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Almost all the financial institutions that provide credit, estimate the client’s prob-
ability of default, and the most widely used method in the industry is logistic re-
gression. This process has very convenient characteristics, but a potential flaw exists
in the restricting assumption of log-odds linearity. The purpose of this paper is to
investigate the accuracy of predicting the probability of default with logistic regres-
sion and whether the linearity assumption is violated when multiple risk drivers
are included in the model. Violation of the linearity assumption will cause a devi-
ation between predicted PDs and observed PDs. Correcting for this deviation will
increase the prediction accuracy of the PD model and therefore the regulatory capital
calculation of the Rabobank will more accurately reflect the risks.

We suggest making an adjustment to the transformation of client score to PD.
This adjustment allows us to identify whether the linearity assumption is violated
and estimates the size of the correction that is needed. The great benefit is that the
ranking performance based on the creditworthiness of the clients remains the same.
The correction is applied before the transformation to probability, so only the abso-
lute value of the PD is affected to improve the prediction accuracy. The average PD
prediction error improved from 16% to 4% by correcting the log-odds. The calcu-
lated PDs for each clients will therefore represent the corresponding risks, which is
essential for efficient capital allocation and RAROC measures.
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Chapter 1

Introduction

Logistic regression is the most widely used method in the financial industry for esti-
mating the probability of default. The interpretability of the model and the excellent
performance in discriminating between creditworthy and uncreditworthy clients led
to the widespread use in financial institutions. The problem with logistic regression
is that a potential flaw exists in the restricting assumption of log-odds linearity. If
the linearity assumption is violated, the accuracy of the model can be improved and
the regulatory capital calculation of the Rabobank will more accurately reflect the
risks.

1.1 Background

1.1.1 Rabobank Group

Rabobank Group is a cooperative financial services provider which offers retail bank-
ing, wholesale banking, private banking, leasing and real estate services. The group
comprises of 103 local Rabobanks with over 475 branches within The Netherlands
and international offices in forty countries. These local banks provide services to
over 7 million customers and the international branches add another 1.2 million
(Rabobank Group, 2014).

1.1.2 Risk Management

The Risk Management department of the Rabobank consists of three teams, each
designated to a specialized function. The Credit Risk team is in charge of the Credit
Portfolio through setting policies and limits, carrying out performance analyses,
model construction and senior management reporting. The Balance Sheet Risk team
is focused on asset & liability management, liquidity, funding, market risk and in-
ternal interest rates. The third team, Non-Financial Risk, manages the operational
risk including operational continuity, IT risks and group insurance.

FIGURE 1.1: Risk Management Organogram (Rabobank Group, 2014)
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1.1.3 Credit Risk

The definition used by Rabobank for Credit Risk is: "The risk that a borrower/counterparty
is unable to repay funds owed to the bank. Country risk and concentration risk are included
in credit risk". The credit risk is for the largest part calculated using the Advanced
Internal Ratings Based (AIRB) approach, which uses regulatory capital formulas
based on Probability of Default (PD), Loss Given Default (LGD), Exposure at De-
fault (EAD) and Maturity (M). The regulatory capital formula results in the Risk
Weighted Assets from which 8% is held as regulatory capital.

1.1.4 PD model

The creditworthiness of a client is assessed through a scorecard model. This is a
regression model that produces a risk score based on risk drivers as input. Equation
1.1 is an example of a scorecard linear regression model.

score = β0 + β1X1 + ...+ βnXn (1.1)

Xn = Transformed financial or qualitative factors
β0 = The constant term and β1, ... , βn are the factor weights

A calibration function transforms these scores into the probability of defaults.
The definition of this probability of default in a business context is: "The likelihood
that a counterparty will default within 1 year". Equation 1.2 is an example of logistic
calibration function

PD =
1

1 + exp−α−γscore
(1.2)

There is a high correlation between the β parameters from Equation 1.1 and the
α & γ parameters from Equation 1.2. If the score is unchanged from Equation 1.1
and the β parameters are estimated with maximum likelihood estimation for logis-
tic regression, the α and γ parameters from the calibration will be redundant. In that
case they will be estimated to be 0 and 1 respectively, which means that the calibra-
tion function is simply a non-linear transformation of the score, given by Equation
1.3. These α and γ parameters are used if the scores are transformed and/or if the β
parameters are not estimated by logistic regression.

PD =
1

1 + exp−score
(1.3)

Non-linearity

Logistic regression is used to map the dependent variable on a [0, 1] scale based on
the explanatory variables. This is useful for PD modelling, since probabilities are
also on a [0, 1] scale. The advantage of logistic regression is that it does not assume
the risk drivers to be linearly related to the probability of default. The disadvantage
is that the risk drivers have to be linearly related to the log-odds of PD, the linear-
in-log-odds assumption. The log odds are defined as shown in Equation 1.4.

Log-odds of PD = log(
PD

1− PD
) (1.4)

Currently both continuous and categorical variables are transformed in the pro-
cess of creating a PD model to ensure the validity of the assumption. For example,
a five category risk driver, with scores {1,2,3,4,5}, can be transformed to have scores
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{1,1.5,3,4,4.5} to ensure that an increase in category score has a linear effect on the
log-odds. The problem is that even though the individual variables all satisfy the
linear-in-log-odds assumption, the scores of the combined model can still have a
non-linear relationship with the log-odds. The logistic regression will give a linear
scalar to the model scores which fails to capture this non-linear relationship to the
log-odds.

The consequence is that predictions of log-odds and therefore PD will be inaccu-
rate. This PD is used for the pricing of products, loan provisioning and regulatory
capital calculation. Inaccurate PD predictions may therefore lead to the mispricing
of financial products and suboptimal capital allocation.

1.2 Research proposal

1.2.1 Problem statement

PD modelling can be divided in two parts, calculating the risk score and PD calibra-
tion. Part one consists of transferring clients risk drivers to a risk score. This risk
score is used to rank clients from creditworthy to likely-to-default and is therefore
used to discriminate bad clients from good ones. This is used in the decision to pro-
vide lending services to clients and their performance in separating good and bad
clients is currently very high. The second part consists of transforming the risk score
to a PD. This PD is used within the AIRB approach for calculating regulatory capital.
The PD predictions do not always align with the observed defaults. The implication
of over- or underestimating the PD can be inefficient capital allocation where the
bank is holding too much or not enough capital for default losses. The logistic re-
gression used within the calibration function assumes a linear relationship between
risk drivers and log-odds, which is often violated and the cause of misleading PD
results (Mcdonald, Sturgess, and Smith, 2012).

1.2.2 Research goal

The goal of my research is to investigate whether predicted PDs and observed de-
faults are consistently misaligned and what the magnitude of this deviation is. In
the case of a misalignment the research extends to the investigation of the cause and
whether the linear relationship assumption of logistic regression has been violated.
Final solutions should provide guidance on how to correct for the deviation, and
concurrently improve PD estimation. This will lead to more efficient capital alloca-
tion.
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1.2.3 Research Questions

Main research question: What is the effect of non-linearity on the accuracy of PD predic-
tion and how can this be controlled for in loan portfolios?

Sub-questions

• Which causes of non-linearity in log odds are identified in literature?

• What is the magnitude of the deviation between predicted and observed default rates?

– How to measure the magnitude of the deviation?

– Is there a significant difference in predicted and observed default rates?

– What is the cause of the deviation between predicted and observed default rates
within Rabobank?

• How to incorporate non-linearity in PD modelling procedures?

– How and when to test for non-linearity within the PD model development time-
line?

– What are the possibilities to correct for the non-linearity?

• Is there an impact on the regulatory capital?

1.2.4 Outline

TABLE 1.1: Thesis outline

Chapter 2 Literature review
Chapter 3 Data-analysis
Chapter 4 Results and recommendations
Chapter 5 Missing value analysis
Chapter 6 Conclusions
Chapter 7 Discussion
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Chapter 2

Literature review

2.1 Non-Linearity of Scorecard log-odds

Mcdonald, Sturgess, and Smith, 2012 investigated the accuracy of the inferred log-
odds of an event, for example probability of default. Within a Credit Risk environ-
ment the scorecard model produces a creditworthiness score for every client based
on certain characteristics. These scores rank every client from good to bad and de-
termine whether credit can be provided. The scores can also be used to predict the
actual probability of default with a logistic regression that yields the log-odds of de-
fault.

According to the findings of Mcdonald, Sturgess, and Smith, 2012 the ability to
discriminate between good and bad clients is high. The problem lies in predicting
the actual PD of these good and bad clients and this prediction tends to deviate
from the actual probability. As seen in Figure 2.1, the inferred log-odds from the
Lloyds Banking Group sample from the paper tends to overestimate the PD and the
deviation from the inferred odds seems to be quadratic.

FIGURE 2.1: Actual and inferred log-odds, logistic regression (Mc-
donald, Sturgess, and Smith, 2012)

Mcdonald, Sturgess, and Smith, 2012 show that the reason for the quadratic de-
viation of actual log-odds is due to bin correlation. Binning the variables is trans-
forming the continuous variables into categorical variables. Each value on the con-
tinuous variable scale is assigned to a category. Bin correlation is the correlation
between the different categorical variables. Bin correlation can be present due to
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many different reasons, one example being ‘missing value correlation’. Values from
an individual that are missing in one characteristic are most likely also missing in
another characteristic. Bin correlation produces skewed distributions as seen in Fig-
ure 2.2a. The figure shows the distributions of predicted log-odds for the two classes
of data, clients who defaulted and client that did not default. The left distribution is
the default-data and the right distribution is the no-default data. Figure 2.2b shows
the distributions after removing correlated bins. It clearly shows that removing bins
with a correlation higher than 0.3 produces less skewed distributions.

(A) All bins

(B) Bins where correlation < 0.3

FIGURE 2.2: Transforming distribution of predictions (Mcdonald,
Sturgess, and Smith, 2012)

Bin correlation specifically leads to the fact that coefficients of different charac-
teristics can be used to ‘dampen’ each other, which in turn leads to different opti-
mal solutions to the maximum likelihood equation of the logistic regression. In this
case maximum likelihood optimization will find multiple sets of optimal solutions
and will be unable to differentiate between these sets. Removing correlated bins
also has an effect on the quadratic deviation as seen in Figure 2.3, but unfortunately
also on the discriminatory power of the model due to removal of prediction power.
Increasing the discriminatory power of the model will push the means of the two
classes from Figure 2.2 apart, but the range of the distributions will remain largely
the same. The change in means will therefore cause the distributions to become
more skewed and therefore the linearity issues to become more present. A trade-off
therefore exists between discriminatory power and accuracy of PD prediction. Mc-
donald, Sturgess, and Smith, 2012 also found that PD models have higher quadratic
deviations when their discriminatory power increases.

Mcdonald, Sturgess, and Smith, 2012 found that the curvature is due to a dif-
ference in variance between the two distributions. Given that the distribution are
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(A) All bins (B) Bins where correlation < 0.3

FIGURE 2.3: Transforming inferred log-odds (Mcdonald, Sturgess,
and Smith, 2012)

normally distributed then the following holds:

log(
P (Class = 2|s)
P (Class = 1|s)

) = log(
P (Class = 2)

P (Class = 1)
) + log

σ1
σ2

+
1

2
((
s− µ1
σ1

)2 − (
s− µ2
σ2

)2)

= log(
P (Class = 2)

P (Class = 1)
) + log

σ1
σ2

+
1

2
(
µ21
σ21
− µ22
σ22

) + (
µ22
σ22
− µ21
σ21

)s+
1

2
(

1

σ21
− 1

σ22
)s2

= as2 + bs+ c

where

a =
1

2
(

1

σ21
− 1

σ22
),

b = (
µ1
σ21
− µ2
σ22

),

c = log(
P (Class = 2)

P (Class = 1)
) + log

σ1
σ2

+
1

2
(
µ21
σ21
− µ22
σ22

)

s = model score

This means that the quadratic curvature of the model is based on the value of
a, and this value increases as the difference between σ1 and σ2 gets larger. A larger
difference between the variances of the two classes therefore will lead to more cur-
vature. This explains why removing the curvature in one of the distributions led to
a decrease in curvature, since skewed distributions have a higher variance. Mcdon-
ald, Sturgess, and Smith, 2012 state that the amount of curvature is influenced by the
discriminatory power of the model, due to higher score variances. This means that a
stronger scorecard model will have more curvature. That begs the question whether
the decrease in curvature from removing correlated bins in Figure 2.3 is due to the
decrease in skewness of the model or simply because the model is less predictive
and therefore has a higher variance. Unfortunately the authors did not investigate
this.

The remedy according to Mcdonald, Sturgess, and Smith, 2012 is to perform a
retrospective non-linear transformation to correct for the curvature. This solution
does not affect the ranking performance, nor the Gini coefficient. The disadvantage
would be that the remedy is retrospective. The correction will always be based on
past data, so the correction might not be relevant for future cases. Changes in the
underlying distribution and in particular changes in variance and skewness will
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have an effect on the curvature of the deviation.

2.1.1 Does non-linearity matter in credit risk modelling?

Jagric, Kracun, and Jagric, 2011 analysed Slovenian banking data and studied whether
non-linear relationships between credit risk and explanatory variables have a signif-
icant effect on model performance. Their research indicates that prediction models
that include non-linear parts outperform the widely used logistic regression. The
authors compared logistic regression with neural networks. Due to the improved
handling of non-linear relationships and properties of categorical variables, their re-
sults show a significant increase of 8% in classification rate.

Lennox, 1999 investigated whether there are risk drivers in the Credit Risk model
that have significant non-linear effects. He revealed that both cashflow and leverage
have non-linear effects on the probability of default and that incorporating these
effects improved the predictive accuracy.

2.2 Non-linear Logistic regression

2.2.1 Generalized Partial Linear Model

Müller and Härdle, 2003 examined the effects of adding a non-linear part to the lo-
gistic regression. They argued that the method of adding polynomial terms to logis-
tic regression is an imprecise method of reflecting a non-linear relationship and an
additional modelling step is needed to approximate the optimal polynomial order.
The flexible method of representing a non-linear relationship is neural networks or
classification trees, but these methods often do not reflect the underlying relation-
ship between dependent and explanatory variables and are regarded as ’black box’
style techniques.

Müller and Härdle, 2003 suggest to use a modification of the generalized linear
model (GLM, Equation 2.2) from which the logit model is a special case. This gen-
eralized partial linear model (GPLM, Equation 2.3) preserves the ’easy to interpret’
structure of logistic regression.

E(Y |X) = G(β′X) (2.2)

E(Y |X) = G(β′X1 +m(X2)) (2.3)

The link function G remains the logit function, which in the GLPM contains the pa-
rameter β and the non-parametric function m(X2). The explanatory variables ma-
trixX is split up in two matrices,X1 which is used in the parametric logit estimation
and X2 which is used in the non-parametric function. Function m() is the smooth
function, such as a kernel density function, which describes the effect of X2 in a
non-parametric fashion.

2.2.2 Principal component analysis

Mcdonald, Sturgess, and Smith, 2012 showed that a cause of the non-linearity is cor-
relation between risk drivers. Principal Component Analysis (PCA) can be used to
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transform the correlated risk drivers to uncorrelated principal components. Aguil-
era, Escabias, and Valderrama, 2006 performed a research in using PCA in combina-
tion with logistic regression and found that the model produced a similar goodness-
of-fit with less model components.

2.3 Missing Values

A factor that strongly influences the correlation between the risk drivers of a PD
model is missing values. This is due to the high probability that if one of the risk
drivers is missing, other risk drivers are missing as well. This is one of the reasons
that makes missing values a major problem in the financial industry and in par-
ticular PD modelling. There are many underlying causes of these missing values,
including, but not limited to, fields that were not captured, discontinued fields, un-
availability of the characteristic, intentionally not filled out by applicant or outliers
that were removed. Statistical techniques such as random forests or decision trees
are capable of handling datasets with missing values. Logistic regression needs a
complete dataset, so either missing values have to be replaced or entries with miss-
ing values have to be removed (Siddiqi, 2006). Missing data rates of less than 1% are
not a problem, 1-5% can be managed, 5-15% is problematic and >15% impacts any
kind of interpretation (Acuña and Rodriguez, 2004).

2.3.1 Missing value treatment and classifier accuracy

Acuña and Rodriguez, 2004 identified four missing value treatments: Case Dele-
tion (CD), Mean Imputation (MI), Median Imputation (MDI) and KNN Imputation
(KNNI).

Case Deletion

Deleting all the cases with a missing value, optionally combined with deleting fea-
tures with a high degree of missing values first. Sufficiently large sample size, low
percentage of missing values and randomly generated missing values minimizes the
effect of case deletion. If the missing data was not randomly generated, or the sam-
ple size is low, CD can produce biased estimates. According to Little and Rubin, 2002
CD should only be used when the missing data is completely randomly generated.

Mean Imputation or Median Imputation

MI involves replacing the missing values with the mean of the feature. The method
is wildly used but the drawbacks consist of, but are not limited to, inflated sample
size, underestimated variance, and negatively biased correlation. The advantage is
that MI does give good performance in classification rates (Little and Rubin, 2002).
MDI has the advantage over MI that it is not influenced by outliers.

KNN Imputation

KNN Imputation replaces the missing value using the cases that are most similar
and do not miss the feature of interest. Advantages consist of flexibility in missing
values in both categorical and continuous variables, multiple missing values within
a case and correlation structure. Disadvantages are choice of distance function and
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K-value, and required computational resources. KNNI outperforms the other meth-
ods, especially when the percentage of missing values increases. KNNI consists of
the following algorithm (Acuña and Rodriguez, 2004):

1. Divide the data set in two parts, Dm contains the cases
with missing values and Dc contains all the complete
cases.

2. For each case in Dm:

(a) Divide the case in observed and missing vectors x =
[x0;xm]

(b) Calculate the distance between x0 and the relevant
features in Dc

(c) Use K-nearest neighbours and perform majority vot-
ing estimate for the missing values xm.

2.4 Identifying non-linearity

2.4.1 Linearity assumption logistic regression

Logistic regression is used to map the dependent variable on a [0, 1] scale based on
the explanatory variables. This is useful for PD modelling, since probabilities are
also on a [0, 1] scale. The second advantage is that the relationship between the ex-
planatory variables and the dependent variable can be non-linear. This is often the
case in practice were the marginal effect of increasing an explanatory variable is de-
caying as this variable increases. An example would be the effect of income on the
PD. Improving the income of 0 to 100.000 has a larger effect on PD than improving
from 100.000 to 200.000. This effect is shown in the example of Figure 2.4, where the
probability of a chemical reaction is regressed on the explanatory variable temper-
ature. The black line is the estimated probability off the chemical reaction for the
temperature and the dots are the actual data points. The Figure clearly shows the
non-linear relationship where the marginal effect starts to decay from a temperature
of 30 and is almost obsolete after 31 degrees.

FIGURE 2.4: Logistic regression
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Even though the relationship between the explanatory variables and the depen-
dent binary variable can be non-linear, there is a still a very restrictive assumption
on this relationship. The explanatory variables need to be linearly related to the log-
odds of the dependent variable. This is shown in Equations 2.4, 2.5 & 2.6. 2.4 shows
the logistic regression equation, 2.5 shows the odds ratio of the PD and 2.6 shows
the equation of the log-odds. One can clearly see that the log-odds of the PD are a
linear combination of the explanatory variables.

PD =
1

1 + e(β0+β1X1+...+βnXn)
, (2.4)

1− PD
PD

= e(β0+β1X1+...+βnXn), (2.5)

log(
1− PD
PD

) = β0 + β1X1 + ...+ βnXn, (2.6)

X1, ..., Xn = Explanatory variables,
β0 = Regression constant,
β1, ..., βn = Explanatory variables coefficients

This log-odds linearity assumption is a very restrictive assumption, but can be satisfied
for a single risk driver, even if initially it does not hold. For example, a categorical variable
with six categories could have scores of {1, 2, 3, 4, 5, 6}. If after calculating the log-odds of
each category it turns out an increase in category does not have a linear effect on the log-
odds, the scores need to be transformed. The correct scores for each category could therefore
be {2.0, 2.5, 2.8, 3.5, 4.0, 5.8}. A correctly transformed variable is shown in Figure 2.5. The
figure shows a categorical risk driver with six categories, the x-axis shows the risk score of
each category and the y-axis shows the log-odds. Instead of evenly spacing the risk scores,
the difference in score reflects the decrease in risk. The linear relationship between score and
log-odds is therefore satisfied.

FIGURE 2.5: Transformed explanatory variable

If the risk driver initially has a U-shaped relationship with the log-odds, it is slightly
more complicated. It is still possible to transform the risk driver correctly by rearranging the
categories or transforming the continuous variable, but the interpretation of the risk drivers
effect on the log-odds might be hard to interpret and explain.

The real problem arises when combining multiple risk drivers in the PD model, as shown
in Figure 2.6. Even if all the individual risk drivers are linearly related to the log-odds, the
PD model predictions can still deviate non-linearly from the observed log-odds.



12 Chapter 2. Literature review

(A) Risk driver A (B) Risk driver B (C) Risk driver C

(D) PD model

FIGURE 2.6: Effect of combing correctly transformed risk drivers

2.4.2 Significance of regression parameters

The maximum likelihood estimator of logistic regression returns the value of the coefficients
of the different risk drivers and the Wald test can be used to test their significance. The Wald
statistic test the hypothesis of the coefficient being equal to zero. A rejection of the null hy-
pothesis infers that the corresponding risk driver has a significant effect on the dependent
variable (PD).

Wald test: (Wasserman, 2010)

Ho : θ = 0 versus H1 : θ 6= 0 (2.7)

√
n(θ̂ − 0)

ŝe

d−→ N(0, 1) (2.8)

Reject H0 when |W | > zα/2

W =
θ̂

ŝe
(2.9)

θ̂ = Estimated coefficient,
θ = True coefficient,
ŝe = Estimated standard error
zα/2 = Standard deviations from mean at
confidence level α of standard normal
variable
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For Equation 2.8 to hold, the estimator of the maximum likelhood estimation θ̂ needs
to be asymptotically normal. For logistic regression this is theoretically the case (Ngunyi,
Mwita, and Odhiambo, 2014). Appendix A contains evidence on the asymptotic behaviour
of the estimated parameters.

AIC and SBIC statistic

Even though the individual parameters are significant, it is also worth checking if the model
has an increase in goodness-of-fit that justifies the use of an extra parameter. Adding extra
parameters to your model will always improve your fit, but it will also increase the noise
of your estimate. The Akaike Information Criterion (AIC) compares the the quality of two
different models based on a trade-off between goodness-of-fit and the number of parameters,
as shown in Equation 2.10a.
A second measure, similar to the AIC statistic, is the Schwarz Criterion (SBIC). This measure
also includes the number of data points in the estimate, as shown in Equation 2.10b. In both
cases the model with the lower score is preferred.

AIC = 2k − 2L (2.10a)
SBIC = −2L+ k log(n) (2.10b)

k = number of parameters, L = Log likelihood value, n = number of data points

2.4.3 Gini coefficient

When developing a model for probability of default, we are interested in how well it can
discriminate between a client that is going to go into default, and one that is not. This is the
ranking performance of a model and this is usually measure by the Gini coefficient. The Gini
coefficient is is extensively used as a measure of income equality, where it is defined as the
area between the Lorenz curve and the diagonal line representing perfect income equality
(Lerman and Yitzhaki, 1984). An example is shown in Figure 2.7, where the Lorenz curve is
given by the cumulative income for the cumulative share of the population.

FIGURE 2.7: Income equality (Taylor, 1970)

From an income perspective the Lorenz curve should be as close to the diagonal line as
possible, representing perfect income equality. In a PD modelling environment, the Lorenz
curve is given by the cumulative number of defaults for the cumulative number of clients,
as shown in Figure 2.8. From this perspective, the optimal model discriminates perfectly
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between defaults and no-defaults and therefore all the defaults are in the first set of clients,
represented by the orange line in Figure 2.8. The yellow line is the worst model possible,
since the defaults are randomly spread across the data and there is no discrimination. The
blue line is an example of the ranking performance of a PD model. The Gini coefficient is
given by the area between the blue and the yellow line, divided by the area between the
orange and yellow line.

FIGURE 2.8: Ranking Performance

2.5 Impact on regulatory capital

Regulatory capital is not only impacted by the risk parameters, but also by the Margin of
Conservatism (MoC). MoC adds a conservative layer to the model, by capitalising on model
risk. The risk model calculates the amount of capital a financial institution needs to hold
to be able to cover unexpected losses, but the model itself is also affected by uncertainties.
Examples are data issues, limited data availability, changing definitions definitions, lack-
ing procedures, but also performance of the model (EBA, 2016). The amount of MoC is
calculated with a scorecard with questions based on several aspects of the model such as un-
certainties during model development, model implementation and business strategy. One
of the aspects of uncertainties during model development is the calibration accuracy. This
aspect is affected by the accuracy of predicted values and realized values within the data.
For a PD model this mean that increasing the performance of the transformation of score to
PD lowers the margin of conservatism of the model and therefore regulatory capital.
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Chapter 3

Data Analysis

3.1 Sample Data

To analyse whether the non-linearity issues are present within the models of the Rabobank,
we analyse the datasets used for the development and employment of the model. There
are several datasets available from which the largest was chosen which contains residential
mortgages. The total dataset contains more than 1.5 million records containing loans from
2012 until 2016. The dataset contains four risk drivers, whose values are scores on four
different client and loan characteristics.

3.1.1 Causes of non-linearity in the data

Mcdonald, Sturgess, and Smith, 2012 identified two causes for the non-linearity they found
in the predicted log-odds. These causes are correlation between binned risk drivers and
difference in variance between the distributions of the two classes. The two classes consist
of the class where the event happens and the class where the event does not happen.

Difference in distributions between classes

The data can be dividend into two classes, the data from the clients that defaulted (Class
1) and data from the client that did not default (Class 2). Difference in distributions and
especially unequal variances, according to Mcdonald, Sturgess, and Smith, 2012, influence
the accuracy of PD predictions and leads to violation of the non-linearity assumption of
logistic regression.

TABLE 3.1: Mortgage statistics

Mean Variance Skewness Difference of variances P-value
Class 1 (Event) 3.15 4.51 -0.70

3.01 <0.0001
Class 2 (No event) 5.73 1.50 -0.32

Total 5.71 1.58 -0.50

The variances of two different distributions is compared with the two-sample F-test. The
null hypothesis that the two variances are equal is tested against the alternative hypothesis
that variances are unequal. Distribution characteristic and test statistics can be found in
Table 3.1. The P-value is extremely small, so the hypothesis of equal variances can be rejected
with a high significance level.

As shown in Figure 3.1, the distributions of the two classes have more irregularities. The
difference in means is due to the nature of score estimation, where the model uses the data
to discriminate between the default and non-default classes to be able to predict defaults.
The difference in skewness of the two classes is also clearly visible where there is especially
a large left skew in the default data. The effect of skewness in score distributions on non-
linearity issues is further treated in Chapter 4
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FIGURE 3.1: Class distributions

Individual risk drivers

To find causes of some non-linearity, the individual relationships of the risk drivers and
the ODR are investigated. In the mortgage data the risk drivers are model scores of the
sub-models. These sub-models are PD models based on different categories of client char-
acteristics and shown in Figure 3.2. The red bars consists of the proportional density, so
the significance of different parts of the log-odds relationship can be observed. The added
blue slope is the slope of the parameter that is estimated by the model with all risk drivers
included. With this graph whether the the scores and log-odds on an individual level have
a linear relationship. If the individual risk drivers already have a non-linear relationship
with the log-odds, this could potentially explain the non-linearity in the final PD model.
The density of the data is also added to the graph to be able to verify the significance of the
irregularities in the data. For example, Figure 3.2b shows very irregular log-odds on the left
side, but since there is almost no data density the effect will be very limited.

(A) X1 (B) X2

(C) X3 (D) X4

FIGURE 3.2: Log-odds vs. risk drivers
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Correlation between risk drivers

The problem with correlation of the risk drivers is that it has an effect on the convergence
of the maximum likelihood estimate (MLE). Increasing correlation leads to risk drivers be-
coming substitutes of one another. Even though very high correlated risk drivers are usually
removed in the selection process, the remaining risk drivers are still correlated. This effect is
illustrated in Figure 3.3.

(A) Low correlation (0.18)
(B) High correlation (0.58)

FIGURE 3.3: Example of effect of correlation on MLE conversion

Figure 3.3 shows the deviation from the optional function value from the likelihood func-
tion. The x-axis and y-axis contain the values of two different parameters and the z-axis
contains the deviation from optimal function value. A fast converging MLE means that a
change in parameter value from each of the two parameters leads to a significant effect on
the optimal function value from the likelihood function, as shown in Figure 3.3a. On the
other hand, slow converging means that a change in parameter value leads to an insignifi-
cant effect on the optimal function value, as shown in The Figure 3.3b. Correlated variables
and therefore slow MLE convergence leads to different combinations of parameters that lead
to almost identical likelihood function values. This means that the MLE will be indifferent
to different parameter sets and it is a random draw which parameter value are eventually
estimated.

TABLE 3.2: Mortgage Correlation

X1 X2 X3 X4
X1 0.2460 0.3153 0.3774
X2 0.2460 0.2033 0.1117
X3 0.3153 0.2033 0.2389
X4 0.3774 0.1117 0.2389

The correlation between the risk drivers from the mortgage data is given in Table 3.2.
Mcdonald, Sturgess, and Smith, 2012 used a threshold of 0.3 to remove the highest variable
correlation and the mortgage data contains only one variable pair with a slightly higher
correlation. This would suggest that the influence of non-linearity within inferred PDs from
the mortgage data due to variable correlation is limited, but might still be present.



20 Chapter 3. Data Analysis

3.1.2 Actual vs. predicted log-odds

To investigate the linearity in log-odds assumption in the mortgage data a comparison of
predicted and actual log-odds is made. Figure 3.4 shows a comparison between the actual
log-odds versus the observed log-odds. In Figure 3.4a the x-axis contains the moving av-
erage of predicted log-odds from the model and the y-axis contains moving average of the
observed log-odds. Higher log-odds represent clients with lower probabilities of default.
With a perfect model the predicted average is exactly equal to the observed average. In
Figure 3.4a, the noise around the linear line for the higher log-odds is expected, since the
defaults in the data are getting rarer. When the moving average drops or adds a default it
has a large effect since the amount of defaults in the average is low. What is not expected is
the consistent under prediction of the log-odds in the higher region, because this means the
PDs of these clients are overestimated. Figure 3.4b is a plot of this difference between the
predicted and observed log-odds. In this Figure it becomes extra clear that there is a consis-
tent under prediction for the higher log-odds. The consistent deviation from the linear line
could be causes by non-linearity issues from the model.

(A) Actual vs. inferred log-odds

(B) Difference

FIGURE 3.4: Comparison actual vs. inferred log-odds
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The average predicted PD will exactly match the average observed PD, by construction
of the logistic regression by which they are derived. The problem is that at smaller sub-
sections of the data the predicted PD can be significantly different from the observed PD.
By dividing the data in 10 buckets, from worst to best clients, we can see the consistent
over-prediction of PD for the higher log-odds. This is shown in Table 3.3, where especially
buckets 5-9 deviate significantly. The ODR represents the Observed Default Rate (ODR)
from the data for the different buckets, indexed due to confidentiality reasons. The other
two columns represent the indexed prediction and prediction error.

TABLE 3.3: PD prediction performance

Bucket ODR index Predicted Prediction error
1 100.0 98.3 -1.67%
2 22.2 19.5 -12.00%
3 13.1 12.6 -3.91%
4 8.92 9.18 2.88%
5 6.03 6.90 14.30%
6 3.79 5.14 35.41%
7 2.48 3.71 49.36%
8 1.87 2.55 36.30%
9 1.21 1.62 33.67%

10 0.74 0.80 8.88%
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Chapter 4

Results

4.1 Adjustment to PD transformation

We investigated the potential violation of the linearity assumption of logistic regression and
suggest an adjustment to the score-to-pd conversion, as shown in Equation 4.1. Two extra
parameters are added, one for the squared transformation of the score and an intercept for
correction purposes. With the γ2 parameter we will be able to identify and measure the
significance of the non-linear deviation.

PD =
1

1 + exp−γ0−γ1score−γ2score2
(4.1)

The maximum likelihood estimator will give an estimate of the gamma parameters and
we are able to establish their significance. In the case the non-linear effects are absent and the
linearity assumption holds, the maximum likelihood would need to approximate the values
in Table 4.1

TABLE 4.1: Regression output if linearity holds

Parameter Value Significance
Constant (γ0) ≈0 Not significant

Score (γ1) ≈1 Significant
Score2 (γ2) ≈0 Not significant

A significant γ2 parameter means that the accuracy of the PD prediction can be improved
by making an adjustment to the score. The new score is given by Equation 4.2. This adjusted
score can then be linearly transformed to a PD as presented in Equation 1.2.

Adjusted score = γ0 + γ1score+ γ2score
2 (4.2)

As Mcdonald, Sturgess, and Smith, 2012 had pointed out, the nice property of applying
a correction to the score is that the ranking performance of the model is not affected and
therefore the Gini coefficient is not affected. This means that if client A was more credit-
worthy than client B in the original model, this will still be the case in the adjusted model.
The only thing that is affected is the absolute credit score of client A and B, translating in
different PDs.
Applying corrections to the original data can also result in more accurate PD prediction but
at the same time lower the ranking performance, which is undesirable in a business envi-
ronment. For example, in an extreme case, one could drop the data and only use gender as a
risk driver which would result in two different credit scores for the male and female clients.
Predicted default rates for the two genders would simply be their observed averages and
prediction accuracy will be extremely high, but the practical use of this model is nil.
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4.1.1 Identification of non-linearity

A γ2 parameter that is significantly different from zero suggests that the linearity assumption
of logistic regression is violated. It also implies that the model that includes score2 inherently
outperforms in goodness-of-fit the linear model that includes only the score.

TABLE 4.2: Regression output

Parameter Estimation Estimated S.E z-statistic p-value
γ̂0 0.153 0.025 6.07 <0.0001
γ̂1 0.846 0.015 55.5 <0.0001
γ̂2 0.025 0.0023 10.5 <0.0001

For our data the results of the regression output are shown in Table 4.2. The Wald test
is used to test the hypothesis that H0 : γ = 0 versus H1 : γ 6= 0. The z-score is the amount
of standard deviations from the mean from which the p-value is derived. For γ̂2 the p-value
is very small, so we can reject H0 and conclude that γ2 is significantly different from zero.
Therefore the linearity assumption is indeed violated.

4.1.2 Correction non-linearity

The effect of this transformation is visualized in Figure 4.1. Figure 4.1a is the original com-
parison of observed and predicted log-odds calculated with the original score and Figure
4.1b is the same comparison but with the scores corrected for the non-linear deviation. The
linear line represents perfect prediction again. With the corrected scores, the difference be-
tween predicted and observed log-odds is smaller.

(A) Original Score (B) Adjusted Score

FIGURE 4.1: Comparison actual vs. inferred log-odds

Effect on performance

The exact increase in performance is given by Table 4.3. For the first nine buckets the per-
formance of the prediction increases and only in the last bucket the prediction error is larger
than for the original model. In the last bucket the exponent in the score transformation is
causing the log-odds to be overestimated and therefore PD to be underestimated for the most
creditworthy clients. In reality this effect will be limited due to a mandatory floor for the PD.
The regulators issued a floor of 3 basis points to the PDs so all calculated PDs lower than 3
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basis points will be corrected. A PD of 3 basis points corresponds to log-odds of approxi-
mately 8.1. These results are all based on in-sample results, so there is a risk of over-fitting
on the sample dataset. We reproduced these results for ten out-of-sample estimations. These
results are based on ten different sets of 90% training data and 10% validation data. We
found that the average prediction error improved significantly in out-of-sample predictions,
from 21% to 4%, when the scores are corrected.

TABLE 4.3: Bucket performance

Linear Non-linear
Bucket ODR index Predicted Prediction error Predicted Prediction error

1 100.0 98.3 -1.67% 100.3 0.31%
2 22.2 19.5 -12.00% 20.2 -8.88%
3 13.1 12.6 -3.91% 12.6 -3.77%
4 8.92 9.18 2.88% 8.92 0.01%
5 6.03 6.90 14.30% 6.50 7.73%
6 3.79 5.14 35.41% 4.67 23.14%
7 2.48 3.71 49.36% 3.23 29.95%
8 1.87 2.55 36.30% 2.10 12.06%
9 1.21 1.62 33.67% 1.23 1.71%
10 0.74 0.80 8.88% 0.54 -27.01%

Mean error 16.3% 3.5%
Mean absolute error 19.8% 11.5%

The difference in performance of the two models is due to the the adjustments in log-
odds that lead to certain clients receiving a higher PD and certain clients a lower PD. Because
of the construction of logistic regression, the average PD of both models will be exactly the
same and equal to the observed defaults in the dataset. The differences in indexed PDs for
different types of clients are made visible in Table 4.4.

TABLE 4.4: Indexed differences for PD, LGD & EAD

Bucket Original PD Transformed PD % Difference LGD EAD
1 98.3 100.3 2.0% 100.0 100.0
2 19.5 20.2 3.6% 89.6 97.7
3 12.6 12.6 0.0% 79.8 94.7
4 9.18 8.92 -2.8% 70.4 91.9
5 6.90 6.50 -5.8% 61.0 87.6
6 5.14 4.67 -9.1% 53.6 81.6
7 3.71 3.23 -12.9% 48.6 73.1
8 2.55 2.10 -17.6% 46 62.1
9 1.62 1.23 -24.1% 46.7 48.7
10 0.80 0.54 -32.5% 70.8 31.0

The results show that the two buckets of least creditworthy clients receive a higher PD
while the rest of the clients receive a lower PD. Especially the PD of the most creditworthy
clients is significantly lower, since this is where the non-linear deviation is the greatest. The
largest exposures and LGD’s are in the buckets which increase in PD, so the expectation is
that this will have a negative affect on the regulatory capital. The clients that ’gain’ in terms
of a lower PD have lower LGD’s and less exposure.
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AIC and SBIC test results

To test whether the increase in fit of the adjusted model justifies the use of an extra parameter
we use the AIC and SBIC test as explained in Subsection 2.4.2. We compare the goodness-
of-fit from the original model with the new model and penalize the number of parameters
used. The results of the AIC and SBIC tests are shown in Table 4.5. The AIC and SBIC are
indexed, because the actual values mean nothing on their own and are simply used to rank
the models. The AIC and SBIC statistics provides an indication about the difference between
two models, but both can still be useless (Snipes and Taylor, 2014). Adding the squared
parameter improves the goodness-of-fit significantly enough to justify the extra parameter
of the model.

TABLE 4.5: AIC and SBIC test results

AIC index SBIC index
Linear model 1 1

Non-linear model 0.999 0.999
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4.2 Alternative methods

The method given in Section 4.1 is a correction that is applied after the clients scores have
been calculated. This of course has the convenient property that the ranking performance
and the Gini coefficient are unaffected. An alternative to making a correction to the scores is
to make an alteration to the score transformation itself. This could improve the PD prediction
but could also have an effect on the ranking performance of the model. Another alternative
is to make an adjustment or transformation to the original data. Using Principal Component
Analysis (PCA) to remove correlation or forcing a normal distribution to the data could also
have an effect on the PD prediction.

4.2.1 Adjustment to score transformation

Penalty for minimum risk driver

In Figure 3.4 the comparison was made between the predicted log-odds and the observed
log-odds and this figure shows that the largest deviation of predicted and observed PDs
exists for the most creditworthy clients. This means that the clients who score very well
on all the different risk drivers have a PD that is even lower than the model predicted. An
intuitive approach to correct for the underestimation of PD due to averaging a very bad
score with good ones, is to add a factor that penalizes the clients more that score bad on one
or more of the risk drivers. This can be done by adding the minimum of the risk drivers as
an extra risk driver of the model. This would change Equation 1.1 in an alternative score
calculation given by Equation 4.3.

score = β0 + β1X1 + ...+ βnXn + βn+1 min(X1, X2, ..., Xn) (4.3)

Xn = Transformed financial or qualitative factors
β0 = The constant term and β1, ... , βn+1 are the factor weights

The effect of adding the minimum risk driver as an extra risk driver in the model can
be analysed by estimating the β parameters from Equation 4.3. The weight of the extra
parameter is an indicator of the significance of the minimum risk driver in predicting PD.
The results of the parameter estimation is shown in Table 4.6.

TABLE 4.6: Regression output of penalty model

Factor β̂ P-value Original β̂
Constant 5.1 <0.0001 5.7

X1 0.58 <0.0001 0.76
X2 0.27 <0.0001 0.28
X3 0.52 <0.0001 0.63
X4 0.38 <0.0001 0.43

min(X1, X2, X3, X4) 0.28 <0.0001 -

The results indicate that the minimum risk driver is highly predictive of a default. This
would suggest adding the minimum risk driver as a parameter adds predictive power, but
taking a look at discriminatory power of the model, the Gini coefficient is unaffected (∆
= 0.02%). This would suggest that due to the high correlation with the other risk drivers,
the extra parameter is acting as a substitute. This correlation of this extra parameter with
β1, β2, β3, β4 is 0.65, 0.33, 0.69, 0.52. The high correlation also poses a potential problem. We
are trying to correct for the non-linear devation in predicted log-odds by adding an extra
parameter, but due to the high correlation with the other risk drivers it might be also cause a
deviation. We use the identification method from Section 4.1 to test for non-linearity issues
in the clients scores. The results of this regression are given in Table 4.7.

The parameter γ2 is highly significant and only fractionally lower than the 0.025 from the
original model. The method of adding a factor that penalizes the clients that score bad on
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TABLE 4.7: Regression output

Parameter Value P-value
γ0 0.15 <0.0001
γ1 0.85 <0.0001
γ2 0.024 <0.0001

one or more of the risk drivers does not have enough impact on the clients scores in order to
correct the deviation between predicted and observed log-odds. The bucketing performance
of this model for ten equal buckets even performs worse than the original model, with a
mean error of 24% vs 16%.

Squared transformation of every risk driver

An alternative to making a score correction with the squared transformation of the score as
shown in Equation 4.1 is to include the squared transformation of every risk driver in the
score transformation. This will results in the score transformation given by Equation 4.4.

score = β0 + β1X1 + ...+ βnXn + βn+1X
2
1 + βn+2X

2
2 + ...+ β2nX

2
n (4.4)

Xn = Transformed financial or qualitative factors
β0 = The constant term and β1, ... , βn+1 are the factor weights

The estimated parameters are shown in Table 4.8. Interesting observation is that X2 and
the squared transformation of X2 have quite a high p-value, where in the original model X2
was highly significant. The rest of the risk drivers and squared transformations are highly
significant.

TABLE 4.8: Regression output of squared model

Factor β P-value
Constant 1.76 <0.43

X1 -1.14 <0.0001
X2 1.11 0.10
X3 0.97 <0.0001
X4 0.31 <0.001
X2

1 0.025 <0.0001
X2

2 -0.10 0.05
X2

3 -0.16 <0.0001
X2

4 -0.087 <0.0001
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The improved accuracy of the model is visualized in Figure 4.2. The noise around the
linear line remains, but the average predicted log-odds is very close to the observed log-
odds. The average prediction error for ten buckets is 5.41% when the original model had an
average prediction error of 16.3%.

FIGURE 4.2: Actual vs. inferred log-odds squared model

The disadvantage of this model is that it will affect the ranking performance of the model
and therefore the output will be harder to explain to the business side. For example, client A
might have a lower loan to income than client B, but this model might conclude that client A
is more creditworthy than client B based on the squared transformation of his loan to value.

4.2.2 Data transformation

Principal component analysis

The correlation between risk drivers is identified to be a large factor in the violation of the
linearity assumption of logistic regression. Principal Component Analysis (PCA) is able to
reduce the dimensionality of the data by transforming the variables to uncorrelated Princi-
pal Componants (PC). Jolliffe, 2010 defined in the following way:

The central idea of principal component analysis (PCA) is to reduce the dimensionality
of a data set consisting of a large number of interrelated variables, while retaining as
much as possible of the variation present in the data set. This is achieved by transform-
ing to a new set of variables, the principal components (PCs), which are uncorrelated,
and which are ordered so that the first few retain most of the variation present in all of
the original variables.

Removing correlation from the data trough PCA therefore might be able to reduce the
non-linear effect and improve PD prediction. To perform the PCA the steps from Smith,
2002 have been used. First step is to subtract the variable mean from each data point, so all
the variables have a mean of zero. Second step involves calculating the covariance matrix,
including the eigenvectors and eigenvalues. At this stage you can drop the ’lower’ abso-
lute eigenvalues to decrease the dimensionality of the data. Since our data contains five
dimensions, four variables and an intercept, we are able to drop up to three variables. After
lowering the dimension we form a feature vector from the remaining eigenvectors.

Feature Vector = (eig1 eig2 eig3 ... eign); (4.5)

Final Data = Feature Vector’ x Adjusted Data (4.6)

The last step of the data transformation for the PCA is multiplying the data by the trans-
posed Feature Vector. The final data can then be used to run the logistic regression and
calculate the clients scores and predict their PD. The scores and Equation 4.1 are then used
to identify the significance and size of the non-linear effects, which are shown in Table 4.9.
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Neither dropping one, two or three principal components has a significant effect on the non-
linear effects, since all γ2 parameters are highly significant and their values are all close to
the original value of 0.025.

TABLE 4.9: PCA non-linearity identification

Principal components dropped γ2 value γ2 P-value
1 0.0252 <0.0001
2 0.0242 <0.0001
3 0.0280 <0.0001

4.3 Impact on regulatory capital calculation

From a business perspective it is very interesting to see what effect this alternative method of
PD transformation has on the regulatory capital that the financial institution needs to hold.
The alternative method will directly impact the capital trough a change in calculated PD and
indirectly through a change in MoC (Section 2.5).
Regulatory capital consists of the capital a financial institutions needs to hold for unex-
pected losses. The institution holds provisions for the expected losses and capital for the
unexpected. These unexpected losses are calculated through the Vasicek formula based on
Merton’s model. The intuition of this formula is given by Equation 4.7. PDdownturn is the
worst case PD for a certain confidence bound, 99.9% in case of regulatory capital. The actual
Vasicek formula is given by Equation 4.8 (BIS, 2005).

Capital = (PDdownturn − PD) ∗ LGD ∗ EAD (4.7)

Capital =

(
N

(
N−1(PD) +

√
R ∗ N−1(0.999)√

1−R

)
− PD

)
∗ LGD ∗ EAD (4.8)

N = Cumulative distribution function for a standard normal random variable,
N−1 = Inverse cumulative distribution function for a standard normal random variable,
R = Correlation factor based on the type of exposure

By construction of logistic regression, the mean PD of both models will be exactly the
same and equal to the observed default frequency of the dataset. The transformed model is
correcting for an overestimation of the very creditworthy clients, so these will be assigned a
lower PD and less creditworthy will be assigned a higher PD. The difference in capital there-
fore will be dependent on the exposure and LGD of both types of clients. These differences
have already been shown in Table 4.4.
For our dataset, the transformed model results in an increase in regulatory capital of 0.26%
due to the direct effect on the PD. The explanation resides in the difference in LGD and EAD
between the most creditworthy and the least creditworthy clients. Half of the dataset con-
taining the least creditworthy clients has a 61% higher LGD and a 58% higher EAD.
Even though the total regulatory capital is slightly higher, the capital per client now better
represents the risk because of the increase in PD accuracy. The 0.26% also does not include
the expected decrease in capital due to a lower MoC, but the exact MoC cannot be calculated
since it is a qualitative add-on.
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Missing values and non-linearity

5.1 Approaches to missing value analysis

Missing values are a large problem in the financial industry and in particular PD modelling.
There are many underlying causes of these missing values. Examples of these underlying
causes include fields that were not captured, discontinued fields, unavailability of the char-
acteristic, intentionally not filled out by applicant or outliers that were removed. Statistical
techniques such as random forests or decision trees are immune to missing values, but lo-
gistic regression needs a complete dataset (Siddiqi, 2006).

Gelman and Hill, 2006 identified a framework containing four different types of missing
values and how to adopt them within the regression framework.

• Missingness completely at random:

The probability of a missing value is the same for every client.

• Missingness at random:

The probability of a missing value is not equal for every client, but the
information that is affecting this probability is known in the dataset. For
example, males have a higher probability of missing values, but the gen-
der is included in the dataset.

• Missingness that depends on unobserved predictors:

The probability of a missing value is not equal for every client and it is
now known what is affecting this probability.

• Missingness that depends on the missing value itself:

The probability of a missing value is not equal for every client and the
variable itself is affecting this probability (e.g. only high-earning persons
are unwilling to provide income data).

5.1.1 Missing value bias

Logistic regression is the most widely used method for calculating the PD and because it
needs a complete dataset to function, the missing values have to be dealt with. The most
conventional choices of coping with missing values are the following three methods (McK-
night, 2007):

• Mean imputation, replacing the missing value with the mean of the remaining values.

• Median imputation, replacing the missing value with the median of the remaining
values.

• Discard row, removing the records which contain missing values for at least one of the
variables.

The problem with these methods is that they could have an effect on the estimated parame-
ters and therefore could inflict a bias in the model.
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Parameter estimation

We can take our original mortgage data and randomly impute missing data in the dataset.
This means we can compare the original parameters of the model with the parameters esti-
mated for the model with missing values and determine if a bias might be present. Table 5.1
show the results of this analysis. For different percentages of missing values we calculate the
estimated β̂ parameters from the regression and find their average deviation from the basis
scenario. The value of 1 would mean that there is no bias in the model, since the estimated
parameters are exactly equal to the model without missing values. Values higher or lower
than 1 means the β parameters are overestimated or underestimated.

TABLE 5.1: Effect of method on average indexed parameter

Missing value percentage Mean imputation Median imputation Discarded record
5% 1.08 1.05 0.97
10% 1.11 1.15 1.00
20% 1.14 1.21 0.98
30% 0.99 1.43 1.04
40% 0.79 1.47 1.11

The table presents evidence that, under the assumption that the missing data in a dataset
is completely random, imputing the mean or median will introduce a bias in your model.
Even at only 5% missing values this deviation in parameter estimation can be quite large.
Discarding the record seems to be the best method to avoid a bias in your model. The dis-
advantage is that you will need to throw away a lot of data, which might affect the ranking
performance of the model.
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Unexpected losses

Another interesting aspect to look at is the effect of missing data on the calculated capital
requirements. We know that imputing mean or median to cope with missing values has
an effect on the estimated parameters, therefore we also expect it to have an effect on the
unexpected losses. The unexpected losses are part of the loss distribution for which a fi-
nancial institution needs to hold capital. Figure 5.1 shows the effect of each method on the
indexed unexpected losses. The y-axis show the indexed unexpected losses and the x-axis
the proportion of missing values.

(A) Discard record

(B) Mean imputation (C) Median imputation

FIGURE 5.1: Effect of method on indexed unexpected losses

The method of discarding the record is, like expected, the most unbiased. Figure 5.1b
shows that for high percentages of missing values, the unexpected losses will be underesti-
mated by a large portion when using mean imputation. The mean imputation method from
Figure 5.1c increases the unexpected losses for the lower missing percentages, but ends op
with an overoptimistic estimate for the higher percentages. The effect is present because the
imputation of the mean will decrease the variance of the distributions. Potential outlier will
be replaced with the mean of the distribution and this will lead to the underestimation of the
risk. The difference of effects between mean and median imputation will be mostly based
on the skewness of the distribution. Skewed distribution will have a different mean and
median and this difference is either positive or negative depending on a left or right skewed
distribution. When faced with the choice of imputing the mean or median in the case of
missing values it will be wise to look at the skewness of the variable distributions.



34 Chapter 5. Missing values and non-linearity

TABLE 5.2: Imputing mean effect on non-linearity

Missing value percentage Non-linearity parameter P-value
5.0% 0.024 <0.0001
10.0% 0.060 <0.0000
15.0% 0.060 <0.0000
20.0% 0.020 0.0003
22.5% 0.013 0.0157
25.0% 0.000 0.47
27.5% -0.016 0.0027
30.0% -0.026 <0.0001
35.0% -0.062 <0.0001

Non-linearity and missing values

By randomly inserting missing values in our dataset and replacing them by the mean or
median, the distributions of the default and non-default data are altered. From Section 2.1
we know that the difference in distribution between the two classes is a known driver of non-
linearity in the data. Table 5.2 shows the results the effect of missing values and imputing the
mean on the γ2 parameter from Equation 4.1 which identifies the significance and magnitude
of the non-linearity in the data.

The results show that adjusting the data by imputing mean has a large effect on the non-
linear deviation of predicted log-odds. A missing values percentage of 25% even produces
a distribution for which the linearity assumption of logistic regression holds. The results
illustrate the effect of the distributions on the accuracy of the PD prediction, but actually
randomly imputing the mean is never a solution to the non-linear deviation. A lot of infor-
mation in the data will be lost and the discriminatory power of the model will be negatively
affected. These results should be taken into account when developing a model. In the pro-
cess of risk driver selection, choices have to be made about which risk drivers end up in
the final model. When faced with two highly correlated risk drivers with equal prediction
power, one very skewed and irregular and one almost normally distributed, these results
suggest choosing the latter.
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Conclusion

In this thesis we tried to answer the question whether a non-linear deviation between pre-
dicted and observed log-odds is present and how this deviation can be corrected. Logistic
regression has the linearity-in-log-odds assumption which is very restrictive. The results in-
dicate that for datasets used in PD prediction, the log-odds are not linearly related to the PD
and that enforcing a linear relationship results in suboptimal PD prediction accuracy.

Unfortunately the problem cannot be avoided by transforming each individual risk driver,
because the combined model is still subject to the assumption being violated. This is due to
correlation between the different risk drivers and differences between the distribution of
default and non-default data. These differences lead to a non-linear relationship of the log-
odds and model scores and therefore to the overestimation of the most creditworthy clients.

There are several methods to identify whether a PD model is affected by this non-
linearity. Mcdonald, Sturgess, and Smith, 2012 identified two causes as the largest drivers
of the linearity assumption being violated, high correlation between the risk drivers and
large variance differences between the default and non-default data distributions. An initial
indication can therefore be provided by calculating the correlation and variance difference.

The method for identification we suggest is to add a parameter to the transformation
of client score to PD, as shown in Equation 4.1. The significance of the parameter identifies
whether the non-linearity is significant and the size of the parameter represents the magni-
tude. The advantage is that the estimated parameters of this step can be used to adjust the
original log-odds and therefore correct the deviation. The other significant advantage is that
the ranking performance based on the creditworthiness of the clients remains the same and
therefore the model does not lose discriminatory power. The correction is applied before the
transformation to probability, so only the absolute value of the PD is affected to improve the
prediction accuracy.

The accuracy of these corrected log-odds was much higher on subsets of the data, even
though the total average PD is still equal. The average error for ten subsets of the data
improved from 16% to 4% by correcting the log-odds. This means that the calculated PDs for
all clients is more representative of the corresponding risks, which is convenient for efficient
capital allocation and RAROC measures.

The regulatory capital the financial institution needs to hold is affected by the value and
the accuracy of the PD prediction. Due to the accuracy improving, the Margin of Conser-
vatism that the financial institution needs to hold as extra capital is lower. The effect of the
value change of PD is less straightforward. Since the correction that is applied is parabolic,
there will be clients who receive a higher PD and clients who receive a lower PD. Dependent
on the LGD and exposure of these clients the regulatory capital is adjusted up- or down-
wards.

Returning to the main research question, our results suggest that the accuracy of prob-
ability of default calculations for loan portfolios is significantly impacted by the restrictions
of logistic regression. Disregarding the fact that linearly fitting the log-odds can have a neg-
ative impact on the accuracy of the PD prediction, will lead to suboptimal capital allocation.
Therefore for all financial institutions that use logistic regression it is beneficial to add this
extra step to their PD transformation and identify whether the linearity assumption holds
and make a correction to the log-odds if the assumption is violated.
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Discussion

7.1 Limitations

The outcomes of PD models have to be interpretable, since PD models have to be approved
by the European Central Bank. The problem is that this is a large limitation in a predic-
tion environment. Machine learning provides very useful techniques for default prediction
which significantly outperforms any form of logistic regression, but ’black box’ style mod-
elling techniques are not likely to be approved. Sirignano, Sadhwani, and Giesecke, 2016
investigated whether the use of neural networks improved the performance of predicting
mortgage delinquency. The neural networks had an 8% improvement in fit to the empirical
distribution over logistic regression. They let both models choose their own 100.000 loan
portfolio and the neural network had a portfolio with 20% fewer defaults and 50% fewer
number of mortgages with prepayments (also a risk for mortgage providers). The problem
is explaining the outcomes of a neural network model. This is the reason for making an
alteration to logistic regression and not using another non-linear technique for predicting
PDs.

Our research has focused on a portfolio dataset containing a fairly large amount of ’safe’
clients, so a low average PD. This means the amount of historical defaults is very low and the
impact of overestimation of creditworthy clients has an extra impact. Extending the research
to other type of portfolios, for example credit-card loans, would have been an interesting ad-
dition. These types of portfolios have more historical defaults and a more even distribution
of predicted PDs.

When comparing the performance of the original PD model and the model with our
suggested correction, the predicted PD is measured against the observed PD. To avoid over-
fitting on the training dataset, we made a comparison based on validating the performance
on an out-of-sample dataset. Since the data suggest that currently the PDs are overpredicted
for the clients with a high credit score, our research suggests an improvement on the method
to predict PD. An interesting addition to this research would be to back-test whether the use
of the original logistic regression actually led to the overestimation of PD for the creditwor-
thy clients.

7.2 Suggestions for further research

Our research is primarily focused on the prediction of PD using logistic regression, but the
underlying problem that is identified could hold for all applications of logistic regression.
Logistic regression is used for all kinds of binary classifications in other fields such as social
and medical studies. We focused on the statistical properties of logistic regression and the
problems with the restricting linear-in-log-odds assumption. A suggestion for further re-
search would therefore be to apply the techniques from this research to datasets from other
fields.

Another suggestion for further research is the underlying causes of the linearity assump-
tion being violated. The paper from Mcdonald, Sturgess, and Smith, 2012 indicates correla-
tion and difference in variances as causes, because in this paper the issues with the linearity
assumption disappeared when risk drivers with a correlation higher than 0.3 are removed.
For the dataset in this research, this method was not sufficient, which indicates that the cause
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is not just correlation. As described in Section 5.1.1, changing the distributions of the default
and non-default data also has a large impact on the non-linearity issues, but isolating a sin-
gle cause and studying the effect is difficult. For example, generating data to investigate the
effect of correlation or variance is not possible. The assumption that the actual portfolio data
are similar to the normally generated data will not hold.



39

Appendix A

Properties of logistic regression
parameters

A.1 Asymptotic Normality

An estimator is asymptotically normal if Equation A.1 holds. So as n tends to infinity, the
difference between the estimate β̂ and the true parameter β will converge in probability to
a normal distribution with mean 0 and variance equal to the estimated covariance matrix
(Naima and Mamunur, 2012).

√
n(β̂ − β)

d−→ N(0, I(β)−1) (A.1)

Asymptotic normality does not only state that the estimated parameter converges to
the true parameter as n grows, but also that it converges at a rate that is fast enough, 1√

n

(Panchenko, 2006). To verify that our n is large enough, we can test what our sample be-
haviour is by bootstrapping 2000 different samples from our dataset and estimate the β pa-
rameters for each sample. Figures A.2 & A.1 show the Quantile-Quantile (Q-Q) plots of the
residuals from the β parameter estimation. The plots verify that the asymptotic normality
of the estimated parameters hold. This is important for the usability of the Wald estimator
in Section 2.4.2, since it allows us to efficiently estimate the significance of the estimated
parameters.

FIGURE A.1: Q-Q plot of the intercept versus N(0, 1)
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(A) β1 versus N(0, 1) (B) β2 versus N(0, 1)

(C) β3 versus N(0, 1) (D) β4 versus N(0, 1)

FIGURE A.2: Q-Q plot of the β parameter residuals versus standard
normal distribution
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Normally generated data

B.1 Non-linearity in normally generated data

To investigate the effect of correlation within risk drivers used for PD modelling we use a
randomly generated dataset. The first step is to generate the data required and analyse the
accuracy of the PD prediction. The second step is to add correlated variables to the dataset
and calculate whether there is a significant difference. Figure B.1 shows that there is not a
significant difference. The process was repeated as to ensure the validity of the result.

(A) No correlation (B) Correlation

FIGURE B.1: Regression including and excluding correlated variables

Correlation between risk drivers is identified to be a large driver of deviation from pre-
dicted log-odds, but when data is generated normally the effect is not present. This presents
further evidence for the importance of the distributions of the data, especially the variance
and skewness of the default and non-default data, on the violation of linearity assumption
of logistic regression.
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