
Implementing machine learning in industrial robots for better

human-robot cooperation

René Heijdens, S1424378

August 24, 2017

Abstract

Industrial robotic control has not changed significantly over the last years. Robots still rely on pre-
determined machine instructions in order to work. Newly developed cooperative robots uses the same
control mechanisms. This method has little input from the environment to make decisions. This obstructs
human-robotic cooperation during operation. In order to improve human-robotic cooperation, a design
of a new controller for industrial robots is presented enabling a more human-friendly cooperation trough
machine learning algorithms. These algorithms create other methods to program industrial robots, and
makes robots more flexible. A prototype is build as a proof of concept. It also forms a base which enables
future development of software for the ABB YuMi robot.

1 Introduction

Industrial robots (IR) are designed for automation in
manufacturing processes. They are able to reproduce
movements with high accuracy, repeatability and effi-
ciency to improve the process. These kinds of robots
are mainly designed to work in a closed and controlled
environment, a so-called work cell, to ensure maximum
productivity and to prevent interference with the cur-
rent task.

New technologies are being developed for more ef-
ficient and flexible robotic applications. Robots that
can be set-up with minimal efforts can be used for
low-volume and high variant applications. This can
increase the throughput and quality of the production.
[16]

Large IR-manufactures also produce robots that
can work outside cages and in cooperation with hu-
mans. These so-called collaborative robots already
have the sufficient safety mechanisms for save oper-
ation. One major drawback with these collaborative
robots is that they still require some sort of program-
ming to function. Once programmed, the robot can-
not make decisions based on its environment due to the
lack of sensors. Current IR’s are equipped with sensors
to ensure accurate movements but lack the sensors to
sense the environment. If robots need to become more
collaborative with workers, they need to detect the en-
vironment and make situation dependence responses.

In order to make a robot more collaborative, it re-
quires two things. First, it has to detect what to do
and learn how to deal with human interaction. Sec-

ond, a computer with additional sensors must control
the robot in real-time, while maintaining their safety,
efficiency, robustness and reliability. Once these two
aspects merge, it creates the ideal collaborative robot.

This paper is about the design of a controller which
is able to do the two things mentioned above. Differ-
ent aspects of the controller will be discussed. These
aspects are divided into Human-Robotic interaction,
integration of machine learning algorithms in the con-
troller and the current prototype. The major reason
of this prototype is to prove that current Industrial
Robots can indeed be controlled by custom software.

2 Human-Robotic Interaction

Current research on human-robotic interaction (HRI)
have lead to movement restriction controllers, like ABB
smart move, and collaborative robots like the Re-
thinkRobotic Baxter and ABB YuMi. While these
robots do have promising properties for human interac-
tion, they are focussed on completely new robotic sys-
tems, excluding the possibility of retrofitting the cur-
rent robots with new HRI controllers. Human-robotic
interaction needs to add value to the process in order
to succeed. This means that the advantages of both
the human and robot are used within the same pro-
cess. The quality of the process increases due to better
operation steps. Robots can then be integrated into
flexible environments which need additional accuracy.
The accuracy can be delivered by the robot while main-
taining the flexibility humans offer. If any person can

1

work with robots, it opens up possibilities for robots
to be used outside controlled environments. People do
not require training to work with robots, so it can be
used in applications where lots of different people have
to work together with the robot. The first machines
could only be operated by experts, but are now avail-
able for many. It is now for the robot to undergo the
same development.

2.1 Safety

One major aspect of the design of this controller is
safety. Safety can be divided into two different as-
pects; physical safety and psychological safety. Physi-
cal safety is the most straight forward. It provides un-
wanted physical contact which may harm the human.
Psychological safety ensures that the robot does not
cause additional stress and discomfort to the worker.
Fast-moving or sharp parts may discomfort the worker.
While the physical safety ensures that the worker is safe
during operation, a robot can still cause a lot of stress
and is, therefore, psychological unsafe [18]. By adapt-
ing secondary aspects of the operation, like taken path
or speed, workers can feel more comfortable during co-
operation.

2.2 Physical Safety

During action, the controller can predict which path
the robot takes and whether this path is free of any ob-
stacles. A collision with any object is unwanted unless
it is been trained by the action classifier. Wanted col-
lisions are for instance collisions of different parts with
a tool. Although it is still a wanted collision, speed
decreases during the approach of objects, to prevent
damage. If the current taken path gets interrupted by
an object, like hands of a worker or unknown objects,
the controller makes changes for the taken path of the
robot to avoid the hands, but continues its current task,
providing the physical safety barrier.

3 Controller Aspects

The controller has to control multiple aspects of the
robot by using the input of the user. These aspects
can be divided into two categories.

1. Technical operation

2. Social operation

This division is made because of the addition of the
cooperation with humans, which adds the social aspect
to the robotic controller instead of purely technical op-
eration.

3.1 Technical operation

This part focusses on the skill of the robot. The con-
troller needs to learn the basics actions necessary to
fulfil tasks. The controller learns a new skill on how

to approach or pick up objects and how to manipulate
input into desired output. Also, the intention of the
tasks has to be clear to the robot. This is essential
for the controller to execute the right tasks to produce
the desired output [13]. If, for instance, the desired
output is wrong or unknown, the feedback produced is
based on wrong assumptions by the robot. This gen-
erates false feedback and degrades the algorithm. This
feedback will be discussed in paragraph 4.7. Current
operation of a robot have instructions made ahead of
time. The difference between the current operation and
this technical operation is that due to the influence of
the social operation, the technical operation changes.
This means that the instructions have to be generated
in real time.

3.2 Social operation

Social operation focusses on how the robot accom-
plishes the task. Social operation requires human be-
haviour inputs. It makes decisions according to the
mood of the worker, which is discussed in paragraph
3.3. The controller adapts its behaviour according to
the mood of the worker. This influences the robot’s
behaviour in secondary aspects. These aspects do not
change the basic tasks, but it changes the handling of
these tasks [18]. In order for humans to work together
with robotics, there are several aspects that need to
be reconsidered for cooperation. These aspects are di-
vided into four categories; Anticipate, Transparency,
customization and right objectives [23].

3.2.1 Anticipate

In human-human cooperation, people coordinate and
communicate their behaviour through physical and
social-cognitive levels. Humans anticipate on the oth-
ers’ movement trough these communication channels
[20]. For instance, during normal human-human co-
operation, handling over tools, like passing a wrench,
is a basic action, which highly relies on these commu-
nication levels. During the handover process, several
actions are involved for passing over equipment, these
are shown in figure 1.

Robots need to be able to communicate to the
worker trough these two communication levels as well
in order for a good cooperation.

3.2.2 Transparency

Communication goes both ways. People need to antic-
ipate on the robots’ behaviour as well. People make a
lot of assumptions when they watch other people, for
instance, information about a part which they carry.
If a robot hands over a certain part, the worker has to
make an assumption about the weight of the part, but
also when to accept the handover.[23, 20]

2

Figure 1: The canonical handover process [20]

3.2.3 Customization

During the design of self-driving cars, tests about which
driving style the car should have were being performed.
This test was about the connection between desired
driving style of the car, in relation to the driving style
of the respondent. The test indicated that people pre-
fer a different driving style than their own, even though
they thought they had the preferred driving style as
their own. This shows that it is hard to predict what
the worker prefers as the driving style because the pre-
ferred driving style did not match their own driving
style [11]. This test shows that one general solution
does not fit all of the workers. This shows that it is
important to get feedback from the individual during
operation rather than provide a general way of working
for each worker.

3.2.4 Right objectives

In the current situation, an ideal movement path could
easily be calculated by, for example, the shortest path,
fastest path or the path which minimises forces on the
robot. When robots work with humans, this assump-
tion does not work. For instance, how do workers re-
spond on the acceleration or velocity of a robot? What
is an ideal path for humans? This requires emotional
input in the robotic controller in order to deal with each
individual [18, 12]. This way, the robot can determine
by itself which taken path or speed was considered the
best for the worker. So during the operation, the robot
learns what the right objectives are

3.3 Social Input

The state of mind of the user has to be linked to a
variable in order to make changes to the behaviour of
the robot. A workers’ state of mind can be influenced
by many aspects. Therefore it is of high importance
to measure the change. If a worker arrived stressed, it
may be caused by an external factor than by the robot.

3.3.1 Stress indicator

The input for the controller for this social aspect is
the stress level of the worker. Stress can be detected
by sensors placed on the workers body. Tests have
been done by placing Galvanic Skin Response (GSR)
sensors on the workers’ body to read the electro der-
mal response, which is an anxiety indicator [19]. If
the movements cause high GSR repose, it indicates a
stressful movement by the robot [18]. Other physio-
logical responses to stress is the cardiac response [19].
Sensors to measure heartbeat are nowadays available as
consumer electronics, like fitness bands. These fitness
bands measure heart rate accurate [22], which enables
them to be used for this application. There are multi-
ple aspects which can influence these variables. Work-
ing can be a physical intensive task, which may influ-
ence these measurements. During physical labour, the
heart rate and sweat production increases as well. It
is, therefore, important that these measurements take
place during the movement of the robot, to eliminate
the influence of the effects of physical labour.

These variables combined compose one variable
called the stress indicator. However, not all of these
aspects have the same influence on the stress indica-
tor. This is managed by the algorithm by means of
normalising, which will be discussed in paragraph 4.2.

This stress indicator should provide the psycho-
logical safety for the worker to feel comfortable with
the robot. Physical safety is easier to program during
training, but the knowledge about the influence of cer-
tain actions on the workers’ feeling is not integrated
during the first use of the robot. Human behaviour is
hard to predict in models, so this is only trainable dur-
ing operation. Therefore, during the start of implemen-
tation, it is necessary to keep in mind that the robot
might make some manoeuvres in which the worker does
not feel completely comfortable. Due to the physical
safety, the workers are not in danger.

3

3.4 Robotic Control

Current control of Robots relies on a pre-determined
machine code. These codes are generated by software
that simulates the manufacturing process. This gen-
erates a set of instructions, resulting in a highly opti-
mised but inflexible process. Robots cannot deal with
situation dependent responses. In case of abnormal
situations, like interrupts, the robot stops as a safety
precaution. For humans to interact with robots, there
have to be other ways of providing input to the robot,
eliminating the need for the pre-determined machine
code. The robot has to respond to the current situa-
tion. This requires a different approach on providing
instructions to the robot and make adjustments to the
instructions if necessary. In the following paragraphs,
machine learning is introduced as a way to generate
instructions for the robot in real time, and eliminate
the need of manually writing instructions.

3.4.1 Machine Learning

The desired controller uses machine learning algo-
rithms to create the program. The difference between
traditional programming and machine learning is the
way the program is generated. While in traditional
programming, the developer delivers the data and pro-
gram code, in machine learning, the output and data
are delivered to the algorithm which consequently pro-
duces the program, as shown in figure 2. [7]

Figure 2: Traditional programming and machine learn-
ing [7]

3.5 Differences in machine learning al-
gorithms

There are two different categories of machine learning
algorithms. Regression and classification algorithms.
Regression outputs continuous values which for which
x ∈ R. Classification algorithms generate discrete out-
puts. This means that the output is a set of pre-
determined elements, for instance, a for set of possible
outputs A, x ∈ A.

A classification algorithm returns a list of all the
states in the set with the possibility of that state.

The controller requires classifying different environ-
ment states and objects. Therefore, a classification
algorithm will be used for this controller. Current al-
gorithms do support multi-class classification. This
means that the algorithm detects states and objects
at the same time, making it possible to detect several
different objects and states at the same time. One
useful feature of classification algorithms is that it can
be retrained without losing previous data. If a robot
learns a new skill, it does not forget the previous skills
it acquired[8]. The newly trained dataset is added to
the current set of outputs. So if two of the same algo-
rithms, but with different sets (set A and set B), can
be merged, resulting in an output x ∈ (A + B).

This opens up new possibilities for robots to be
used in more flexible environments. Datasets of mul-
tiple robots with the same algorithm can be merged
to create a universal controller for multiple tasks and
multiple robots. This means that it is not necessary to
reprogram the robot for other tasks, but it recognises
the tasks which need to be performed by itself.

This can be really useful for flexible assembly
robots. For example, the algorithm recognises the
parts given to the robot and can act accordingly, with-
out explicitly telling the robot what to do with it.

4 Controller Design

The previous paragraphs described a set of character-
istics and functionalities for the controller. This para-
graph will describe how these characteristics and func-
tionalities will be implemented in machine learning al-
gorithms. While there are already a lot of different
classifications algorithms, there is not a general algo-
rithm which performs the best in every situation. Dif-
ferent algorithms do work differently on mathematical
levels, the general workflow is the same for all the algo-
rithms. Figure 3 shows a general workflow of machine
learning algorithms. [15] This workflow will be used
throughout this paragraph. Each title of a paragraph
refers to a state in this workflow.

Figure 3 is a form of an agent-environment loop,
also known as an intelligent agent, which is an au-
tonomous algorithm which improves itself by observ-
ing trough sensors and evaluate after each action, as
shown in figure 4

Figure 4: agent-environment loop [5]

In the last paragraph, a selection of appropriate al-
gorithms is discussed.

4

Figure 3: Machine Learning Workflow [15]

4.1 Ingestion

Ingestion is the absorption of information by the al-
gorithm. It is the input of the controller. The input
consists of several observations. Based on these obser-
vations, the algorithm makes a prediction based on the
preparation data and the ingestion. The input consists
of several parts in the robotic controller.

• Camera images

• Depth images

• Stress indicator

• Object sizes

• Object coordinates

This data forms the basis on which the algorithm
makes its decision.

4.2 Prep data

During this stage, the input gets modified by the algo-
rithm. The representation of the data changes, mak-
ing it able to distinguish different aspects of the input
based on a unique representation. This representation
is later used to classify different objects. Modification
of data can be normalizing input variables for equal
influence on the algorithm or image modifications like
convolutional functions.

Training data is separated into three datasets;
training, testing and validation. These sets are divided
so the algorithms’ accuracy can be evaluated with the
preparation data alone. At the start of the training,
the set gets divided into two sets, training + test set
and the validation set. These sets are divided so that
the trained weights can be evaluated during training.
The first set, training + test is divided for each learn-
ing step, which means that an image can be used for
training and for weight evaluation at different training
steps. The validation set is also used to analyse the

trained weights. The difference is that this set is never
used for training purposes. It can monitors algorithm is
overfitted or underfitted. This results in two different
accuracy values. From these values, three situations
can occur;

• Both accuracy values are low.

This represents a underfitted algorithm or high-
bias algorithm. This may indicate that the
dataset does not represent the desired classifi-
cation, the dataset is not large enough or the
dataset contains false data.

• Both values indicate a high accuracy.

This indicates a well-trained algorithm.

• Validation accuracy is high, while test accuracy
is low.

The algorithm fits the training data too well,
while it still cannot produce reliable outputs.
This indicates a overfitted algorithm, also known
as a high-variance algorithm. This is a result
of an algorithm which is too much focussed on
the training set and ignoring the important as-
pects of the input. The algorithm might be fo-
cussed on the noise in the training set rather than
the important aspects. For instance a function
with input vector X and integer p and a output
matrix [X1, X2, .., Xp] is prone for being high-
variance. Using too high polynomial functions
might wrongfully exaggerate the influence of cer-
tain values on the output.

Figure 5 shows a graphical explanation of these
characteristics.

5

Figure 5: Results during training. The vertical axes
is the error between the predicted item compared to
the actual item. The horizontal axes is the complexity
of the total algorithm, for example higher polynomial
equations, more layers in a neural network or more per-
ceptrons per layer. [2]

4.3 Train

During training of the algorithm, the presence meta-
data about the learning data enables different learn-
ing styles. The data, as described in paragraph 4.2 is
already being identified. This means that the meta-
data categorises the training data to enable supervised
learning. Supervised learning is better suited for this
application in comparison to semi-supervised and non-
supervised learning. The algorithm does not need to
recognise objects which are not included in the training
data. In case of non-supervised learning, the algorithm
learns the relation between the images in the training
data itself. Semi-supervised learning is a combination
of supervised a non-supervised learning.

Due to the division of preparation data, training
of the complete algorithm is divided into two aspects.
First, all of the parts and tools need to be learned in an
image classifier network. The static images are placed
into a specific folder, which functions as the input of
the algorithm.

A few variables are needed for the model to be
trained. These variables prevent a high-bias or high-
variance algorithm if set-up properly.

1. Training Steps

This implies the total amount of training the al-
gorithm needs in order to train the weights.

2. Distortions

Distortions will make minor changes to the train-
ing data to increase the number of images. It im-
proves the results by randomly deforming, crop-
ping, or brightening the training images. This
improves the algorithm how to deal with dis-
torted images which occur in the real world.

3. Learning rate

This controls the influence of one single image
in a complete algorithm. High learning rate can
increase the error rate, causing a less accurate
algorithm. A smaller learning rate causes slower
learning of the algorithm.

4. Train batch size

The number of images that will be loaded dur-
ing one training round. More images will cause
longer time per step but also increases the accu-
racy. High train batch size prevents an algorithm
for overfitting.

During training, the accuracy values of the test and
validation set can be monitored. If the values indicate
a high-bias or high-variance algorithm, interruption of
the training is necessary to prevent unwanted weights.
Carefully choosing these variables can result in higher
accurate algorithms.

4.4 Deploy

If an algorithm is deployed, the input data gets trans-
formed and modified using the previously determined
weights. These steps are build to distinguish several
unique features into representative numbers which will
be loaded into the classifier.

4.5 Predict

An algorithm predicts the output by a classifier, also
known as an activation function. A classifier is the last
step of the algorithm, linking the previously processed
data to a probability of an object. Classifier functions
can be the sigmoid function, ReLU function or a logis-
tic function.

The classifier requires several items to detect. The
robot needs to be able to perform several complex
tasks. To simplify this process, object can be divided
into three categories;

• Parts

The objects which are processed by the robot.
Also, if multiple parts are processed by the robot,
like assemblies, it creates a new part and loses the
previous parts.

• Tools

Necessary objects to perform a certain operation.
These tools are still available after manipulation.

• Actions

The robotic actions needed to perform the oper-
ation.

How this division of objects will be handled in the
data-flow will be discussed in the next two paragraphs.

6

4.5.1 Parts and tools classifier

The parts and tools training data can be generated by
computer generated renders. The assumption is made
that the objects handled by the robot are modelled
using 3D modelling software. This enables the possi-
bility to create renders from the parts in all possible
directions. These renders contain only images of the
parts itself. The images have to represent the images
during regular operation. The images from the robot
contains an object mask, which only displays the ob-
ject with a black background, as shown in appendix
13. This prevents the algorithm from focussing on un-
related objects. It also prevents unintended learning.
Unintended learning is the phenomenon that the algo-
rithm focusses on unrelated objects. This process can
be automated to generate sufficient data in order for
accurate recognition results.

4.5.2 Action classifier

The action classifier consists of two parts. First, it
uses the parts and tools classifier to make an inventory
of the needed objects for each action. This inventory
helps the algorithm to decide whether to start an ac-
tion and what kind of action. The second part is the
action itself. Using visual object tracking, the position
of non-pre-trained objects can be followed [17]. These
algorithms detect several objects and trace the followed
path. This is also known as imitation learning or be-
havioural cloning. It learns actions by observation and
demonstration. An observation is the view of the cur-
rent status, while a demonstration is a part of a task
which is being performed. This means that one task
consists of multiple demonstrations.

The algorithm also needs to be able to make de-
cisions in a sequence based on the input of the ob-
ject classifier and current observations. Any algorithm
for learning in decision-making problems is suitable for
this task. A suitable algorithm is described in article
[13], which uses multiple machine learning algorithm
to identify different tasks. It described a task of block
stacking, which a variable amount of blocks to stack.
This demo is a proof in which an algorithm is able to
pick up certain objects and align them relative to other
objects.

4.6 Act

By dividing the objects between these criteria, it cre-
ates an understanding of different kind of objects, and
whether it can start the actions.

For instance, if the algorithm detects a certain part,
it then can check if all the parts and tools are avail-
able. If not, it can actively ask the worker for the miss-
ing part(s) or tool(s). It merges information from the
image classifier, together with object sizes and coordi-
nates from the computer vision, to make an inventory
of the current situation.

Once an inventory matches that of the required in-
ventory of a certain action, the action can be started.

4.7 Monitor

The feedback loop which enables the algorithm to im-
prove itself during operation. The feedback is provided
by several aspects.

1. Observation or object

An environment-specific object, in this case, a
part or tool.

2. Reward

The value given to the previous action of the al-
gorithm. The algorithms’ goal is to increase the
reward. The reward can be composed out of sev-
eral variables. These variables are the stress level,
time needed and quality of the output.

3. Done

A moment when the environment gets reset
again. Most tasks have a clear start and end
position.

4. Info

Diagnostic information for debugging. This part
is primarily useful for debugging and learning the
algorithm.

This learning is called online learning. This means
that not the whole data is loaded, but it is trained by
giving updates one by one, which calculates the error
produced by the output of the algorithm. This up-
dates the weight parameters after each instance, which
improves it after each instance.

4.8 Feedback Ingestion

The results from the monitor part are linked to the
previous action by the robot to indicate whether the
action created a desired output. This data can also be
saved to store a data set for the development of other
algorithms.

This is in line in how new employees are being
incorporated into new jobs. New employees have to
learn tasks by watching other employees do the job.
This way, new employees generates knowledge about
the task and how to reproduce it.

4.9 Machine learning network

The previous paragraphs described in general how ma-
chine learning algorithms can be used for an applica-
tion like this. The next two paragraphs describe in
more detail some state of the art classification networks
which can be used for the controller.

7

4.9.1 Convolutional neural networks

Current research has proven that deep convolutional
neural networks (CNN) are good at recognising dif-
ferent objects. Several algorithms have been devel-
oped over time improving the accuracy and efficiency
of recognising objects. Deep convolutional neural net-
works are based on the workings of the brain. Such
networks contain multiple processing units called per-
ceptron. Each perceptron has a connection weight wj

and output y, which applies a certain mathematical
equation to the input. A simple example of a certain
perceptron is the weighted sum of the inputs, see equa-
tion 1.

y =

d∑
j=1

wjxj + w0 (1)

w0 makes the model more general. It is a bias unit,
which always has the value of 1. During training, the
value weight w is learned, so that given an input x,
output y is generated. The error is calculated by the
difference between the desired output and the gener-
ated output. [10]

The input x is a mathematical representation of an
object. For instance, ’7’, ’0111’ and ’VII’ are all repre-
sentations of the number seven, but there is a difference
in algorithm if these representations are added to each
other. The same goes for image recognition. There are
several ways to represent an image. Image recognition
works with arrays that contain the values of each pixel.
It is of high importance that the input of the algorithm
is constant throughout the whole training and opera-
tion. This is to prevent false readouts due to wrong
representations of the data. Image recognition works
with positives and negatives weights. This means that
for some places in the array, some values are desirable
or undesirable for a specific place, causing a positive or
negative weight w [10, 8].

For example, handwriting recognition can be recog-
nised easily because it is either black or white at a spe-
cific place. The desired (Blue) and undesired (Red)
places for black values are shown in figure 6.

Figure 6: positive and negative weights [8]

The challenge hereby is to create a network with
a low error rate, by linking perceptrons to each other
with each a specific mathematical equation so that the
network is able to detect unique values for each input,
see figure 7 for an example. These networks are also
known as Multilayer perceptron networks (MLP).

The addition of multiple datasets is also known as
transfer learning or retraining. This technique adds

specific classifiers to the last layer of the network, which
links output from the previous layers to objects. This
is the last step in identifying objects in images.

Figure 7: K parallel perceptrons. Xj , j = 0, ..., d as
inputs. yi, i = 1, ..., k as outputs. w1, wij , wk are the
weights. Each output is the weighted sum of the in-
puts. [10]

The unique feature of this type of network is that it
uses the convolutional equation to merge different lay-
ers of an image. The input image is a 3D image, with
the x and y pixels as the first 2 dimension, while the
RGB colours represent the depth. Using the convolu-
tional equation, the image gets distorted in an image
with smaller x and y, but increased depth. This cre-
ates lots of data. Using mean or max pooling, the data
is reduced, while maintaining the information on the
image. An overview of a convolutional neural network
is shown in figure 8.

This classifier returns the type of object. Combin-
ing this with the measurements from computer vision,
that is going to be discussed in paragraph 6.1, it is able
to precisely identify different kinds of objects. As an
example, the image classifier recognises an object as a
bolt. Computer vision is able to measure the size of the
object, providing a complete understanding of the bolt
including its size. The lowest error rate by a CNN is
currently 21.2%. This is achieved by a network called
Inception V3 [21]. This indicates that a CNN alone is
not enough for sufficient image recognition. Research
on these networks is still ongoing. The accuracy will
improve over time.

For training purposes only, datasets from other
sources can be used [1, 3]. This is primarily testing
the algorithm, other than improving the recognition of
parts and tools.

4.9.2 Long short term memory

For imitation learning, it is important that some in-
formation gets stored inside the algorithm for a pe-
riod. In regular neural networks, the data is only used
once in a perceptron. This sort of neural network is
called a feed-forward neural network. This means there
are no loops inside the network itself, indicating the
information flow goes one direction. Imitation learn-
ing networks contain therefore perceptrons which can

8

Figure 8: Schematic overview of a CNN [6]

store information. This can be achieved by building
loops inside perceptrons. The value stays the same in-
side a perceptron during operation. The perceptron
stays closed and does not interfere with other percep-
trons. The perceptron can be read whenever needed
while maintaining the value. The perceptron can also
be overwritten if the value needs to be updated. This
is a way of introducing a simple memory cell inside a
network for storing information about previous actions
for a short time.

These networks are used for imitation learning be-
cause it needs to store some information about the
past for a short time in order to finish their behaviour.
The difference of these memory cells compared to the
weights of perceptrons, is that this can be overwritten
at any time. It is also not related to the training data
and therefore considered as short term memory.

4.10 Conclusion

While the function and implementation of machine
learning algorithms in the controller is clear, there are
still a lot of details that need to be examined. The
type of algorithm and the exact implementation is still
unclear and requires more research to implement these
networks in a controller.

5 Integration of the controller to
current IR’s

In order for a custom software to work with robots,
computers need to control the robot in real time and
know the current status of the robot. This opens the
opportunity to add different sensors to the computer to
sense the environment. Current industrial robots have
little opportunities to make changes to the software.
The regular software is published as closed source soft-
ware, which leaves little possibility to make changes to
the software. Robot manufacturers do not make their
software compatible with other brands. Information
about the software itself is scarce. This makes it hard
to control the robot with software other than provided
by the manufacturer itself.[14]

Robotic manufacturer ABB published an open

source driver to control ABB robots trough a TCP
socket interface [9]. This driver enables programmers
to control the robot using simple commands. It is set
up in such a way that the robot does not need any
modifications to the software itself. The driver con-
sists of two different programs which suit the program-
ming language of the targeted device. Even though this
standard ABB driver has little functionality, develop-
ers created their own forks based on this driver. One of
these forks is Robo.op [14]. This software is developed
for artists to use industrial robots and to avoid the
limitations set up by the manufacturers. It is designed
in such a way that custom tools can be used together
with robots, share tools and knowledge across different
robot platforms and bypass the expensive tools and
software offered by robotic manufacturers.

5.1 Certification

Dutch labour law requires safe and certified machin-
ery in working areas. For manufacturers to use these
human-robotic controllers, it needs to be certified to be
allowed in production environment. Current collabora-
tive robots do not need additional certification because
the current safety features of those robots remain en-
abled. To use current industrial robots for collabora-
tive work, the safety features have to be recertification
in order to be used in production environment.

6 Prototype

The prototype is build as a proof of concept. It based
on the ABB YuMi robot. This robot is the first coop-
erative robot build by ABB, specially designed to oper-
ate next to humans. This was the only robot available,
and therefore the only available option. The current
prototype is a full robot controller on a regular PC
without modifying the operating system of the YuMi.
It has been build so that it can be extended with ma-
chine learning algorithms. Currently, it only recognises
images from computer vision, without any added intel-
ligence. The controller sends instructions and receives
information. A schematic diagram about the current
prototype and the desired controller is shown in ap-
pendix 9 and 10.

9

6.1 Environment input

The robot used has almost no input from the environ-
ment. It requires input sources to make a 3D map of
the environment. This requires X, Y and Z inputs. For
this input, a Kinect camera is used. This camera con-
tains several cameras including an RGB camera and
Depth camera. The Kinect camera is mounted on top
of the robot to have a clear view of the working area,
see appendix 25.

6.1.1 Depth camera processing

The primary source of input is the depth camera. The
depth camera maps a depth value in a plane. This
creates a 3D image of X and Y in pixels and pixel val-
ues in millimetres and is able to work under any light
condition.

During initialization, the depth camera scans the
environment and saves the image. This image is the
reference image to detect changes in the environment.
The input stream from the depth camera is compared
to the reference image. lower pixel values are stored as
1’s. Larger or equal values are stored as 0’s. The result
is in appendix 12.

It may cause some problems once multiple objects
are stacked on top of each other, but in case of stacked
objects, the depth layer can be processed differently
to create a masking layer suited for a stacked appli-
cation. Instead of just comparing with the reference
image, values outside the given range can be blacked
out as well. It creates an image at a specific height.

6.1.2 Object RGB Image

The masking image contains the extruded geometry
of the objects. This image is created for two reasons.
First, the binary image is used as a masking layer for
the RGB image. The black regions on the binary image
will be blacked out on the RGB image. This creates
an image in which only the objects are shown, which is
perfect for image recognition, see appendix 13. From
this layer, a cutout can be created containing a single
object, providing a uniform input for a machine learn-
ing algorithm.

6.1.3 Basic shape detection

The second reason for this image is basic shape detec-
tion. Basic shape detection detects squares, triangles
and circles. All of the appearances of the items are
filtered, leaving out any possible detection of prints on
the parts.

The basic shape detection algorithm uses several
functions from a computer vision library. First, it uses
an edge detection function to detect the outer shape
of the white objects, see appendix 14. This image is
then transferred to a line detection function and con-
tour detection function. The line detection function
returns an array of lines, Which consist of an end and

a start. The contour detection function returns an ob-
ject VectorOfPoints which describes a shape in several
vectors connected to points. Objects with 3 vectors are
considered as a triangle. Rectangles have 4 vectors at
around 90◦. A rotated rectangle is created from the
rectangle contour. A rotated rectangle is a bounding
box which fits the contour the best, in other words,
a rectangle with the smallest surface. This rectangle
contains a height, width, centre X coordinate, centre
Y coordinate in pixels and clockwise rotation in Euler
degrees on the horizontal axe.

These basic shapes are drawn into an image for de-
bugging purposes, shown in appendix 15. It indicates
which objects are recognised. Only the object prop-
erties from a rotated rectangle are necessary for the
controller.

6.1.4 Real world units

The computer vision object units need to be trans-
formed to real world units.

So set the rotation of a specific object, it needs the
angles set by quaternion rotational units. These units
describe a rotation of an object in a 3D plane. The ro-
tated rectangle describes the rotation of the rectangle
in Euler angles on a single plane. ABB does support
Euler angles, but only for offset moving, which uses the
planes of the current tool as reference plane to rotate.
The robot needs the absolute rotation of the object in
quaternion units to approach new objects. This con-
version can be done using sine and cosine functions
shown below.

q =

cos(θ/2)cos(φ/2)cos(ψ/2) + sin(θ/2)sin(φ/2)sin(ψ/2)
sin(θ/2)cos(φ/2)cos(ψ/2)− cos(θ/2)sin(φ/2)sin(ψ/2)
cos(θ/2)sine(φ/2)cos(ψ/2) + sin(θ/2)cos(φ/2)sin(ψ/2)
cos(θ/2)cos(φ/2)sine(ψ/2)− sin(θ/2)sin(φ/2)cos(ψ/2)

The code in c# is shown in appendix 27

6.1.5 Camera Calibration

The robot uses the X, Y, Z coordinate system. The
robot defines the origin of the robot in the centre of
the robots’ mount. The coordinate system of the cam-
era has to be linked to the robots’ coordinate system.

During camera calibration, the camera detects two
coloured dots. The rest of the image is filtered using
an HSV image, as shown in appendix figure 17, 18 and
19. HSV stands for hue, saturation and value. the
hue and saturation value does not change in different
lighting conditions, making it ideal for threshold filter-
ing, as shown in appendix figure 21. The position of
these dots in relation to the robots’ origin is given to
the algorithm. From these dots, a pixel to millimetre
variable is calculated, together with the height of the
camera. These variables are later used to measure the
size of an object. By using the pixel size and height in
millimetres, the ratio between pixels and millimetres
can be calculated. If these dots are mounted on the
robot arm, the calibration can be even more precise.

10

The current robot position can be linked to the posi-
tion of the dots. Hereby, the relative position of the
dots with the robot coordinates is constant.

For the angle in which the camera has been placed,
a different calculation is used. The table, on which
the robot is mounted, has a flat surface. By readings
from the depth camera, the camera angle is calculated.
The readings are shown in appendix 23 and 24. The
angle of the camera can be calculated from the depth
readings of two spots.

Lens correction is applied for a linear camera image.
This eliminated radial image distortions. Already ex-
isting camera calibration algorithm can calculate lens
distortion over the whole image. This variable can later
be used to distort the image from the camera for linear
calculation [4]. This is a constant value, which means
this has to be done only once.

6.2 Robotic communication

The software used to control the ABB YuMi robot
is based on the Robo.op software. Modifications are
made to make it work with the YuMi and Kinect. The
RAPID code is been extended to add the extra func-
tionalities the YuMi has to offer. It is rewritten so that
new functionalities introduced by ABB can be imple-
mented in this code.

The computer software is based on the Java code
from Robo.op, which is rewritten into c#. The library
contains a class robot with non-static variables. New
classes can be made, which accesses different robots at
different IP addresses and ports. Multiple robots can
be controlled at the same time by the same controller.
During the creation of a new robot class, IP address
and the port for the arms are needed. This starts a
TCP/IP socket connection with the robot. This pro-
tocol enables communication trough the two devices.
TCP controls the flow of data to prevent loss of data
and makes sure the data arrives in sequence. The rest
of the functions are divided into Set, Get and Various
functions.

6.3 Robot library functions

These functions provide the instructions to control dif-
ferent aspects of the robot. It sends strings which
contain two parts. The first variable contains a value
which identifies the instruction. The second variable
contains the values to execute the instruction. These
variables are separated by a ”/” for which the robot
identifies the different parts.

For any ”Get” function, the first variable is; query.
This indicates that the computer is ”asking” for some
information. The second variable indicates which infor-
mation is being requested. For instance ”gcart” returns
the Cartesian Coordinates.

So a possible Get command is ”query/[gcart];”.

The Set functions have more variables in the first
part. For instance, possible first variables are; ”gope”

for gripper open, ”orient” for the gripper orientation
and ”offset” for offset movement.

An example of a Set command is ”offset/[30,-
20,10,5,15,25];. This command moves the arm from
its current position to a position relative to the cur-
rent position. It moves the arm in X, Y, Z direction in
30mm, -20mm and 10mm. The rotation is also relative
to the current position in Rotational X, Rotational Y,
Rotational Z in 5, 15 and 25 in Euler angles.

6.3.1 Various functions

The various functions are the neither-get and set func-
tions. These functions provide the basis for the other
get and set functions to work. It provides the send-
ing and receiving of commands from the computer and
ensures a stable connection during periods of long in-
activity. This bypasses the problem in which the robot
loses the connection based on a time-out.

6.3.2 Manufacturer independent program-
ming

The software is designed in such a way, that all of the
programs can run separately from each other. The c#
code sends the messages to the robot, which then de-
code into the specific ABB language. The last part is
manufacturers dependent, which only works on ABB
robots. This implies that it can run on the stock op-
erating system provided by the manufacturer. But if
the controller needs to control a robot from a different
manufacturer, like KUKA, only the code on the robot
needs to be programmed. This means that the same
machine learning algorithm works for both the ABB
and KUKA robot. A graphical explanation is given in
appendix 11. The division by the different program-
ming languages is marked with the different colours.

6.4 Performance

In order to validate whether the new controller is ca-
pable of replacing the current controller, it needs to
perform in certain areas just as well as the current con-
troller. These aspects measure the performance of the
robot. Several aspects need to be measured in order
to give a clear description of the performance of the
controller and robot.

• Accuracy

Whether the robot is able to perform movements
with at least the same accuracy.

• Repeatability

Maintaining the accuracy over several move-
ments.

• Speed

Determining if the robot is able to perform the
same or more tasks in the same timespan.

11

• Reliability

The likeliness that a certain action is completed
successfully.

• Availability

The period of which the robot is able to operate
correctly.

• Maintainability

The ability to provide maintenance to the robot
and controller.

• Integrity

The prevention of improper system modification,
like bad software updates or wrongfully retrained
the controller.

These aspects help to indicate the performance of a
controller and test certain aspects of the whole system.

6.5 Future development

The current prototype shows that it is possible to con-
trol an IR in real time with a regular computer. It
shows that it is possible to connect extra sensors to
the computer to add functionality to the controller
to add different control methods. For future devel-
opment, the machine learning algorithm needs to be
implemented. The yellow blocks in appendix 10 shows
the parts which still needs to be developed. The Accord
library could function as a machine learning library for
this controller. There are already several algorithms
which can be used for object recognition, which are
also written in c# and can therefore be implemented
quickly. The Tensorflow library is a widely used library
with more examples including state of the art CNN net-
works. Even though this library is not available in c#,
it can be implemented in this controller by a parser,
which sends data over two different languages. This
language has a larger community than the Accord li-
brary. Advanced machine learning networks are more
likely to be published in Tensorflow, which means the
newest algorithms can be used in this controller.

7 Conclusion

For humans to cooperate with robots, lots have to be
changed on how robots are applied in the current situa-
tion. While the market is shifting towards cooperation
between humans and robotics, the approach of robotic
control did not change. So for cooperation to be a suc-
cess, robots have to think for themselves and anticipate
on the environment and user. This can be achieved
by machine learning algorithms. These are currently
improving, improving the possibility of using these al-
gorithms for human-robotic cooperation. However, it
requires more input from the environment and user and
a different approach of learning the robot the desired
tasks. Specific algorithms for these tasks have to be de-
veloped to handle all the different kinds of inputs from
the environment to make decisions while maintaining
the advantages of industrial robots, such as reliability
and quality of the process.

8 Discussion

The whole approach of better cooperation between hu-
mans and robots is to give robots more human-like at-
tributes. This can be seen in the design of several coop-
erative robots, giving it human eyes, like the Rethink
Robotics Sawyer, or a human posture, like the ABB
YuMi. A comparable development has been made dur-
ing the design of aircraft. Designers first tried to mimic
the movements of birds to create lift. Aircraft nowa-
days use different techniques in order to produce the
same result. This indicates that mimicking human or
natural behaviour might not be the solution for human-
robotic cooperation. It may require a different method.
A possible way could be of excluding the human, and
let machine learning algorithm learn tasks by trial and
error, known as reinforcement learning. This might
take over complex human tasks, eliminating the need
for human-robotic cooperation.

12

References

[1] Berkeley 3-d object dataset. http://kinectdata.com/.

[2] Bias-variance tradeoff in machine learning — learn opencv. http://www.learnopencv.com/

bias-variance-tradeoff-in-machine-learning/.

[3] Coco - common objects in context. http://mscoco.org/.

[4] Kinect v2 depth camera calibration — three constants. https://threeconstants.wordpress.com/2014/
11/09/kinect-v2-depth-camera-calibration/.

[5] Openai gym. https://gym.openai.com/docs.

[6] Understanding convolutional neural networks for nlp – wildml. http://www.wildml.com/2015/11/

understanding-convolutional-neural-networks-for-nlp/.

[7] Basic concepts in machine learning. http://machinelearningmastery.com/

basic-concepts-in-machine-learning, Sep 2016.

[8] Tensorflow. https://www.tensorflow.org/, 2017.

[9] ABB. robotics open abb. https://github.com/robotics/open_abb, Dec 2016.

[10] Ethem Alpaydin. Introduction to Machine Learning (Adaptive Computation and Machine Learning series).
The MIT Press, 2009.

[11] Chandrayee Basu, Qian Yang, David Hungerman, Mukesh Singhal, and Anca D. Dragan. Do you want
your autonomous car to drive like you? In Proceedings of the 2017 ACM/IEEE International Conference
on Human-Robot Interaction - HRI. ACM Press, 2017.

[12] Anca D. Dragan, Shira Bauman, Jodi Forlizzi, and Siddhartha S. Srinivasa. Effects of robot motion on
human-robot collaboration. In Proceedings of the Tenth Annual ACM/IEEE International Conference on
Human-Robot Interaction - HRI. ACM Press, 2015.

[13] Yan Duan, Marcin Andrychowicz, Bradly C. Stadie, Jonathan Ho, Jonas Schneider, Ilya Sutskever, Pieter
Abbeel, and Wojciech Zaremba. One-shot imitation learning. CoRR, abs/1703.07326, 2017.

[14] Madeline Gannon. Robo op. http://www.madlab.cc/robo-op, 2016.

[15] IBM. Machine learning algorithm != learning machine. https://www.ibm.com/developerworks/

community/blogs/jfp/entry/Machine_Learning_Learning_Machine?lang=en, Apr 2016.

[16] Fraunhofer IPA. Eu project smerobotics: Versatile robots for the digitized industry, 2016.

[17] M. Kristan, J. Matas, A. Leonardis, M. Felsberg, L. Cehovin, G. Fernandez, T. Vojir, G. Hager, G. Nebehay,
R. Pflugfelder, A. Gupta, A. Bibi, A. Lukezic, A. Garcia-Martin, A. Saffari, A. Petrosino, and A. Solis
Montero. The visual object tracking vot2015 challenge results. In 2015 IEEE International Conference on
Computer Vision Workshop (ICCVW), pages 564–586, Dec 2015.

[18] Eric Meisner, Volkan Isler, and Jeff Trinkle. Controller design for human-robot interaction. Autonomous
Robots, 24(2):123–134, 2008.

[19] Pramila Rani, Nilanjan Sarkar, Craig A. Smith, and Leslie D. Kirby. Anxiety detecting robotic system
towards implicit human-robot collaboration. Robotica, 22(1):85–95, jan 2004.

[20] Kyle Strabala, Min Kyung Lee, Anca Dragan, Jodi Forlizzi, Siddhartha Srinivasa, Maya Cakmak, and
Vincenzo Micelli. Towards seamless human-robot handovers. January 2013.

[21] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016.

[22] Matthew P. Wallen, Sjaan R. Gomersall, Shelley E. Keating, Ulrik Wisløff, and Jeff S. Coombes. Accuracy
of heart rate watches: Implications for weight management. PLOS ONE, 11(5):e0154420, may 2016.

[23] WIRED. 4 things robots need to learn before working with humans. https://www.wired.com/2017/04/

4-things-robots-need-learn-working-humans/, Apr 2017.

13

http://kinectdata.com/
http://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/
http://www.learnopencv.com/bias-variance-tradeoff-in-machine-learning/
http://mscoco.org/
https://threeconstants.wordpress.com/2014/11/09/kinect-v2-depth-camera-calibration/
https://threeconstants.wordpress.com/2014/11/09/kinect-v2-depth-camera-calibration/
https://gym.openai.com/docs
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://www.wildml.com/2015/11/understanding-convolutional-neural-networks-for-nlp/
http://machinelearningmastery.com/basic-concepts-in-machine-learning
http://machinelearningmastery.com/basic-concepts-in-machine-learning
https://www.tensorflow.org/
https://github.com/robotics/open_abb
http://www.madlab.cc/robo-op
https://www.ibm.com/developerworks/community/blogs/jfp/entry/Machine_Learning_Learning_Machine?lang=en
https://www.ibm.com/developerworks/community/blogs/jfp/entry/Machine_Learning_Learning_Machine?lang=en
https://www.wired.com/2017/04/4-things-robots-need-learn-working-humans/
https://www.wired.com/2017/04/4-things-robots-need-learn-working-humans/

9 Appendix

Figure 9: Block diagram of the current controller. Gray shows the depth frame processing. Light blue the
colour frame processing. Green shows the OpenCV part and the blue-gray part the c# robot controller.

14

Figure 10: Block diagram of the desired controller including machine learning, shown in yellow. This part is
not yet implemented in the controller.

15

Figure 11: Graphical software explanation. The software is divided into two parts, the C# and RAPID part.
The message shared is in the white arrow

Figure 12: Masking Layer Figure 13: Object Layer

Figure 14: Canny Edge Detection Figure 15: Basic Objects

16

Figure 16: RGB Input Figure 17: Hue layer

Figure 18: Saturation Layer Figure 19: Value Layer

Figure 20: Input Image

17

Figure 21: Hue and Saturation Mask

Figure 22: Circle Detection
red

18

Figure 23: The positions of the depth readouts used in the graphs below.

Figure 24: Depth readouts. The values are in millimetres.

19

Figure 25: Prototype test setup

20

Figure 26: Picture of the images on the test setup

public stat ic Quaternions ro tat i onConver s i on (double yaw , double pitch , double r o l l)
{

yaw ∗= Math . PI ∗ yaw / 180 ;
p i t ch ∗= Math . PI ∗ p i t ch / 180 ;
r o l l ∗= Math . PI ∗ r o l l / 180 ;

double ro l lOver2 = r o l l ∗ 0 .5 f ;
double s inRol lOver2 = Math . Sin ((double) ro l lOver2) ;
double cosRol lOver2 = Math . Cos ((double) ro l lOver2) ;

double pitchOver2 = pi t ch ∗ 0 .5 f ;
double s inPitchOver2 = Math . Sin ((double) pitchOver2) ;
double cosPitchOver2 = Math . Cos ((double) pitchOver2) ;

double yawOver2 = yaw ∗ 0 .5 f ;
double sinYawOver2 = Math . Sin ((double) yawOver2) ;
double cosYawOver2 = Math . Cos ((double) yawOver2) ;

Quaternions r e s u l t = new Quaternions () ;

r e s u l t .W = cosYawOver2 ∗ cosPitchOver2 ∗ cosRol lOver2 +
sinYawOver2 ∗ s inPitchOver2 ∗ s inRol lOver2 ;

r e s u l t .X = cosYawOver2 ∗ s inPitchOver2 ∗ cosRol lOver2 +
sinYawOver2 ∗ cosPitchOver2 ∗ s inRol lOver2 ;

r e s u l t .Y = sinYawOver2 ∗ cosPitchOver2 ∗ cosRol lOver2 −
cosYawOver2 ∗ s inPitchOver2 ∗ s inRol lOver2 ;

r e s u l t . Z = cosYawOver2 ∗ cosPitchOver2 ∗ s inRol lOver2 −
sinYawOver2 ∗ s inPitchOver2 ∗ cosRol lOver2 ;

return r e s u l t ;
}

Figure 27: Euler angles to Quaternion calculation

21

	Introduction
	Human-Robotic Interaction
	Safety
	Physical Safety

	Controller Aspects
	Technical operation
	Social operation
	Anticipate
	Transparency
	Customization
	Right objectives

	Social Input
	Stress indicator

	Robotic Control
	Machine Learning

	Differences in machine learning algorithms

	Controller Design
	Ingestion
	Prep data
	Train
	Deploy
	Predict
	Parts and tools classifier
	Action classifier

	Act
	Monitor
	Feedback Ingestion
	Machine learning network
	Convolutional neural networks
	Long short term memory

	Conclusion

	Integration of the controller to current IR's
	Certification

	Prototype
	Environment input
	Depth camera processing
	Object RGB Image
	Basic shape detection
	Real world units
	Camera Calibration

	Robotic communication
	Robot library functions
	Various functions
	Manufacturer independent programming

	Performance
	Future development

	Conclusion
	Discussion
	Appendix

