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Abstract

Class-E RF power amplifiers are a class of RF power amplifiers in which very high
power efficiencies can be achieved. Under nominal conditions, there is no voltage
across and current through the switching component at the same time. In theory, this
means that there are no losses in this switching component. One big problem with these
Class E power amplifiers is that these are very sensitive to load-mismatch. Because
the design includes two resonant tuned tanks, small changes in load impedance can
detune the circuit, resulting in load-dependent output power, power efficiency, peak
voltages, peak currents and the device operating outside of safe operating area (SOA)
causing degradation or failure of components. To overcome these problems a self-
healing technique can be used to readjust the amplifier to the changed load impedance,
by adjusting design parameters real-time. To implement this self-healing technique, the
impedance of this changed load has to be known.

In this Bachelor Assignment a technique of estimating load impedances by analyzing
the harmonic content of the voltage at the switching element. Lookup tables are made,
noise sensitivity and accuracy are analyzed for a set of harmonics and an estimation
of the performance is carried out. A single harmonic parameter does not give enough
information to estimate the load accurately, so combinations of two parameters are
studied.

The body diode in the FET prevents negative voltages across the capacitor and distorts
the waveform. This influence is big as the estimation performance reduces drastically,
making it very hard to perform load estimation when negative voltages should have
appeared. A model for this behavior is made, and the load estimation technique is
analyzed with this effect taken into account.

This report concludes with a performance estimation of different combinations of
harmonic parameters to estimate the load impedance, presented as the estimation
accuracy for each impedance plotted in a Smith chart.
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1. Introduction

The class-E RF power amplifiers (Fig. 1.1) are a class of RF power amplifiers in which
very high power efficiencies can be achieved. Under nominal conditions, there is no
voltage across and current through the switch at the same time. These conditions are
named Zero Voltage Switching (ZVS) and Zero Slope Switching (ZSS). In theory, this
means that there are no losses in the switching component.

One big problem with these Class E power amplifiers is that these are very sensitive to
load-mismatch. Because the design includes two resonant tuned tanks, small changes
in load impedance can detune the circuit, resulting in load-dependent output power,
power efficiency, peak voltages, peak currents and the device operating outside of safe
operating area (SOA) causing degradation or failure of components.

To overcome these problems a self-healing technique can be used to readjust the
amplifier to the changed load impedance, by adjusting design parameters real-time. To
implement this self-healing technique, the impedance of this changed load has to be
known.

In this Bachelor Assignment a practical way to measure this antenna impedance will
be examined. The proposed method tries to combine the work of A. Ghahremani [4] and
M. Huiskamp [6].

A. Ghahremani showed a load-pull analysis for class-E RF power amplifiers in [4]. In
his paper, the effects of load-mismatch on the behavior of amplifiers is described. Due to
load-mismatch the ZVS and ZSS conditions are violated, resulting in a nonzero voltage
and slope at the switching moment. The voltage at the switching moment is referred to
as the α parameter, the slope as the β parameter, as shown in Fig. 1.2. When the α
and β parameters of the PA are known, all of the performance parameters are known,
including antenna impedance.
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Figure 1.1: Basic Class-E RF amplifier schematic. The switch is operated by a frequency ω
and the LC-tank is tuned at a frequency ω0. R is the real load impedance, X the
imaginary load impedance.
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Figure 1.2: Example switch voltage of a Class E RF PA. Parameters α (Voltage across switch
when switch is closing) and β (Derivative of voltage across switch when switch is
closing) of a Class E RF PA are graphically shown.

The problem is that it is not easy to measure α and β directly at the switch node of
the PA. The frequency of the signal is in the RF range. To measure the value of α, the
voltage of the node has to be measured just before the switch closes, at dπ/ω0 in a
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switching cycle. Measuring β is harder, as the slope of the voltage just before switching
has to be measured, which needs very accurate ADCs.

M. Huiskamp described a system to measure and compute the harmonic content of
the waveform generated at the switch node of a class-E amplifier in [6]. Using a DFT,
the first three harmonics of the signal are calculated.

The goal of this Bachelor Assignment is to investigate if it is possible to use information
of the harmonics of the signal at the switch node in a class-E RF PA to determine the
load impedance, and how this can be done most efficiëntly. If this information is not
sufficient, extra required parameters that are needed in order to determine the load
impedance will be investigated.
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2. Self-healing

2.1 Impedance mismatch

Load variations in Class-E RF amplifiers cause the amplifier to violate its ZVS and ZSS
conditions, which means that α 6= 0 and β 6= 0. This can result in the amplifier to operate
outside the safe operating area, causing its components to fail. [1]

When the load impedance is known, the q and d parameters can be tuned such that
the amplifier is ’healed’ and operates within its safe operating area (SOA) again, as
described in [8].

2.2 Load impedances

As stated in [4], load impedances can be defined as normalized impedances, referenced
to the nominal load impedance Znom. An impedance can be expressed as

Z = R+ jX (2.1)

and every load impedance Z can now be expressed relatively to Znom by the scaling
factors k and k′ as:

Z = kRnom + j
(
Xnom + k′Rnom

)
(2.2)

This means, that for nominal conditions k = 1 and k′ = 0. By observing the K-design set,
R and X can be found in KL and KX [3]:

KL =
Lω0

R
(2.3)

KX =
X

R
(2.4)

By knowing the design set for a certain load impedance as if it was a nominal load and
the design set of the actual nominal load, k and k′ can be calculated as as:

k =
KL,nom

KL
(2.5)

k′ = KX · k −KX,nom (2.6)

The K-design set parameters KL and KX can be expressed solely by (q, d, m, α and β)
[2]. For a design with fixed q, d and m, the load impedance can thus be calculated by
measuring only α and β.
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qqq mmm ddd ααα βββ

1.412 0.05 1 0 0

Table 2.1: Simulation parameters used for the Class-E simulations in matlab. These are conven-
tional design numbers for high output power and high efficiency. [4]

α and β are defined by VC , the voltage of the capacitor:

α =
Vc

(
2π
ω0

)
VDD

(2.7)

β =

dVc
dt

(
2π
ω0

)
VDDω0

(2.8)

This means that α is defined as the relative voltage at the end of a cycle, and β is
defined as the slope of the relative voltage, relative to the operating frequency, at the
end of a cycle as graphically shown in Fig. 1.2.

The other way around, the design set can also be calculated for every load impedance
using only variable α and β parameters. Using the design set, the capacitor voltage
VC can be calculated. By applying a Fast Fourier Transform, it is easy to calculate the
harmonic contents.

A matlab script it used to simulate a class-E RF amplifier, by calculating the K-design
set, VC and IS for a given set (q, d, m) and α and β, as shown in Table 2.1. α and β can
be swept over a certain range of values to calculate the amplifier for multiple operating
points. By using (2.2), (2.5) and (2.6), the load impedances of these variable α and
β simulations can calculated relatively to a nominal operation point where α = 0 and
β = 0. To describe different load impedances in a convenient way, reflection coefficients
and Smith Charts normalized to the nominal load impedance are used. The reflection
coefficient ΓZ is defined as [7]:

ΓZ =
Z − Znom
Z + Znom

(2.9)

For simplicity, in numerical calculations a nominal impedance of Rnom = 1Ω and
Xnom = 0Ω (Znom = 1Ω) is used.

The simulation results provide relations between α, β, k, k′ and harmonic content. As
Eq. (2.2) states a direct relation between relative impedance and k and k′, there is a
relation between the harmonic content and the relative impedance. As the harmonic
content can be measured [6] quite good, an impedance estimation should also be
possible if as set of harmonic parameters is unique enough for every possible impedance.

2.3 Lookup table

By building loop-up tables with harmonic parameters and relative impedances, an
unknown load impedance can be estimated by measuring the harmonic parameters of
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VC , looking up these parameters in the table and finding the corresponding k and k′ to
calculate the impedance. To create such look-up tables, the following steps are taken:

1. Calculate a table of alpha and beta parameter values, so that the corresponding
load impedances fill the entire ΓZ-plane.

2. Simulate all α and β combinations in this table, calculate waveforms and impedances.

3. Calculate the harmonic parameters by performing a FFT for the acquired wave-
forms for all entries in the table.

4. Resample the harmonic parameters to create look-up tables that are evenly spaced
on the ΓZ-plane.

These steps are explained in the next chapter. To estimate the performance of the
use of these lookup tables several tests and comparisons are shown in the following
chapters.
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3. Harmonics look-up table

3.1 Look-up table calculation

First, a table of alpha and beta values is generated, so the entire Smith Chart is covered.
A matlab script based on the expressions for the switch-node voltage, the switch current
and the K-design set, a plot of the α and β values is calculated and shown in a Smith
Chart in Fig. 3.1. The figure shows that alpha values between∼ −8.5 and∼ 8.5 results in
a nonnegative loads. For beta, values between sim− 2 and ∼ 30 covers the Smith chart.
The alpha parameter shows an almost linear distribution along the chart. Therefore the
table of alpha values is chosen to be linear as well. The beta parameter shows a more
logarithmic relation between the value and the Smith Chart. By heuristic optimization,
a set b[n] = b[n − 1] + b[1] with b[1] = −2 is found to show a near linear scale on the
Smith Chart. To optimize simulation times, the step size is varied for different simulations
so that for simple simulations a table of ∼ 300× ∼ 300 values can be used and for final
results a table of ∼ 2000× ∼ 2000 values can be used to increase the resolution.
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(a) Plot of α-parameter.
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(b) Plot of β-parameter.

Figure 3.1: Constant α and β contours in the ΓZ′ plane.

A lot of the combinations of an alpha and beta parameter fall outside the unit circle of
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the reflection coefficient C on the Smith Chart, meaning the the waveform would have
been produced by a negative load. Because these results are not relevant, these points
are filtered out later on by testing if the absolute value of the reflection coefficient ΓZ is
not greater than 1.

3.2 Simulation and FFT

After creating a table with alpha and beta values, the matlab simulation script is used to
simulate the Class-E amplifier for all these alpha and beta values. For each entry, the
current and voltage waveforms and the design sets are calculated. By comparing the KL

and KX parameters to the values of the reference impedance ΓZ,nom = 0, the scaling
factor k and k′ can be extracted. The load impedance scales with the same factors, as
explained in Eq. (2.2), so now also the impedance of each point can be calculated.

A Fast Fourier Transformation (FFT) is used to calculate the amplitude and phase
of the harmonics. The results of the first six harmonics and DC are stored for each
table entry. Because a FFT gives two results: a real part and an imaginary part, or
an amplitude and a phase, each each now gives 6 harmonics with 4 parameters per
harmonic. As DC has gives no phase information (which means that its imaginary part
is zero, the phase is zero and the absolute value is equal to the real value) this means
that every point in the grid now has 25 parameters that can be used to estimate an
impedance. The naming of these parameters used in this report is shown in Table 3.1.

Table 3.1: All 25 harmonic parameters used in this assignment.

|hn| ∠hn Rehn Imhn

0th - - h0r -
1st h1a h1p h1r h1i
2nd h2a h2p h2r h2i
3rd h3a h3p h3r h3i
4th h4a h4p h4r h4i
5th h5a h5p h5r h5i
6th h6a h6p h6r h6i
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3.3 Resampling of the table

Because the data points on the Smith Chart are not equally spread, it is more difficult to
perform calculations on the dataset. Therefore, all arrays are resampled to an equally
spaced grid. This is done within matlab with the use of linear interpolation. The result
of this operation is a set of look-up tables, that contain information about the first six
harmonics and DC, for the reflection coefficient |ΓZ | < 1.

Now the harmonic data is stored in an equally spaced grid, the data can be plot easily
by matlab. Smith Charts containing the information of all 25 parameters are shown in
Figs. A.1 to A.5 in Appendix A.
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4. Performance

4.1 Gradient

In order to determine which of the parameters give the most and most accurate informa-
tion for determining the load impedance, the rate of change of the values is important.
A bigger change in a value gives a higher accuracy. To find how big these differences
are and in which direction the biggest differences are found, the gradients ∇hn (ΓZ) are
calculated for all 25 fields. The mean values of the amplitude of the gradients are shown
in Table 4.1. These values shown the mean difference in the strength of the harmonic
parameter for a reflection coefficient change of 1. This table shows that the 0th harmonic
(DC) gives littlest information of all harmonics, as the amplitude changes least compared
to the other harmonics for all loads plotted on the ΓZ plane. Also, the first and second
harmonic have the strongest gradients, while the amplitude is decreasing with the order
of the harmonic.

The gradients of the absolute value, phase, real part and imaginary part of the first
six harmonics and DC (only real part) are shown in Figs. B.1 to B.5 in Appendix B. In
these figures it can be seen that the amplitude of the gradient is largest in the upper left
region (Re(ΓZ) > 0, Im(ΓZ) < 0) for most parameters. Therefore, the largest accuracy
for finding impedances will be found in this region as well.

The direction of the gradients is also very important as it indicates in which direction
the harmonic changes the most. To estimate a load given its harmonics, at least two
harmonics are needed to find an unique spot on the two dimensional, complex ΓZ plane.
The more orthogonal these harmonics are distributed over this plane, the more accurate
this look-up table for finding impedances is.

Page 12



Table 4.1: Mean gradient amplitude for different complex harmonic content variables in 1
1 × 103

( 1
ΓZ

)

Amplitude Phase Re Im

0th - - 0.9393 -
1st 146.8941 0.1196 196.7789 38.0400
2nd 200.0732 0.5047 86.6997 201.9473
3rd 90.1820 0.1892 73.7422 59.8290
4th 36.0454 0.6067 10.5596 40.1343
5th 35.1720 0.1857 22.3227 30.3400
6th 22.3516 0.6149 4.6608 24.5324

4.2 Noise sensitivity

To calculate a form of noise sensitivity per harmonic parameter, mean noise contribution
Nhn to all harmonic parameters is calculated. This is done by simulation the circuit again
for different α and β values. First the waveform is calculated and copied a thousand
times. At every copy, White Gaussian Noise (WGN) with a peak-to-peak voltage of
1 V
Vdd pp

is added and the harmonics are calculated using a FFT. Then, these values are
compared to the noiseless simulation and the average value of all copies is calculated.
This value now represents how sensitive the harmonic parameters are to fluctuations
in the signal VC , described as harmonic amplitude per V

Vdd pp
noise. In Table 4.2 the

sensitivity values are shown.
The gradients (in harmonic amplitude per ∆ΓZ) can be combined with the noise

sensitivity of the harmonic parameters (in harmonic amplitude per noise amplitude), to
calculate how much deviation in reflection coefficient ΓZ in the optimal direction (gradient)
will occur, when 1 V

Vdd pp
AWGN is added to the waveform of VC . This error sensitivity εΓZ

is calculated as:

εΓZ ,mean =
Nhn

|∇hn|mean
(4.1)

These values are shown in Table 4.3. For the load estimation process multiple
harmonic parameters are used. Because of this, the direction of the gradient is the most
important for noise, as other directions are corrected by other harmonic parameters.
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Table 4.2: Noise sensitivity of harmonics: Mean difference in harmonic parameters for 1 V
Vdd pp

Additive White Gaussian Noise.

Amplitude Phase Re Im

0th - - 10.2886 -
1st 7.2770 0.0056 7.2782 7.2740
2nd 7.2756 0.0148 7.2764 7.2773
3rd 7.2782 0.0150 7.2778 7.2776
4th 7.2784 0.0794 7.2771 7.2764
5th 7.2739 0.0382 7.2776 7.2786
6th 7.2613 0.1337 7.2779 7.2776

Table 4.3: Mean noise error in in 1× 10−3 (ΓZ), optimal direction for 1 V
Vdd pp

Additive White
Gaussian Noise. The numbers represent the mean deviation in reflection factor for
AWGN: a lower number means that the parameter is less sensitive for noise on VC .

Amplitude Phase Re Im

0th - - 10.9535 -
1st 0.0495 0.0465 0.0370 0.1912
2nd 0.0364 0.0294 0.0839 0.0360
3rd 0.0807 0.0795 0.0987 0.1216
4th 0.2018 0.1309 0.6891 0.1813
5th 0.2068 0.2056 0.3260 0.2399
6th 0.3249 0.2174 1.5615 0.2967

4.3 Combinations

As can be seen in the contour plots and gradients of the harmonic parameters, one
parameter does not provide enough information for accurate load estimation, as high
accuracy is only provided in one direction, the direction of the gradient. When combining
two parameters and using both look-up tables, the accuracy can be extended to two
directions. The more perpendicular those directions are, the more accurate the load on
the two-dimensional ΓZ plane can be estimated. When the directions of the gradients
are parallel, more accuracy in that direction is given, but accuracy in all other directions
is still too bad for load estimation.

To provide a measure of information of two parameters, a combined sensitivity value
Cnm (ΓZ), as function of the reflection coefficient ΓZ , is introduced. The number rep-
resents the accuracy of using the two corresponding look-up tables to estimate an
impedance. The higher the gradients, the more accurate the look-up tables are. By com-
paring the angles of the two gradients, the degree of perpendicularity can be calculated.
The value is defined as the product of the length of the gradients, multiplied with the sine
function of the angle difference and divided by the noise sensitivity:
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Cnm (ΓZ) =
|∇hn (ΓZ)|

Nhn

· |∇hm (ΓZ)|
Nhm

· sin (|∠hn (ΓZ)− ∠hm (ΓZ)|) (4.2)

The sine function makes sure that perpendicular gradients cancel, resulting in a
information grade of zero, and orthogonal gradients result in just the multiplication of the
gradient amplitudes. A higher noise sensitivity (Table 4.2) results in a lower sensitivity
value.

By combining the 25 different parameters,
25−1∑
k=1

k = (25−1)·25
2 = 300 combinations

can be made. All resulting values are calculated for each point in the ΓZ plane. For
comparison, the mean sensitivity value for the combinations is calculated and shown
in Table 4.4. A graphical representation is shown in Fig. 4.1. The results show that
combinations with the 0th harmonic (DC) has a significantly lower sensitivity value than
the combinations with other harmonics. This has to do with the small differences in DC
amplitude. The results also show that combinations with the 1st, 2nd and 3rd harmonics
(the upper left corner of Fig. 4.1) gives the most information, as the gradients have high
amplitudes. The best 6 combinations are shown in Table 4.4 as numerical mean values
and graphically for the entire ΓZ-plane in Fig. 4.2, as these values stand out compared
to the other values.
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Figure 4.1: Color plot with the sensitivity values of all combinations. A higher value means more
accuracy for load impedance estimation. A table with all numerical values can be
found in Table C.1 in Appendix C.

Table 4.4: Mean sensitivity value Cnm × 107 for different combinations of harmonics. This table
is a subset of the complete Table C.1 in Appendix C. The combination with the six
largest values are shown in gray.

h1r h2a h2i h3p

h2p 1.01 1.37 1.01 1.04
h2r 1.39 3.47 1.55 0.89
h2i 0.36 3.22 - 1.40
h3p 1.36 1.38 1.40 -
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Figure 4.2: Combined sensitivity graph, showing the combined sensitivity values for the entire
ΓZ -plane, for the 6 combinations with the highest average combined sensitivity value.
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4.4 Error calculation

Because for load estimation the measured harmonic parameters has a certain error, it is
important to known how much this influences the result of the estimation. To indicate the
accuracy of a combination, the maximum difference in estimated reflection coefficient
can be calculated for a given parameter offset.

Because this error sensitivity is dependent of the load, this sensitivity can be calculated
for the entire ΓZ-plane.

The calculations are done by finding the maximum difference between ΓZ for a given
reflection coefficient, and all reflection coefficients that have harmonic parameters in a
given range of the parameters for the original reflection coefficient. The range is defined
by the noise sensitivities in Table 4.2. The error now defines the maximum error in the
estimated ΓZ when VC with AWGN 1 V

Vdd pp
distortion is measured for each point on the

ΓZ-plane, given the combinations of harmonic parameters used for the estimation.
The error is calculated for the six combinations with the highest mean combined

sensitivity values found in Table 4.4. The results are shown in Fig. 4.3.
The results show that these results are in accordance with the combined sensitivity

values shown in Fig. 4.2, as lower sensitivity leads to more ΓZ-error. As different
combinations lead to different optimal ΓZ areas where the ΓZ-error is low, combinations
of more than two harmonic parameters should lead to even more optimal solutions.

For the first combination, consisting of h2r and h2i, the maximum error is ∆ΓZ = 0.1
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h1r and h2r h2a and h3p
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Figure 4.3: Maximum ΓZ error for an offset in harmonic parameters caused by AWGN 1 V
Vdd pp

distortion, when estimation ΓZ by use of different combinations of harmonic parame-
ters.
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4.5 Testbench

To test the actual performance of this estimation technique, a testbench is made. This
testbench can create waveforms for a given set of design parameters, including the α
and β parameters, and creates copies of this waveform with Additive White Gaussian
Noise (AWGN) with a peak-to-peak voltage of 1 V

Vdd
. For all of these waveforms the

harmonics are calculated. The testbench can be adjusted to use a given set of harmonic
fields (amplitude, phase, real part and imaginary part for every harmonic) and tries
to find the closest estimation for the waveforms on the calculated look-up fields. The
closest estimation, which is defined as the table entry with the lowest value of the
summation of errors between the value of the tested waveform and the look-up table for
each field, determines the estimated load impedance. All impedances are plotted on a
Smith Chart and the mean distance between the estimated reflection coefficient and the
estimated reflection coefficient of the original undistorted waveform is calculated. This
gives an estimation about how accurate the load can be estimated given a noise power
for distortion of the to be estimated simulated waveform.

In Fig. 4.4, testbench results of single harmonic parameters are shown. These
harmonics are most used in the six combinations with the highest mean combined
sensitivity values. The first plot shows a noise signal used in the testbench. In Fig. 4.4a,
the undistorted voltage waveform is shown in blue, and one instantiation of the voltage
distorted with White Gaussian Noise is shown in red. In Figs. 4.4b to 4.4f, the estimated
load impedances are plotted on a Smith Chart. Each point is estimated by the the
same voltage waveform but has a different instantiations of White Gaussian Noise.
Lines become visible and show that using the given harmonic parameter for estimation,
(small) disturbances in the voltage measurement can result in estimated impedances
somewhere on these lines.

The shapes are in accordance with the contour plots shown in Figs. A.1 to A.5 in
Appendix A: The gradients show the directions of the largest changes in parameters,
and thus the most sensitive direction. These testbench results shown that indeed
disturbances on the measured signal result in estimated impedances distributed over the
contour line that touches the point in ΓZ that corresponds to the simulated impedance,
which is Znom.

When multiple parameters are combined to estimate the load impedance, load
impedances are only found in the area where the corresponding lines of the parameters
overlap, thus increasing the accuracy of the estimation.
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Figure 4.4: Estimated load impedance by using specified harmonic parameters for α = 0 and
β = 0 with AWGN 1 V

Vdd pp
distortion.

The testbench results of the six combinations found in Table 4.4 are shown in Fig. 4.5
for α = 0, β = 0. The testbench shows that the combination of h2r and h2i gives the
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lowest mean error, as predicted with the error estimation. The combined sensitivity
value, is an indication for the entire ΓZ-plane, and not just for the simulated α =
0, β = 0. This explains why the h2a and h3p combination performs worse, and the h2a
and h2p combination performs much better than expected from the sensitivity value.
The combined sensitivity values therefore give a more general approximation of the
performance of a combination, while the testbench can show exact results at a given ΓZ .

As the h2r and h2i combinations gives the best result in numerical gradient comparison
and in the testbench, this set of parameters is used to test different values for α and
β. The results are shown in Fig. 4.6. As expected from the amplitude of the gradients
(Figs. B.1 to B.5 in Appendix B) and combination (Fig. 4.2), most accuracy is found in
the upper left corner of the Smith Chart, where ReΓZ < 0 and ImΓZ > 0. This area rep-
resents an inductive load with a real impedance higher than the nominal impedance.[5]
Lower impedances than the nominal impedance and more capacitive loads leads to
more error in the estimation.
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5. Diode

5.1 FET body diode

In the matlab simulation, there is one physical aspect of the Class-E circuit that is
ignored, that has an enormous impact on the waveform of VC , namely that a FET is not
an ideal switch and has a body diode. This diode is shown in Fig. 5.1. When the voltage
over the capacitor becomes negative, the body diode in the transistor will conduct the
voltage to ground. In reality, a diode has a voltage drop due to its nonlinear behavior.
For this model, an ideal diode that conducts for all negative voltages will be assumed.
The impact on the FFT will be similar, as it ’throws away’ information in the negative part
of the waveform.

Because of the pulse-like shape of the waveform, the body diode can have effect at 3
places in the waveform. The first possibility is that the waveform starts with a negative
voltage. The diode will conduct until the waveform becomes positive. In real situations,
this event will never take place, as this would assume that as soon as the switch opens,
a current from the load charges the inductance. This means that energy is taken from
the load instead of energy delivered to the load and that the impedance of the load would
be negative.

The second possibility is that the waveform becomes negative in the middle of the
wave. In this assignment, is it assumed that the ideal diode conducts all energy and
that a negative voltage becomes zero as long as the voltage remains negative. This is
illustrated by Fig. 5.2.

The third option is that the waveform becomes negative at the end of the waveform,
which happens if the α-parameter is negative. This is shown in Fig. 5.3. In this event,
something different occurs. Because of the negative voltage, the diode conducts, which
can be seen as if the switch opens. Because the next cycle starts with the switch
opened, effectively the next cycle has starter earlier and the duty cycle d of this cycle
has increased. This is illustrated by Fig. 5.4. Because now the coil has more time to
charge, the voltage and current behavior of the next cycle will be influenced. Therefore
the matlab model has been modified to extend the duty cycle when this event occurs.
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5.2 Simulation model

When a negative voltage is found at the end of a cycle, the simulation is redone with a
duty cycle that is extended by exactly the amount of time that the diode was conducting,
and an α-parameter of 0, as the cycle now ends at the zero crossing. Also the β-
parameter is modified so that it is equal to dV (t)

dt with t the time the diode start conducting
as shown in Fig. 5.3.

As the situation in which the duty cycle is increased as the result of the diode con-
ducting at the end of a duty cycle occurs whenever α is zero, meaning that this occurs
at approximately half of the ΓZ-plane. Moreover, because this behavior removes a lot
of information of the waveform and therefore also information for the harmonics it is
important to examine the effects on the accuracy. Fig. 5.5 shows at which loads the
diode conducts on a Smith Chart.

Diode effect in middle of a waveform. Diode effect in the end of waveform.

Figure 5.5: Smith Chart showing values of ΓZ for which the body diode of the switch conducts,
changing the waveform of VC .
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6. Performance with diode

6.1 Simulations, gradient and combinations

The simulations for the set of α and β values is now repeated with these diode effect as
described in the previous section. The resulting contour plots and gradients are shown
in Figs. D.1 to D.5 in Appendix D and in Figs. E.1 to E.9 in Appendix E. It can be seen
that is is much harder now to perform an estimation in the α < 0 area. Numerical values
of the mean gradient and mean error sensitivity are shown in Tables 6.1 and 6.2.

Table 6.1: Mean gradient amplitude for different complex harmonic content variables in 1
1 × 103

( 1
ΓZ

)

Amplitude Phase Re Im

0th - - 135.3470 -
1st 123.3953 0.1855 283.5382 93.3211
2nd 176.2898 1.3758 109.1925 320.6371
3rd 154.9755 0.7446 146.5969 112.7021
4th 70.1014 1.6628 65.4913 23.8266
5th 34.3643 0.8134 37.8172 26.0273
6th 18.6803 1.4381 8.1017 23.4768

Table 6.2: Mean noise error in in 1× 10−3 (ΓZ), optimal direction for 1 V
Vdd pp

Additive White
Gaussian Noise. The numbers represent the mean deviation in reflection factor for
AWGN: a lower number means that the parameter is less sensitive for noise on VC .

Amplitude Phase Re Im

0th - - 0.0760 -
1st 0.0590 0.0300 0.0257 0.0779
2nd 0.0413 0.0108 0.0666 0.0227
3rd 0.0470 0.0202 0.0496 0.0646
4th 0.1038 0.0478 0.1111 0.3054
5th 0.2117 0.0470 0.1924 0.2797
6th 0.3887 0.0930 0.8983 0.3100
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6.2 Combinations

With the gradients, again the combinations can be calculation. The graphical results is
shown in Fig. 6.1, the full table with numerical results is shown in Table F.1 in Appendix F.
A subset of this table containing the 6 largest combined sensitivity values is shown in
Table 6.3.

Table 6.3: Mean combined sensitivity value Cnm × 107 for different combinations of harmonics.
Subset of the complete Table F.1 in Appendix F. The combination with the six largest
values are shown in gray. Note that these results differ from the results without diode
in Table 6.3.

h2p h2i h3p

h1a 0.94 0.64 0.78
h1p 0.69 0.34 0.82
h1i 0.81 0.71 0.82
h2a 1.07 0.49 0.74
h2p - 0.65 1.10
h2r 0.74 0.87 1.69
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Figure 6.1: Color plot with the sensitivity values of all combinations. A higher value means
less error sensitivity. A table with all numerical values can be found in Table C.1 in
Appendix C.

Page 31



h2p and h3p h2a and h2p

h1a and h2p h2r and h2i

h1p and h3p h1i and h3p

Figure 6.2: Maximum ΓZ error for an offset in harmonic parameters caused by AWGN 1 V
Vdd pp

distortion, when estimation ΓZ by use of different combinations of harmonic parame-
ters.
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6.3 Testbench

To test the performance of the estimation technique with an amplifier model with body
diode the testbench is used again with lookup tables built with a model that includes a
body diode. In Fig. 6.3 the testbench results of the six best performing combinations are
shown, for α = 0 and β = 0. As predicted by the estimated error calculation, results are
generally worse than the model without the diode. Especially the combinations h2r-h2i
and h1i-h3p, which show load estimations far away from the actual used load.

Finally, a testbench simulation for multiple values of α and β is done for the h2p and
h3p combination, as this combination gives the highest combined sensitivity value of all
compared combinations. The Smith chart showing the results is shown in Fig. 6.4. To
increase the change of finding an estimated load impedance, the noise level is lowered to
0.1 V

VDD pp
. fluctuations of the values in the lookup tables are that high, that no estimated

load impedances can be found for values of ΓZ where α < 0. The testbench is repeated
for h2a + h2p and h1a + h2p, but these combinations give similar results. Unfortunately
load impedance estimation using this diode extension technique and these lookup tables
did not succeed for α < 0.
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A [ΓZ,ε] is specified.
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7. Conclusion

To perform a load estimation for Class E RF power amplifiers using the harmonic content
of the voltage waveform of the switch node, lookup tables for the first six harmonics and
DC are build. As harmonics are complex valued, every harmonic gives two parameters.
When these complex parameters are described as amplitude and angle, two more
parameters can be distinguished resulting in a total of four parameters per harmonic.

The lookup tables are investigated for accuracy and the amount of information a
table gives about the load, given a certain measurement accuracy and noise. For each
harmonic parameter, the gradient, as measure of sensitivity, noise sensitivity and mean
noise error are calculated. These values can tell that the DC component of the signal
does not provide much information, and results in large estimation errors. Furthermore,
the lower harmonic provide more information than higher harmonics.

As one parameter does not give enough information to estimate a complex valued load
impedance, simulations are done to calculate the performance of the use of combinations
of two lookup tables. These calculations conclude that not only the sensitivity and error
of a harmonic parameter is important, but also the direction in which these properties are
of great importance. The results show that combinations of harmonics that individually
seems to deliver most information, do not give as much information as parameters that
have a sensitivity that is more orthogonal.

The performance of an estimation testbench, using the calculated lookup tables, is
tested, by adding different instances of noise to a simulated voltage waveform. The
testbench shows that it is possible to estimate a load impedance with great accuracy,
even if a lot of noise it added to the measured signal.

The body diode in the switching element distorts the voltage waveform heavily, resulting
in larger errors in the estimation process, especially when α < 0, but also for all other
load impedances. The results show that there are a lot of spots on the ΓZ-plane where
the estimation error is very high, even when multiple harmonic parameters are combined
to find the best estimated load impedance.

When the testbench was used to test the performance of the load impedance estima-
tion with this diode effect included in the simulation, the testbench could not estimate
impedances for which α < 0, because the lookup tables show lots of irregularities due to
the diode.

Because the model uses a very basic model of a diode, namely that it prevents all
negative voltages over the capacitor, the performance is possibly worse than when a
real body diode is used, as the reverse voltage has a certain threshold, allowing a small
negative voltage dependent on the used technology.
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The results thus show that estimating the load impedance, based on the harmonic con-
tent of the voltage at the switching element in a Class-E RF amplifier is possible, and has
an acceptable accuracy, as long as the effect of the body diode can be neglected. This
is of course not the case. When this is not neglected, estimations for load impedances
where α < 0 need very accurate measurements and lookup tables. Because a very
simplistic model of this diode is used, the simulated performance is possibly worse than
the performance with a more accurate model.
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A. Harmonic parameter plots
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Figure A.1: Contour plot of the absolute value of the first six harmonics.
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Figure A.4: Contour plot of the real part of the first six harmonics.
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Figure A.5: Contour plot of the imaginary part of the first six harmonics.
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B. Harmonic parameter gradient
plots
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Figure B.1: Gradients of the absolute value of the first six harmonics.
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Figure B.2: Gradients of the complex phase of the first six harmonics.
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Figure B.3: Gradient of the real part of the 0th harmonic (DC), ∇Reh0.
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Figure B.4: Gradients of the real part of the first six harmonics.
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Figure B.5: Gradients of the imaginary part of the first six harmonics.
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C. Harmonic parameter
combinations
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Table C.1: Combined sensitivity value Cnm × 107 for all combinations between harmonic parameters as defined in Section 4.3. The top 6 combinations that are further
discussed in this section are marked in gray. A: Amplitude, P: Phase, R: Real part, I: Imaginary part.

1A 1P 1R 1I 2A 2P 2R 2I 3A 3P 3R 3I 4A 4P 4R 4I 5A 5P 5R 5I 6A 6P 6R 6I

0.09 0.11 0.12 0.02 0.11 0.08 0.00 0.13 0.07 0.08 0.10 0.00 0.02 0.01 0.00 0.02 0.03 0.05 0.06 0.00 0.01 0.00 0.00 0.01 0R

- 0.92 0.48 0.84 0.45 1.01 1.05 0.67 0.70 1.05 0.87 0.85 0.52 0.24 0.37 0.51 0.41 0.67 0.49 0.60 0.47 0.22 0.24 0.48 1A

- - 0.42 0.93 0.73 0.98 1.25 0.45 0.76 1.31 0.84 1.02 0.65 0.43 0.44 0.69 0.55 0.80 0.48 0.72 0.57 0.36 0.29 0.61 1P

- - - 1.09 0.46 1.01 1.39 0.36 0.83 1.36 1.02 1.12 0.67 0.39 0.49 0.69 0.55 0.85 0.58 0.80 0.61 0.35 0.32 0.65 1R

- - - - 0.98 0.63 0.20 1.17 0.56 0.59 0.77 0.19 0.26 0.15 0.07 0.28 0.26 0.35 0.42 0.13 0.15 0.09 0.05 0.16 1I

- - - - - 1.37 1.27 0.54 0.68 1.38 0.90 1.03 0.65 0.33 0.45 0.65 0.44 0.87 0.51 0.73 0.57 0.31 0.30 0.60 2A

- - - - - - 0.90 1.01 0.80 1.04 0.72 0.75 0.51 0.39 0.32 0.57 0.53 0.62 0.40 0.53 0.43 0.30 0.21 0.46 2P

- - - - - - - 1.55 0.83 0.89 1.15 0.03 0.21 0.15 0.00 0.23 0.37 0.52 0.64 0.02 0.08 0.06 0.00 0.09 2R

- - - - - - - - 0.78 1.40 0.85 1.26 0.80 0.45 0.54 0.83 0.58 0.89 0.49 0.90 0.71 0.40 0.36 0.74 2I

- - - - - - - - - 1.19 0.43 0.69 0.50 0.28 0.29 0.53 0.16 0.74 0.24 0.49 0.40 0.25 0.19 0.43 3A

- - - - - - - - - - 0.95 0.74 0.55 0.41 0.31 0.60 0.71 0.19 0.53 0.53 0.44 0.29 0.21 0.47 3P

- - - - - - - - - - - 0.95 0.69 0.40 0.40 0.73 0.40 0.64 0.01 0.68 0.56 0.33 0.27 0.60 3R

- - - - - - - - - - - - 0.15 0.12 0.01 0.17 0.31 0.43 0.53 0.00 0.05 0.05 0.01 0.06 3I

- - - - - - - - - - - - - 0.08 0.07 0.02 0.23 0.32 0.38 0.11 0.05 0.04 0.05 0.05 4A

- - - - - - - - - - - - - - 0.05 0.07 0.14 0.24 0.22 0.08 0.05 0.05 0.04 0.06 4P

- - - - - - - - - - - - - - - 0.08 0.13 0.18 0.22 0.01 0.03 0.02 0.00 0.03 4R

- - - - - - - - - - - - - - - - 0.24 0.35 0.40 0.12 0.06 0.04 0.05 0.06 4I

- - - - - - - - - - - - - - - - - 0.45 0.22 0.22 0.18 0.12 0.09 0.19 5A

- - - - - - - - - - - - - - - - - - 0.35 0.30 0.26 0.17 0.12 0.27 5P

- - - - - - - - - - - - - - - - - - - 0.37 0.31 0.19 0.15 0.33 5R

- - - - - - - - - - - - - - - - - - - - 0.04 0.03 0.01 0.04 5A

- - - - - - - - - - - - - - - - - - - - - 0.02 0.02 0.00 6A

- - - - - - - - - - - - - - - - - - - - - - 0.02 0.02 6P

- - - - - - - - - - - - - - - - - - - - - - - 0.02 6R
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D. Harmonic parameter plots with
diode

In this section the harmonic parameters (amplitude, phase, real, imaginary) of the first
six harmonics and DC are plotted. As the distribution over the ΓZ-plane is not as ’neat’
as the simulations without the body diode effect, color plots are used instead of contour
plots.
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Figure D.1: Contour plot of the absolute value of the first six harmonics.
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Figure D.2: Contour plot of the complex angle of the first six harmonics.
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Figure D.3: Contour plot of the real part of the 0th harmonic (DC), Reh0.
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Reh5 Reh6

Figure D.4: Contour plot of the real part of the first six harmonics.
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Figure D.5: Contour plot of the imaginary part of the first six harmonics.
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E. Harmonic parameter gradient
plots with diode

In this section the gradients of the harmonic parameters are plotted. As the distribution
over the ΓZ-plane is not as ’neat’ as the simulations without the body diode effect, color
plots are used instead of contour plots, and the amplitude and direction are shown in
different figures.
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Figure E.1: Gradients of the absolute value of the first three harmonics.
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Figure E.2: Gradients of the absolute value of the harmonics four to six.

Page 61



|∇∠h1|
Re(!)

Im
(!

)

gradient of 1st harmonic (phase)

∠∇∠h1

|∇∠h2|
Re(!)

Im
(!

)
gradient of 2nd harmonic (phase)

∠∇∠h2

|∇∠h3|
Re(!)

Im
(!

)

gradient of 3rd harmonic (phase)

∠∇∠h3

Figure E.3: Gradients of the absolute value of the first three harmonics.
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Figure E.4: Gradients of the complex phase of the harmonics four to six.
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Figure E.5: Gradient of the real part of the 0th harmonic (DC), ∇Reh0.
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Figure E.6: Gradients of the real part of the first three harmonics.

Page 65



|∇Reh4|
Re(!)

Im
(!

)

gradient of 4th harmonic (real)

∠∇Reh4

|∇Reh5|
Re(!)

Im
(!

)

gradient of 5th harmonic (real)

∠∇Reh5

|∇Reh6|
Re(!)

Im
(!

)

gradient of 6th harmonic (real)

∠∇Reh6

Figure E.7: Gradients of the real part of the harmonics four to six.
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Figure E.8: Gradients of the real part of the first three harmonics.
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Figure E.9: Gradients of the imaginary part of the harmonics four to six.
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F. Harmonic parameter
combinations with diode
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Table F.1: Combined sensitivity value Cnm×107 for all combinations between harmonic parameters (simulated with diode) as defined in Section 6.2. The top 6 combinations
that are further discussed in this section are marked in gray. A: Amplitude, P: Phase, R: Real part, I: Imaginary part.

1A 1P 1R 1I 2A 2P 2R 2I 3A 3P 3R 3I 4A 4P 4R 4I 5A 5P 5R 5I 6A 6P 6R 6I

0.22 0.47 0.45 0.18 0.21 0.56 0.24 0.44 0.29 0.54 0.28 0.14 0.10 0.22 0.08 0.19 0.25 0.35 0.25 0.10 0.14 0.17 0.11 0.17 0R

- 0.78 0.60 0.22 0.41 0.94 0.50 0.64 0.61 0.78 0.53 0.41 0.19 0.31 0.15 0.31 0.42 0.45 0.40 0.20 0.25 0.23 0.20 0.27 1A

- - 0.17 0.73 0.63 0.69 0.81 0.34 0.67 0.82 0.63 0.59 0.33 0.27 0.30 0.29 0.46 0.44 0.45 0.34 0.39 0.22 0.29 0.33 1P

- - - 0.64 0.48 0.62 0.78 0.20 0.56 0.71 0.48 0.56 0.29 0.28 0.26 0.27 0.41 0.37 0.39 0.30 0.37 0.22 0.30 0.30 1R

- - - - 0.45 0.81 0.25 0.71 0.44 0.82 0.54 0.24 0.12 0.25 0.09 0.22 0.27 0.49 0.38 0.10 0.15 0.18 0.13 0.18 1I

- - - - - 1.07 0.60 0.49 0.53 0.74 0.49 0.42 0.25 0.30 0.20 0.29 0.40 0.41 0.38 0.26 0.30 0.23 0.22 0.28 2A

- - - - - - 0.72 0.65 0.59 1.10 0.56 0.59 0.44 0.72 0.39 0.35 0.37 0.68 0.34 0.37 0.35 0.30 0.25 0.31 2P

- - - - - - - 0.87 0.44 0.69 0.60 0.16 0.21 0.19 0.17 0.20 0.18 0.47 0.32 0.11 0.08 0.13 0.07 0.12 2R

- - - - - - - - 0.56 0.71 0.41 0.60 0.34 0.31 0.29 0.31 0.44 0.38 0.36 0.36 0.42 0.25 0.31 0.35 2I

- - - - - - - - - 0.73 0.24 0.22 0.26 0.24 0.22 0.23 0.16 0.46 0.21 0.21 0.24 0.18 0.18 0.21 3A

- - - - - - - - - - 0.54 0.46 0.41 0.40 0.36 0.34 0.42 0.24 0.32 0.32 0.33 0.29 0.24 0.29 3P

- - - - - - - - - - - 0.38 0.32 0.27 0.26 0.29 0.27 0.33 0.09 0.29 0.30 0.20 0.20 0.27 3R

- - - - - - - - - - - - 0.15 0.16 0.12 0.15 0.16 0.34 0.27 0.09 0.13 0.12 0.11 0.13 3I

- - - - - - - - - - - - - 0.13 0.04 0.09 0.20 0.24 0.25 0.07 0.12 0.10 0.11 0.12 4A

- - - - - - - - - - - - - - 0.11 0.06 0.13 0.23 0.17 0.07 0.10 0.12 0.09 0.07 4P

- - - - - - - - - - - - - - - 0.11 0.17 0.21 0.22 0.04 0.11 0.09 0.10 0.10 4R

- - - - - - - - - - - - - - - - 0.13 0.20 0.19 0.09 0.11 0.06 0.09 0.08 4I

- - - - - - - - - - - - - - - - - 0.30 0.12 0.12 0.10 0.09 0.09 0.09 5A

- - - - - - - - - - - - - - - - - - 0.22 0.19 0.21 0.17 0.16 0.17 5P

- - - - - - - - - - - - - - - - - - - 0.20 0.17 0.12 0.10 0.17 5R

- - - - - - - - - - - - - - - - - - - - 0.07 0.06 0.07 0.06 5A

- - - - - - - - - - - - - - - - - - - - - 0.06 0.04 0.03 6A

- - - - - - - - - - - - - - - - - - - - - - 0.05 0.04 6P

- - - - - - - - - - - - - - - - - - - - - - - 0.06 6R
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