

	
	

	
	
	
	
	
	
	
	
	
	
	

	
	

	
	 	
	

	

	

	

	

	

	

	

	

Design of a real-time network channel in LUNA

 R. (Robin) Wijnholt

 MSc Report

C e
Dr.ir. J.F. Broenink

K.J. Russcher, MSc
Dr.ir. P.T. de Boer

October 2017
	

047RAM2017
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii Design of a real-time network channel in LUNA

Robin Wijnholt University of Twente

iii

Summary

LUNA is a real-time framework that uses CSP to pass messages from process to process. When
communication between two LUNA applications on different hosts is required, no communic-
ation method is available that is able to deliver real-time guarantees whilst keeping the CSP
methodology in mind.

In this thesis a new network component in LUNA (referred to as Network Channel) has been de-
signed and realized that is capable of connecting two real-time LUNA applications. OpenDDS
has been used as the communication protocol, which is an open source implementation of
Data Distribution System (DDS). Rendezvous communication has been implemented, because
this way of message passing is also used in CSP (execution engine of LUNA).

OpenDDS provides QoS settings and can perform real-time communication. An interface for
reading and writing to OpenDDS has been realized and has been implemented by the Network
Channel to implement functionality. The OpenDDS interface is constructed to support bund-
ling of data with the same endpoint. Bundling of data results in better performance as writing
to OpenDDS is an expensive operation on the RaMstix (1.34ms per write). A more resource rich
platform is faster, and also scheduling the threads with a not real time scheduler on a RAMstix
results in faster writes to OpenDDS. Probably mode switches occur on the RaMstix with the
Xenomai scheduler and causes higher writer times.

The Network Channel implements publish-subscribe, and rendezvous communication. The
DDSReactor is responsible for sending and receiving messages. A disadvantage is that the loop
time of one iteration introduces an extra latency. For the publish-subscribe communication
a maximum transmission frequency of 250Hz for 10 channels is obtained where a theoretical
maximum sending speed of 400Hz was expected. This is not achieved, as not all data is avail-
able in one data bundle, resulting in more than one iteration before all readers are unblocked.

For rendezvous communication a trade-off has been made to only notify the reader’s state to
minimize the round-trip time of one data exchange. It has been observed that the data se-
quences do not necessarily contain the data for all readers, and therefore a waiting functionality
has been implemented. Waiting for the data of all writers results in the unblocking of the read-
ers at the subscriber side in one iteration, instead of two or maximum three iterations. How-
ever at sending rates higher than 200Hz the waiting functionality fails, resulting in incomplete
packets and therefore more than one iteration before unblocking. The maximum rendezvous
communication with functioning wait functionality has been obtained at 230Hz.

TERRA generates executable code with the LUNA framework from CSP models. A hardware
port is added to the TERRA application such that the Network Channel can be initialized by the
user using the GUI provided by TERRA.

A demo has been realized that controls the youBot base from a RaMstix using an EtherCAT
interface and controller in LUNA. An Ubuntu machine is used to execute a LUNA application
to send values from a joystick to the RaMstix using the Network Channel. It has been observed
that periodicity is caused by the SOEM EtherCAT master on the RaMstix, and not necessarily
due to Xenomai.

It is recommended to update the waiting functionality to check explicitly for the availability of
the subtopic names in a bundle, resulting in bundles that are always complete and therefore
faster data exchange for publish-subscribe and rendezvous communication can be achieved.
Also by presenting the callback function to the OpenDDS interface and writing as soon as the
data is available the loops can possibly be omitted resulting in no extra latency caused by the
loops.

Robotics and Mechatronics Robin Wijnholt

iv Design of a real-time network channel in LUNA

Robin Wijnholt University of Twente

v

Contents

List of acronyms viii

1 Introduction 1

1.1 Context . 1

1.2 Goals of the project . 1

1.3 Outline of the report . 2

2 Background 3

2.1 LUNA and TERRA . 3

2.1.1 CSP . 3

2.1.2 LUNA . 4

2.1.3 TERRA . 6

2.2 OpenDDS . 7

2.3 RaMstix . 9

2.4 YouBot . 10

3 Requirements 13

3.1 Network channel . 13

3.2 EtherCAT interface . 14

3.3 youBot controller . 14

4 Network Channel in LUNA 16

4.1 Introduction . 16

4.2 OpenDDS . 16

4.2.1 Design . 16

4.2.2 Realization . 18

4.2.3 Tests . 21

4.3 TERRA . 23

4.3.1 Design . 23

4.3.2 Realization . 24

4.3.3 Tests . 26

4.4 LUNA implementation . 27

4.4.1 Design . 27

4.4.2 Realization . 33

4.4.3 Tests . 35

4.5 Conclusion . 38

5 EtherCAT interface 40

Robotics and Mechatronics Robin Wijnholt

vi Design of a real-time network channel in LUNA

5.1 Design . 40

5.2 Realization . 40

5.3 Test . 41

5.3.1 Setup . 41

5.3.2 Results . 42

5.3.3 Discussion . 43

6 EtherCAT interface and Network Channel combined 44

6.1 Introduction . 44

6.2 Design . 44

6.2.1 YouBot . 44

6.2.2 Input device . 45

6.2.3 Controller . 45

6.2.4 Test design . 45

6.3 Realization . 47

6.3.1 Controller . 47

6.3.2 Controller and joystick test . 48

6.3.3 Integration test . 48

6.4 Tests . 51

6.4.1 Controller and joystick test . 51

6.4.2 Integration test . 51

6.5 Conclusion . 53

7 Conclusion & Recommendations 54

7.1 Conclusion . 54

7.2 Recommendations . 54

A LUNA implementation realization 56

A.1 Component integration in LUNA . 56

A.2 LUNA implementation . 56

B LUNA implementation tests 63

B.1 Introduction . 63

B.2 Test setup . 63

B.3 Tests . 65

B.3.1 Transport . 65

B.3.2 Bundled data validation . 65

B.3.3 Latency analysis . 67

B.3.4 Stress tests . 72

B.4 Conclusion . 78

Robin Wijnholt University of Twente

CONTENTS vii

C Code of the integration test 80

D Demo 82

E Building demo from source 84

E.0.1 Compiling for Ubuntu . 84

E.0.2 Compiling for RaMstix . 85

F Getting TERRA with DDS ports 86

G Propagation delay on Ethernet 87

H Dependency of reactor loop frequency and sending frequency 89

I Waiting for publish and subscribe communication 90

J Latency analysis on rendezvous communication 91

Bibliography 93

Robotics and Mechatronics Robin Wijnholt

viii Design of a real-time network channel in LUNA

List of acronyms

ADC Analog to Digital Converter

API Application Programming Interface

CAN Controller Area Network

CSP Communicating Sequential Processes

DAC Digital to Analog Converter

DCPS Data-Centric Publish-Subscribe

DDS Data Distribution System

DOF Degrees of Freedom

ENI EtherCAT Network Information

ESI EtherCAT Slave Information

FIFO First In First Out

FPGA Field Programmable Gate Array

GPMC General Purpose Memory Controller

GUI Graphical User Interface

HRT Hard Real Time

I/O Input/Output

IPC Intrinsic Passive Control

LUNA LUNA Universal Networking Architecture

OS Operating System

MDD Model Driven Design

PWM Pulse Width Modulation

RaM Robotics and Mechatronics

RPI Raspberry Pi

ROS Robotic Operating System

RTPS Real-Time Publish-Subscribe

SBC Single Board Computer

SOEM Simple Open EtherCAT Master

TCP Transmission Control Protocol

TERRA Twente Embedded Real-time Robotic Application

Robin Wijnholt University of Twente

CHAPTER 0. LIST OF ACRONYMS ix

UDP User Datagram Protocol

USB Universal Serial Bus

QoS Quality of Service

Robotics and Mechatronics Robin Wijnholt

x Design of a real-time network channel in LUNA

Robin Wijnholt University of Twente

1

1 Introduction

1.1 Context

A Single Board Computer (SBC) is used more and more for embedded applications due to their
flexibility and ability to perform complex computations. The processing power of these SBCs
continues to grow, which makes them popular for robotic setups that need (complex) control.
At the Robotics and Mechatronics (RaM) group a SBC is developed called the RaMstix (RaM,
2017a), which is an expansion board for the Gumstix Overo module (Gumstix, 2017). The RaM-
stix can run Hard Real Time (HRT) control loops using LUNA Universal Networking Architec-
ture (LUNA) in a Xenomai environment (Bezemer, 2011).

LUNA is a hard real-time, multi-threaded, multi-platform, Communicating Sequential Pro-
cesses (CSP) capable, and a component-based framework. However a real-time communic-
ation channel following the heuristics of CSP is not present.

A channel with Robotic Operating System (ROS) for LUNA is already designed by van der Werff
(2016), but this solution mainly focuses on connecting a LUNA application with HRT loop con-
trollers to a more resource rich platform that is not necessarily HRT. The disadvantage of using
ROS as a communication channel is that it provides no real-time guarantees and therefore the
complete system using ROS channel is definitely not real-time.

The work of van de Ridder (2017) on the production cell is an example of a project where
real-time communication between those SBCs is important for correct functioning of the total
setup. This setup consists of multiple stations each performing their own task, for example a
feeder belt, extraction belt, rotation robot and an extraction robot. Every station contains its
own LUNA application that has to pass the status of the station to other stations in this setup.
Without a reliable communication channel, correct functioning of the setup is not guaranteed.

The work of van de Ridder (2017) is just one of many more projects that could benefit from
a proper network component in LUNA. LUNA is a great framework for controlling setups and
together with a good functioning communication channel it is easily scaled to bigger projects.

1.2 Goals of the project

This project consists of three parts: the Network Channel, the EtherCAT interface and the con-
troller for the youBot. Figure 1.1 shows the relation of these parts.

Figure 1.1: The relation between the Network Channel, the EtherCAT interface and the controller resid-
ing on two platforms. NC signifies the Network Channel and EC signifies EtherCAT.

The goals of this project are formulated as follows:

1. Design a Network Channel for LUNA: There is currently no real-time communication
method between two LUNA applications that are on different hosts. Therefore a Network
Channel is designed that implements this functionality in LUNA.

Robotics and Mechatronics Robin Wijnholt

2 Design of a real-time network channel in LUNA

2. Provide EtherCAT coupling to LUNA to control the youBot: EtherCAT is widely used in
the industry for real-time applications. The youBot uses EtherCAT to talk to the motor
drivers of the youBot joints.

3. Showcase the Network Channel: The correct functioning of the Network Channel, con-
troller, and EtherCAT interface for the youBot must be shown with a demo.

1.3 Outline of the report

In Chapter 2, background material on LUNA and TERRA, OpenDDS, the RaMstix, and the
youBot is given. The requirements of this project are given in Chapter 3 stating the require-
ments using a MoSCoW format. Chapter 4 contains the design choices, realization and tests
of the Network Channel divided in the sections: OpenDDS, TERRA, and the LUNA imple-
mentation. The design choices, realization and tests of the EtherCAT interface is discussed
in Chapter 5. The demo that integrates the Network Channel together with EtherCAT interface
and the controller to control the youBot is demonstrated in Chapter 6. This report is concluded
with a conclusion and recommendations in Chapter 7.

Robin Wijnholt University of Twente

3

2 Background

The hardware and software used in this project are described in this chapter. Section 2.1 con-
tains information about LUNA and TERRA with a subsection that describes CSP. The funda-
mentals of OpenDDS are in Section 2.2 and information about the RaMstix is provided in Sec-
tion 2.3. This chapter concludes with Section 2.4 with information about the youBot.

2.1 LUNA and TERRA

CSP describes how processes interact with each other. LUNA implements CSP as its execution
engine. First the basics of CSP are discussed in Section 2.1.1. The fundamentals of LUNA is
discussed in Section 2.1.2 and lastly TERRA is treated in Section 2.1.3, which implements a
Graphical User Interface (GUI) for drawing CSP processes and can create execution code for
the LUNA framework.

2.1.1 CSP

CSP is introduced by Hoare (1978) and is a method to describe a concurrent synchronous com-
munication application. Channels connect CSP processes and can exchange messages by using
events. Communication events with variables in CSP are denoted as:

• c?v: read variable v from channel c.

• c!v: write variable v onto channel c.

• c.v: Variable v on channel c, no direction provided.

Events are instantaneous and do not have to be accompanied by a variable. Processes are ac-
companied by a set of events (called an alphabet) where a process may engage in. The order
of operation is not determined by the channels, but by process operators. The basis process
operators for CSP are:

• PAR: All processes activated at the same time, execution order is fair (no fixed order of
execution). Continues to a next process when all processes in a parallel construct are
finished.

• SEQ: The processes are activated and executed one by one.

• ALT : Certain processes are activated depending on the variable on the provided channel.

A graphical example of a CSP model is shown in Figure 2.1. The SequenceController, LoopCon-
troller and Filter are processes connected with each other by channels that are indicated with
the arrows. The direction of the arrow indicate the direction of the variable. The arrows how-
ever do not state the order of execution as that is indicated by the connections with a ’||’ sign
that indicates a parallel construct. The question and exclamation mark indicates a reader and
writer respectively and the asterisk in the top left corner states that everything that is boxed in
that rectangle is repeated indefinitely.

Messages between processes are exchanged only when both processes are active. This results
in a synchrony between communicating processes. This way of messaging is referred to in CSP
as rendezvous communication.

Complex designs can be constructed with only a few primitive operators and events. More
information on CSP can be found in the work of Hoare (1978) and/or Chapter 7 "An overview
of CSP" of Nissanke (1997).

Robotics and Mechatronics Robin Wijnholt

4 Design of a real-time network channel in LUNA

Figure 2.1: A CSP example drawn with TERRA. The processes are connected using parallel constructs
that indicate the order of execution, and the arrows indicate the channels and the direction of the vari-
able on that channel.

2.1.2 LUNA

LUNA is a framework that implements CSP as the execution engine. LUNA (Wilterdink, 2011)
is the answer to shortcomings of other implementations and is designed with the following
requirements in mind:

• Hard real-time

• Multi platform

• Thread support

• Scalability

• CSP execution engine

• Component based

Figure 2.2 shows the architecture of LUNA. CSP is used as the execution engine, but LUNA is
made such that other execution engines can be implemented as well. The core components
are on layer 1 indicating that layer 2 and 3 are independent of the used Operating System (OS).

Figure 2.2: Overview of the LUNA architecture (Bezemer, 2011). The light grey blocks are yet to be
integrated.

LUNA is designed with threads to support concurrent processes. These threads are used as
long as the OS on which LUNA is running can provide them. This way of working is possible
,because the execution engine is separated from the core components.

User threads and OS threads are the two types of threads that can be used. OS threads are
resource-heavy, but can run on different cores and have preemptive capabilities. User threads

Robin Wijnholt University of Twente

CHAPTER 2. BACKGROUND 5

are light on resources, but must run in a OS thread and are thus running on the same core as
the OS thread.

LUNA is responsible to map the processes and constructs onto threads. An example of a LUNA
application that is mapped onto threads is shown in Figure 2.3. This figure shows that processes
are mapped onto user threads and are put in a user thread container (UTC) before mapping
them on a OS thread. The CSP constructs are decentralized implemented, which results in a
generic scheduling mechanism without any knowledge of the other CSP constructs.

Figure 2.3: The implementation of thread grouping performed in LUNA (Bezemer, 2011). User threads
are placed in a user thread container before it is placed on an OS thread.

All processes are able to run parallel in their own thread groups. The efficiency of the applic-
ation is dependent on how the thread groups are created as only the thread groups are able to
run their threads in parallel.

Previous implementations by Kempenaar (2014), Bezemer and Broenink (2015), and van der
Werff (2016) were able to connect LUNA to another application using ROS channels. The goal
of the network channel presented in this thesis is to connect two HRT LUNA programs whilst
trying to maintaining the CSP methodology as much as possible. This has as a result that the
Network Channel should also support rendezvous communication as well. An example of ren-
dezvous messaging for a writer and a reader is shown in Figure 2.4.

Figure 2.4: Rendezvous messaging shown using two processes A and B (Smyth and Davis II, 1999).

In Figure 2.4 the blocking of process A (sender) is shown, but the same holds for process B
(receiver) if that process happens to be activated earlier in time than process A. On the same
host this behavior is easily obtained by shared memory or by sharing relevant classes between
processes, but for processes residing on different hosts this asks for a different approach, which
is discussed in detail in Chapter 4.

Hardware ports in LUNA are implemented by Bezemer (2014) to interface with hardware resid-
ing outside of LUNA. The hardware ports consists of a write and read action similar to CSP
readers and writers to easily interface with the rest of the LUNA application.

Robotics and Mechatronics Robin Wijnholt

6 Design of a real-time network channel in LUNA

2.1.3 TERRA

TERRA is a Model Driven Design (MDD) tool that enables the user to draw CSP processes and
to generate execution code using the LUNA framework. TERRA is a modular collection of tools
for designing (control) software for cyber-physical systems, currently providing (RaM, 2017b):

• Model editors: Editor for CSP and an architecture model editor.

• Model Validation

• Code validation: machine CSP and LUNA (C++).

• Simulation and animation: log model to visualize system states with an animation.

• External tool support: 20-sim and SCXMLgui

For this project TERRA is used to implement a hardware port that is able to add the Network
Channel in TERRA. Hardware ports were first added by Bezemer (2014) to get rid of the sand-
boxed LUNA applications. The Mesa Anything I/O FPGA board was used in that project as a
proof of concept. The design of the hardware port is shown in Figure 2.5. On the left side an
architecture meta-model is shown that is used to construct the functionality of the hardware
port. The graphical editor part and the code generation are on the right side and deliver the
graphical part and code generation.

Figure 2.5: The design used for adding hardware ports to TERRA (Bezemer, 2014).

Regular CSP channels provide means to communicate data from a writer to a reader over a
channel, hardware channels replace the channel with a hardware implementation as is shown
in Figure 2.6.

Figure 2.6: A regular CSP channel compared to a hardware channel. Both are providing the same inter-
face to the rest of LUNA (Bezemer, 2014).

Robin Wijnholt University of Twente

CHAPTER 2. BACKGROUND 7

Figure 2.6 shows the interfacing of a hardware component to the rest of LUNA by using a IChan-
nelIn and an IChannelOut interface. This way the actual channel implementation is hidden
from readers and writers, resulting in no difference between hardware ports and writers and
readers from LUNA perspective. The result is a TERRA code generation that is able to generate
the standard readers and writers, even when hardware communication is required.

2.2 OpenDDS

In the search for a suitable communication protocol the following requirements must be met:

• Scalable

• Discovery of endpoints

• Rich set of Quality of Service (QoS) settings

• Real-time capabilities

A lot of communication protocols are available and most of the protocols do not provide all the
requirements. ZeroMQ (ZMQ, 2014) provides real-time capabilities, but has no auto discovery
for endpoints. Boost.Asio (Kohlhoff, 2017) has the ability to find endpoints using broadcast-
ing, but is not able to provide QoS settings for the user. ZeroMQ and Boost.Asio are protocols
that wrap the sockets provided by the OS and therefore do not provide a lot of QoS settings.
Also these protocols do not have their own serialization and deserialization and need therefore
another library to provide that.

ZeroMQ and Boost.Asio are not suitable for this project but do deliver fast writing speeds as
is shown in Busch (2010). This test compares OpenDDS to ZeroMQ and Boost.Asio. All three
have a great performance, but OpenDDS does provide the QoS settings that this project needs.
OpenDDS also provides endpoint discovery and real-time capabilities as it is based on the OMG
Data Distribution Service (DDS) for Real-Time Systems standard. Serialization and deserializ-
ation is performed using the IDL data structure OMGIDL (2017).

OpenDDS is completely open source, is used in ROVE (ROVE, 2017) and the new version of ROS
uses ROS2 as its communication protocol. Therefore using OpenDDS for this project will result
in a new ROS LUNA interface as all DDS vendors should be inter-operable.

OpenDDS is a publish-subscribe service, which is data oriented. The basic entities that needs
to be available for every DDS communication are:

• Topic: Contains information about a single data type and the distribution and availability
of samples.

• Publisher: Apply control and restrictions to flow of data from DataWriters.

• Subscriber: Apply control and restrictions to flow of data from DataReaders.

• Datawriter: Creates Samples of a single application data type.

• Datareader: Receives Samples of a single application data type.

To show the relation between the previously mentioned entities Figure 2.7 is provided. For
each subscriber or publisher a participant must be available as well as a topic. The participant
resides in a DDS domain. Each publisher is accompanied by a datawriter and each subscriber
is accompanied by a datalistener.

Each entity has its own QoS settings which are detailed in Chapter 3 of the OpenDDS De-
veloper’s Guide (OpenDDS, 2017b). The QoS settings of the publisher must be more demand-
ing than the QoS settings of the subscriber or the writer and listener will not match.

Robotics and Mechatronics Robin Wijnholt

8 Design of a real-time network channel in LUNA

Figure 2.7: Overview of the relation between the entities of DDS, based on Corsaro (2013).

The flow of sending a sample from publisher to subscriber via an OpenDDS topic is as follows:

1. The publisher initiates the flow of data when a data value has been written to the
datawriter.

2. The datawriters publication publishes the Samples to the associated subscription(s).

3. Each associated subscriber gives the received sample to its datareader(s) that are associ-
ated with the sending datawriter.

4. The flow ends when the application retrieves the data from the datareader.

A conceptual view of the established connection between a DDS publisher and DDS subscriber
communicating via a topic is shown in Figure 2.8. The datawriter and datareader are the in-
stances that provide the means to write to, and to read from OpenDDS topics respectively.

Figure 2.8: A conceptual view of the interconnection between a publisher and subscriber after matching
topics (OpenDDS, 2017a).

Robin Wijnholt University of Twente

CHAPTER 2. BACKGROUND 9

2.3 RaMstix

The RaMstix (RaM, 2017a) is a platform used to run embedded control software at the RAM
group. A functional overview of the RaMstix is shown in Figure 2.9. The RaMstix is an expansion
board for the Gumstix Overo module (Gumstix, 2017). The Gumstix Overo module has a single
core running at 800Mhz and provides WiFi and Bluetooth. Xenomai runs in dual kernel mode
alongside the normal kernel on the Gumstix to support HRT applications. The Overo module is
connected with a General Purpose Memory Controller (GPMC) to an Field Programmable Gate
Array (FPGA). This combination offers the following Input/Output (I/O):

• Universal Serial Bus (USB)/serial debug interface

• 100 Mbit Ethernet

• USB master

• USB slave

• Four dedicated Encoder inputs

• Four dedicated Pulse Width Modulation (PWM)/Stepper outputs

• 16 digital output pins

• 16 digital input pins

• Controller Area Network (CAN) bus interface

• Two 16-bit Analog to Digital Converter (ADC)

• Two 16-bit Digital to Analog Converter (DAC)

Figure 2.9: A functional overview of the different components available on the RaMstix. The arrow
indicate data flow.

The RaMstix is an excellent platform to rapidly test developed software with 20-sim on a setup
using the tool 20-sim 4C which allows a controller (or any other model) designed in 20-sim
to be uploaded to the RaMstix in a few steps. The inputs, outputs and other variables can be
monitored using 20-sim 4C. LUNA is also able to run on a RaMstix, and together with the dual
kernel configuration with Xenomai the RaMstix is an interesting platform for this project. For
this project LUNA will run on the Overo module and the Ethernet port is used for EtherCAT
connection to the youBot.

Robotics and Mechatronics Robin Wijnholt

10 Design of a real-time network channel in LUNA

2.4 YouBot

The youBot is used as a demonstrator to show the functionality of the Network Channel. The
youBot is a robotic arm on an omni-directional platform designed by KUKA. The arm has
five Degrees of Freedom (DOF) and a two-finger gripper. The platform consist of four omni-
directional wheels such that it can move in each direction on its x y plane without rotating
around the z axis. A picture of the youBot together with the positive joint directions and its
range of motion are shown in Figure 2.10.

Figure 2.10: The KUKA youBot. Positive direction of the joints are shown with arrows together with the
range of motion in degrees for each joint (Frijnts, 2014).

Each joint of the youBot is controlled by a motor driver that is connected to EtherCAT. The
motor driver is capable of performing PID control on torque, velocity and position, but also low
level control as setting PWM speeds to the joints and reading encoder values is provided. The
motor driver on joint 5 has a RS232 connection that is able to control the gripper. An overview
of the interconnection of the motor drivers is shown in Figure 2.11

Figure 2.11: All joints have their own motor driver that communicates over EtherCAT with the master
(youBot embedded computer). The gripper is controlled via rs232 via motor driver 5 (Frijnts, 2014).

To control the joints over EtherCAT the youBot driver Application Programming Interface (API)
provided by KUKA shown in Figure 2.12 can be used.

Robin Wijnholt University of Twente

CHAPTER 2. BACKGROUND 11

Figure 2.12: Architecture of the youBot API (KUKA, 2015). The API provides joint level control for the
youBot.

The youBot uses EtherCAT to control the motor drivers. EtherCAT is an Ethernet based fieldbus
system that can achieve real-time communications. The power of EtherCAT lies in the way
it handles the data. Each EtherCAT slave extracts relevant data and places his own data into
the telegram "on-the-fly". The telegram reaches all slaves before it is returned to the master.
EtherCAT almost supports all topologies, including line, tree, star and daisy-chain.

Each EtherCAT slave must be configured at the master and this is done using the EtherCAT
Slave Information (ESI) files, which should be provided by the vendor of the EtherCAT slave. All
the ESI files are translated to one EtherCAT Network Information (ENI) file with the EtherCAT
configuration tool. The ENI file is used by the EtherCAT master to communicate with the con-
nected EtherCAT slaves. The relation of master, slave, ESI, and ENI is shown in Figure 2.13.

Robotics and Mechatronics Robin Wijnholt

12 Design of a real-time network channel in LUNA

Figure 2.13: The EtherCAT network architecture, providing the realation between master, slave, ESI, and
ENI (Beckhoff, 2012).

Robin Wijnholt University of Twente

13

3 Requirements

The requirements of this project are listed in MoSCoW format per part of this project. The
requirements are separated into three parts, namely: Network Channel, EtherCAT and the con-
troller that drives the youBot. The relation between those parts is shown in Figure 3.1.

Figure 3.1: This schematic shows the relation between an input device, LUNA with input and Network
Channel component, and the connection with EtherCAT to the youBot.

The requirements of the Network Channel are given in Section 3.1. The requirements of the
EtherCAT interface is given in Section 3.2 and lastly the requirements on the youBot controller
are specified in Section 3.3.

3.1 Network channel

The Network Channel is the main component in this project. The main goal of the Network
Channel is to connect two LUNA applications for the exchange of data. The requirements be-
longing to the Network Channel are listed below in descending priority.

1. The Network Channel must be able to perform reliable communication between LUNA
applications: The Network Channel must be able to communicate with certain guaran-
tees of the channel performance.

2. The Network Channel must function on WiFi: The implementation must work with WiFi
as this enables devices to be mobile.

3. The Network Channel must provide a rich set of QoS settings: There must be a lot of
settings that could change the behavior of the channel, such that the desired channel
characteristics can be obtained.

4. The Network Channel must support rendezvous communication: LUNA exploits CSP
as the execution engine. To follow the CSP method the Network Channel should provide
rendezvous communication as well.

5. The Network Channel must be implemented as a component in LUNA: The Network
Channel could be implemented by a code block, but it is more convenient to make the
Network Channel part of LUNA by implementing it as a component. This way it is pos-
sible to build the Network Channel as an option in LUNA.

6. The Network Channel should support buffered channels: Physically separated systems
can have different loop frequencies. To be able to communicate between those systems
buffered channels should be implemented as well.

7. The Network Channel should be easy scalable: To support the use of the Network Chan-
nel between multiple LUNA applications on several hosts it should be easy scalable. Auto
discovery of endpoints has therefore preference.

Robotics and Mechatronics Robin Wijnholt

14 Design of a real-time network channel in LUNA

8. The Network Channel should be accessible from TERRA: To use the Network Channel in
a convenient way it should be available in the TERRA GUI. The high level settings can be
handled by the configuration window in TERRA and the user would not have to bother
about typing code.

9. The Network Channel could be inter-operable with ROS2: The newest version of ROSec:
uses DDS as the communication middleware. The new version or ROS promises to be
real-time capable. ROS1 is used for many applications at RaM and it may therefore be
beneficial to make this Network Channel compatible with this newer version of ROS, as
it will most probably used for future projects.

10. A new communication protocol for the Network Channel will not be designed: A pro-
tocol that is designed from scratch will most certainly have issues with maintainability,
usability, and portability. An existing protocol will probably have no issues with these as
support and updates are mostly provided. Also a community is can be present that is
able to help when bugs arise.

3.2 EtherCAT interface

EtherCAT is used to control the youBot motor drivers and therefore some requirements are
drafted for the EtherCAT interface in this project.

1. There must be a coupling between LUNA and an EtherCAT interface to control the mo-
tors of the youBot: The EtherCAT API for the youBot works as is, but it should also be
(partly) implemented in LUNA to enable interfacing with the youBot from LUNA.

2. The EtherCAT interface should have real-time performance: A goal is to obtain an
EtherCAT connection together with LUNA that can perform real-time communication
with the youBot. EtherCAT is known for its fast and deterministic cycles and therefore
real-time communication should be feasible.

3. A LUNA component for EtherCAT could be made accessible from TERRA: If the LUNA
component for EtherCAT is designed and it is generic enough it could be implemented
in TERRA as well to make it accessible from the GUI to make it easy to use in other ap-
plications.

4. The EtherCAT master from IgH could be used for EtherCAT connection instead of the
youBot API: SOEM is known to have high periodic latency peaks (Spil (2016)). If this is
caused by the SOEM implementation another open source implementation can be used
like IgH which may solve this problem.

5. A new EtherCAT master will not be designed.: No effort is put into designing a new
EtherCAT master for communication with the youBot.

3.3 youBot controller

An implementation of a controller is necessary to calculate with inputs the desired outputs
Depending on the type of controller the actual implementation may vary.

1. A youBot controller must be implemented in LUNA: A controller must be implemented
to show a demo of LUNA with the EtherCAT interface controlling the youBot. The kind of
controller is less important as the focus of this project is to design a network component
in LUNA and not on designing a new kind of controller.

2. Inverse kinematics could be implemented for the controller: The controller designed
by Spil (2016) is an inverse kinematics controller and could be ported to LUNA.

Robin Wijnholt University of Twente

CHAPTER 3. REQUIREMENTS 15

3. A new controller could be designed that uses Intrinsic Passive Control (IPC): To make
the Network Channel with a controller more robust for disturbances and connection fail-
ures a form of IPC could be implemented.

Robotics and Mechatronics Robin Wijnholt

16 Design of a real-time network channel in LUNA

4 Network Channel in LUNA

4.1 Introduction

The design choices, realization, and tests for every part that constructs the Network Channel
is provided in this chapter. This chapter contains three sections, and each section contains a
design, realization, and tests:

• OpenDDS: An interface is designed in Section 4.2 that enables LUNA to write and read
from OpenDDS. This interface implements a way to provide rendezvous, and publish-
subscribe communication by using OpenDDS as communication protocol and is utilized
by the LUNA implementation to actually add functionality to the Network Channel.

• TERRA: To graphically draw CSP processes TERRA is used. TERRA is able to generate ex-
ecutable code using the LUNA framework. An extra hardware port (DDS port) is added to
TERRA in Section 4.3, such that the user can initialize the Network Channel from TERRA.

• LUNA implementation: The OpenDDS interface is integrated in the actual Network
Channel in Section 4.4. The functionality of the Network Channel is implemented and a
component in LUNA is constructed in this section. This section integrates the OpenDDS
interface.

An overview of the relations between TERRA, LUNA, and OpenDDS is given in Figure 4.1.
TERRA uses the LUNA framework to generate executable code. The generated code is able
to instantiate the Network Channel that used the OpenDDS interface to provide the commu-
nication between LUNA applications.

Figure 4.1: Overview of how OpenDDS relates to LUNA and how LUNA relates to TERRA. The solid lines
indicate data flow, and the dashed line represents a dependency.

4.2 OpenDDS

4.2.1 Design

The implementation of OpenDDS provides an interface for writing and reading to OpenDDS
topics from the Network Channel component in LUNA.

The OpenDDS implementation should support publish-subscribe and rendezvous communic-
ation. For publish-subscribe communication only one datawriter is instantiated at the pub-
lisher and one datalistener at the subscriber. If the topics match, then the data will be ex-
changed from publisher to subscriber, which is shown in Figure 4.2.

For rendezvous communication in a normal CSP channel the reader and writer know when
both are ready to exchange data as they reside on the same host. For the Network Channel these
states needs to be communicated over the network, which will result in a lot of messages back
and forth that all are influenced by network latency and processing time in the application. A

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 17

Figure 4.2: An overview of communication via OpenDDS with the publish-subscribe pattern. The data
flow is from publisher to subscriber. The topics must match before communication is started.

trade-off is made that only the reader can present its state to the writer, which will result in one
less state exchange for every data exchange, which is shown in Figure 4.3.

Figure 4.3: The messages that are send over the network when traditional rendezvous messaging is
used(a) versus the trade-off that only notifies a ready reader(b).

In the trade-off two flows of data are present, one for state exchange and one for data exchange.
The reading side cannot publish data to the writer, and therefore it is necessary to instantiate
another writer at the reading side, and an extra listener at the writing side a statewriter and
statelistener respectively and is shown in Figure 4.4. It is chosen to instantiate another listener
and writer for rendezvous communication, because it separates the publish-subscribe com-
munication from the rendezvous communication.

The blocking of writers and readers is not implemented by OpenDDS, but by the Network
Channel implementation in Section 4.4.

Two topics are used in OpenDDS to exchange data and the state of the reader and therefore also
two data structures are presented. The data structures are presented to OpenDDS using an IDL
file (OMGIDL, 2017). It is chosen to implement unbounded sequences for the data exchange,
because preliminary tests showed that a DDS topic per writer and reader pair resulted in a bad
performance on the RaMstix. With unbounded sequences it is possible to bundle multiple data
instances into one packet. Unbounded sequences in IDL show up as arrays in C++ and needs
to be allocated. Memory allocation is not a real-time operation, but provides the ability to pack

Robotics and Mechatronics Robin Wijnholt

18 Design of a real-time network channel in LUNA

Figure 4.4: An overview of the initialized datawriter, statewriter, datalistener, and statelistener for ren-
dezvous communication. The direction of data is from publisher to subscriber, and the direction of the
state is from subscriber to publisher. The state topics and data topics should match before rendezvous
communication is can be performed.

multiple data instances in one OpenDDS data structure, which results in less write actions to
OpenDDS and therefore probably also in a better overall performance.

4.2.2 Realization

4.2.2.1 IDL file

The IDL format is used to specify the data structures. This IDL file is shown in Figure 4.5 and
shows the data struct (Packet) with the unbounded sequences and the struct for the state ex-
change from reader to writer.

Figure 4.5: The IDL file that is used to register topics with. If a publisher and subscriber use the same
data format (and QoS) than the topics will match. Also the data format for the state exchange for ren-
dezvous communication is provided in this file, and can notify the publisher the subscriber is ready to
receive using a value.

By using unbounded sequences for the data structure it is possible to bundle several subtopics
into one DDS topic. With bundling better performance is obtained with respect to separate
sending, which is shown in Section 4.2.3. The writers and readers representing those subtopics
should however reside in a parallel construct such that the writers and readers are able to un-

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 19

block in one iteration. Figure 4.6a shows how the subtopics are bundled on one DDS topic. If
rendezvous communication is enabled only one reader ready message needs to be send, noti-
fying that all the readers in a parallel construct are ready.

The separate data structure should be used if the data has different endpoints. Also when the
readers in one LUNA application are not in a parallel construct it is better to use the separate
data structure. For the separate data structure each subtopic results in a separate DDS topic
and is shown in Figure 4.6b. Every DDS topic has to present a separate reader ready message to
the corresponding subscriber if rendezvous is enabled.

(a) A schematic representation of bundling different subtopics into one DDS topic. The single arrow
from publisher to subscriber indicates information flow over one DDS topic. One state topic is used to
state the readiness of the subscriber.

(b) A schematic overview of the separate data structure when different DDS topics are used for every
subtopic. For every DDS topic a DDS publisher and subscriber pair is instantiated, which is illustrated
with multiple arrows from publisher to subscriber. Also multiple state topics are used, because every
subscriber has to notify its readiness.

Figure 4.6: A schematic that shows the differences between bundled and separate data structures.

4.2.2.2 Software architecture

The software structure of OpenDDS consists of a Publisher and a Subscriber class. The Pub-
lisher class is able to write data via a datawriter to a DDS topic and the Subscriber is able to
receive data via a listener from a DDS topic. A DDS listener is implemented, because a waitset
and a polling listener introduces extra latencies. The listener however is more resource heavy.

When rendezvous communication is enabled the Publisher class provides a statelistener and
the Subscriber class a statewriter to be able to send and receive state updates. The realized
software architecture is shown in Figure 4.7.

The writeData function in the Publisher class calls the write member function in the datawriter
to write the data to DDS. The writeData function needs two vectors as arguments, one with
subtopic names and one with data corresponding to the subtopics. These vectors are placed
in arrays that are provided by the IDL file. The algorithm that places these values and topics in
the C++ arrays provided by the IDL file is shown in Algorithm 1.

The function readerIsReady in the Publisher class calls the readerIsReady function in the statel-
istener. If the corresponding subscriber notified it is ready to read than this functions will return
true, in all other cases it returns false.

Robotics and Mechatronics Robin Wijnholt

20 Design of a real-time network channel in LUNA

Figure 4.7: Software architecture of Publisher (left) and Subscriber (right). The listeners and writers are
provided by OpenDDS and functions are added for extra functionality. The solid arrows indicate data
flow and the dashed line the separation by OpenDDS.

Algorithm 1 Pseudo code of the function writeData in the OpenDDS implementation at the
Publisher class of the OpenDDS interface.

Input: Two vectors, one dataVector and on topicVector

1: initialize arrays with the length of the dataVector
2: for every sample in the dataVector do
3: place sample in allocated data array

4: for every topic in the topicVector do
5: place topic in allocated topic array

6: place topic and data array in a dataPacket provided by the datastructure from IDL
7: Call write in datawriter with the dataPacket as argument
8: if rendezvous communication is enabled then
9: Set the readerIsReady boolean to false in the statelistener

The datalistener at the Subscriber class fills a dataVector with the function writePacket
whenever data is received and places the recData on the dataVector. When data was already
present in the dataVector the received data is appended. The data consists of a subtopic and
the corresponding value.

The readData in the Subscriber class calls the readPacket member function of the datalistener
and returns the data it has received up until this call. This returned data consists of a vector
with strings and the corresponding values. The string represents the topic and the double is
the data.

The readerIsReadyToReceive member function of the Subscriber class sends a message on the
state topic via the write function of the statewriter to indicate the reader is ready to receive data.

The startSubscriber and startPublisher functions instantiate the components that are neces-
sary for OpenDDS to start exchanging messages. To instantiate a Publisher or Subscriber the
constructor needs the following arguments:

• Topic: The topic name to what this channel is publishing/subscribing.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 21

• Configuration file: The path to a configuration file that indicates what kind of transport
is used.

• QoS: The QoS Reliability can be either "RELIABLE" or "BESTEFFORT", which is the qual-
ity of service for datawriter, datalistener and topic. RELIABLE transport is not supported
for User Datagram Protocol (UDP) transport.

• Rendezvous: A boolean that indicates if an extra writer at the Subscriber class and a
listener at Publisher class for rendezvous communication should be instantiated.

4.2.3 Tests

To test the basic functionality of this implementation a test is performed with five DDS chan-
nels. With more than one channel the behavior of multiple listeners can be tested.

The publisher and subscriber are hosted on different RaMstixes and the "Master" runs the
Data-Centric Publish-Subscribe (DCPS) service provided by OpenDDS for endpoint detection.
The setup for this test is shown in Figure 4.8.

Figure 4.8: The setup used for the test of the OpenDDS implementation. The master, and two RaMstixes
connect via a switch to the same network.

Tests are performed to show that the OpenDDS interface is functioning. Publish and subscribe,
and rendezvous communication with separate and bundled data structure are tested.

A functional overview of this test is given in Figure 4.9. An application written in C++ calls
functions of the OpenDDS interface to test the interface. The C++ writer tries to send its data
every 10ms, and the C++ reader actively listens for data and continues if data is received for all
the topics.

For these tests Transmission Control Protocol (TCP) transport is used with DCPS for end-
point detection. The Real-Time Publish-Subscribe (RTPS) transport is not used as it does not
work with multiple participants on one host (When separate structure is used), and it fails to
join multicast addresses from time to time. Time stamping is performed after each write to
OpenDDS and after receiving data from OpenDDS. The difference between two timestamps at
the C++ writer and two timestamps at the C++ reader are used to show the execution time of
each iteration.

The publish-subscribe communication results for the bundled and separate data structure are
shown in Figure 4.10. It is observed that the execution time of publishing messages using the
separate data structure results in more jitter around the sending frequency of 100Hz (10ms),
and is caused by writing five times more often to OpenDDS than when using a bundled data
structure.

The C++ reader side also performs better with a bundled data structure than with separate data
structure. This is easy to explain, because every listener waits until data is available without

Robotics and Mechatronics Robin Wijnholt

22 Design of a real-time network channel in LUNA

Figure 4.9: An overview of how the OpenDDS interface is used by a C++ program and presented as
pseudo code in this figure. The dashed arrows indicate usage of the member function in another class
and the solid arrows indicates the flow of data. "Wait until subscriber is ready" at the C++ Writer and
"Send subscriber ready" are omitted for the publish-subscribe communication.

polling the other listeners in the meantime. This waiting for data expresses itself in bands sep-
arated by 4ms, which is equal to 250Hz and is the polling frequency for checking if data is avail-
able. The extra band 4ms above the 10ms line for the bundled data structure is due to the non
availability of the data in the first iteration of the C++ reader and therefore the data is received
the next iteration 4ms later.

For rendezvous communication similar behavior is obtained, but the C++ reader and the C++
writer are not decoupled anymore due to the state exchange, so the behavior is also translated
to the publishing side and is shown in Figure 4.11.

The bundled data structure is able to maintain a 100Hz sending rate, but for the separate data
structure this is not feasible due to long waiting times at the C++ reader for data for every
listener. Note again the 4ms separation due to actively listening for the readiness of the reader
and the availability of data.

These tests shows that the OpenDDS interface is functioning for rendezvous and publish-
subscribe communication. The performance however is not directly translatable to the per-
formance in the Network Channel implementation in LUNA that uses this interface.

These tests are blocking when no data is available. The implementation in the Network Channel
will not be blocking when there is no data, because it must also handle all the other readers.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 23

1100 1120 1140 1160 1180 1200

Samples

2

4

6

8

10

12

14

16

18

20

ti
m

e
 (

m
s
)

Publisher TCP 100Hz PUBSUB

Seperate

Bundled

(a) The time between timestamps at the publisher
side for the publish-subscribe pattern.

1100 1120 1140 1160 1180 1200

Samples

0

10

20

30

40

50

60

70

80

ti
m

e
 (

m
s
)

Subscriber TCP 100Hz PUBSUB

Seperate

Bundled

(b) The time between timestamps at the subscriber
side for the publish-subscribe pattern.

Figure 4.10: A comparison between a separate and bundled data structure for publish-subscribe com-
munication

1100 1120 1140 1160 1180 1200

Samples

5

10

15

20

25

30

35

ti
m

e
 (

m
s
)

Publisher TCP 100Hz RENDEZ

Seperate

Bundled

(a) The time between timestamps at the publisher
side for rendezvous communication.

1100 1120 1140 1160 1180 1200

Samples

5

10

15

20

25

30

35

ti
m

e
 (

m
s
)

Subscriber TCP 100Hz RENDEZ

Seperate

Bundled

(b) The time between timestamps at the subscriber
side for rendezvous communication.

Figure 4.11: A comparison between a separate and bundled data structure for rendezvous communica-
tion

Therefore the implementation in LUNA will not have such a sequential behavior, and therefore
a better performance is expected when this OpenDDS interface is implemented for the Network
Channel.

4.3 TERRA

4.3.1 Design

Bezemer (2014) wanted to get rid of sandboxed modelling software, and therefore hardware
ports got implemented, such that the modelling software was able to communicate with the
physical world. As a proof-of-principle the Mesa Anything I/O FPGA board was used to show
the implementation of the proposed hardware ports in LUNA. The design that is used to add a
hardware port to LUNA and TERRA proposed by Bezemer (2014) is shown in Figure 4.12.

The architecture of the TERRA plugin is rather complex and therefore it is chosen to append
the Network Channel to this proof of principle implementation.

The Network Channel at TERRA will show up as DDS port to follow the naming convention of
the other hardware ports.

Robotics and Mechatronics Robin Wijnholt

24 Design of a real-time network channel in LUNA

Figure 4.12: The design used for adding Hardware Ports to LUNA and TERRA(Bezemer, 2014).

The TERRA project contains a lot of plugins for its hardware ports, but the plugins relevant for
appending a DDS port to the existing Mesa Anything I/O FPGA board hardware port imple-
mentation are:

• nl.utwente.ce.terra.arch.hw.anyio.model

• nl.utwente.ce.terra.arch.hw.anyio.editor

• nl.utwente.ce.terra.arch.hw.anyio.codegen

In hw.anyio.model a new configuration is added in where the parameters are provided that the
Network Channel needs for instantiating a Network Channel. These parameters are shown in
the "Properties" pane in TERRA once a DDS port is placed on the drawing pane of TERRA.

In hw.anyio.editor a validator is added that checks if the type that is connected to the channel
is supported by the Network Channel. All types are set to be valid, such that it is possible to test
different data types without changing the TERRA hardware port. The user has to take care of
connecting the correct type of channel to the port. Also the plugin.xml file is changed such that
the DDS port shows up in the TERRA application.

In hw.anyio.codegen the actual code generation is performed. The constructor of the Network
Channel must be placed in a C++ file such that the constructor of the Network Channel can
instantiate the writer or reader. Also the header file must be added to the top of the generated
code.

4.3.2 Realization

In hw.anyio.model an extra model is added to hwanyio.ecore by copying and renaming another
model. The extra model is shown in Figure 4.13 and is called AnyioDDSConfiguration.

Next a validator is added in hw.anyio.editor that checks if the type connected to the channel is
supported. The validator for the DDS port is shown in Figure 4.14.

The plugin.xml file is appended with a hardware port configuration for the DDS hardware port,
which is shown in Figure 4.15.

Next the part in hw.anyio.codegen where the code is generated is changed. First an existing
template is copied and changed to match the constructor that initializes the Network Channel.
In the template folder the construction.egl is altered to match the constructor of the Network
Channel as is shown in Figure 4.16.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 25

Figure 4.13: An extra model is added to the hwanyio.ecore file, and is renamed to AnyioDDSConfigura-
tion

Figure 4.14: The validator for the DDS port is added in hw.anyio.editor to make sure the correct type is
connected to the DDS port. All types are currently supported for the TERRA DDS port.

Figure 4.15: The plugin.xml is appended with a hardware port configuration for the Network Channel.

Figure 4.16: The construction.egl file that gives a template for placing the constructor of the Network
Channel in the generated code.

Then a Java class is copied from the src directory in the hw.anyio.codegen plugin and altered
to implement a code generation for the Network Channel. This part adds the constructor and
header file for the Network Channel actual to a C++ file and is shown in Figure 4.17.

Lastly the plugin.xml in the hw.anyio.codegen folder is altered such that the code generation is
actually able to generate the Network Channel constructor and header. The plugin.xml file is
shown in Figure 4.18

Appendix F shows how the source code of the TERRA application with DDS ports can be ob-
tained.

Robotics and Mechatronics Robin Wijnholt

26 Design of a real-time network channel in LUNA

Figure 4.17: The AnyioDDSCodeGenerator that actually places the constructor and header in a C++ file.
The getConstructionCode calls the file that is shown in Figure 4.16.

Figure 4.18: The addition of the DDS code generation to the plugin.xml to enable code generation for
the Network Channel.

4.3.3 Tests

A TERRA application with one DDS port at architecture level is constructed to show the correct
functioning of the added DDS port.

When initializing a new architecture model the Palette shows up at the right side in TERRA. The
DDS Port is located between the other hardware ports and is shown in Figure 4.19.

Figure 4.19: The DDS port as it shows up in the Palette of TERRA.

After placing a DDS port on the drawing frame in TERRA a properties pane shows up at the
right bottom corner that enables the user to set some parameters as is shown in Figure 4.20.
The settings entered in this properties pane are passed to the constructor that initializes the
Network Channel. The buffersize, commonTopic (DDS topic), path to configuration file, own-
Topic (subtopic),acQoS, and rendezvous are configurable parameters.

After code generation the constructor of the class that initializes the Network Channel
(DDSChannel) is generated and filled with the configurations set by the user in TERRA and
the header file is placed on top with the other dependencies as can be seen in Figure 4.21.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 27

Figure 4.20: The properties pane in TERRA that shows the settings that are passed to the constructor
that initializes the Network Channel.

(a) The arguments that were set in the TERRA properties pane show up as arguments in the constructor
of the Network Channel (DDSChannel).

(b) The code generation succesfully placed the header file (DDSChannel.h) of the network channel
among the other dependencies.

Figure 4.21: Screenshots of the generated C++ code that call the constructor that initializes the Network
Channel and places the necessary header files on top.

The user of TERRA is now able to use DDS ports as hardware port in TERRA. The next section
describes the implementation of the Network Channel in LUNA such that placing a DDS port
in TERRA actually delivers functionality to this hardware port.

4.4 LUNA implementation

4.4.1 Design

LUNA is component based, so by adding another component specifically for the DDS Network
Channel it must be possible to use this Network Channel with LUNA. The file structure used by
LUNA is shown in Figure 4.22.

LUNA
components

component name
Makefile
files

All header and CPP files

Figure 4.22: File structure of a component in LUNA.

Robotics and Mechatronics Robin Wijnholt

28 Design of a real-time network channel in LUNA

In the component folder another folder can be created that contains a makefile and a folder
that holds the files for the Network Channel. The component folder name is chosen to be dds-
channels to follow the convention of other components.

The makefile is responsible for linking all the project files, such that LUNA knows where to
find the necessary files. The makefile is also used by the build menu of LUNA to show the
component as an option to build.

A new software architecture based on ROS channels by van der Werff (2016) is designed for this
Network Channel and is shown in Figure 4.23. The difference with the software architecture of
the ROS channels is that this implementation has an extra class (DDSManager) that is instanti-
ated as a Singleton, which means that only one object of that class can exist. This extra class is
used as a pass through class for all the objects of DDSChannel to the DDSReactor.

Figure 4.23: An overview of the software architecture used to design a Network Channel for LUNA. Only
the member functions that provide the functionality are shown.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 29

4.4.1.1 DDSChannel

On the top of Figure 4.23 the DDSChannel class is shown. The DDSChannel is where the com-
ponent interfaces with the rest of the LUNA application via the IChannelIn and IChannelOut
interfaces, which are provided by the CSP component in LUNA.

Every DDS port at TERRA level results in an object of the DDSChannel class. Invoking a
new publisher or subscriber, blocking of readers and writers, and the type of communication
(publish-subscribe or rendezvous) are managed by this class. The DDSChannel provides the in-
terface to the rest of the LUNA application and therefore blocking of writers and readers must
be implemented at this class.

Writers unblock if data is written to the OpenDDS publisher (only for rendezvous), and readers
unblock once data is received by the OpenDDS subscriber. The write function provided by
IChannelIn interface invokes a write to OpenDDS. If the writer is configured for rendezvous
communication the writer will block until the data is written to a OpenDDS publisher.

At the reader a read function is provided by the IChannelOut interface that blocks until data is
available. Blocking is implemented for publish-subscribe communication as well as for rendez-
vous communication. The reader with publish-subscribe communication does not necessarily
have to block, but it is chosen to block such that loop frequency of the reader is dependent on
the send frequency of the writer. With this dependency it is easier analyse the characteristics of
the Network Channel, and a timer at the subscriber is not necessary.

Once a reader or writer is blocked there must be a way to unblock the reader or writer. Active
polling for data can be implemented in the DDSChannel, but this results in an extra latency
introduced by the polling frequency and also the CPU usage will increase as every reader is
polling for data. Therefore callback functions are implemented that are given as an argument
to the DDSReactor at registering of a blocking writer or reader. A function can be passed as
argument by using the std::function provided by C++11. The callback function for the writer
only has to unblock the writer where the callback function of the reader also has to place the
received value in the buffer at DDSChannel.

Also a buffer is implemented in the DDSChannel that can store data presented by the
DDSReactor. Whenever the buffer is full, old data will be overwritten.

4.4.1.2 DDSManager

The DDSManager class is implemented as a singleton and instantiates an object of the
DDSReactor. A class implemented as a Singleton can only instantiate one object of the class
and therefore all DDSChannels objects have access to the same DDSManager which makes it
practical to use as a pass through class.

4.4.1.3 DDSReactor

The DDSReactor in Figure 4.23 takes care of actually publishing and subscribing to OpenDDS.
One single thread could handle all the publishing and subscribing, but problems were ob-
served, and therefore multiple threads are implemented which gave less deviation and there-
fore the multiple thread implementation is used from now on.

The threads that are implemented are: one for writing to OpenDDS, one for reading from
OpenDDS and the third one for handling the time-out functionality.

The time-out thread makes sure a message is send to a certain topic if the last publish to that
topic was longer ago than a pre-defined time. With a good functioning Network Channel no
time-outs occur, but if a packet is lost with rendezvous communication a deadlock can occur.
This deadlock can be resolved by re-sending to the topic that caused the time-out.

The DDSReactor instantiates OpenDDS classes for publishing and/or subscribing to a topic.

Robotics and Mechatronics Robin Wijnholt

30 Design of a real-time network channel in LUNA

4.4.1.4 Communication types

For the communication over the Network Channel two types of communication should be
available:

• Publish and Subscribe: This is the most basic communication pattern and also imple-
mented by most other communication protocols. The publisher publishes data without
knowing the subscriber was ready. The subscriber simply receives the data without noti-
fying its readiness.

• Rendezvous: CSP is used in LUNA and therefore rendezvous communication is used in
the LUNA application. Therefore the Network Channel should support rendezvous com-
munication as well to maintain the synchrony between two systems following CSP the-
ory. The publisher for rendezvous communication waits until the subscriber is ready to
receive before sending the data.

For the publish-subscribe communication the writer at DDSChannel is not blocking and the
reader at DDSChannel blocks until the registered callback function with data is called from
the DDSReactor. A timing sequence that shows how messages are exchanged for the publish-
subscribe communication is shown in Figure 4.24.

Figure 4.24: A timing sequence that shows how publish-subscribe communication is performed. The
writer does not block and the reader unblocks as soon as the callback function is called from the
DDSReactor.

For rendezvous communication the writer on DDSChannel is blocking until the data is send
on the DDS publisher at the DDSReactor. The reader on DDSChannel is blocked until the call-
back function with the received data is called from the DDSReactor. The reader at DDSChannel
states its readiness to the DDS subscriber at the DDSReactor. Once the readiness of the reader
is received at the DDS publisher the DDSReactor is allowed to send the data to the DDS sub-
scriber. The behavior of the writer and reader is shown using a timing sequence in Figure 4.25.

Figure 4.25: A timing sequence that shows how rendezvous communication is performed. Writer and
reader at DDSChannel block until data is written to OpenDDS or received from OpenDDS respectively.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 31

4.4.1.5 Publishing data

Multiple instances of the DDSChannel call the same member function in the DDSReactor to ini-
tiate a publish onto a DDS topic. The DDSChannel objects are running concurrent and there-
fore a queue must be implemented that guarantees thread safety.

To make it a thread safe operation one could use the mutex wrapper lock_guard supported by
C++11. If a thread enters this function than other threads wait with entering this function until
the lock is ended. The same functionality but different implementation is also provided by
the lockfree implementation by the Boost library (Blechmann, 2011), and by the First In First
Out (FIFO) queues of MoodyCamel (Moodycamel, 2014).

MoodyCamel compared its implementation with the lock_guard and lockfree from the Boost
library. Also Qihoo360 (2017) tested these three implementations. Both tests conclude that
MoodyCamel has the fastest writing and reading speeds when a queue is accessed by multiple
threads. Therefore the FIFO queue implementation of MoodyCamel is used for the implement-
ation of the queues.

Both communication types uses queues for sending messages. Every message that has to be
published contains three arguments:

• commonTopic: The DDS topic that the data should be published to. This topic must be
registered by a OpenDDS publisher.

• ownTopic: This is the subtopic on a commonTopic. Multiple ownTopics can reside in one
commonTopic as this is supported by the data structure provided by OpenDDS.

• Data value: The value that the writer wants to send to the reader.

Multiple ownTopics can reside in one commonTopic. The functionality of bundling of ownTop-
ics into a bundle is shown in Figure 4.26.

Figure 4.26: The functionality of publishing a message using queues. Messages are placed on the queue
from multiple instances of the DDSChannel. The first items placed in a queue will be dequeued first as
well (FIFO). Note that the messages are bundled by the commonTopics before writing to the correspond-
ing OpenDDS publisher. The DDSManager is left out as as it only passes the messages.

The outboundLoop in the DDSReactor is responsible for dequeueing the messages from the
queue.

Every iteration of the outboundLoop all the messages on the queue will be dequeued by the
handlePublishers function for publish-subscribe communication and by the handleWriters
function for rendezvous communication. All ownTopics on the queue with the same common-
Topic are bundled until all the messages are dequeued.

Robotics and Mechatronics Robin Wijnholt

32 Design of a real-time network channel in LUNA

The default implementation dequeues all the messages and sends them to the OpenDDS pub-
lisher. However, a problem arises if not all the messages were presented yet to the queue and
therefore the amount of messages for a certain DDS topic is not equal to the amount of re-
gistered writers. For rendezvous messaging this will results in a deadlock as not all readers are
unblocked in one iteration, which means that the reading side does not state its readiness again
and the writing side send no data as it waits for the readiness of the reader. Therefore for ren-
dezvous messaging a wait function must be implemented that waits for all registered writers
to have presented their data to the queue. The wait function is illustrated for four writers and
readers writing to the same commonTopic and is shown in Figure 4.27.

Figure 4.27: An illustration of the wait functionality for one commonTopic and four registered writers. In
the first iteration not all four writers have presented their data to the queue and in the second iteration
the bundle is complete as all messages from all the writers are available.

4.4.1.6 Subscribing to data

Where the outboundLoop is responsible for sending messages the inboundLoop at the
DDSReactor is responsible for receiving the messages and placing the data on the callback
function that corresponds to the received ownTopic. The data is processed once it is available
and therefore no queue is needed for receiving data.

However, one queue is implemented that handles the reader is ready messages for rendezvous
communication. The reader at DDSChannel invokes the call to notify the corresponding writer
by calling notifyReaderReady function in the DDSReactor, which enqueues the commonTopic
and is matched to a registered OpenDDS publisher topic at dequeueing. Once matched, a read-
erIsReady message on that topic is published. After this message the reader will block until data
is received via the callback function.

For publish-subscribe communication the reader at the DDSChannel will block without noti-
fying its readiness.

4.4.1.7 Time out

The timeOutHandlerLoop takes care of sending a message to a certain topic if the last publish to
that topic was longer ago than a pre-defined value. This time-out occurs when a deadlock is ob-
tained by for example missing packages. If a deadlock occurs it is resolved by the timeOutHand-
lerLoop. If rendezvous communication is used the synchrony is lost for a moment, but it is
more important to have data than to be in a deadlock forever. The timeOutHandlerLoop calls
in every iteration three functions, namely:

• writerTimeOutHandler(): This function checks if the last publish to a topic for rendez-
vous communication was not longer ago than a pre-configured time-out time.

• pubTimeOutHandler(): This function checks if the last publish to a topic for publish-
subscribe communication was not longer ago than a pre-configured time-out time.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 33

• readerReadyTimeOutHandler(): This function checks if the last reader ready notification
to a topic was not longer ago than a pre-configured time-out time.

4.4.2 Realization

The essence of the realization is discussed in this section. More details on the implementation
are given with pseudo code and flow charts in Appendix A.

4.4.2.1 Component integration in LUNA

Following the generic file structure of a component a new folder is added with the name dds-
channels to follow the naming convention of other components. Inside this folder a makefile is
present that specifies which files are needed for the dds-channel component. OpenDDS is used
and therefore LUNA needs the location of the OpenDDS binaries and headers. The setenv.sh
script that is provided by OpenDDS sets the environment variables. In rules.mk (located in top
directory of LUNA), it is checked if the environment variables are set.

The result is that the Network Channel can be build with LUNA, because it is presented as a
build option in the LUNA build configuration.

4.4.2.2 LUNA implementation

The software architecture for the Network Channel as is shown in Figure 4.23 consists of three
classes, and depending on the setup also a Publisher or Subscriber object is instantiated.

The most important functionality of the Network Channel is implemented in the looping
threads. Three threads are used in the DDSReactor:

• inboundLoop: This loop handles all incoming messages and is started when the first sub-
scriber is instantiated.

• outboundLoop: This loop handles all outgoing messages and is started when the first
publisher is instantiated.

• timeOutHandlerLoop: This loop is started as soon as the first publisher or subscriber is
instantiated. This loop sends a message to a DDS topic if the last write to that topic was
longer ago than a pre-defined time.

Those three threads implement the core functionality of the Network Channel and call the im-
plemented functions that enables the Network Channel to perform publish-subscribe and ren-
dezvous communication.

The outboundLoop dequeues the messages from a Moodycamel (2014) queue. The messages
on a queue contain a commonTopic, ownTopic, and a data value. The outboundLoop imple-
ments the following functions:

• handlePublishers(): This function implements the dequeueing of the publish-subscribe
queue, which is filled by the implemented publish function in the DDSReactor. All mes-
sages are written to the corresponding DDS topic (ownTopic) by this function.

• handleWriters(): This function implements the dequeueing of the rendezvous queue,
which is filled by the implemented writeRendez function in the DDSReactor. All messages
are written to the corresponding DDS topic (ownTopic) if the corresponding is ready to
read. Also the waiting functionality is implemented in the writeRendez function.

The handleWriters() function also implements a waiting functionality. This waiting function-
ality makes sure that the bundle contains an equal amount of data as there are ownTopics.
The pseudo code of how the waiting functionality is implemented is shown in Algorithm 2.

Robotics and Mechatronics Robin Wijnholt

34 Design of a real-time network channel in LUNA

This algorithm waits another iteration if not all the data was present in the queue at time of
dequeueing.

Algorithm 2 Pseudo code of the function handleWriters that dequeues the messages on the
queue with waiting enabled. The writer is written to OpenDDS if the dataVector size is equal
to the amount of registered writers.

1: for every entry of publisher in publisherVector do
2: if accompanying subscriber is ready then
3: while queue with messages is not empty do
4: Dequeue a message
5: if message commonTopic is equal to the publisher topic then
6: append ownTopic to topicVector
7: append value to dataVector
8: for every entry in the callbackVector do
9: if callback topic is equal to the ownTopic of the message then

10: Add callback to callback vector.
11: else
12: add message to reenqueueVector.

13: if dataVector size is equal to number of registered writers then
14: write data to write function of publisher
15: Handle all callback functions in callbackVector.
16: clear topicVector, dataVector and callbackVector.

17: if re-enqueue vector is not empty then
18: re-enqueue this vector in the message queue.

As also mentioned in the design section, callback functions are presented to the DDSReactor
to unblock a writer or reader. The inboundLoop receives the messages and implements the
following functions:

• handleSubscribers(): This function receives the message for the publish-subscribe com-
munication. With the callback of the reader that is provided at the registration the reader
can be unblocked.

• handleReaders():This function receives the message for the rendezvous communication.
With the callback of the reader that is provided at the registration the reader can be un-
blocked.

• handleReaderReadyNotification(): This function dequeues the queue with reader is ready
messages. This queue is filled by the notifyReaderReady function implemented in the
DDSReactor. All messages are written to the corresponding DDS topic by this function.

The timeOutHandlerLoop makes sure the last publish was not longer ago than a pre-defined
time (currently hard coded on 10s), and calls the following functions:

• pubTimeOutHandler(): This function re-publishes a value if the previous publish to a
publish-subscribe topic was longer ago than a pre-defined time.

• writerTimeOutHandler(): This function re-publishes a value if the previous publish to a
rendezvous topic was longer ago than a pre-defined time.

• readerReadyTimeOutHandler(): This function presents the state again if the state was
presented longer ago than a pre-defined time.

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 35

The three threads and the functions in those threads implement most of the functionality of
the Network Channel. The implementation of the connection between the DDSChannel and
the DDSReactor is not discussed in this section, and also the implementation of the functions
is not detailed in this section.

Stating the implementation of the Network Channel in words would merely result in a repe-
tition of the design section, and showing the actual implementation would result in a long
realization section due to all flow charts and pseudo code listings. Therefore it is chosen to
present the realization in Appendix A. This appendix contains a detailed implementation by
using pseudo code and flow charts to show the realization of the member functions and the
relation of DDSChannel, DDSManager and DDSReactor.

4.4.3 Tests

A summary of the performed tests is discussed in this section. A more extensive analysis of the
results from the tests is discussed in Appendix B.

Four tests are conducted to investigate the performance of this Network Channel implementa-
tion:

• Transport

• Bundled data validation

• Latency analysis

• Stress test

All tests use the setup that is shown in Figure 4.28, with exception of the load test in the Stress
test. The setup consists of a DCPS server that provides the endpoint discovery for the OpenDDS
instantiations and two RaMstixes of which one is the publisher and one is the subscriber.

The testing setup consists of 10 parallel writers for the publisher and 10 parallel readers for the
subscriber at TERRA level.

Figure 4.28: The setup used for all the tests. The "Master" hosts the DCPS server, which is used for
endpoint discovery. One of the RaMstixes executes the publisher code and the other the subscriber
code.

4.4.3.1 Transports

The first test contains of a transport test that investigates the differences between UDP and
TCP transport. UDP delivers no guarantees in terms of reliability, where TCP offers reliable
transport of data (Kurose and Ross, 2012).

For rendezvous communication it is observed that UDP indeed introduces some packet loss as
the unblocking of the readers takes sometimes more than one iteration, where the TCP trans-
port shows no such behavior. The subscriber for rendezvous communication with UDP versus
TCP transport is shown in Figure 4.29

Robotics and Mechatronics Robin Wijnholt

36 Design of a real-time network channel in LUNA

1000 1050 1100 1150 1200

Samples

6

7

8

9

10

11

12

13

T
im

e
 (

m
s
)

A rendezvous subscriber (waiting enabled)

UDP

TCP

Figure 4.29: The time between two timestamps for a rendezvous subscriber using different transports
(UDP and TCP).

4.4.3.2 Bundled data validation

This test validates the functionality of the bundling of data for a certain commonTopic. It is
observed that waiting for a full packet has less impact on the publishing side as less writes are
performed to OpenDDS. Also at the subscribing side is observed that the reader is unblocking
in one iteration instead of unblocking in one or more than one iteration without the waiting
functionality.

A test is executed with 100 000 samples at a sending rate of 100 Hz to validate the functioning
of data bundling. It is observed that in all cases that the data from all the writers were present
in a bundle, and therefore bundling works as expected at 100Hz.

4.4.3.3 Latency analysis

The latency analysis is performed to show the latencies in the Network Channel for the pub-
lisher and subscriber.

It is observed that writing to OpenDDS is an expensive operations, because a lot more jitter
on the publishing side is observed in comparison with a comparable implementation with
ZeroMQ by van de Ridder (2017).

A latency analysis is performed to investigate how long certain actions at a publisher or sub-
scriber take. Details of the investigated latencies are discussed in Appendix B.

It is observed that the differences in latencies between UDP and TCP are neglectable.

It is also observed that the time to write to OpenDDS takes indeed a significant amount of time,
namely 1.3413ms of the total latency of 2.5ms, from invoking a publish to actual publishing on
OpenDDS. To check if this is a OpenDDS limitation or an implementation issue, the same test
is repeated on the RaMstix with the default linux scheduler (OTHER) instead of the Xenomai
threads (FIFO). The latency test is also performed on a laptop running Ubuntu.

It is observed that the laptop (with more resources) is able to write faster to OpenDDS with a
lower standard deviation. But also by using the default linux scheduler (OTHER) on a RaMstix,

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 37

the average writing time has also dropped. The results of the three implementations is shown
in Figure 4.30.

Average and standard deviation of a writing to

OpenDDS for different configurations.

D
ef

au
lt

Thr
ea

ds
 O

TH
ER

La
pt

op

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e
 (

m
s
)

Avg

Std

Figure 4.30: Average time and standard deviation over 1600 samples for three different configurations
for writing to OpenDDS on a TCP transport. "Default" is the FIFO scheduler with priority 88. The left
bar presents the average value and the right bar the standard deviation. The writing times for UDP are
comparable.

The overall performance with the OTHER scheduler on the RaMstix is worse due to reschedul-
ing of the OTHER threads by higher priority threads, however it shows that by using the
Xenomai scheduler higher writing times and higher standard deviations are obtained. The
Xenomai scheduler encounters mode switches (Xenomai, 2014), which probably cause these
extra latencies with more jitter.

At the subscribing side is observed that the time between calling the callback function and
actual unblocking of the reader in the DDSChannel is rather high. This unblocking is shown in
Figure 4.31.

These bands are not clearly linked to an event and therefore hard to analyse. The RaMstix
is probably busy with other processes with higher priority threads such that the threads that
unblock the reader are getting rescheduled.

4.4.3.4 Stress test

The stress test consists of two tests. One with introducing extra load on the network and one
with increasing the sending frequency.

For the load test a Raspberry Pi (RPI) is added to the setup. The setup is shown in Figure 4.32.

The load test showed that by saturating the network with data more jitter was observed at the
writer and the reader side. The writer has a more busy network stack, resulting in more jitter at
the writing times and the reader receives the data less deterministic resulting in more jitter at
the receiving side. A more thorough analysis is performed in Appendix B.

The second test consists of several sending frequencies to find a maximum sending frequency.
The same test setup as the first three test is used again. It is observed that the maximum sending
speed for UDP is somewhat lower than the maximum for TCP, which is caused by lost packages
in the network, resulting in more iterations before all readers are unblocked.

Robotics and Mechatronics Robin Wijnholt

38 Design of a real-time network channel in LUNA

1200 1300 1400 1500 1600 1700 1800

Samles

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
 (

m
s
)

Time between calling the cbf and actual unblock

Figure 4.31: The difference between the timestamp just after calling the callback function and the actual
unblocking of the reader in the DDSChannel.

Figure 4.32: Test setup for introducing extra load to the network.

For publish-subscribe communication a maximum sending frequency of around 250Hz is ob-
tained and for rendezvous communication a maximum of 200Hz. However for rendezvous
communication and sending frequencies higher than 200Hz the waiting for complete packets
fails. It is recommended to explicitly check for the available topics instead of the amount of
data in the bundle. A more thorough analysis is performed in Appendix B.

4.5 Conclusion

An OpenDDS interface is provided that supports publish-subscribe and rendezvous commu-
nication. This interface is used by the LUNA implementation to add the functionality.

A DDS port is appended to the Mesa AnyIO hardware port in TERRA. TERRA is able to include
the Network Channel in the executable code, such that the user is able to use the Network Chan-
nel without adding the code manually. TERRA generates executable code, which contains also
the constructor and header file of the Network Channel.

The LUNA implementation integrates the OpenDDS interface to provide the functionality of
the Network Channel. Bundling of data is implemented as instantiating a separate DDS topic

Robin Wijnholt University of Twente

CHAPTER 4. NETWORK CHANNEL IN LUNA 39

for every writer and reader resulted in a bad performance on resource constraint platform as
the RaMstix.

From tests of the Network Channel is observed that TCP transport is indeed reliable. Also it
is observed that writing to OpenDDS takes a significant amount of time and is caused by the
Xenomai scheduler that causes mode switches. Also the RaMstix is a resource constraint plat-
form, resulting in slower writing times than a more resource rich platform.

A maximum writing and reading frequency of 250Hz is obtained for publish-subscribe com-
munication and 200Hz for rendezvous communication. Faster writing and reading frequencies
were obtained for the rendezvous communication, but resulted in failing of the waiting func-
tionality. It is therefore recommended to update the waiting functionality to check explicitly
for topic names, instead of counting the amount of messages in a bundle.

Also it is observed that with saturating the network with extra traffic the subscriber more often
unblocks in three iterations. Three iterations were sometimes also present with no traffic on the
network. However, due to the looping threads a clear difference between traffic and no traffic
on the network is not obtained as one loop iteration takes a certain amount of time that may be
more than the extra latency on the network. With more traffic on the network the writing side
introduces more jitter due to a more busy network stack.

It is recommended to get rid of the loop threads by presenting the callback functions to the
OpenDDS interface and by writing to OpenDDS once a complete packet is present. This will
result in a better performance as the latencies introduced by the looping threads are omitted.
It will also result in a better analysis of external influences on the Network Channel as external
influences will influence the writing and reading times directly. An extra thought should be
given in how to handle multiple instances of OpenDDS publisher and subscriber pairs when
the loops are omitted.

Robotics and Mechatronics Robin Wijnholt

40 Design of a real-time network channel in LUNA

5 EtherCAT interface

In this chapter the development of an interface is provided for communication with the youBot.
Also a controller is presented that is able to move the youBot base using the joystick values as
input.

5.1 Design

The youBot is used as demonstrator for the Network Channel and therefore an interface must
be provided that interfaces between LUNA and the EtherCAT master to control the youBot
joints. The relation between LUNA, the EtherCAT interface and the youBot is shown in Fig-
ure 5.1.

Figure 5.1: The relation between LUNA, the EtherCAT interface and the youBot.

For the design of the EtherCAT interface two approaches are considered: designing a compon-
ent in LUNA, or use a C++ code block provided by LUNA. The latter is chosen for the following
reasons:

1. The youBot provides no ESI file that describes how the motor drivers should be con-
trolled via EtherCAT (Chapter 2.4). Therefore the control of the joints is hard coded in the
youBot API and the implementation of an EtherCAT component in LUNA is therefore not
generic.

2. The focus of this project is on designing a Network Channel component in LUNA. A C++
code block implementation is implemented faster than writing a new component for
LUNA.

3. Using a code block the same interface as in Spil (2016) can be used, such that the differ-
ences between the interface in LUNA and 20-sim can be investigated.

Spil (2016) designed an EtherCAT interface specifically for the youBot and integrated this in 20-
sim 4C. Periodic peaks in the latency of the execution time were observed in this implementa-
tion. By using the same EtherCAT interface in LUNA instead of 20-sim 4C it can be investigated
whether or not this latency is caused by the execution engine or by the EtherCAT master on
RaMstix.

The youBot API is used to extract the commands that needs to be send to the EtherCAT master
for joint control. The Simple Open EtherCAT Master (SOEM) EtherCAT master is used as it is
also used by the youBot API. The same EtherCAT interface as Spil (2016) is used and therefore
only direct control of the youBot motors is provided in this interface such that a controller (for
example the inverse kinematic controller from Spil (2016)) is able to control the motors at joint
level.

5.2 Realization

The EtherCAT interface from Spil (2016) is used and provides the following functionalities:

• Set functions for setting: joint current, joint position and joint velocity.

Robin Wijnholt University of Twente

CHAPTER 5. ETHERCAT INTERFACE 41

• Get functions for getting: joint current, joint position and joint velocity.

• Function to send a mailbox message for selecting options in the youBot motor drivers.

• Functions to initialize base and manipulator.

• Function to stop the youBot.

Spil (2016) provides a youBot interface that uses SOEM as EtherCAT master and C functions to
provide the interface for joint control. The youBot API was used to study the correct commands
to interface with the youBot via EtherCAT. The provided C functions in the youBot interface and
the realization with the SOEM EtherCAT master is shown in Figure 5.2.

Figure 5.2: The software architecture for the EtherCAT interface. The member functions provide: PWM,
current, position and velocity control for the base and manipulator. Also the functions that initializes
the base and manipulator, and the functions that actual receives and sends the EtherCAT frames are
shown. "val" signifies the value and "ch" signifies the channel that indicates the motor driver.

A library is made from these C functions such that it can be integrated in every C++ application
(including LUNA).

The execution time for the EtherCAT interface with SOEM on a RaMstix and laptop are meas-
ured to investigate and compare these results to the execution time obtained by the EtherCAT
interface in 20-sim 4C from Spil (2016).

A discussion of the execution time of this EtherCAT interface in LUNA is provided in Chapter 6.

5.3 Test

5.3.1 Setup

A C++ application is written that utilizes the EtherCAT interface such that it can be executed on
a RaMstix and a laptop.

The constructed test setup with pseudo code of the C++ application is shown in Figure 5.3.
No LUNA is used such that only the behavior of the EtherCAT interface can be investigated.
The program is compiled for the non real time default linux scheduler (OTHER) such that no
Xenomai is used.

Robotics and Mechatronics Robin Wijnholt

42 Design of a real-time network channel in LUNA

Figure 5.3: The setup consists of a C++ application that is executed on the RaMstix and laptop. The C++
application reads and writes to the EtherCAT interface. A sine function is used to generate PWM values
for the wheels.

5.3.2 Results

The loop is timestamped such that the execution time of a loop can be calculated. The execu-
tion time of a loop on the laptop is shown in Figure 5.4a and for the RaMstix in Figure 5.4b.

900 910 920 930 940 950 960

Time (ms)

100

150

200

250

300

350

 t
 (

s
)

Execution time of reading and writing

to the EtherCAT interface on the laptop

(a) The execution time of the C++ application ex-
ecuted on a laptop.

900 920 940 960 980 1000

Time (ms)

100

200

300

400

500

600

700

800

 t
 (

s
)

Execution time of reading and writing

to the EtherCAT interface on the RaMstix

(b) The execution time of the C++ application ex-
ecuted on a RaMstix.

Figure 5.4: The execution times of the C++ application that communicates with the EtherCAT interface
to control the youBot joints. This application is executed on a laptop and on a RaMstix.

The test with the laptop resulted in no periodic behavior and faster execution times with re-
spect to the same application on the RaMstix. Periodicity is obtained on the RaMstix as every
15 cycles a peak is observed with an increase in latency of approximately 100µs.

The results of the measurements of the execution time of the EtherCAT interface in 20-sim 4C
executed by Spil (2016) is shown in Figure 5.5.

Robin Wijnholt University of Twente

CHAPTER 5. ETHERCAT INTERFACE 43

Figure 5.5: The execution time of the EtherCAT interface when executed with 20-sim 4C on a RaMstix
(Spil, 2016).

In the execution time of the EtherCAT interface in 20-sim 4C is observed that the latency peaks
are obtained every 30 cycles with an increase in latency of 50−100µs.

5.3.3 Discussion

No periodicity is obtained when the application that interfaces with the EtherCAT interface is
executed on a laptop. Therefore the periodicity of the EtherCAT SOEM master is caused by
the RaMstix, where peaks are obtained every 15 cycles with heights of 100µs. This application
is not compiled for Xenomai and therefore the EtherCAT SOEM master introduces the peri-
odic execution times even when no Xenomai kernel is used. The next chapter should conclude
whether the same periodic behavior is obtained when the EtherCAT interface is used in a LUNA
application, which uses Xenomai.

The 20-sim 4C implementation has latency peaks every 30 cycles which is interesting as this
test observed a periodicity every 15 cycles. The height of the peaks however are comparable.

20-sim 4C utilizes the XMLRPC daemon to send variables to the monitor. The latency peaks at
every 30 cycles imply that the XMLRPC daemon probably tries to update the variables every 30
cycles, resulting in periodic latency peaks every 30 cycles as the EtherCAT master and XMLRPC
daemon both try to access the network.

The EtherCAT interface is compiled to a library resulting in an EtherCAT interface that can be
used within LUNA to control the motors of the youBot. The interface provides real-time per-
formance as the execution time is bounded, however some periodicity is obtained. It is chosen
to not implement a component for EtherCAT as it is not generic enough and no EtherCAT in-
terface with IgH is designed.

The next chapter investigates the execution time of the EtherCAT interface in LUNA such that
a better comparison can be made between the EtherCAT interface executed in LUNA and in
20-sim 4C.

Robotics and Mechatronics Robin Wijnholt

44 Design of a real-time network channel in LUNA

6 EtherCAT interface and Network Channel combined

6.1 Introduction

An integration of the EtherCAT interface and the Network Channel is discussed in this chapter.
The EtherCAT interface is able to send PWM values to the motors of the youBot. To be able to
actually control the youBot a controller is realized that converts values from an input device to
PWM values for the motor joints on the youBot.

To show the functionality of the controller a setup is used consisting of a laptop connected via
USB to the joystick and via Ethernet to the youBot using EtherCAT as is shown in Figure 6.1.

Figure 6.1: A laptop executes a C++ application that reads the joystick values, calculates the wheel PWM
values using the controller and sends them to the EtherCAT interface to actual control the youBot.

After the joystick and controller are functioning a second setup is used to integrate the
EtherCAT interface, controller and the Network Channel in a LUNA application on one RaM-
stix and the joystick and Network Channel in a LUNA application on the laptop as is shown
in Figure 6.2. Measurements of the execution loop of the application on the RaMstix are per-
formed to compare the execution times with the work of Spil (2016). This setup is also used for
a demo as it demonstrates the Network Channel, controller and the EtherCAT interface in one
setup. How to obtain the demo is described in Appendix D, and if building from source code is
required, then Appendix E describes how to obtain the source code.

Figure 6.2: The laptop executes a LUNA application that reads the joystick values and sends them on the
Network Channel. The RaMstix receives the values from the Network Channel, calculates PWM wheel
velocities using the controller and sends them to the youBot using the EtherCAT interface.

6.2 Design

6.2.1 YouBot

A complete setup would consist of control for the complete youBot, but due to lack of time only
the youBot base is implemented. The youBot base consists of four omni-directional wheels of
which each wheel can be controlled separately by the EtherCAT interface provided in Chapter 5.

Robin Wijnholt University of Twente

CHAPTER 6. ETHERCAT INTERFACE AND NETWORK CHANNEL COMBINED 45

6.2.2 Input device

Several input devices can be used for the control of the youBot, for example:

• Geomagic Touch (Geomagic Touch, 2016): A 6 DOF haptic device.

• Omega 7 (Force Dimension, 2017): Also a 6 DOF haptic device.

• Xbox 360 controller: A controller used for playing games on the Xbox 360.

The Geomagic Touch and the Omega 7 are both haptic devices and deliver 6 DOF, which are
very suitable for controlling a manipulator as they can also provide force feedback. Only the
base of the youBot is controlled and therefore a Xbox controller suffices as input device.

The Xbox controller can be read out by using a library provided by Noakes (2017). The Xbox
controller together with the axes and button numbers as they show up with the joystick inter-
face is shown in Figure 6.3. Axis 0 and 1 are used to move the youBot in the x y plane and the
Left Trigger (LT) and Right Trigger (RT) are used to rotate the youBot around its z axis.

Figure 6.3: Xbox controller that is used for this setup with an overlay of axis and button numbers as they
are used by the joystick interface. Button 6 and 7 are used for turning the youBot, and axis 0 and 1 for
moving the youBot in the x y plane (Jishenaz, 2013).

6.2.3 Controller

The joystick interface delivers values from the axes and buttons that needs to be converted to
wheel PWM values in a meaningful way to control the youBot.

It is chosen to use the function cartesianVelocityToWheelVelocities provided by the youBot API
as a starting point. A new function called joystickToMotorSpeed is constructed in C++ that takes
longitudinal (long), transversal (trans) and angular (angle) inputs between -1 and 1 and delivers
wheel PWM values from -100 to 100.

The result is a controller that is able to move and rotate the youBot base using the values ori-
ginating from a joystick.

6.2.4 Test design

First the controller and joystick are tested without the Network Channel and LUNA. This way it
is ensured that the controller and joystick are functioning before they are implemented in the
integration test. The test setup consists of a laptop running a C++ application that is reading
joystick values, and places them onto the setPWMBase function of the EtherCAT interface. This
setup is shown in Figure 6.4.

After the testing the controller with a C++ application two LUNA applications are constructed
to show the integration of the Network Channel, EtherCAT interface and the controller. An over-
view of the setup is given in Figure 6.5. The joystick is connected to the laptop as the RaMstix
does not provide support for the Xbox controller.

Robotics and Mechatronics Robin Wijnholt

46 Design of a real-time network channel in LUNA

Figure 6.4: The C++ application executed on a laptop to check the functionality of the controller.

Figure 6.5: The setup that is used for the demo. The joystick is connected to the laptop and the youBot
to a RaMstix. The RaMstix is communicating over WiFi with the laptop as the Ethernet port is used by
the EtherCAT interface.

Note that the LUNA application at youBot side logs the time at t1 and t2. The difference
between those timestamps is the execution time and is used to compare this implementation
with the EtherCAT interface in 20-sim 4C from Spil (2016).

The LUNA application on the laptop is responsible for:

• Reading joystick axes and buttons.

• Sending these values to the Network Channel.

The LUNA application on the RaMstix has more tasks and is responsible for:

• Receiving joystick values from the Network Channel.

• Conditioning of joystick values.

• Check of the liveliness of the values and limit checking to add safety.

• Calculating the PWM values for the youBot base joints using the conditioned joystick
values.

• Placing PWM values on the EtherCAT interface to actuate the youBot base motors.

Robin Wijnholt University of Twente

CHAPTER 6. ETHERCAT INTERFACE AND NETWORK CHANNEL COMBINED 47

6.3 Realization

6.3.1 Controller

It is chosen to use the function cartesianVelocityToWheelVelocities as a starting point. This func-
tion provides the base kinematics of the youBot. The inputs for this function originates from
the joystick and consists of a longitudinal (long), transversal (trans) and angular (angle) value,
all mapped between -1 and 1. With these inputs the wheel PWM values are calculated with
a composition of these inputs as is shown in Equation 6.1. The omni-directional wheels with
corresponding wheel numbers and the direction of the longitudinal, transversal and angle ar-
guments is shown in Figure 6.6.

Figure 6.6: Top view of the youBot base with motor numbers and the direction of the longitudinal,
transversal, and angle.

w1 =−long + tr ans +ang l e (6.1a)

w2 = long + tr ans +ang l e (6.1b)

w3 =−long − tr ans +ang l e (6.1c)

w4 = long − tr ans +ang l e (6.1d)

The result of Equation 6.1 represent the wheel ratios and not the PWM values that should have
a value between -100 and 100. To obtain a PWM value in this range, first the wheel ratios are
normalized by using the greatest absolute wheel value and dividing all wheel velocities by this
factor. The normalization of the wheel velocities is shown in Equation 6.2.

wmax = max(abs(w1, w2, w3, w4)) (6.2a)

w1,nor m = w1

wmax
(6.2b)

w2,nor m = w2

wmax
(6.2c)

w3,nor m = w3

wmax
(6.2d)

w4,nor m = w4

wmax
(6.2e)

Robotics and Mechatronics Robin Wijnholt

48 Design of a real-time network channel in LUNA

From the input arguments the magnitude is calculated and is used to calculate the speed. The
normalized wheel velocities are multiplied with this magnitude times 100 to obtain PWM val-
ues between -100 and 100. The calculation of the magnitude and the calculation of the resulting
PWM values is shown in Equation 6.3.

speed =
√

l ong 2 + tr ans2 +ang l e2 ×100 (6.3a)

w1,pwm = w1,nor m ∗ speed (6.3b)

w2,pwm = w2,nor m ∗ speed (6.3c)

w3,pwm = w3,nor m ∗ speed (6.3d)

w4,pwm = w4,nor m ∗ speed (6.3e)

The resulting PWM values are given to the setPWMBase function from the EtherCAT interface
to actuate the joints of the youBot.

6.3.2 Controller and joystick test

To test the controller a C++ application is written that reads the joystick values using the joystick
interface from Noakes (2017). These joystick values are scaled to represent values between -
1 and 1 and is presented to the controller. The controller calculates the PWM values for the
wheels and is provided to the EtherCAT interface to control the youBot. This controller test is
shown using pseudo code and is shown in Figure 6.7.

Figure 6.7: The C++ application presented as pseudo code that reads the joystick values, presents them
to the controller and finally presents the resulting PWM values to the EtherCAT interface.

The objective of this test is to test if the joystick interface and controller work as expected.

6.3.3 Integration test

The setup presented in Figure 6.5 is realized.

The LUNA application running on the laptop is shown in Figure 6.8 as a TERRA model. The
laptop is responsible for reading the joystick values and sending them over the Network Chan-
nel to the RaMstix.

The LUNA application consists of a timer that starts the sequential construct every time the
timer expires. After the timer the cpp_generate_direction code block is entered and reads the
joystick values, places those on variables that are being read by the parallel writers. The parallel

Robin Wijnholt University of Twente

CHAPTER 6. ETHERCAT INTERFACE AND NETWORK CHANNEL COMBINED 49

writers are connected to the Network Channel for communication with the RaMstix host with
the youBot.

Figure 6.8: The LUNA application running on the laptop that reads the joystick values and sends the
values to the network channel

At initialization of the cpp_generate_direction code block a joystick object is instantiated us-
ing the joystick interface from Noakes (2017). The code that is executed every iteration of the
cpp_generate_direction code block is shown as pseudo code in Algorithm 3.

Algorithm 3 Pseudo code of the execute part of cpp_generate_direction C++ code block in
TERRA.

1: if there is no joystick found then
2: print error message and block

3: if There is a joystick event then
4: if Event is button then
5: if event button number is 7 AND button is pressed then
6: set angular to -1
7: else if event button number is 6 AND button is pressed then
8: set angular to 1
9: else if event button number is 7 OR event button number is 6 then

10: set angular to 0

11: if Event is axis then
12: if event axis number is 0 then
13: set x to event value
14: else if event axis number is 1 then
15: set y to event value

The values of the axes read from the joystick are signed 16 bit integers. The angle has a value
of 1 (RT is pressed), -1 (LT is pressed) or 0 (non pressed), which indicates which direction the
youBot should turn. The conditioning and safety check are performed by the controller on the
RaMstix.

The LUNA application running on the RaMstix is shown in Figure 6.9 as a TERRA model. The
RaMstix receives the joystick values from the Network Channel, provides a conversion and im-

Robotics and Mechatronics Robin Wijnholt

50 Design of a real-time network channel in LUNA

plements safety before the values are provided to the EtherCAT interface to control the youBot
base.

Figure 6.9: The LUNA application that receives the joystick values, converts them, adds safety and sends
it to EtherCAT. Timestamps are performed at entering the cpp_conversion code block and at exiting the
cpp_send_send_to_ethercat code block.

The LUNA application on the RaMstix has:

• Parallel readers: The parallel readers are responsible for receiving the values from the
Network Channel. The received values were send on the Network Channel by the LUNA
application on the laptop.

• cpp_conversion: The values are normalized to present a value between -1 and 1. Also a
deadzone is implemented as the joystick axes are not zero when untouched.

• cpp_safety: Safety is added that makes sure the values received by the parallel readers
are changing enough, such that the youBot stops whenever the values freeze for a certain
amount of time.

• cpp_send_to_ethercat: Lastly PWM values are calculated using the controller. The values
are written to the motor drivers of the youBot base by using the setPWMBase function in
the EtherCAT interface.

After receiving the values from the network channel the cpp_conversion code block handles
the conversion of raw joystick values to values between -1 and 1. The joystick sends values
other than zero if the joystick is not touched, and therefore a deadzone is implemented. The
deadzone implementation makes sure the youBot is not moving when values under a certain
threshold are received. The angle is scaled down by a factor of two as this gave a rotation speed
of the youBot base that is not too aggressive. The C++ code of the cpp_conversion code block is
shown in Listing C.1 in Appendix C.

After the execution of the cpp_conversion code block the angle_conv has a value between -0.5
and 0.5 and the x_conv and y_conv have a value between -1 and 1. After the conversion the
cpp_safety is entered and provides:

• Liveliness check: If the values x_conv and y_conv do not change for a certain amount of
time the youBot stops moving.

• Limit check: A limit is provided for angle_conv, x_conv and y_conv to make sure the values
do not exceed -1 and 1.

The code of the cpp_safety block is provided in Listing C.2 in Appendix C.

Robin Wijnholt University of Twente

CHAPTER 6. ETHERCAT INTERFACE AND NETWORK CHANNEL COMBINED 51

The code block after cpp_safety consists of the controller and uses the setPWMBase of the
EtherCAT interface of the youBot. This code block is called cpp_send_to_ethercat and its func-
tionality is shown in pseudo code in Algorithm 4. The PWM values of the motors are calculated
using the conditioned values from the joystick. The calculated PWM values are send to the
motor drivers of the youBot base with the EtherCAT interface.

Algorithm 4 Pseudo code of the execute part of cpp_send_to_ethercat C++ code block that
utilizes the controller to calculate the motor PWM values and sends these PWM values to
the EtherCAT interface to control the youBot base joints.

1: Initialize the joystick
2: Initialize EtherCAT
3: Initialize youBot Base
4: Call joystickToMotorSpeed with x, y and angular as arguments
5: Give resulting PWM values to setPWMBase of the EtherCAT interface

6.4 Tests

6.4.1 Controller and joystick test

The C++ application that combines the EtherCAT interface with the controller presented in
this chapter is executed. The response between a change in input of the joystick and the actual
moving of the base is fast. The youBot moves and turns as is commanded by the joystick. No
significant latencies are observed with the eye and therefore this C++ application successfully
showed the correct functioning of the EtherCAT interface with the controller.

6.4.2 Integration test

6.4.2.1 Results

The LUNA application that reads the joystick values and sends them on the Network Channel
is executed on the laptop and sends the values to the RaMstix with a rate of 100 Hz.

The LUNA application that reads values from the Network Channel, performs conversion, adds
safety, and sends it on the EtherCAT interface and is executed on the RaMstix.

Spil (2016) measured the execution time of his implementation, and to be able to compare
results the same kind of measurement is performed in this setup. The difference between t1

and t2 as shown Figure 6.5 is the execution time and is used to compare these results with the
measurements performed in Spil (2016).

The latency test of Spil (2016) is shown in Figure 6.10a and the latency test of this implementa-
tion is shown in Figure 6.10b.

The peaks observed by the measurements in Figure 6.10a are clearly periodical as peaks are
observed every 30 cycles. Peaks of equal height for 51 logged samples are observed with an
height of 50−100µs.

The execution times of this implementation as is shown in Figure 6.10b do not show such a
clear periodical behavior, but latency peaks are observed of 100−400µs. However some peri-
odicity can be observed between 2.5 and 4.5 seconds as the peaks are separated by 15 cycles.

6.4.2.2 Discussion

In Chapter 5 the EtherCAT interface on the RaMstix is executed in a C++ application without
LUNA. Latency peaks were observed every 15 cycles with peak heights of 100µs.

This chapter introduced the EtherCAT interface in LUNA on the RaMstix. Again periodic beha-
vior with latency peaks separated by 15 samples are observed, but with increased peak heights

Robotics and Mechatronics Robin Wijnholt

52 Design of a real-time network channel in LUNA

(a) Execution time of the 20-sim 4C applications with the EtherCAT interface (Spil, 2016).

0 1 2 3 4 5

Time (s)

250

300

350

400

450

500

550

600

650

700

750

E
x
e

c
u

ti
o

n
 t

im
e

 (
s
)

Execution time of one iteration @ 100Hz

(b) Execution time of the LUNA application with the EtherCAT interface.

Figure 6.10: Execution times for the EtherCAT interface in 20-sim 4C (Figure 6.10a) and in LUNA (Fig-
ure 6.10b).

of 100 − 400µs. The higher latencies in the peaks are probably caused by the switch from
Xenomai to the linux network stack, as the network stack is not managed by Xenomai. Also
the periodic behavior is not that clear anymore as the LUNA application itself also introduces
varying latencies.

The periodicity is not as clear as is observed in the implementation of Spil (2016). Latency
peaks separated by 15 cycles are observed in LUNA, where the peaks are separated by 30 cycles
for the EtherCAT interface in 20-sim 4C.

It can be concluded that the EtherCAT interface on the RaMstix introduces periodic latency
peaks every 15 samples. The EtherCAT interface in 20-sim 4C with the XMLRPC daemon that

Robin Wijnholt University of Twente

CHAPTER 6. ETHERCAT INTERFACE AND NETWORK CHANNEL COMBINED 53

sends variables to the 20-sim 4C monitor updates probably every 30 cycles resulting in latency
peaks at every 30 cycles as both the EtherCAT master and the XMLRPC daemon try to access
the network stack every 30 cycles.

The C++ application that uses the EtherCAT interface on the RaMstix without Xenomai still
obtains periodic latencies. The statement made by Spil (2016) that the periodicity is caused by
the network stack that is not managed by Xenomai is therefore not true. The height of these
latency peaks however can be caused by using the network stack from Xenomai as the test with
LUNA introduced higher latency peaks than the implementation without LUNA.

These tests show that the latency peaks are also visible when only the default linux scheduler
is used on the RaMstix, so therefore the latencies are caused by the EtherCAT interface, where
the height of the latencies can still be caused by the switch to the linux network stack from
Xenomai.

6.5 Conclusion

The functioning of the controller and the joystick interface is shown and executed using a C++
application on the laptop. No latencies observed with the eye are observed.

Also the test that integrates the Network Channel, controller and joystick is executed and the
result is a functioning demo showing the Network Channel that sends the joystick values from
the laptop to the RaMstix, such that the youBot base can be moved.

The measurements in the integration tests show that also a periodicity is obtained with the
EtherCAT interface in LUNA. However this periodicity is not the same as observed by Spil
(2016). The peaks of the latencies for the execution time with LUNA are separated by 15 cycles,
where the separation of the peaks in the work of Spil (2016) are separated by 30 cycles. There-
fore the latency peaks observed by Spil (2016) are observed by using the EtherCAT interface and
the XMLRPC daemon for communication variables to the 20-sim 4C monitor. The assumption
that the network stack introduced the periodic behavior is not completely true as the EtherCAT
interface on the RaMstix without Xenomai also shows periodic behavior.

Using the integration test it is shown that the Network Channel also functions over WiFi. Laten-
cies are increased as wireless communication introduces more latencies. The inverse kinemat-
ics of Spil (2016) or a IPC controller are not implemented as there was no time and a more
simpler controller only controlling the youBot base sufficed for this research.

Robotics and Mechatronics Robin Wijnholt

54 Design of a real-time network channel in LUNA

7 Conclusion & Recommendations

7.1 Conclusion

The goals stated in the introduction are met as a Network Channel for LUNA is designed, an
EtherCAT coupling in LUNA to control the youBot is implemented, and a demo is constructed
to show the functioning of the Network Channel, the controller, and the EtherCAT interface.

TERRA is extended to add the Network Channel to the GUI, such that the user is able to use the
Network Channel by placing a DDS port on the drawing pane of TERRA.

The Network Channel is realized by using OpenDDS as the communication protocol. An inter-
face to OpenDDS is realized and is used by the Network Channel component in LUNA to add
the functionality.

The Network Channel for LUNA is able to perform publish-subscribe and rendezvous commu-
nication. Bundling of multiple subtopics into one DDS topic is supported. To make sure a
packet contains all the data of the registered writers a waiting functionality is implemented for
rendezvous communication, which results in the unblocking of all readers in one iteration and
results in a bounded execution loops at the subscriber side.

A demo is designed that reads joystick values on an Ubuntu machine, and uses the Network
Channel to send these values to a RaMstix that moves the youBot base by using a controller
and an EtherCAT interface using the SOEM EtherCAT master.

7.2 Recommendations

A Network Channel is realized in this project, but no HRT guarantees can be given, because
OpenDDS and the network stack are not supported by Xenomai. Also Ethernet and WiFi have
no hard real-time capabilities.

The next step for the Network Channel could involve introducing IPC as a layer above this Net-
work Channel to make sure the total system is always stable, such that IPC together with this
Network Channel implementation is safe to use in robotic setups. Even though the Network
Channel has no hard real-time capabilities, the total system will always be stable due to the
energy based approach of IPC. The youBot has torque control and therefore the youBot can be
used as a demonstrator for the Network Channel together with IPC in a future project.

The functioning Network Channel is provided, but some recommendations can be made.

• Explicit checking for topic names in data packages: By explicitly checking the topics
present in a data bundle it can be guaranteed that all data is available such that the read-
ers at subscribing side unblock in one iteration, which effectively results in a higher com-
munication speed.

• Implement asynchronous writing and reading: By implementing the callback functions
to the OpenDDS interface and a write action to OpenDDS once all data is present there
is no loop dependency anymore, resulting in a better performance as the latencies due
to the loops are omitted.

• Add support for network stack and OpenDDS in Xenomai: Mode switches occur as
OpenDDS uses not Xenomai supported functions, and also the network stack is not sup-
ported. If OpenDDS and the network stack are redesigned for Xenomai, faster writes to
OpenDDS and less latency at the network stack can be obtained.

• Resolve RTPS issue: The RTPS endpoint discovery of OpenDDS fails on the RaMstix as
the RaMstix is not always able to connect to multicast addresses. RTPS delivers discovery

Robin Wijnholt University of Twente

CHAPTER 7. CONCLUSION & RECOMMENDATIONS 55

without central broker, and therefore resolving this issue will result in a easier to scale
Network Channel.

• Investigate different QoS settings for OpenDDS: right now only the best effort QoS setting
for writer, listener and topic is used. OpenDDS provides a lot more QoS setting which
may result in a better overall channel performance.

• Add waiting parameter to TERRA: As the waiting functionality for data was introduced
later in the project it is not yet available as a parameter of the DDS port at TERRA level.

• Add support for different data types: Only double data values are supported by the data
structure at this time and therefore every other type needs a cast to a double.

• Use another platform than the RaMstix: When multiple listeners are instantiated the CPU
load is increased significantly. Also a write action to OpenDDS takes a significant amount
of time. When using a more resource rich platform a better performance will be obtained.

Robotics and Mechatronics Robin Wijnholt

56 Design of a real-time network channel in LUNA

A LUNA implementation realization

A.1 Component integration in LUNA

Following the generic file structure of a component a new folder is added with the name dds-
channels to follow the naming convention of other components. Inside this folder a makefile is
present that specifies which files are needed for the dds-channel component. OpenDDS is used
and therefore LUNA needs the location of the OpenDDS binaries and headers. The location of
these files is provided by the setenv.sh that is provided by OpenDDS. By running this script,
environment variables are set that are used by the makefile files. In rules.mk (located in top
directory of LUNA), it is checked if the environment variables are set as is shown in Figure A.1.
The LUNA component shows up as an option to build with LUNA and is shown in Figure A.2.

Figure A.1: Rules.mk checks whether or not the OpenDDS environments variables are set if the dds-
channels is configured for building with LUNA.

Figure A.2: The option to build the dds-channels with LUNA.

A.2 LUNA implementation

As shown in Figure 4.23 the software architecture for the Network Channel consists of three
classes, and depending on the setup also a Publisher or Subscriber object is instantiated.

First the registering of a DDS port in the DDSReactor is treated and next the implementation of
the inboundLoop, outboundLoop and timeOutHandlerLoop is treated.

Suppose a TERRA model is constructed that is responsible for sending data, and therefore the
DDS ports at the sending side are configured to register publishers. Another TERRA model is
constructed that is responsible for receiving the data, and therefore the DDS ports at the re-
ceiving side are configured to register subscribers. TERRA generates executable code from the
models using the LUNA framework. When executing this code first the publishers and sub-
scribers are instantiated before the communication is started.

The following sections describe the realization of:

Robin Wijnholt University of Twente

APPENDIX A. LUNA IMPLEMENTATION REALIZATION 57

• Registering of a subscriber

• Registering of a publisher

• Publishing of data

• Subscribing for data

Registering a subscriber
Two communication types are available for a DDS port configured as a subscriber:

• Publish and subscribe communication: The function subInit is called and instantiates a
new OpenDDS subscriber with a datalistener if the commonTopic is not registered.

• Rendezvous communication: The function registerReader is called and instantiates a new
OpenDDS subscriber with a datalistener and statewriter if the commonTopic is not re-
gistered.

The subInit and the registerReader function needs a commonTopic, ownTopic, QoS and a call-
back function as arguments. Every time subInit or registerReader is called from the DDSChan-
nel it is checked if the commonTopic is already registered. If that is not the case than a new
OpenDDS subscriber is instantiated and appended to a vector with the other OpenDDS sub-
scribers. The provided callback function together with ownTopic is placed onto a callback vec-
tor. When data is available for a certain ownTopic the callback function can be extracted from
the vector and can unblock the corresponding reader. The subInit or registerReader functions
also start the inbound and time-out loop if they weren’t started yet. The flow chart of how a
subscriber is registered is shown in Figure A.3.

Figure A.3: A flowchart that shows how a DDS port configured for subscribing is registered in the Net-
work Channel for rendezvous, and publish-subscribe communication.

Registering a publisher
Also two communication types for a DDS port configured as a publisher are available:

• Publish and subscribe communication: The function pubInit is called and instantiates a
new OpenDDS publisher with datawriter if the commonTopic is not registered.

Robotics and Mechatronics Robin Wijnholt

58 Design of a real-time network channel in LUNA

• Rendezvous communication: The function registerWriter is called and and instantiates
a new OpenDDS publisher with datawriter and statelistener if the commonTopic is not
registered.

The pubInit and registerWriter function both need a commonTopic, ownTopic and QoS as argu-
ments. A new OpenDDS publisher is instantiated and added to the subscriber vector with other
instances if that commonTopic was not registered. The pubInit needs no callback as the writer
at DDSChannel has no blocking functionality, but the registerWriter function however needs a
callback function as it blocks until the data is actually written to the OpenDDS publisher. The
flow chart of how a publisher is registered is shown in Figure A.4.

Figure A.4: A flowchart that shows how a DDS port configured for publishing is registered in the Network
Channel for rendezvous, and publish-subscribe communication.

Publishing data
The publish of data to the Network Channel starts when the write function in DDSChannel
provided by the IChannelIn interface is called by the rest of the LUNA application. In this
write functions the publish function is called for publish-subscribe communication and the
writeRendez function for rendezvous communication. Both writing functions need a common-
Topic, ownTopic and a value as arguments. A flowchart of the implementation of the writer at
DDSChannel is shown in Figure A.5. It is clear that the rendezvous write function writeRendez
blocks after the call to write where the publish-subscribe write function continues after the call
to write.

The DDSReactor receives all calls to enqueue a message from all the instantiated DDSChannels.
To be able to handle all these calls and keep it thread safe the FIFO queues from Moodyca-
mel (2014) are implemented. It is fast and easy to use as only one header file needs to be in-
cluded. The arguments from the write functions at DDSChannel are placed in this queue and
is dequeued by the outboundLoop.

Robin Wijnholt University of Twente

APPENDIX A. LUNA IMPLEMENTATION REALIZATION 59

Figure A.5: A flowchart of publishing data in the DDSChannel for rendezvous and publish-subscribe
communication.

The queue is emptied every iteration such that all the data in the queue is written to a DDS
topic. The function in the outbound loop that handles the publish-subscribe publishers is
called handlePublishers and the function for handling the rendezvous publishers is called han-
dleWriters.

The difference between rendezvous and publish-subscribe is that for rendezvous communica-
tion an extra check is necessary to check if the corresponding reader is actually ready to receive.

Pseudo code for the handlePublishers function for publish-subscribe communication is shown
in Algorithm 5 and the pseudo code for the handleWriters for the rendezvous communication
is shown in Algorithm 6.

Algorithm 5 Pseudo code of the dequeueing of messages for publish-subscribe in the func-
tion handlePublishers.

1: for every intance of publisher in publisherVector do
2: while queue with messages is not empty do
3: Dequeue a message
4: if message commonTopic is equal to the publisher topic then
5: add ownTopic to topicVector
6: add value to dataVector
7: else
8: add message to reenqueueVector

9: if there is data in dataVector then
10: write data to write function of publisher

11: if reenqueueVector is not empty then
12: re-enqueue this vector in the message queue

Robotics and Mechatronics Robin Wijnholt

60 Design of a real-time network channel in LUNA

Algorithm 6 Pseudo code of the function handleWriters. Dequeueing of messages for ren-
dezvous communication without waiting.

1: for every entry of publisher in publisherVector do
2: if accompanying subscriber is ready then
3: while queue with messages is not empty do
4: Dequeue a message
5: if message commonTopic is equal to the publisher topic then
6: add ownTopic to topicVector
7: add value to dataVector
8: for every entry in the callbackVector do
9: if callback topic is equal to the ownTopic of the message then

10: Add callback to callbackVector.
11: else
12: add message to reenqueueVector.

13: if there is data in dataVector then
14: write data to write function of publisher
15: Handle all callback functions in callbackVector.
16: if size of dataVector is smaller than number of registered writers then
17: Manually set the reader is reader to receive data.

18: if re-enqueue vector is not empty then
19: re-enqueue this vector in the message queue.

Note for the rendezvous communication that the readiness of the reader is manually set to
ready (line 16 in Algorithm 6) if the dataVector was smaller than the amount of registered
writers. This is necessary as not all the readers will unblock if no data is present for all the
readers., and the writer will not write again because the reader is ready boolean is set to false
after a write to OpenDDS.

The reset of a reader is ready boolean is not the most elegant way to solve this, and therefore
a wait function is introduced. The wait function waits until all registered writers have presen-
ted their data. The handleWriters function with the wait function implemented is shown in
Algorithm 7.

Note that with waiting the data is written to the OpenDDS publisher as soon as the vector with
the data has the same length of the registered writers. The assumption is made that the data
comes in bundles of all registered writers. This is an assumption that is validated in the test
section of this chapter, Section 4.4.3. This waiting approach only works for one rendezvous
topic, because the amount of ownTopics are counted and not explicitly checked for presence.
By using multiple rendezvous topics the queue is certainly not ordered per commonTopic which
will result in unwanted behavior.

Subscribing for data
The read function at DDSChannel provided by the IChannelOut interface receives the data via
a callback function that places the data on a buffer. If data is already available on the buffer it
is extracted and presented to the rest of the LUNA application, if no data is available than it will
behave differently depending on the chosen communication method.

For rendezvous communication the read function calls the notifyReaderReady function to no-
tify the corresponding subscriber it is ready to receive data before blocking. This call places
a reader is ready message on a FIFO queue. Dequeueing of the reader is ready messages is
performed by the handleReaderReadyNotification function in the inbound loop. Algorithm 8
shows how the messages are dequeued and written to the correct topic.

Robin Wijnholt University of Twente

APPENDIX A. LUNA IMPLEMENTATION REALIZATION 61

Algorithm 7 Pseudo code of the function handleWriters that dequeues the messages on the
queue with waiting enabled. The writer is written to OpenDDS if the dataVector size is equal
to the amount of registered writers.

1: for every entry of publisher in publisherVector do
2: if accompanying subscriber is ready then
3: while queue with messages is not empty do
4: Dequeue a message
5: if message commonTopic is equal to the publisher topic then
6: append ownTopic to topicVector
7: append value to dataVector
8: for every entry in the callbackVector do
9: if callback topic is equal to the ownTopic of the message then

10: Add callback to callback vector.
11: else
12: add message to reenqueueVector.

13: if dataVector size is equal to number of registered writers then
14: write data to write function of publisher
15: Handle all callback functions in callbackVector.
16: clear topicVector, dataVector and callbackVector.

17: if re-enqueue vector is not empty then
18: re-enqueue this vector in the message queue.

Algorithm 8 Pseudo code of dequeueing the messages in the handleReaderReadyNotifica-
tion function for sending the reader ready notifications.

1: for every entry of subscriber in the subscriberVector do
2: while queue with notifyreaderready messages is not empty do
3: Dequeue a message
4: if message commonTopic is equal to the publisher topic then
5: Increment the counter.
6: if counter is equal to registered readers then
7: Call readerIsReadyToReceive on the subscriber.

8: else
9: add message to reenqueueVector.

10: if reenqueueVector is not empty then
11: re-enqueue this vector in the message queue.

The reader is unblocked as soon as data is received and the callback function is called at the
DDSReactor.

For publish-subscribe communication the reader just blocks at entering the read function and
unblocks whenever the callback function with data is called by the DDSReactor. The flow dia-
gram of the read function in the DDSChannel is provided in Figure A.6.

The buffersize is a configurable unit that is set by the user at TERRA level. The buffersize states
how many samples of data the buffer can hold before data is overwritten. The default size of
the buffer is one. With a buffer size of one there is only place for one data value. If the callback
function is called twice before the read action is entered one sample is lost as the second sample
overwrites the first sample. Buffers can be used when two systems are connected that run on
different frequencies, such that all the data is still available even when the receiving application
is slower than the sending application.

Robotics and Mechatronics Robin Wijnholt

62 Design of a real-time network channel in LUNA

Figure A.6: A flowchart of the read function in DDSChannel for rendezvous and publish-subscribe com-
munication.

The functions that receive the data are handleSubscribers and handleReaders for publish-
subscribe and rendezvous communication respectively. The approach of both functions is the
same and is shown in Algorithm 9. The functions dequeue a different subscriberVector.

Algorithm 9 Pseudo code of receiving data from OpenDDS to the Network Channel for the
handleSubscribers() and handleReader() function.

1: for every entry of subscriber in subscriberVector do
2: if the subscriber has received data then
3: Read the data from the subscriber
4: for every entry in the data do
5: for every entry in the callbackVector do
6: if topic of data is equal to the topic of the callback entry then
7: Place the data entry in the correct callback

Robin Wijnholt University of Twente

63

B LUNA implementation tests

B.1 Introduction

To validate the functionality of the Network Channel some tests are performed. The tests that
are performed are:

• Transport: As DCPS is used for matching endpoints, TCP and UDP transports are sup-
ported. This test shows the differences between the transports using the setup described
earlier.

• Bundled data validation: Waiting for complete packets must be validated, and therefore
a test is performed that shows if waiting for messages results in complete packets with
the data from all the registered writers.

• Latency analysis: It has been found that the implementation of van de Ridder (2017) is
able to perform writes with less deviation. An analysis on the latency is performed to
have a better insight in the latencies of the Network Channel using OpenDDS.

• Stress test: By introducing higher sending rates and extra traffic onto the network the
Network Channel implementation is stress tested.

With these tests the performance can be evaluated, but also the limitations of this implement-
ation of the Network Channel.

B.2 Test setup

The basic setup for most of the tests consists of two RaMstixes. One RaMstix is the publisher
and the other one is the subscriber. A laptop is used to run the DCPS server to match endpoints.
An overview of the test setup is given in Figure B.1.

Figure B.1: The setup used for all the tests. The "Master" hosts the DCPS server, which is used for
endpoint discovery. One of the RaMstixes executes the publisher code and the other the subscriber
code.

To test the performance of the Network Channel an application with TERRA is drawn that con-
sists of 10 DDS ports on each side. 10 channels were chosen as this gives clear differences
between the communication types.

The readers and writers of these 10 channels are in a parallel construct to be able to test the
waiting functionality as well. The IO-SEQ pattern is used, because it is probably also used in
other LUNA applications as it reduces the risk of a deadlock. IO-SEQ means that first all the
readers or writers are executed in parallel, before calculations are performed.

Figure B.2a shows the publishing side of the test application and Figure B.2b shows the sub-
scribing side.

Robotics and Mechatronics Robin Wijnholt

64 Design of a real-time network channel in LUNA

(a) The publisher side in TERRA. The ports on the right
side connect to DDS ports at architecture level. The
single port on the left is the timer port that enables the
publisher to run at a given frequency. The genData code
block generates sequential data for the writers and per-
forms the timestamp after each data generation.

(b) The subscriber side in TERRA. The
ports on the left side connect to the DDS
ports at architecture level. the recData
code block collects the received data from
the reader and performs the timestamp.

Figure B.2: The TERRA test application that is used for publishing and subscribing to 10 channels for
publish-subscribe and rendezvous communication.

The recData and genData code blocks perform timestamps. The genData codeblock generates
sequential data and logs the current time directly after generating the data. The recData codeb-
lock performs a timestamp as soon as it enters the codeblock (directly after the unblocking of
all readers). It is chosen to measure the time between two write and two read iterations as a
measure of performance as it does not need a synchronized clock between the two systems.

The inbound and outbound loop are configured to run at 400Hz as empirical testing shows that
a loop with this frequency does not introduces a too high load on the CPU whilst still able to
dequeue the queues often enough. The sending rate of the publisher is chosen to be 100Hz as
it is multiple of the loop frequency and shows distinct differences between publish-subscribe
and rendezvous communication. These parameters hold for all tests in the next section unless
mentioned otherwise.

DCPS and RTPS are the two implementations for endpoint detection in OpenDDS. RTPS re-
quires no central broker and DCPS hosts a service that DDS clients connect to. RTPS uses
multicast and for some reason it fails to connect to multicast addresses from time to time and
therefore DCPS is used for these tests. DCPS supports TCP and UDP as transport mechanisms.

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 65

B.3 Tests

B.3.1 Transport

DCPS supports TCP and UDP as transport mechanisms. UDP delivers no guarantees in terms
of reliability, where TCP offers reliability with: flow control, re-transmission of lost packets by
negative acknowledgements and has duplicate free transmission due to a point to point con-
nection (Kurose and Ross, 2012). UDP is used when losing packets is not disastrous for the
application (video, telephone). UDP is usually faster as it does not have to provide reliable
transport. TCP is mostly used in applications where all the data must be available after transfer
(file exchange).

The test setup proposed at the beginning of this chapter with ten channels is used and executed
for rendezvous, and publish-subscribe communication.

For the publish-subscribe communication no differences where obtained and therefore only
the results of the rendezvous communication with waiting enabled is shown in Figure B.3.

1000 1050 1100 1150 1200

Samples

9.4

9.6

9.8

10

10.2

10.4

10.6

T
im

e
 (

m
s
)

A rendezvous publisher (waiting enabled)

UDP

TCP

(a) The time between two timestamps for a
rendezvous publisher sending with different
transports (UDP and TCP).

1000 1050 1100 1150 1200

Samples

6

7

8

9

10

11

12

13

T
im

e
 (

m
s
)

A rendezvous subscriber (waiting enabled)

UDP

TCP

(b) The time between two timestamps for a
rendezvous subscriber using different trans-
ports (UDP and TCP).

Figure B.3: The test that shows the performance of waiting versus no waiting for sending data at 100Hz.

With UDP transport it is observed that the readers do not always unblock in one iteration,
which is indicated by a execution time greater than 10ms (≈ 12ms and at ≈ 13ms), which must
have been caused by losing a packet as no such outliers are observed for TCP transport.

Bounded execution times at the subscriber are observed when using TCP transport. UDP trans-
port introduces packet loss and therefore the execution times vary as not all readers are un-
blocked in one iteration. In Section B.3.3, it is shown that there is almost no difference in writ-
ing time with TCP versus UDP transport. Therefore it is recommended to use TCP over UDP.

B.3.2 Bundled data validation

In Section 4.2, it is shown that bundling of data is probably more efficient as only one listener
has to be asked if data is available for a commonTopic. Also preliminary tests of OpenDDS
on the RaMstix showed that multiple listeners resulted in a fairly high CPU load and also bad
performance.

When publish-subscribe communication is used the publisher will publish whatever is on the
queue at the moment of dequeueing, but for rendezvous communication two implementations
are available:

• Publish whatever is on the queue. This follows the same method as publish-subscribe
communication.

Robotics and Mechatronics Robin Wijnholt

66 Design of a real-time network channel in LUNA

• Wait for all registered writers to have presented their data. When waiting for the availab-
ility of all data the writers and readers can be unblocked at once.

The result of waiting versus not waiting is shown in Figure B.4.

1000 1050 1100 1150 1200

Samples

8

8.5

9

9.5

10

10.5

11

11.5

T
im

e
 (

m
s
)

A TCP rendezvous publisher

wait

no wait

(a) The rendezvous publisher that publishes
the messages with and without waiting for all
the writers to have presented their data.

1000 1050 1100 1150 1200

Samples

6

7

8

9

10

11

12

13

14

15

T
im

e
 (

m
s
)

A TCP rendezvous subscriber

wait

no wait

(b) The rendezvous subscriber receives the
data. The difference of waiting versus no wait-
ing at the writing side is shown.

Figure B.4: The test that shows the performance of waiting versus no waiting for sending data at 100Hz
with rendezvous communication.

At the publisher side (Figure B.4a), it is observed that waiting for a full packet results unblocking
of the writers constantly around 10ms, without unblocking in an extra iteration. When wait-
ing is not enabled, the data sequences may not contain all the data. Resulting in a mismatch
between sending reader is ready messages and unblocking of the readers and writers resulting
in unwanted behavior.

From the measurements at the subscriber side in Figure B.4b, it is observed that all readers
are unblocked within 10ms for the waiting functionality as no data points are present above
this line. The small offset from 10ms is caused by the inboundLoop and outboundLoop on the
different systems being not in sync.

Also some samples 2.5ms below the 10ms line are observed and are caused by the unblocking
of the readers one iteration earlier than normal. It may happen that the values are published
one iteration earlier to OpenDDS if the readerIsReady message was already received, and the
messages were already on the queue. The result is the unblocking of the readers one iteration
earlier.

When the waiting functionality is not enabled the bundle does not necessarily contains the
data for all the readers and therefore it may take up to three iterations before the readers are
unblocked (data points at 14ms).

Rendezvous communication with waiting functionality seems to work correctly, but needs a
validation. The validation consists of sending 100 000 data bundles to the subscriber at a 100Hz
sending rate. The publisher saves the ownTopics that were present in a packet. A snapshot of
this file is shown in Figure B.5, every line represents a packet that is written to OpenDDS.

The complete file is analysed with MATLAB to check if all the ownTopics are available for every
package. The analysis shows that all the packages contain all the data of the registered writers,
which means that the waiting functionality performs without problems.

However, the limitation of this implementation is that only one rendezvous wait publisher is
supported on one host. With more rendezvous wait publishers the queue will not be ordered
anymore and this will lead to unwanted behavior. Actively comparing ownTopic for every com-

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 67

Figure B.5: A snapshot of the file that is produced at the publisher. Every line is a bundle containing the
subtopics that has been written to an OpenDDS publisher. Note that the bundles are not ordered as the
writers are in a parallel construct.

monTopic with what is registered solves this problem, but is not implemented. Also the as-
sumption is made that the the messages for one commonTopic is ordered in the queue.

The wait function is also implemented for the publish-subscribe communication, but is less
crucial as it needs no synchrony between writer and reader. A slightly different approach was
taken resulting in probably an off-by-one error, but is nevertheless shown in Appendix I.

So when using rendezvous communication between two hosts for one commonTopic the best
practice is to use the wait function as it results in:

• Less deviation at writing side due to less writes to the OpenDDS publisher, which also
results in the unblock of all writers in one iteration.

• Better performance at the subscriber side due to the unblocking of all readers in one
iteration. Also one listener needs to be instantiated, resulting in a lower CPU load.

B.3.3 Latency analysis

When comparing the Network Channel with a basic implementation of ZeroMQ from van de
Ridder (2017), it is obtained that the OpenDDS publisher has a lot more deviation for writing at
100Hz. The differences are clearly visible as is shown in Figure B.6.

400 420 440 460 480 500

Samples

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

T
im

e
 (

m
s
)

DDS vs ZMQ for publish and subscribe at publisher

DDS

ZMQ

Figure B.6: A comparison between of the ZeroMQ implementation by van de Ridder (2017) and the
OpenDDS implementation of this project for publish-subscribe communication with 5 channels.

Robotics and Mechatronics Robin Wijnholt

68 Design of a real-time network channel in LUNA

However the accumulated latencies at the writer do not exceed 10ms as can be seen from the
write at every 10ms a fairly big standard deviation is obtained around this 10ms line.

The only difference is the protocol that is used, and therefore a write action to OpenDDS adds
a lot more overhead than a write to ZeroMQ. ZeroMQ wraps only the sockets, where OpenDDS
provides a lot of QoS settings, which support this statement.

From Figure B.6 is concluded that writing to OpenDDS probably is an expensive opera-
tion and therefore a latency analysis on the Network Channel implementation is performed.
Timestamps log the time at important places of the Network Channel to measure the time of
a certain action. The place of the timestamps for publish-subscribe communication is shown
in Figure B.7. This analysis is also performed for rendezvous communication and is shown in
Appendix J as the average latencies are in the same order of magnitude.

(a) The location of the timestamps for the publisher.

(b) The location of the timestamps for the subscriber.

Figure B.7: The place of the timestamps for analysing the latencies for the publish and subscribe com-
munication. The stopwatches indicate a timestamp and the arrows between timestamps indicate the
difference between timestamps.

The test with 10 channels is used and executed with TCP and UDP transport to also investigate
the differences between the transports. Ten channels are used for the test, but only the laten-
cies experienced by one ownTopic is investigated. This way the latencies experienced by one
ownTopic can be investigated for a 10 channel setup.

The average latencies and the standard deviations of these latencies for UDP and TCP transport
is shown in Table B.1.

From Table B.1, it is clear that writing to OpenDDS (twr i te) is indeed an expensive operation on
the RaMstix. To investigate if this latency is introduced by the chosen thread implementation

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 69

Table B.1: Latencies calculated over 2000 samples with a sending rate of 100Hz for the publisher with
publish-subscribe communication. The labels correspond to the difference in timestamps as shown in
Figure B.7a.

Latencies at the publisher (ms)
∆t TCP UDP

Avg Std Avg Std
twr i te,enqueue 0.0307 0.0025 0.0322 0.0026
tenqueue 0.0084 0.0011 0.0087 0.0013
tenqueue,dequeue 1.1051 0.5838 1.0366 0.5226
tdequeue,pub 0.093 0.0205 0.1114 0.0198
twr i te 1.3413 0.2260 1.2876 0.2098

this test is repeated for different thread configurations for the outboundLoop and inboundLoop.
The configurations that are tested, including the default, are:

• Default: The publisher is executed on the RaMstix with the threads scheduled by the
FIFO scheduler at priority 88.

• Threads OTHER: The publisher is executed on the RaMstix with the threads scheduled
with the default Linux scheduler (OTHER).

• Laptop: The publisher is executed on the laptop and uses therefore the default Linux
scheduler (OTHER).

The average time and standard deviation of the write action to OpenDDS for all five configura-
tion is shown in Figure B.8.

Average and standard deviation of a writing to

OpenDDS for different configurations.

D
ef

au
lt

Thr
ea

ds
 O

TH
ER

La
pt

op

0

0.2

0.4

0.6

0.8

1

1.2

1.4

T
im

e
 (

m
s
)

Avg

Std

Figure B.8: Average time and standard deviation over 1600 samples for three different configurations for
writing to OpenDDS on a TCP transport. The left bar presents the average value and the right bar the
standard deviation. The writing times for UDP are comparable.

The configuration with the laptop has the lowest writing latency as it has the most resources.
For the RaMstix implementations the threads running with the OTHER scheduler have lower

Robotics and Mechatronics Robin Wijnholt

70 Design of a real-time network channel in LUNA

average writing times and a lower standard deviation with respect to the RaMstix implementa-
tion running with real-time threads.

By investigating the Network Channel with spurious relaxes (Xenomai, 2014), it is obtained that
the write to OpenDDS contains a gettimeofday() function that causes a system call which is not
handled by the Xenomai kernel, and therefore a mode switch occurs (Xenomai, 2014). Mode
switches are unwanted when short and bounded response times are required. Also the net-
work stack is not handled by Xenomai and results in mode switches as well. By scheduling the
threads by the OTHER scheduler no mode switches occur as the call originates from a non real-
time thread, such that a somewhat lower average writing time and a lower standard deviation
is obtained.

Although the average latency and standard deviation are lower for OTHER threads, the overall
performance drops drastically as it is not possible anymore to perform rendezvous communic-
ation at 100Hz. Probably the OTHER thread gets rescheduled by the higher priority threads,
which causes slower loop times as is shown in Figure B.9 that shows a rendezvous writer.

800 1000 1200 1400 1600 1800 2000

Samples

6

8

10

12

14

16

18

T
im

e
 (

m
s
)

Thread comparison of 10 ch waiting rendezvous writer at 100Hz

SCHED_OTHER

RT 88 (default)

Figure B.9: A rendezvous writer with two different thread implementations, both trying to write at
100Hz.

The default scheduling policy results in the best performance although the writing time to
OpenDDS is somewhat slower than with the OTHER scheduler. The OTHER scheduler intro-
duces a bad overall performance as the OTHER scheduled threads are getting rescheduled by
higher priority threads.

Therefore the default scheduling policy is used for the Network Channel.

This latency for writing to OpenDDS is a limiting factor for the maximum reachable sending
speed. The other significant latency at the writer side is caused by dequeueing the message
(tenqueue,dequeue) and is caused by the following:

1. A message is added asynchronously to the queue and is dequeued by a loop that runs at
400Hz. Therefore a variable delay is obtained between 0 and 2.5ms.

2. The function that dequeues the message groups all the messages with the same common-
Topic. And depending on how much messages of the same commonTopic are available
this may take several dequeue operations.

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 71

The result is an average dequeue time that lies around 1ms. There is no significant difference
between UDP and TCP in terms of average latencies. there is also no significant difference in
the standard deviation as well: 0.2098ms for UDP and 0.2260ms for TCP transport.

The latencies for the subscriber are shown in Table B.2. The reader blocks whenever the LUNA
application is ready to read the data. Unblocking is performed when data is received and the
callback function is called. The time between being blocked and calling the callback function
(tblocked ,cb f) takes the longest as the readers block after receiving data and get unblocked after
receiving data again. If data was send with 10ms separation by the publisher a 10ms blocking
time is expected. However, the actual latency is somewhat shorter, because with 10 readers in a
parallel construct the reader with the analysed ownTopic could have been the last to block and
the first to unblock.

Table B.2: Average latencies over 2000 samples at the subscriber for publish-subscribe communication.
The labels correspond to the difference in timestamps shown in Figure B.7b.

Latencies at the subscriber (ms)
∆t TCP UDP

Avg Std Avg Std
tblocked ,cb f 8.2921 1.3780 8.4870 1.2314
tcb f ,unblocked 0.9214 1.0893 0.8144 1.0333

The time from the callback function to the actual unblocking (tcb f ,unblocked) is higher then
expected. The only thing between those two timestamps is placing the value in a buffer and
unblocking the reader. The time it takes to unblock the reader after calling a callback func-
tion tcb f ,unblocked is shown in Figure B.10. From this figure can be seen that several bands are
present separated by 2ms from each other. Most of the samples are located around 0.40ms,
which is the minimum time between the callback function and unblocking.

1200 1300 1400 1500 1600 1700 1800

Samles

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

T
im

e
 (

m
s
)

Time between calling the cbf and actual unblock

Figure B.10: The difference between the timestamp just after calling the callbackfunction and the actual
unblocking of the reader in the DDSChannel.

These bands are not clearly linked to an event and therefore hard to analyse. The RaMstix
is probably busy with other processes with higher priority threads such that the threads that
unblock the reader are rescheduled. The same behavior is also obtained in the handleWriter

Robotics and Mechatronics Robin Wijnholt

72 Design of a real-time network channel in LUNA

function for rendezvous communication. These applications are running on a RaMstix and
therefore not a lot of resources are available, which makes it plausible that this behavior is
caused by a lack of resources.

This latency analysis shows that it indeed takes a significant amount of time to write to
OpenDDS. This latency is not solvable as it is an OpenDDS implementation, but a queue at
the OpenDDS interface can be implemented that places the messages in another queue. The
disadvantage of this approach is that yet another loop is implemented that introduces another
delay. The actual writing time to OpenDDS is not increased and an extra latency is introduced,
so therefore this is not implemented.

The Network Channel using OpenDDS is functioning on the RaMstix, but better performance
will be obtained when a more resource rich system is used as is indicated with the laptop test.
Most SBCs nowadays have a multi-core processor running on a higher clock frequency than
the RaMstix, which will probably result in better performance. Also porting OpenDDS and
the network stack to Xenomai will result in a better performance as it will result in no mode
switches.

B.3.4 Stress tests

The first test adds extra traffic to the network while keeping the sending rate at 100Hz. The
second test increases the sending frequency to check what the behavior of the Network Channel
is at higher sending rates.

Test 1: Load test
The load test introduces extra traffic on the network by using Iperf (Iperf, 2017) to show the
influence of extra traffic on the network for the performance of the Network Channel. 10 chan-
nels are used with a sending rate of 100Hz. The influence of extra traffic on the network is
investigated and therefore the sending rate is kept constant.

One device hosts a Iperf server and another device the Iperf client. The client is sending data
to the server using UDP at a rate that is configurable by the user.

Preliminary runs of Iperf indicated that the maximum amount that can be add to the network
is around 67Mbps. Therefore for this test loads of 25Mbps and 50Mbps are introduced. A
Raspberry Pi 3 (RPI) is used for this test as it has a 100Mbps Ethernet connection. The laptop is
only used for the DCPS server and not for Iperf as the gigabit Ethernet introduced extra packet
loss with Iperf. The setup of this test is shown in Figure B.11.

Figure B.11: Test setup for introducing extra load to the network.

The Iperf command used for starting a server is shown in Listing B.1 and the command used
for starting a client for UDP traffic is shown in Listing B.2.

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 73

� �
. / i pe r f 3 −s − i 1� �

Listing B.1: The command that starts an Iperf server� �
. / i pe r f 3 −c [serverIP] −u −t 1200 −b [load]M − i 1 −w 128k� �

Listing B.2: The command that starts an Iperf client for creating UDP traffic. The serverIP and
load is depending on the location of the server and the load the user wants to induce on the
network. Note that the socket buffer size is increased to 128k as it introduced less package loss.

Four different configurations are tested for the load test to show the influence of each test for
the publisher and subscriber:

• Client on RPI, server on Publisher

• Client on Publisher, server on RPI

• Client on Subscriber, server on RPI

• Client on RPI, server on Subscriber

LUNA devices using the Network Channel can receive or send to multiple DDS topics and there-
fore these tests shows the performance of the network when other devices are using the same
network.

The test is performed for publish-subscribe communication as the reader and writer are de-
coupled such that they do not influence each others performance. Also the influence of adding
traffic to the network can be analyzed with publish-subscribe communication as multiple
packages are needed to unblock all readers. This way the resulting frequency at the reader
is a measure for the extra latency introduced by the network.

The difference between two timestamps at the publisher and at the subscriber side is again
used of a measure of the performance. All the tests averaged out to 100Hz, but the standard
deviations were different. The results of the publish-subscribe communication for the sending
side is shown in Table B.3 and for the reading side in Table B.4.

The command line output of Iperf shows the actual bandwidth. By analyzing this output the
following is observed:

• When the RaMstix is an Iperf server, it is not able to receive 50Mbps UDP traffic from the
RPI client as packets are dropped, but the data is induced on the network according to
the Iperf client. Therefore the RaMstix is dropping the packets.

• When the RaMstix is an Iperf client, it is not able to produce 50Mbps UDP traffic to the
RPI server and the resulting traffic will be less than 50Mbps. (38Mbps for Pub to RPI and
40Mbps for Sub to RPI.)

Table B.3: The standard deviation of the execution time of the writing side over 2500 samples under
additional traffic on the network induced by Iperf.

Publisher Standard deviation (ms)
Mbps RPI to Pub Pub to RPI Sub to RPI RPI to Sub
0 0.1782 0.1782 0.1782 0.1782
25 0.3058 0.1816 0.1828 0.1816
50 0.3256 0.1828 0.1911 0.3256

Robotics and Mechatronics Robin Wijnholt

74 Design of a real-time network channel in LUNA

Table B.4: The standard deviation of the execution time of the reading side over 2500 samples under
additional traffic on the network induced by Iperf

.

Subscriber Standard deviation (ms)
Mbps RPI to Pub Pub to RPI Sub to RPI RPI to Sub
0 0.9982 0.9982 0.9982 0.9982
25 1.4053 1.3232 1.0822 1.3145
50 1.6306 1.6466 1.6494 1.4053

It is observed that the standard deviations at the publisher in Table B.3 increases with the in-
crease of traffic on the network. This must be caused by extra traffic on the network, resulting
in more work for the network stack and therefore more jitter in the real-time LUNA application.

However the increase in standard deviation is also obtained when the extra traffic is not dir-
ected to the publisher. The switch regulates the amount of data, resulting in extra latencies in
the network stack not running in Xenomai, which results in more jitter in the real-time LUNA
application.

Also when the traffic is directed to the RPI less deviation at the publisher is observed, with
respect to the traffic directed to the RaMstixes (publisher and subscriber). This is explicable as
the RaMstixes are not able to generate 50Mbps when the Network Channel is in operation. The
RPI however is able to generate 50Mbps on the network. More traffic on the network results
therefore in more standard deviation at the publisher.

The subscribing side shown in Table B.4 does not show the same clear distinctions between
the four configurations. However in all configurations the standard deviation increases with
increasing load on the network.

This increase in deviation is caused by less deterministic writes by the publisher due to the
extra traffic on the network, and therefore also more variation in time in the unblocking of
the readers is obtained. Probably also some extra latency is introduced by the switch, but this
behavior is not measured.

By inspecting the graphs of the execution times no high outliers are observed, which indicates
that the Network Channel is still able to communicate reliable with more data on the network,
without increasing the amount of iterations before unblocking of all readers occur.

For rendezvous communication these deviations are obtained twice, once for the state ex-
change and once for the data exchange. However, rendezvous communication introduces wait-
ing for packets, which results in unblocking of all readers at once, and therefore if the standard
deviation stays within the bounds of one loop cycle almost no performance degradation will be
observed as a loop cycle introduces more latency than the latency introduced by extra traffic.

The standard deviation at the subscriber is in the order of 1ms as two bands are obtained. To
show these bands Figure B.12 is provided that shows the RPI to Sub results for the subscribing
side. These bands are obtained as a data packet may contain not all the data for all the readers,
resulting in unblocking one iteration earlier or later. It can also be observed that with 50Mbps
of extra traffic on the network more often the unblocking of all readers is obtained in three
iterations as the extra traffic introduced extra latencies.

The observation in all configurations for publisher and subscriber is that adding extra traffic to
the network results in higher standard deviations at publisher and subscriber side. Rendezvous
had to communicate state and data and therefore the extra latencies due to the network will
be encountered twice. However for publish-subscribe communication the unblocking of the
readers can take up to three iterations, where the unblocking of rendezvous communication

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 75

1000 1020 1040 1060 1080 1100

Samples

6

7

8

9

10

11

12

13

14

T
im

e
 (

m
s
)

reader pubsub with extra network traffic from RPI to Publisher

0

25

50

Figure B.12: The Subscriber for the RPI to Sub configuration that shows the results of added traffic to
the network and bands due to the unblocking of readers in a loop.

only takes one iteration resulting in less influence of the extra traffic on the network than for
publish-subscribe communication.

Test 2: Frequency test
The second stress test investigates the influence of higher sending rates with respect to the
performance. Again a publisher and subscriber with 10 channels are used to investigate the
maximum communication frequency for publish-subscribe and rendezvous communication.
The frequency is increased from 100Hz up to 300Hz in steps of 50Hz. Again two RaMstixes are
used, one runs the publisher application and the other one the subscriber application. First
the measurements of the rendezvous communication are discussed and next the results for the
publish-subscribe communication.

Table B.5 shows the results of the test for rendezvous communication. The observations made
from this table are:

1. Maximum send and receive frequency is approximately 230Hz for TCP and 200Hz for
UDP transport.

2. Overwrites occur from 200Hz, and more overwrites are observed for UDP transport.

3. Sending and receiving frequency are not equal for UDP transport.

4. Standard deviation for 100Hz is greater than other frequencies.

Note that this table also shows the amount of overwrites. The data dat is send from the writers
are sequential, meaning that the data is incremented by one each send action. If at the sub-
scriber the difference between two consecutive is greater than one, a value on that topic is
overwritten. Only the data of one channel is logged, and therefore the overwrite column states
the amount of overwrites for one channel. The overwrite column is an indication of the amount
of overwrites that actually occur.

From Table B.5 can be seen that for TCP transport a maximum sending rate of approximately
230Hz is obtained and for UDP a lower rate of 200Hz is obtained as more packets are dropped
in the network, indicated by more overwrites.

Robotics and Mechatronics Robin Wijnholt

76 Design of a real-time network channel in LUNA

Table B.5: The average achieved frequency and standard deviation for rendezvous communication cal-
culated over 2000 samples.

Rendezvous communication
TCP

Writer Reader
Frequency Avg (Hz) Std (ms) Avg (Hz) Std (ms) Overwrites
100 100.0 0.2278 100.0 0.9763 0
150 150.0 0.1633 150.0 0.4569 0
200 200.0 0.2603 200.6 0.3457 10
250 233.4 0.2095 229.0 0.6088 73
300 233.8 0.2013 222.61 0.6424 58

UDP
Writer Reader

Avg (Hz) Std (ms) Avg (Hz) Std (ms) Overwrites
100 100 0.1705 100.0 0.8799 0
150 150 0.1434 150.0 0.5737 0
200 200.0 0.3838 198.3 0.2325 2
250 223.7 0.4516 200.9 0.2400 230
300 223.8 0.4446 196.2 0.4218 278

The network alone introduces a latency of approximately 0.3ms as shown in Appendix G, which
is encountered for the reader is ready package and the data. The time it takes to enqueue data
and sending it to OpenDDS is also encountered for the reader is ready package and the data,
and is approximately 2.5ms (From Table B.1). The theoretical sending speed is therefore 5.6ms,
or 178Hz. This theoretical sending speed is less optimistic, and can be explained by:

• The writing time for a reader is ready message is probably shorter, as it contains no un-
bounded sequences and multiple data elements.

• The latency analysis consists of printf statements, which due not contribute to perform-
ance.

Therefore it is possible that a maximum sending rate of 230Hz is obtained.

With rendezvous transport the sending and receiving side are coupled and therefore the same
send and receive frequencies are expected. However when the maximum sending speed is ap-
proached the rendezvous communication is experiencing overwrites in the buffer at the reader
side as not all readers are unblocked at the same time, which indicates a failing waiting function
for higher sending frequencies.

The result is a lower receiving frequency as the data bundles are not complete, resulting in
multiple iterations before all the readers are unblocked. As mentioned before active checking of
ownTopics should be performed in the DDSReactor to solve these overwrites. More overwrites
are detected with UDP transport than with TCP transport as UDP also introduces packet loss,
resulting in an even lower receiving frequency. Package loss with UDP is also concluded from
Section B.3.1.

The standard deviation for the 100Hz communication is greater as the band below the 10ms
is present the complete test. The other sending frequencies show similar behavior but appear
later in time. Figure B.13 shows the difference between timestamps for the rendezvous reader
with TCP transport to show the presence of these bands. The 250Hz and 300Hz do not show

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 77

bands of 2.5ms any more as dequeuing and writing to OpenDDS takes longer than 2.5ms, res-
ulting in a loop frequency dependent on the dequeue and write times of OpenDDS.

3400 3450 3500 3550 3600

Samples

2

4

6

8

10

12

14

T
im

e
 (

m
s
)

Influence of sending rate at reader side for TCP rendez

100

150

200

250

300

Figure B.13: The rendezvous reader with TCP transport for different sending frequencies.

These bands occur if a message is send one iteration earlier as discussed in Section B.3.1, but
bands can also occur when the sending frequency is not a multiple of inbound and outbound
loop frequencies in the DDSReactor as is illustrated in Appendix H.

So when using rendezvous communication the user should use TCP transport and choose a
frequency lower than 200Hz to guarantee the functioning of the wait function. The result is less
deviation at the subscriber side as the readers are unblocked in one iteration. Furthermore it is
recommended to update the waiting functionality to explicitly check the presence of the topics.

The same test is performed for the publish-subscribe communication. The results of this test
are shown in Table B.6 and the following is observed from this table:

1. The writer is able to achieve all the commanded frequencies.

2. The reader is able to receive with 247Hz for TCP and 250Hz for UDP.

3. UDP seems to be able to communicate faster without overwrites.

The writer in publish-subscribe communication is not blocking, which means that the write
action is finished once the data is enqueued. For faster writing speeds this enqueueing takes
longer as another process is simultaneous dequeueing as there is more data in the queue. The
writer has an increase in standard deviation for higher frequencies as it is more busy with
dequeueing and writing to OpenDDS resulting in more deviation at the LUNA application that
writes. The writer is able to achieve the commanded sending frequency as the latencies intro-
duced by enqueueing are smaller than the sending frequency.

The maximum speed for receiving is a somewhat higher than for the rendezvous communic-
ation as no reader is ready message needs to be send by the reader. When bundles with all
the ownTopic are published from sender to receiver it is expected to reach a frequency around
400Hz as the time to publish a message onto a DDS topic is approximately 2.5ms (Table B.1).
However not all data has to be available in one data bundle for publish-subscribe communic-
ation, resulting in the unblocking of all the readers in more than one iteration. If it takes two

Robotics and Mechatronics Robin Wijnholt

78 Design of a real-time network channel in LUNA

Table B.6: The average achieved frequency with the standard deviation for publish-subscribe commu-
nication calculated over 2000 samples.

Publish and Subscribe communication
TCP

Writer Reader
Frequency Avg (Hz) Std (ms) Avg (Hz) Std (ms) Overwrites
100 100.0 0.1872 100.0 1.0023 0
150 150.0 0.1877 150.0 1.1963 0
200 200.0 0.1887 200.0 1.4310 0
250 250.0 0.3518 244.5 1.2365 46
300 300.0 0.8468 247.0 1.3313 429

UDP
Writer Reader

Avg (Hz) Std (ms) Avg (Hz) Std (ms) Overwrites
100 100.0 0.1713 100.0 0.9418 0
150 150.0 0.1882 150.0 1.1364 0
200 200.0 0.1715 200.0 1.3104 0
250 250.0 0.1800 250.0 1.0997 0
300 300.0 0.6962 225.0 1.6352 666

cycles to unblock all readers than it takes another 2.5ms, resulting in a receiving frequency of
200Hz. The readers can unblock however with one data bundle, resulting in a maximum re-
ceiving speed of around 250Hz. To obtain higher receiving frequencies active checking of topic
availability must be performed, resulting in complete packets and unblocking of all readers in
one iteration.

The data is only flowing from publisher to subscriber and no states are exchanged, and there-
fore probably less UDP packets are lost, that results in a better performance for UDP than for
TCP. However for the 300Hz communication the TCP transport has less overwrites than the
UDP transport which indicates that with higher publishing rates the TCP transport is more re-
liable.

B.4 Conclusion

Four tests are conducted to investigate the performance of this Network Channel implementa-
tion. The conducted tests are:

• Transport

• Bundled data validation

• Latency analysis

• Stress test

By using rendezvous communication the differences between UDP and TCP transport are in-
vestigated. The conclusion is that TCP communication results in less jitter on the subscriber
side as TCP does not lose any packets and therefore all readers always unblock at the same time.
The latency analysis shows that the writing time to OpenDDS with UDP and TCP transport are
approximately equal. Also when using TCP transport at higher sending rates less overwrites
occur at the subscriber than with UDP transport. Therefore TCP introduces reliable transport
resulting in bounded loop times at the subscriber side.

Robin Wijnholt University of Twente

APPENDIX B. LUNA IMPLEMENTATION TESTS 79

The waiting functionality is functioning correctly for sending rates at 100Hz and resulted in
the unblocking of the readers in one iteration. However when the sending rate is increased to
200Hz, overwrites are observed that indicate that not all data for all subtopics was available in
a bundle at some point.

For higher sending rates the waiting functionality fails to add all data samples for the different
subtopics. Therefore it is recommended to update the waiting functionality to explicitly check
for all the topics to be available in a packet. This will result in faster loop times at the subscriber
as one iteration is sufficient to unblock all readers.

With the latency test it is observed that writing to OpenDDS is a rather expensive operation.
By using a more resource rich system the writing time can be drastically reduced. Also imple-
menting the default Linux scheduler (OTHER) instead of the default real-time scheduler (FIFO)
resulted in a decrease of writing time and standard deviation. However the overall performance
dropped drastically probably due to re-scheduling of the OTHER thread. The real time FIFO
threads causes mode switches due to OpenDDS and the network stack, which results in higher
writing times and more standard deviation with respect to the OTHER scheduler.

Another significant latency is obtained at the subscribing side that consists of calling the call-
back function in the DDSReactor that provides the data to the DDSChannel (tcb f ,unblocked).
This latency is not directly linked to an event, and is probably caused by the re-scheduling of
the thread by a higher priority thread, but this is not validated.

Extra traffic on the network results in more standard deviation at writer and reader. The in-
crease of standard deviation at the writer is caused by a more busy network stack, resulting in
more jitter in the execution time of the LUNA application.

Adding extra load to the network resulted in a maximum of three iterations before all the read-
ers were unblocked, which was also obtained without load. However unblocking in three it-
erations is more often observed and is caused due to the extra load on the network. Adding
extra traffic on the network introduces extra latencies, but does not significantly reduce the
performance with respect to no load on the network.

It is recommended to get rid of the threads that continuously loop. The performance of the Net-
work Channel will increase as the latencies caused by the loop time of a thread is not present.
Also the influence of external parameters can be better investigated if no loops are present.

To omit the looping threads the callback functions at the DDSChannel should be provided to
the OpenDDS interface, such that a reader can be unblocked directly after receiving the data.
For the writers a write to OpenDDS should be performed when all topics for a commonTopic
are present, resulting in a write independent of a loop.

The requirements at the beginning of this thesis for the Network Channel are all met as reliable
communication between LUNA applications is obtained with TCP as transport mechanism.
OpenDDS provides a rich set of QoS settings that may even introduce more reliability for the
Network Channel, but this needs to be more investigated. Also rendezvous communication
is implemented with a trade-off that only the reader presents its readiness to the writer. The
Network Channel is implemented as a component in LUNA and also supports buffered chan-
nels. At TERRA level is a DDS hardware port added such that the Network Channel can be used
in a CSP model in TERRA. Scalability is provided, because the DDSReactor on one host can
send and receive to multiple DDS topics when publish-subscribe communication is used and
the DCPS server provides auto discovery of endpoints. It is however not tested if the Network
Channel is able to communicate with a ROS2 client using DDS, but it should theoretical be
inter-operable.

Robotics and Mechatronics Robin Wijnholt

80 Design of a real-time network channel in LUNA

C Code of the integration test

The C++ code of the cpp_conversion block from the LUNA application that runs on the RaMstix
of the integration test is shown in Listing C.1. The values are normalized to represent a value
between -1 and 1. And also a deadzone is implemented as the joystick axes never return zero if
the joystick is not touched.� �

//Variables set in the constructor
double deadzone = 5000;
double max_joystick = 2^15;
double max_val = 1;
double scaling = max_val/(max_joystick-deadzone);
//End variables set in the constructor

if(abs(x) > deadzone) {
x_conv = (abs(x) - deadzone) * scaling;
x_conv = (x < 0) ? -x_conv : x_conv;

} else {
x_conv = 0;

}

if(abs(y) > deadzone) {
y_conv = (abs(y) - deadzone) * scaling;
y_conv = (y > 0) ? -y_conv : y_conv;

} else {
y_conv = 0;

}

angle_conv = angle_scale * angle;� �
Listing C.1: The C++ code of the cpp_conver si on code block that converts the values re-
ceived by the Network Channel to values between -1 and 1.

The C++ code of the cpp_safety block of the LUNA application on the RaMstix for the integration
test that checks if the values do not exceed limits and it also checks the liveliness of the values
as is also shown in Listing C.2. When the values for the x and y direction haven’t changed for
several iterations the output is zero, which causes the youBot to stops its motion.

Robin Wijnholt University of Twente

APPENDIX C. CODE OF THE INTEGRATION TEST 81

� �
\\ Values set in constructor
float epsilon = 0.001;
int maxCount = 200;
\\ End values set in constructor

if(prev_x == (float)x_conv){
counter_x++;

}else {
counter_x = 0;

}

if(prev_y == (float)y_conv){
counter_y++;

}else {
counter_y = 0;

}

if((float)(1 - x_conv) < epsilon ||
(float)(1 + x_conv) < epsilon){

counter_x = 0;
}

if((float)(1 - y_conv) < epsilon ||
(float)(1 + y_conv) < epsilon){

counter_y = 0;
}

prev_x = x_conv;
prev_y = y_conv;

x_conv = (counter_x > maxCount) ? 0 : x_conv;
y_conv = (counter_y > maxCount) ? 0 : y_conv;

//safety on limits.
if(x_conv > 1){

x_conv = 1;
} else if (x_conv < -1){

x_conv = -1;
}
if(y_conv > 1){

y_conv = 1;
} else if (y_conv < -1){

y_conv = -1;
}
if(angle_conv > 1){

angle_conv = 1;
} else if (angle_conv < -1){

angle_conv = -1;
}� �

Listing C.2: The C++ code of the cpp_sa f et y code block that makes sure the values are
within bounds and no freezing of values occurs.

Robotics and Mechatronics Robin Wijnholt

82 Design of a real-time network channel in LUNA

D Demo

This appendix describers how the demo can be run on an RaMstix and a ubuntu machine1 by
using the pre-compiled binaries. Building from source code is also possible and discussed in
Appendix E.

OpenDDS 3.11 must be available on both systems. For OpenDDS on the RaMstix a pre-
build version is provided in a git repository: https://git.ram.ewi.utwente.nl/
wijnholtr/OpenDDS-3.11_RAMstix_Yocto_build.

OpenDDS 3.11 can be installed on the Ubuntu machine by following the instructions on the
OpenDDS.org website.

Clone or copy this repository to the RaMstix to provide the RaMstix with an install of OpenDDS.
Open the setenv.sh file and provide the correct paths to the OpenDDS directory on the RaMstix.

Git clone the repository containing the binaries: https://git.ram.ewi.utwente.nl/
wijnholtr/Demo

Copy the laptop directory to anywhere on the Ubuntu machine and copy the RaMstix directory
to anywhere on the RaMstix.

The Ubuntu and RaMstix directory both contain a bin directory locating an executable. Before
running the executable the environment variables of OpenDDS needs to be set by sourcing
the setenv.sh located in the installation folder of OpenDDS 3.11 on the RaMstix and Ubuntu
machine.

There must be a device on the network that hosts the DCPS service (can be the RaMstix, Ubuntu
machine or another machine with OpenDDS installed) and is started with (after sourcing
setenv.sh):� �

$DDS_ROOT/bin/DCPSInfoRepo -ORBListenEndpoints iiop://:12345� �
Listing D.1: The command to start an DCPS server. The setenv.sh file should have been
sourced first.

In the laptop and RaMstix directory a file called dds_config.ini is present. This file indicates the
transport to use, and where the DCPS service is hosted. Change the line with DCPSInfoRepo
such that it contains the correct IP address. Leave the port number as is also shown in Listing
D.2. Also make sure that both dds_config.ini files contain the same transport mechanisms.� �

DCPSInfoRepo=[IP address of DCPS service]:12345� �
Listing D.2: The line that should read the correct IP address in the dds_config.ini file.

Connect the Xbox controller to the Ubuntu machine. Now open a terminal on the Ubuntu
machine and navigate to the OpenDDS directory to source the setenv.sh file. Then navigate to
the bin directory that contains the executable for the laptop. Run the application by running
the command: ./top_arch_generator.

Make sure the RaMstix is connected to a WiFi network (wpa_supplicant) that is in the same
local network as the Ubuntu machine and connect the youBot with an Ethernet cable to the
RaMstix Ethernet port. Also make sure that the Ethernet address is a fixed address and in an-
other subnet than the WiFi network.

SSH to the RaMstix or use the serial interface. Type the command sudo su to enable root priv-
ileges. Navigate to the OpenDDS directory on the RaMstix to source the setenv.sh file. Then

1Ubuntu 16.04, Intel(R) Core(TM) i5-3230M CPU @ 2.60GHz

Robin Wijnholt University of Twente

https://git.ram.ewi.utwente.nl/wijnholtr/OpenDDS-3.11_RAMstix_Yocto_build
https://git.ram.ewi.utwente.nl/wijnholtr/OpenDDS-3.11_RAMstix_Yocto_build
OpenDDS.org
https://git.ram.ewi.utwente.nl/wijnholtr/Demo
https://git.ram.ewi.utwente.nl/wijnholtr/Demo

APPENDIX D. DEMO 83

navigate to the bin directory that contains the executable for the RaMstix. Run the application
by running the command: ./top_arch_controlloop. Root privileges are necessary as the SOEM
EtherCAT master needs root privileges for accessing the network stack.

If everything went well a communication over the Network Channel is initiated and the youBot
can be moved by using the joystick. If for some reason the execution of the binaries didn’t work,
then the application should be build from source code as is shown in Appendix E

Robotics and Mechatronics Robin Wijnholt

84 Design of a real-time network channel in LUNA

E Building demo from source

For building the demo from source the following dependencies are required:

• A build of LUNA for RaMstix and laptop.

• Source code for demo on RaMstix and laptop.

• The Yocto environment to cross-compile for the RaMstix.

• The joystick interface from Noakes (2017).

• OpenDDS 3.11 for RaMstix and Ubuntu machine.

A pre-requisite for both platforms is to have an installation of OpenDDS 3.11. For the installa-
tion on the Ubuntu machine follow the instructions provided by OpenDDS.org.

A repository containing the dependencies above, together with pre-compiled versions of LUNA
for linux-x64 and xenomai-arm-v7 is made available and can be git cloned from
https://git.ram.ewi.utwente.nl/wijnholtr/Demo_source

In principle this repository contains all the dependencies, but if a custom LUNA build with dds-
channels is required then the LUNA project can be cloned from:
https://git.ram.ewi.utwente.nl/wijnholtr/LUNA

Following the instructions provided by the RaM website LUNA can be compiled:
https://www.ram.ewi.utwente.nl/ECSSoftware/luna.php

E.0.1 Compiling for Ubuntu

Open a terminal on the Ubuntu machine and source the setenv.sh script in the OpenDDS in-
stallation directory on the Ubuntu machine as shown in Listing E.1 to set the environment
variables of OpenDDS.� �

source setenv.sh� �
Listing E.1: The command to set the environment variables for openDDS.

Navigate to the demo_laptop directory with a terminal and run make clean; make, which builds
the project and places the executable in the bin folder.

Provide the correct transport and IP address of the DCPS server in the dds_config.ini file and
plug in the Xbox 360 controller. The DCPS service can be started with the commands shown in
Listing E.2. Note that the device running the DCPS service has to have a OpenDDS installation.� �

$DDS_ROOT/bin/DCPSInfoRepo -ORBListenEndpoints iiop://:12345� �
Listing E.2: The command to start an DCPS server. The setenv.sh file should have been
sourced first.

Navigate to the bin folder and run the executable with the command provided in Listing E.3.� �
./top_arch_generator� �

Listing E.3: The command to start the application that reads the joystick and sends it on the
Network Channel

The result is a LUNA application that is able to send the joystick values to the RaMstix using the
Network Channel.

Robin Wijnholt University of Twente

OpenDDS.org
https://git.ram.ewi.utwente.nl/wijnholtr/Demo_source
https://git.ram.ewi.utwente.nl/wijnholtr/LUNA
https://www.ram.ewi.utwente.nl/ECSSoftware/luna.php

APPENDIX E. BUILDING DEMO FROM SOURCE 85

E.0.2 Compiling for RaMstix

Navigate with a terminal on the Ubuntu machine to the cloned repository Demo_source and
run the command shown in Listing E.4.� �

. / poky−g l i bc −x86_64−ramst ix −20sim−image−
cor texa8hf−vfp−neon−t oo lcha in −1.8 .2 . sh� �

Listing E.4: The command to build the Yocto SDK environment.

Install the SDK in the ramstixSDK folder, which is already located in the Demo_source directory.

Change the sysroot variable in the tools.mk file (line 13 and 14) of the LUNA build in the folder
lunuabuilds/luna-xenomai-arm-v7-Posix to match the absolute path of the ramstixSDK.

Also change the setenv.sh file in the OpenDDS directory provided for the RaMstix to match the
absolute path of the OpenDDS installation directory.

Navigate in a terminal on the ubuntu machine to the demo_ramstix folder and source the en-
vAndXenomaiDir with the command provided in Listing E.5 to set the environment variables
of the RaMstix SDK and OpenDDS.� �

source envAndXenomaiDir� �
Listing E.5: The command to set environment variables of OpenDDS and the RaMstixSDK.

Then enter the commands make clean; make to start building the application for the RaMstix.
The resulting executable is now located in the bin directory. If errors are obtained, double check
if the paths provided in tools.mk and setenv.sh are correct.

Make sure the RaMstix is connected to a WiFi network (wpa_supplicant) that is in the same
local network as the Ubuntu machine and connect the youBot with an Ethernet cable to the
RaMstix Ethernet port. Also make sure that the Ethernet address is a fixed address and in an-
other subnet than the WiFi network.

Copy the executable, dds_config.ini and the OpenDDS build for the RaMstix to the Ramstix,
with for example scp. Change the setenv.sh on the RaMstix again to match the absolute path of
the OpenDDS directory on the RaMstix.

On the RaMstix first enter sudo su to elevate to root privileges. Next source the setenv.sh to set
the environment variables of OpenDDS. Lastly navigate to the location of the executable and
run the command shown in Listing E.6.� �

. / t op_arch_con t ro l l oop� �
Listing E.6: The command to start the LUNA application on the RaMstix.

Make sure the DCPS IP address in the dds_config.ini file is correct and that the same transport
is used as is specified on the Ubuntu machine.

Robotics and Mechatronics Robin Wijnholt

86 Design of a real-time network channel in LUNA

F Getting TERRA with DDS ports

This appendix describes how to obtain the TERRA project to use the DDS ports in TERRA.

1. Create a folder somewhere on your machine. This folder is referred to as root folder.

2. Git clone this project in the root folder:
https://git.ram.ewi.utwente.nl/wijnholtr/TERRA

3. Install a fresh Eclipse LUNA or git clone this repository:
https://git.ram.ewi.utwente.nl/wijnholtr/Eclipse_LUNA

4. Start Eclipse LUNA.

5. In an empty java workspace in Eclipse: File > Import > Existing Projects into Workspace

6. Browse to the cloned TERRA project and import to the workspace.

7. Click on the "Run TERRA" button (green play button) at the right top of Eclipse to start
TERRA.

8. When an architecture model is created the "DDS port" will show up at the right side and
models can be constructed.

9. A LUNA build must be available to actually generate the executable code. The LUNA pro-
ject can be obtained from https://git.ram.ewi.utwente.nl/wijnholtr/
LUNA. Also pre-compiled binaries are available and instructions to download them is
provided in Appendix E.

Robin Wijnholt University of Twente

https://git.ram.ewi.utwente.nl/wijnholtr/TERRA
https://git.ram.ewi.utwente.nl/wijnholtr/Eclipse_LUNA
https://git.ram.ewi.utwente.nl/wijnholtr/LUNA
https://git.ram.ewi.utwente.nl/wijnholtr/LUNA

87

G Propagation delay on Ethernet

A ping request is used to approximate the latency between two RaMstixes. A ping request uses
the ICMP protocol which is located at the same layer as IP, which is the Network layer (layer 3)
of the OSI model. The Network Layer is depicted in the OSI model shown in Figure G.1

Figure G.1: An OSI 7 model showing the seven layers of networking. (Hewitt (2005))

When performing a ping request between two devices, the Network Layer, Data link layer and
physical layer are passed four times. Twice for the requesting device, and twice for the device
that is pinged. The assumption is made that the network is symmetrical, and therefore the half
of the observed ping latency is the time between the Network Layers of the devices.

The result of the ping request is shown in Figure G.2. The setup consists of two RaMstixes and
a switch. The same setup is used for all the tests.

Figure G.2: The output of the ping request between two RaMstix devices via a switch.

From Figure G.2 can be seen that the average latency is 0.605 ms resulting in a latency of ap-
proximately 0.3 ms from device to device. This latency is used as a measure of latency for send-
ing data from device to device.

Robotics and Mechatronics Robin Wijnholt

88 Design of a real-time network channel in LUNA

To investigate the time on the network stack the tool ku-latency (Vilimpoc (2008)) is executed
on a RaMstix. The result is shown in Listing G.1.� �

t ime_kerne l : 1497353708.265088
t ime_user : 1497353708.265194
To ta l Average : 30280/294 = 102.99 us
R o l l i n g Average (32 samples) : 105.47 us� �

Listing G.1: The latency introduced between the user space and kernel space of the linux net-
work stack.

The time it takes for a message to pass through the kernel space to the user space takes about
105.47µs. This is negligible with respect to the time it takes for the ping request. Also prob-
ably some overlap is present between the ku-latency test and the ping request. Therefore this
latency between kernel and user space is neglected.

Robin Wijnholt University of Twente

89

H Dependency of reactor loop frequency and sending
frequency

It is important to choose a suitable sending rate with respect to the reactor frequency. The
sending frequency must be a multiple of the reactor frequency as otherwise aliasing will occur
that results in bands around the expected send frequency at the subscriber.

The result of a mismatch between the reactor loop frequency and the sending rate of the pub-
lisher is illustrated by Figure H.1. The reactor loop frequency in the first test is configured at
250 Hz and in the second test at 400 Hz. In both cases the publisher was sending at 100 Hz.

1000 1020 1040 1060 1080 1100

Samples

4

6

8

10

12

14

16

18

T
im

e
 (

m
s
)

Subscriber TCP 100Hz PUBSUB with different reactor frequencies

250Hz

400Hz

Figure H.1: Two different reactor frequencies that show the aliasing when the sending frequency is not
a multiple of the reactor frequency.

With a reactor loop frequency of 250 Hz it basically means the data is samples every 4 ms. The
sending rate is at 10 ms so bands occur at 8 and 12 ms (when inbound and outbound loop are
in sync). When having a reactor loop at 400 Hz this is not obtained as the reactor frequency is
a multiple of the send frequency. Note that sometimes the readers are unblocked in two loop
iterations, and sometimes a second set of messages was presented a little faster that resulted
in earlier unblocking. This results is two bands around the 10 ms line separated by 2.5 ms. The
reactor loop frequency is a hard coded value and is therefore not that easy to change, therefore
it is advised to select a send frequency that is a multiple of the reactor frequency.

Robotics and Mechatronics Robin Wijnholt

90 Design of a real-time network channel in LUNA

I Waiting for publish and subscribe communication

The results of the measurements with waiting with publish and subscribe communication is
shown in Figure I.1. The publishing side behaves similar as the rendezvous case, but the sub-
scriber does not unblock always in one loop iteration. The bands around the 10 ms line show
that not all topics are available in one packet. Also there is some data between 18-20 ms which
indicates that some samples must have been lost as it took several iterations before all readers
were unblocked.

Probably some samples are discarded at the sending side as this waiting functionality has a
slightly different implementation. This implementation makes sure that exactly the amount
of data values are written to OpenDDS. If more data is available it performs writes in mul-
tiple iterations. The rendezvous waiting communication is not implementing this feature as
it performed in all times at 100 Hz sending rate. However the implementation of this feature
probably has a off-by-one error.

When introducing the check of the availability of every topic in a data bundle this functionality
is not necessary anymore as all the data bundle will consist of exactly all the topics.

There is however a lack of time to debug this problem. Waiting for complete packets for pub-
lish and subscribe communication is less crucial as no reader is ready message needs to be
exchanged.

1000 1050 1100 1150 1200

Samples

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

10.4

10.5

T
im

e
 (

m
s
)

A TCP publish and subscribe publisher

wait

no wait

(a) The publish and subscribe publisher that
publishes data with and without waiting for
writers to have presented all their data.

1000 1050 1100 1150 1200

Samples

6

8

10

12

14

16

18

20

22

T
im

e
 (

m
s
)

A TCP publish and subscribe subscriber

wait

no wait

(b) The result at the subscriber for waiting or
not waiting for all data to be present at the
publisher.

Figure I.1: The test that shows the performance of waiting versus no waiting for sending data at 100Hz.

Robin Wijnholt University of Twente

91

J Latency analysis on rendezvous communication

The location of the timestamps for the rendezvous communication are shown in Figure J.1.

(a) The location of the timestamps for the publisher.

(b) The location of the timestamps for the subscriber.

Figure J.1: The location of the timestamps for analyzing the latencies for the rendezvous communica-
tion. The stopwatches indicate a timestamp and the arrows between timestamps indicate the difference
between timestamps.

The average latencies for the different sections are shown for the rendezvous publisher in Table
J.1 and for the rendezvous subscriber in Table J.2.

From Table J.1 can be seen that twr i te , tenqueue , and tw r i te,enqueue are comparable to
the publish and subscribe communication. The time between enqueueing and dequeueing
(tenqueue,dequeue) however is around 2.5 ms, which is explicable as the rendezvous communic-
ation introduces a wait, that results in the dequeueing of a message one iteration later if not all
the data was available. If this happened in the beginning than it will always take one complete
iteration to fill a data bundle resulting in 2.5 ms. Also the time between dequeueing and pub-
lishing (tdequeue,pub) is somewhat higher as sometimes the reader is not ready to receive yet,
resulting in somewhat higher dequeueing to publish time.

The values at the subscriber are as expected when it is compared to the times for publish and
subscribe communication. However a very high callback function to unblocking is obtained,
which was also observed for the publish and subscribe communication. It is not linked to an
event. The explanation for the publish and subscribe was that the RaMstix was probably busy

Robotics and Mechatronics Robin Wijnholt

92 Design of a real-time network channel in LUNA

Table J.1: Latencies at the publisher for rendezvous communication

Average latency (ms)
∆t TCP UDP
twr i te,enqueue 0.0363 0.0393
tenqueue 0.0084 0.0084
tenqueue,dequeue 2.5685 2.5562
tdequeue,unblock 1.8264 1.9437
tdequeue,pub 0.3042 0.2564
twr i te 1.1024 1.2366

with other processes which resulted in rescheduling of the call for the callback function. A
higher average latency is obtained for this callback function to actually unblocking than for the
publish and subscribe communication. The rendezvous subscriber has also to publish a state
exchange to OpenDDS that induces an extra load on the RaMstix, which is the only probable
cause of this extra latency.

Table J.2: Latencies at the subscriber for rendezvous communication

Average latency (ms)
∆t TCP UDP
tnoti f y,enqueue 0.0099 0.0106
tenqueue 0.0055 0.0055
tenqueue,noti 0.0152 0.0153
tnoti ,bl ocked 0.0058 0.0056
tbl ocked ,cb f 10.008 11.1084
tcb f ,unblocked 3.0989 5.8849

Robin Wijnholt University of Twente

93

Bibliography
Beckhoff (2012), ETG2200 Slave Implementation Guide, http://www.ethercat.org/
pdf/english/ETG2200_V2i0i0_SlaveImplementationGuide.pdf.

Bezemer, M. (2011), LUNA: Hard Real-Time, Multi-Threaded, CSP-Capable Execution Frame-
work, Ph.D. thesis.

Bezemer, M. and J. F. Broenink (2015), Connecting ROS to a Real-Time Control Framework for
Embedded Computing, Technical report.

Bezemer, M. M. (2014), Hardware Ports - Getting Rid of Sandboxed Modelled Software.

Blechmann, T. (2011), Chapter 22. Boost.Lockfree - 1.63.0, http://www.boost.org/doc/
libs/1_63_0/doc/html/lockfree.html.

Busch, D. (2010), Object Computing, Inc. - Middleware News Brief - June, 2010,http://mnb.
ociweb.com/mnb/MiddlewareNewsBrief-201004.html.

Corsaro, A. (2013), OpenSplice DDS Tutorial – Part II.

Force Dimension (2017), Force Dimension - Products - Omega.7 - Features, http://www.
forcedimension.com/products/omega-7/features.

Frijnts, S. D. (2014), Upgrading the Safety Layer and Demo of the youBot Robot, Pre-msc report
007ram2014, University of Twente.

Geomagic Touch (2016), Geomagic Touch (Formerly Geomagic Phantom Omni) Overview,
http://www.geomagic.com/en/products/phantom-omni/overview.

Gumstix (2017), Overo® FireSTORM-P COM, https://store.gumstix.com/coms/
overo-coms/overo-firestorm-p-com.html.

Hewitt, O. c. b. J. (2005), English: OSI RM Model. Intent: This Was Created to Clearly Show
Layers in the OSI Model.

Hoare, C. A. R. (1978), Communicating Sequential Processes, vol. 21, no.8, pp. 666–677, ISSN
0001-0782, doi:10.1145/359576.359585.

Iperf (2017), iPerf - The TCP, UDP and SCTP Network Bandwidth Measurement Tool, https:
//iperf.fr/.

Jishenaz (2013), English: SVG Drawing of an Xbox 360 Controller. Useful for Making Button
Mapping Diagrams.

Kempenaar, J. J. (2014), Communication Component for Multiplatform Distribution of Control
Algorithms, Msc report 001ram2014, University of Twente.

Kohlhoff, C. (2017), Boost.Asio - 1.64.0, http://www.boost.org/doc/libs/1_64_0/
doc/html/boost_asio.html.

KUKA (2015), API Architecture - youBot Wiki, http://www.youbot-store.com/wiki/
index.php/API_architecture.

Kurose, J. F. and K. W. Ross (2012), Computer Networking: A Top-Down Approach (6th Edition),
Pearson, 6th edition, ISBN 0-13-285620-4 978-0-13-285620-1.

Moodycamel (2014), A Fast General Purpose Lock-Free Queue for C++, http://
moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c+
+.

Nissanke, N. (1997), Realtime Systems, Prentice-Hall, Inc., Upper Saddle River, NJ, USA, ISBN
978-0-13-651274-5.

Noakes, D. (2017), A Minimal C++ Object-Oriented API onto Joystick Devices under Linux.

OMGIDL (2017), OMG IDL, http://www.omg.org/gettingstarted/omg_idl.htm.

Robotics and Mechatronics Robin Wijnholt

http://www.ethercat.org/pdf/english/ETG2200_V2i0i0_SlaveImplementationGuide.pdf
http://www.ethercat.org/pdf/english/ETG2200_V2i0i0_SlaveImplementationGuide.pdf
http://www.boost.org/doc/libs/1_63_0/doc/html/lockfree.html
http://www.boost.org/doc/libs/1_63_0/doc/html/lockfree.html
http://mnb.ociweb.com/mnb/MiddlewareNewsBrief-201004.html
http://mnb.ociweb.com/mnb/MiddlewareNewsBrief-201004.html
http://www.forcedimension.com/products/omega-7/features
http://www.forcedimension.com/products/omega-7/features
http://www.geomagic.com/en/products/phantom-omni/overview
https://store.gumstix.com/coms/overo-coms/overo-firestorm-p-com.html
https://store.gumstix.com/coms/overo-coms/overo-firestorm-p-com.html
https://iperf.fr/
https://iperf.fr/
http://www.boost.org/doc/libs/1_64_0/doc/html/boost_asio.html
http://www.boost.org/doc/libs/1_64_0/doc/html/boost_asio.html
http://www.youbot-store.com/wiki/index.php/API_architecture
http://www.youbot-store.com/wiki/index.php/API_architecture
http://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++
http://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++
http://moodycamel.com/blog/2014/a-fast-general-purpose-lock-free-queue-for-c++
http://www.omg.org/gettingstarted/omg_idl.htm

94 Design of a real-time network channel in LUNA

OpenDDS (2017a), DDS Overview, http://opendds.org/about/dds_overview.
html.

OpenDDS (2017b), OpenDDS Developer’s Guide, http://download.
objectcomputing.com/OpenDDS/OpenDDS-latest.pdf.

Qihoo360 (2017), Benchmark Lockfree versus Mutex, https://github.com/Qihoo360/
evpp/blob/master/docs/benchmark_lockfree_vs_mutex.md.

RaM (2017a), RaMstix FPGA Board Documentation: RaMstix Overview, https://www.ram.
ewi.utwente.nl/ECSSoftware/RaMstix/docs/index.html.

RaM (2017b), Robotics and Mechatronics - ECS Software - TERRA, https://www.ram.
ewi.utwente.nl/ECSSoftware/terra.php.

ROVE (2017), Robotics and Mechatronics - RoVe, https://www.ram.ewi.utwente.nl/
research/project/rove.html.

Smyth, N. and J. S. Davis II (1999), CSP Domain, https://ptolemy.eecs.berkeley.
edu/papers/99/HMAD/html/csp.html.

Spil, T. (2016), User-Input Device Based Command and Control of the youBot Using a RaMstix
Embedded Board.

van de Ridder, L. (2017), Design and Implementation of Embedded Control Software for a
Demonstrator Using a Model-Driven Approach, in progress.

van der Werff, W. (2016), Connecting Two Robot-Software Communicating Architectures: ROS
and LUNA.

Vilimpoc, M. (2008), Measuring Latency in the Linux Network Stack between Kernel and User
Space., https://vilimpoc.org/research/ku-latency/.

Wilterdink, R. (2011), Design of a Hard Real-Time, Multi-Threaded and CSP-Capable Execution
Framework, Ph.D. thesis, University of Twente.

Xenomai (2014), Finding Spurious Relaxes – Xenomai, https://xenomai.org/2014/
06/finding-spurious-relaxes/.

ZMQ (2014), Distributed Messaging - Zeromq, http://zeromq.org/.

Robin Wijnholt University of Twente

http://opendds.org/about/dds_overview.html
http://opendds.org/about/dds_overview.html
http://download.objectcomputing.com/OpenDDS/OpenDDS-latest.pdf
http://download.objectcomputing.com/OpenDDS/OpenDDS-latest.pdf
https://github.com/Qihoo360/evpp/blob/master/docs/benchmark_lockfree_vs_mutex.md
https://github.com/Qihoo360/evpp/blob/master/docs/benchmark_lockfree_vs_mutex.md
https://www.ram.ewi.utwente.nl/ECSSoftware/RaMstix/docs/index.html
https://www.ram.ewi.utwente.nl/ECSSoftware/RaMstix/docs/index.html
https://www.ram.ewi.utwente.nl/ECSSoftware/terra.php
https://www.ram.ewi.utwente.nl/ECSSoftware/terra.php
https://www.ram.ewi.utwente.nl/research/project/rove.html
https://www.ram.ewi.utwente.nl/research/project/rove.html
https://ptolemy.eecs.berkeley.edu/papers/99/HMAD/html/csp.html
https://ptolemy.eecs.berkeley.edu/papers/99/HMAD/html/csp.html
https://vilimpoc.org/research/ku-latency/
https://xenomai.org/2014/06/finding-spurious-relaxes/
https://xenomai.org/2014/06/finding-spurious-relaxes/
http://zeromq.org/

	Summary
	Contents
	List of acronyms
	1 Introduction
	1.1 Context
	1.2 Goals of the project
	1.3 Outline of the report

	2 Background
	2.1 LUNA and TERRA
	2.1.1 CSP
	2.1.2 LUNA
	2.1.3 TERRA

	2.2 OpenDDS
	2.3 RaMstix
	2.4 YouBot

	3 Requirements
	3.1 Network channel
	3.2 EtherCAT interface
	3.3 youBot controller

	4 Network Channel in LUNA
	4.1 Introduction
	4.2 OpenDDS
	4.2.1 Design
	4.2.2 Realization
	4.2.3 Tests

	4.3 TERRA
	4.3.1 Design
	4.3.2 Realization
	4.3.3 Tests

	4.4 LUNA implementation
	4.4.1 Design
	4.4.2 Realization
	4.4.3 Tests

	4.5 Conclusion

	5 EtherCAT interface
	5.1 Design
	5.2 Realization
	5.3 Test
	5.3.1 Setup
	5.3.2 Results
	5.3.3 Discussion

	6 EtherCAT interface and Network Channel combined
	6.1 Introduction
	6.2 Design
	6.2.1 YouBot
	6.2.2 Input device
	6.2.3 Controller
	6.2.4 Test design

	6.3 Realization
	6.3.1 Controller
	6.3.2 Controller and joystick test
	6.3.3 Integration test

	6.4 Tests
	6.4.1 Controller and joystick test
	6.4.2 Integration test

	6.5 Conclusion

	7 Conclusion & Recommendations
	7.1 Conclusion
	7.2 Recommendations

	A LUNA implementation realization
	A.1 Component integration in LUNA
	A.2 LUNA implementation

	B LUNA implementation tests
	B.1 Introduction
	B.2 Test setup
	B.3 Tests
	B.3.1 Transport
	B.3.2 Bundled data validation
	B.3.3 Latency analysis
	B.3.4 Stress tests

	B.4 Conclusion

	C Code of the integration test
	D Demo
	E Building demo from source
	E.0.1 Compiling for Ubuntu
	E.0.2 Compiling for RaMstix

	F Getting TERRA with DDS ports
	G Propagation delay on Ethernet
	H Dependency of reactor loop frequency and sending frequency
	I Waiting for publish and subscribe communication
	J Latency analysis on rendezvous communication
	Bibliography

