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Summary 

The main goal of this assignment is to study the image processing algorithms for visual servoing 
applications which require fast image processing techniques. Thus, the feasibility of such 
algorithms is investigated for hardware implementation purposes, which can be achieved by 
means of an FPGA. The target FPGA for hardware implementation is the hosted FPGA on 
RaMstix board used in the ESL course. A camera module is interfaced with the FPGA and image 
processing is done after each pixel captured (i.e. streaming).  

Several algorithms are studied and reformulated and thus mapped into hardware blocks, and 

the corresponding IPs are implemented. Moreover, each IP is tested using ModelSim and 

further IPs are verified on FPGA. 

The results show that hardware solution for image processing algorithms of point operations 
class is faster and more memory efficient in comparison to the software solution. Ultimately, an 
alternative for the image processing part of the ESL course can be added to the design space 
exploration. 
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1. Introduction 
This chapter provides a general introduction about the circumstances of this research. The research 

context, goals and approach are discussed. Finally, a broad outline of what is discussed in the further 

chapters is presented. 

1.1 Context 
In a negative feedback control system, the plant is controlled by the controller based on the difference 

between the desired state (reference point) and the current state of the plant. Information about the 

current state is reported by sensors. Such as microphone, ultra-sonic, infrared, light sensor, among 

others. In this research, a camera is the sensor in a negative feedback control system. More specifically, 

such system is called visual servoing, also known as vision-based robot control. Figure 1.1 shows the 

block diagram of this system. 

 

Figure 1.1: A negative feedback control system with a camera as its sensor 

 

Using a camera as a sensor in a control loop is fairly convenient, due the amount of information and 

details retrieved from an image. However, fetching information from a frame requires image processing 

techniques, which is computationally expensive in most cases. The implementation of such algorithms 

can be realized in either software or hardware. 

The context of this research is to evaluate the image processing part of the ESL course in particular, and 

evaluate the image processing in visual servoing for robotic applications in general. 

One of the issues of visual servoing in software implementation is that capturing frames and applying 

image processing functions is considerably slow. In most of these implementations, a frame may be read 

and buffered and then filters can be applied to the buffered frame. 

Interfacing a camera with an FPGA and implementing image processing functions on the FPGA could be 

a faster and optimal alternative for software solution.  

One of the requirements of the ESL course is to capture frames with a camera, recognize, and track a 

colorful object with a white background. The image capturing and image processing is currently done 
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with software tools. The different possibilities of interfacing a camera with the RaMstix board has been 

studied in RaM group (Venema, 2016). One of the studied paths is interfacing a camera with the Altera 

Cyclone III FPGA on the RaMstix board. 

The focus of this research is to implement image processing functions for object recognition on the 

FPGA which is hosted on RaMstix board. 

1.2 Goals  
The main goal of this research is to study image processing algorithms and choose the feasible ones for 

hardware implementation. The hardware solution should be a better alternative than the software 

solution. A new path for image processing may be added to the design-space-exploration phase of the 

ESL course. Furthermore, the implemented algorithms could be used for other setups in the RaM as a 

higher-level hardware blocks. 

Interfacing a camera with the FPGA requires a driver module, which is able to retrieve pixels from the 

camera. Additionally, the location’s information of the captured pixel in a frame, such as row and 

column addresses, can be provided by this module. After capturing the pixels, they can be processed by 

an image processing module and the desired information for the controller module extracted from the 

frame.  

The focus of this research is on image processing module. The designed IPs of this module should be 

able to work independently of the interfaced camera with the FPGA and the controller. Figure 1.2 

depicts the schematic of the modules discussed above, with the module which is the target of this 

project colored in green.  

 

 

Figure 1.2: Three modules on an FPGA for visual servoing application 

Although several algorithms may be fairly convenient to recognize an object from a frame, they may not 

be feasible for hardware implementation. Therefore, the candidate algorithms for hardware 
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implementation have to be satisfactorily accurate to recognize an object from a frame and feasible for 

hardware implementation. 

1.3 Approach 
To achieve these goals, relevant image processing algorithms related to object recognition which are 

appropriate for run-time applications are studied. Initially, algorithms are examined with MATLAB and 

modified accordingly for hardware implementation, with the resources and speed limitation of the FPGA 

on the RaMstix being taken into account. Moreover, it is investigated whether such hardware solution is 

capable of speeding up the image processing procedure. 

The steps taken are summarized as follows: 

1. Study image processing algorithms and make them feasible for hardware implementation; 

2. Design and implement corresponding IPs for the algorithms; 

3. Verify the functionality of the IPs using ModelSim and on RaMstix and; 

4. Analyze time, accuracy and resource usage of the hardware solution.  

The above mentioned steps is given as a workflow diagram depicts in Figure 1.3. 

 

Figure 1.3: The workflow diagram of implementing an IP for an image processing algorithm 

 

 

1.4 Outline 
The background information of this research is given in Chapter 2. In Chapter 3, image processing 

classification and their respective implementation on an FPGA are described. Design and 

implementation of the chosen image processing algorithms for this research is documented in Chapter 

4. Chapter 5 covers the result of the hardware solution and verification of the designed IPs. Finally the 

conclusions and recommendations are presented in Chapter 6. 
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2. Background 
In this chapter the tools and techniques which are used in this research are briefly introduced. 

2.1 Image processing 
A digital image is a 2D array with discrete values, with each element being called a pixel. Each pixel is 

addressed by a row and a column number, and the value of a pixel is called pixel intensity. 

In RGB images, a pixel intensity actually consists of three values: red, green and blue intensity. 

Moreover, a RGB image can be represented as a 2D array with three channels, with each channel storing 

the value of each color intensity. There are ways to represent RGB images as a 2D array with one 

channel, where RGB values are concatenated and stored in a binary vector, with each pixel intensity 

being represented with this binary vector. Figure 2.1 depicts two RGB standard representations, namely 

RGB565 and RGB888, with the former being used in this project. 

 

Figure 2.1: Representation of a single pixel of an RGB565 and RGB888 image 

Applying mathematic operations to pixels and producing output pixels is called digital image processing. 

By processing an image, specific information can be retrieved from the image. For instance, the number 

of objects and their positions in an image can be determined. Image processing algorithms are classified 

into two main categories, which are discussed in detail in Chapter 3.  

Image processing in visual servoing can be simply referred to retrieving desired information from a 

captured image for a controller. 

2.2 MATLAB 
MATLAB is a multi-paradigm numerical computing environment developed by MathWorks. It contains 

various built-in functions for working with images, in addition to several toolboxes for image processing. 

In this research, MATLAB is used to study the results and also compare image processing algorithms. 

Furthermore, the proposed algorithms for hardware implementation are initially implemented and 

tested with MATLAB and then translated properly to VHDL code. 
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2.3 Gumstix 
Gumstix Overo is a computer-on-module featuring Texas Instruments that hosts an ARM processor, with 
both C and C++ code can be compiled on Gumstix Overo. In this research, such board is used to 
communicate with IPs implemented on an external FPGA. Among other functionalities, this board is 
used for retrieving the result of processed pixels, setting parameters of IPs and loading pixels to IPs. 
 

2.4 FPGA 
A field-programmable gate array (FPGA) is an integrated circuit design that can be configured by 

hardware designers. Unlike microprocessors, arithmetic operations can be performed in a single clock 

cycle on an FPGA. Moreover, FPGAs are flexible and their structure can be reconfigured according to the 

design requirements. High level parallelism and pipelining can also be achieved. 

An FPGA may have various type of resources, with three being the main ones: logic elements, memory 

bits and DSP slices. The principal building of the designed system is constructed with logic elements. 

Logic gates, registers, multiplexers, and others are constructed with logic elements, for instance. Buffers, 

RAMs, ROM, lookup tables, on the other hand, can be constructed with memory bits. DSP slice contains 

pre-built adders and multipliers, thus instead of building adders and multipliers with logic elements, 

data for addition and multiplication can use such pre-built DSP slice components.    

In this research the target FPGA is an Altera Cyclone III ep3c40q240c8n which is hosted on the RaMstix. 

The target FPGA used in this research is shown below. 

Table 2.1 shows the available resources of such FPGA.  

Total logic elements 39,600 

Total memory bits 1,161,216 

Embedded Multiplier 9-bit elements 252 

Total pins 129 

Total PLL 4 

 

2.5 RaMstix 
RaMstix is a board developed by the RaM group, and it hosts a Gumstix Overo and an FPGA, which can 

communicate with each other and exchange data through a General Purpose Memory Controller 

(GPMC). In this research, image processing operations are implemented as IPs and uploaded to the 

FPGA, meanwhile the parameters of those IPs are set via a software program hosted on the Gumstix. 

The RaMstix board is shown in Figure 2.2 below.  
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Figure 2.4: RaMstix board with colored boxes indicating the Gumstix (red) and FPGA I/O pins for camera 

connections (purple)  
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3. Image processing algorithms on FPGAs 
Initially, this chapter discusses the advantages of implementing image processing algorithms on FPGAs. 

Further, a couple different classes of image processing algorithms are discussed and their 

implementation on an FPGA is investigated. This classification is according to the book Design for 

Embedded Image Processing on FPGAs (Bailey, 2011).   

 

3.1 Why FPGAs for image processing? 
As mentioned in Chapter 1, in most software implementations a frame is captured with a camera and 

stored in memory, and filters are subsequently applied to the buffered frame. This method is not time 

efficient due the fact the system is halted until a frame is captured and buffered.  

In microcontroller systems, arithmetic operations are executed sequentially, thus applying filters to a 

frame also takes a long time. Real-time image processing libraries, such as OpenCV (Bradski, 2000), are 

proved to not be energy efficient (Venema,2016) and only available in certain (non real-time) operating 

systems. 

FPGAs are an alternative platform for capturing and processing frames. Interfacing a camera with an 

FPGA makes it possible to apply filters to the captured pixels of a frame as the new pixels of the same 

frame are being captured - this is called pipelining. Since in an FPGA arithmetic operations like addition 

and multiplication can be performed in a single clock cycle, various operations can be applied to the 

captured pixels at the same time - this is called parallelism. 

By taking advantage of pipelining and parallelism, it can be stated that using an FPGA for capturing and 

processing frames is faster than using a computer-on-module. Furthermore, an FPGA could be more 

energy efficient in many cases.  

FPGAs have their own limitations: division is not a straightforward operation, external IPs may be 

required, proper datatype (usually fixed-point) must be proposed for intermediate signals, and memory 

is also limited. However, in visual servoing applications it is not necessary to buffer frames as whenever 

the desired information is extracted, the frame can be discarded. Memory limitation only occurs for 

object recognition algorithms that need to be applied to multiple frames. Therefore, it is important to 

choose the algorithms that can recognize an object from a single frame. 

3.2 Image processing classification  
According to the book Design for Embedded Image Processing on FPGAs (Bailey, 2011), image 

processing algorithms are classified in two main categories: point operations and neighborhood 

operations. In this section, such classes are briefly discussed and their main differences identified.  

3.2.1 Point operations 
Point operation is the simplest class of image processing operations. The output value of a pixel depends 

only on the corresponding pixel value of the input image. Point operation processing can be described 

by Equation 3.1. 

𝑄[𝑥, 𝑦] = 𝑓([𝐼(𝑥, 𝑦)])    (3.1) 
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Where 𝑄[𝑥, 𝑦] is the output pixel with row address 𝑥 and column address 𝑦, 𝐼(𝑥, 𝑦) is the input pixel 

with row address 𝑥 and column address 𝑦 and 𝑓 is an arbitrary function. 

Due the fact the output pixel value is only dependent on the input value and not on the location of the 

pixel in the image, point operation may be represented by a mapping or transfer function, as shown in 

Figure 3.1. 

 

Figure 3.1: A point operation represented by a transfer function block diagram 

Color thresholding is an example of point operation. In its fundamental form, color thresholding 

corresponds to comparing each pixel in the image with a threshold level (i.e. value) and sets the outputs 

to either a logical ‘1’ or logical ‘0’ (binary values), as shown in Equation 3.2 which is plotted in Figure 3.2. 

𝑄 =  {
1, 𝐼 ≥ 𝑡ℎ
0, 𝐼 < 𝑡ℎ 

       (3.2) 

 

Figure 3.2: Simple thresholding plot 

Contrast and brightness adjustment, image averaging and image subtracting are other examples of point 

operations. 

3.2.2 Neighborhood operations  
In neighborhood operations, in contrast to point operations, the output pixel does not only depend on 

the corresponding pixel value of the input image; it may also depend on the neighboring pixels of the 

input image. 

Spatial filters are an example of this class, and is accomplished through an operation called 2D 

convolution. A 2D convolution is a neighborhood operation, in which each output pixel is computed by 

weighted summing of the neighboring input pixel (i.e. weighted averaging).  
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The matrix that contains the filter coefficients is called kernel matrix or window. The size of a window is 

represented by 𝑛 × 𝑚 where usually 𝑛 = 𝑚 and it is an odd number. To apply a spatial filter to an 

image, the window is scanned throughout the image. Figure 3.3 illustrates applying a spatial filter to an 

image, with a kernel window of 3x3. 

 

Figure 3.3: Applying a 3×3 spatial filter on pixel 𝑒 

The filter type is determined by its coefficients window. Figure 3.4 depicts commonly applied windows 

for spatial filters.  

 

Figure 3.4: Three common spatial filter’s windows 

3.3 Image processing classes on FPGA    
This section explores the implementation of the aforementioned image processing classes. Additionally, 

several time analyses for implementation of both classes is examined.    

3.3.1 Point operations on FPGA 
From a hardware implementation point of view, implementation of point operations may be easy, fast 

and memory efficient. Since each operation is applied exactly once to each pixel in the image, each 

captured pixel can be passed through an IP implementing the function. 

Due to the fact each pixel is processed independently, point operations can also be easily implemented 

in parallel. After a captured pixel is processed, it can be discarded and does not need to be buffered. 

The time required to process a frame (τ) with point operation filters can be calculated with Equation 3.3. 
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τ = (𝑝 × 𝑛 × 𝑚) + ∑ 𝑓𝑖
𝐿−1
𝑖=0              (3.3) 

Where 𝑝 is the average time to capture a single pixel in term of clock cycles, 𝑛 is the number of rows of 

the input frame, 𝑚 is the number of columns the input frame, 𝐿 is the number of cascaded filters and 𝑓𝑖 

is the firing time of each cascaded filter in term of clock cycles. 

Figure 3.5 shows an example of calculating τ of a system with a 5 × 5 frame with each pixel being 

captured in 2 clock cycles. Clock cycles are represented as clk. 

 

Figure 3.5: An example of calculating τ of a system with 3 cascaded filter 

3.3.2 Spatial filters on FPGA 
As described is section 3.2.2, in spatial filters each output pixel is the weighted sum of neighboring input 

pixels. In the software approach, both input and output frames are stored in buffers, and in order to 

apply a filter, the coefficients window is scanned throughout the buffered frame. However, in the 

hardware approach, the intention is to pipeline the capturing and filtering process. Therefore, instead of 

scanning the coefficients window, the input image is streamed through the coefficients window. 

Unlike point operations, an input pixel does not get involved only in computing the value for the 

corresponding location in the output image: it may also take part in calculating other output pixels. For 

this, reason a pixel cannot be discarded immediately and it has to be buffered until it is not required 

anymore. 

Pixels of a frame are captured row by row by an FPGA. Arriving pixels must be streamed through the 

coefficients window, and due to this fact, cashing for stream processing of a 𝑤 × 𝑤 coefficients window 

requires series of 𝑤 − 1 row buffers with the size of the frame’s column, as depicted in Figure 3.6. Thus, 
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one can conclude that implementation of spatial filters on FPGA demands additional memory to buffer 

input pixels. 

 

Figure 3.6: Streaming a 3 × 3 coefficients widow  

In order to calculate the value of a specific output pixel, the system has to be halted until all the 

required input pixels are captured. This halt time (ℎ𝜏) is expressed in terms of the number of captured 

pixels and can be calculated with Equation 3.4. 

ℎ𝜏 =
𝑤−1

2
 [𝑚 + 1] + 2           (3.4) 

Where 𝑤 is the dimension of the coefficients window, and 𝑚 is the number of columns of the input 

frame. For example, the filter computation for determining the first output pixel of a frame with 5 

columns and 𝑛 rows with a 3 × 3 coefficient window starts after capturing and buffering the first 8 

pixels, as calculated below: 

ℎ𝜏 =
3 − 1

2
[5 + 1] + 2 = 8 

The time required to process a full frame (τ) with a spatial filter can be calculated with Equation 3.5. 

𝜏 = (𝑝 × 𝑛 × 𝑚) + ℎ𝜏            (3.5) 

3.4 Next steps and summary 
Based on the context and goal of this research, relevant image processing algorithms have been studied 

and their classification is considered. Their attribute are figured out and adopted to be mapped into 

hardware. Each candidate algorithm for hardware implementation, is implemented as a separated IP. 

Implemented IPs are verified using ModelSim and tested on RaMstix board.  

Image processing algorithms are classified into two main categories, point operations and neighborhood 

operations. Point operations are simple, fast and memory efficient to be implemented as a hardware 

block. The FPGA on RaMstix board is small and resource limited, thus in this research the focus is to 

implement hardware blocks for several point operation image processing algorithms.  
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4. Design and implementation 
The main topic of this chapter is about proposing and altering image processing algorithms for hardware 
implementation. With the image processing requirement of the ESL course being discussed as an 
example. Furthermore, the implementation of color thresholding operation is examined, and an 
algorithm to mark binary images which is suitable for hardware application is introduced and its 
implementation is discussed. Finally, the implementation of noise reduction after thresholding and 
before marking an image on the FPGA is explained.   

4.1 ESL image processing requirements 
The last part of the ESL course is about vision in loop, in which a colorful shape with a white background 

has to be captured by a camera and tracked by actuating the servos. The camera is interfaced with 

Gumstix through an USB port. 

Thresholding operation can be applied to the captured frame, and after thresholding the colorful shape 

is represented by white pixels and its background represented by black pixels (i.e. binary image). An 

algorithm has to be proposed to mark a position of one of the white pixels, which could belong to the 

center of the shape or any other part of the shape. Then, servos move the camera until the marked pixel 

is positioned around the middle of the frame. One of the possible algorithm that students use to mark a 

pixel of the frame is described in the next section. 

4.2 Erosion filter 
One possible way to determine the center of a shape with white pixels in a binary image is erosion filter, 

which is one of the fundamental operations in morphological image processing and its task is to, as the 

name suggests, erode the white pixels. 

A coefficients window, called Structure Element (SE), with either logical ‘1’ or logical ‘0’ as coefficient 

values is scanned through a binary image. The output pixel is set to logical ‘1’ if the corresponding 

location of the input pixel and its neighboring pixels are matched with the coefficient values of the SE, 

and to logical ‘0’ otherwise. Figure 4.1 shows an example of applying an erosion filter to a binary image.  



13 
 

Robotics and Mechatronics Kiavash Mortezavi Matin 
 

 

Figure 4.1: A simple erosion filter example 

If the SE has the same structure as the shape of interest in a binary image, the only pixel which fulfills 

the erosion filter’s condition is the pixel that belongs to the center of the shape, as shown in Figure 4.2 

below. 

   

Figure 4.2: An erosion filter applied to find the center of the shape in a binary image 

Since the SE is a window with constant values, if the distance between camera and object changes, the 

proposed SE will not correspond to the shape anymore, and the center of the shape cannot be detected. 
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Therefore, the distance between camera and object must be constant at all times with this approach. On 

the other hand, erosion filter is classified into neighborhood operations and the hardware 

implementation is slow and memory inefficient, thus it is not suitable for real-time applications. 

4.3 Color thresholding on FPGA 
Implementation of the RGB color thresholding IP is straightforward: input pixels are compared with a 

threshold level and the output is set to either logical ‘1’ or ’0’ based on the comparison result. 

Initially, a sub-IP is designed which compares color intensity and threshold value according to the given 

comparison operation. This IP is named color_thresholding and its structure are shown in Figure 4.3. 

Since each pixel of a RGB image is represented by three color intensities (red, green and blue), three of 

such IPs are required, one for each channel. The output pixel value is determined by simply AND’ing the 

result of all IPs, as shown in Figure 4.4.  

Details of the implementation can be found in RaM_Vision_RGB_Threshold.vhd file, attached to this 

report. 

 

Figure 4.3: Structure of the color_thresholding IP 
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Figure 4.4: Thresholding pixels with three color_thresholding IPs 

4.4 Introduction to the MRCC marker algorithm  
Maximum Row, Center Column (MRCC) algorithm is designed to mark a pixel in a binary image. As its 

name suggests, it searches for a row which contains most white pixels, which can be achieved by 

summing the pixels values of each row. The row with the maximum sum is the row of interest.  

It is possible, however, that an image has multiple rows with the same maximum sum. In this case, the 

row of interest is determined by averaging the first and last row indexes with the same maximum sum. 

For instance, if rows number 2, 5 and 10 contain the maximum sum, the row of interest is ⌊
2+10

2
⌋ = 6. In 

this example, row 6 is determined by the rows with the maximum sum, although it might not be the one 

with the maximum sum. 

The center column of each row is computed by averaging the column index of the first and last detected 

white pixel in each row. The center column which belongs to the row with the maximum sum is selected 

as the column of interest. If an image contains more than one row with maximum sum, as the example 

above, the center column is determined by the average of the center column of the first and last rows 

with the maximum sum. 

The Pseudocode of MRCC algorithm is depicted in Figure 4.5 below, and Figure 4.6 illustrates an 

example of marking a pixel in a binary image with this algorithm. 
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Figure 4.5: Pseudocode of MRCC algorithm 

MRCC algorithm does not necessarily marks a pixel inside the shape. The marked pixel could be also 

located outside the shape, but somewhere close to it. Figure 4.7 presents an example of marking a pixel 

outside the shape with MRCC algorithm. 

 

Figure 4.6: Marking a pixel of a binary image with MRCC algorithm 
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Figure 4.7: A pixel is marked outside the shape by MRCC (blue dot) 

MRCC is not a rotational invariant algorithm, which means if the orientation of the shape changes, the 

marked pixel can be in a different position. Figure 4.8 depicts such phenomenon, by applying MRCC 

algorithm to the shape presented in Figure 4.7, but rotated 90° clockwise. 

 

Figure 4.8:  Shape in Figure 4.7 rotated 90° clockwise and marked with MRCC (blue dot) 

It is noticeable that MRCC algorithm cannot be applied to binary images that contain multiple shapes or 

lots of noise. If noise is present in a binary image, the MRCC algorithm might mark the wrong pixel which 

may be located far away from the shape. This issue is further discussed in section 4.6. 
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4.5 MRCC marker algorithm implementation on FPGA  
MRCC is classified as a point operation algorithm and its hardware implementation is simple, easy and 

memory efficient. After each captured pixel goes thorough the thresholding IP, it is forwarded to the 

MRCC IP.  

One of the tasks of this IP is to sum up the pixels values corresponding to each row and compare the 

result with the maximum sum which was determined in previous rows. Two registers are used for this 

purpose, namely cnt and cnt_reg. The former is an accumulator register and its output is fed back to one 

input of the adder. The other input of the adder is connected to the arriving pixel value. On the other 

hand, cnt_reg stores the maximum sum of the previous rows. Two additional registers are used to hold 

the index of the rows with maximum sum, namely row_idx_reg_0 and row_idx_reg_1. 

When a new row is detected, the value of cnt and cnt_reg are compared. If cnt is smaller than cnt_reg, 

cnt is set to zero. Otherwise, it means that a new row with maximum sum is detected, therefore, 

cnt_reg is set to the value of cnt and cnt is set to zero. Furthermore, registers row_idx_reg_0 and 

row_idx_reg_1 are set to the value of the current row index. If cnt is equal to cnt_reg, it means that the 

current row has the same sum as the last registered row with maximum sum. In this case, only 

row_idx_1 is updated to the index of the current row. Finally, the index of the row of interest is 

calculated by adding row_idx_reg_0 and row_idx_reg_1 and the result is shifted to the right by one bit 

(i.e. divided by 2) – essentially the middle value. Figure 4.9 shows the corresponding circuit of the 

process explained above, with flip-flops not being depicted for simplicity. 

 

Figure 4.9: Digital circuit for determining the row with maximum sum 

Another task of MRCC IP is to detect the center of white pixels at each row. Two registers are used for 

this purpose, namely col_idx_reg_0 and col_idx_reg_1. The arriving signals corresponding to each row 
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are checked, and when a white pixel (a bit with value one) is detected for the first time in a row, 

col_idx_reg_0 and col_idx_reg_1 are set to the index of the current column. Furthermore, col_idx_reg_1 

is set to the index of the column of the latest detected white pixel in a row. The index of the column of 

interest can be calculated by adding col_idx_reg_0 and col_idx_reg_1 and shifting the result to the right 

by one bit (i.e. diving by 2). Figure 4.10 illustrates the corresponding circuit of this process, with 

flip-flops not being depicted for simplicity. 

The complete VHDL code of MRCC can be found in RaM_Vision_MRCC.vhd in the attached zip file. 

 

Figure 4.10: Digital circuit for determining the center column of each row 

4.6 Erosion filter for noise reduction  
As it discussed in section 4.4, by applying the MRCC algorithm to a noisy binary image, a pixel located far 

away from the shape of interest might be marked, especially if the noise is distributed around the rows 

with maximum sum, as illustrated in Figure 4.11 below. 

 

Figure 4.11: MRCC algorithm marked a wrong pixel in the noisy binary image (red rectangle)  
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In Figure 4.11, the blue rectangle depicts the location of the pixel which should be marked by MRCC 

algorithm without presence of any noise in the binary image. The red rectangle, on the other hand, 

shows the location of the pixel which is actually marked by MRCC algorithm in the noisy image. Thus, 

before applying the MRCC algorithm to a binary image, noise reduction is essential.   

An erosion filter, which is also mentioned in section 4.2 for determining the center of a shape in a binary 

image, is a convenient tool for noise reduction. In general, this filter is classified into neighborhood 

operations class. It requires a structural element (SE) to determine the output pixels, which is described 

as a 𝑛 × 𝑚 window, and 𝑛 − 1 row buffers are required for implementing it as previously discussed 

(check section 3.3.2). However, if the SE is defined as a horizontal line, 𝑛 is equal to one, and therefore 

no row buffer is required. In this scenario, the latency of the filter is only proportional to the length of 

the horizontal line (𝑚). Additionally, the value of each output pixel is determined by AND’ing the current 

input pixel with its horizontal neighborhood pixels, indicated by the SE. The length of the SE (𝑚) is 

determined according to the noise distribution in the rows. 

Figure 4.12 and Figure 4.13 show the same binary image as in Figure 4.11 but after applying an erosion 

filter with an SE of size 1 × 10  and 1 × 20, respectively. Furthermore, the red rectangle indicates the 

location of the marked pixel according to the MRCC algorithm in each figure. 

 

Figure 4.12: Marking the noisy binary image according to MRCC algorithm after noise reduction with an SE of 

size 1 × 10 
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Figure 4.12: Marking the noisy binary image according to MRCC algorithm after noise reduction with an SE of 

size 1 × 20 

It is simple to notice that the erosion filter directly affects the size of the shape of interest, as it erodes 

the shape in one orientation only: horizontally. Thus, the location of the marked pixel by MRCC 

algorithm may be slightly different than the location of the marked pixel in the original binary image 

without presence of any noise. 

4.7 Erosion filter implementation on FPGA 
Implementation of an IP for the erosion filter discussed in the previous section is straight forward. 

Initially, a register file with word size of 1-bit for each register block is considered. The depth of this 

register file is equal to the size of the SE (𝑚) itself, and the initial value of each register block is set to 

zero. After a pixel is received by the IP, it is stored in the corresponding register block. Once more, the 

output is determined by AND’ing the value of all register blocks. The latency of producing an output 

pixel after receiving the corresponding input pixel is a single clock cycle. Figure 4.13 shows the 

architecture of the filter explained above, with a size three SE (𝑚 = 3). 

 

Figure 4.13: Architecture of an erosion filter for noise reduction with 𝑚 = 3 



22 
 

Robotics and Mechatronics Kiavash Mortezavi Matin 
 

4.8 Threshold-Marker parallel chains 
Since color thresholding is classified as a point operation, the captured pixels can go through various 

color_thresholding IPs with different threshold levels at the same time. With this capability, multiple 

objects with different colors or an object with multiple colors as it shown in Figure 4.15, can be 

recognized. 

 

Figure 4.15: An image with objects with different colors 

Furthermore, the output pixel of each thresholding_IP goes through the erosion filter for noise 

reduction. Finally, the MRCC IP marks a pixel on or around each shape. To accomplish this, a 

threshold-marker node is configured, which corresponds to a color_thresholding IP followed by an 

erosion and MRCC IP. Due to the fact a node can process each captured pixel independently, each 

captured pixel can go through each node at the same time to be checked for different threshold levels. 

Multiple threshold-marker nodes in a system compose threshold-marker parallel chains. Figure 4.16 

shows the structure of a threshold-marker node and a threshold-marker parallel chain. 

The threshold levels, threshold operations and size of the SE of the erosion filter of each node can be set 

via a software program which uses the GPMC bus. For this purpose, the C++ class RaMVision is 

implemented, and an explanation on how to handle it and its methods, including configuring the parallel 

threshold-marker chain are described in Appendix B.  
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Figure 4.15: A threshold-marker node and a threshold-marker parallel chain 
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5. Results and verifications     
In this chapter, the method to verify the functionality of the designed IPs with ModelSim is initially 

explored. Further, the procedure to test the designed IPs on RaMstix board without interfacing any 

camera with the board is discussed. Which is possible due the functionality of the IPs are independent of 

the interfaced camera.  Finally, latency of the implemented IPs and the limitations of RaMstix board are 

examined.      

5.1 Testing the designed IPs with ModelSim  
ModelSim is a convenient tool to simulate and verify the functionality of the designed IPs. The IPs of this 

research must be fed with a complete frame in order to correctly compute the final result. For this 

reason, the behavior of OV7670 camera is described with a VHDL module and the IPs are tested with 

this module. This module is not synthesizable and is used only for testing purpose, however it generates 

signals according to the OV7670 datasheet [https://www.voti.nl/docs/OV7670.pdf]. Using this module in 

ModelSim environment also provides the possibility to test and verify the driver’s IP for such camera.  

In order to make this module able to generate pixels of a frame, a colorful image is initially loaded in 

MATLAB. Each color intensity of each pixel belonging to the image is then written in separate files, which 

are read with functions of VHDL’s library textio in the OV7670 camera module, and the value of each 

pixel is formed and generated by the OV7670 camera module. Figure 5.1 shows the output signals that 

are generated by OV7670 module. 

 

Figure 5.1: Generated signal by OV7670 camera module 

In the test bench, the OV7670 camera module is connected to the frame_capture IP, that captures data 

from the module and composes the value of each pixel as a 16-bits output (RGB565 format). This output 

goes through the designed IPs to verify their functionality. 

The test bench contains a thresholding and MRCC IP cascaded. In order to test the functionality of the 

former, textio library can be helpful. The output of thresholding IP can be written in a file through 

functions of the textio library. Such file can be read in MATLAB, displayed as a figure and compared with 

the thresholding result of the same image. The MRCC IP outputs two scalar numbers: row and column 

addresses. These values can be compared with the outputs of the MRCC function implemented in 

MATLAB which is applied to the same image. In Figure 5.2 the structure of the test bench and the test 

strategy is illustrated. 
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Figure 5.2: Test strategy with MATLAB and ModelSim 

5.2 Testing the IPs without a camera on RaMstix 
As discussed in section 1.2, this research focuses on the image processing part of visual servoing 

applications, independent of the camera module interfaced with the FPGA. Therefore, all designed IPs 

are able to work with any camera module as far as the required signals, such as row and column 

addresses, pixel value and pixel ready are provided by the camera’s driver. 

Due to this fact, the designed IPs can be tested even without the presence of a camera. A colorful image 

is read in MATLAB and the color intensities of each pixel are written in a separate file as described in 

section 5.1. These files are read with a C++ program which runs on the Gumstix, hosted on RaMstix 

board. Each pixel is then formed with RGB565 format and transferred to the FPGA through the GPMC 

bus. A memory block is intended in the FPGA to store the transferred pixels from the Gumstix, which 

contains 19200 slots, equal to the number of pixels of a frame with dimensions 120 × 160, and each 

slot has a size of 16-bits.  

When the memory is fully loaded with pixels values of a frame, each pixel is read from the memory and 

forwarded to the IPs. Meanwhile, corresponding row and column addresses of each pixel is provided by 

an auxiliary IP called address_generator. 

To test the functionality of the thresholding IP, its output is stored in a memory block with a size of 

19200 slots, with each slot corresponding to 1-bit. The memory is read by a C++ program, which runs on 

the Gumstix, through the GPMC bus. Furthermore, the retrieved values are stored in a text file by the 

C++ program. Such file can then be loaded in MATLAB in order to be verified. 

The outputs of “MRCC” IP are written to the GPMC registers which can be read by the C++ program and 

are shown in the terminal. Figure 5.3 depicts the schematic of the discussed test environment above.    



26 
 

Robotics and Mechatronics Kiavash Mortezavi Matin 
 

 

Figure 5.3: Testing IPs on RaMstix without the presence of a camera module 

5.3 Latency and limitations of RaMstix 
The time required for determining the position of a colorful shape in a frame by a threshold-marker 

node (τ) can be computed according to Equation 3.3, discussed in section 3.3.1. The firing time of both 

thersholding and MRCC IPs are one clock cycle. Assuming the value of each pixel is retrieved in eight 

clock cycles on average and considering a frame with dimensions 120 × 160, τ is calculated as follow: 

𝜏 = (8 × 120 × 160) + 2 =  153602 𝑐𝑙𝑜𝑐𝑘 𝑐𝑦𝑐𝑙𝑒𝑠 

In the calculation above it is assumed that the interfaced camera is an OV7670 camera module. This 

camera by default outputs frames in VGA format (480 × 640). Considering this format, a pixel with 

RGB565 format is retrieved in two clock cycles. However, in order to extract a pixel value in QQVGA 

format (120 × 160), eight clock cycles are needed on average. For full specifications, one should refer to 

the OV7670 datasheet [https://www.voti.nl/docs/OV7670.pdf]. 

RaMstix can provide a maximum clock of 50 MHz for the hosted FPGA. However, the filters operations 

are limited to the input clock frequency of the camera module. Assuming the input clock frequency of 

the camera is 25 MHz, the calculated τ above can be expressed as: 𝜏 = 153602 ×
1

25𝑀ℎ𝑧
= 6.1 𝑚𝑠. 
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The FPGA resource usage for a module with 1 threshold-marker node and 20 threshold-marker nodes 

with maximum SE size of 100 for erosion filter in each node is given in table 5.1. 

threshold-marker 
nodes 

Total 
combinational 

functions 

Dedicated logic 
registers 

Total logic 
elements 

Total memory bits 

1 3620 (9%) 4603 (12%) 5773 (15 %) 0 (0%) 

20 18300 (46%) 12750 (32%) 38650 (97%) 0 (0%) 
Table 5.1: Resource usage of the FPGA for a module with 1 and 50 threshold-marker nodes 

A high speed camera requires high input clock frequency to operate correctly, with the OV10625 camera 

module, for instance, being able to output 60 frame per seconds. Such device can be interfaced with 

RaMstix board, and image processing functions can be applied to the retrieved frames. Higher speed 

cameras which require more than 50 MHz clock as their input frequency cannot be interfaced with 

RaMstix. Although, if an input frequency greater than 50 MHz can be provided for a high speed camera 

(for instance 160 frame per seconds), the frames could be retrieved, but filters’ arithmetic operations 

may not be completed within a single clock cycle. Due to this fact, frame buffering may be required, thus 

extra delay is introduced in the system.       



28 
 

Robotics and Mechatronics Kiavash Mortezavi Matin 
 

6. Conclusions and recommendations 
This chapter summarize the goals, approach and results this research context. The recommendations of 

follow-up of this research are likewise presented in this last chapter. 

6.1 Conclusions  
The goal of this project is to investigate the implementation of the image processing part of the visual 

servoing applications on FPGA with the ESL course requirements as an example. To this end, relevant 

image processing algorithms are studied and their feasibilities for hardware implementation examined. 

Algorithms are restructured in such a way to be suitable for hardware design. Higher level of pipelining 

and parallelism can be achieved than the software approach by implementing image processing 

algorithms on an FPGA.  

Image processing algorithms are classified into two classes: point operations and neighborhood 

operations. In point operations, output pixel value only depends on the corresponding pixel value of the 

input image. Hardware implementation of the algorithms belonging to this class is not difficult, fast and 

memory efficient. In neighborhood operations, on the other hand, the output pixel value depends on 

the corresponding pixel value and its neighbors’ pixels values of the input image. Hardware 

implementation in this case is arduous, slower and less memory efficient. However, more detailed 

information could be retrieved from a frame by applying these algorithms.  

In this research several algorithms of point operations class are designed as IPs. The implemented IPs 

can work independently of the camera module interfaced with the FPGA as long as the required signals 

are provided by the camera’s driver.  

Implementing image processing algorithms on an FPGA can speed up the processing time, but it has its 

own limitations. In this application, the hosted FPGA on RaMstix board has limited resources (e.g. 

memory). Therefore, algorithms which requires storing multiple frames to derive relevant information is 

not suitable for this specific platform. 

The hosted FPGA on RaMstix board is capable of running on a clock up to 50 MHz, but in order to 

execute image processing algorithms, the computation frequency is limited by the camera’s input 

frequency: 25 MHz. High-speed cameras with greater input frequencies can be interfaced with an FPGA 

fed with a higher clock frequency, and in this case, frames can be captured at a higher rate, but the 

computation frequency is limited to the minimum period that the filter operations are performed on the 

FPGA. 

A color_thresholding IP is designed to threshold the image by comparing each pixel’s color intensity with 

the certain threshold level. After thresholding, the output pixels go through the erosion IP for noise 

reduction. Furthermore, the filtered pixels are forwarded to the MRCC IP. This IP marks a pixel on or 

around the shape of interest. The center pixel of the row which contains most white pixels, is marked by 

MRCC IP. 

A color_thresholding IP followed by an erosion IP and MRCC IP is called threshold-marker node. Various 

threshold-marker nodes is a system is called threshold-marker parallel chain. The threshold level of each 

node of the chain can be set with different value and a captured pixel can be examined with different 

threshold level in parallel.    
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6.2 Recommendations 
In this research, several image processing algorithms are studied and implemented, but more advance 

algorithms can be investigated for hardware implementation. 

With respect to the ESL course, the recommendations are to provide a 60 fps camera and install it on 

top of servos. This enables students to have an extra option for image processing during the design 

exploration part of the course. Image processing can take place either on the Gumstix, the Gumstix 

hosted on RaMstix or the FPGA hosted on RaMstix. 

The ESL manual should be updated with new information about the designed IPs for image processing in 

addition to a guide to configure them on the RaMstix board. 

For research purposes, the recommendations are to study more advance image processing algorithms 

and reconstruct them for hardware implementation.  For instance, reformulating the algorithm for 

finding the connected components in a binary image for hardware implementation is an interesting 

idea. As this algorithm is iterative and not convenient for hardware implementation, by slightly 

sacrificing the accuracy, it could be reformulated to be feasible for hardware implementation. 

Several advanced methods such as either classic image processing algorithms or neural network 

approach can be investigated and implemented on an FPGA with more resources rather than the hosted 

one on RaMstix board. 
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A. Creating RGB files from MATLAB 
 

A RGB image can be read in MATLAB with imread function. This function returns a three dimension 

matrix. Each dimension of the matrix contains one of the red, blue and green color intensity. Each 

dimension of the matrix is converted to RGB565 format and reshaped as a row array with reshape 

function. Furthermore, each reshaped dimension of the matrix is saved in a separate file. Figure A.1 

shows the code list of the procedure discussed above.   

 

 

Figure A.1: MATLAB code to store the RGB values of an image in separate files with RGB565 format 

B. IPs catalogue  
RaM_Vision_Computer_Vision_pkg  

This package contains constants, types and components that are used in IPs. 

Name Description  

IS_GREATER Color thresholding operation 

IS_GREATER_EQUAL Color thresholding operation 

IS_LESS Color thresholding operation 

IS_LESS_EQUAL Color thresholding operation 

IS_EQUAL Color thresholding operation 
Table C.1: Constants of the RaM_Vision_Computer_Vision_pkg 

Name Description 

COLOR Contains of 8-bits red, green and blue color 
intensity 
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COLOR_OPERATION Contains of 3-bit comparative operation for each 
color intensity which can be matched with one of 

the constants in table C.1 

Table C.2: Types of the RaM_Vision_Computer_Vision_pkg 

Name Description 

RaM_Vision_Color_Threshold An IP for thresholding a color 

RaM_Vision_RBG_Threshold An IP for thresholding a RGB color 

RaM_Vision_MRCC An IP for marking a binary image 

RaM_Vision_Erosion An IP for reducing noise in a binary image 

RaM_Vision_Threshold_Marker_Node An IP which contains a thresholding IP followed 
by an erosion and a MRCC IPs 

Table C.3: Components of the RaM_Vision_Computer_Vision_pkg 

RaM_Vision_Color_Threshold 

This IP receives pixels at its output and compare the value of the received pixel with the given threshold. 

 

Name I/O Width  Description  

ce Input 1 Chip enable 

clk  Input 1 Clock 

reset Input 1 Reset 

reference_color Input 8 Reference color for 
comparison 

input_color Input 8 Input pixel 

comando Input 3 Comparison operation 

ready Output  1 Output ready 

threshold_out Output 1 Threshold result 
Table C.4: Ports of the RaM_Vision_Color_Threshold 

 

RaM_Vision_RBG_Threshold 

This IP consists of three RaM_Vision_Color_Threshold for thresholding each red, blue and green color 

intensities.  
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Name I/O Width  Description  

ce Input 1 Chip enable 

clk  Input 1 Clock 

reset Input 1 Reset 

reference_color Input 16 Reference color for 
comparison  

input_color Input 16 Input pixel 

comando Input 9 Comparison operation 

ready Output  1 Output ready 

pixel_out Output 1 Threshold result 
Table C.5: Ports of the RaM_Vision_RBG_Threshold 

 

 

 

RaM_Vision_MRCC 

This IP marks a binary image according to the MRCC algorithm.  
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Name I/O Width  Description  

ce Input 1 Chip enable 

clk  Input 1 Clock 

rst Input 1 Reset 

din Input 1 Input pixel 

new_row Input 1 New row detected 

row_idx Input 15 Row address of the 
input pixel 

col_idx  15 Column address of the 
input pixel 

row_idx_out Output  16 Calculated row 

col_idx_out Output 16 Calculated column 
Table C.4: Ports of the RaM_Vision_MRCC 

 

 

RaM_Vision_Erosion 

This IP reduce the rows noise in a binary image. 

 

 

 

 

Name I/O Width  Description  

ce Input 1 Chip enable 

clk  Input 1 Clock 

rst  Input 1 Reset 

pixel_in Input 1 Input pixel 

n Input 8 Size of SE 

pixel_out Output 1 Pixel out 
Table C.7: Ports of the RaM_Vision_erosion 
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RaM_Vision_Threshold_Marker_Node 

This IP consists a thresholding IP followed by an erosion and MRCC IPs.  

 

 

Name I/O Width  Description  

threshold_ce Input 1 Chip enable 

clk  Input 1 Clock 

reset Input 1 Reset 

reference_color Input 16 Reference color for 
comparison  

input_color Input 16 Input pixel 

comando Input 9 Comparison operation 

row_idx Input 14 Row address of the 
input pixel 

col_idx Input 14 Column address of the 
input pixel 

row_idx_out Output 16 Calculated row 

col_idx_out Output  16 Calculated column 
Table C.3: Ports of the RaM_Vision_Threshold_Marker_Node 
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