are 

indeed distributed according to a lognormal distribution. This will be the case if the lognormal function of 

the PCN ratios is normally distributed. Figure 48 shows the outcome of this investigation.  
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Figure 48 – The lognormal values of the normalized value in comparison with a normal distribution 

Figure 48 shows the lognormal values of the distribution of our normalized data set and compares it to a 

normal distribution with a mean of -4.266 and standard deviation of 0.649. It seems that indeed the 

lognormal values are normally distributed even though it is slightly skewed to the right. In addition with 

the fact that 14.89% of the ratios will be zeros, we conclude that our normalized data set is follows a 

mixed lognormal distribution.  

Finally, our simulation works as follows: 

We generate a random number between 0 and 1. If the number is below 0.1489, the PCN ratio is 0. 

Otherwise, we generate a new number. For this value, we apply an inverse lognormal function. This gives 

us a random value that is distributed according to our found distribution.  
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