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ABSTRACT 

[Background] The Virtual Therapy Consortium is working on a functional predictive tool to facilitate 

evidence-based decisions on cancer treatment proposals. For this purpose, a biomechanical model is 

under development. The biomechanical model will contain high quality 3D animations incorporating patient 

specific anatomy, physiology, and neuromuscular information. In the case of tongue cancer, it is desired 

that the model demonstrates patient specific treatment effects on functions as mastication, swallowing, 

and audible speech. To accomplish these simulations a personalised tongue model is essential. 

[Objective] The goal of this thesis was to make the first steps towards addition of neuromuscular 

information to a generic biomechanical tongue model, for personalisation purpose. [Methods] The first 

step incorporated the development of an electrode setup to measure tongue muscle activation, using the 

patient-friendly surface electromyography (sEMG). Different electrode setups, using both current materials 

and new prototypes, were tested for technical and practical suitability. The two best performing grids were 

applied in an experiment with one healthy subject for tongue sEMG quality evaluation. To distinguish 

activation of individual tongue muscles, the second step involved identification of motor unit action 

potential trains (MUAPTs), referred to as decomposition. The recently developed sEMG decomposition 

approach (KmCKC) of Ning et al. [1] was analysed, optimised and tested on simulated EMGs. This 

decomposition method was also applied to the experimental tongue sEMG. The third step involved 

evaluation of the MUAPT propagation patterns for allocation of motor units to individual tongue muscles. 

[Results] In total, five electrode setups (three current materials and two new prototypes) were evaluated 

for nine formulated requirements. The existent ECoG grid and prototype Silic-12 grid appeared to be most 

promising for tongue measurements. During the experiment, the Silic-12 grid showed fewer dislocation 

artefacts in the tongue sEMG. In the second step, the KmCKC decomposition method showed reasonable 

results for MUAPT identification in simulated EMGs and provided insight in parameter settings. 

Unfortunately, its performance in the tongue sEMG could not be verified. The MUAPT propagation 

patterns over the Silic-12 electrodes allowed some tentative allocations of MU activities to specific 

superficial intrinsic tongue muscles. [Conclusion] The combination of sEMG measurements on the tongue 

with the Silic-12 grid and KmCKC decomposition algorithm showed potential for acquisition of 

neuromuscular information from the superficial intrinsic tongue muscles. Some major improvements 

should be made in future research before translation to input for the biomechanical tongue model can be 

initiated. 
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CHAPTER 1           INTRODUCTION 

Oral and pharyngeal cancer is a serious and growing problem worldwide, grouped together it is the sixth 

most common cancer in the world [2]. In Europe and the United States the tongue is the most common 

site for intraoral cancer, amounting 40-50% of oral cancers [2]. In the Netherlands, this entailed 395 new 

patients with tongue cancer in 2016 [3]. Currently, the first treatment of choice is surgery, with adjuvant 

radiotherapy if needed [4]. In addition, organ sparing therapies like chemotherapy, radiotherapy and 

photodynamic therapy are non-surgical options. Selection of a treatment for tongue carcinomas is based 

on knowledge, experience and intuition of the physician and multidisciplinary tumour board. However, the 

extent of functional loss differs per treatment, patient and tumour. Prediction of patient specific functional 

loss per treatment can be of great value. 

 

The Virtual Therapy Consortium [5] is a collaboration of universities and hospitals that addresses this 

problem. Its mission is to create evidence-based foundations for treatment choices concerning not only 

head and neck cancer patients, but for each cancer patient where treatments could impair function. The 

goal is to construct a personalised, detailed, high resolution biomechanical model of each individual 

patient, a genuine virtual look-alike. The biomechanical model will contain high quality 3D animations 

incorporating anatomy, physiology, and neuromuscular information based on the patients’ data from 

medical imaging and other biomechanical technologies. In the case of a patient with head and neck 

cancer, audio-visual dynamic representations of the functional sequelae due to different curative treatment 

options will be realized. In the future, this virtual patient demonstrates the effect on functions as 

mastication, swallowing, and audible speech. This functional predictive tool should facilitate evidence-

based decisions on treatment proposals. 

 

This master thesis will focus on adding neuromuscular information to the biomechanical model. This was 

done already for facial muscles affecting lip motion [6]. Another important muscle category is tongue 

musculature since its essential role in articulation, guiding food for mastication, squeezing food into the 

oropharynx as part of swallowing and oral cleansing [7]. The goal of this thesis was to make the first steps 

for addition of neuromuscular information in order to personalise a generic biomechanical tongue 

model[7](Figure 1.1).[8]This goal entailed the following research questions: 

 

 Is it possible to acquire sEMG signals from the tongue? 
 

Acquisition of surface electromyography (sEMG) from the tongue is much more challenging than 

extraoral sEMG acquisition. Since the tongue is a highly mobile and flexible anatomical structure, 

involving large variation in surface curvatures in a short amount of time. Moreover, the intraoral 

environment is very wet. A stable and reliable attachment of electrodes is therefore a challenge. 
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 Can the activities of different motor units in the tongue musculature be distinguished by 

decomposition of tongue sEMG? 
 

Since sEMG measures the activation of multiple tongue muscles together, a principle component 

problem arises for the identification of individual tongue muscle activation. Decomposition of the 

tongue sEMG into individual motor unit activities might be the first step towards identification of 

these individual tongue muscle activities. 

 

 To what extent does tongue sEMG allow determination of the direction of muscle fibres belonging 

to one motor unit? And would it be possible to allocate the individual motor unit activities to a 

specific tongue muscle? 
 

The individual tongue muscles differ from each other in their muscle fibre directions and thus often 

intertwine. Observation of motor unit activity propagation on an electrode grid may help to 

associate the different motor unit activities to individual tongue muscles. 

 

The first two steps are this thesis’ main focus, however a first exploration for the third step is included. The 

needed background information is provided by Chapter 2. Chapter 3 is about the first step, development of 

a sEMG electrode setup and experiments on the tongue are described. Chapter 4 (second step) 

introduces a decomposition algorithm and reports about tests on simulated EMGs. All three steps are 

addressed in Chapter 5, here an experiment with a healthy subject is described. This experiment 

incorporates electrode grids, decomposition and anatomical interpretation. Chapter 6 and 7 provide a 

conclusion and future perspectives. 
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Figure 1.1 - Flowchart for achieving the final research goal. The red framed components represent the main points 

of focus (step 1 and 2) for this master thesis. [7][8] 
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CHAPTER 2          BACKGROUND INFORMATION 
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Figure 2.1 - Sagittal view of the tongue. The tongue and its four extrinsic muscles are 

depicted in color. The muscles forming the floor of the oral cavity are depicted in black 

and white. [9] 

2.1 ANATOMY 

The tongue is essentially a mass of muscles and is covered by mucous membrane, containing numerous 

small lingual papillae. Due to the presence of multiple tongue muscles, it can assume a variety of shapes 

and positions. The muscles of the tongue do not act in isolation and some muscles include parts that can 

act independently, producing different, even antagonistic actions. In general, two muscle groups can be 

distinguished, extrinsic and intrinsic muscles. [7] 

 

The four extrinsic muscles alter the position of the tongue, but they can change its shape as well. These 

muscles originate outside the tongue, with a proximal bone attachment and a distal attachment on the 

tongue[9](Figure 2.1). The m. genioglossus (GG) is biggest muscle of the tongue and is fan-shaped. When 

activated bilaterally the central part of the tongue depresses; activation of the posterior part pulls the 

tongue anteriorly for protrusion; activation of the most anterior part retracts the apex of a protruded 

tongue; and unilateral contraction deviates the tongue to the contralateral side. The m. hyoglossus (HG) is 

a thin muscle that depresses and retrudes the tongue base. The m. styloglossus (SG) is a small, short 

triangular muscle interdigitating with the m. hyoglossus. When contracted the muscle retrudes the tongue 

and elevates its sides. The fourth extrinsic muscle is the m. palatoglossus (PG), a narrow muscle capable 

of elevating the posterior part of the tongue and depressing the soft palate. [7] 

The four intrinsic muscles alter the shape of the tongue and are attached entirely within the 

tongue[10](Figure 2.2). The m. longitudinalis superior (SL) and inferior (IL) both shorten and thicken the 

tongue to retract. The m. longitudinalis superior is a thin superficial layer close to the mucous membrane 

and besides participation in retraction it elevates the apex and sides of the tongue. The m. longitudinalis 
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inferior is a narrow band close to the inferior surface of the tongue, performing depression of the apex. 

The m. tranversus (T) and verticalis (V) linguae consist of intersecting fibres acting simultaneously to 

protrude the tongue. Where the m. transversus linguae narrows and elongates and the m. verticalis 

linguae flattens and broadens the tongue. [7] 

All the muscles of the tongue receive motor innervation from the n. hypoglossus (XII), except for PG 

muscle which is supplied by the pharyngeal plexus [7]. The motor innervation of tongue muscles by the 

hypoglossal (XII) nerve has still not been described in detail. Moreover, tongue muscles have complex 

innervation with many terminal nerves entering single muscles. Mu and Sanders [11] researched the 

distribution of the XII nerve supply inside the tongue and the arrangement of motor endplates (MEPs) 

within each muscle. For this purpose, five adult human tongue specimens were assessed, exhibiting 

similar nerve branching and distribution patterns[11](Figure 2.3). The XII nerve enters the tongue at the 

ventrolateral aspect of the posterior tongue, bilaterally. The first split off occurs when the dorsal surface of 

the HG muscle is reached, this branch innervates the GH muscle. Then the XII nerve divides into its 

lateral (l-XII) and medial (m-XII) branches. The l-XII branching consists of two types, single and multiple 

branching. Single branching implies a short main trunk (~2 mm) followed by several branches to innervate 

the SL, SG, HG, and lateral IL muscles. Multiple branching involves the XII nerve which gives off multiple 

l-XII branches at different points on the nerve XII main trunk. The m-XII branches turn medially at the 

anterior edge of the HG muscle, cranially after passing between the two GG layers and anteriorly when 

T/V muscles are reached. The posterior third supplies the GG, posterior T and V (p-T/V), and medial IL 

muscles. At the level of the vallate papillae (VP) the m-XII splits off several branches, forming a dense 

 
Figure 2.2 – Coronal view of the tongue. The tongue’s surface 

and its four intrinsic muscles are depicted. [10] 
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plexus to supply anterior T and V muscles (a-T/V). For sensation, the mucous membrane of the tongue is, 

among others, innervated by the n. lingualis (LN) and the lingual branch of the n. glossopharyngeus (IX). 

Besides sensory mediation, the most posterior LN branch seems to communicate with the l-XII nerve and 

supply innervation to the IL muscle. So, it is suggested that the LN contains motor axons as well. [11] 

 
Figure 2.3 – Innervation of the tongue, according to Mu and Sanders. (A) Ventral view 

of the nerve map of an adult human tongue. The diameters of the main trunks were 

ranked LN > XII > IX. (B) Schematic drawing of nerve branching on the left hemi-

tongue, ventral view. The horizontal oval indicates (multiple) branching of the l-XII 

nerve and the vertical oval shows the nerve supply pattern of the IL muscle. (C) 

Schematic illustration of the branching and distribution of the XII nerve, sagittal view. 

The locations of the motor endplate bands are indicated by dotted lines in the GG, HG, 

and SG. [11] 
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Figure 2.4 – The current tongue model. (A) Sagittal view of the 3D surface mesh, loaded with cubic FEM 

elements. (B) Lateral view of all 3D fibre muscles as defined by Buchaillard et al. [12], the colours indicate 

the different muscles. The PG muscles are not included. [13] 

2.2 MODEL 

The current tongue model has a surgery and radiation module for simulation of treatments and their 

functional consequences. Both treatment modules are still in development phase. The model consists of a 

biomechanical part and a visual part. The visual model translates the biomechanical simulation into a 

visual representation through a 3D surface mesh. The biomechanical model is created using the Finite 

Element Method (FEM), based on work of Buchaillard et al. [12]. They created a surface mesh that is filled 

up with small cubic shaped elements, forming a volume mesh (Figure 2.4 A). These elements contain 

properties like stress, strain, weight, and interactive behaviour, facilitating calculations on property 

changes of the complete tongue. Initially, different tongue musculature is indicated by fibres, spring-like 

structures, with the ability to pull their two endpoints towards each other[13](Figure 2.4 B). Elements in 

between these fibre endpoints are squeezed and not actively involved in muscle contraction. To overcome 

this physiological unrealistic situation, fibre muscles are converted to element muscles. All elements within 

a radius of two millimetres around a certain fibre are provided with contractile properties and directions. In 

this manner, muscle forces in the element muscles have the same direction as nearby fibres. [13] 

Two types of simulations can be generated with the tongue model, forward and inverse simulations. A 

forward simulation starts with manual activation of certain muscle fibres, resulting in a tongue model 

manoeuvre. Inverse simulation works in the opposite direction, a tongue manoeuvre is given and the 

corresponding combination of muscle fibre activation is calculated. The latter uses a cost function to find 

combinations of muscle activations. Since the solution to this problem is not unique, the found solution is 

not person-specific. Addition of person-specific EMG signals is one important step towards personalisation 

of these simulations. The cost function will receive an indication of where to look for its solution and EMG 

signals can be used as input for forward simulations. 
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2.3 EMG 

EMG measures the algebraic summation of motor unit action potential trains (MUAPTs) from different 

active motor units within the electrode recording range [14]. A motor unit (MU) is defined as one motor 

neuron and all of the muscle fibres that it innervates[15](Figure 2.6) [16]. The number of muscle fibres per 

MU can vary from four to several hundred and each muscle is activated by at least one MU [15]. Each 

muscle fibre is activated via waves called ‘intracellular action potentials’ (IAP) which travel outward over 

the muscle fibre starting at the (motor) axon connection, roughly in the middle of the muscle fibre [17]. A 

MUAPT is the resultant depolarization wave of all the fibres (all IAPs together) in a particular MU [17]. And 

the summation of all MUAPTs forms the EMG signal. 

2.3.1 PREVIOUS TONGUE EMG MEASUREMENTS 

The first EMGs of tongue muscles were acquired intramuscular with use of needle EMG [18][18][19][20]. 

The advantage of intramuscular EMG is some certitude of MUAPT origin. However, this method is 

invasive and therefore uncomfortable. This caused more recent studies to use sEMG, involving other 

difficulties. Surface EMG of the tongue entails attachment of electrodes in a wet and deforming 

environment and the necessity to distinct different MUAPTs, possibly originating from different muscles. 

 

Only few studies performed sEMG measurements of tongue musculature. Three studies acquired sEMG 

of the GG muscle by placing electrodes under the tongue on the floor of the mouth, held in place by dental 

impression material on the mandibular teeth and mouth floor [21][22][23]. The oldest study concluded that 

the surface electrode satisfactorily reflects the bioelectric activity of the GG since the intramuscular 

 

Figure 2.6 – Illustration of the MU definition. This specific 

muscle fibre bundle is innervated by two MUs. [15] 

 

 

Figure 2.5 – sEMG of extrinsic and intrinsic tongue 

muscles with use of Ag/AgCl micro-electrodes. [27] 
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electrodes show similar patterns of muscle activity and highly coherent frequency spectra [21]. Another, 

more recent study, found that an unilateral configuration of two surface electrodes resulted in a more 

reliable estimate of GG activity compared to a bilateral configuration [23]. It is less sensitive to cross-talk 

from neighbouring muscles and artefacts due to non-propagating muscle fibre end-effects are reduced 

[23]. For measuring sEMG of intrinsic tongue muscles in humans, only a limited number of attempts is 

documented. Yoshida et al. [24] developed a surface electrode by painting a small dot with silver paste, 

adding a fine wire and a rubber cap on top. Two of these electrodes were used for measurements of the 

distal tongue musculature [24][25][26]. Recently, a colleague [27] used sintered disc shaped Ag/AgCl 

micro-electrodes for classification of different tongue movements [27](Figure 2.5), including extrinsic and 

intrinsic muscle measurements. Four electrodes were placed on the tongue with use of denture adhesive 

strips and four electrodes were placed submandibular, fixated with double-sided adhesives. Distinction 

between different tongue muscles appeared to be hard and inconclusive. It was recommended to develop 

a tongue-shaped flexible electrode array that can adhere to the tongue. The higher density of electrodes 

may enable distinction between MUAPTs originating from different tongue muscles. 

2.4 DECOMPOSITION 

Decomposition is defined as the process of separation into constituent parts. EMG can be decomposed 

into several constituent parts: time-frequency components [28], wavelet components [29], degrees-of-

freedom force functions [30] or MUAPTs (Figure 1.1) [31]. The latter is the constituent part of interest for 

this thesis, since it provides information about individual motor units and therefore might facilitates muscle 

distinction (Figure 1.1). Decomposition of EMG requires that the MUAPs produced by the same motor unit 

are more similar in shape than the MUAPs produced by other motor units and that the MUAPs of each 

motor unit occur enough times without superposition, so their respective shapes can be determined [32]. 

These requirements involve many technical challenges, like excessive MUAP superposition, the large 

dynamic range of MUAP amplitudes, changes in action potential shape of a MU, and similar shaped 

MUAPs [31]. 

 

For decomposition of sEMG two main approaches are used [33]. The first approach is based on pattern 

recognition techniques for identification of recurrent MUAPs [33]. Gazzoni et al. [34] detected MUAPs with 

the use of the matched Continuous Wavelet Transform (CWT) followed by classification by a modified 

version of the multi-channel Adaptive Resonance Theory networks. The latter could adapt to slow 

changes in MUAP shape. This method showed the possibility of investigating anatomical and 

physiological properties of the detected MUs. However, the decomposition of MUAP superpositions was 

limited. Also the algorithm of Kleine et al. [35] could be improved for complex superposition situations. 

Their method consisted of two clustering steps, a Wards algorithm and an interactive clustering by manual 

inspection and adjustment. Here, both the spatial (waveform and amplitude differences between channels) 

and temporal (time-course of the potential in each channel) information of the high-density (HD) sEMG 
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were taken into account. MUAP templates were constructed from the assigned clusters, followed by 

template matching combined with a peel-off procedure (template subtraction from the EMG). An earlier 

version of this method [36] was used by Lapatki et al. [37] and demonstrated the valuable MUAP 

information after decomposition. The innervation zone and the main muscle fibre orientation of the MU 

were localized, corresponding to the location where the MUAP is generated and in which direction it 

propagates[37](Figure 2.7). A method performing better on the superposition problem is the one of Nawab et 

al. [31]. Their algorithm started with the identification of templates for the various MUAP shapes. Followed 

by an artificial intelligence technique, which searched for signal regions where the extracted templates are 

in superposition with each other or with unidentified MUAPs. Though, this required that the unidentified 

MUAPs account for less than 25% of the signal energy. 

The second approach for sEMG decomposition entails blind-source separation techniques based on 

statistical properties of sEMG signals [33]. One popular and effective technique is Independent 

Component Analysis (ICA). Both Akazawa et al. [38] and Chen et al. [14] used ICA for decomposition of 

experimental sEMG. Here, Chen et al. [14] identified up to 19 MUAPTs with their FastICA peel-off 

framework. FastICA was used for MUAP waveform estimation and spike train identification. The resulting 

MUAPT was withdrawn from the original sEMG signal. This “peel off” strategy mitigated the effect of the 

already identified motor units on the FastICA convergence. So, more motor units could emerge. Another 

technique is the convolution kernel compensation (CKC) method, proposed by Holobar and Zazula [39], 

which estimates the innervation pulse trains (IPT) directly without calculating the unknown mixing matrix 

(matrix of impulse responses / MUAP shapes per electrode and per MU). Tests on simulated sEMG 

proved this technique to highly efficient since up to 30 MUs were completely reconstructed. Ning et al. [1] 

 
Figure 2.7 – Muscle fibre orientation after processing of propagating MUAP in the m. depressor 

anguli oris (DAO). Monopolar amplitude maps illustrate topographically the initiation of the 

potential (latencies 19 and 20) and its conduction in the upper and lower part of the DAO musle 

(latencies 22, 23.5 and 24.5). The dots in grid pattern are the sEMG electrode locations, the 

colour indicates the MUAP amplitude and the line with a dot in the middle is the muscle fibre 

direction with the motor neuron endplate, respectively. [37] 
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developed a novel approach based on the classic CKC method. K-means clustering (KMC) is performed 

as an initial step to cluster the time instants fired by the same MU, followed by the CKC, which is modified 

with a novel multi-step iterative process to update the estimated MUAPTs iteratively. This K-means 

clustering – modified CKC (KmCKC) approach successfully reconstructed MUAPTs with high accuracy, at 

different levels of contraction. And it appeared to be robust against noise. During a test [1] on 

experimental sEMG of the first dorsal interosseous muscle, both the classic CKC and KmCKC method 

identified the first six MUs, but the last eight MUs could only be identified by the KmCKC approach. 
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CHAPTER 3               SURFACE EMG ELECTRODES ON THE TONGUE 
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3.1 INTRODUCTION 

This chapter addresses the exploration and development of a technique for surface electromyography 

(sEMG) measurements on the tongue. Being the first step towards addition of neuromuscular information 

to the biomechanical tongue model. In specific, the goal of this chapter is to find or develop one or more 

sEMG electrode setups with high potential for tongue measurements. This is done by selection of various 

current materials and development of new prototypes, which all were tested for the technical and practical 

requirements as formulated in advance. 

3.2 REQUIREMENTS 

An optimal electrode setup should be developed for sEMG measurements of tongue musculature. The 

setup requirements concern the subjects: use of a high density (HD) sEMG grid or multiple electrodes; 

electrode type; inter-electrode distance (IED); electrode pattern; fixation of electrodes on the mucous 

membrane of the tongue; tongue movement without restriction; in case of a grid, flexibility because of 

deformability of the tongue; cables should be suitable for sEMG signal conduction and it should be 

comfortable for the subject and affordable to a certain extent. All of these components together define 

practical use on the tongue and measurement properties. The technical considerations are outlined below 

and summarised together with the practical requirements (Table 3.1). 

 

The electrodes for sEMG measurements are preferably miniature electrodes, with diameters below 5 mm, 

and specifically designed for EMG with an AgCl or Ag surface [40]. The advantage of skin-Ag or skin-AgCl 

contact is the almost resistive impedance in the EMG frequency range, while other metals present 

capacitive components involving additional filtering [41]. Furthermore, miniature electrodes are preferred 

for this application because of the HD requirement , on the other hand, skin-electrode noise decreases as 

the contact surface increases because of an averaging effect [40]. This skin-electrode noise is generally 

the most important source of noise in EMG recordings [40], therefore the size of the electrode contact 

surface and skin preparation (Section 5.1) should be considered carefully. 

 

The number of electrodes, the electrode pattern and associated filter possibilities influence the number of 

MU and its anatomical properties that can be detected. For extraction of MU anatomical properties, 

combination of electrodes in longitudinal and transversal direction with respect to muscle fibres is 

essential [42][43]. It is a general characteristic of spatial filters based on electrode grids that they are not 

invariant to rotations [44]. This implies that orientation of the filter with respect to fibre’s orientation 

influences the capacity to distinguish signals generated by close and far sources [44]. Furthermore, the 

use of a normal double differentiating (NDD) filter (Figure 3.1), also referred to as a two-dimensional 

Laplace filter, is described as an advantage in literature. In a simulation research [45] 83.8% of the 

contributing MUs were detected with a NDD filter and 81 (Laplacian) channels lined up in two directions 

(9x9), in comparison to 41.4% when using bipolar filtering in the same circumstances. The study also 
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showed the importance of electrode numbers because the NDD bidirectional percentage decreased to 

56.3% when using four Laplacian channels (12 electrodes). 

Literature describes the wide impact of IED on spatial filtering and crosstalk. Decrease of IED limits the 

detection volume of the electrode system and consequently limit crosstalk [40]. This influence of IED is 

included in research of Buchtal et al. [46] and Gydikov et al. [47] about amplitude-distance relationship in 

EMG, where the distance is a measure for detection volume. They found an equation for the effect on 

detection amplitude (Volt) caused by the distance between motor unit and recording electrodes: 

  0

0( / )D

V
V

r r
  (3.1) 

where 0r  is a reference distance to the electrical centre or innervation zone 0( )V V of the motor unit, 0V  

and D  are constants, of which the latter is a function of IED and the detection system [40]. Decreasing 

IED would imply higher values of D , so the detection amplitude is reduced, resulting in a smaller 

detection volume. Roeleveld et al. [48][49] also researched the influence of IED on detection volume, 

using bipolar sEMG recordings while varying IED from 6 to 84 mm. When IED < 40 mm, the relative 

contribution of superficial and deep motor units to the sEMG signal was not influenced. Decreasing IED (at 

least up to 6 mm) was found not to be a proper technique for reduction of the electrode view, contrary to 

the theory that IED can limit the detection volume [40]. However, more recently an optimal IED was found 

for crosstalk reduction in a sEMG study on the m. tibialis anterior. De Luca et al. [50] obtained bipolar 

signals with IED ranging from 5 to 40 mm (steps of 5 mm), where 10 mm IED appeared to have the lowest 

crosstalk contamination. Besides the possible influence on crosstalk, IED acts as a spatial filter. A bipolar 

sEMG measurement is a simple high-pass spatial filter, eliminating wavelengths longer than half of the 

IED [44]. Reduction of the IED will shift the cut-off frequency of the filter toward a higher frequency. 

 

 

Figure 3.1 – Schematic representation of a 

NDD filter, one Laplacian channel involving 

five electrodes. [44] 



 23 

 

3.3 METHODS AND MATERIALS 

3.3.1 CURRENT MATERIALS 

Several available and possibly suitable electrodes or grids were selected and all technical requirements 

were scored good (or yes), intermediate or bad (or no). Together with the practical results from testing on 

the tongue (Section 3.3.3), the best electrode/grid was selected and prepared for actual sEMG tongue 

measurements. 

3.3.2 GRID DEVELOPMENT 

Two prototype electrode grids were developed, the second prototype being the improved version of the 

first. Since the grids should be flexible enough for following the tongues deformations, implying 

simultaneous flexibility in multiple direction, two silicone rubbers were selected as grid material. The first 

silicone was silicone rubber 620/TL95 (N.K.C. Harjon B.V., Dordrecht, The Netherlands) with a shore 

hardness of 25A. The shore hardness is indicating hardness and flexibility of the material, lower numbers 

indicate soft and flexible materials. The second silicone was Ecoflex 00-10 (Smooth-On, Macungie, 

Pennsylvania, USA). This silicone has a shore hardness of 10A and is certified by an independent 

laboratory to ISO 10993-10, Biological evaluation of medical devices, Part 10: Tests for irritation and skin 

sensitization [51]. For both prototype grids sintered cylindrical Ag/AgCl electrodes (TMSi, Oldenzaal, The 

Netherlands) were used, with a diameter of 4.10 mm and a height of 1.13 mm. The first prototype, referred 

to as Silic-4, contained four of these electrodes in an area of 35.0 by 35.0 mm with 17.5 mm IED. Its 

mould was designed in 3D Builder (app Microsoft Windows) (Figure 3.2 A). The second prototype, 

referred to as Silic-12, contained twelve electrodes within a cross-shape. Leaving various filtering 

techniques and bidirectional measurements to the possibilities. The outer dimensions of Silic-12 were 

based on my own tongue size. An area of 30.0 by 30.0 mm was available for the 12 electrodes with 4.10 

Table 3.1 – Summarised requirements for electrode setup in interest of sEMG 

measurements on the tongue. 

Requirement Specification 

Electrode type AgCl or Ag surface 

Number of electrodes ≥ 12 

Electrode pattern Longitudinal and transversal direction with 

respect to muscle fibres 

IED ≤ 10 mm 

Fixation on the tongue Firm 

Flexibility (in case of a grid) Capable of following tongue deformations 

Tongue movement Fully without restriction 

Comfort To a certain extent, not painful 

Affordability Reusable or low cost per electrode/grid 
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mm diameter, resulting in a maximum IED of 7.0 mm. These dimensions were incorporated in the mould 

design (Figure 3.2 B), created with the 3D computer aided design (3D-CAD) program SolidWorks 

(Dassault Systèmes, Waltham, Massachusetts, USA). Both moulds were 3D printed on the University of 

Twente. The electrode locations were slightly lowered to hold the electrodes in place and prevent 

moulding of a silicone layer on the measurement surface. Not all electrodes were perfectly round, 

therefore the circular rims had a chamfer to realize the right position for every electrode. The lowered 

electrode locations also contained a hole with a smaller diameter (although not visible in Figure 3.2 A), for 

assistance pressure on the electrodes during removal of the grid from the mould. Furthermore, Silic-12 

had two holes for leading away the electrode wiring. Before moulding, the moulds were greased with 

sunflower oil for reduction of silicone attachment and easier removal of the grid. No industrial spray could 

be used because of safety reasons for oral use. The electrodes were placed in the greased moulds, with 

their silver leads bend in a curl and then upwards (Appendix Figure A1 A) with the purpose of strain relief. 

Then the silicone rubber 620/TL95 (for Silic-4) and Ecoflex 00-10 (for Silic-12) were prepared by mixing 

the silicone and its harder. These mixtures were carefully poured into the moulds till the electrodes and 

curled part of their leads were covered (Appendix Figure A1 A). When the curing time passed, individually 

shielded electrode cables (TMSi, Oldenzaal, The Netherlands) could be soldered to the electrode leads 

(Appendix Figure A1 B). The leads and open cable parts were positioned in a manner they did not touch 

leads or open cable parts of other electrodes, to prevent signal disturbance or mixture. A second silicone 

layer was added on top of it, for shielding and protection of the cabling. After the curing time, the grids 

could be carefully removed from their moulds. 

 

Figure 3.2 – Mould designs for the prototype sEMG grids. (A) For Silic-4, created in 3D Builder. (B) For 

Silic-12, created in 3D-CAD. 
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Figure 3.3 – Selected electrodes/grids for technical and practical evaluation for sEMG measurement on the tongue. 

(A) Separate micro electrodes. (B) Adjusted HD sEMG grid. (C) ECoG grid. 

3.3.3 EXPERIMENTS 

All electrodes/grids were tested for their practical use on the tongue. The electrodes/grids were fixated to 

the tongue with denture prosthetic adhesive strips (Fittydent, Ridam Care BV, Breukelen, The 

Netherlands). Several tongue movements were executed; protrusion; tongue to the left; tongue to the 

right; tongue towards the chin and tongue towards the nose. These movements were filmed, and the 

performances of the electrodes/grids were scored for the practical requirements (good, intermediate or 

bad). 

3.4 RESULTS 

3.4.1 CURRENT MATERIALS 

The electrodes/grids selected for this research (Figure 3.3) were separate micro electrodes (TMSi, 

Oldenzaal, The Netherlands), an HD sEMG grid (TMSi, Oldenzaal, The Netherlands), and an 

electrocorticography (ECoG) grid (Ad-Tech, Racine, Wisconsin, USA). Their scores for the technical 

requirements are incorporated in Table 3.2. 

 

The micro electrodes (Figure 3.3 A) consist of a sintered Ag/AgCl cylindrical electrode with a 1.5 mm 

diameter on the measurement surface. Each electrode is protected by a plastic cab and connected to a 

shielded cable. Moreover, the 10 mm diameter of the plastic cab together with some additional 

interelectrode distance (IED) causes a maximum use of 6 to 8 electrodes on the tongue. 

 

The HD sEMG grid (Figure 3.3 B) consists originally of 64 AgCl electrodes (8x8), unfortunately this grid is 

too wide for use on the tongue so two columns were eliminated. The remaining 48 electrodes (8x6) have a 

2.0 mm diameter and a 4.0 mm IED. In total, the grid covers an area of 35.0 x 25.0 mm. 
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Figure 3.5 – Assembly of two connectors to ECoG grid. (A) One of two ECoG leads, holding 10 

connection places. (B) Cabrio connector (Ad-Tech, Racine, Wisconsin, USA) with 8 connections. 

(B) Pin-hole connector with 10 brass pins (10 connections). 

 

 

The ECoG grid (Figure 3.3 C) contains 20 platinum disc electrodes with a 10.0 mm IED and a 4.0 mm 

diameter of which a central 2.3 mm diameter is exposed to the measurement surface. The electrodes are 

embedded in a soft Silastic sheet [52], manufactured from high quality medical grade silicone and 

sterilized by gamma irradiation [53]. In addition, the grid is quite expensive, developed for intracranial EEG 

measurements and probably somewhat over qualified. On the other hand, since one ECoG grid is 

available and it scored highest (of all current materials) for the practical requirements (Table 3.2), this 

technique was tested for sEMG tongue measurements (Chapter 5). Therefore, the ECoG grid was 

prepared for use by assembly of two connectors (Figure 3.5) and measured with a multimeter (Figure 3.4). 

  

Figure 3.4 – Schematic 

representation of the 

ECoG grid with red 

colored inoperable 

electrodes. Electrodes 11 

and 12 were inoperable 

because of the Cabrio-

connector only holds 8 

connections. The cause of 

inoperability of electrodes 

17 and 20 was unknown. 
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3.4.2 GRID DEVELOPMENT 

Two prototype grids, Silic-4 (Figure 3.6) and Silic-12 (Figure 3.7), were created. The soldered electrode 

lead-cable connections appeared to be fragile, some connections needed to be reattached during the 

production process. One connection (Silic-12, electrode 4) broke during addition of the second silicone 

layer and therefore could not be repaired. Both prototypes were scored for the technical requirements 

(Table 3.2) and measured with a multimeter (Figure 3.7 C). All Silic-4 electrodes were operable. 

3.4.3 EXPERIMENTS 

All five electrodes/grids were evaluated and scored (Table 3.2) for the practical requirements: fixation on 

the tongue, flexibility, tongue movement, comfort, and affordability. Together, fixation on the tongue and 

flexibility of the grids determined the extend of electrode displacement during tongue movement and 

deformations. Fixation on the tongue with the denture prosthetic adhesive strips appeared to be 

insufficient for almost all electrodes/grids. When testing the micro electrodes, the slightest tongue 

movements caused electrodes to come off (Figure 3.8 A). Conversely, the HD sEMG grid had a 

reasonable attachment to the tongue surface, but the grid came off easily since its disability to bend in two 

 

Figure 3.6 – The Silic-4 and its mould. (A) sEMG measurement surface. (B) The top side. 

 

Figure 3.7 - The Silic-12. (A) sEMG measurement surface and the mould. (B) The top side and the mould. (C) 

Schematic representation (top side) with red colored inoperable electrodes. Electrode 4 was inoperable since 

the solder was broken. The cause of inoperability of electrodes 11 and 12 is unknown. 
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Figure 3.8 – Electrode/grid testing for its practical use on the tongue. A tongue movement to the right is shown. (A) 

Two micro electrodes, (B) HD sEMG grid, (C) ECoG grid, (D) Silic-4, (E) Silic-12. 

directions simultaneously (Figure 3.8 B). The ECoG grid did have the advantage of its flexible silicone 

which could follow the tongue’s deformations, in combination with a reasonable attachment to the tongue 

(Figure 3.8 C). Though, this specific ECoG grid was slightly large for application on the tongue, causing it 

to displace or come off occasionally because of contact with other parts of the mouth. The Silic-4 scored 

bad for both fixation and flexibility, the grid was too rigid to follow any tongue deformation and the 

adhesive strips did not attach to the silicone (Figure 3.8 D). The same holds for Silic-12, the adhesive 

strips did not attach to the silicone, however the combination of the grids’ weight and it surface properties 

caused a reasonable fixation itself. Furthermore, the grid revealed its success to follow the tongues 

curvature (Figure 3.8 E). None of the grids caused discomfort or physical restriction of tongue movement. 

Although, a behavioural restriction of tongue movement was observed within all tests. The subject showed 

correcting lip motion and reduced range of tongue motion to contain the electrode/grid position (Figure 3.8 

A, C, D). The affordability of the different electrodes/grids was mostly depending on reusability. The ECoG 

grid, Silic-4 and Silic-12 are made of porous silicone and contain grooves around the electrodes, which 

hampers the possibility to clean the grids for reuse. In addition, the ECoG procurement is expensive. The 

micro electrodes and HD sEMG grid are more suitable for hygienic cleaning and lower in procurement 

costs. 
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3.5 DISCUSSION 

Major fundamental and practical research could be done to the technical requirements for tongue grid 

development, but that was beyond the scope of this study. The technical requirements as stated in 

Section 3.2 were investigated in literature. For future tongue grid development, these requirements should 

be improved. The suitable type of electrodes should be researched since epidermal composition differs 

between skin and tongue. Furthermore, the number of electrodes should be increased, for identification of 

more MUs as described earlier (Section 3.2). More electrodes will involve smaller IED and electrode 

surfaces, their influence on sEMG tongue measurements is an important topic for further research. 

 

The ECoG and Silic-12 grid showed highest potential for use on the tongue, since their capability to follow 

the tongues curvature and reasonable fixation. Though, the Silic-12 is expected to result in better sEMG 

measurements because of its more stable position on the tongue and more suitable electrode type. This 

was tested in Chapter 5. 

Table 3.2 – Scores per electrode/grid for each technical and practical 

requirement. The green checkmark indicates yes or good, the orange 

wave indicates intermediate, and the red cross indicates no or bad. 

R
e

q
u

ir
em

e
n

ts
 

M
ic

ro
 e

le
ct

ro
d

es
 

H
D

 s
EM

G
 g

ri
d

 

EC
o

G
 g

ri
d

 

Si
lic

-4
 

Si
lic

-1
2

 

Electrode type 
     

Number of electrodes 
     

Electrode pattern 
     

IED  
    

Fixation on the tongue 
     

Flexibility (in case of a grid) 
 

    

Tongue movement 
     

Comfort 
     

Affordability 
     

 



 30 

 

The most crucial point of improvement for all electrodes/grids appeared to be the fixation on the tongue 

(Table 3.2). Several options can be explored in future research. One option being a vacuum electrode 

system, which is widely used within electrocardiography applications. For instance, available with four 

different vacuum levels and use of silicone around electrodes [54]. Application of such a system within 

micro electrodes or a silicone grid might realize a firm fixation to the tongue, especially since its 

applicability within a wet environment. On the other hand, the final goal is sEMG tongue measurements on 

patients with a malignant process on the tongue, which is generally very painful. Application of a vacuum 

on a malignant process is probably not a comfortable solution. A more comfortable option would be an 

adhesive grid surface based on the gecko’s foot mechanism. The company nanoGriptech [55] developed 

gecko-inspired adhesives, using knowledge about the microscopic hears on a gecko’s foot. Their SetexTM 

secures medical equipment to the skin, can be film-thin, conform to a wide range of shapes and can be 

designed with varying grip or friction strengths to fit the application’s needs [55]. A SetexTM version suited 

for a wet environment with a firm grip and smooth method for release would be ideal. Another option is a 

tongue cover as fixation method. A rigid tongue cover with a rough surface was developed [56] as 

toothbrush (Figure 3.9 A and B). This tongue cover can potentially hold electrodes, the design suggests 

multiple positions for small electrodes (Figure 3.9 A). Its fixation is based on the size and shape of this 

cover, causing the tongue to be slightly squeezed into the cover securing the cover’s position. The 

advantage of this cover is the possibility to fit additional sEMG electrodes to the downside of the tongue. 

 

Figure 3.9 – Two tongue covers. (A) and (B) show the tongue cover designed to clean the 

teeth. [56] (C) Shows a latex tongue cover to protect from the taste of bitter medicine. [57] 
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The disadvantage is the rigidity of the cover, prohibiting tongue deformations and the tongue can 

potentially move within the cover causing shift of electrode placement. A flexible cover was developed [57] 

to protect the tongue from the taste of bitter medicine (Figure 3.9 C). This product probably was not a 

great success since the posterior part of the tongue is sensitive to bitter taste, this part of the tongue is not 

covered with this design. However, it might be suitable for holding small electrodes and secure a firm 

fixation, especially in combination with the earlier mentioned ideas of a vacuum or SetexTM fixation. 

The practical experiments underlined the importance of flexible grids. The difficult part was, as 

experienced with the Silic-12, that the electronic components could not stretch and bend like the 

enveloping silicone. This was making the Silic-12 a fragile ensemble. For future tongue grid development 

3D printing of flexible electronics should be explored and applied. Recently, a new hybrid 3D printing 

technique was developed (Figure 3.10) where soft, electrically conductive inks and rigid electronic 

components were combined into flexible, stretchable devices that move with the body [58]. This new 

technique was the first step towards soft electronic devices of nearly every size and shape, besides being 

lower-cost and mechanically robust [58]. 

 

The affordability was mainly based on purchase price and reusability. For hygienic reasons a low-cost grid 

for single use would be preferred. Moreover, single use grids could allow subject specific size adjustments 

as done with the HD sEMG grid in this study. 

3.6 CONCLUSION 

Two sEMG electrode setups with high potential for tongue measurements were found. Being the existent 

ECoG grid and the developed prototype Silic-12 grid, the latter is expected to perform best since its more 

stable position on the tongue and more suitable electrode type. However, improvement in the number of 

electrodes, the fixation to the tongue and robustness, while maintaining flexibility, is desired. 

 

Figure 3.10 – Two hybrid 3D printed electronic devices with flexible and stretchable properties. Credits: Alex 

Valentine, Lori K. Sanders, and Jennifer Lewis / Wyss Institute at Harvard University. [58] 
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CHAPTER 4     IDENTIFICATION OF MOTOR UNITS FROM SIMULATED EMGS 
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4.1 INTRODUCTION 

This chapter addresses the issue of EMG decomposition for MUAPT identification. The identification of 

MUAPTs is an essential step towards differentiation of muscle activity from various tongue muscles 

(Figure 1.1). Specifically, the goal of this chapter is to achieve a decomposition algorithm and evaluate its 

performances. For this purpose, a promising algorithm from the literature is analysed and tested on 

simulated EMGs. 

4.2 DECOMPOSITION TECHNIQUE 

Based on the literature review given in Section 2.4, the recently developed hybrid surface EMG 

decomposition approach (KmCKC) of Ning et al. [1] was selected as the most promising algorithm. Their 

approach showed superior performance when compared to the classic convolution kernel compensation 

(CKC) method in terms of decomposition accuracy and robustness against noise. It combines the CKC 

method and the K-means clustering (KMC) method. The latter is used as an initial step to cluster time 

instants fired by the same MU followed by the classic CKC, which is modified with a novel iterative 

process for performance of MUAPT updates. In the next sections, an outline of the algorithm and the 

model on which it is based is given. The whole procedure is summarised in Figure 4.1 and illustrated in 

Figure 4.2. 

4.2.1 THE MODEL 

The foundation of this method is a linear time-invariant multi-input multi-output (MIMO) model for 

observation of sEMG signals, originating from a number of activated MUs [39][59][60]: 

          n n n x Hs e   (4.1) 

where  
1

( )  ,  ... ,  ( ) ( )
T

M
n x xn nx  contains M  observations, in this case the M  sEMG channels, with 

( )
i

x n  being the n -th time sample of the i -th channel. ( )ns  represents the N  sources, in this case MUs, 

in an extended form from time sample n  till 1n P  . The MUAPTs, i.e. the activities of the MUs, are 

represented by a vector:  1( ),  ... ,  ( )
T

Ns n s n . Its extended version is the vector ( )ns , containing the most 

recent history of P  time samples: 

              1 1 1  ,  -1 ,  ... ,  - 1 ,  ... ,  ,  -1 ,  ... ,  - 1
T

N N Nn s n s n s n P s n s n s n P    s   (4.2) 

where P  is the length of the finite impulse response. This vector forms a convolution with H , a mixing 

matrix containing all channel responses of length P  time samples.   ,  ... ,  (0) ( 1)
ij ij ij

h h h P     is the 

response to the j -th source in the i -th channel. Finally, a zero-mean white noise, ( )ne , is added to each 

channel. 
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4.2.2 THE ALGORITHM 

The goal in sEMG decomposition is to reconstruct ( )ns , while given only measurement vector ( )nx . For 

this purpose, the vector ( )nx  should be extended to a convolutive MIMO form by addition of -1K  

delayed repetitions per channel (Figure 4.1 and 4.2, step 1) [60]: 

              1 1 1,  -1 ,  ... ,  - 1 ,  ... ,  ,  -1 ,  ... ,  - 1
def

T

M M Mn x n x n x n K x n x n x n K    x   (4.3) 

The same holds for the vector ( )ns  and the matrix H  of size ( -1)KM N P K   [60]: 

             1 1 1,  -1 ,  ... ,  - - 1 ,  ... ,  ,  -1 ,  ... ,  - - 1
def

T

N N Nn s n s n s n K P s n s n s n K P    s   (4.4) 

 

   

   
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1

with

0 -1 0

    

0 0 -1

N ij ij
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ij

M MN ij ij

h h P

h h P

  
  

    
   
   

H H

H H

H H

  (4.5) 

The MIMO model becomes: 

          n n n x Hs e   (4.6) 

By calculating the Mahalanobis distance of ( )nx  a so-called activity index is obtained (Figure 4.1 and 4.2, 

step 2) [39][60]: 

  -1ˆ  ( ) ( )T

xn n n  x C x              (4.7) 

-1ˆ
x

C  is the estimated covariance matrix of ( )nx  calculated over the entire record length. For an illustration, 

see Figure 4.2, step 1. The Mahalanobis distance is the squared length (L2 norm) of ( )nx  after 

decorrelation. An analysis of equation (4.7), in which this decorrelation is applied (Appendix A2), shows 

that ( )n  is proportional to the total number of sEMG excitations in an interval of -1K  samples 

preceding n . 

 

The purpose of the step that follows is to find an index 
1n  with which the identification procedure starts. 

Ning et al. [1] did not motivate their method of 
1n  selection. A guess about their motivation is discussed in 

Section 4.5.1. The selection of 
1n  is accomplished as follows. From the sequence ( )n , an index 

0
n  is 

selected containing the median activity: 0( )  ( ( ))n median n   (Figure 4.1 and 4.2, step 3). Since 0( )n  is 

the median activity, the assumption is that the interval just before 
0

n  is statistical representative for some 

level of activity originating from only a few active MUs. With 
0

n  the co-activity function 
0

( , )n n  is 

constructed (Figure 4.1 and 4.2, step 3): 
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-1

0 0
ˆ( , )  ( ) ( )T

xn n n n  x C x  (4.8) 

This function is proportional value to the number of sEMG excitations that the records 
0(n )x  and ( )nx  

share at the same points in time within the interval of K  time samples; see Appendix A2. Then the index 

1n  is selected for which the co-activity is maximum: 0 1 0( , ) max ( , )n n n n  . Thus, 
1n  is the index for 

which a maximum number of sEMG excitations are observed in the M  channels that are similar to sEMG 

excitations that occur at 
0

n . 

 

Once a suitable index 
1n  is found, a sequence of indices is selected which shows high co-activity with 

1n . 

Within 
1

( , )n n , the k  highest peaks are selected, denoted by  1 2,  ,  ... ,  nc c c ckn n n  . The vectors 

( )cinx  with ci ncn   contain sEMG excitations associated with a limited number of MUs since similar 

sEMG excitation patterns are present on these time instances, while taking all electrodes into account. 

Then, these sEMG excitation patterns are clustered in nClus  number of groups based on their shapes 

through K-means clustering (KMC). The group containing the largest number of elements is selected, 

denoted by  1 2,  ,  ... ,  nv v v vnn n n   (Figure 4.1 and 4.2, step 4). Most of these time instants should be 

fired by one MU. A first average sEMG excitation shape is obtained for the j -th source: 

 
0

1
  ( )

( )
j nv

nvcard



 c x   (4.9) 

And the MUAPT of the j -th source can be estimated: 

 -1
0 0

ˆˆ ( )  ( )T
xj jn ns c C x   (4.10) 

representing, like (4.8), a proportional value to the number of sEMG excitations that 0jc  and ( )nx  share 

at the same points in time (Figure 4.1 and 4.2, step 5). This acts as a matched filter. The template of this 

filter is improved h  times. Starting with finding the r  highest peaks in 
*

ˆ ( )j ns , the asterisk indicates the 

last version of ˆ ( )n
j

s  and is an increasing number till h . Their time of occurrence, denoted by 

 * *1 *2 *,  ,  ... ,  n rn n n  , is used for calculation of a new average sEMG excitation shape *jc  via (4.9). 

An improved MUAPT of the j -th source 
*

ˆ ( )j ns  is found with (4.10). In the next cycle, more reliable 

events are expected. So, r  is incremented with a constant Np . This cycle continues till ˆ ( )jh ns  is 

reached (Figure 4.1 and 4.2, step 6). Then,  d  is set to zero with nvd   (Figure 4.1 and 4.2, step 7). 

This entire process is repeated nMU  (the maximum number of MUs that can be extracted) times, starting 

from the determination of 
0

n . Resulting in nMU  estimated MUAPTs, with their corresponding sEMG 

excitation shapes per electrode in *jc . 
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Figure 4.1 – Flowchart containing the KmCKC decomposition algorithm. 
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Figure 4.2 – Illustration per step (indicated by number in red circles) as described in Figure 4.1. The simulated (simple) 

sEMG originated from two MUs and held two channels. The length of the simplified sEMG was 500 time samples, for the 

purpose of clear illustrations only the first 175 time samples are shown. The parameter values were set to: K = 10, k = 12, 

nClus = 3, r = 4, h = 1, nMU = 2. 
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4.3 METHODS AND MATERIALS 

4.3.1 ALGORITHM IMPLEMENTATION 

The KmCKC method (Section 4.2) was implemented in MATLAB (version 2017a, MathWorks, 

Massachusetts, USA) (Appendix A3). A simplified representation of simulated sEMG measurements and 

its associated MUAPTs were used for debugging, code development, and for a first simple test, i.e. a 

sanity check. These sEMG measurements were simulated (Appendix A4) by convoluting random pulse 

trains with a mixing matrix containing a variety of density functions (of 
2

χ  distributions) as impulse 

responses. These functions are chosen as they have a smooth onset and decay, like sEMG. 

4.3.2 EMG SIMULATIONS 

It was essential to test the performance of the KmCKC algorithm with realistic EMG measurements with 

known original sources (MUAPTs). For these reasons the simulator [61] of EMGlab [62] was selected. 

This simulator provided access to the original MUAPTs of the simulated EMGs, yet the related impulse 

responses were not available. Six different EMGs were simulated, varying in electrode configuration 

(number, position and interelectrode distance (IED)) and activated MU numbers (Table 4.1). The number 

of activated MUs could be set, however there was no control over the number of MUs sensed by the 

electrodes. For simulation of these EMGs the major part of settings was default, simulating the m. biceps 

brachii. The simulator settings are included in the appendix (Appendix Figure A5-A7). Needle electrode 

configurations and the neuropathic MU loss fraction are adjusted per EMG. The latter was used for 

simulation of the numbers of activated MUs (higher MU loss fraction incorporated lower number of 

activated MUs). The simulator produced EMG signals with a 15 kHz sample frequency. This was 

resampled to the more standard 2048 Hz. 

Table 4.1 – Six simulated EMGs and their configurations. The 

electrode configuration contains electrodes (dots with number) and 

the muscle fibre direction (dashed line). 
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4.3.3 PARAMETER OPTIMIZATION 

Besides the different EMG simulation settings, the influence of parameters within the KmCKC algorithm 

and the subsequent signal processing was researched. Therefore, a random search for parameter 

optimization was added. All KmCKC parameters and two important processing parameters were 

considered (Table 4.2). Np , being the step size of r  during the iterations for improvement of 0jc , was set 

equal to the initial size of r  [1] and therefore not included as a separate parameter. Furthermore, nMU  

was set to the number of activated MUs within the simulated EMG. The random search for parameter 

optimization was performed by application of 10,000 different parameter value combinations per EMG. 

The two best performing combinations were selected. The first selection criterion included the highest 

number of identified MUAPTs. An identified MUAPT was defined as a MUAPT with a correct percentage 

(Section 4.3.4) above 88%. The second selection criterion yielded the ratio of the mean correct 

percentage and mean overshoot percentage (Section 4.3.4) regarding the identified MUAPT(s). Both 

percentages were considered equally important. The parameter values of the two best performing 

combinations served as new parameter range for the second round of 10,000 random parameter 

combinations, furthermore the step size of all parameters (except frac ) were set to one. Again, the two 

best performing combinations were of interest. 

4.3.4 PERFORMANCE MEASURES 

All simulated EMGs were used as input for the KmCKC algorithm, and for each EMG the parameters of 

the algorithm were optimised with the random search strategy. The resulting estimated MUAPTs were 

filtered (high-pass) with cut-off frequency fc . Then, each original MUAPT was matched to the most 

similar estimated MUAPT (Appendix A8). Two relevant performance measures were calculated per 

MUAPT; the percentage correct estimated action potentials (in relation to the original number of action 

potentials), and the percentage overshoot, being the number of incorrect estimated action potentials in 

Table 4.2 – All parameters included in the random parameter optimization. 
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relation to the original number of action potentials (Appendix A9). These are referred to as correct 

percentage and overshoot percentage, respectively. For these performance measures a threshold for 

MUAP definition within the estimated MUAPTs was needed. This threshold was defined as a fraction frac  

of the maximum value within the estimated MUAPT. 

4.4 RESULTS 

4.4.1 ALGORITHM IMPLEMENTATION 

The first results involved the decomposition of the simplified representation of sEMG (Figure 4.3). The 

algorithm showed high correct and low overshoot percentages when decomposing the simplified 

representation of sEMG. Even low amplitude MUAP shapes which were hard to differentiate in the sEMG, 

like shape 2 in Figure 4.3, were decomposed. 

 

Figure 4.3 – Decomposition results from the simplified representation of sEMG. This sEMG 

included two electrodes (only the results for electrode 2 are shown) and two sources (MUAPTs). 

On the left the two MUAP shapes (impulse responses) within electrode 2 are depicted. The 

parameter values were set to: K = 10, k = 30, nClus = 4, r = 10, h = 5, fc = 15 Hz, frac = 3/8. 

Resulting in the correct-overshoot percentages 99.1%-0% and 97.3%-1.8%, for MUAPT 1 and 

MUAPT 2, respectively. 
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4.4.2 SIMULATED EMGS 

The EMGs from the EMGlab simulator appeared to detect not all the activated MUs (Table 4.3), being a 

realistic situation. The log of the simulator defined per electrode MUs that did not contribute significant 

firings. According to this, electrode 3, 6, 7, and 10 of EMG 6 should not have contained any firings. 

Nevertheless, an EMG was observed in these electrodes, although with lower amplitudes. Each electrode 

within one row sensed the same MUs, except for electrode 3 of EMG 4. Only six MUs were sensed by 

multiple electrode rows, three within EMG 5 and EMG 6 (Table 4.3). Also, the mean firing rates of all 

activated MUs over the first second are included in Table 4.3. 

4.4.3 PARAMETER OPTIMIZATION 

The first random search for parameter optimization (Appendix Table A10 and Figure A11) delivered the 

new parameter ranges for the second random search for parameter optimization. The second random 

search for parameter optimization (Table 4.4) did not result in significant different results. Except, EMG 3 

showed major improvement, since two extra MUAPTs were identified. Unfortunately, EMG 3, 4, and 6 

showed very high overshoot percentages, outranging the number of excitations in the original MUAPT (> 

100%). In total, three times a MUAPT was identified which did not contribute significant firings according 

to the log of the EMG simulator. For example, in EMG 1 two MUAPTs were identified (Table 4.4) were one 

MU contributed significant firings (Table 4.3). The MUs which were sensed by more than one electrode 

row were not necessarily identified more often, EMG 5 and 6 contained 3 MUs sensed by two electrode 

rows (Table 4.3) of which 2 MUs were identified in EMG 5 and none were identified in EMG 6. The 

Table 4.3 – Six simulated EMGs and their number of 

sensed MUs and firing rates. 
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decomposition of EMG 5 (Figure 4.4) resulted in four identified MUs were four MUs (Table 4.3) were 

sensed. Remarkably, the MU of MUAPT 3 was sensed by the electrodes but not identified, while the MU 

of MUAPT 8 was not sensed but identified. This, again, questions the definition of significant firings within 

the log files of the simulator.  

4.5 Discussion 

The goal of this chapter was to verify the behavior of the decomposition algorithm that, according to the 

literature review, was most promising. First a sanity check was applied using a simple test environment. 

With a correct rate and an overshoot rate of around 98% and 1%, the algorithm performed very well. In a 

more realistic setting, with much more MUs and electrodes, the performance went down, but was often 

still reasonably good. 

Table 4.4 – Results of the second random search for parameter optimization. Where mean 

correct and mean overshoot are the averaged values within the identified MUAPTs. In some 

cases several parameter combinations were found for one particular outcome, then the 

parameter value ranges were noted. In this way, EMG 1-first contains 11 parameter 

combinations, EMG 1-second 55, EMG 2-first 62, EMG 2-first 449, EMG 5-first 8, EMG 5-

second 2 and EMG 6-second holds 6 parameter combinations. EMG 2 showed two equal 

ratios for mean correct and mean overshoot percentages, so both were classified as first. 
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4.5.1 DECOMPOSITION ALGORITHM 

The decomposition algorithm as applied in this thesis holds the calculation of 
0

( , )n n  and 
1

( , )n n , after 

selection of the median value of ( )n , its index being 
0

n . The necessity of these steps was not fully 

understood. In the articles of Holobar et al. [39][59], these steps (with different 
0

n  selection) were part of a 

technique to separate superimposed sources. If multiple sources were active at 
0

n , the group of active 

sources was referred to as noG . It was stated that when looking for the highest values inside 
0

( , )n n , a 

rather high probability of finding a sample index 
1

n  corresponding to the firing moment of another group of 

sources 1nG  would occur. The nature of innervation pulse trains makes it highly unlikely that 1no nG G . 

To sort out the fewer sources that fire at both 
0

n  and 
1

n , the simultaneous pulses in 
0

( , )n n  and 

1
( , )n n  should be selected. This was done by finding the peaks in the product 

0 1
( , ) ( , )n n n n  . 

Repetition of this process could separate superimposed sources at 
0

n . Since the product 

0 1
( , ) ( , )n n n n   was not part of the algorithm applied here, the use of 

1
( , )n n  seems unnecessary. 

The selection of 
0

n  via the median of ( )n  was probably a manner to select a sample index with few or 

one active sources. The application of KMC was expected to reduce this to one active source, its 

superimposed MUAPs could be separated via CKC. 

 

Figure 4.4 - Decomposition result of EMG 5. The parameter values were: K = 3, k = 10, nClus = 4, r = 6, h = 1, fc = 

17 Hz, frac = 0.41. The shapes per MUAPT consist of three samples since K = 3, causing the shapes being just an 

indication for EMG excitation amplitude. On the right, the correct and overshoot percentages per MUAPT are 

included. 



 46 

 

4.5.2 SIMULATED EMGS 

Six different EMG simulations were applied for basic insight in the influence of electrode and MU numbers 

on the number of decomposed MUAPTs. The number of electrodes showed limited influence (Table 4.4). 

However, because of the low number of simulations, no statistically significant conclusions could be 

drawn. Farina et al. [45] executed a more extensive research on this subject. Surface EMG simulations 

with a sample rate of 4096 Hz and 200 active MUs were present. Situations with 2x1 electrodes (in 

transverse direction), 2x2 electrodes, and 3x3 electrodes resulted in percentages of 10.5, 11.5 and 17.4 

detected MUs (upper limit), respectively. Detection of most of the MU population was observed when 9x9 

Laplacian channels were uses. These small percentage differences (for 2x1, 2x2, and 3x3 electrodes), in 

combination with the lower number of activated MUs in this thesis, explains why the influence of electrode 

numbers was limited. This is unlike the number of activated MUs, which was of great influence on the 

number of decomposed MUAPTs. EMGs 3 and 5 showed higher numbers of decomposed MUAPTs in 

comparison with EMGs 4 and 6, which hold more activated MUs. A straightforward explanation, also 

stated by Holobar et al. [60], is the activity of several MUs at each arbitrary time moment, i.e. numerous 

superposition. However, Holobar et al. [60] found their simulation results not depending on the number of 

active MUs. The provided explanation was that sources with the highest amplitudes were privileged during 

the reconstruction process. Since another reconstruction process was used in this thesis and the results 

suggest otherwise, the first explanation is considered more likely. 

 

The simulated EMGs require a critical note. The EMGs were obtained with simulated needle electrodes 

within a muscle. Needle electrodes obtain detailed and narrow MUAP shapes in comparison to surface 

electrodes, which obtain more similar and broad shaped MUAPs causing more superposition. The EMG 

simulations as used here could have caused different results than sEMG simulations would have. 

Application of the simulator created by Farina and Merletti [63] would be preferred in future research. 

Another option was to place the needle electrodes at greater distance from the simulated muscle. 

However, the simulator was not developed for this purpose and did not simulate any EMG excitation. The 

latter was also the reason for the smaller IED in EMG 5 and 6, otherwise electrode 3, 6, 7, and 10 would 

not have recorded any EMG excitations. 

4.5.3 PARAMETER OPTIMIZATION 

Through two random searches for parameter optimizations per EMG, several parameter influences could 

be observed. Parameter K , with a value of 10 or lower, seemed to relate to lower overshoot percentages 

(Table 4.4). K  defines the length of the template within the matched filter. When this template is chosen 

too long there is a higher chance of finding coincidently (false positive) matching EMG excitation parts. Its 

influence on the final estimated MUAPT is limited if r  and h  are set low enough (discussed later) 

(Appendix Table A10, see second best of EMG 4). The lower K  values did not always end up within the 

two second best of the first random search, while showing the potential for good results. See, for example, 
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EMG 6 at 7K   (Appendix Figure A11). The influence of parameter k , the number of highest co-activity 

peaks, is undefined. It showed a wide range within all the results (Table 4.4 and Appendix Figure A11). 

Theoretically it could be thought that a lower k  would increase the chance to include just one MU in nv  

after KMC. For nClus , the number of presumed clusters, holds the opposite, a higher nClus  could 

increase the chance to include just one MU. However, also nClus ’ influence seems undefined. Contrary to 

that, the parameters r  and h  seem to have a strong relation to the overshoot percentages. The final 

excitation shape jhc  is the mean of (   1)r h   shapes. The number (   1)r h   should not exceed the 

number of firings of the (to be) estimated MUAPT, since shapes not belonging to this MUAPT will get 

involved, which causes overshoot. Preferably, (   1)r h   should be equal to the number of firings of the 

MUAPT or less. All results did confirm this theory, around 35 firings (Table 4.3) were present in each 

MUAPT and (   1)r h   around 35 and lower contained less overshoot in comparison to higher (   1)r h   

(Table 4.4). Therefore, in future application of this algorithm, it would be beneficial to have an expected 

minimal MU firing frequency. This frequency number can then be used as upper limit for (   1)r h  , in the 

specific case of one second EMG length. The parameter fc  did not influence the results. The other 

processing parameter frac  seemed to influence the results. However, the height of frac  was some sort 

of representation of how well the MUAPTs were estimated. If the estimation was good, like EMG 1, 2, and 

5 (Table 4.4), the fraction of the highest peak could be high since all correct peaks were fairly high. If the 

estimation was less, like EMG 3, 4, and 6 (Table 4.4). The fraction had to be lowered otherwise not 

enough correct peaks were high enough, involving more overshoot. 

 

The parameter optimization of the decomposition algorithm was done by random search. Another option 

would have been a genetic algorithm (GA) [64] which uses a highly abstract version of evolutionary 

processes to evolve solutions to given problems. A GA operates on a population of artificial chromosomes 

(combinations of parameter values K , k , nClus , r , h , fc , frac ), each representing a solution with an 

associated fitness (correct and overshoot percentage). The algorithm starts with a randomly generated 

population of chromosomes and carries out a process of fitness-based selection and recombination to 

produce a successor population, the next generation. This process is iterated, causing the average fitness 

of the chromosomes to increase until some stopping criterion is reached. This GA technique would have 

been an efficient alternative for the random search. However, it depends on the situation which of the two 

is more effective [65]. 

 

With the random search method seven parameters were optimized. However, two extra parameters are of 

interest, the EMG length and nMU . The EMG length was set to one second for all simulated EMGs. For 

the more complex EMGs, containing more sensed MUs, a longer EMG length could have been beneficial. 

It would increase the chance of finding time samples corresponding to excitation of one MU. In future 

research the EMG length should be incorporated in the parameter optimization. The nMU  parameter is of 

interest in case of a higher value than the sensed number of motor units, although nMU  was not 
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incorporated in the parameter optimization (was set equal to the number of activated MUs in the 

simulation), not all activated MUs were sensed by the electrodes involving a higher nMU  value than 

sensed MUs. It appeared that the decomposition algorithm will continue to derive MUAPTs. Even similar 

MUAPTs will be generated like MUAPT 2 and 7 in Figure 4.4. However, it is more likely that the algorithm 

merges two MUs into one than that it splits one train into two. Therefore overestimation of the number of 

MUAPTs is preferred to underestimation [66]. Though, in experimental EMG this would be an arbitrary 

choice. In future research, addition of a motor unit number estimation (MUNE) [67] would be beneficial for 

decomposition with the KmCKC algorithm. 

 

For selection of identified MUAPTs the quite arbitrary criterion of 88% correct estimated MUAPs was 

applied, however Holobar et al. [60] chose within the same range, 90% was their criterion. 

4.6 CONCLUSION 

The KmCKC decomposition algorithm was implemented and tested on simulated EMGs. The algorithm 

showed great potential for MUAPT identification. However, more evaluation should be done on simulated 

EMGs, preferably surface EMGs with higher electrode numbers. These additional evaluations should also 

incorporate parameter optimization, whereby presence of a motor unit number estimation (MUNE) method 

and expected minimal MU firing frequencies would be beneficial. 
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CHAPTER 5                      SEMG OF THE TONGUE 
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5.1 INTRODUCTION 

In this chapter the two selected grids from Chapter 3, the ECoG and Silic-12, are tested for measurement 

of sEMG signals on the tongue. Furthermore, the decomposition algorithm of Chapter 4 is applied to these 

sEMG signals to answer the question whether decomposition of tongue sEMG signals to derive individual 

MUAPTs is possible. This step brings the grid and decomposition development together and provides the 

possibility to evaluate these techniques for their ability to acquire neuromuscular information of various 

tongue muscles. Specifically, the quality of the sEMG signals and indications for tongue muscle 

identification are of interest. 

5.2 METHOD 

The Silic-12 and ECoG grid were both developed to be compatible with the Porti-system (TMSi, 

Oldenzaal, The Netherlands)[68](Figure 5.1 A). This system was used with the monopolar configuration, 

since it contains the entire information available from the detected signal [40], and preserves the 

possibility to use different configurations. Besides sEMG registration, the executed tongue movements 

were recorded with a 3D camera system[69](Figure 5.1 B). These recordings were used for identification of 

tongue movements within the sEMG. Therefore, the surface EMGs were synchronised with the videos by 

transmission of a camera activation pulse to the Porti-system. For safety reasons, the sEMG 

measurements were not prepared by rubbing the tongue with medical abrasive paste and/or addition of 

conduction paste, normally used to reduce electrode-skin impedance [40]. However, the electrode-tongue 

noise was expected to be on a reasonable level due to the wet environment[40](Figure 5.2). As a reference, 

one micro electrode (TMSi, Oldenzaal, The Netherlands) was placed on the manubrium sterni, with 

additional  conduction  paste. Based on the results  of Chapter 3,  the  Silic-12  was  placed on the  tongue 

 

Figure 5.1 – Systems involved in sEMG measurements on the tongue. (A) The Porti-system with the maximum 

of 32 EMG channels. [68] (B) Schematic representation of the 3D camera system and positioning of the subject. 

(from above). [69] 
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without fixation, where the ECoG was fixated with denture prosthetic adhesive strips (Fittydent, Ridam 

Care BV, Breukelen, The Netherlands). After grid placement, the Porti and 3D camera system were 

started to record (in this order). Then six tasks were executed, being protrusion, tongue to the left, tongue 

to the right, tongue tip in direction of the chin, tongue tip in direction of the nose, and swallow. Each task, 

except task swallow, was persevered for 3 seconds and in between each task the tongue was rested in 

the mouth for a moment. This procedure of grid placement and six tasks was repeated four times per grid. 

These measurements facilitated evaluation of the sEMG quality per grid, in addition to the technical and 

practical scores from Chapter 3. One second of tongue sEMG was selected for decomposition with the 

KmCKC method from Chapter 4. The parameter settings were based on the results of EMG 5 and EMG 6 

from Section 4.4.3 (Table 4.4): 7K  , 50k  , 3nClus  , 5r  , 1h  , 17fc  H, 0.39frac   and 

16nMU  . Where r  and h  were based on literature about firing frequency of the GG muscle, since firing 

frequencies of other tongue muscles are unknown. For the GG muscle the firing frequencies range from 

10-32 Hz, belonging to various tasks like protrusion [70], speech [71] and breathing [72]. Based on the 

results of Chapter 4, 10 was chosen for (   1)r h  . The decomposition results were inspected via 

visualization of the MU firing moments, back reconstruction of the sEMG and spatial spread on the tongue 

per MUAPT based on amplitude. 

 

Figure 5.2 – Boxplot from Merletti and Hermens 

[40], who researched the influence of skin 

preparation on electrode noise. The 

measurements were done with two silver bars 10 

mm long, 1 mm thick, 10 mm apart, on the m. 

biceps brachii. Since different electrodes were 

used within this thesis, the exact noise levels 

within this figure were not expected, it illustrates 

the relative influence of skin treatment. 
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5.3 RESULTS 

During sEMG measurements on the tongue, most of the electrodes of the Silic-12 showed minor 

dislocation artefacts (Figure 5.3 above), which was in line with the observed minor dislocation on the 

tongue. Electrode 3 and 7, located more posterior on the tongue, showed more dislocation artefacts. 

Especially electrode 3 was bad. The measurements with this electrode were excluded for further 

analysation. Besides, the electrodes marked as inoperable (Figure 3.7 C), electrode 4, 11 and 12, 

confirmed their inability to measure sEMG signals. Consequently, measurements from eight electrodes 

were left for further analysation. The ECoG grid measurements showed major dislocation artefacts, and 

even signal absence (Figure 5.3 below), which was in line with the observed dislocation and detachment 

of the grid. The ECoG electrodes marked as inoperable (Figure 3.5) appeared to be inoperable indeed, 

except for electrode 20, which detected some sEMG signals. 

 

For decomposition of tongue sEMG the signals of Silic-12 were selected. sEMG signals with a duration of 

one second were selected in the second half of task ‘right’ (of the second session of tasks) since this task 

(part) contained least artefacts (Figure 5.3 above). The corresponding footage showed small rhythmic 

movements of the tongue during its position to the right. The decomposition resulted in 16 MUAPTs (since 

16nMU  ) (Figure 5.5) and their shapes per electrode. The mean firing rate of all MUAPTs was 37.4 ± 19.1 

Hz. The MUAPTs and their shapes were used for sEMG reconstruction, showing similar excitations 

compared to the original sEMG (Figure 5.4). Furthermore, the MUAPT propagation over the tongue was 

visualized (Figure 5.6), where a wide variation of patterns was revealed. 

5.4 DISCUSSION 

Both the ECoG and Silic-12 grid showed movement artefacts in their tongue sEMG measurements, 

pointing out the importance of electrode fixation once again (Chapter 3). Especially the ECoG grid 

suffered major movement artefacts and the sEMG signals were therefore defined as unusable, which was 

expected to a certain extent after the test for practical use (Chapter 3). The Silic-12 was not fixated at all 

and showed, above expectations, relatively minor movement artefacts in most electrodes. 

 

Due to decomposition of Silic-12 sEMG signals, sixteen MUAPTs and their firing moments were obtained 

(Figure 5.5). Some of the MUAPTs showed periods of higher firing frequencies, especially around 0.15 

and 0.4 seconds. These could be related to the observed small rhythmic movements of the tongue during 

task ‘right’. Another explanation could be the high firing frequencies (up to 150 Hz) at the start of a rapid 

muscle contraction [73]. These high firing rates decline slowly throughout the rest of the maximal 

contraction to rates as low as 20 Hz [73]. The applicability of the latter explanation could be doubted since 

this tongue ‘right’ task might not belong to the category of rapid and maximal contraction. Another 

observation, the mean firing frequency of 37.4 ± 19.1 Hz is considerably high when compared to the 

frequencies found in literature for the GG muscle (Section 5.1).  Anatomical difference in muscle fibre type  
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Figure 5.3 – sEMG measurements with the Silic-12 and ECoG grid, including task 

differentiation by video images. The vertical red line indicates the moment corresponding 

to the displayed video images. The markers on the face were placed for possible further 

research to the tongues range of motion. (Above) sEMG measurement with the Silic-12 

grid and images from the 3D camera system during task ‘right’. All long thin peaks visible 

are indicated as dislocation artefacts. (Below) sEMG measurement with the ECoG grid 

and images from the 3D camera system during task ‘left’. The sEMG is full of dislocation 

artefacts (long thin peaks) and during task ‘chin’ major artifacts and signal absence is 

present due to a detachment. 
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Figure 5.4 – The original sEMG and reconstructed sEMG of electrode 1, obtained with the Silic-12 during task ‘right’. 

One part is magnified for a more detailed visualization. 

  

 

Figure 5.5 – Decomposition result of 1 second sEMG signals obtained with the Silic-12 during task ‘right’. Each 

vertical line indicates a MU firing moment at a given time instant. 
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Figure 5.6 – All sixteen MUAPTs and their propagation over Silic-12. 

The eight grey to black rectangles indicated the operable electrodes, 

their position on the tongue is illustrated in the figure for MUAPT 1. 

The black to grey scale indicates the relative peak-to-peak 

amplitudes within the MUAPT, the highest peak-to-peak amplitude is 

represented by a black rectangle and this shape (with the peak-to-

peak amplitude) is plotted below the Silic-12 visualization. 
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might underlie this. The majority of extrinsic muscle fibres are of type I, where intrinsic muscle fibres are 

mainly type II [74]–[77]. In addition, the muscle fibre type distribution within the intrinsic muscles varies for 

different tongue regions[74](Figure 5.7), [78]from 40% type II fibres in the posterior tongue up to 75% in the 

anterior tongue [74]. Type II muscle fibres are fast twitch muscle fibres, which fatigue quickly and generate 

short-lasting bursts of strength, speed or phasic activities [79]. Conversely, type I muscle fibres are slow 

twitch muscle fibres, without fatigue, and therefore enable sustained or tonic activities [79]. These different 

muscle fibre phenotypes are strongly related to the neural activity. When fast or phasic motorneurons 

have been made to innervate a slow (type I) muscle, the muscle transforms to a fast (type II) muscle and 

vice versa [80]. Phasic motorneurons discharge at frequencies from 30-60 Hz, while with tonic 

motorneurones the frequency is usually 10-20 Hz [81]–[84]. The sEMG tongue signals probably consist 

mainly of intrinsic muscle signals, being mostly type II muscle fibres, which usually discharges at 30-60 

Hz. This would explain the mean firing frequency of 37.4 ± 19.1 Hz found after decomposition. Another 

explanatory option would be that an estimated MUAPT includes multiple MUs or a high level of overshoot. 

High levels of overshoot were already observed after decomposition of simulated EMGs (Chapter 4). The 

only check done after decomposition in the experimental tongue sEMG setup, was reconstruction of the 

sEMG (summation of all shapes at their corresponding firing moments). The reconstructed sEMG (Figure 

5.4) showed similar excitations compared to the original sEMG, suggesting the decomposition algorithm at 

least did not produce random results. Though, some excitations were missed at for instance 0.19, 0.6, 0.8 

and 0.92 seconds. This might be caused by noise, too low nMU  (remaining MUAPT) or missed firing 

moments of decomposed MUAPTs. For the same reasons, amplitude differences may have been too 

small. The sixteen MUAPTs after decomposition cannot all be regarded as correct. Both the simulation 

 

Figure 5.7 – Pie charts showing the distribution of fibre types in various locations of the 

tongue. Red represents type II fibres, blue type I fibres and green is a combination of 

both (IM and IIC fibres). [74][78] 
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results (Chapter 4) and experimental results of Ning et al. [1] underlie this. Ning et al. extracted with the 

KmCKC method up to 5 MUAPTs with the use of 16 electrodes on the first dorsal interosseous (FDI) 

muscle and 14 MUAPTs when 64 electrodes were used. Unfortunately, the sixteen tongue MUAPTs could 

not be revised, since neither there were needle EMGs performed, nor there were enough electrodes 

present for subgroup analysation (as Ning et al. [1] did). A possible MUAPT evaluation could have been 

the signal-based metric of Holobar et al. [85], which assesses accuracy of MU identification without any 

additional experimental costs. For this metric, so-called pulse-to-noise-ratio (PNR), an important 30 dB 

threshold was determined (involves sensitivity >90% and false alarm rate <2%) in both experimental and 

simulated signals. Another evaluation could have been the method of Parsaei et al. [86], their algorithm 

evaluates MUAP shape homogeneity, MU firing pattern consistency, and the estimated level of false 

classification errors in the MUAPT. 

 

The sEMG measurements and its MUAPT propagations on the tongue allow speculation about the 

anatomical origin. First, the Silic-12 probably measured predominantly intrinsic tongue muscles. The 

earlier mentioned high firing frequencies suggest this, as well as an observation in within the different 

tasks. A low sEMG activity during task swallow was observed, surrounded by the dislocation artefacts 

during placement of the tongue against the palate and removal from the palate (Figure 5.3). In comparison 

to the other tasks the tongue had a flatter shape during swallowing, possibly linked to less intrinsic tongue 

muscle use, which could explain the lower sEMG activity. Although, literature states the use of both 

intrinsic and extrinsic tongue muscles during swallowing [87]. Second, the MUAPT propagations 

contributed to insight of which specific intrinsic tongue muscles were measured. Unfortunately, the four 

inoperable electrodes caused difficulties for evaluation of the propagation patterns. Therefore, the 

following statements should be regarded as tentative and explorative. MUAPT 4 (Figure 5.6) suggested 

activation of the m. transversus, since the highest peak-to-peak amplitude is located medial and it 

propagates in lateral directions. This corresponds to the medial innervation by the medial branch of n. 

hypoglossal (m-XII) (Figure 2.3 A and B) and the expected orientation of a transverse muscle fibre. More 

medial activations were observed in MUAPT 1, 3, 5, 7, 8, 13, and 15 (Figure 5.6), though differentiation 

between m. transversus and m. verticalis is ambiguous. In addition, MUAPT 5 could also be the 

propagation pattern of medial activation of the m. longitudinalis superior since the propagation is in 

anterior and posterior directions. More lateral, possibly m. longitudinalis superior activation was seen in 

MUAPT 9, 14, and 16 (Figure 5.6), since their propagation is in tongue tip direction and it showed a lateral 

origin. The lateral origin might be linked to the innervation via the lateral branch of the hypoglossal (l-XII) 

nerve (Figure 2.3 A and B). However, this propagation pattern could also be related to the m. 

longitudinalis inferior or m. styloglossus, though less likely since their greater distance from the 

measurement electrodes. In future research, the time-varying mean firing rates during various tasks per 

MU could be added as extra information, as De Luca et al. [8] did. This might contribute to the allocation of 

identified MUs to different tongue muscles. 
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5.5 CONCLUSION 

In conclusion, the combination of Silic-12 sEMG measurements and KmCKC decomposition showed 

potential for acquisition of neuromuscular information from the superficial intrinsic tongue muscles. Even 

some tentative allocations of motor units to specific tongue muscles were made. Incorporation of more 

electrodes would increase MUAPT propagation information, which would increase certainty in MU 

allocation to different tongue muscles. Furthermore, improvement of grid fixation on the tongue would 

substantially improve the sEMG quality. For future use of these techniques, it is crucial to ensure correct 

decomposition by the KmCKC algorithm as the interpretation of the results of this algorithm remains 

difficult. 
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CHAPTER 6               CONCLUSION 

The first steps were made towards neuromuscular personalisation of the generic biomechanical tongue 

model. A tongue sEMG was successful acquired in one healthy subject with use of the newly developed 

Silic-12 electrode grid. However, several adjustments are desired to improve applicability and sEMG 

quality. The electrode grid should enable a firmer fixation to the tongue, hold more electrodes, and be 

more robust, while maintaining flexibility. The KmCKC decomposition algorithm showed reasonable 

results in simulated EMGs and was applied to the tongue sEMG for identification of individual motor units. 

Unfortunately, its performance in the tongue sEMG could not be verified. More research should be done to 

the KmCKC algorithm by parameter evaluation with simulated surface EMGs, for more reliable 

decomposition. Hereby, an expected minimal MU firing frequency and addition of a motor unit number 

estimation (MUNE) might appear beneficial. The MUAPT propagation patterns over the Silic-12 electrodes 

allowed some tentative allocations of MU activities to specific tongue muscles. Incorporation of more 

electrodes would increase MUAPT propagation information and therefore increase certainty in MU 

allocation to different tongue muscles. In short, the combination of sEMG measurements on the tongue 

with the Silic-12 grid and KmCKC decomposition algorithm showed potential for acquisition of 

neuromuscular information from the superficial intrinsic tongue muscles. Some major improvements 

should be made in future research before translation to input for the biomechanical tongue model can be 

initiated. 
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CHAPTER 7           FUTURE PERSPECTIVE 

In future research, the tongue grid and the decomposition algorithm should be improved, to obtain reliable 

neuromuscular tongue information. Several solutions to the recurrent problem of fixation on the tongue 

were already mentioned (Section 3.5). In far future, a non-contact technique for muscle activation 

measurement would be ideal for this difficult measurement environment. A promising approach is the 

Laser Doppler myography (LDMi)[88](Figure 7.1), which appeared to be a valid measurement technique for 

assessment of muscle activity [89]. This technique is based on Laser Doppler Vibrometry (LDVi), a laser 

interferometric measurement instrument which enables precise muscle vibration measurements from 

distance and without skin contact [89]. There are several mechanisms behind the LDMi signal, all relating 

the vibration to the firing patterns of individual motor units, and the resultant mechanical pressure waves 

[88]. However, this technique has some limitations for tongue muscle activity measurements. Positioning 

of a laser beam to a specific tongue area during movement tasks is complex since the unique (non-

skeletal) anatomy and displacement opportunities of the tongue. In addition, a decomposition method for 

motor unit pressure wave identification should be developed and a study should be done to the 

contribution of non-superficial pressure waves. 

Apart from the fixation problem, the gold standard (EMG), required the increase of electrode numbers. 

When the number of electrodes is significantly increased, more MU can be decomposed [45] and the 

optimal (complex) spatial filter arrangement [90][91] can be searched for, starting with NDD filter testing. 

Besides increase of electrode numbers, addition of electrode locations would provide information of 

extrinsic tongue muscles. Placement of a HD sEMG grid (TMSi, Oldenzaal, The Netherlands) (Figure 3.3 

B) under the chin (Figure 2.5) may be useful for GG muscle measures, however accurate decomposition 

is required since its MUs should be distinguished from the mouth floor muscle MUs (m. geniohyoideus and 

 

Figure 7.1 – Illustration of LDMi (LDV) and EMG of the m. corrugator and 

m. zygomaticus during two different facial expressions. [88] 
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m. mylohyoideus). As mentioned in Section 3.5, addition of sEMG electrodes to the downside of the 

tongue might be an option, next to higher electrode density. In combination with decomposition and extra 

spatial filtering, it might be possible to reconstruct the 3D motor unit location within the tongue. The 

volume conductor between the MU and the electrodes acts on the MUAP as a spatial low-pass filter [92]. 

This low-pass characteristic causes action potentials of MUs located close to the recording electrodes to 

generate a spatially steeper potential distribution than MUs located more distant [44]. This spatial (shape) 

difference can be used for MU depth discrimination. When combined with the personal muscle fibre 

orientation, visualised with MRI techniques like diffusion tensor imaging (DTI) [93][94][93](Figure 7.2)[94]or 

constrained spherical deconvolution (CSD) [95], specific fibre bundle activation can be obtained. This 

would be of great value towards personalised (detailed) 3D neuromuscular information. 

In prospect, when the neuromuscular information is successfully translated to input for the biomechanical 

tongue model, it will contribute to the goal of predicting personalised functional outcome after cancer 

treatment. The muscle (parts) planned to be affected by cancer treatment will be removed or changed in 

the tongue model (depending on the treatment), with the remaining muscle activity a functional prediction 

can be done. Besides, the combination of the personal neuromuscular information and the functional 

prediction might give insight in useful pre-treatment logopaedic exercises for muscle activity training. Apart 

from the Virtual Therapy goals, personal tongue neuromuscular information will be of great fundamental 

value itself since little is known about all complex neuromuscular varieties within the human tongue. It may 

provide essential information in understanding all kind of tongue related problems. One of them is the 

obstructive sleep apnoea syndrome (OSAS), were neuromuscular tongue information might be useful as 

part of a diagnostic protocol or function as a measure for indication of a n. hypoglossus stimulator (one of 

the treatment options). 

 

Figure 7.2 – DTI of the human tongue. (A) A sagittal view with the MRI slice location in 

the left lower corner. Individual muscle fibres of the tongue musculature are shown, and 

different muscles are indicated. [93] (B) A axial view with the standard DTI colour 

scheme (red: left-right; green: front-back; blue: up-down). Prior information was added to 

the DTI to distinguish interdigitated tongue muscles (transverse muscle in red). [94] 
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APPENDIXEQUATION SECTION (NEXT) 

A2 - An activity measure of a single source and a single sensor1 

1. Signal model 

A single source is considered that generates a time series ( )s n  with   1,  2,  ...n   . This source 

generates a sequence of short pulses, i.e. a time discrete version of a Poisson point process. Such a 

sequence is characterized by the density rateP  (mean number of pulses per unit time), and an amplitude. 

The sequence is uncorrelated with expectation s  and standard deviation s  given by: 

  
2

2

2 2

2 2 2

  [ ]   (1- )

[ ]   (1- )

  (1[ ] - ( - - ) ) 

s rate rate

rate rate

rates rates P

E s aP b P

E s a P b P

as P bE



 

  

 

 

 (1) 

with a  the pulse height, and b  the signal level between pulses. 

 

The activity of this source is measured by means of a surface electrode. The observed voltage is denoted 

by ( )x n . It is assumed that the relation between the source and the measurement is given by a 

convolution with finite impulse response ( )h n  with 0, , 1n P  : 

 
1

( ) ( ) ( )

0

P
x n s n k h k

k


 


 (2) 

                                                      

1 This appendix is a result of a joint effort of F. van der Heijden and E.S. van Staveren. 

 

 

Figure A1 – Prototype sEMG grid building in the mould. (A) The first layer of silicone and the 12 electrodes with 

bended leads. Two wooden sticks were added for keeping open the canal for the electrode cables. (B) The 

electrode cables were soldered to the electrode leads. 
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This process can be brought into matrix-vector notation as follows: 

  

( )

( 1)
( ) (0) (1) ( 1)

( 1)

T

s n

s n
x n h h h P

s n P

 
 


  
 
 

  

 (3) 

For the analysis it is useful to have not only ( )x n , but also the past K  values ( 1),  , x n  ( 1)x n K   

captured in one vector. Therefore, the vectors are defined as: 

 

( )

( 1)
( )

( 1)

x n

def x n
n

x n K

 
 


 
 
 

  

x  and 

( )

( 1)
( )

( 2)

s n

def s n
n

s n K P

 
 


 
 
 

   

s  (4) 

and a matrix: 

(0) (1) ( 1) 0 0 0

0 (0) (1) ( 1) 0 0 0

0 (0) (1) ( 1) 0 0

  rows0 0 0

0 0 0 0

0 0

0 0 0 0 (0) (1) ( 1)

1 columns

def

h h h P

h h h P

h h h P

K

h h h P

P K

  
  


  
  
  

  
 
 
 
   

 

H   (5) 

to arrive at a model: 

 ( ) ( ) ( )n n n x Hs e   (6) 

where ( )ne  is a vector representing the sensor noise. The standard deviation of the noise is n . 

 

2. Activity index 

For the sake of brevity, it is assumed that the mean of ( )ns  will be zero. Under this condition, the 

covariance matrix of ( )ns  is defined as the K K  matrix E ( ) ( )Tn n   s
C s s . Since ( )s n  is uncorrelated, 

 E ( ) ( ) 0s n s m   for n m . Therefore, 2

ss
C I . Likewise, the noise covariance matrix is 

2

neC I . Using 

the property that E ( ) ( ) E ( ) ( )T T T Tn n n n      Hs s H H s s H the covariance matrix of ( )nx  becomes: 

 2 2 2T T
n s n

     C HC H I HH I
x s

  (7) 
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The next step is to calculate the activity index defined as: 

 1ˆ( ) ( ) ( )Tn n n  x C x
x

 (8) 

in which ˆ x
C  is an estimate of the covariance matrix using an observation of vectors ( )nx . 

 

3. Interpretation of activity index 

To see what this activity index represents, the following theorems will be applied: 

Any   matrix  can be decomposed into an orthonormal  matrix ,  a diagonal  

matrix , and a second orthonormal  matrix :

T

K L K K K L

L L

  





Theorem 1:  singular  value  decomposition

H V

S W

H VSW

 

Any covariance matrix  can be decomposed into an orthonormal matrix  and a diagonal 

matrix :

The matrices  and  are obtained as the solutions from the eigenvalue problem:  

T

k k





Theorem 2 :  

C V

L

C VLV

V L Cv

   1 1

,

with:

  and  =diag , ,

k

K K

v

V v v L

 

If  is an eigenvector of , and  is the corresponding eigenvalue, then  is also an eigen-

vector of the matrix . The corresponding eigenvalue is + . 

Corollary :

v C v

C I

 

Application of theorem 2 to
x

C  in (7) shows that V  and L  are the eigenvectors/values of 
T

HH  so that 

 2 2 T

s n  
x

C V L I V . Consequently: 
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 (9) 

Furthermore, since 
TH VSW  (theorem 1) and 

T THH VLV  (theorem 2), 
1
2S L  and 

1
2 TH VL W , so 

that according to (6): 

 
1
2( ) ( ) ( )Tn n n x VL W s e  (10) 

Substitution of (9) and (10) in (8) yields: 
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A further simplification occurs when is noticed that ( )T nV e  is also a white noise sequence as V  is an 

orthonormal matrix. Therefore, ( )T nV e  is replaced by ( )ne : 

  
1 1
2 2

2
2 2( ) ( ) ( ) ( )T

s nn n n  


  L I L W s e  (12) 

Since L  and I  are diagonal matrices and ( )T nW s  can be represented as ( )ns , this can be brought back 

to scalar equations: 
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To investigate what is happening, a specific scenario with 
2 2

s k n   is computed (high signal-to-noise 

ratio). In this scenario, the following approximations hold true: 

 
2 2 2 2 2

1 1
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The latter approximation is based on the fact that ( )ne  is on the order of magnitude of nσ . Substitution in 

(13) yields: 
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Now suppose the interval from - 1n   to n  contains m  pulses. Then: 

 
2 2 2

1
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K

k

n k ma K m b


  s   (16) 

Thus, the activity index is: 
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In the particular case when   0b  , and using (1), this simplifies to: 

 
(1-

( )
)rate rate

m
n

P P
    (18) 

In conclusion, under suitable conditions, the activity index is proportional to the number pulses in an 

interval of K  samples. A property of Poisson point processes is that m , being the number of events in an 

interval of K  samples, has a Poisson distribution with expectation  m rateKP   and variance 

2  m rateKP  . However, since we have a time discrete version the variance is 
2  (1- )m rate rateKP P  , 

whereas the expectation is still  m rateKP  . Therefore, it is expected: 
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1- (1- )rate rate rateP P
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    (19) 

4. Co-activity index 

The co-activity index is defined as: 

1
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Substitution of (9) and (10) in (20) yield: 
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  (21) 

If the signal components are much larger than the noise components, the first term prevails. In that case, 

2

n I  will be much less than 
2

sσ L  and can be neglected. Thus: 
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  (22) 

The conclusion is that 
0

( , )n n  is proportional to the number of pulses that the records 0( )nx  and ( )nx  

share at the same points in time. 
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A3 – The KmCKC algorithm 

 

function [IPTs,shape]  = KmCKCnew(sEMG,K,nMU,k,nClus,r,Np,h) 
%% function for sEMG decomposition  
% derived from Ning et al. (2015) - Surface EMG decomposition based on K-means 

clustering and convolution kernel compensation 
% sEMG  = sEMG of tongue of a certain task 
% K     = number of delays to be created 
% N     = number of samples 
% M     = number of electrodes 
% nMU   = the maximum number of MU that can be extracted 
% r     = number of different highest peaks 
% Np    = step for higher r 
% h     = number of repeats of step 4 
% k     = number of highest peak in sn1 
% nClus = number of clusters during KMC clustering 

  
%% step 1 - create delays and covariance matrix 
M = size(sEMG,1); 
N = size(sEMG,2); 

  
place  = 1; 
X      = zeros(K*M,N); 
for i = 1:M 
    for j = 0:K-1 
        X(place,:) = circshift(sEMG(i,:),j,2); 
        place = place + 1; 
    end 
end 
Cxx = cov(X');  

 
%% step 2 - compute y(n), n0, sn0(n), n1, sn1 and PHInc 
y = sum(X.*(Cxx\X)); 

  
for Nmdl = 1:nMU              
[~,ind] = sort(y); 
n0 = ind(round(N/2));    
sn0 = sum(X(:,n0).*(Cxx\X)); 

  
% maximum value of sn0 on time n1 
maxsn0  = max(sn0); 
[~, n1] = find(sn0==maxsn0); 

  
% compute sn1(n) 
sn1 = sum(X(:,n1).*(Cxx\X)); 

  
% k highest peaks of sn1 (PHInc) 
[~, PHInc] = findpeaks(sn1,'SortStr','descend','NPeaks',k); 

 
%% step 3 - KMC clustering, PHInv, Cxsj0 and sj0 
% generate initial cluster centers, in this case a space-diagonal equally 

spaced 
X_PHInc = X(:,PHInc)';  
minX    = min(X_PHInc,[],1); 
maxX    = max(X_PHInc,[],1); 
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nsamp   = size(X_PHInc,1); 
initialcenters = repmat(minX, nsamp, 1) + bsxfun(@times, (0:nsamp-1).', (maxX 

- minX) ./ (nsamp-1)); 
initialcenters = initialcenters(1:nClus,:); 

  
% KMC clustering  
KMC = kmeans(X_PHInc,nClus,'start',initialcenters); 

  
% group with largest number of elements 
[a,~]       = hist(KMC,unique(KMC)); 
[~, group]  = find(a==max(a)); 
[KMCloc, ~] = find(KMC==group); 
PHInv       = PHInc(1,KMCloc); 

  
% cross-correlation between estimated pulse train and all observations 
Cxsj0 = mean(X(:,PHInv),2); 

  
%% step (3), 4 and 5 - illiterate estimation of pulse train 
% estimation of initial pulse train 
sj      = zeros(h+2,N); 
sj(1,:) = sum((Cxsj0.*(Cxx\X))); 

  
for i = 1:h 
    r = r + Np; 
    [~, PHI] = findpeaks(sj(i,:),'SortStr','descend','NPeaks',r); 
    Cxsj = mean(X(:,PHI),2); 
    sj(i+1,:) = sum((Cxsj.*(Cxx\X))); 
end 
shape(Nmdl,:) = Cxsj'; 
IPTs(Nmdl,:) = sj(h+1,:); 

 
%% step 6 - remove peaks from y 
y(1,PHInv) = 0; 

  
clearvars -except sEMGb EMG X y Nmdl nMU sources IPTs r Np h N H Hparm k K nMU 

r Np Cxx nClus shape; 
end 
end 
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A4 – Simulation of simplified representation of sEMG 

 

function [X,sources,H,P] = simulateEMG(NS,PR,Hparm) 
%% simulation of a sEMG 
% NS         = number of EMG samples 
% PR         = pulse rate per source 
% Hparm(i,j) = parameter of impulse response from source i to electrode j 

  
[M,N] = size(Hparm); 
% M = number of electrodes 
% N = number of sources 

  
DOFmax = max(Hparm(:)); 
P      = ceil(DOFmax+3*sqrt(DOFmax));    % maximal length neccessary for 

impulse response 
 

%% generate sources 
sources = zeros(N,NS); 

  
% random locations of impulses 
for i = 1:N                       % loop through sources 
    impulse = sort(randperm(NS,round(NS*PR))); 
    for j = 1:size(impulse,2)-1          
        if impulse(j+1)-impulse(j) < 0.25*P     % set distance of minimal 

0.25*P between impulses 
            impulse(j+1)=impulse(j);            
        end 
    end 
    impulse = unique(impulse); 
    sources(i,impulse) = 1; 
end 
 

%% generate the mixing matrix H 
H      = zeros(M,P*N); 
for i = 1:N               % loop through sources 
    for j = 1:M           % loop through electrodes 
        h = chi2pdf(0:P-1,Hparm(j,i));  % create impulse response 
        H(j,(i-1)*P+1:i*P) = h;     % put impulse response in right place of H 
        hlist{j,i} = h;             % overview (list) of H 
    end 
end 
 

%% generate sEMG 
X = zeros(M,NS); 
for i = 1:N 
    for j = 1:M 
        X(j,:) = X(j,:) + conv(sources(i,:),hlist{j,i},'same'); 
    end 
end 
end 
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Figure A5 – Main window of the EMG simulator. With settings for electrode 1 

of EMG 1. [61] 

 

 

Figure A6 – Electrode windows of the EMG simulator. With settings for all EMGs. [61] 
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A8 – Match estimated MUAPT to original MUAPT 

 
function [IPT,IPTn]  = matchIPTsource(IPTs,MUs) 
%% function to match IPT to source (MU)  
% IPTs    = IPTs following from KmCKC 
% sources = original MUAPS of simulated EMG 
place    = 1; 
Q        = 50;  % number of delays for finding match 
IPTdelay = zeros(size(IPTs,1)*50,size(IPTs,2)); 
for i = 1:size(IPTs,1) 
    for q = 0:Q-1 
        if q < 25 
           IPTdelay(place,:) = circshift(IPTs(i,:),q,2); 
        else 
           s = q-(0.5*Q); 
           IPTdelay(place,:) = circshift(IPTs(i,:),-s,2); 
        end 
        place = place + 1;  
    end 
end 
match         = MUs*IPTdelay'; 
matchIPT      = max(match,[],2); 
[IPTn, shift] = find(matchIPT==match); 
IPT(IPTn,:)   = IPTdelay(shift,:); 
end 

 

Figure A7 – Muscle windows of the EMG simulator. With ‘neuropathic MU loss fraction’ for EMG 1. The other settings concern all 

EMGs. [61] 
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A9 – Two percentage performance measures per estimated MUAPT 

 
function [pcorrect,povershoot]  = pscore(IPT,MUs,frac) 
%% function for percentage score of KmCKC outcome compared to original sources  
% IPTs    = IPTs following from KmCKC 
% sources = original MUAPS of simulated EMG 
% frac    = fraction for determination of the threshold for peak selection 
dummy  = max(IPT,[],2); 
thresh = dummy*frac; 
for i = 1:size(MUs,1) 
    [peak,loc] = findpeaks(IPT(i,:),'MinPeakHeight',thresh(i,1)); 
    pks{i} = [peak;loc]; 
end 
for i = 1:size(MUs,1) 
    [pulse,loc] = findpeaks(MUs(i,:),'MinPeakHeight',0.9); 
    pls{i} = [pulse;loc]; 
end 
for i = 1:size(IPT,1) 
    correct       = ismember(pls{i}(2,:),pks{i}(2,:)); 
    pcorrect(i)   = (sum(correct)/size(pls{i},2))*100; 
    povershoot(i) = ((size(pks{i},2)-sum(correct))/sum(correct))*100; 
end 
end 
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Table A10 – Results of the first random search for parameter optimization. Where 

mean correct, and mean overshoot are the averaged values within the identified 

MUAPTs. 
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EMG 1 

First 2 92.9 11.1 8 200 5 16 1 30 0.58 

Second 2 91.5 14.1 8 150 2 7 2 40 0.29 

EMG 2 

First 2 94.4 4.5 10 220 2 5 6 15 0.48 

Second 2 93.1 4.7 10 210 3 7 2 40 0.56 

EMG 3 

First 3 93.3 114.6 19 30 2 12 4 10 0.29 

Second 3 92.2 124.6 20 180 4 15 4 50 0.34 

EMG 4 

First 2 88.4 270.6 15 110 5 6 21 35 0.26 

Second 1 88.2 10.0 14 80 5 13 2 30 0.61 

EMG 5 

First 4 92.1 7.1 3 10 4 6 1 15 0.44 

Second 3 93.2 5.3 8 20 2 11 1 40 0.38 

EMG 6 

First 2 88.6 354.8 14 70 2 17 9 20 0.26 

Second 2 88.6 383.9 14 80 5 11 13 10 0.25 
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