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Abstract

Background: At an Epilepsy Monitoring Unit, people with epilepsy can be admit-
ted to answer different diagnostic questions. EEG, ECG and video are recorded and
monitored by staff. When a seizure is recognized, patient safety is secured and stan-
dardized tests are performed. These standardized tests assess consciousness, cognitive
and neurological functioning.

Objective: Around 33% of seizures are missed by staff at the Epilepsy Monitoring
Unit of SEIN. A response time over 60 seconds is seen in 19% of responses. Research
has shown that this can be improved with EEG seizure detection algorithms. How-
ever, the specificity was not researched. It remains unclear if the algorithm requires
improvement before it can be used online. The goal for this project is to investigate
which changes, in terms of sensitivity, specificity, latency and alarming, could make
usage feasible.

Methods: EEG and ECG recordings of seizures were included in a seizure database
and non-stop recordings in a 24-hour database. False positive rate for the EEG algo-
rithms was researched. An ECG seizure detection algorithm was created to improve
detection latency, which consists of the Pan Tompkins algorithm, processing of the
heart rate and a classifier with self-adjusting thresholds. The performance and added
value on top of the EEG seizure detection algorithm was researched. Lastly, a lit-
erature study was performed on how people respond to alarms and different alarm
systems, to evaluate what kind of system would be suitable.

Results: The seizure database included 188 seizures and the 24-hour database 1235
hours of 60 patients. The EEG algorithms showed a false positive rate of 4.9 (Encevis
EpiScan) and 2.1 (BESA Epilepsy) per 24 hours. The ECG algorithm showed a sensi-
tivity of 47.8% with a median latency of 36.5 seconds and a median false positive rate
of 0 per 24 hours. There was added value in terms of extra detected seizures when it
would be used as an addition to the EEG algorithm. However, no faster latency was
seen. Lastly, the response to alarms depends on different behavioural mechanisms,
which have to be taken into consideration when designing an alarm system.

Discussion: Results show that it is feasible to use the EEG seizure detection al-
gorithm in terms of a low false positive rate. The ECG seizure detection algorithm
could be used to detect extra seizures. Further work should focus on improvement
and optimization. For the alarm system, it is recommended to combine auditory and
visual alarms. More research on novel alarm types is necessary.
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Abbreviations

CSE = Clinical Seizure End

CSO = Clinical Seizure Onset

ECG = Electrocardiogram

EEG = Electroencephalogram

EMD = Empirical Mode Decomposition

EMU = Epilepsy Monitoring Unit

ESE = Electographic Seizure End

ESO = Electographic Seizure Onset

ICU = Intensive Care Unit

IMF = Intrinsic Mode Functions

PNES = Psychogenic Non-Epileptic Seizures

SEIN = Stichting Epilepsie Instellingen Nederland
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Chapter 1

Introduction

1.1 Epilepsy

Epilepsy is the most common chronic neurological disease, affecting 65 million people
worldwide [2]. It is an unpredictable disease that can lead to loss of autonomy and
can cause cognitive, emotional and psychological problems [3]. The mortality rate in
epilepsy patients is two to five times higher than in the general population [4].

So what exactly is epilepsy? Epilepsy is a chronic disorder of the brain that is
characterized by an enduring predisposition to generate epileptic seizures [5]. An
epileptic seizure is a transient occurrence of signs and/or symptoms due to abnormal
excessive or synchronous neuronal activity in the brain [5]. This abnormal synchro-
nisation is caused by an imbalance in excitation and inhibition [6]. Epilepsy can be
caused by genetic disorders, structural or metabolic conditions (for example brain
damage or malformations), but in most patients no cause is known [7].

Different symptoms can occur during seizures, depending on the site of onset and
how seizures develop. Seizures can be divided into focal and generalised onset [8].
Focal seizures originate within networks limited to one hemisphere [7]. During those
seizures consciousness can be lost, although some patients are awake and aware of
the seizure. Focal seizures can then be divided into motor and non-motor seizures.
Generalized seizures originate at some point within and rapidly engaging, bilaterally
distributed networks [7], whereby consciousness is almost always lost. There are
different types of generalised seizures, where the most common is a tonic-clonic seizure.
A tonic-clonic seizure begins with a phase where all muscle stiffen (tonic phase),
followed by a clonic phase where arms and legs begin to jerk. Epileptic seizures
are sometimes confused with other types of seizures, like Psychogenic Non-Epileptic
Seizures (PNES) or syncope (fainting).

A diagnosis of epilepsy can be made based on the semiology of seizures and an
electroencephalogram (EEG). Around 70% of patients are seizure free with use of
anti-epileptic drugs, but some are drug-resistant [6]. For those patients, surgical
treatment might be an option. During this surgery, the seizure onset area will be
removed. However, this is not suitable for every patient. It is important to timely
identify epilepsy so a treatment can be started. Additionally, the specific seizure type
and seizure onset area are essential to determine appropriate treatment.
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8 CHAPTER 1. INTRODUCTION

Figure 1.1: Observation room of the EMU at SEIN Heemstede. All measured signals
are displayed per patient; EEG, ECG, video and audio. Adapted from [14]

1.2 Clinical setting

People with epilepsy can be admitted to an Epilepsy Monitoring Unit (EMU), where
registrations are used to answer different diagnostic questions. Registrations can be
used to distinguish epilepsy from non-epileptic seizures, to determine seizure type and
classification or to examine or evaluate therapeutic options [9, 10]. EEG, electrocar-
diogram (ECG) and video are recorded during a registration.

The EMU at SEIN Heemstede is an 8-bed unit, where all patients stay in separate
rooms. Patients are admitted for up to 5 days. Per room, three to four remote control
cameras are installed that can capture the whole room, except for the bathroom. The
patient has an alarm button which can be used to alert staff. Patients are monitored
continuously by staff in an observation room. At the EMU of SEIN this is done by
specialized nurses. In the observation room, all recorded signals are shown for each
room as can be seen in Figure 1.1. An intercom system can be used to communicate
with patients. When a seizure is recognized by staff, patient safety is secured to reduce
adverse events like falls and traumatic injuries [11]. Additionally, standardized tests
are performed to assess consciousness, cognitive and neurological functioning during
seizures. These standardized tests can help to determine seizure type [12, 13]. It is
important to perform tests timely, since clinical symptoms can evolve during seizures.

1.3 Problem definition

Staff supervision demands skills and non-stop attention to be continuously vigilant
for any sign of a seizure. Since non-stop attention is unreachable, seizures can be
missed or recognized late. The study of Atkinson et. al. showed a response rate of
41% to seizures, with a mean response time over two minutes [15]. While response
rate and time can vary between different EMUs, response rate is always limited by
human capabilities. Seizures showing no or only subtle clinical semiology are more
often missed, and seizures outside the scope of the cameras can be missed. A previous
student, L. Jansen Holleboom, has researched the current performance in terms of
staff response to seizures and response time at the EMU of SEIN Heemstede. Nurse
response was seen in 67% of all seizures, with a median response time of 31 seconds
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after the first sign of the seizure [14]. A response time over 60 seconds was seen in
19% of the responses [14]. While this is better than described in other literature [15],
nurse response can still be improved.

Online seizure detection algorithms might help staff to detect seizures that are oth-
erwise missed or recognized late. Research at SEIN showed that 66.1% of undetected
seizures could be detected by an EEG seizure detection algorithm [14]. Additionally,
an median improvement of -25.6 seconds in response time could be achieved [14].
While these results are very promising, the false positive rate was never researched.
It remains unclear if it is feasible to use such algorithms online on the EMU at SEIN
and what changes are still needed.

1.4 Aim of this project

The goal for this project is to research if it is feasible to use seizure detection systems
on the EMU of SEIN and to make changes which make usages feasible. The following
main question is researched:

What changes can be made (in terms of sensitivity, specificity, latency and alarm-
ing) to an available EEG based detection system to make it feasible for online use on
the Epilepsy Monitoring Unit in SEIN to improve response rate and latency of nurses
to epileptic seizures?

Chapter 2 explains the methods that are used throughout all chapters. It explains
the complete data selection, scoring of the data and used definitions. Part of the data
collection is performed by L. Jansen Holleboom and another part by myself.

In Chapter 3 the added value of EEG seizure detections techniques is reported.
This provides information on the sensitivity, latency and false positive rate, if this has
added value on the already present staff and which patients could specifically benefit
from these algorithms. This research was partly performed by L. Jansen Holleboom.

Chapter 4 shows the methods and performance of an ECG seizure detection al-
gorithm. The algorithm was created to improve detection latency. This chapter
discusses which choices have been made in the algorithm. Additionally, information
is provided on the sensitivity, latency and false positive rate and, if the algorithm has
added value if it would be used on top of the EEG algorithm.

The last chapter, Chapter 5, discusses the possibilities for different alarm systems.
Since the function of a detection algorithm is highly dependent on the alarms and
response to alarms, this is an important research topic before implementation. The
following questions were answered: How do people respond to alarms?, How does
workload influence alarm response? What is known about alarm response in the
medical sector? What type of alarms exist? And what is known about these alarm
types?. And finally, what type of alarm system is recommended for the use of seizure
detection algorithms in the EMU of SEIN?
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Chapter 2

Mutual methods

Some of the methods and definitions are used throughout all chapters. Those methods
are explained in this chapter. It will explain the data collection, scoring of data and
the definitions that are used. Some of the methods were executed by a previous
student, L. Jansen Holleboom [14]. The data collection and scoring of the seizure
database were already completed. Scoring of the ECGs and the data collection and
scoring of the 24-hour database was performed in the context of this thesis.

2.1 Registrations

EEGs and ECGs were recorded with a sample frequency of 256 Hz, in a frequency
band of 0.01 to 1000 Hz. EEGs were placed using the international 10-20 electrode
placement system [16]. ECGs were recorded with two lead electrodes placed under
the left and right clavicle after polishing the skin.

For all registrations, video and audio recordings are available. After registration
and reporting, EEG, ECG, video and audio files are standardly cut for data reduction
to decrease storage space. Only important data of the registration is saved, like
diagnostic tests and seizures.

2.2 Data inclusion

Two databases were created; a seizure database and 24-hour database. The seizure
database consists of registrations with seizures that are standardly saved at SEIN. The
sensitivity and latency of different algorithms can be determined using this database.
False positive rate can only be determined on non-stop recordings without selection, to
represent the complete setting on an EMU. Therefore, the 24-hour database included
consecutive data. Inclusion criteria and the scoring process will be explained further.

11



12 CHAPTER 2. MUTUAL METHODS

Figure 2.1: Inclusion and division of the seizure database. All epileptic seizures longer
than five seconds between May 2014 and April 2015 were included, with a maximum
of two seizures per patient. The seizure database was divided into a learn and test
dataset. ECGs that were too short (<1.5 minutes before start seizures) were excluded
for the analysis of the ECG algorithm.

2.2.1 Seizure database

Data inclusion

Seizures of patients admitted to the EMU at SEIN between May 2014 and April
2015 were included retrospectively in the Seizure database. Seizures were only in-
cluded when they were defined as epileptic in the corresponding EEG report, so that
detection by an algorithm is possible. All included seizures had to be longer than
five seconds to make detection by staff and algorithms possible. A maximum of two
seizures per patient were included to prevent over-representation of certain individu-
als or seizure types in the database. If more seizures were present in the recording,
two were randomly selected out of the first five seizures. In these first seizures, it
is important to perform diagnostic tests, so staff response is required. This might
not be the case in later seizures. EEG and ECG file duration of seizures could vary
depending on how files were cut.
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Figure 2.2: A visualisation of the timing of a seizure, this might vary between patients.
CSO (clinical seizure onset), CSE (clinical seizure end), ESO (electrographic seizure
onset) and ESE (electrographic end) were scored for every seizure in the seizure
database and 24-hour database. A correct detection was defined as a detection within
ten seconds before the first start (ESO or CSO) of the seizure until ten seconds after
the last end of the seizure (ESE or CSE). Adapted from [14].

For the evaluation of the ECG algorithm, the database was further divided into a
learn and test dataset. Patients and seizures were randomly divided in two datasets.
Seizures with less than 1.5 minutes of data before the start of the seizure were ex-
cluded, since the ECG algorithm could only work properly when enough data before
the seizure was present. An overview of the included seizures and how it is divided
can be seen in Figure 2.1.

Scoring of seizures

The start and end of all epileptic seizures were identified by reviewers. Four differ-
ent time points were scored; clinical seizure onset (CSO), clinical seizure end (CSE),
electrographic seizure onset (ESO), and electrographic seizure end (ESE), as can be
seen in Figure 2.2. The ESO was defined as the moment where the first changes in
the EEG could be seen, which could range from small attenuations in the signal to
generalized epileptiform discharges. The ESE was defined as the moment where the
last pattern in the EEG ended. The CSO was defined as the start of the first clinical
symptom. And the CSE was defined as the moment when patients were able to take
care of themselves independently, since up to that point it is of value to respond to
seizures. This point might be before, during or after the post-ictal phase.

The performance of the ECG algorithm can only be evaluated using seizures with
an increase in heart rate. The heart rate was determined manually for the whole
Seizure database. The heart rate was determined at three instances: before the
seizure (30 seconds before ESO), during the start of the seizure (at ESO) and during
the seizure (15 seconds after ESO). At every time point, five QRS-complexes were
selected and with this time interval a heart rate was calculated. An increase in heart
rate was defined as an increase of at least 30 beats per minutes at the start of a seizure
or during the seizure, since research has shown an average increase of 30 beats per
minutes during seizures [17].
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Table 2.1: This table shows a description of how the electrographic and clinical char-
acteristics were scored. Adapted from [14].

EEG characteristics Clinical characteristics

1 No visible changes No visible changes

2 Subtle changes; these changes are
hard to notice

Subtle changes; these syptoms might
be missed

3 Clear focal changes; these changes
might not directly catch ones atten-
tion

Clear clinical symptoms; these symp-
toms might not directly catch ones at-
tention like tonic movement or wander

4 Clear diffuse changes; these changes
immediately catch ones attention

Very clear clinical symptoms; these
symptoms immediately catch ones at-
tention like tonic clonic seizures

Additional data collection

The electrographic and clinical characteristics of seizures were scored to evaluate
how clear changes were. Both characteristics were scored using values between 1
and 4, resembling no visible manifestations up to very clear manifestations from the
perspective of the nurses that monitor the patients. A description for these different
scores can be seen in Table 2.1. For every five seconds, the characteristics were scored
until staff responded, up to the first 60 seconds of the seizure. From these scores, a
mean value was calculated. Additionally, seizure classification was collected from the
EEG report.

2.2.2 24 hour database

Data collection

Full EEG recordings were included in a 24-hour database. This database included
60 consecutive patients with EMU recordings at SEIN Heemstede from September
2016. For every patient, up to 24 consecutive hours of the recording were randomly
included. The first 30 patients were included in the learn dataset and the next 30
into the test dataset. An overview of the included recordings and how it is divided
can be seen in Figure 2.3.

Scoring of 24-hour database

For the 24-hour database the start and end of all seizures were determined, using the
same definitions as for the seizure database. Additionally, the amount of abnormal-
ities in the interictal EEG were scored based on the EEG report. The amount of
abnormalities could be scored into four categories: Normal interictal EEG, Abnor-
mal interictal EEG with non-specific non-epileptiform abnormalities, EEG with some
epileptiform abnormalities and EEG with frequent epileptiform abnormalities.
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Figure 2.3: Inclusion and division of the 24-hour database. 60 consecutive patients
with EMU recordings from September 2016 were included. For every patient 16 to
24 hours were included. The first 30 patients were included into a learn dataset and
the last 30 patients into a test dataset.

2.3 Used definitions

The following definitions are used throughout all chapters:

Correct detection A correct detection for an algorithm was defined as a detection
within ten seconds before the first start of a seizure (CSO or ESO) and up to ten
seconds after the last seizure end (ESE or CSE) as can be seen in Figure 2.2. Correct
detections were calculated using the Seizure database.

Detection latency All detection latencies were calculated from the ESO, since
detection algorithms can only detect from these first changes. Additionally, latencies
of different algorithms can be compared since once definition was used. All latencies
were calculated using the Seizure database.

False positives A false positive was defined as a detection which was not during a
seizure, as in beyond ten seconds before the first start of a seizure (CSO or ESO) and
ten seconds after the last end (ESE or CSE). When a false positive occurred, a black-
out period of 10 seconds was defined, in which no new false positives could occur.
This black-out period was taken since if multiple warnings would occur, it would be
seen as one. A median false positive rate was calculated by taken the median of the
false positives per 24 hours of all patients.
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Chapter 3

The added value of EEG
seizure detection algorithms

3.1 Introduction

In an EMU it is of importance that seizures are recognized timely. When a seizure
occurs, patient safety is secured to reduce adverse events [11] and standardized tests
are performed to assess consciousness, cognitive and neurological functioning [12, 13].
Research has shown that the response to seizures needs improvement, with a response
in only 41% of seizures, with a median response time over two minutes [15]. While
response rate and time can vary between EMUs, response rate is always limited by
human capabilities. Online seizure detection algorithms might help staff to detect
seizures that are otherwise missed or recognized late. Seizures can be detected with
a variety of signals, like movement, electrodermal activity, heart rate and EEG. This
chapter will focus on seizure detection based on EEG, since it is closest to the source
of epilepsy, specific to epilepsy and standardly measured on an EMU.

With an EEG, brain activity can be assessed by measuring potential differences
over electrodes. Neuronal activity is measured, which mostly shows post-synaptic
currents of pyramidal neurons which are spatially closest to the cortical surface. The
electric potential generated by an individual neuron is too small to be measured. EEG
activity reflect synchronous activity of thousands or millions of neurons.

When evaluating an EEG signal, normal phenomena and rhythms are examined.
In people with epilepsy, interictal (in between seizures), ictal (during seizures) and
postical (after seizures) changes can be seen. Interictal changes are epileptiform dis-
charges characterized by a spiky morphology like spike and sharp waves. These in-
terictal changes are not present in all patients. Ictal dicharges are repetitive and
highly synchronous epileptiform discharges [18]. An example of ictal EEG changes
can be seen in Figure 3.1. And lastly, postictal changes can occur as EEG depression
or slowing, but this is not present in all patients [19]. Furthermore, certain seizure
types can have specific EEG patterns. For example, absence seizures show 3-4 Hz
generalized spike slow wave discharges [20].

EEG-based seizure detection tries to detect seizures based on the ictal changes
in EEG. It has been studied since 1982 [21] and the following decades a lot of re-

17
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Figure 3.1: Example of a normal EEG versus an EEG during an epileptic seizure.
Figure A shows a normal EEG. Large waves can be seen, which are artefacts caused
by eye blinking. Figure B shows an example of an EEG during an epileptic seizure. It
shows rhythmic discharges with increasing amplitude. Additionally, increasing muscle
activity can be seen.

search has been done on various approaches to detect seizures [22–24]. Recently,
EEG seizure detection software has also become commercially available, among them
Encevis EpiScan and BESA Epilepsy. Encevis EpiScan uses two modules which de-
tect rhythmic patterns and waves which are characteristics for epilepsy [25, 26]. To
detect seizures, the extracted features are continuously compared with past informa-
tion from the EEG. The BESA Epilepsy software calculates normalized energy and
integrated power for different frequency bands [27, 28]. This algorithm is based on
the hypothesis that seizure activity manifests itself by a change in frequency and
amplitude that is distinct from non-seizure or background activity. When extracted
features are above a threshold for over 10 seconds, a seizure is detected.

The performance of EEG detection algorithms has been studied thoroughly and
show good sensitivity and specificity [22, 23]. For Encevis EpiScan a sensitivity of 81%
with a false positive rate of 0.30 per hour has been reported [28]. BESA Epilepsy was
reported to have a sensitivity of 87% with a false detection rate of 0.22 per hour [27].
Although seizure detection software is commercially available with good sensitivity
and specificity, it is unclear what the added value is to seizure monitoring in an
EMU. Since these algorithms are not widely implemented in clinical settings [29], this
question remains unanswered. It is vital to research the added value of detection
algorithms on top of the detection by already present staff. Seizure detection will not
be a stand-alone system but an improvement to current staff. In this chapter, we will
therefore investigate this added value, by answering the following questions:

• What is the current response rate and response time of staff to seizures?

• What is the sensitivity, response time and false positive rate of Encevis EpiScan
and BESA Epilepsy in the same clinical data?

• What is the added value on the current response in terms of possible extra
detected seizures and faster response time?

• Which people could specifically benefit from these algorithms?
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The response of staff, Encevis EpiScan and BESA Epilepsy was already researched
by a previous student, L. Jansen Holleboom [14]. The research on false positives
and patient characteristics was researched during this project. For the readability, all
methods and results will be shown.

This chapter was written as an article for the publication in a journal. Also, it
was presented at the 32nd International Epilepsy Congress in Barcelona with a poster.
The poster is shown in Appendix I and the draft article in Appendix II.

3.2 Methods

3.2.1 Included data

The sensitivity and latency were researched on the Complete Seizure database. Seizures
where medical staff were already present at the start of a seizure, were excluded since
staff response could not be evaluated. This resulted in 188 seizures of 115 patients.
False positives were researched on the learn 24-hour dataset which included 30 pa-
tients of in total 617 hours. Inclusion criteria can be seen in Chapter 2.2.

3.2.2 Used algorithms

The detection algorithms Encevis EpiScan and BESA Epilepsy were tested. Encevis
EpiScan first uses advanced filter steps to remove artefacts [28]. The detection of
seizures is based on Periodic Waveform Analysis (which detects rhythmic EEG pat-
terns) and Epileptiform Wave Sequence Analysis (which analysis different aspects of
waves) [25, 26]. This last analysis can detect irregular structures, which are harder to
detect with spectral analysis like Periodic Waveform Analysis. Features are calculated
from these analysis and continuously compared with past information from the EEG.

The BESA Epilepsy software first removes artefacts by excluding high amplitude
EEG sections. Next, the normalized energy and integrated power are calculated for
different frequency bands [27, 28]. When extracted features are above a threshold for
over 10 seconds, a seizure is detected. Both algorithms were tested retrospectively,
due to online unavailability.

3.2.3 Sensitivity

Staff response was evaluated, by reviewing video retrospectively. A response was
defined as staff entering the room of the patient or using the intercom, between the
start of the seizure (10 seconds before ESO or CSO) and end of the seizure (10 seconds
after ESE or CSE). A median sensitivity of staff, Encevis EpiScan and BESA epilepsy
were calculated.

3.2.4 Latency

Latency of staff, Encevis EpiScan and BESA Epilepsy were calculated. For BESA
Epilepsy, 10 seconds were added to account for the delay in the algorithms online
functioning. A median latency of responses was calculated.
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Figure 3.2: Overall sensitivity of seizure detection algorithms Encevis EpiScan and
BESA Epilepsy on 188 seizures and sensitivity for seizures missed by staff. Based on
the results of [14].

3.2.5 False positives

False positives of Encevis EpiScan and BESA Epilepsy were calculated on the 24-hour
dataset. The median false positive rates were calculated.

3.2.6 Statistical analysis

The difference in patient and seizure characteristics (age, seizure classification, clinical
characteristics and electrographic characteristics) between detected and undetected
seizures (separately for staff, Encevis EpiScan and BESA Epilepsy) were tested for
statistical significance with a Chi-square test.

The difference in false positive rate for age and amount of abnormalities in the
EEG was tested for statistical difference with a Kruskal-Wallis test. Significance
level was set at p≤0.05. All analysis were performed using MATLAB (R2017a., The
MathWorks Inc.).

3.3 Results

3.3.1 Sensitivity

Sensitivity to seizures was 67.0% for staff, 77.6% for Encevis EpiScan and 65.4% for
BESA Epilepsy. Of the 62 seizures that were missed by staff, 41 could be additionally
recognized by Encevis EpiScan and 24 by BESA Epilepsy. There were 16 seizures that
could only be recognized by staff. The comparison of sensitivity of Encevis EpiScan
and BESA Epilepsy for all seizures and all undetected seizures by staff can be seen
in Figure 3.2.
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Table 3.1: Sensitivity of staff, Encevis EpiScan and BESA Epilepsy for seizures with
different characteristics. All characteristics were tested for statistically significant
differences with a Chi-square test.
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Figure 3.3: Time of detection of Encevis EpiScan and BESA Epilepsy compared to
the staff latency (zero seconds). An extra red line is drawn to take walking time of
staff into account (10 seconds). Some outliers could not be shown in the figure; for
Encevis EpiScan this was -1579, -611 and -215 seconds and for BESA Epilepsy this
was -552, -253, 309, 392 and 3173 seconds. Based on the results of [14].

The sensitivity for seizures with different characteristics can be seen in Table 3.1.
Staff had significantly lower response rate for children, focal seizures and clinically less
clear seizures. No statistical difference was found between children or adults in Encevis
EpiScan and BESA Epilepsy. Extra-temporal seizures and seizures with (almost) no
electrographic characteristics were still difficult to detect for these algorithms.

3.3.2 Latency

Staff had a median response time of 31 seconds, Encevis EpiScan of 10 seconds and
BESA Epilepsy of 14 seconds. In 83.5% of the seizures detected by staff, Encevis
EpiScan detected the seizure faster than the staff response. In 81.6% of the seizures
detected by staff, BESA Epilepsy detected the seizure faster than the staff response.
Figure 3.3 shows the time of detection of Encevis EpiScan and BESA Epilepsy com-
pared to staff latency.

3.3.3 False positives

Encevis EpiScan had a median false positive rate of 4.9 per 24 hours per patient and
BESA Epilepsy 2.1 per 24 hours per patient. A histogram of number of false positives
can be seen in Figure 3.4. Encevis EpiScan had low false positive rates for almost
every patient. Whereas BESA Epilepsy had zero false positives for most patients,
but also some outliers with a lot of false positives. Additionally, Encevis EpiScan had
most false positives during the first hours of the registrations, since the algorithm
requires a learning period. When the alarm of Encevis EpiScan would be turned off
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Figure 3.4: Histogram of number of false positives for different patients. It shows per
bin the percentage of patients that have that many false positives per 24 hours.

during the first hour, false positive rate would decrease with 36.4% and even 46.1%
if it would be turned off the first two hours.

Children had a higher false positive rate than adults for Encevis EpiScan (p=0.043),
with a median false positive rate of 6.99 per 24 hours for children and 4.47 per 24
hours for adults. The difference in false positive rate between the amount of ab-
normalities in the EEG was not significant. BESA Epilepsy also had a higher false
positive rate in children (p=0.0057), with a median false positive rate of 39.1 per 24
hours for children and 1.28 per 24 hours for adults. Additionally, EEGs with frequent
epileptiform abnormalities had a significantly (p=0.0308) higher false positive rate,
with a median false positive rate of 33.1 per 24 hours (compared to 1.16-9.86 for EEGs
with less abnormalities).

3.4 Discussion

Staff response to seizures could be improved with online EEG seizure detection al-
gorithms by improving response rate and response time. We were able to show that
66.1% of the undetected seizures by staff could be recognized by EEG seizure de-
tection algorithms. Additionally, in most seizures the algorithm detection preceded
detection by staff. The algorithms had acceptable median false positive rates. Es-
pecially children, patients with focal seizures and patients with seizures with clear
electrographic changes could benefit from these algorithms. These seizures showed a
lower response rate of staff, while the algorithms were able to detect seizures. Using
seizure detection algorithms on these patients, might help to ensure patient safety
and to assess consciousness, cognitive and neurological function. Seizures with none
to very subtle electrographic characteristics were difficult to detect by the algorithms.
Additionally, a higher false positive rate for both algorithms was found for children,
and for EEGs with frequent epileptiform abnormalities for BESA Epilepsy.
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The staff response and latency found in this study, is better than described in
literature, which shows a response rate of 41% with an average response time of 142.3
seconds [15]. This can be explained by differences between EMU settings, e.g. staff
experience or EMU layout. The sensitivity and specificity of the algorithms described
in this study, is comparable to literature [27, 28]. Delay time was not described. Ad-
ditionally, to our knowledge, the added value on already present staff has never been
researched.

Staff response and sensitivity of detection algorithms is influenced by characteris-
tics of seizures and patients. When there is a low response rate of staff but algorithms
are able to detect seizures, patients could especially benefit from these algorithms.
Staff response was highly dependent on the appearance of clinical characteristics, since
staff mostly respond based on symptoms seen on a video stream. While the algorithms
were dependent on presence of electrographic changes. This could also be seen in the
sensitivity for different seizure classifications. For example, generalised seizures are
electrographically and clinically very clear and therefore have a high response rate of
staff and algorithms. On the contrary, extra-temporal seizures are short with little
clinical and electrographic changes and therefore have lower response rate of staff and
algorithms. So, patients with clinically less clear seizures with electrographic changes
could benefit from these algorithms. Especially focal seizures had a low sensitivity of
staff but a high sensitivity of the algorithms and might benefit from these algorithms.
Additionally, a lower sensitivity of staff to seizures of children was seen. Therefore,
children might also benefit from seizure detection algorithms. A higher false positive
rate was also found for children, making it less applicable to use these algorithms.
This might be caused since the EEG has more variations in children [18, 20]. Also,
children had more often interictal abnormalities in the EEG, which also influenced the
function of the algorithms. Encevis EpiScan still had an acceptable rate for children
and is therefore preferable when used on children.

The algorithms could not be tested online, since at time of research they were not
ready for online implementation. Therefore, the true effect of these algorithms could
not be researched. For example, staff might not react to all alarms or take a long
time to react to alarms. Therefore, the algorithms should be tested online before im-
plementation. The used alarm system is then very important, since this will influence
the decision of staff to respond to an alarm. Additionally, two different databases
were used to test the algorithms on a large number of seizures and long periods of
continuous data. Using full recordings can provide a better view on the function of the
algorithms, since it shows the amount of false positives relatively to the true positives.
However, this was not present at time of research. And lastly, staff response can vary
between different EMU settings. Depending on how staff is educated and patients
are monitored, response rate can be higher or lower. Therefore, the added value of
EEG seizure detection algorithms can also be different in another setting. Besides the
EMU setting, patient characteristics can vary between different EMUs, which could
influence the performance of the algorithms. Since different patient characteristics
were analysed, results still can be interpreted for different settings.

Since the results of this study were very promising, there is a wish to implement
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one of the algorithms at SEIN. Based on the results of this study, SEIN will proceed
with Encevis EpiScan. Encevis Episcan showed better sensitivity and a lower false
positive rate than BESA Epilepsy. Additionally, Encevis EpiScan is closer to online
implementation. From this point on, this study will focus on Encevis EpiScan. The
results of Encevis EpiScan were discussed with clinicians. Sensitivity was already
very satisfying, no further improvements needed to be made before implementation.
However, false positive rate was seen as acceptable, but not great. The latency was
also a point of improvement. While the latency is better than response time of staff,
some seizures are still recognized late.

3.5 Conclusion

Online EEG seizure detection algorithms could improve the nurse response to seizures
on an EMU, by detecting extra seizures and improving response time. This might help
to ensure patient safety and to assess patient consciousness, cognitive and neurological
function timely. Especially children, patients with focal seizures and patients with
seizures with clear electrographic changes could benefit from these algorithms. Points
of improvement are specificity and latency.
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Chapter 4

An ECG seizure detection
algorithm

Still, we would like to improve the performance of Encevis Episcan as described in
Chapter 3. The observed sensitivity was satisfying, but the false positive rate and
time of detection are points of improvement. Therefore, for this project, we assessed
the feasibility to improve detection latency by creating an additional algorithm based
on heart rate changes. Heart rate changes have been researched extensively. These
changes occur often during seizures. Most of the time they occur in the beginning
or even before electrographic start of a seizure [17, 30–32]. The study by Furbass
et al demonstrated that an ECG detection algorithm has a smaller detection delay
than Encevis EpiScan. [33]. However, problems have also been reported with the
use of ECG as a seizure detector, such as a low stability of electrodes, and difficulty
with distinguishing normal heart rate changes from seizures [34, 35]. Therefore, we
investigated if an ECG seizure detection algorithm could be developed that could be
used on top of Encevis EpiScan. Additionally, the detection algorithm should show
an added value in terms of extra detected seizures or faster detection time.

4.1 Introduction

Ictal alteration of the heart rate is caused by propagation of seizure activity in the
central autonomic control centres. This can disturb the normal control of cardiac
functions. The most common change during seizures is an increase in heart rate,
which is called tachycardia. The most accepted theory explaining this mechanism is
the propagation of epileptic discharges towards the right insular cortex [30]. Research
has shown a predominance for ictal tachycardia in right sided temporal seizures, sup-
porting this theory [30, 31]. However, not all studies observe this predominance, which
suggests that other factors play a role in the pathogenesis of ictal tachycardia [30].
Ictal tachycardia occurs in a round 82% of patients [17]. There is intra-individual
variability, meaning not all seizures of one patient result in an increase in heart rate.
The prevalence of tachycardia is not particularly different between partial (64%) or
generalized (71%) seizures [17]. The average increase in heart rate is 30 beats per
minute or a relative increase of 50% [17]. These changes often occur before changes

27
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Figure 4.1: Panel A shows a model of ictal heart rate changes (adapted from [36]). The
heart rate starts at a baseline. At seizure onset, there is a linear acceleration in heart
rate, followed by a plateau, and an exponential deceleration, occasionally accompanied
by an undershoot. Panel B shows an example of ictal heart rate changes in a patient
where the heart rate was calculated manually (adapted from [32]). The arrowhead
points at the clinical onset of the seizure and the arrow at the electrographic onset.
This demonstrates that the heart rate increases rapidly after seizure onset.

can be observed in the EEG. Furthermore, almost all of these changes occur within
the first 30 seconds of seizure onset. A model of ictal heart rate changes and an
example of a patient can be seen in Figure 4.1.

One of the firsts steps of an ECG seizure detection algorithm is the detection of
QRS-complexes, so a heart rate can be calculated. Different techniques to detect
QRS-complexes are described in literature. One of the oldest and most described
algorithms is the Pan-Tompkins algorithm. This algorithm was created in 1985 to de-
tect QRS-complexes real-time in the ECG. It consists of extensive filters, after which
adaptive thresholds are used to detect the QRS-complex. The algorithm has shown a
correct detection of 99.3% QRS-complexes in a commonly used arrhythmia database
(the 24h MIT-BIH arrhythmia database) [37]. The Pan-Tompkins algorithm has been
thoroughly researched and demonstrates very low error rates [38–40]. Another fre-
quently described technique is the use of continuous or discrete wavelet transforms
[40, 41]. With these techniques, wavelets are shifted over the ECG. When the correla-
tion between the wavelet and the ECG is high, a QRS-complex is detected. This tech-
nique is often described in literature, but research has shown that the Pan-Tompkins
algorithm has a higher positive predictive value compared to wavelet transforms [40].

Morevoer, a lot of techniques have been described to denoise the ECG, such as
the Empirical Mode Decompisition (EMD) and the Hilbert-Huang transform. EMD
breaks a signal down into multiple intrinsic mode functions (IMF). This technique
can be compared with techniques such as Fourier transform or Wavelet transform.
Another way to use this method is the Hilberg-Huang Transform. This transform
does not only use EMD to decompose the signal into IMF, but also applies the Hilbert
spectral analysis to obtain instantaneous frequency data.

Even more techniques are described in literature that can be used in an ECG
algorithm, ranging from neural network approaches to advanced filtering, such as
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matched filters [39, 41, 42]. For most ECGs, these algorithms provide the intended
use. Nevertheless, all of them have problems in case of noisy signals, artefacts or
deviating QRS-complexes [42, 43].

Several articles have been published that describe algorithms for ECG seizure
detection . However, most of these described algorithms are not feasible for online
use, investigate other features than tachycardia, need multiple seizures for the cre-
ation of patient specific algorithms, or require manual adjustments [44, 45]. The
most described techniques for the detection of QRS complexes are pattern recogni-
tion or (an adjusted version of) the Pan Tompkins algorithm [31, 33, 44]. There is
no agreement on one specific algorithm that surpasses all other algorithms in the de-
tection of seizures. Therefore, the decision was made to develop an algorithm based
on techniques often described in literature. In this chapter, the different steps of this
algorithm will be described. Furthermore, reasons for choosing these different steps
and settings will be explained. Thereafter, the performance and added value on top
of Encevis EpiScan will be reported. This chapter will answer the following questions:

• What steps are needed to develop an ECG seizure detection algorithm? Addi-
tionally, the reason for choosing these steps will be explained.

• What is the sensitivity, latency and false positive rate of the developed ECG
seizure detection algorithm?

• What is the added value on Encevis EpiScan in terms of possible extra detected
seizures and faster response time?

• Is it feasible to use the ECG seizure detection algorithm on top of Encevis
EpiScan in terms of extra false positives?

• Are there people that could or could not specifically benefit from the algorithm?

4.2 Methods

4.2.1 Algorithm

Different steps of the algorithm will be explained and the reason for choosing these
steps will be explained.

Step 1: Pan Tompkins algorithm

We chose to use the Pan-Tompkins algorithm since it is very robust, has a low compu-
tational load, and because it has been extensively researched. The algorithm consists
of multiple pre-processing steps; first a band-pass filter between 5-15 Hz is applied
and next, the derivative, square and a moving average filter (of 0.15 seconds) is taken.
Thereafter, QRS-complexes are detected based on adaptive thresholds. Lastly, miss-
ing peaks and peaks that are no QRS-complexes are detected and eliminated. A flow
chart of the algorithm can be seen in Figure 4.2 and the complete technical back-
ground of the algorithm can be seen in Appendix III.
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Figure 4.2: Flow-chart of the steps of the Pan-Tompkins algorithm to detect QRS-
complexes. The pre-processings steps of the algorithm are shown; a bandpass filter
between 5-15 Hz, a derivative and the square of the signal. Additionally, the different
steps for the detection of QRS-complexes are displayed. First, all peaks in the signal
are detected. Possible QRS-complexes are determined based on adaptive thresholds.
There is checked for missed tops and thresholds are adapted based on that. Lastly,
non QRS-complexes are eliminated.

Adaptations to the Pan Tompkins algorithm Some additions to the Pan
Tompkins algorithm were necessary for a proper functioning of the algorithm. Four
steps were added to reduce false positives and increase the sensitivity. These steps
were focused on improving the thresholds and eliminating peaks that were likely no
QRS-complexes. All details of the added steps are explained in Appendix III. The al-
gorithm was executed with and without the adaptations to evaluate how it influences
the performance.

Step 2: Processing the heart rate

The heart rate was calculated from every beat-to-beat interval. A lot of deviating
non-physiological heart-rate values were calculated due to the fluctuating nature of
the ECG. Therefore, three different steps were performed to increase the reliability.

First, all non-physiological values (heart rates above 220 beats/min) were removed.
Second, outliers in the signal were removed. An outlier was defined as a data point
that was more than two times the standard deviation measured from the mean. The
standard deviation and mean were calculated for the data point and a window of
512 previous data points. Therefore, this step only uses data from the past and can
be used online. Lastly, a moving average filter was applied, which calculated a new
mean heart beat based on the last 10 heartbeats. This last step ensured that very
fast changes are removed. Subsequently, a trend of the heart rate was saved.

Step 3: Identifying seizures

A seizure can be identified by an increase in heart rate. However, since this increase
can also occur due to physiological changes or artefacts, the absolute increase in
heart rate should not be used alone to detect seizures. An adjustable threshold was
calculated based on the reliability of the heart rate. This reliability was calculated
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with the standard deviation. When a sudden increase in heart rate occurred in a
period with a small standard deviation it is more likely to be a seizure, whereas when
an increase occurs over a period with a higher standard deviation which can be related
to movement artefacts. Therefore, an adjustable threshold (Thr) was calculated as
given in Formula 4.1. When the heart rate (hr) exceeded this threshold, it was
classified as a seizure. The mean and standard deviation of the heart rate were
calculated over a period of 5 minutes. In this manner, fast changes could still be
measured, but slow changes resulted in no detection, because the threshold would
change together with the increase in heart rate. A blackout period of 10 seconds was
applied after every detection. In this period, no new detection could occur. Different
parameter settings for the threshold were tested to determine an optimum threshold.

Thr = mean(hr) + 20 + 3std(hr) (4.1)

Other explorations

Three other methods were tested as a possible addition to the algorithm. First, two
methods were investigated that might filter out noise or artefacts; EMD and the
Hilbert-Huang transform. These methods were tested on some of the data of the
Learn dataset to investigate their effect.

The last exploration was to remove ECG when it was unreliable, which may reduce
false positives. The reliability of the ECG was based on the energy, which will increase
when noise or artefacts are present. An adaptive threshold was determined per patient
and consisted of a mean energy plus the standard deviation. When the energy of
the ECG exceeded this threshold, the heart rate in the corresponding window was
deleted. An adaptive threshold was chosen, because the energy of the ECG is very
patient depended. A maximum and minimum value was chosen for the threshold. The
algorithm was run with and without this adaptation to evaluate how it influences the
performance.

4.2.2 Effect of different steps

The algorithm, with different parameter settings, was tested on the ’Learn Seizure
dataset ECG’ and ’Learn 24-hour dataset’. The inclusion criteria can be seen in
Section 2.2. The effect of different steps will be explained in the results. Additionally,
a final parameter setting for the threshold for the identification of seizure was chosen
based on these results.

4.2.3 Evaluation of the performance

The performance of the final algorithm was evaluated on a different dataset to prevent
overfitting. The algorithm was evaluated on the ’Test Seizure dataset ECG’ and ’Test
24-hour dataset’. The Test Seizure dataset consisted of 58 seizures of 41 patients. The
Test 24-hour dataset included 30 patients with consecutive registrations of in total
618 hours. Inclusion criteria can be seen in Section 2.2.
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Performance and added value

Sensitivity and latency were calculated on the Test Seizure dataset. The false positive
rate was calculated on the Test 24-hour dataset. The added value on top of Encevis
EpiScan was evaluated by running the algorithm on the same dataset. Thereafter, the
added value of the ECG algorithm was determined as extra detections or faster detec-
tion time. The drawback of the developed algorithm was determined by evaluating
the amount of extra false positives.

Statistical analysis

Different patient characteristics were evaluated that could be of possible influence on
the performance of the ECG algorithm. The difference in subject age and seizure
classification between detected and undetected seizures were tested for statistical sig-
nificance with a Chi-square test. The difference in latency and amount of false posi-
tives for different age and seizure classifications were tested for statistical significance
with a Kruskal-Wallis test.

4.3 Results

4.3.1 Effect of different steps

The different steps were evaluated on the learn dataset to evaluate if and where
improvements were required. Additionally, the final settings were determined. Figures
displaying examples of the functioning of the algorithm can be seen in Appendix IV.

Pan-Tompkins algorithm

The Pan-Tompkins algorithm showed promising results for most patients. However
during artefacts, the heart rate could not always be calculated accurately. Addition-
ally, in some very noisy ECGs the heart rate could also not be determined accurately.

Adaptations to the Pan-Tompkins algorithm

The algorithm was tested with and without the adaptations. With these adaptations,
the false positive rate would decrease from a median false positive rate of 4.25 to 0 per
24 hour per patient. In addition, sensitivity increased slightly from 33.3% to 37.5%
in seizures with an increase in heart rate of 30 beats/min. This demonstrates that
the added steps improved the performance of the algorithm.

Processing of the heart rate

Different window sizes were evaluated for the processing step. When using a moving
average filter on less data points, overly fast changes in heart rate were still in the
signal. When using a window larger than 10 beats, these fast changes were deleted.
However, this also resulted in a delay. The window size was, therefore, set to 10 heart
beats. This step resulted in less outliers and a smoother heart rate signal.
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Table 4.1: The sensitivity, detection time and false positive rates for multiple settings
of the classifier. This was tested in the Learn Seizure dataset ECG on seizures with
an increase in heart rate (n=24) and the Learn 24-hour dataset (n=30, 617 hours)

Setting threshold Sensitivity Median time of
detection in sec-
onds (p5-p95)

Median false pos-
itive rate per 24
hours (p5-p95)

mean(hr) + 20 + 3 ∗ std(hr) 37.5% 40.2 (21.3 - 115) 0 (0 - 5.00)

mean(hr) + 15 + 3 ∗ std(hr) 50.0% 34.8 (10.9 - 111) 2.30 (0 - 17.0)

mean(hr) + 20 + 2 ∗ std(hr) 54.2% 33.4 (8.75 - 70.9) 5.03 (0 - 41.5)

mean(hr) + 15 + 2 ∗ std(hr) 62.5% 33.4 (8.77 - 69.5) 17.7 (0 - 79.3)

Figure 4.3: ROC-curve for different threshold settings. Two different thresholds were
tested; two and three times the standard deviation. An additional variable was added
ranging between 10 and 20. The sensitivity and false positive rate was calculated for
these different thresholds. Results with a higher false positive rate than 25 per day
were not displayed, as it is not feasible to use such a false positive rate online.

Identifying seizures

A sensitivity of 21.1% with a median detection time of 38.7 seconds was observed.
There was a median false positive rate of 0 per 24 hour per patient. The sensitivity
was low, but not all patients had an increase in heart rate during seizures. Therefore,
the performance of the algorithm was researched on the seizures with an increase in
heart rate of at least 30 beats/min (n=24). The sensitivity, detection time and false
positive rates for multiple settings of the threshold can be seen in Table 4.1 and in
Figure 4.3. Most undetected seizures had a lot of variation in the heart rate before the
seizure start. This would result in a higher standard deviation, and hence, a higher
threshold. Additionally, some of the seizures had a minimum increase in heart rate,
thus not enough for detection.
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Figure 4.4: Overall sensitivity of the ECG seizure detection algorithm for all 58
seizures. Of the 13 missed seizures by Encevis EpiScan, 4 extra seizures were detected
by the ECG seizure detection algorithm.

Since the algorithm will be used on top of Encevis EpiScan, only low false positive
rates (<5 per day) were acceptable. A final threshold was selected with the highest
possible sensitivity and that false positive rate. The following threshold was selected:

Thr = mean(hr) + 16 + 3 ∗ std(hr) (4.2)

Other explorations

EMD did not show additional value besides of the developed algorithm. Signal and
noise/artefacts were not separated into different IMF and they could therefore not be
separated. Therefore, this method could not be used to reduce artefacts or noise. The
Hilbert Huang transform was also investigated. When applying this technique, the
ECG seemed less noisy. However, when using the filtered ECG in the Pan-Tompkins
algorithm, this did not provide a better detection of QRS-complexes.

Removing unreliable ECG did result in a slightly lower false positive rate; the mean
false positive rate decreased from 1.00 to 0.61 per 24 hours. However, the sensitivity
also decreased (from 21.1% to 17.5%), and the detection latency increased substan-
tially (from 42 seconds to 95 seconds). Data points that were removed during the
beginning of the seizure caused this longer detection time. Since the ECG algorithm
was created to improve latency, this method was not used in the final algorithm.

4.3.2 Evaluation of the performance

Sensitivity

Sensitivity was 29.3% in all 58 seizures and 47.8% in the 23 seizures with an increase
in heart rate. Of the 13 undetected seizures by Encevis EpiScan, 30.8% could be
additionally recognized by the ECG algorithm. The overall sensitivity and sensitivity
for the missed seizures by Encevis EpiScan can be seen in Figure 4.4.
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Figure 4.5: Detection time of the ECG seizure detection algorithm. The left panel
shows the time from the beginning of the seizure (ESO) until the seizure was detected.
The right panel shows the difference in detection time between the ECG algorithm
and Encevis EpiScan. Encevis EpiScan was faster than the ECG algorithm for all
seizures that were detected by both algorithms. Two outliers were not shown in the
figure; 1204 seconds for the left panel and 1193 seconds for the right panel.

Latency

The latency of the algorithm compared to ESO and Encevis EpiScan can be seen in
Figure 4.5. A median latency of 41.4 seconds was observed in all detected seizures
and a median latency of 36.5 seconds in the group of seizures with an increase in
heart rate. Encevis EpiScan was faster than the ECG algorithm for all 13 seizures
that both algorithms detected.

False positive rate

The median false positive rate was 0 per patient per 24 hours. The distribution of
the amount of false positives per patient can be seen in Figure 4.6. This figure shows
that 60% of patients had no false positives and 90% had less than 4 false positives.

The distribution of false positives over time can be seen in Figure 4.7. False posi-
tives occur throughout the day. An increase in false positives was observed between
8:00 and 10:00. This is most likely caused by movements artefacts due to waking up,
getting dressed and having breakfast.

When combining the ECG and the Encevis EpiScan algorithms, a total median
false positive rate of 7.62 per 24 hour can be attained.

Patient characteristics

Different patient and seizure characteristics were tested for their influence on the
performance of the ECG algorithm. The difference in sensitivity and latency can be
seen in Table 4.2.
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Figure 4.6: Histogram of number of false positives for different patients. It shows per
bin the percentage of patients that have that many false positives per 24 hours. This
figure shows that 60% of patients have 0 false positives. Additionally, 90% of patients
had less than 4 false positives per 24 hours.

Figure 4.7: Distribution of all false positives (n=34) over time.
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Table 4.2: Sensitivity and latency for the ECG seizure detection algorithm for seizures
with different characteristics. The difference in sensitivity was tested with a Chi-
square test and the difference in latency with a Kruskal-Wallis test.

Only the seizure classification had a significant influence on the latency. Children
had a slightly higher median false positive rate; 0.73 per patient per 24 hour compared
to 0.00 for adults. This was however not statistically significant (p=0.884).

4.4 Discussion

An ECG seizure detection algorithm was created that consisted of the Pan-Tompkins
algorithm, processing the heart rate, and a classifier. An acceptable sensitivity and
latency and a very good false positive rate was seen. There was added value on Ence-
vis EpiScan in terms of extra detected seizures. However, no added value was seen
in terms of detection time. It is feasible to use the ECG algorithm on top of Encevis
EpiScan, because of the very low false positive rate.

4.4.1 Sensitivity

In the literature, a better sensitivity is reported than observed in this study. However,
algorithms described in literature are not always applicable for online use [46] or do not
provide information on the latency and false positive rate [44]. Additionally, making
a comparison to other algorithms is difficult, since performance is also depended on
the used dataset. This study used an unselected patient group, while in other studies
this is not always the case.

The moderate sensitivity in this study was a result of excessive movement prior
to seizures or a minimal increases in heart rate during the seizure. Additionally, a
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high threshold for identifying seizures was taken to decrease the false positive rate as
much as possible. Adjusting this threshold can lead to a better sensitivity.

4.4.2 Latency

The detection latency is not often described in literature. The latency is however
important on the EMU, because standardized tests are ideally performed during the
beginning of a seizure. This research showed a good latency with the ECG algo-
rithm, but no faster detections than Encevis EpiScan. However, this was researched
on thirteen seizures that were detected by both algorithms. An improvement in la-
tency was described in literature [33]. Such an improvement, may be achieved when
investigating the algorithm on a bigger patient group. The detection time of the ECG
algorithm cannot be improved tremendously, using other methods or settings. It took
a while before an increase in heart rate was seen in the used dataset. Significantly
faster detection is therefore not possible, since a detection is only possible when a
heart rate change is present.

4.4.3 False positive rate

The false positive rate was very low, a median false positive rate of 0 was achieved.
Since the ECG algorithm would be used on top of Encevis EpiScan, only an extreme
low false positive rate was acceptable. This research has proven that a low false
positive rate using ECG is possible. Nevertheless, further research should focus on
a reduction of false positives. That way, a lower threshold for the identification of
seizures can be taken and the entire performance of the algorithm will improved.

4.4.4 Patient characteristics

Different patient and seizure characteristics were evaluated to research their influence
on the performance of the ECG algorithm. The added value of the algorithm might
be highest in extra detected extra-temporal seizures or faster detection in tempo-
ral seizures. Encevis EpiScan has the lowest sensitivity in extra-temporal seizures,
whereas the ECG algorithm had the highest sensitivity. Additionally, the ECG al-
gorithm has the fastest response time in temporal seizures. These results are very
promising, since the ECG algorithm performs best in the seizures in which Encevis
EpiScan performs the worst. This shows that even though the ECG algorithm may
not have a good sensitivity on its own, it does have added value on top of Encevis
EpiScan. However, most of these results were not statistical significant, probably due
to the small patient cohorts.

4.4.5 Future work

As explained previously, future research should focus on the reduction of false posi-
tives. The first step would be to collect noise-free ECGs. Some of the data that was
used was very noisy which influenced the performance of the algorithm. Collecting
data more carefully could already significantly improve the performance. Moreover,
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it should be investigated if other methods for the measuring of the heart rate will
improve the performance of the algorithm. For example, different placements of elec-
trodes, different types of electrodes or even a completely different technique such as
photoplethysmograpy might improve signal to noise ratio.

After collecting signals with a better signal-to-noise ratio, the algorithm itself could
be further improved. First, not all parameter settings were optimized and this should
be done before the implementation. As explained in the results, the Pan-Tompkins
could not accurately determine the QRS-complexes in the presence of artefacts or in
noisy ECGs. We would suggest to improve the performance of the Pan-Tompkins
algorithm by using sophisticated algorithms. For example, by only searching for a
new QRS-complex in a time frame when a new QRS-complex is suspected or by using
advanced filter methods.

We do not believe there is added value of using other types of detectors (for
example EMG or accelerometers) on top of Encevis EpiScan. Those detectors perform
best on tonic-clonic seizures or hypermotor seizures. Staff almost always recognizes
these types of seizures and the algorithm of Encevis EpiScan can already accurate
detect these types of seizures. On the contrary, the ECG algorithm excels in the
seizures that need improvement.

4.5 Conclusion

An ECG seizure detection algorithm was created with a sensitivity of 47.8% a median
detection time of 36.5 seconds and a median false positive rate of 0.0 per day. Added
value on Encevis EpiScan was seen in terms of extra detected seizures. No added value
was seen in terms of faster detection time, but this needs to be researched on a larger
patient group. The added value might be highest in extra-temporal and temporal
seizures. Further research should focus on collecting noise-free ECGs. Thereafter, the
detection of QRS-complexes can be improved.
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Chapter 5

Alarm systems

The past chapters have shown that seizure detection algorithms can improve staff re-
sponse to seizures. Nonetheless, a response to these algorithms can only occur when
an alarm is given, and this function is currently not provided by Encevis EpiScan.
Therefore, an alarm system has to be designed. The design of an alarm system is
frequently overlooked, resulting in inefficient alarm systems. Impractical alarms can
lead to alarm fatigue; alarms are considered as an annoyance and will be disabled,
silenced or ignored by the observer. Rather than creating a safer environment, nurses
are desensitized by alarms. These problems can be overcome, but the design of an
alarm system is very important. An appropriate alarm system can result in a better
response to warnings and therefore create a safer environment.

What a good alarm system is, is however not clear. Alarms come in different
types, and what is best depends on the situation. To give an example, a housebreak-
ing alarm is designed to induce flight and is therefore not suitable in a work situation,
but very effective to scare burglars. So there is not one clear design that works in
every environment. We will therefore review different alarm systems and why people
do or do not respond to it. With this information, recommendations can be made to
what design would be suitable for an alarm system at the EMU of SEIN.

The main question in this chapter is what type of alarm system is recommended for
the use of seizure detection algorithms at the EMU of SEIN. To answer this question,
we will research the following questions with a literature study:

• Why do people respond to alarms?

• How does workload influence alarm response?

• What is known about alarm response in the medical sector?

• What type of alarms exist? And what is known about these alarm types?

41
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5.1 Response to alarm

An alarm is a stimulus which gives information about a future event with a possible
negative outcome. People perceive it as a possible threat on which they need to act.
How people respond to these threats depends on different properties of the threat.
In case of alarms, the following are especially important: the extent to which active
coping is possible, the imminence of the danger and the probability of the impending
danger to actually materialize [47].

This first property is to which extent active coping is possible; can some-
thing be done to eliminate the threat? So if there are directions how to cope with an
alarm, it might be easier to react on an alarm. Additionally, alarm systems are only
beneficial if something can be done to eliminate the threat. In the EMU setting, it
has to be very clear what needs to be done when an alarm occurs. This way, staff
knows how to react and can respond accurate to an alarm.

The second property embeds the imminence of the danger. For example, if an
alarm occurs when someone might be dying, people are very likely to respond. The
threat is very detrimental if it would materialize. In the setting of an EMU, the threat
(a possible seizure) is mostly fixed. However, the perception of this threat can be dif-
ferent. It is therefore important, that during the implementation of such a system,
that is explicitly told that reaction to alarms can possibly prevent harm to the patient.

The last property is the probability of the threat to actually occur. In the
EMU setting, this is the probability an alarm is true. When many false positives are
present, the likelihood an alarm is true will decrease and the motivation to act on
the threat will decline, this is also called the cry wolf effect [48, 49]. Research has
even shown that response rate is comparable to the reliability of the system [49–51].
This can be explained by the choice strategy most people use; probability matching.
When one outcome appears with a higher probability than the other, people tend to
match their choice based on the probability. For example, if people need to guess
which color of light will be shown (and 75% of the trials the light is green and 25%
is red), people will tend to choose 75% of the trials for green and 25% for red [52].
Another choice strategy than can be used in the response to alarms is maximizing;
where people tend to react to all or no alarms in the given set. In other words, in
the same example of red and green light, people will tend to always choose for green
since this will have the highest chance of good results [52]. So the response to alarms
depends on choice strategy, but it also depends on personality traits [53]. Choices are
not only made on chances, but as well based on norms, habits, and expectancies of
the decision maker [54].

False positives have a negative effect on this third mechanism. The impact of
this effect is partly irreversible. When a person has an experience with a lot of false
positives, he or she will perceive a new alarm system as less reliable, even when the
experience is independent and not relevant [48]. This is also the case in the medical
workfield, where alarms can represent life-threatening conditions [55]. Luckily, when
a true alarm occurs, the credibility of the alarm will increase and reverse this effect.

Futhermore, there are methods to overcome the cry wolf effect. As already ex-
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plained, there is a high tendency of humans to respond to a high-urgency alarm [47].
So the imminence of the danger is more important than the probability it will occur.
Additionally, people can perceive the probability that the danger will occur differently
than the actual reliability of the alarm system. Research has shown than when par-
ticipants were told that false alarms would be less frequent than they actually were,
the response rate was higher [47].

Concluding, the response to alarms is dependent on three different behavioural
mechanisms. In EMU setting it should be clear what actions should be taken when
an alarm is set off. Additionally, the perception of the system is more important than
the actual reliability of the system. And lastly, the amount of false positives should
be decreased as much as possible to diminish the cry wolf effect.

5.2 Influence of workload on response rate

In EMU settings, the primary work of staff is monitoring of patients, next to giving
medication, helping patients with daily activities, filling in reports and discussing
patients with physicians and EEG technicians. When busy with other work, alarms
might not always be noticed directly. To overcome this problem, an alarm has to be
picked up by the nurses parallel of other work [56]. For example, when staff at the
EMU is filling in reports, a visual alarm might be missed since attention is focused
on the reports, while an audible alarm is less easily missed. Therefore an alarm sys-
tem has to be designed in such a way that it attracts people’s attention even when
busy with other work. Another issue to overcome the attention problem, is that the
observer needs to assess directly if the alarm needs a shift in attention or not [56].
Research has shown that people can only remember a small amount of unrelated in-
formation like different sounds [57]. Like on ICU’s, often too many sounds are used
whereby only a small amount can be recognized [58]. Therefore it is very important
than only a few different sounds are used. At the EMU of SEIN Heemstede, currently
only one other alarm is used; that of the alarm button. When this button is pressed,
the patient feels a seizure or a visitor of the patient recognizes a seizure. To keep it
manageable, we would recommend only two sounds; one for definitely a seizure (alarm
button) and one for possibly a seizure (seizure detection).

When the attention goes to the alarm, the observer has the choice if he is going to
respond to it. If the staff is busy with other tasks, there occurs a dual-task paradigm;
whether attention must be shifted from the primary task to the response to an alarm.
If the primary workload is important, alarm task performance worsens when primary
task workload increases [50]. Operators need to prioritize their time and effort between
different tasks and base this on task-critical and likelihood information [56, 59]. So
how critical is it to respond to an alarm and what is the likelihood that the alarm is
true? For example, if staff is busy and they think a patient is not having a seizure,
they might not respond to an alarm. The dual-task paradigm can be overcome at
the EMU when it is protocol to always leave primary workload and to shift to the
response of an alarm. In other words, it is more critical to respond to an alarm than
to go further with the primary task. Protocols need to be made on how staff needs
to respond. For example, at every alarm diagnostic questions must be asked to the
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patient to evaluate if the patient has a seizure. When this is the case, all standardized
tests can be performed, when this is not, staff can go back to their primary workload.

5.3 Alarms in the medical section

5.3.1 Alarms in the EMU

Only one article on alarms in the EMU was found during the literature search. Avail-
able safety signals at EMUs were telemetry (cardiac/pulse oximetry), nurse call but-
tons, event push buttons, patient noise and video [60]. Not all events lead to response,
in fact 10% of the signals were missed [60]. It was not reported if the type of alarm
influenced the alarm rate.

5.3.2 Alarms at other departments

More research is present in other fields of medicine; most articles written on the ICU
setting where alarm fatigue is a well-known problem. A lot of existing alarm systems
try to achieve the best sensitivity, even with an extremely high false positive rate.
Research has shown that only 1% to 20% of alarms at an ICU is relevant, whereas 44%
are technical false alarms [61, 62]. These alarms are known as ’nuisance’ alarms [63].
The alarm is considered as an annoyance and will be disabled, silenced or ignored by
the observer. Rather than creating a safer environment, observers are desensitized
by all alarms. So, an excessive amount of alarms should be avoided to reduce alarm
fatigue. This can be incorporated in the EMU by only setting alarms were patient
safety is at risk or when diagnostic tests are necessary. When multiple seizures have
already occurred, a seizure detection algorithm might not be necessary. Also when the
chance of detection a seizure is extremely low, it might be better to turn off seizure
detection (for example in very short seizures). Since in that case positive predictive
value is very low and alarms will be seen as more nuisance.

The response mechanism to alarms in the medical sector, is the same as already
described. Nurse response is dependent on the criticality of the patient, signal du-
ration, rarity of alarming device and workload [50, 61, 64–67] Nurses determine the
danger of the threat, use probability matching which takes reliability of the alarm
into account and dual-task paradigm occurs based on the primary workload. Primary
workload can also lead to alarms that are unnoticed, for example if nurses have to do
off-floor activities [68]. A good monitoring system, high enough alarm volumes and a
beeper system can solve these problem.

Another problem with most alarms in a medical sector is that they are designed
to forcefully disrupt attention in stead of providing information [68]. A reaction to
alarms is only possible when enough information at the time of an alarm is given to
decide what an appropriate response would be. For example, is there a life threatening
situation or is it less dangerous? As already explained, in the EMU setting this infor-
mation can be given by having different alarm sounds for the alarm button (patient
asks for help) and for the seizure detection algorithm (there is possibly a seizure).
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From the alarm sounds has to be clear which of these alarm is more alarming and
needs a faster response.

5.4 Different types of alarms

Different alarm types were found in literature; auditory alarms, visual alarms, tactile
alarms and smart alarm systems. These will be discussed in further detail.

5.4.1 Auditory alarm

People react faster to auditory warnings than to visual warnings [69, 70]. Hearing
is our natural warning sense, when hearing a sound is natural instinct to identify its
source [71]. Some believe that auditory alarms should only be used to gain attention
and that visual alarms should be used to direct and give information [72]. Auditory
alarms are less useful for providing additional information about the detection.

When using an auditory alarm, it has to have multiple characteristics. First of all,
there has to be a small number of alarm sounds, to ensure easy recognition [73]. There
are standard audio alarms, of which the IEC 60601 is an example [74]. There are some
indications that these standardized alarm sounds may be effective [72], while other
research has shown that physicians found it difficult to distinguish the different alarm
sounds [75]. When a new alarm sound is made is has to be easy to localize, resistant
to masking by other sounds, allow communication and easy to learn and retain [73].
The duration of the sound is also important for two reasons, shorter sounds are more
difficult to recognize [71] and response rate is higher in longer alarm duration [65, 67].
This response rate can be explained by a higher perceived urgency due to the longer
signal duration. However, a very long signal duration might be perceived as annoying
and the signal might lose its power.

When using multiple alarm sounds, it is important that they have a different
rhythm. Since sounds can easily be confused when they have the same rhythm [73].

5.4.2 Visual alarms

Visual alarms have multiple benefits; best response rate can be seen when auditory and
visual alarms are combined [69, 70], auditory warnings can be missed in high-visual-
load conditions [76] and visual warnings can provide more information to sounds [72].
However, visual alarms have the disadvantage of not always being noticed immedi-
ately. Observers tend to only look at the area that provides most information [77]
and in an EMU setting this might not be a fixed place. The primary task of nurses
is monitoring the patients, so the main focus will be on the screens. However, staff
also has other work, where the focus does not lay on the screen. If visual warnings
are given at the screen, the warning might be missed.

When a visual alarm system is designed, multiple characteristics have to be take
taken into consideration; the placement, visibility, and prioritization. These charac-
teristics will be discussed in further detail.
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One of the most important characteristic is the placement of the warning, since
it will influence the likelihood the warning will be seen by the user [78]. There are
guidelines for what area can be directly seen from a fixed view [79], but due to multi-
ple monitors and no fixed viewing point this cannot be implemented at the EMU of
SEIN. However, there is a bigger peripheral vision where things can be noticed with-
out direct attention. With pre-attentive processes, the brain filters where interesting
parts are and where the perceptual field of view should lie [56]. So if something hap-
pens that attracts attention in the peripheral view, attention will be automatically
shifted to it. At the EMU, the best place for visual warnings might be somewhere
in or around the screen of the corresponding patient. This way, the alarm is often in
peripheral vision, it shows which patient is affected and attention shifts automatically
to the right patient and information (EEG and video of the patient).

A visual warning can only be seen when it is clearly visible for the user. For a
good visibility, multiple factors need to be considered; size, luminance and back-
ground contrast [78]. Peripheral vision is especially good at picking up change [56],
so flickering warnings might be better for attracting attention. The size of the target
is dependent on the viewing distance and contrast [78].

Visual warnings are usually more prioritized when it is perceived as a high haz-
ard. This can be easily influenced by the colour of the warning. Red and orange
increase the hazard when compared to green, blue and white [80]. Higher priority
warnings will also lead to being more easy to detect in peripheral vision. However,
high priority signals will also be perceived as more nuisance [56].

Colours can also be used to code for different situations, but a higher amount of
features also will result in more confusion [78]. In the EMU setting, colours could be
used to provide information on the threat of the information. For example, red when
it is clearly a seizure and orange when it is possibly a seizure.

5.4.3 Tactile alarms

Tactile alarms are worn on the body of the observer and warn by sense or touch,
for example by vibrating, pressure or temperature changes. It is most suited for
situations when visual or auditory warnings are impractical or when switching the
attention to a visual display might be unsafe [81–83]. An example of a vibro-tactile
warning system can be seen in Figure 5.1. Tactile warnings are a new elegant way of
warning that can easily direct attention. However, in the EMU visual and auditory
warnings may be less nuisance for the observer. A vibrating alarm could be used as
a type of pager, when staff is off-floor. However, there is always at least one nurse at
the monitoring unit.

5.4.4 Smart alarms

When researching smart alarms, a lot of techniques are described in literature to
reduce false positives, for example; signal filtering, combining features and smarter
classifiers [62, 63, 84, 85]. However, these described techniques focus more on a smart
and better algorithm than in the creation of a good alarm system. Of course this is
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Figure 5.1: Example of a vibro-tactile warning system. This system was used during
surgery to warn on deviating heart rates. Vibrations at the wrist implied a decrease
in heart rate and vibrations at the elbow implied an increase in heart rate. Adapted
from [81].

very important, but not in the scope of this chapter. Additionally, the ECG seizure
detection algorithm already uses a smart-classifier with adjustable thresholds. The
algorithm of Encevis EpiScan also compares features with past results to reduce false
positives. We will therefore focus on ideas for smart alarms systems.

A time delay could be implemented before an alarm goes off [86]. A parameter
needs to reach a certain threshold during an amount of time, before a alarm goes
off. Research has shown, that implementation of a 14-second delay could reduce false
alarms by 50% in a medical alarm system and a delay of 19 seconds a reduction of 67%
[87]. However, since we are focussing on fast detection (in example a few seconds),
we would not suggest to implement this.

A suitable alarm system for the EMU, might be to generate different levels of
warning. For example, a watch level and an emergency level [88, 89]. This way, when
there is a possible seizure (with lower thresholds in the algorithms), staff is notified
that they should watch the patient. And when there is certainly a seizure (with higher
thresholds in the algorithms), staff need to respond immediately. Research has shown
that using this type of alarm system, observers could clearly identify the urgency and
this was reflected in response time, while perceived annoyance was lower [89]. This
could be implemented at the EMU by showing a visual alarm for the watch level and
an auditory alarm can be added at the emergency level. Additionally, the colour of
the visual alarm could be used to explain the level of alarm. While this type of system
would be very practical at the EMU, Encevis EpiScan and the ECG algorithm do not
provide the information to build this system. Only one output is given; a detection
or no detection.

Trend display can be used to provide more information on top of alarms. A
trend display cannot be called an alarm system, since it does not alarm the users.
However it might have benefits as an addition to an alarm system. It can provide in-
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formation on the reason why a seizure is detected. To give two examples, the location
of a detection can be shown or the probability someone is having a seizure can be
shown. Research has shown that when displaying information, graphic information is
better than numeric information and displaying history is also beneficial [90]. While
the design of displays is extensively researched, it is unclear what effect trend displays
have instead or on top of an alarm system.

Another possibility, might be to have an alarm at the patient side. During
that alarm, patients have to press a button or answer some cognitive questions to
evaluate if they have a seizure [91, 92]. This might lead to a high response rate and
fast response time, since the patient can answer themselves. It might also reduce
how nuisance an alarm is experienced by staff. If such a system would be used, pilot
studies have to be performed to evaluate if it would be a good solution at the EMU.
Additionally, such an alarm system would only be applicable during day-time.

5.5 To take into consideration

Different types of alarm system have been explained, but more characteristics play a
role [92]. Some of these will be explained further.

First of all, when will the alarm be disabled? Is it after a while or only when
nurses disable it? A good system at the EMU might be to disable the alarm, when
the intercom is used to communicate with the patient. This way, the alarm will au-
tomatically be silenced when there is a response.

Should it be possible to silence future alarms for a specific patient? This might
come in handy when a patient has a high false positive rate. It should however be
clear when an alarm can be silenced, and when not. Otherwise, alarms might be
silenced too often. It also would be good if only one of the algorithms can be silenced,
if only one causes false positives. However, this information should then be present.
Additionally, it would be beneficial if there is a visual indicator that the alarm is si-
lenced [92]. Lastly, it might be good to have a time-limit to the silencing, for example
when a new nurse shift starts.

In the ideal situation, customized thresholds are set for individual patients. This
can be used for decreasing false positives. One study has shown that customizing
alarm settings can reduce warnings with 43%, while increasing response rate to warn-
ings and decreasing the perceived noise by staff [93]. However, another study showed
a reduction of warnings with 24%, while no difference in nurses’ attitude towards
alarms was seen [94]. In the EMU setting, the thresholds of the ECG seizure de-
tection algorithm could be increased when it gives too many false alarms. However,
knowledge of the algorithms is necessary to customize thresholds for specific patients.
Additionally, one or even more seizures have to be measured before good choices can
be made at levels of thresholds. Since patients typically have only a few seizures
during their stay, it probably would not be feasible to manually adjust thresholds.
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5.6 Recommendations

With all information in mind, we would suggest to combine an auditory alarm with
an visual alarm. We would recommended two levels of warnings; one for the already
present alarm button and one for the seizure detection technique. Two different
sounds should be used for the different alarm levels. The sound should be played
close the screen of the corresponding patient, that way visual attention automatically
shifts to the patient. The visual alarm should be present somewhere around the screen
of the patient. A clear orange colour could be used for the first level of warning and a
red colour for the second level of warning. If only the visual alarm is used, we would
recommend to use flickering light, so that it attracts attention more easily. If the
visual alarm is used in combination with the auditory alarm, this flickering might not
be necessary while it does increase perceived nuisance.

In terms of smart alarm, different levels of warning might work well for the seizure
detection algorithm. Then a third level of warning should be created. However, the
algorithms currently do not provide the information to build this system. Addition-
ally, an alarm at the patient side might work good at the EMU. A pilot study at the
EMU should be performed, to evaluate if this would work in this setting.

And lastly alarm protocols and clear instructions have to be made. It has to be
clear what needs to be done during an alarm and what is expected from the nurses.
We would suggest that during every alarm, some cognitive questions are asked to the
patient. This way can be evaluated if the patient has a seizure, and there is always a
response even in clinically less clear seizures or sub-clinical seizures.
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Chapter 6

Conclusions

The goal of this study was to make improvements to an available EEG based detection
system to make it feasible for online use on the EMU. Results show good sensitivity of
EEG seizure detection algorithms, but the latency and false positive rate are points
of improvement. An ECG seizure detection algorithm was created that has added
value in terms of extra detected seizures. No alarm system was available, hence rec-
ommendations for an alarm systems were given.

The algorithms Encevis EpiScan and BESA Epilepsy were researched. We were
able to show that 66.1% of the undetected seizures by staff, could be recognized by
one of the algorithms in a dataset of 188 seizures. Additionally, in the majority of
the seizures the algorithm detection preceded the detection by staff. The algorithms
had acceptable false positive rates in most cases. Based on the results of this study,
Encevis EpiScan will likely be implemented at SEIN. However, the false positive rate
and latency are still points of improvement.

An ECG seizure detection algorithm was created. This algorithm consisted of the
Pan Tompkins algorithm, processing the heart rate and a classifier. The algorithm
showed a sensitivity of 47.8% with a median latency of 36.5 seconds in a dataset of
23 seizures. It is feasible to use the algorithm on top of Encevis EpiScan, since it has
a very low false positive rate (median of 0 per 24 hours). Added value on Encevis
EpiScan was observed in terms of extra detected seizures. No faster detection time
was observed, but this needs to be researched on a larger patient group. The added
value might be highest in extra-temporal and temporal seizures. Further research
should focus on collecting noise-free ECGs and improving QRS-complexes detection.

Lastly, different alarm systems were studied. The response to alarms depends
on different behavioural mechanisms, for example to which extent active coping to
an alarm is possible and the probability an alarm is true. Other work of staff can
negatively influence response rate. All these behavioural mechanisms should be taken
into consideration when designing an alarm system. Different alarm systems are
available, combining visual and auditory alarms may result in the best response.
Using a smart alarm could also be beneficial, but these new techniques have not yet
been extensively researched.

51



52 CHAPTER 6. CONCLUSIONS



Chapter 7

Recommendations

Implementation of Encevis EpiScan Based on the results of this study I find
it feasible to use Encevis EpiScan. It has proven added value on top of the nurse
staff. Secondly, as a expertise centre, I believe SEIN should stand out for hightech
innovations. Investing in new implementations in the clinical settings helps the centre
to increase the quality and deliver care that cannot be achieved at other hospitals.

Improving an ECG seizure detection algorithm The created ECG seizure
detection algorithm can be used on top of Encevis EpiScan to improve sensitivity and
possibly reduce detection time. I believe an ECG seizure detection algorithm can
provide the best added value compared to other types of detectors. I would therefore
suggest to proceed with the created algorithm. However, I advise to first collect
noise-free ECGs or explore other methods for data collection. Whereafter, parameter
settings need to optimized and the performance of the Pan-Tompkins algorithm can
be improved. These improvements are necessary for an optimum performance.

Alarm system A good alarm system has to be designed before implementation.
I suggest to combine auditory and visual alarms. Different alarms can be used to
distinguish the alarm button from the seizure detection algorithm. Additionally,
alarm protocols and clear instructions have to be made, to ensure an appropriate
response to alarms. I would suggest that during every alarm, staff should ask cognitive
questions to the patient to evaluate if he/she is having a seizure.

Smart alarms Using a smart alarm might be beneficial, but more research on this
topic is necessary. Creating different levels of warning with a different sensitivity
might be a good system for the EMU. Another possibility is to create an alarm at
the patient side. This is a highly innovative solution, so pilot studies need to show if
this would be a good solution at the EMU.

Online evaluation When the system is implemented, I suggest to evaluate the
effect online. Current research has focused on retrospective analysis and therefore the
online performance is still unclear.
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and Christoph Baumgartner. Electrocardiographic Changes at the Onset of
Epileptic Seizures. Epilepsia, 44(3):348–354, mar 2003.

[32] Maeike Zijlmans, Danny Flanagan, and Jean Gotman. Heart Rate Changes and
ECG Abnormalities During Epileptic Seizures: Prevalence and Definition of an
Objective Clinical Sign. Epilepsia, 43(8):847–854, aug 2002.



58 BIBLIOGRAPHY

[33] F Fürbass, S Kampusch, E Kaniusas, J Koren, S Pirker, R Hopfengärtner, H Ste-
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Appendix I - Poster
presentation

The poster on the following page with the topic ‘Improving staff response to
seizures on the Epilepsy Monitoring Unit with online EEG seizure de-
tection algorithms’ was presented at the 32nd International Epilepsy Congress in
Barcelona by N. Rommens. An IBE Travel Bursary was awarded.
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Appendix II - Draft article

The study described in Chapter 3 was also written as an article for the publication
in a journal. The draft article can be seen on the following pages.
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Improved staff response to seizures on the EMU 
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Summary 

Objective: Patient safety and quality of diagnostics on the Epilepsy Monitoring Unit (EMU) depends on the staff 

response to seizures. Online seizure detection might improve this response. While good sensitivity and specificity is 

reported in literature, the added value in terms on staff response to seizures is unclear. In this study, we investigated 

the added value of two EEG seizure detection algorithms (encevis EpiScan and BESA Epilepsy) in terms of extra 

detected seizures or faster detection time. 

Methods: EEG-video recordings with seizures of patients admitted to an EMU during one year were included with a 

maximum of two seizures per patient. All recordings were analysed retrospectively by encevis EpiScan and BESA 

Epilepsy. Seizures were annotated by experienced observers, with a 10 second margin before and after seizures. 

Detection sensitivity and latency of the algorithms were compared to staff responses to seizures. False positive rates 

were calculated on 30 uninterrupted recordings (roughly 24 hours per patient) of consecutive patients admitted to the 

EMU. 

Results: Included EEG-video recordings consisted of 188 seizures in 115 patients. The response rate of staff was 

67%, for EpiScan 67% and for BESA Epilepsy 65.4%. Of the 62 missed seizures by staff, 66.1% were recognized by 

EpiScan and 38.7% by BESA Epilepsy. The median latency of staff response was 31 seconds, for EpiScan 10 

seconds and for BESA Epilepsy 14 seconds. In 83.5% of the seizures EpiScan detected earlier than staff and BESA 

Epilepsy in 81.6%, respectively 65.0% and 65.3% when corrected for walking time from the observation room to the 

patient. The full recordings included 617 hours of EEG. EpiScan had a median false positive rate of 4.9 per 24 hours 

and BESA Epilepsy of 2.1 per 24 hours. 

Significance: EEG seizure detection algorithms can improve the response to seizures by improving the total number 

of detected seizures and the speed of detection. The false positive rate is feasible for use in a clinical situation. 

Implementation of these algorithms might result in more and faster diagnostic testing and observation during 

seizures. 

KEYWORDS: Seizure detection, EEG, Epilepsy, Performance, Real-time, EMU 
  

Introduction 
Video-EEG monitoring on an Epilepsy Monitoring Unit 

(EMU) is widely used as a diagnostic tool in people 

suspected of a seizure disorder. It can be used to 

determine seizure type and classification, to distinguish 

epilepsy from non-epileptic seizures, or to examine or 

evaluate therapeutic options 1,2. People admitted to our 

EMU are monitored continuously by staff in a separate 

observation room, using real-time video, audio and 

EEG measurements. When seizures are detected, 

nursing staff enter the patient room to reduce the risk of 

adverse events like falls and traumatic injuries 3. 

Additionally, standardized tests are performed to 

assess consciousness and cognitive & neurological 

functioning during seizures, which can help to 

determine seizure semiology and type 4,5.  

Staff supervision demands skills and non-stop attention 

to be continuously vigilant for any sign of a seizure. 

Seizures may be missed when observation skills are 

lacking or the attention of the observer is deviated. The 

study of Atkinson et. al. showed a response rate of 41% 

to seizures with a mean response time over two 

minutes 6. While response rate and time can vary 

between different EMU’s, response rate is always 

limited by human capabilities. Seizures showing no or 

only subtle clinical semiology are more often missed, 

and also seizures outside the scope of the cameras can 

be missed.  

Online seizure detection algorithms might help staff to 

detect seizures that are otherwise missed or recognized 



late. Seizure detection can be done with a variety of 

signals, like movement, electrodermal activity, heart 

rate and EEG. This research will focus on seizure 

detection based on EEG, since it is closest to the 

source of epilepsy, specific to epilepsy and standardly 

measured on the EMU. EEG seizure detection has 

been studied since 1982 7 and the following decades a 

lot of research has been done on various approaches to 

detect seizures 8–10.  

Recently, EEG seizure detection software has also 

become commercially available, among them encevis 

EpiScan and BESA Epilepsy. Encevis EpiScan uses 

two modules which detect rhythmic patterns and waves 

which are characteristics for epilepsy 11,12. To detect 

seizures, the extracted features are continuously 

compared with past information from the EEG. The 

BESA Epilepsy software calculates normalized energy 

and integrated power for different frequency bands 13,14. 

This algorithm is based on the hypothesis that seizure 

activity manifests itself by a change in frequency and 

amplitude that is distinct from non-seizure or 

background activity. When extracted features are above 

a threshold for over 10 seconds, a seizure is detected. 

The performance of  EEG detection algorithms has 

been studied thoroughly and show good sensitivity and 

false response rate 8,9. For encevis EpiScan a 

sensitivity of 81% with a false detection rate of 0.30 per 

hour has been reported 15. BESA Epilepsy was reported 

to have a sensitivity of 87% with a false detection rate 

of 0.22 per hour 14. Although seizure detection software 

is commercially available with good sensitivity and 

specificity, it is unclear what the added value is to 

seizure monitoring in an EMU. Since these algorithms 

are not widely implemented in clinical settings 16, this 

question remains unanswered. It is vital to research the 

added value of detection algorithms on top of the 

detection by already present staff, as seizure detection 

won’t be a stand-alone system but an improvement to 

current staff.  In this study, we will therefore investigate 

this added value, by answering the following questions: 

1) What is the current response rate and response time 

of staff to seizures?, 2) What is the sensitivity, response 

time and false positive rate of encevis EpiScan and 

BESA Epilepsy in the same clinical data?, 3) What is 

the added value on the current response in terms of 

possible extra detected seizures and faster response 

time?, and 4) Which people could specifically benefit 

from these algorithms? 

Methods 
EMU setting 
The EMU at Stichting Epilepsie Instellingen Nederland 

(SEIN) Heemstede is an 8-bed unit, where all patients 

stay in separate rooms. Patients are admitted for up to 

5 days. Per room, three to four remote control cameras 

are installed that can capture the whole room.  The 

patient has an alarm button which can be used to alert 

staff. Patients are monitored continuously by staff 

(specialized nurses) in an observation room.  In this 

observation room, a real-time EEG, ECG, video and 

audio stream is shown for each room. An intercom 

system can be used to communicate with patients. 

When a seizure is recognized by staff, they attend to 

the patient to ensure safety and execute standardized 

diagnostic tests. During daytime three nurses are 

present and during night two nurses. No automated 

seizure detection techniques are used.  

EEG recordings 
A Micromed EEG system (Micromed, Mogliano Veneto, 

Italy) was used to record EEGs with a sample 

frequency of 256 Hz, in a in a frequency band of 0.01 to 

1000 Hz. The international 10-20 electrode placement 

system was used. Some patients had additional 

electrodes to provide higher spatial sampling. After 

recording and reporting, it is standard practice to cut 

EEG and video files for data reduction to decrease 

saving space. Only important data of the registration is 

saved, like diagnostic tests and seizures.  

Data selection 
Seizures of patients admitted to the EMU at SEIN 

Heemstede between May 2014 and April 2015 were 

included retrospectively in a seizure database. This 

study was carried out in accordance with the Code of 

Ethics of the Worlds Medical Association (Declaration of 

Helsinki) for experiments involving humans. Seizures 

were only included when they were defined as epileptic 

in the corresponding EEG report, so that detection by 

an algorithm is possible. All included seizures had to be 

longer than five seconds. A maximum of two seizures 

per patient were included to prevent overrepresentation 

of certain individuals or seizure types in the database. If 

more seizures were present in the recording, two were 



Figure 1: A visualisation of timing of a seizure, this might vary between patients. CSO (clinical seizure onset), CSE (clinical seizure end), 

ESO (electrographic seizure onset) and ESE (electrographic end) were scored for every seizure in the seizure database and 24-hour 

database. A correct detection was defined as a detection within ten seconds before the first start of the seizure until ten seconds after 

the last end of the seizure. 

randomly selected out of the first five seizures. In these 

first seizures, it is important to perform diagnostic tests, 

so staff response is required. This might not be the 

case in later seizures. The seizure database 

encompasses a representative sample of all seizure 

types occurring in the EMU. Seizures where medical 

staff was already present at the time the seizure began, 

were excluded since staff response could not be 

evaluated. EEG file duration of seizures could vary 

depending on how files were cut.  

False positives were determined on non-stop 

recordings without selection, to represent the complete 

setting on an EMU. Therefore, full EEG recordings were 

included in a 24-hour database. This database included 

30 consecutive patients with EMU recordings at SEIN 

Heemstede in September 2016. For every patient, 16 to 

24 consecutive hours of the recording were randomly 

included.  

Scoring of the EEGs 
The start and end of all seizures (in the seizure and 24-

hour database) were identified by trained reviewers 

(EG, LJH, NR and an EEG technician). Four different 

time points were scored; clinical seizure onset (CSO), 

clinical seizure end (CSE), electrographic seizure onset 

(ESO), and electrographic seizure end (ESE), as can 

be seen in Figure 1. The ESO was defined as the 

moment where the first EEG seizure pattern could be 

seen and the ESE the last pattern. The CSO was 

defined as the start of the first clinical symptom. And the 

CSE was defined as the moment when patients were 

able to take care of themselves independently, since up 

to that point it is of value to respond to seizures. 

For the seizure database, the electrographic and clinical 

characteristics of seizures were also scored to evaluate 

how clear changes were. Both characteristics were 

scored using values between 1 and 4, resembling no 

visible manifestations up to very clear manifestations 

from the perspective of the nurses that monitor the 

patients. For every 5 seconds, the characteristics were 

scored until staff responded, up to the first 60 seconds 

of the seizure. From these scores, a mean value was 

calculated. Additionally, seizure classification was 

collected from the EEG report. 

For the 24-hour database the interictal EEG was scored 

based on the EEG report in four categories:  ‘Normal 

interictal EEG’, ‘Abnormal interictal EEG with non-

specific non-epileptiform abnormalities’, ‘EEG with 

some epileptiform abnormalities’ and ‘EEG with 

frequent epileptiform abnormalities’.  

Sensitivity 
Staff response was evaluated for the seizure database, 

by reviewing video retrospectively. A response was 

defined as staff entering the room of the patient or using 

the intercom, within 10 seconds after the end of the 

seizure (when EEG and clinical manifestations have 

both stopped). 

The detection algorithms encevis EpiScan and BESA 

Epilepsy were tested. The detection algorithms operate 

the same as in an online situation, but due to online 

unavailability this could not be tested.  A correct 

detection was defined as a detection within ten seconds 

before the start of a seizure (CSO or ESO) and up to 

ten seconds after the seizure end (ESE or CSE) as can 

be seen in Figure 1. A median sensitivity of staff, 

encevis EpiScan and BESA epilepsy was calculated. 

Latency  
Latency of staff, encevis EpiScan and BESA Epilepsy 

were calculated from electrographic seizure onset 

(ESO). For BESA Epilepsy, 10 seconds were added to 

account for the delay in the algorithm’s online 

functioning.  A median latency and percentile ranges 

p5-p95 of response were calculated. 

False positives 
The false positive rate of encevis EpiScan and BESA 

Epilepsy was calculated on the 24-hour database. A 

false positive is defined as a detection which is not 



Table 1: Performance of staff, encevis EpiScan and BESA Epilepsy 

Figure 2: Overall sensitivity of seizure detection algorithms encevis EpiScan & BESA Epilepsy on 188 seizures and sensitivity for seizures missed 

by staff. 

during a seizure, i.e. beyond ten seconds before the 

start of a seizure (CSO or ESO) and ten seconds after 

the last end (ESE or CSE). When a false positive 

occurred, a black-out period of 10 seconds was defined, 

in which no new false positives could occur. The 

median false positive rate and percentile ranges p5-p95 

were calculated.  

Statistical analysis 
The difference in seizure characteristics (age, seizure 

classification, clinical characteristics and electrographic 

characteristics) between detected and undetected 

seizures (separately for staff, encevis EpiScan and 

BESA Epilepsy) were tested for statistical significance 

with a Chi-square test. There was tested for statistical 

difference in false positive rate for age and amount of 

abnormalities in the EEG, with a Kruskal-Wallis test. 

Significance level was set at p≤0.05. All analysis was 

performed using MATLAB (R2017a., The MathWorks 

Inc.). 

Results 
Patients 
In total 188 seizures of 115 patients were included in 

the seizure database and 617 hours of 30 patients in 

the 24-hour database. The mean age in the seizure 

database was 28.7 years (SD ± 17 years) and 24.2 

years (SD ± 15.5 years) in the 24-hour database. 

Included seizures were generalized onset seizures 

(9.6%), focal onset seizures with temporal lobe 

semiology (42.6%), focal onset seizures with 

extratemporal lobe semiology (45.7%) and seizures that 

could not be classified (2.1%).   

Sensitivity 
Performance of staff, encevis EpiScan and BESA 

Epilepsy can be seen in Table 1. Sensitivity to seizures 

was 67.0% for staff, 77.6% for encevis EpiScan and 

65.4% for BESA Epilepsy. Of the 62 seizures that were 

missed by staff, 41 could be additionally recognized by 

encevis EpiScan and 24 by BESA Epilepsy. There were 

16 seizures that were only recognized by staff. The 

comparison of sensitivity of encevis EpiScan and BESA 

Epilepsy for all seizures and all undetected seizures by 

staff can be seen in Figure 2. 

The sensitivity for seizures with different characteristics 

can be seen in Table 2. Staff had significantly lower 

response rate for children, focal onset seizures and 

clinically less clear seizures. No statistical difference 

was found between children or adults in encevis 

EpiScan and BESA Epilepsy. Focal onset seizures with 

extra-temporal lobe semiology and seizures with 

(almost) no electrographic characteristics were still 

difficult to detect for these algorithms.  

Latency 
Staff had a median response time of 31 seconds, 

encevis EpiScan of 10 seconds and BESA Epilepsy of 

14 seconds as can be seen in Table 1. In 83.5% of the 

seizures detected by staff, encevis EpiScan detected 

the seizure faster than the staff response. In 81.6% of 

the seizures detected by staff, BESA Epilepsy detected 

the seizure faster than the staff response. Figure 3 

shows the time of detection of encevis EpiScan and 

BESA Epilepsy compared to staff latency. 

Table I. Performance of staff, encevis EpiScan and BESA 
Epilepsy 
 

Staff 
Encevis 
EpiScan 

BESA 
Epilepsy 

Sensitivity 67.0% 77.6% 65.4% 

Median latency in 
seconds (p5-p95) 

31 (-5 – 98) 10 (-4 – 50) 14 (6 – 68) 

Median false 
positives per 24 
hours (p5-p95) 

- 4.9 (1.2- 13.8) 2.1 (0 – 223) 



Figure 3: Time of detection of Encevis EpiScan and BESA Epilepsy compared to the staff latency (zero seconds). An extra red line is drawn 

to take walking time of staff into account (10 seconds). Some outliers could not be shown in the figure; for Encevis EpiScan this was -

1579, -611 and -215 seconds and for BESA Epilepsy this was -552, -253, 309, 392 and 3173 seconds.  

Figure 4: Histogram of number of false positives for different patients.  

False positives 
Encevis EpiScan had a median false positive rate of 4.9 

per 24 hours per patient and BESA Epilepsy 2.1 per 24 

hours per patient. Encevis EpiScan had low false 

positive rates for almost every patient. Whereas BESA 

Epilepsy had zero false positives for most patients, but 

also some outliers with a lot of false positives as can be 

seen in Figure 4. Additionally, Encevis EpiScan had 

most false positives during the first hours, probably due 

to a learning period. When the alarm of Encevis 

EpiScan would be turned off during the first hour, false 

positive rate would decrease with 36.4% and even 

46.1% if it would be turned off the first two hours. 

Children had a higher false positive rate than adults for 

encevis Episcan (p=0.0430), with a median false 

positive rate of 6.99 per 24 hours for children and 4.47 

per 24 hours for adults.  The difference in false positive 

rate between the amount of abnormalities in the EEG 

was not significant. 

BESA Epilepsy also had a higher false positive rate 

in children compared to adults (p=0.0057), with a 

median false positive rate of 39.1 per 24 hours for 

children and 1.28 per 24 hours for adults. 

Additionally, EEGs with frequent epileptiform 

abnormalities had a significant (p=0.0308) higher 

false positive rate, with a median false positive rate of 

33.1 per 24 hours (compared to 1.16-9.86 for EEGs 

with less abnormalities).  



Table 2: Sensitivity of staff, encevis EpiScan and BESA Epilepsy for different characteristics of seizures.  

All characteristics were tested for statistical difference with a Chi-square test. 

Discussion 
Staff response to seizures can be improved by online 

EEG seizure detection algorithms by improving both 

the number of detected seizures and the response 

latency after seizure start. We were able to show that 

up to 66.1% of the 62 undetected seizures could be 

recognized by EEG seizure detection algorithms. 

Additionally, in most seizures the algorithm detection 

preceded detection by staff, as was measured by 

response time. The algorithms had acceptable median 

false positive rates. Especially children, patients with 

focal onset seizures (with temporal lobe semiology) 

and patients with seizures with clear electrographic 

changes could benefit from these algorithms. These 

seizures showed a lower response rate of staff, while 

the algorithms were able to detect these seizures. 

Using seizure detection algorithms on these patients 

might help to ensure patient safety and to assess 

consciousness and cognitive & neurological function. 

Seizures with none to very subtle electrographic 

characteristics were difficult to detect by the 

algorithms. Additionally, a higher false positive rate for 

both algorithms was found for children, and for EEGs 

with frequent epileptiform abnormalities for BESA 

Epilepsy. 

The staff response and latency found in this study, is 

better than described in literature, where a response 

rate of 41% with an average response time of 142.3 

seconds has been shown 6. This can be explained by 

differences between EMU settings, e.g. staff 

experience or EMU layout. The sensitivity and 

specificity of the algorithms described in this study, are 

comparable to literature 14,15. Delay time has not been 

described. Additionally, to our knowledge, the added 

value on already present staff has never been studied. 

This information is crucial, since a seizure detection 

algorithm will not be a stand-alone system but an 

addition to current staff.   

Staff response and sensitivity of detection algorithms 

are influenced by characteristics of seizures and 

patients. When there is a low response rate of staff but 

algorithms are able to detect seizures, patients could 

especially benefit from these algorithms. Staff 

response was highly dependent on the appearance of 

clinical characteristics, since staff mostly respond 

based on symptoms seen on a video stream. The 

algorithms, on the other hand, were mostly dependent 

on presence of electrographic changes. This could 

also be seen in the sensitivity for different seizure 

Table II. Sensitivity of staff, encevis EpiScan and BESA Epilepsy for different characteristics 

  Staff encevis EpiScan BESA Epilepsy 
  Sensitivity p-value Sensitivity p-value Sensitivity p-value 

All patients  67.0% - 77.6% - 65.4% - 

Age 
Children under 18 year 
(n=54) 

59.3% 
0.0338 

79.6% 
0.681 

72.2% 
0.214 

Adults (n=134) 70.1% 76.9% 62.7% 

Seizure 
classification 

Generalized onset  
(n=18) 

88.9% 

0.00380 

100% 

<0.001 

100% 

<0.001 Focal 
onset 
seizures 

Temporal 
(n=80) 

75.0% 86.3% 71.3% 

Extratemporal 
(n=86) 

55.8% 64.0% 53.5% 

Unclear classification 
(n=4) 

- 
- - 

Clinical 
characteristics 

No visible changes 
(n=27) 

37.0% 

<0.001 

85.2% 

0.509 

66.7% 

0.307 

Subtle clinical symptoms 
(n=119) 

67.2% 77.3% 61.3% 

Clear clinical symptoms 
(n=34) 

82.4% 70.6% 73.5% 

Very clear clinical 
symptoms (n=8) 

100% 87.5% 87.5% 

Electrographic 
characteristics 

No visible changes (n=6) 66.7% 

0.0300 

66.7% 

<0.001 

0% 

<0.001 

Subtle changes (n=73) 54.8% 58.9% 39.7% 
Clear focal changes 
(n=73) 

72.6% 89.0% 83.6% 

Clear diffuse changes 
(n=36) 

80.6% 94.4% 91.7% 



classifications. For example, generalised seizures are 

electrographically and clinically very clear and 

therefore have a high response rate of staff and 

algorithms. On the contrary, focal onset seizures with 

extra-temporal lobe semiology were short with little 

clinical and electrographic changes and therefore have 

lower response rate of staff and algorithms. So, 

patients with clinically less clear seizures that show 

electrographic changes could benefit from these 

algorithms. Especially focal onset seizures with 

temporal lobe semiology had a low sensitivity of staff 

but a high sensitivity of the algorithms. Additionally, a 

lower sensitivity of staff to seizures of children was 

seen. Therefore, children might also benefit from 

seizure detection algorithms. The low sensitivity of staff 

is mostly likely caused by the type of seizures that 

children have, making it more difficult to detect. A 

higher false positive rate was also found for children, 

making it less applicable to use these algorithm. This 

might be caused since the EEG has more variations in 

children, making it more difficult to differentiate the 

normal EEG from ictal patterns. Also, children had 

more often abnormalities in the EEG, which also 

influenced the function of the algorithms. Encevis 

EpiScan still had an acceptable rate for children and 

can therefore be preferred when used on children.  

The algorithms could not be tested online, since at 

time of research they were not ready for online 

implementation. Therefore, the true effect of these 

algorithms could not be researched. For example, staff 

might not react to all alarms or take a long time to react 

to alarms. Additionally, two different databases were 

used to test the algorithms on a high amount of 

seizures and long periods of continuous data. Using 

only full recordings can provide a better view on the 

function of the algorithms, since it shows the amount of 

false positives relatively to the true positives. However, 

this was not present at time of research. And lastly, 

staff response can vary between different EMU 

settings. Depending on how staff is educated and 

patients are monitored, response rate can be higher or 

lower. Therefore, the added value of these algorithms 

can also be different in another setting. 

Online EEG seizure detection algorithms can improve 

the nurse response to seizures on an EMU, by 

detecting extra seizures and improving response time. 

The false positive rate is feasible for use in a clinical 

setting. Implementation of these algorithm can help to 

ensure patient safety and improve quality of 

diagnostics by assessing consciousness and cognitive 

and neurological function timely. 
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Appendix III - Technical
background of the ECG
algorithm

Some additional background information is given in this Appendix about different
steps of the ECG algorithm.

Pan-Tompkins algorithm

The first steps of the Pan Tompkins algorithm are multiple preprocessing steps as can
be seen in Figure 7.1. First, a bandpass filter between 5-15 Hz is applied to remove
baseline wander and muscle noise. Next the derivative and square of the signal is
taken. And lastly, a moving average filter (of 0.15 seconds) is taken to reduce noise
in the signal.

The QRS-complex is detected with the second part of the Pan-Tompkins algorithm
as can be seen in Figure 7.1. Two adaptive thresholds are calculated, a noise threshold
(Tnoise) and signal threshold (Tsig). For the first two seconds, these thresholds are
normalized. The threshold signal is initialized to a third of the maximum of the ECG
in the first two seconds. And the threshold noise is normalized to a half of the mean
of the ECG in the first two seconds.

Next, peaks in the ECG are detected. Every peak is defined as a noise peak or a
signal peak, depending on the thresholds. When a peak is above the signal threshold,
it is identified as a possible QRS-complex and the parameter ’Signal level (Lsig)’ is
raised based on the previous signal level and the amplitude of the peak (Apeak). When
a peak is between the two thresholds, it is identified as a noise peak and the ’Noise
level (Lnoise)’ is raised based on the previous noise level and the amplitude of the peak
(Apeak). The thresholds are adjusted to these signal and noise levels, as can be seen
in Equations (7.1) to (7.4). This is done for every peak. All peaks that are identified
as signal peaks, are seen as possible QRS-complexes.

Lsig = 0.125Apeak + 0.875Lsig (7.1)

Lnoise = 0.125Apeak + 0.875Lnoise (7.2)

75
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Figure 7.1: Flow-chart of the steps of the Pan-Tompkins algorithm to detect the
QRS-complex. The panel above shows the pre-processings steps of the algorithm; a
bandpass filter between 5-15 Hz, a derivative and the square of the signal. The panel
below shows the detection of QRS-complexes; first all peaks in the signal are detected,
based on adaptive threshold is determined which are possible QRS-complexes. There
is checked for missed tops and thresholds are adapted based on that. And lastly, not
R-tops are eliminated.

Tsig = Lnoise + 0.25|(Lsig − Lnoise)| (7.3)

Tnoise = 0.5Lsig (7.4)

Next is checked if QRS-complexes are possible missed due to a too high threshold.
If the last RR-interval (that is the time between QRS-complexes) deviates from the
mean RR-interval (of the last 8 beats), the thresholds will be halved. Additionally,
when no new QRS-complex is found after 1.66 times the mean RR-interval is passed,
there will be searched back for QRS-complexes. If QRS-complexes are found, the
threshold levels are adjusted so that new peaks can be found. The value of 1.66 has
a physiological origin, since the time value between heart beats cannot change that
quickly.

In the last part of the algorithm, possible QRS-complexes are eliminated when it is
not likely that it is a QRS-complex. QRS-complexes inside 200 ms after the last QRS-
complex are deleted, since this is physiologically not possible due to the refractory
period where ventricle depolarisation cannot occur despite a stimulus. When a QRS-
complex occurs after this 200 ms but within 360 ms, it might be a T wave. This is
evaluated by calculated the slope of the waveform at that position. When this slope
is less than half of the previous waveform, it is considered a T-wave.

Adaptations to the Pan Tompkins algorithm

Some additions to the Pan Tompkins algorithm were necessary for a proper function
of the algorithm. Four steps were added to reduce false positives and increase latency.
Two of these steps were added in the adjustments of thresholds:
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• If the mean RR-interval is too high (more than >220 beats/min), the thresholds
(Tsig & Tnoise) will be doubled. This was added, since if the RR-interval would
decrease, it would influence the thresholds.

• When the step ’Check for missed tops’, does not result in new QRS-complexes,
the threshold are normalized to the amplitude of the ECG (in the same way it
was done during the first two seconds). This was added, since in some situations
thresholds remained too high and now new QRS-comlexes were found for the
rest of the ECG file.

The other two steps were added in the elimination of not R-tops:

• When a peak is inside 360 ms after the last QRS-complex, it is unlikely another
QRS-complex. Therefore, when the RR-interval of this new peak is smaller than
0.6 times the mean RR-interval (of the last 8 beats), it is defined as a noise peak.
There is chosen for this value, since the heart rate cannot change that quickly.
This method was already present for when the RR-interval decreased too much,
but we wanted to add this also when the RR-interval would increase since it has
the same physiological meaning.

• If a QRS-complex corresponds with a RR-interval higher than 220 beats/min,
it cannot be a QRS-complex and will be defined as a noise peak.
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Appendix IV - Examples of
performance of the ECG
algorithm

These Appendix shows different examples of the performance of the ECG algorithm.

Figure 7.2: Example of detection of QRS-complexes in a patient of the 24-hour
database. Figure A shows correct detections. Figure B shows wrong detections during
an artefact.
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Figure 7.3: This figures shows a problem of QRS-detection with the Pan-Tompkins
algorithm. Figure A shows the original ECG. Figure B shows the filtered ECG sig-
nal with adaptive threshold for QRS-complexes. This is calculated with the original
Pan-Tompkins algorithm. Due to a high energy artefact, thresholds are too high and
no new QRS-complexes can be detected. Figure C shows the results when improve-
ments to the Pan-Tompkins algorithm were added. A step was added, that when the
search back for QRS-complexes do not result in new found tops, thresholds will be
normalized. This will always result in the detection of new QRS-complexes, as can
be seen in the figure.

Figure 7.4: Example of the effect of the processing step of the heart rate in a patient
of the 24-hour database. In red the original calculated heart rate can be seen, without
any processing. In blue shows the processed heart rate, where outliers are removed
and trend is saved.
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Figure 7.5: Two examples of undetected seizures in the Seizure Database. At time-
point 0, the seizure started. Figure A shows a minimum increase in heart rate, by
which no detection was possible. Figure B shows a high flucuation in heart rate before
the seizure started. This resulted in a higher threshold for detection, and therefore
no detection.


