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1 Introduction 

This project is part of the Master program Industrial Engineering and Management at the University of 
Twente. Due to confidentiality of the conducted research, only a summary is available until 1.6.2019. 
This summary is anonymized and contains only the most valuable parts of the conducted research 
regarding its contribution to the literature. In this chapter, we introduce the problem of this research by 
first defining it in Section 1.1 and then explaining our plan of approach in Section 1.2.  

1.1 Problem definition 

In our research, we deal with a new generalization of the team orienteering problem (TOP). Chao, 
Golden, and Wasil (1996) define the TOP as the problem where a team of competitors starts at the 
same point, visits different locations in order to collect a certain reward, and finally returns to the 
starting point within a limited amount of time. It is the objective to maximize the sum of rewards of all 
competitors, whereby a node may be visited only once a day. The time a competitor travels between 
two nodes is denoted as travel time and the time that the competitor stays at a node is denoted as 
service time.  

In the literature the TOP is also associated with other terms such as the multiple tour maximum 
collection problem (MTMCP). However, Feillet et al. (2005) state that the TOP differs from the MTMCP 
as the TOP is generally defined as paths rather than circuits. However, by “adding a dummy arc from the 
destination to the origin of the paths makes the two problems equivalent” (Feillet et al., 2005, p.189). In 
the literature, we find different applications: 

 Scheduling maintenance technicians problem (Tang, Miller-Hooks & Tomastik, 2007) 

 Tourist route planning problem (Gavalas et al., 2015; Vansteenwegen et al., 2009a; 

Vansteenwegen et al., 2009b; Vansteenwegen et al., 2009c) 

 Bank robber problem (Awerbuch, Azar, Blum & Vempala, 1998) 

 Home fuel delivery problem (Tang & Hooks, 2005) 

 Athlete recruiting problem (Tang & Hooks, 2005) 

In recent literature, different generalizations of the TOP are discussed, such as the TOP with time 
windows, the TOP with time dependent and/or stochastic travel times, service times, and rewards 
(Verbeeck et al., 2014b). However, in this research, we present a new generalization, which is too our 
knowledge not yet introduced to the literature. In this generalization, the competitors are allowed to 
visit a location multiple times a day. The rewards at the nodes are inter-related because the reward of a 
visit depends on the time difference to an earlier visits if the node has already been visited the same 
day. In addition, we consider time-dependent service times, travel times, and rewards. Therefore, we 
call this generalization the time-dependent TOP with multiple visits (or split deliveries) and inter-
dependent rewards, which we denote as TD-TOPMV. This problem could have different applications, 
such as various inspection, collection, or salesmen problems.  

In this summary, we specifically describe the “turtle rescue problem” as an example of the TD-TOPMV. 
In this case, however, the problem also has a periodical planning horizon and multi constraints due to 
different stopping points, stopping times, and shift changes. Therefore, we call it the TD-PTOPMVMC. In 
this problem, there is an organization that wants to maximize the number of saved sea turtles. Every 
day, a fleet of homogeneous competitors leaves from one depot to go to different beaches. At every 
beach, they can find a certain number of turtles. A beach can be visited multiple times on one day. 
Every beach belongs to a certain region. Next to maximizing the number of saved turtles, two additional 
objectives have to be taken into account, whereby the first one is more important: 

1. Save a certain number of turtles in every region in every month. 

2. Visit every beach every three days. 
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1.2 Plan of approach 

This section describes the plan of approach of this research, which also includes the research questions. 
Before introducing all research questions, we present our research goal: 

 

“Develop a prediction method and a routing algorithm that maximizes the number of saved turtles and 
takes the additional objectives into account” 

 

From this research goal, we derive research questions, which are discussed in the following chapters: 
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Chapter 2 – Literature 

This chapter introduces the required literature of this thesis. First of all, we want to know how similar 
routing problems and especially the TOP have been tackled and solved. Furthermore, we develop a 
method that predicts the number of saved turtles at a beach at a certain time. Consequently, we answer 
the following questions: 

 What is known in the literature about the complexity of the proposed problem? 

 What is known in the literature about algorithms to solve the original TOP? 

 What is known in the literature about prediction models? 

For the purpose of this literature research, we use Scopus and Google Scholar.  

Chapter 4 – Prediction method 

Within this chapter, we propose a possible prediction method. Furthermore, we discuss the choices 
with regards to the algorithm and the strategies behind it. 

 What kind of prediction method is most suitable? 

Chapter 5 - Routing algorithm 

Within this chapter, we design our routing algorithm. Furthermore, we discuss the choices with regards 
to the algorithm and the strategies behind it. 

 What kind of algorithm is most suitable for this problem? 

 How can we measure the performance of the algorithm? 

Chapter 6 – Conclusion 

This chapter provides the conclusion of our research.  
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2 Literature 

In our summary of the literature study, we focus on the complexity of the proposed problem, possible 
heuristics to solve the TOP, and present different prediction models. 

2.1 Complexity 

The single variant of the TOP, the orienteering problem (OP), is defined as a combination of the 
knapsack problem, which maximizes an objective function by choosing items subject to a packing 
constraint (Hochbaum, 1995), and the well-known traveling salesperson problem (Verbeeck, Sörensen 
& Aghezzaf, 2014a). That is because in order to solve this problem not only the determination of the 
route is needed but also the subset of the nodes that will be visited have to be chosen (Verbeek, 
Aghezzaf & Vansteenwegen, 2014). Our problem including the possibility of multiple visits a day, 
extends the problem because it requires that also the number of times a node is visited has to be 
determined. Regarding the running time complexity, the TSP is known to be NP-hard. Since the TOP 
includes an added element of complexity, it follows that the TOP is also NP-hard (Butt & Ryan, 1999). 
With another added element of complexity, the same holds logically for the TOPMV (and the TD-
PTOPMVMC). In our research, we concluded that an exact algorithm cannot solve this problem within 
reasonable time and therefore we only considered heuristics to solve this problem.  

2.2 Team orienteering problem heuristics 

A lot of different heuristics have been introduced in literature to solve different variations of OP, STSP, 
MTMCP, TOP, and MTMCP. In this section, we describe the most important ones. According to 
Vansteenwegen et al. (2011), the best-performing TOP algorithms are discussed in Tang and Miller-
Hooks (2005), Archetti et al. (2007), Ke et al. (2008), Vansteenwegen et al. (2009c), and Souffriau et al. 
(2010). The computational results of these algorithms are shown in Table 1. 

 
Table 1 – Summary of the best-performing TOP algorithms (Vansteenwegen et al., 2011, p.5) 

Concerning these articles, Vansteenwegen (2009b) argues that the local search moves used in these 
TOP solutions are not effective when applied to time windows because they include local search moves 
that become useless when time windows are considered. Time windows are not that big a problem but 
there are different reasons that make local search moves difficult to implement. First of all, the travel 
time, service time, and expected number of saves turtles are time-dependent and that means that by 
applying local search techniques, such as swapping, we need to calculate the entire route of that 
competitor again and have to take into account that no time restrictions are violated. Moreover, as 
explained in Section 1.2, a beach can be visited multiple times a day and when that happens the 
rewards are inter-related. This leads to a recomputation of the rewards of the entire day planning. 
Therefore, local search moves will be difficult to implement but we do consider these algorithms as well 
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(except for the article of Archetti et al. (2007) because is not accessible for us) to get a broader 
impression of possible solution heuristics. Finally, we consider these algorithms and also some that are 
applied to the TOP with time windows.  

2.2.1 Tabu search embed in an adaptive memory procedure 

Tang & Miller-Hooks (2005) applied a tabu search heuristic embedded in an adaptive memory 
procedure. However, instead of reviewing this article, we review the article from Tang, Miller-Hooks & 
Tomastik (2007) because they use the same approach and extend the TOP by considering time-
dependency and a periodical planning, which fits better to our problem.  

Tang et al. (2007) tackle the problem of scheduling technicians for planned maintenance. They consider 
a planning period of 3 weeks and time-dependent rewards to better describe the reality. Greater 
rewards are assigned to locations that have not been maintained for a longer time. The travel times 
between locations and service times at every location are different but not time-dependent. Their 
approach includes three AMP steps:  

 Partial solution generation and storage:  

Partial solutions are defined as one single tour of the m tours. First, a set of partial solutions is 
generated and stored. The first non-depot vertex is randomly chosen. Random vertices are 
added in between a pair of vertices, which depends on a ratio with regards to the added tour 
duration and the added reward.  

 Solutions construction:  

Afterwards, solutions are constructed by combining partial solutions. The selection preference 
is biased to those single tours with preferred objective values. All constructed solutions are 
improved by tabu search afterwards. Both random and greedy procedures are applied in the 
neighborhood solution exploration.  

 Partial solution update: 

The solutions maintained in the adaptive memory are updated with these improvements. Low-
reward tours in the adaptive memory are replaced by the improved tours.  

2.2.2 Ant colonization optimization 

Montemanni and Gambardella (2009) apply an ACO heuristic to the team orienteering problem with 
time windows.  They define their problem as a hierarchical TOP, which requires the same input as the 
TOP does but it requires a set of non-overlapping elementary paths, which have an ordered sequence of 
nodes starting from node 1 and ending at node n.  

The construction phase is performed by sending out all ants sequentially. Iteratively, every ant goes 
probabilistically from node i to node j based on the pheromone trail and the desirability. The 
pheromone trails contain the trails of previous ants that travelled there and indicate how good this path 
has been in the past. The desirability is a formula regarding the associated profit, the distance, and the 
time window of node j. The possible nodes for j are selected out of a set of feasible nodes, which still 
need to be visited and are within the time window. Note that only the best ant, which collected the 
most rewards, is allowed to leave a trail that is updated to all arcs. While the ant builds the solution, the 
pheromone trail is updated as well. Each ant removes pheromone trails of the visited arcs to make sure 
that there is a variety of generated solutions. Afterwards, the constructed solutions are being optimized 
by a local search algorithm. They apply a CROSS exchange procedure that exchanges two sub-chains of 
customers of the giant tour.  

Ke et al. (2007) also apply ACO but to the regular TOP without any time-dependencies or time windows. 
They state that sending the ants sequentially results in the best results. Furthermore, they performed a 
benchmark of their algorithm with the one of the Archetti and Tang et al. (2005) with the result that the 
quality of their solution could compete with the others but with a much faster computational time. The 
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results can be seen in Appendix B. Another interesting aspect of their approach is that in their heuristic 
function they include the angle at beach i between the way to the depot n and the next beach j. By 
doing so, the algorithm can send the competitor in the desired direction. First leaving the depot and 
then forcing the competitor more towards the depot.    

Verbeeck et al. (2014a) apply ACO to a TOP with time-dependent travel times. They speed up the time-
dependent insertion procedure by using a local evaluation metric. Verbeeck et al. (2014b) tackle the 
TOP with time-windows and time-dependent and stochastic rewards and time-dependent travel times 
by using a greedy randomized adaptive search procedure and a stochastic version of the ACO.  

2.2.2.1 Simulated annealing 

Lin and Yu (2015) apply an SA heuristic, which we briefly introduced in Section 3.2.1., for the multi-
constraint TOP with multiple time windows. Their heuristic starts by creating a random initial solution. 
Afterwards, the initial solution is optimized by means of SA including a swap, insertion, or inversion 
procedure in every iteration. Additionally, they add a restart strategy as an extra diversification to avoid 
local optima. They state that sometimes accepting wore solutions is not enough to escape the local 
optima. The current temperature, which determines the probability of accepting worse solutions, 
decreases after every iteration.  The algorithm restarts if the current best solution has not improved for 
a pre-determined number of consecutive temperature decreases. Once the algorithm restarts, the 
current temperature is reset to the initial temperature and a new initial solution is generated randomly 
to initiate a new SA run. They show that SA with a restart strategy is a promising heuristic method to 
solve multi-constraint TOP with multiple time windows and that the restart strategy enhances the 
performance of the SA. 

2.2.2.2 Variable beach search 

Tricoire, Romauch, Doerner and Hartl (2010) deal with a multi-periodic TOP with multiple time windows 
and use a VNS. Before applying the VNS, they first construct solutions. To this end, they use the best 
insertion heuristic. The insertion heuristic is based on two criteria. One is the lowest increase in distance 
and the other one the lowest increase in time. The feasibility of the insertions is checked by means of an 
exact feasibility algorithm, which operates in polynomial time. Afterwards, VNS is applied to improve 
the initial solution. A stopping condition can be a limit on computational time, the number of iterations, 
or the number of iterations without improvement. They apply the number of iterations as a stopping 
criterion. For every iteration of the VNS algorithm, an improvement method that depends on the 
number of iterations, that have been performed already (iteration 1-8: cross-exchange, iteration 9-12: 
optional exchange, iteration 13-17: optional exchange), uses random nodes to create a new solution. If 
the new solution is better, it replaces the initial solution. In a benchmark, they show that their VNS 
algorithm is a viable option for all kind of orienteering problems, with or without time windows.  

2.2.2.3 Path relinking heuristic with a greedy randomized adaptive search procedure 

Souffria et al. (2010) use a path relinking metaheuristic in combination with a greedy randomized 
adaptive search procedure because path relinking heuristics have been proved to work well on 
knapsack problems. Their approach works as follows: 

While the number of iterations without improvement is not exceeded: 

Construct: The construction heuristic is based on a greedy randomized adaptive search procedure. This 
procedure depends on a “greediness” parameter that lies between 0 and 1. This parameter indicates 
the level between randomness (0) and greediness (1). The parameter is determined randomly before 
the construction. 
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Local search:  The local search algorithm uses 2-Opt, swap, replace and insert procedures until a local 
optimum is reached.   

Link to elites:  This procedure combines the solution, that was constructed and improved in the prior 
two phases, with one of the solutions out of the elite pool.  The two solutions are first combined, then 
adapted, and finally improved to create a new feasible solution. This procedure is done for all possible 
combinations, therefore for all members of the pool of elites. 

Update elite pool: The best solution found in the prior step is considered for the insertion into the pool 
of elite solutions. If the pool is full, it replaces the worst elite solution if it leads to an improvement.  
Every solution is assigned to an age and it increases with every time the “Link to elites” is performed. At 
a certain age, the solution is deleted from the pool.  

2.2.2.4 Iterated local search heuristic 

Vansteenwegen et al. (2009b) apply an iterated local search heuristic algorithm to the TOPTW with the 
purpose of developing an electric tour guide. The electric tour guide required a short computation time 
and therefore they chose an algorithm that is very simple, fast, and effective. They achieved this goal 
with an average performance gap of 1.8% to the best-known solutions and the average computation 
time is more than a 100 times faster than the best-known solutions. Gavalas et al. (2014, p.19) state 
that it is “the fastest known algorithm proposed for the TOPTW”. Their approach includes an insert step 
in combination with a shaking step to escape from local optima that perform performs very well on a 
large and diverse set of the instance. 

The insertion step adds one by one new visits to a tour. Before a new visit can be added, the time 
windows need to be checked for feasibility. A feasible node with the cheapest insertion time will be 
inserted. For each node, a ratio is calculated that incorporates the profit and the delay of adding this 
node. Afterwards, a shake step is used to escape from local optima. In this shake step, random node(s) 
are removed in every tour to make space for nodes that might improve the solution.  

2.3 Prediction models 

A common way to develop prediction models for quantitative outputs are regression models (Larsen & 
Marx, 2012). Regressions models analyze the effect of the independent variables, also called predictors 
or features, on the outcome variable. A regression analysis can include one (simple regression) or more 
predictors (multiple regression). The relationship between predictors and the outcome variable can be 
linear, curvilinear, or nonlinear. For the prediction of probabilities, logistic regressions can be applied. 
For numerical outputs usually a (multiple) linear regression or nonlinear regression is used.  

There are also machine learning techniques that are using regression models such as artificial neural 
networks. These networks are inspired by the architecture of biological neural networks (Mair et al., 
2000). Every network consists of neurons which are interconnected by strings. A neuron receives an 

input which is associated with a 
weight. If the sum of these 
weighted inputs exceed a certain 
threshold, the neuron fires and 
creates a positive or negative 
output for other neurons in the 
network. This process stops 
when one or more outputs are 
generated. An example of this 
process is shown in Figure 7.  
This example shows n inputs. If 
the threshold is exceeded, the Figure 1 – An example of a neural network (Mair et al., 2000) 



Anonymized summary of the master thesis – Jan Groeneveld  

 

8 

 

output becomes 1, otherwise, it is 0. If an output is incorrect, a process called backpropagation starts. In 
this process, the output is corrected by adjusting the weights. In this way, the networks learn from a 
dataset.  

Sarkar, Ghalia, Wu, and Bose (2009) applied a neural network to predict fiber diameters by using 
different inputs. In this case they use a multilayer network as proposed by White (1992). A multilayer 
network has hidden layers between the original input and the final output variable(s). These hidden 
layers are functions that use the previous inputs to create an intermediate output node, which can be 
used as an input for another hidden layer or for the final output variable. Within one hidden layer there 
can be many layer nodes. It is also hard to tell how many layers and nodes a neural network should have 
because in the end the neural network determines what happens in the layer nodes within the layer. 
Sarkar et al. (2009) determine the number of nodes and layers by conducting experiments. The results 
were 12 nodes in the first hidden layer and 7 nodes in the second one. The final neural network can be 
seen in Figure 2.  

 
Figure 2 – An applied neural network with hidden layers (Sarkar et al., 2009) 

Le Cun et al. (2012) have some recommendation for applying a neural network. For instance, shuffling 
the dataset helps the network to learn faster from unexpected samples (LeCun et al. 2012) and 
normalization of the presented input data can also increase the learning process. It is well-known that, 
the dataset should be split into a training set and a test set, in order to avoid overfitting, i.e., the neural 
network learns too much from the dataset in a sense that it also learns from outliers and noise instead 
of creating a general applicable prediction model. Furthermore, White (1992) and LeCun et al. (2012) 
state the use of too many parameters and too many layers can also lead to overfitting.  

Another prediction model is introduced by Van Urk, Mes and Hans (2013). They use a prediction model 
for an application, which is somewhat similar to our problem, namely the development of a decision 
support application for the Dutch Aviation Police and Air Support unit for routing their helicopters in 
anticipation of unknown future incidents. Their research is similar as it involves a forecasting method 
and a routing method that maximizes the likelihood of being close to a future crime. Even though 
finding turtles and finding crime are not quite the same, the principle can be applied here as well. The 
second part of their research also deals with a kind of TOP but they combine it with a Location Covering 
Problem (LCP), as the helicopters have to cover certain areas to intervene quickly in case of 
emergencies. For us, the LCP is not relevant, as we do not deal with that kind of emergencies. More 
interesting, however, is the first part regarding the forecasting. In order to predict future crime 
intensity, they use a forecast based on the moment of the day, days of the week, and months of the 
year, which have an impact on the crime rates. They convert every past incident in order to use this 
information for future predictions. To this effect, they use two conversion factors, namely the 
FactorMonth (month, hour) and the FactorWeekday (weekday, hour). Additionally, they apply 
generalization techniques because they assume that an incident at one specific location and time is 
similar to the neighboring areas and some time periods around the incident. This model with some 
modifications can be used for this research as well. The incidents can be replaced by the number of 
saved turtles and it would be required to check whether the generalization also applies in our case. A 
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similar approach is discussed in the master thesis of van Hal (2015). In this research, the forecasting 
method is based on the fact that the relative distribution of incidents regarding the Netherlands does 
not depend on time. For that reason, the forecasting method is split into a time problem, which is 
solved by linear regression with different time-related factors, and a space problem, which is solved by 
means of the kernel density method.  

2.4 Conclusion 

In this chapter, we concluded that our proposed problem is too complex to be solved with an exact 
algorithm within reasonable time. Therefore, we presented possible heuristics that were applied to the 
original TOP without multiple visits:  

 Tabu search embedded in an adaptive memory procedure 

 Ant colonization optimization 

 Simulated annealing 

 Variable neighborhood search 

 Path relinking heuristic with a greedy randomized adaptive search procedure 

 Iterated local search heuristic 

Furthermore, we discussed different options that could be used to predict the expected number of 
saved turtles, such as regression models, neural networks, and other forecasting models that were 
applied to similar problems. 
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3 Prediction method 

For our prediction model, we recommended to apply a neural network model because neural network 
models are very efficient in solving different regression models. This chapter presents a possible neural 
network, which can be applied to a regression problem, such as the turtle saving problem. To design a 
neural network, different choices have to be made. The different design choices and conclusions that 
we made are discussed throughout this section. 

3.1 The loss function 

The loss function is essential to the network, as it learns by minimizing this function. We focused on two 
options, which are the absolute mean error and the mean squared error. Both are easy to interpret. A 
drawback of the mean squared error is that it weighs outliers a lot. Other loss functions have the 
disadvantage that they not as easy to interpret and do not allow 0 as an output or require a time series 
model.  

3.2 The dataset 

Le Cun et al. (2012) state that shuffling the dataset helps the network to learn faster from unexpected 
samples (LeCun et al., 2012). Furthermore, the dataset should be split, for example into a training set 
(80%) and a test set (20%), in order to avoid overfitting, i.e., the neural network learns too much from 
the dataset in a sense that it also learns from outliers and noise instead of creating a general applicable 
prediction model. Basheer and Hajmeer (2000) describe that it is also good to have an evaluation set 
next to the training and test set in order to see how well the generalization of the network works. This is 
something what we experienced because although the train set is new to the network, the test set was 
still very similar to the train set. A third split might help to see what happens if, for instance, the neural 
network is applied to a new and unknown cluster. 

3.3 Choice and presentation of inputs and output 

Usually the outputs are not adjusted and presented in their original form. Inputs should be different 
variables that have an impact on the output. They should either be a number within a certain scale or a 
cluster that represents a certain group (for instance: weekends, sunny days, etc.). In some cases 
normalization of the input variables can be useful to speed up the learning process of the neural 
network because the variables become easier to understand for the network.  We propose 3 different 
kinds of normalizations: 

 Value – average of all values. This normalization returns the values in such a way that the 

average is 0.   

 Value/average of all values.  This normalization only works for positive values. Returns small 

positives values, where the average is 1. 

 Minmax normalization. Min is the minimal value of the dataset. Max is the maximal value of the 

dataset. The value of the variables is transformed by means of the following formula:  

 

Normalized value =
𝑉𝑎𝑙𝑢𝑒 − 𝑀𝑖𝑛

𝑀𝑎𝑥 − 𝑀𝑖𝑛
 

3.4 Number of hidden layers and nodes within a layer 

The design of the network regarding the number of hidden layers and the nodes within a layer provides 
infinitive possibilities. White (1992) and LeCun et al. (2012) state the use of too many parameters and 
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too many layers can lead to overfitting. For our regression problem, we considered therefore 1 or 2 
hidden layers. The number of nodes in the hidden layers is based on experiments. 

3.5 The activation function of a layer 

The activation function of a layer determines the output of the hidden layers. The performance of the 
activation function is based on the different input variables and the final desired output. For our 
regression problem, the “Rectified linear units” shows the best performance. The definition of this 
function is: F(x) = max(x, 0). 

3.6 Computing inputs 

While computing inputs for our routing algorithm with the proposed neural network, we notice some 
strange values. These values are, for instance, negative values, which should not be possible, or 
extremely high values. It seems that these values occur whenever there is a gap in the regarding the 
location or time. Despite these gaps we hoped that the generalization of the neural network would 
compute reliable numbers anyways. Basheer and Hajmeer (2000) describe that it is good to have an 
evaluation set next to the training and test set in order to see how well the generalization of the 
network works. In our case, this could be done by taking some specific observations (e.g., a few beaches 
or one specific hour) out of the original data set. These excluded observations would form the 
evaluation set. Afterwards, the remaining data set can be split into the test and training set. By doing so, 
the prediction model, which is trained on the training set, can be tested for overfitting on the test set 
and its generalization capabilities can be evaluated by means of the evaluation set.   

3.7 Conclusion 

In this chapter, we have shown how a neural network can be applied to such a regression and which 
variables may be interesting to consider. For training our neural network, we used a test and training 
set to optimize the design of our training network based on the results of the test set. We have learned 
that adding an evaluation set to the test and training set, can be a valuable supplement to test the 
generalization capacity of the network.  
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4 Routing algorithm 

In this chapter, we design the routing algorithm that we developed for the proposed turtle rescue 
problem. Section 4.1 explains the notation that is used throughout this chapter, Section 5.2 deals with 
the objective function of the algorithm in order to evaluate different solutions, and Section 5.3 
describes how the algorithm works.  

4.1 Notation 

This section explains the notation that we use throughout this chapter to describe the routing 
algorithm.  Note that we consider the entire time span of one day to be from 9.00, which is equivalent 
to 9 am of the scheduled day, until 28.00, which is equivalent to 4 am of the following day. The routing 
algorithm provides a planning that schedules visits of the beaches, i.e., that a beach is inspected at a 
certain time.  

Every visit is defined by the number of the beach j (1…J), the region of the beach (1…A), the day of the 
planning period n (1…N), the weekday d (1…7), the starting time 𝑡 (between 9.00 and 28.00), the finish 
time 𝑡𝑓 (between 9.00 and 28.00), the week number w (1…W), the year y (1…Y), and the number of the 

competitor m (1…M). Therefore, every visit is denoted as 𝑣𝑗,𝑎,𝑛,𝑑,𝑡,𝑡𝑓,𝑤,𝑦,𝑚. For the purpose of simplicity, 

we denote the visits in this chapter as 𝑣𝑗,𝑛,𝑡,𝑚 because it is possible to derive the region from beach j 

and the weekday d, the week number w, and the year y from the planned day n, and the finish time 𝑡𝑓 

from the start time 𝑡. We denote this visit also as current visit because later in this chapter we also need 
information about the prior visit and the sequential visit. The prior visit describes the last time that 
beach j was visited before the current visit 𝑣𝑗,𝑛,𝑡,𝑚. The beach j has to be the same in this case but the 

competitor m and planned day n not necessarily. Likewise, the sequential visit describes the next visit of 
beach j after the current visit. We use an additional variable x in order to denote whether we consider 
the current (x=0), prior (x=-1), or sequential visit (x=1). Consequently, we denote every visit as 𝑣𝑗,𝑛,𝑡,𝑚,𝑥. 

We provide an overview of this notation in Table 2. 

Index  Definition Range 

j number of the beach 1…J 

a region 1…A 

n day of the planning period 1…N 

d weekday 1…7 

t starting time between 9.00 and 28.00 

𝑡𝑓 finish time between 9.00 and 28.00 

w week number 1…W 

y year 1…Y 

m number of the competitor 1…M 

x visit information -1,0,1 

Table 2 – Notation table of the indices of a visit 

Whenever we require the value of a certain index of a visit, we do this by putting 𝑣𝑗,𝑛,𝑡,𝑚,𝑥 in its index. 

For instance, the finish time of the visit of beach 15 by competitor 3 on day 4 at 12.00 can be expressed 
as 𝑡𝑓 𝑣15,4,12.00,3,0

. The finish time of the visit that is prior to that one can be described as 
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𝑡𝑓 𝑣15,4,12.00,𝑚,−1
. Let us say that the prior visit started at 9.00 and was done by competitor 1, then we 

can denote the finish time also as 𝑡𝑓 𝑣15,4,9.00,1,0
 (the prior visit can also be denoted as a current visit).  

4.2 Priority score 

In this section, we introduce our objective function, the priority score that determines the added value 
of visiting a beach. As stated in the beginning, the number of saved turtles should be maximized but also 
the following two objectives should be taken into account.   

1. Save a certain number of turtles in every region in every month. 

2. Visit every beach every three days. 

For this purpose, we introduce the two factors: the goal factor 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
 and the day visit factor 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

. 

The goal factor focusses on the first objective. It is computed by a function that returns a value between 
0 and 2. If the value is lower than 1, the pre-set goal is already reached. If the goal is not reached yet, 
the factor becomes a value higher than 1, such that the node attracts more visits. The factor is 
computed as follows: 

 

𝐺𝑣𝑗,𝑛,𝑡,𝑚,0
 =  2 –  min(2,

number of saved turtles

 targeted number of saved turtles 
)   

 

The visit day factor focuses on the second priority and is also computed by means of a function. Since 
this objective is less important, it always returns values equal or above 1. Therefore, it cannot make a 
node less attractive. The factor is 1 if the node is visited the same day. When the number of days that 
the node has not been visited grows, the factor starts to increase slowly but at some point it will 
overrule all other aspects, such that the node is visited.  

Finally, we compute the priority score by multiplying the number of saved turtles, which is denoted as 
𝑃′

𝑣𝑗,𝑛,𝑡,𝑚,0
 (see Section 5.4.2), by the goal factor and visit day factor. Therefore, the objective function 

for all days and competitors is expressed as:  

 

𝑚𝑎𝑥 ∑ ∑ 𝑃′
𝑣𝑗,𝑛,𝑡,𝑚,0

∗ 𝐺𝑣𝑗,𝑛,𝑡,𝑚,0
∗ 𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

 
𝑀

𝑚=1

𝑁

𝑛=1

. 

 

This priority score will be essential for our routing algorithm.  

4.3 Routing algorithm 

We chose to construct the route planning by means of an ant colonization optimization algorithm (ACO) 
because the benchmark of Ke et al. (2007) shows that for the team orienteering problem the ACO 
algorithm shows similar or better results in terms of the objective function in comparison with other 
algorithms but with a better computational time. In addition, we wanted to apply a constructive 
metaheuristic because local search metaheuristics are more difficult to apply to this generalization of 
the TOP due to the multiple visits and time-dependency. However, we do apply a 2-Opt swap, which 
exchanges the two previously scheduled visits of the current competitor, if the saved travel time is 
above a certain Swap Treshold and the solution is not affected negatively. We define the solution to be 
not affected negatively if the travel time reduction in percentages is bigger than the decrease of saved 
turtles and if the time after the swap must be smaller than the time before the swap. The rationale 
behind this is that due to the saved time, it is possible to earn the loss of saved turtles back. This beach 
swap is similar to the work of Verbeeck et al. (2014a). Unlike Verbeeck et al. (2014a), however, we apply 
this 2-Opt swap while constructing a solution whenever a beach is scheduled. Another swap that we 
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apply during the construction of a solution is a stopping point swap. Because it is not known which 
beach the competitor visits after going to a stopping point, it can happen that not the best stopping 
point is chosen in terms of travel distance. Figure 3 shows an overview of the general concept that 
explains how our algorithm works. We denote a day planning as one planning with all routes of all 
competitors for one planned day, where M is the total number of competitors. The algorithm creates 
such a day planning for every day, starting from day n until a certain day N. For every day, our algorithm 
performs many iterations, where the number of iterations I is a pre-determined parameter. One 
iteration contains one day planning. Every planned day starts by first setting the pheromone values of 
all arcs to a pre-determined initial value. Afterwards, I iterations are performed. At the end of each 
iteration, the pheromones of the arcs will be updated to create a learning effect. Since this update is a 
core process of our algorithm, it is highlighted in Figure 3 and will be further discussed in Section 4.3.3. 
For every day, we keep the iteration that led to the best result. We send our ants, which are equal to 
the competitors, sequentially as proposed in the algorithm of Montemanni and Gambardella (2009) and 
Ke et al. (2007). Ke et al. (2007) also tried different methods but the sequential approach seemed to 
perform the best.  

 

 
Before going into detail on how the route of every ant is build, we denote the following terms: 

 StoppingTime: is the starting time of the next stop 

 StoppingFlexibility: is the tolerance of being early or late, which is at the moment 15 minutes 

 DayStartTime: the time at which the day starts and the ant leaves the depot 

 DayFinishTime: the time at which the day finishes and the ant has to return to the depot 

 Beach (j): the next assigned beach 

 TravelTimeToBeach: the travel time from the current beach to the new beach 

 TravelTimeToStoppingPoint: the travel time to go back to the nearest stopping point 

 TravelTimeToDepot: the travel time from the current beach to the depot 

 CurrentTime: the time of the decision 

 ServiceTime: the time that is needed to inspect a beach 

 ShiftChange: the time when the first competitors shift is over and the sequential competitor 

arrives to replace the first one 

The routing algorithm takes into account all time restrictions, such as stopping times, start and finish 
time of the day, and the shift change. Therefore, the time needs to be updated after every step. It is 
also required to update the number of saved turtles per region to determine the goal factor. Figure 4 
shows the route planning of an ant. This route planning is performed differently in the first iteration. 
We choose to build a greedy solution in the first iteration and use the ACO algorithm afterwards. In 
Figure 4, there are two more core decisions of our algorithm that are highlighted in Figure 4 that work 
differently in the first iteration. We discuss these further in Section 4.3.2 and Section 4.3.3.  

For every day in range (n,N): 

 Replace pheromone values by pre-determined initial pheromone values 

For every iteration (1, I): 

For every ant (1,M): 

 Create a route planning 

            Update Pheromones  

 save solution and routes of the iteration if it has the best solution 

 Figure 3 – General concept of our ACO routing algorithm 
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4.3.1 Distribution strategy 

Our distribution strategy allocates a certain number of competitors to every region whenever an ant 
leaves the depot or the stopping point. Based on this outcome, the ant is send to a region. The 
distribution is based on two things: the goal factor and the area size factor. The area size ratio is the 
ratio how large the goal of the region is in comparison to the sum of all goals.  We multiple the area size 
ratio with the goal factor in order to compute an adjusted goal factor. By dividing this adjusted goal 
factor by the sum of all adjusted goal factors, the relative importance of a region is computed. Finally, 
this relative importance is multiplied by the total number of competitors to compute how many 
competitors should be send to a region.  

4.3.2 Choosing a beach 

The next chosen beach depends on two things: the criteria of choosing a beach and the set of beaches 
from which the next beach is chosen. Both depend on the current iteration. In Section 5.4.2.1, we 

For every ant: 

Start  

Depending on the time, the ant chooses one of the following options: 

If (ShiftTime ≤ CurrentTime < ShiftTime+StoppingFlexibility): 

 Ant stops for 15 minutes  

 Update Time (go back to start)    

Else if (StoppingTime-StoppingFlexibility ≤ CurrentTime+TimeToStoppingPoint < 
StoppingTime+StoppingFlexibility): 

 Ant goes to the nearest stopping point  

 Update Time (go back to start)    

Else if (FinishTime-StoppingFlexibility ≤ CurrentTime+TimeToDepot) 

If ant is at stopping point (including depot): 

 Ant is distributed to a region and chooses a beach within that KPI    

area and adds it to the route  

 Consider stopping point swap    

 Update time and KPI matrix (go back to start)    

Else:  

 Ant chooses a beach out of a set of nearest beaches (set of beaches is 
explanation in Section 5.4.2.1) 

If (previous two visits are no stopping points and no shift changes) and (decrease of 
travel times is bigger than no decrease of the objective function):  

 Switch previous two beaches  

 Update time and KPI matrix (go back to start)    

  Else: 

 Update Time and KPI matrix (go back to start)    

Else: 

 Ant goes back to depot and finishes the route  

 Set time to DayStartTime (go to next ant) 

Figure 4 – Route planning of one ant 
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explain how the sets of considered beaches is determined. Section 5.4.2.2 introduces our restoring 
function, which is essential in dealing with multiple visits, Section 5.4.2.3 describes our desirability 
function and Section 5.4.2.4 the probability function for our ACO algorithm.  

4.3.2.1 The set of beaches 

Whenever an ant chooses the next beach out of a certain set of beaches, there are three possible sets 
that can be considered: 

1. All beaches within a region. 

2. All beaches that can be reached within a pre-set travel distance, which is denoted as travel distance 

restriction.  

3. All beaches. 

The ant chooses one of the beaches of Set 1, whenever an ant leaves a stopping point. Set 2 is 
considered, whenever the ant is not at a stopping point. The reason for choosing beaches within a pre-
set travel distance is that the competitors have a limited average speed and cannot travel from every 
beach to any other one. The pre-set travel distance should therefore depend on the average speed of 
the competitors. Whenever no feasible beaches can be found in Set 1 or Set 2, the ant considers Set 3 as 
a kind of backup set.  

In the first iteration, the ant chooses the beach based on the result of the greedy function (see Section 
5.4.2.2). Thereafter, it considers both the greedy function and the pheromone trails, as explained in 
Section 5.4.2.3. There is only an exception for Set 3. Whenever, the backup set is considered, the choice 
is only based on the greedy function, because we do not update the pheromone trails of all possible 
arcs to safe computation time.  

4.3.2.2 Restoring function 

This restoring function is essential for our algorithm to deal with the problem that we introduced. The 
fact that one node can be visited multiple times a day leads to the question when it makes sense to 
return to a visited node. For that purpose, we introduce the restoring function R(t), which returns a 
value between 0 and 1. This value is a percentage that determines to what extent the expected reward 
at a node is restored. The restoring function starts after a node has visited and increases exponentially 
with time until it reaches 1. This means the node is restored in a sense that the two visits are not inter-
related anymore. For example it is predicted that at 10 am 3 turtles can be found and at 12 am 4 turtles 
can be found. In that case 3 turtles could have possible stayed for these 2 hours. The expected number 
of turtles at 12 am is then 1+3*R(2). If the node is already restored (R(2) = 1), then the expected number 
of turtles is 4. If not, the expected number is between 1 and 4.  

4.3.2.3 The desirability function 

Our desirability function is a greedy function that divides the priority score of a visit by the time that is 
needed to visit the beach. It is an adjusted version of the one that Ke et al. (2008) are using.  

Concerning the travel time from a stopping point b to the next beach j, we use the accounted travel 
time, which is raw travel time reduced by a pre-set travel time reduction parameter. The rationale 
behind it is to distribute the beaches farther away from the stopping points. However, the accounted 
travel time may never exceed another pre-set parameter, namely travel time maximum. The purpose of 
this maximum is to restrict the travel time, whenever the ant chooses out of all possible beaches (Set 3).  

However, the time does not only include the accounted travel time from beach i to beach j but also the 
service time from beach j and the travel time from beach j to the next stopping point b (or the depot 
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depending on the shift). The latter, however, is not always important. When a shift starts, the 
competitor should or even must distance itself from the stopping point in order to avoid that it only 
drives close to the stopping point. The closer the time gets to the stopping time, the more important 
the travel time to the stopping point gets. Therefore, we use a progress factor 𝑝𝑣𝑗,𝑛,𝑡,𝑚,0

, which 

determines how strong the travel time weighs within the desirability function. Whenever the ant leaves 
the depot or stopping point, the value is close to 0. Then, it increases up to 1, when it should return to 
the depot or stopping point. The desirability function of a visit is denoted as 𝜂𝑣𝑗,𝑛,𝑡,𝑚,0

 and can be 

denoted as: 

 

𝜂𝑣𝑗,𝑛,𝑡,0
  = 

∆
𝑃𝑣𝑗,𝑛,𝑡,𝑚,0

′ ∗ 𝑇𝑣𝑗,𝑛,𝑡,𝑚,0
∗𝑉𝑣𝑗,𝑛,𝑡,𝑚,0

𝑐𝑖,𝑗,𝑡,𝑑+𝑠𝑗,𝑡,𝑑+𝑝𝑣𝑗,𝑛,𝑡,𝑚,0
∗𝑐𝑗,𝑏𝑗,𝑡,𝑑

. 

 

where ∆𝑃𝑣𝑗,𝑛,𝑡,𝑚,0
′  is the increase in terms of rewards, which already takes the restoring function into 

account, and 𝑐𝑖,𝑗,𝑡,𝑑  is the accounted travel time from beach i to beach j, at time t, on weekday d, 𝑠𝑗,𝑡,𝑑 is 

the service time at beach j, at time t, on weekday d, and 𝑐𝑗,𝑏𝑗,𝑡,𝑑  is the travel time from beach j to the to 

the closest stopping point from beach j, which is 𝑏𝑗. 

As mentioned in Section 5.4.2.1, in the first iteration only the desirability function is used to choose the 
next beach from Set 1 or Set 2. At the end of the first iteration, the pheromone trails are updated the 
first time as we describe in Section 5.4.3. Afterwards, the probability function of the ACO algorithm is 
applied to find better solutions than the first greedy solution as we explain in Section 5.4.2.3. 

4.3.2.4 The probability function of the ACO algorithm 

In the ACO approach the ant does not always choose the “most desirable” solution but goes 

probabilistically from beach i to beach j, whereby node j is from a set of considered beaches L(i), as 

determined in Section 5.4.2.1. The choice depends on the probability of node j, which is based on two 

factors: the desirability 𝜂𝑣𝑗,𝑛,𝑡,0
 and the pheromone trails 𝜏𝑖,𝑗. The pheromone trails depend on the 

pheromone value on the arc between beach i and j, which is updated after every iteration as explained in 

Section 5.4.3. The probability 𝑝𝑖𝑗 is for all beaches determined as follows: 

 

𝑝𝑖𝑗𝑗 ∊ N(i) =  
𝜏𝑖,𝑗

𝛼 ∗𝜂𝑣𝑗,𝑛,𝑡,0

𝛽
 

∑ (𝜏𝑖,𝑙
𝛼 ∗𝜂𝑣𝑙,𝑛,𝑡,0

𝛽
 )

0

𝑙 ∊ N(i)

  , 

 

where  𝛼 and 𝛽 are used to control the importance of the pheromone trails and the desirability. 

All beaches j are ranked according to their probabilities. Afterwards, a random number is generated 
with a uniform distribution between 0 and 𝑄0. Q0 is a randomness parameter, which determines how 
big the generated numbers can be. If the random generated number is smaller than the 𝑝𝑖𝑗  of the first 

beach in the ranked set, beach j is chosen, otherwise, a new number is generated and compared to 
𝑝𝑖𝑗  of the second beach and so on. 𝑄0 decreases after every iteration by the decrease parameter 𝐷𝑄0

, 

such that the beaches with the most probability are more likely to be added to the route. The rationale 
behind it is that in the beginning many different solutions are explored but towards the end we want 
the ants to choose the best option in terms of the computed probability 𝑝𝑖𝑗. 

4.3.3 Update of pheromone trails 

The first iteration of every day creates a solution of the route planning based on the greedy algorithm. 
The objective function of this day planning is saved as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑒𝑒𝑑𝑦. The greedy solution serves as a 

benchmark solution, which we strive to exceed. The performance of the day planning of all iterations 
afterwards are measured by comparing it to the greedy solution: 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 
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𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐺𝑟𝑒𝑒𝑑𝑦
. The solution with the best performance is saved as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡 and 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡. Since the greedy solution is the first created solution, it is the first best solution.  
We strive to maximize the best performance by updating the visited arcs with a pheromone trail after 
every iteration. The update of the pheromone trail is essential to the algorithm as it teaches the ants, 
which combination of beaches worked well in the past iterations. This section introduces three different 
update strategies. 

4.3.3.1 Update Strategy 1 

Due to our generalization of the TOP that allows to visit beaches multiple times and also includes other 
additional constraints, there is no ACO algorithm in the literature that tackles the same problem. 
However, we decided to derive our first updating strategy from the work of Montemanni and 
Gambardella (2009), who develop an ACO algorithm for the TOP with time windows. In their algorithm, 
only the ant that produced the best solution since the beginning of the computation, which we denoted 
as 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡, is allowed to leave a pheromone trail. The reason behind it is that the best route is 
memorized, and in the future, ants will generate new (and hopefully better) solutions that are similar to 
this route. For that reason, we also update the pheromone of the visited arcs, only whenever a best 
solution is achieved. If an arc is visited more than once, it only counts as one visit. The pheromone trails 
are denoted as 𝜏𝑖,𝑗, where i and j present the arc between beach i and j. The initial value is denoted as 

𝜏0. The updating rule is the following:  

𝜏𝑖,𝑗  =  (1 − ρ) ∗ 𝜏𝑖,𝑗 +  ρ ∗  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡,  

 

where p regulates the strengths of the pheromone that is left by the best solution. After the first 
iteration, this update is applied the first time. In this case, the initial value 𝜏0𝑖,𝑗  determines the 

attractiveness of the arcs that have not been visited by the greedy solution in comparison with the ones 
that have been. Since the 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐵𝑒𝑠𝑡  of the greedy solution is per definition equal to 1, we 
choose 𝜏0 to be smaller than 1 in order to attract more ants to the greedy solution. The exact value will 
be determined in Chapter 6. 

Moreover, during the construction of a route, every ant decreases the pheromone trails of the arcs that 
is has used to prevent that arcs are visited too many times and to stimulate the exploration of new 
solutions.  The rule is determined by:  

 

𝜏𝑖,𝑗 = (1 −  𝜓) ∗  𝜏𝑖,𝑗 +  𝜓 ∗ 𝜏0, 

 

where 𝜓 is the evaporation parameter that regulates the decrease of the pheromone trace. We do not 
want the ants to visit beaches many times because it decreases the exploration, plus it decreases also 
the performance of the solution as discussed in Section 5.4.2.  If there is no improvement after the 
iteration, the pheromones are not updated but restored, meaning that the decrease during the solution 
building does not apply for the next solution.  

4.3.3.2 Update Strategy 2 

For this strategy, we slightly adjusted Strategy 1. In this strategy, the arcs are updated after every 
solution instead of updating the arcs only after an improvement of the 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐵𝑒𝑠𝑡. After every 
iteration all visited arcs are updated according to the formula:  
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𝜏𝑖,𝑗  =  (1 − ρ) ∗ 𝜏𝑖,𝑗 +  ρ ∗  𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛.   

4.3.3.3 Update Strategy 3 

Strategy 3 is another variation of Strategy 1. The difference is that the ants are considered separately. 
Not the best solution of all ants together counts but the best solution of every ant separately. The 
rationale behind this is that the allocation to a region should be the same in most cases for all iterations. 
When the same ant is send to the same region every iteration, we can measure the objective function of 
this ant. Every ant has therefore a separate performance that is compared to the greedy solution of that 
ant. By doing so, we also increase the pheromone trails of arcs that have been visited by a single well-
performing ant even though most ants performed worse.  If an arc is visited by more than one ant that 
achieved a personal best score, then the one with the higher score may set the trail. Regarding the 
update of the best solutions or all solutions, we can either use the updating rule as described in Strategy 
1 or 2 for this strategy. 
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5 Results of the routing algorithm 

In this chapter, we focus on the results of our ACO algorithm. We considered a case with 320 beaches 
within 10 regions. We assumed that it would be reasonable to create routes for 12 competitors (also 
denoted as ants). When making routes for 12, we had some difficulties to find better solutions than the 
solution of the greedy algorithm (denoted as greedy solution), which is the solution of the first iteration. 
After trying different parameters and update strategies, we wonder whether the number of 
competitors has an impact on the performance of the ACO algorithm. For that reason, we considered 
making a route for only one competitor, and indeed we received good results with the following 
parameter values (parameters are introduced in Section 4.3.2.4 and Section 4.3.3): 

 Update Strategy 1  

 ρ = 0.90  

 𝜓 = 0.95 

 𝑄0 = 0.4 

 𝐷𝑄0
 = 0.1 

 𝜏0= 0.8 

 α = 1 

 𝛽 = 2 

 Number of iterations = 10 

The outcome for one competitor is shown in Table 3. 

Day Iteration 
Improvement compared to the 

priority score of the greedy solution 

1 1 0% 

1 2 7% 

1 3 1% 

1 4 15% 

1 5 9% 

1 6 4% 

1 7 5% 

1 8 18% 

1 9 11% 

1 10 20% 

Table 3 – Results of the ACO algorithm for one competitor 

We derive from this table that the priority score increases with the number of iterations. After 10 
iterations, the solution is already improved by 20%. Therefore, we conclude that the ant is indeed 
learning and that our ACO algorithm works at least for one competitor.  

Unfortunately, when applying the same parameters to more competitors, we see less and less 
improvement. For 7 competitors, it starts that we see less and less improvements with the presented 
parameter settings. Figure 5 shows the improvement in comparison with the greedy algorithm for 1, 2, 
3, and 7 competitors in 10 iterations. 
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Figure 5 the ACO algorithm for 1, 2, 3, 7, and 12 competitors 

For 12 competitors, it is sometimes possible to find an improvement; however, it takes a lot of time and 
only improves the solution by roughly 1%. For many competitors the results retrieved by our third 
strategy, which updates the pheromones separately for all competitors, seems to perform a bit better. 
However, still not good enough to significantly improve the solution. Therefore, we investigate what 
happens when (too) many competitors are used.  

One logical explain could be that with more deployed competitors, also more competitors are deployed 
to the same region. When many ants share the same region, the learning effect that always applies for 
one single ant gets more complicated. For instance, in the past the first ant has learned a new route that 
improves the results. However, it might happen that the second ant changes its route within this 
iteration and visits some nodes that the first ant would have travelled to. Therefore, the learning effect 
of the first ant becomes in this example useless.  

Furthermore, there could be another reason that leads to a decrease of the learning effect. If a beach 
must not be visited more than once a day and 12 competitors are scheduled, every competitor can visit 
26.67 (320/12) beaches on average. With our parameter settings and inputs, every competitor visits 
around 45-50 beaches a day. This means that ants are forced to visit beaches multiple times a day 
because the map gets too saturated in terms of visited beaches. For that reason, our algorithm does not 
work for 12 competitors if a beach must not be visited multiple times a day. If we assume that every 
competitor visits on average 45 beaches a day, then only 7.11 competitors (320/45) will be required to 
manage to visit all beaches. After 7 competitors, one could say that the map gets “oversaturated” and 
therefore beaches have to be visited more than once a day (note that ants choose also to visit beaches 
many times a day because they are just desirable and not because there is no other choice). This in 
combination with the fact that the desirability function takes the oversaturation more into account than 
the pheromones, could be an explanation why the ACO algorithm shows worse results for more than 7 
competitors. The stability function has an impact on how many times an attractive beaches is visited a 
day. Therefore, we want to investigate whether a different stability function that leads to fewer 
multiple visits of the beaches increases the performance of the ACO algorithm for 12 ants. For this 
purpose, we choose the following linear stability function: 𝑆(∆𝑡) =  max (1 − 0.1∆𝑡 , 0). This function 
leads to less beaches visited multiple times a day. During our experiments, we managed to improve the 
greedy solution by 3% after 10 iterations with the following parameter setting: 
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 𝑄0 = 0.4 

 𝐷𝑄0
 = 0.1 

 𝜏0= 0.8 

 α = 1 

 𝛽 = 2.5 

 Number of iterations = 10 

As we see that the ACO algorithm can improve the greedy solution when using another stability 
function, we conclude that the stability function has an impact on the performance of the ACO 
algorithm. Since there is a reason for our stability function, changing it is not an option. We assume that 
this improvement that occurs due to changing the stability function has the same cause that we 
experienced before with less competitors, namely that there are less multiple visits of beaches a day. 
Apparently the ACO algorithm performs better when the problem is more similar to the original TOP 
without multiple visits than our proposed generalization with multiple visits. It seems that the 
pheromones of the ACO algorithm cannot deal with the multiple visits as good as our greedy algorithm. 
Therefore, we conclude that the ACO algorithm might not be the best choice to deal with this new 
generalization. Since the entire problem especially with the multiple visits is very time-related, it might 
help to apply time-dependent pheromones, which was already done by Jiang, Chen, Ma, and Deng 
(2011). However, even though the time-dependency would be included in the learning effect, it is not 
guaranteed that time-dependent pheromones would really lead to an improvement regarding the 
multiple visits. Considering the greedy algorithm, the algorithm could be improved by adding a 
saturation factor that determines how many beaches have been visited already in that area around the 
considered beach at a certain time. 

5.1 Conclusion 

We concluded in this chapter that even if the ACO algorithm leads to a better result than the greedy 
algorithm, the improvement is very little for the usual number of deployed competitors (smaller than 
1%). If we want to apply the ACO algorithm with 10 iterations, it means that the computation time for 
one route is more than 10 times larger (10 iterations + 10 times a pheromone update). Therefore, we 
chose in our research to only apply the greedy algorithm. 
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6 Conclusion 

In this summary of our research, we discussed the “turtle rescue problem”, in which there is an 
organization that wants to maximize the number of saved sea turtles. Every day, a fleet of 
homogeneous competitors leaves from one depot to go to different beaches. At every beach, they can 
find a certain number of turtles. A beach can be visited multiple times on one day. Next to some 
additional targets, it is the main objective to maximize the number of saved turtles. We defined this 
problem as a new generalization of the TOP, namely the TD-PTOPMVMC. It was the objective of our 
research to find a method that predicts the number of rescued turtles at a beach and to develop a 
routing algorithm that solves this problem.  

Regarding the objective of our research, we discussed different possibilities in our literature study. 
Finally, we discussed the implementation of a neural network, which can be applied to such a regression 
problem. For training our neural network, we used a test and training set to optimize the design of our 
training network based on the results of the test set. We have learned that adding an evaluation set to 
the test and training set, can be a valuable supplement to test the generalization capacity of the 
network. This is also discussed by Basheer and Hajmeer (2000). In our case, this could be done by taking 
some specific observations (e.g., a few beaches or one specific hour) out of the original data set. These 
excluded observations would form the evaluation set. Afterwards, the remaining data set can be split 
into the test and training set and the results of trained model can be tested for overfitting on the test 
set and the generalization capabilities of the neural network can be evaluated based on the evaluation 
set. 

Furthermore, we chose to apply an ACO algorithm. Unfortunately, we learned during our experiments 
that the ACO algorithm seems to have some troubles when many competitors are deployed. One 
possible reason is that with too many competitors, the learning effect of the ants is decreased due to 
the fact that another ant “steals” the visits on the desired path. Another reason is that the ACO 
algorithm has difficulties when nodes are visited multiple times. The more this happens, the less the 
problem is similar to the original TOP. We concluded that our proposed ACO algorithm is not the best 
choice to solve our introduced generalization of the TOP. Since the entire problem especially with the 
multiple visits is very time-related, it might help to apply time-dependent pheromones, which was 
already done by Jiang, Chen, Ma, and Deng (2011). However, even though the time-dependency would 
be included in the learning effect, it is not guaranteed that time-dependent pheromones would really 
lead to an improvement regarding the multiple visits. Apart from that, in the future other constructive 
heuristics (e.g., adaptive search) could be applied to this problem.  
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