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Abstract 
 

Video target tracking systems is a trending research topic, with a plethora of applications emerging 

from recent studies, with both visual object detection and tracking disciplines being the most notable, 

principally on embedded platforms. Not only are they employed in various fields, but also remarkably 

combines several branches of studies, such as control engineering, video processing, and more 

recently, machine learning and sensor fusion. Autonomous vehicles are a notable example, being 

equipped with a variety of sensors, including cameras, and widely apply image processing and sensor 

fusion techniques, thus providing more concise and high-level information, which increases 

robustness and more importantly, certainty, on decision making. However, such techniques must 

respect real-time constraints, especially in terms of timing, due the fact a delay might have a high cost 

under certain circumstances. 

 

Currently, there is a broad interest in processing images with neural networks, which are superior in 

terms of performance and robustness in comparison to traditional image processing algorithms. 

Although the rapid development of image sensors in combination with neural network technology, 

computational power of the underlying platform is still a bottleneck, especially for embedded 

applications. Moreover, the platform is commonly responsible for multiple tasks, which might include 

a user interface, data processing, (digital) filtering and high-level control, thus cannot be fully 

dedicated to the neural network itself. Finally, modern system-on-chips comprise hardware 

accelerators and multiple processing cores, which enable embedded systems to accomplish the 

desired throughputs, and achieve better results and efficiency in comparison to pure software 

implementations. Most of the time, these SoCs are completely customizable and interaction between 

software and hardware is facilitated. 

  

In this thesis, the focus is on both implementation and evaluation of a computational efficient robot 

control, based on neural networks to detect and localize a specific target (another robot), on an 

embedded platform. Sensor fusion and Kalman filtering are addressed, with the latter being used to 

post-process the output of the neural network, meanwhile the former combines encoder, 

accelerometer and gyroscope data which is used to derive the ego-motion information of the robot. 

Moreover, a specific approach for estimating the ego-motion impact in terms of pixels is proposed 

and discussed. The neural network, however, is not the focus, thus is only briefly discussed. During 

development, computational complexity, project extensibility and parallel tasks were the main 

concern, with the former being reduced whenever possible. 

 

A complete working setup was the result of this endeavor, with the application being a toy example: 

its goal is to track a specific target, and follow it by means of controlling another robotic platform. 

Sensor fusion is accomplished with a complementary filter, which boosts the ego-motion speed 

accuracy and refresh rate. The estimation of the ego-motion impact, in terms of pixel movement, was 

implemented through approximation functions that are only dependent on the derived speed and 

gyroscope data, and proved to be fairly accurate without the need of complex procedures. The 

standard Kalman filters implemented proved to handle false-negatives and target occlusions in a 

reliable manner, and can be instantiated and run in parallel. Although the final implementation 

executes in a PC running Linux, the whole application can be easily ported to an embedded Linux.  
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Glossary 
 

Term Definition 

0b__ Represents a binary value (usually an 8-bit value) 

0x__ Represents a hexadecimal value (usually a 8 or 16-bit value) 

ACK Acknowledge – In some communications when a message is sent, the receiver sends 
back an Acknowledge package to confirm that it received successfully the previous 
information 

bps Bits per second – Refers to speed (i.e. baud rate) in a communication protocol 

C, C++, C# C, C plus plus and C sharp – Refers to programming languages 

CRC Cyclic Redundancy Check – Algorithm used to perform error check when transmitting 
data 

DC Direct Current 

DoF Degree(s) of Freedom – Refers to how many degrees of freedom a device has 

EKF Extended Kalman Filter – Non-linear version of the Kalman Filter 

fps Frames per second – Refers to camera frame rates 

FPU Floating-Point Unit – Unit that is dedicated to floating-point arithmetic operations, 
usually a dedicated piece of hardware 

GND Ground – Refers to ground or reference of a circuit 

GPIO General-Purpose Input/Output, usually related to a microcontroller pin 

GPU Graphics Processing Unit – Refers to a graphic card 

I/O Input/Output, normally refers to direction of a pin 

I2C Inter-integrated Circuit – Intra-board communication protocol 

IC Integrated Circuit – Refers to a small chip 

IMU Inertial Measurement Unit – Combination of motion sensors, usually a accelerometer, 
a gyroscope and a magnetometer 

KF Kalman Filter – Optimal filter for linear systems, mainly used for data fusion 

LED Light-Emitting Diode – Electronic component which emits a light 

LSB Least Significant Bit/Byte – Refers to ordination of bits/bytes 

MCU Microcontroller Unit 

MSB Most Significant Bit/Byte – Refers to ordination of bits/bytes 

PC Personal Computer 

PCB Printed Circuit Board 

POSIX Portable Operating System Interface 

PWM Pulse-width modulation – Modulation technique that sets an average voltage by 
switching on/off the voltage. Used for different kind of applications like RGB LEDs 
dimming 

RMSE Root-Mean-Square Error – Measure of differences between values 

RPM Rotations Per Minute 

RT Real-Time 

SoC System-on-Chip – Refers to an integrated circuit which comprises components of a 
computer and other electronic systems 

UART Universal Asynchronous Receiver/Transmitter – Serial protocol 

UI User interface 

UKF Unscented Kalman Filter – Non-linear version of the Kalman Filter, parallelism is a 
possibility 
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1. Introduction 
 

Video target tracking systems have become a trend research topic, especially for embedded systems, 

covering several fields such as image, signal and video processing, machine learning, pattern 

recognition, and control engineering. Moreover, multiple sensors and thus sensor fusion techniques 

have been applied in order to improve the tracking performance [1]. Not only do vision tracking 

systems enable machines to perform complex tasks, but also require less hardware requirements and 

are easier to be implemented in comparison to other traditional systems, such as radar- or 

LiDAR-based systems. Thus, video target tracking is widely applied in commercial applications, ranging 

from medical to autonomous vehicles. Whenever multiple sensors are used, sensor fusion techniques 

are used in order to derive relevant information and improve the overall performance of the system, 

with the Kalman filter and its variations being the most commonly used. 

 

In terms of target detection and localization, the state-of-the-art techniques are based on neural 

networks, which have been replacing traditional image processing techniques due to their superior 

performance and robustness. However, neural networks are computationally expensive and other 

technologies are still utilized for object detection in embedded systems, such as radar, due the fact 

data processing is faster, thus real-time processing is possible. In terms of sensors, most video target 

tracking systems comprise cheap and accurate inertial measurement units (IMUs), in addition to 

(mono- or stereo-)cameras, mainly focusing on improving the tracking algorithm and performing 

Simultaneous Localization and Mapping (SLAM). However, multiple sensors increase overall 

complexity of the system, which must include sensor fusion techniques, hence requires even more 

resources from the underlying platform. 

 

The rapid development of image sensors enables stable streams with high framerate and image 

quality, easily achieving 60 fps at 1080p or higher resolution, which contribute to increasing the target 

recognition, especially for neural network-based implementations. Moreover, advances on sensor 

technologies provide lightweight and more accurate devices. Over the last decade, however, most 

video tracking systems had been implemented on a remote computer or cluster, equipped with high 

performance CPUs and GPUs, specifically addressing the computational complexity issue of both 

image processing and sensor fusion techniques. The remote device then transmits back commands to 

the embedded platform, which introduces latency for (mobile) applications, decreasing their 

performance because real-time requirements cannot be guaranteed. Moreover, standard computers 

are not power-efficient, expensive and relatively large, hence not feasible for mobile applications.  

 

More recently, several system-on-chips significantly improved their hardware capabilities, enabling 

data processing to be performed in the embedded platform itself, as the hardware conditions do not 

represent a bottleneck to implementing complex video processing and sensor fusion algorithms. 

Considering such SoCs comprise hardware accelerators and multiple processing cores, being most of 

the time completely customizable and simplifying interaction between software and hardware, 

embedded systems are capable of achieving the desired throughputs, achieving better results and 

efficiency in comparison to pure software implementations. 

 

Initially, the main goal of this project was to utilize the ZYBO [2] board, which comprises a Zynq-7010 

SoC [3] with a dual ARM Cortex-A9 and FPGA fabric. Moreover, it is equipped with many peripherals 
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such as a dual-role HDMI port, and supports bare-metal code, alongside embedded Linux and 

hardware accelerators. Hence, the focus of this thesis is to implement and evaluate a video tracking 

system with object recognition and tracking, which exploits both the FPGA fabric for executing the 

neural network – the most computationally expensive part of the application –, and the ARM 

Cortex-A9 for data fusion and high-level control. The application is a toy example, and its goal is to not 

only track a specific target, but also follow it by means of controlling another robotic platform 

equipped with sensors and actuators. This thesis summarizes and describes the whole design process 

and decisions during the development of such system, except the neural network hardware 

implementation. More specifically, due to the fact the neural network in the end of this project was 

still not ported to the FPGA, a PC was used instead. However, decisions during the project were made 

taking into account the underlying platform would be an embedded system with limited resources, 

thus the final implementation can be easily ported to the ZYBO board, for instance. 

 

This chapter introduces the research problem: initially, the problem is explained in more detail and 

the major research objectives are defined; subsequently, the contributions of this thesis are presented 

and briefly discussed, followed by the outline of this report in the last section. 

 

1.1 Problem definition 
 

Porting a visual tracking system that comprises both tracking with a neural network and sensor fusion 

is not an easy task. A pure software solution demands vast computational capabilities, with the neural 

network being extremely computationally intensive due the required operations performed on the 

frames. A pure hardware solution, on the other hand, is limited by the amount of resources available, 

and is commonly limited in terms of flexibility and configurations. Recent solutions utilize multiple 

sensors and complex sensor fusion techniques in order to navigate, instead of perform tracking, such 

as SLAM [4], Extended Kalman Filters [5, 6, 7, 8], Unscented Kalman Filters [8, 9, 10], among others, in 

addition to some combining different techniques [5, 6, 9] which demands even more resources, thus 

computational power. Camera-IMU setups are widely applied for positioning [10, 11], which requires 

online camera external parameters calibration, performed by Kalman filters. Neural networks are 

rarely used in mobile applications due its complexity and execution time which restrains real-time 

requirements, with either traditional image processing techniques being applied instead, or third-

party libraries used, such as skeleton tracking [4], for instance. Moreover, whenever a neural network 

is indeed utilized for object detection and tracking, it is executed in a remote PC [12], and filtering its 

output is rarely implemented, which greatly degrades the performance in occlusion scenarios [4] or 

false-negatives. Instead, Kalman filters usually are applied to pre-process data which is inputted to the 

neural network [13, 14]. 

  

Considering the aforementioned facts, this thesis addresses an alternative solution in order to detect 

and localize an object with a neural network, taking into account the ego-motion impact and filtering 

the output of the neural network with a robust filtering technique, in order to properly steer a robot 

and follow a target, all implemented in a resource-constrained embedded system. Moreover, this 

thesis stresses the following objectives: 

1. Implement a low-level system which is responsible for sensor fusing data and steering a robot: 

a. Using a resource-constrained embedded system; 

b. Considering both encoder and IMU data; 
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c. Improving the refresh rate of the ego-motion data; 

d. Properly controlling the speed; 

e. Providing ego-motion data to a higher-level system. 

2. Realize a robust visual object tracking system: 

a. Using software which interacts with hardware in a resource-constrained embedded 

system; 

b. Using a neural network-based detection and localization implementation, ideally on 

hardware – implementation of the neural network is NOT addressed, however; 

c. Coupling a Kalman filter to improve stability and addressing both tracking with 

occlusion and possible false negatives outputted by the neural network; 

d. Retrieving ego-motion data from the lower-level system; 

e. Considering the ego-motion impact on the target being tracked, in pixel speeds; 

f. Interacting with the low-level system in order to follow the target. 

3. Analyze and evaluate the complete system: 

a. Considering delays; 

b. Identifying bottlenecks; 

4. Test the complete system in practice. 

 

In summary, the research questions are as follows: Is it possible to implement application which 

comprises tracking and sensor fusion techniques on a practical embedded system? Furthermore, what 

are the complications for such system? 

 

1.2 Contributions 
 

In summary, this thesis contributes to five major points. Initially, it (1) addresses the usage of a 

complementary filter to fuse encoder and IMU data, more specifically accelerometer and gyroscope 

information. Not only does such filter reduces computational complexity, but also boosts the 

ego-motion speed accuracy and refresh rate, being particularly useful when low-cost and 

low-accuracy sensors are deployed, although this technique is currently not often applied. 

 

Secondly, the ego-motion, more specifically speed and angular velocity with respect to heading, is 

considered and its impact on the object being tracked is estimated by a simpler (but specific) method, 

which does not require computationally expensive algorithms (2). The output of the neural network 

applied for detection and localization is additionally filtered by standard Kalman filters, which are 

based on a linear model and their implementation do not depend on matrix operations, reducing even 

further the require computational power of the underlying platform (3). Moreover, the derived 

ego-motion impact is used by the Kalman filters, making it possible to keep tracking the target when 

occlusions occur, in addition to common false-negatives outputted by the neural network (4). 

 

Finally, distance control is abstracted by investigating pixel control instead, hence complex 

translations between camera and world coordinates are avoided (5). Furthermore, two PID controllers 

are combined in order to simplify steering the robot. 

With respect to internal contributions, this thesis describes an implementation that was tested in 

practice and validates the correct behavior of the integrated system, combining multiple techniques 
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from different areas. Hence, the implementation is a complete base system in terms of structure, 

hardware and software, which can be applied in a variety of applications. 

 

1.3 Thesis outline 
 

Heretofore, the topic of this thesis and related research has been introduced. In the upcoming 

chapters, the whole system is extensively discussed, with its complete overview being depicted in 

Figure 1 below: 

 

 
Figure 1. Complete system overview 

 

Chapter 2 describes the robotic system (highlighted in red), by introducing the overall structure, the 

related embedded hardware, improvements done to the standard libraries, followed by the 

complementary filter used for fusing encoder and IMU data and the respective results. Finally, the 

protocol used for communicating with this system is discussed and the final implementation detailed. 

 

Chapter 3 is the unit of this thesis, and addresses the tracking system (highlighted in black), briefly 

introducing the camera used and the neural network scheme. Subsequently, the Pre-Kalman filter 

module is detailed, which is responsible for translating the ego-motion impact to pixel speeds which 

are forwarded to the Kalman filter. The Kalman filter used for filtering the output of the neural 

network is then assessed, regarding its design and additional algorithms applied specifically for 

tracking, alongside the obtained results. Subsequently, the Pixel Control module is presented and 

explained, which is responsible for computing the speed and direction that must be forwarded to the 

robotic system in order to it properly follow the target. Finally, the final implementation in terms of 

both hardware and software related to the tracking system is explored, including the drivers 

developed for the Kalman filters, PID controllers and communication with the robotic system. 

 

Chapter 4 analyzes the complete system behavior, exploring the impact of the delay on the 

performance, alongside a basic dataflow graph discussion to explore RT analysis techniques. 

 

Finally, Chapter 5 concludes the thesis and presents future work and final thoughts.  
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2. Robotic system 
 

 
Figure 2. Robotic system outline 

 

In order to introduce the complementary filter, which is the first main part of this project, the 

underlying robotic system used – the Makeblock Ultimate Robot Kit V2.0 10-in-1 [15] -, with its 

mechanical structure, key hardware modules likewise extra ones and their capabilities, are briefly 

discussed. Moreover, improvements with respect to the default software libraries are assessed, 

considering the desired functionalities of the complementary filter itself in addition to overall 

improvements, such as the low-level speed controller. Finally, the filter is explained and analyzed, 

alongside the micro-protocol used for communicating with the robotic system, as well as the final 

architecture in terms of both software and hardware. In summary, the highlighted blocks shown in 

Figure 2 above are detailed in the upcoming sections. 

 

The Makeblock Ultimate Robot Kit has many structural parts, a mainboard – the MegaPi -, Bluetooth 

connectivity and several (proprietary) modules. This kit was readily available in the beginning of the 

project and comprised, among others, an Inertial Measuring Unit (IMU) module, DC motors coupled 

with encoders, and their respective drivers, which are required for the final application: follow an 

object. Moreover, it is simple to use and tailor to this application, without much effort. All 

development tools are provided in the seller’s website, and the system can be fully customized by the 

user, in terms of software and structure. Hardware components, on the other hand, are complete 

modules and is up to the user to integrate them or not. For a detailed description, one should refer to 

[15]. 

 

Although the complementary filter will be extensively discussed later in this chapter, it is important to 

define its inputs and outputs briefly due the fact most design decisions were based on what it requires 

for the desired behavior. In summary, the complementary filter is used to improve and complement 

the speed estimation procedure, and fuses data from both encoder and accelerometer, which is 

relevant for the tracking system. Moreover, the tracking system requires data from a gyroscope, but 

this will be further explored in Chapter 3. Taking this into consideration, the complementary filter’s 

inputs are: linear speed which is derived from linear accelerations retrieved from an accelerometer, 
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and the linear speed derived with the encoder. The output, on the other hand, is the fused linear 

speed, with the gyroscope data being directly forwarded to the tracking system. 

Furthermore, a set of basic requirements and functionalities was defined for the robotic system, which 

should follow another robot, and thus must be able to: 

• Move forwards, backwards, and turn; 

• Support a camera on top: the frames will be further processed by the tracking system; 

• Process data from an IMU: necessary for the complementary filter; 

• Control the speed of the motors: low-level speed control; 

• Receive speed references from the tracking system; 

• Send relevant data to the tracking system: current speed and angular velocities. 

 

2.1 Structure 
 

The kit used in this project has several mechanical parts, such as plastic gears, acrylic supports, screws, 

and metal part, which can be assembled in different ways. Although there are default configurations 

provided by the seller alongside the respective piece of software, such as “Robotic Arm Tank”, “Self-

Balancing Robot” and “Robotic Bartender” [15], for this project a custom setup was built which 

contemplates a base structure with two tracks driven by two separate DC motors, and two elevated 

platforms: a shorter one for supporting the battery, and a taller one to accommodate the camera. 

Finally, a support for the main board is required and should be located as close as possible to the 

modules used. The structure used is shown in Figure 3 below: 

 

 
Figure 3. Robotic system structure 

 

The tracks have been utilized due the fact driving the robot in a different manner would 

overcomplicate its odometry model and drive procedure, especially when changing direction. Not only 

do the tracks simplifies the operation, but also improves robustness due the fact they overcome 

obstacles easier. Furthermore, this structure complies with the previous requirements: 

• Move forwards, backwards, and turn: with tracks and two separate motors, the robot can be 

steered properly; 

• Support a camera on top. 

 

The battery platform is necessary for powering the system, but in this case also provides a stable 

support for the IMU module. Moreover, adding modules and (most likely) structures were taken into 

consideration, thus this platform can still be augmented in the future. 
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2.2 Embedded hardware 
 

Besides the mechanical parts, the kit includes a microcontroller board based on ATmega2560 [16] – 

the MegaPi, which is both Raspberry Pi and Arduino compatible. Programming is done through USB, 

and for this application only the Arduino IDE was necessary during development, although it is possible 

to use different development tools. Moreover, the kit comprises several electronic modules which are 

plug-and-play, with the most relevant ones being: Bluetooth, DC motor driver, ultrasonic sensor, RJ25 

shield for I2C/UART modules, 3-axis accelerometer and gyroscope sensor, and a compass. In total, 

three (3) encoder motors are also included, apart from the aforementioned modules, which are DC 

motors coupled with encoders. Cables are provided and connections are simple to use, thus will not 

be explained in this section. The complete parts list can be found in [15]. 

 

With respect to hardware requirements, the system must support, at least: 

• Driving 2 DC motors simultaneously; 

• IMU connection for the complementary filter; 

• Serial communication or (optimally) wireless module for exchanging data with a master and 

debugging; 

• Floating-point operations for control loops, filtering and data processing. 

 

2.2.1 MegaPi board 

 

The MegaPi, as explained before, is based on the ATmega2560 microcontroller and can drive up to 10 

servo motors, 8 DC or 4 stepper motors simultaneously. Additionally, most I/O pins are exposed and 

can be used for custom hardware and software implementations, as depicted in Figure 4 below. Note 

that the motors’ circuitry is highlighted in purple, power input and switch in gray, Bluetooth in orange 

and the microcontroller itself in yellow. 

 

 
Figure 4. MegaPi board, with highlighted relevant parts 

 

For this project, the MegaPi board and modules are sufficient and meets the requirements: 

• DC motors: it is capable of driving up to 4 simultaneously; 

• IMU: a 3-axis accelerometer and gyroscope sensor are included in the kit; 

• Serial communication or wireless module: in addition to the Bluetooth and USB (Virtual COM), 

it supports an extra UART connection; 
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Although the ATmega2560 is an 8-bit microcontroller, it has software support for floating-point 

operations which are typically fast (< 1 milliseconds for division), and commonly used for control loops 

and filtering techniques. Taking into consideration that both the complementary filter and data 

processing (for the IMU) are simple and do not require many calculations, this platform is capable of 

performing the necessary operations on time. 

 

Finally, it is important to note that this board operates at 5V, and its power-in range must be between 

6-12V, in case a battery is used. The complete specifications of the board and ATmega2560 can be 

found in [15] and [16], respectively. In terms of software, the MegaPi has a complete open-source 

library, available at [17] 

 

2.2.2 Sensors & Actuators 

 

Before defining and integrating all components, it is important to consider both the available sensors 

and actuators. Despite that several electronic modules are included in the kit, only few are required 

for the application: 

• IMU unit, more specifically an accelerometer and a gyroscope, for the complementary filter; 

• DC motors for movement; 

• DC motor drivers; 

• Encoders for speed control; 

• Wireless module for communication: optional, as a wired connection is more reliable. 

 

This section describes the motors used, alongside the feedback sensors necessary for speed control 

and finally the IMU required by the complementary filter. 

 

Encoder motors 

In total the kit includes three (3) 25mm encoder motors, which are DC motors coupled with an 

incremental encoder: all three operate at 9V, but only two can achieve a higher speed (185 RPM ±10%) 

with the other being slower (86 RPM ±10%). The latter, however, has a higher torque in comparison 

to the former, and is typically used for lifting a robotic arm, which is not the case for this application. 

Thus, both identical encoder motors are used for driving the robot, one on each side. The encoder 

motor is depicted in Figure 5a below, with the encoder being in the back, close to the proprietary 

connection. Other specifications can be found in [18]. 

 

 
Figure 5. Encoder motor (a) and its driver (b) 

 

DC motors are usually controlled with an H-bridge, which translates a low-voltage PWM input to the 

required proportional voltage (nominal voltage of the motor) output. Moreover, it can be stopped in 



15 
 

different ways – coasting (free rotation) or braking – and its rotation direction can also be determined. 

Fortunately, the kit also provides the driver module for the encoder motors, which is shown in Figure 

5b above, and must be place in either slot 1 or 2 of MegaPi (check Figure 4). Moreover, the encoder 

connections are properly routed to the microcontroller pins in order to derive the speed. 

 

There are different ways of keeping track of a motor’s RPM, with tachometers and hall-effect sensors 

being an example. However, when considering all aspects of each technology, quadrature incremental 

or absolute encoders stand apart due their price, size, availability, and reliability. Not only do encoders 

require less mechanical components, but also are easy to mount and require simple data processing.  

A quadrature relative or incremental encoder measures a change in position, and usually outputs two 

channels (A and B – the quadrature signals) and one index pulse (X). The former signals are toggled in 

a certain order depending on the rotation direction (clockwise or counter-clockwise), and the latter is 

pulsed once every complete revolution (Figure 6). The amount of pulses per revolution (PPR) 

outputted by a one channel is stated in the datasheet, thus rotations per second can easily be derived 

and converted (e.g. to Hz, RPM) either from the two output channels, or from the index pulse itself by 

measuring the time between one or several pulses, which is less accurate (i.e. integer number of 

revolutions). Hence, such encoder provides rotational velocity, direction, and relative position 

feedback, and one per motor is required. 

 

 
Figure 6. Quadrature signals and index for counter-clockwise rotation (a), outputted by the incremental encoder (b) 

 

Although the encoder motor already includes an incremental encoder, no datasheet is provided by 

the supplier. This is not a problem, as by visually inspection it is possible to determine it is a low-quality 

device with 8 PPR, thus low resolution, which negatively impacts the speed control. However, the 

supplier does provide the necessary drivers [3] to derive the RPM and no extra hardware nor 

mechanical parts are needed. With respect to software, the “MeEncoderOnBoard” driver is used for 

initializing, configuring, and utilizing the encoder motors. Check Appendix C: Embedded Software for 

further details. 

IMU 

An Inertial Measurement Unit (IMU) usually embeds three sensors: accelerometer, gyroscope and 

magnetometer. These devices are often cheaper than individual sensors, and provide complete 

inertial information, which is relevant for many applications, such as dead reckoning and simultaneous 

localization and mapping (SLAM). The accelerometer is a compact electromechanical device designed 

to measure linear acceleration forces (i.e. change in speed). A gyroscope, on the other hand, is small 

and inexpensive sensor that measure angular velocity, either in degrees per second (°/s) or revolutions 

per second (RPS). It can be used to determine orientation through data fusion, and is found in most 

autonomous navigation systems, usually combined with accelerometers for improved performance 

with a Kalman filter or a complementary filter.  
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One of the modules included in the kit is a 3-axis accelerometer and gyroscope (Figure 7b), which has 

been and will be referred to an IMU throughout this document, even though the magnetometer is not 

involved. Moreover, the application only requires data from an accelerometer and gyroscope, with 

the former being used to determine the linear speed, meanwhile data from the latter is directly 

forwarded to the tracking system. Hence, the magnetometer will not be discussed in this section. 

 

 
Figure 7. RJ25 shield (a), and 3-axis accelerometer and gyroscope module (b) 

 

The module shown in Figure 7b above is an I2C device and both accelerometer and gyroscope full-scale 

ranges are programmable, with the core IC being the MPU6050 – full specifications can be found in 

[19]. Moreover, the module uses a RJ25 connector and must be correctly connected to the MegaPi 

board through the RJ25 shield (Figure 7a). Note that the module has a white label on top of its 

connector, which must match one of the colors on top of the RJ25 shield. In this case, it should be 

connected to connector number 6, 7 or 8. Usage is straight forward with respect to software, which 

depends only on the “MeGyro” driver for initializing, configuring, and utilizing the encoder motors – 

Check Appendix C: Embedded Software for further details. 

 

2.3 Library improvements 
 

The processing board and its compatible modules work out-of-the box with the open-source library 

provided [3]. More specifically for this application, however, two drivers are used: 

“MeEncoderOnBoard” and “MeGyro”, which handle the encoder motors and the IMU module, 

respectively. By exploring the source code of both libraries, one may find points of improvement, or 

customize it in order to add specific functionalities, for instance. The former relates to a problem found 

in the speed control, and the latter to instability issues and a lack of flexibility with the data retrieved 

from the IMU module. The main goal of modifying such drivers is to improve the overall behavior, 

robustness and stability of the robotic system, and in this section the major modifications are 

presented, further explained and justified. 

 

2.3.1 Speed Controller 

 

The first issue addressed is the speed controller provided by the “MeEncoderOnBoard” driver, which 

handles the encoder motors. Although the MegaPi documentation indicates a PID controller is used, 

its implementation is a simple proportional one. Initially, the performance of the proportional 

controller was assessed in order to decide whether a more complex would be implemented. The 

proportional gain was set to 0.18, and the sampling frequency to 25 Hz which are the default values 
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according to the documentation. It is important to notice that the reference must always be provided 

in RPM, and in this scenario the same speed is provided for both encoder motors. Initially, however, 

both sides were tested and presented highly similarities, thus the upcoming results depict one side 

only. Two metrics are used to compare the performance: the settling time for 95%, and the 

root-mean-square error (RMSE), with the latter being computed with the following formula: 

 

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∗∑(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 − 𝑠𝑒𝑛𝑠𝑜𝑟𝑖)

2

𝑁

𝑖=1

 (2.1) 

 

The performance is shown in Figure 8 below, with the reference depicted in red and the actual sensor 

(i.e. encoder) readings in green. 

 

 
Figure 8. Proportional controller response 

 

Even though the controller behavior is satisfactory, abrupt reference changes result in a slow 

response, especially when changing direction, with this implementation having a 0.8 second settling 

time (95%) and a RMSE of 63.08 RPM. Thus, prior to implementing the complementary filter described 

in the next section, the speed controller of the robotic system was modified to contemplate a PID 

controller, instead of a simple proportional one, which theoretically could improve overall 

performance, and more specifically the settling time. After implementing the PID controller, the 

response was evaluated in the same manner as before, and the result is shown in Figure 9 below: 
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Figure 9. PID controller response 

 

In this setup, the proportional (𝐾𝑝), integral (𝑇𝑖) and derivative (𝑇𝑑) gains were tuned to 1.7, 0.1 and 

0.0001, respectively, and the sampling frequency was increased to 50 Hz. With such configuration, the 

settling time was reduced to 0.3 second, corresponding to a reduction of 62.5% in comparison to the 

original controller. Moreover, overshoots do not surpass 5% of the reference value, and the RMSE was 

decreased to 27.86 RPM (55.83% reduction). The oscillation in the steady state will be further 

addressed by the complementary filter, which outputs a more stable speed value. Additional 

information about the PID controller, its implementation and tuning procedure can be found in 

Appendix A: PID Controller. 

 

2.3.2 IMU 

 

The IMU library is called “MeGyro”, although is comprises both an accelerometer and a gyroscope. 

During initial tests with the module, a few drawbacks were discovered: 

• The calibration procedure did not take into consideration the accelerometer offsets (advised 

in the datasheet [19]); 

• The driver only outputted fused (with a complementary filter) gyroscope data: yaw, roll and 

pitch. Hence the name “MeGyro”; 

• The driver only outputted processed data – raw data from the sensors could not be retrieved. 

Note that raw data corresponds to integer values directly retrieved from the sensors, 

meanwhile processed considers both offset and sensitivity, resulting in a meaningful value 

and unit (i.e. m/s2 and °/s); 

• If the module was placed nearby metal parts, the system would often halt during initialization 

due magnetic interferences. 

 

Initially, the calibration procedure was addressed in order to stabilize and reduce the bias of both 

gyroscope and accelerometer readings. Implementation is rather simple: the last step of the 

initialization is dedicated to retrieving raw data from the sensors several times (currently 500x), which 

are averaged in the end and internally saved as the offsets. Such values are later used when the user 
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requests processed data from the driver, by simply deducting the offsets from the raw readings. Note 

that calibration is always performed upon startup, thus the robotic system must always be in a flat 

surface and not be disturbed during initialization, otherwise behavior might be unpredictable due to 

wrong readings. 

 

As the complementary filter input requires a speed value derived from the IMU, it is necessary to make 

the accelerometer data available in addition to the gyroscope data, which will further be used to 

calculate the speed. Additionally, it is rather advantageous to provide both raw and processed data 

retrieved from the sensors for debugging purposes. These modifications were both addressed 

simultaneously, by including specific functions to the library. Due the fact unique methods were 

added, usage of this driver is different from the original version. For more details, one should refer to 

Appendix C: Embedded Software. 

 

Data signaling depends on how the module is placed with respect to the robot, and will be discussed 

in the end of this chapter. It is extremely important to keep the module away from metal parts and 

motors, and ideally it should be placed on top of an acrylic platform. Otherwise, the robotic system 

will most likely malfunction due to interferences and halt during initialization. 

 

Finally, the accelerometer and gyroscope sensitivities were set to 2g and 500 °/s, respectively. The 

former corresponds to the highest resolution, and was used due the fact the linear accelerations are 

as precise as possible, which decreases errors for the following speed estimation step. The gyroscope 

sensitivity, on the other hand, can be further decreased to 250 °/s which corresponds to the best 

resolution, but it is not required for this application: based on tests, the robotic system is not capable 

of turning faster than 360 °/s. Furthermore, both sensitivities constrain the sampling frequency, and 

for this specific configuration up to 1kHz can be achieved. This is enough for both complementary filter 

and tracking system (most likely running below 200Hz). The former benefits from this high sampling 

frequency, as currently bottleneck the sampling frequency for the speed is restrained by the encoder 

readings. 

 

2.4 Complementary Filter 
 

Estimating the ego-motion of the robotic system is an important part of the application, considering 

such information will be further used by the Kalman filter and directly impacts the overall 

performance. Thus, being able to estimate the speed as precise and fast as possible is required. One 

might assume the encoder readings are enough, but in fact it only updates the readings at 50Hz, with 

the software improvements previously discussed. The IMU readings, on the other hand, are 

considerably faster for the presented sensitivities: 1kHz. Hence, by fusing both sensor data it is 

possible to achieve a sampling frequency of 1kHz in a low-cost platform. 

  

The Kalman filter is widely used in sensor fusion scenarios, however it might be rather complex 

depending on the sensors applied and computationally expensive, especially due the amount of 

floating-point operations. Considering the microcontroller being used has a software floating-point 

support, and will be performing other tasks which require floating-point operations, another approach 

is needed. One simplistic alternative to the Kalman filter is the complementary filter [20], which is less 

complex, less computationally expensive, but yields similar results [21]. As mentioned before, the 
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original implementation of the IMU module (“MeGyro” driver) utilized a complementary filter to fuse 

accelerometer and gyroscope data and output less noisy and more accurate angular speeds (i.e. yaw, 

roll and pitch). Such technique is widely used for this type of sensor fusion, with many practical 

examples found in literature [21, 22, 23]. Furthermore, other applications use the same technique but 

the interest is specifically on estimating heading (i.e. yaw) and attitude [24, 25]. In summary, the 

complementary filter enhances accuracy, increases the sampling frequency, reduces complexity, and 

can be implemented in a low-cost platform as well. Hence, this section further explores the 

complementary filter (1st and 2nd order), addresses the necessary speed estimation techniques, and 

finally presents comparisons and results. 

 

2.4.1 Filter structures 

 

The 1st order complementary filter corresponds to two filters in parallel, with the same cut-off 

frequency: a high-pass and a low-pass filter. Moreover, the filter’s name corresponds to the relations 

between both high- and low-pass filter gains, which are complementary: 𝐺𝐻𝑃𝐹 + 𝐺𝐿𝑃𝐹 = 1 . The 

general structure of the 1st order complementary filter for the robotic system is depicted in Figure 10 

below. 

 

 
Figure 10. First-order Complementary Filter 

 

The generic implementation of the 1st order complementary filter is straight-forward: 

 

 𝑜𝑢𝑡𝑛 = 𝐾 ∗ 𝑖𝑛𝑝𝑢𝑡1𝑛 + (1 − 𝐾) ∗ 𝑖𝑛𝑝𝑢𝑡2𝑛 (2.2) 

   

 𝐾 =
𝑓𝑐

(𝑇𝑠 + 𝑓𝑐)
 (2.3) 

 

With 𝐾  being the time constant, 𝑓𝑐  the cut-off frequency, and 𝑇𝑠  the sampling period. The timing 

constant can be interpreted as a boundary between trusting one reading and the other, being usually 

tuned in practice, even though there are methods in literature to calculate it [23]. Note that 𝐾 can be 

computed on-the-fly, if the 𝑇𝑠 (or 𝑓𝑠) is correctly measured and the cut-off frequency is known a priori. 

However, 𝑓𝑐 is commonly unknown thus 𝐾 is defined or computed offline.  The high-pass filter gain 

corresponds to 𝐾  itself, meanwhile the low-pass filter gain is the complement: 𝐾 − 1. Thus, both 

inputs must be carefully selected to match the desired filters. 

 

The linear speed is estimated through integration based on the linear accelerations outputted by the 

IMU which naturally has a tendency to drift over time, hence it is reliable on the short-term and a 

high-pass filter is used. The encoder readings, on the other hand, are more reliable on the long-term, 

thus a low-pass filter is utilized. For this application the cut-off frequency is unknown, thus the time 
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constant is not computed dynamically, but defined as a constant, and by considering all the 

aforementioned information, (2) becomes: 

 

 𝑣𝑓 = 𝐾 ∗ 𝑣𝐼𝑀𝑈 + (1 − 𝐾) ∗ 𝑣𝑒𝑛𝑐 (2.4) 

 

With 𝑣𝑓 being the fused speed, 𝑣𝐼𝑀𝑈 the speed derived from the IMU, and 𝑣𝑒𝑛𝑐 the speed derived 

from the encoder. 

 

A 2nd order complementary filter might be implemented as well, because it theoretically yields a better 

result at a cost of a more complex structure [23, 25], which involves two integrations as shown in 

Figure 11 below. 

 

 
Figure 11. Second-order Complementary Filter 

 

Note that 𝐾1 and 𝐾2 are positive gains, typically tuned in practice, and can be related as follows to 

simply work with a single gain 𝐾: 

 

 𝐾1 = 2 ∗ 𝐾 (2.5) 
   
 𝐾2 = 𝐾

2 (2.6) 
   

Implementation is more complex, and can be divided into intermediate steps. Based on Figure 11, one 

might use the following equations to realize the 2nd order complementary filter: 

 

 𝐴𝑛 = 𝑖𝑛𝑝𝑢𝑡2𝑛 − 𝑜𝑢𝑡𝑛−1 (2.7) 

   
 𝐵1 = 𝐴𝑛 ∗ 2 ∗ 𝐾 (2.8) 
   

 𝐵2𝑛 = 𝐴𝑛 ∗ 𝑇𝑠 ∗ 𝐾
2 + 𝐵2𝑛−1 (2.9) 

   

 𝐶𝑛 = 𝐵1 + 𝐵2𝑛 + 𝑖𝑛𝑝𝑢𝑡1𝑛 (2.10) 

   
 𝑜𝑢𝑡𝑛 = 𝐶𝑛 ∗ 𝑇𝑠 + 𝑜𝑢𝑡𝑛−1 (2.11) 

 

For this application, (2.7), (2.10) and (2.11) become: 

 

 𝐴𝑛 = 𝑣𝑒𝑛𝑐𝑛 − 𝑣𝑓𝑛−1
 (2.12) 
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 𝐶𝑛 = 𝐵1 + 𝐵2𝑛 + 𝑣𝐼𝑀𝑈𝑛 (2.13) 

   

 𝑣𝑓𝑛
= 𝐶𝑛 ∗ 𝑇𝑠 + 𝑣𝑓𝑛−1

 (2.14) 

 

It is important to notice that regardless the filter order, an integration method must be implemented 

to estimate the speed, which will be addressed in the next section. Obviously, both inputs must be 

provided in the same unit and in this case, meters/second was used. 

 

2.4.2 Speed Estimation 

 

Integration is strictly related to the complementary filter, due the fact a typical 1st order 

implementation requires so. More specifically, the accelerometer provides 3-axis linear accelerations 

which must be integrated to derive the speed, as follows: 

 

 𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡
𝑡

0

 (2.15) 

 

With 𝑣(𝑡)  being the linear speed, and 𝑎(𝑡)  the linear acceleration, for a single axis. Notice that 

integration is related to continuous time, but the system is digital, thus a summation is used for the 

implementation. In this case, the speed at moment 𝑛 is computed by summing the previous speed 

(𝑣𝑛 = 0, 𝑛 < 0) and the value retrieved with an approximation rule, being generalized as follows: 

 

 𝑣𝑛 = 𝑣𝑛−1 + {𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑙𝑒} (2.16) 
 

Although there are many ways of estimating the speed in a robotic system, in this setup the procedure 

was purely encoder based. Such method delivers fairly accurate results, basically dependent on the 

encoder resolution itself and does not require an integration method for computing the speed, but 

may be improved by sensor fusing the IMU data that, on the other hand, does need an integration 

procedure. Furthermore, the interest is in estimating a 1D speed for this application, that basically 

corresponds to a forward or backward movement due to the robot's constraints (tracks): it can neither 

move sideways or up/down. Although the robot might be yawing, rolling or pitching, only the latter 

affects the 1D speed component. This section discusses optional approaches for speed estimation, 

considering the available hardware and computational capabilities of the underlying platform. 

 

Accelerometer based 

As previously stated, 3-axis linear accelerations are retrieved from the accelerometer, in m/s2, and in 

order to estimate the speed an (digital) integration method must be implemented. Moreover, the 

accelerometer should be correctly calibrated for its static linear accelerations (offset), and go through 

the following procedures [26] in order to yield reasonable results: 

1. Low-pass filter for noise reduction; 

2. Window-filter for mechanical noise reduction; 

3. Movement-end check to force the integration to 0, when the system has stopped. 

 

Notice that these procedures must be applied to all relevant axis for the application, which in this case 

is the one corresponding to moving the robotic system forwards or backwards. The whole procedure 
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for estimating the speed is depicted in Figure 12 below. Due the fact the offsets are computed during 

the IMU initialization and automatically used when processed data is requested, the low-pass filter 

procedure for noise reduction is initially addressed. Reducing the noise is critical in order to decrease 

major errors during the integration procedure, which is performed by both the low-pass and window 

filters [26]. 

 

 
Figure 12. Accelerometer-based speed estimation procedure 

 

One of the simplest implementations of a low-pass filter in digital systems is averaging: high-frequency 

disturbances are filtered out. However, simple averaging adds unnecessary delay to the system, as at 

least 𝑁  samples must be averaged before outputting a filtered value. There are alternatives that 

specifically address this issue, such as the moving average: the output is computed whenever a sample 

is retrieved by averaging it with the previous 𝑁 − 1 samples. Notice, however, that this method still 

comprises a delay of 𝑁 samples, but only during initialization. Another issue of the moving average 

(and simple average) is the division, which is computationally expensive. The exponential moving 

average (EMA) is then introduced, which yields surprisingly similar results with respect to the moving 

average, does not require division operations and is simpler to implement. Taking these factors into 

consideration, alongside the underlying platform, the EMA was chosen to be implemented. The EMA 

for a single sample is computed as follows: 

 

 𝑜𝑢𝑡𝑛 = 𝛼 ∗ 𝑖𝑛𝑝𝑢𝑡𝑛 + (1 − 𝛼) ∗ 𝑜𝑢𝑡𝑛−1 (2.17) 
   

 𝛼 =
2

(𝑁 + 1)
 (2.18) 

 

With 𝛼 being defined based on the filter order 𝑁, thus can be computed a priori. Setting 𝑁 to a high 

value can result in a loss of data, meanwhile setting it to a low can result in an inaccurate output value. 

The exponential behavior corresponds to the (1 − 𝛼)  factor which is multiplied by the previous 

output 𝑜𝑢𝑡𝑛−1, differently from the moving average that considers the previous input values instead. 

Typical EMA responses for a noisy input signal and different 𝑁 values are shown in Figure 13. 

 

Apply offsets Low-pass filter Window-filter Integration
Movement-
end check



24 
 

 
Figure 13. EMA sample responses for different N values 

  

With respect to this application, the best results for the accelerometer readings were obtained with 

𝑁 = 3 during testing, hence (2.17) becomes: 

 

 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑎𝑐𝑐𝑛 = 0.5 ∗ (𝑎𝑐𝑐𝑛 + 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑎𝑐𝑐𝑛−1) (2.19) 
 

Next step is to implement a window-filter to reduce mechanical noise, as minor errors in acceleration 

could be interpreted as a constant velocity and will be summed [26]. Moreover, the low-pass filter 

might produce residual erroneous data, so a window of discrimination between valid and invalid data 

and for the no-movement condition must be implemented [26]. Implementation is straight forward: 

if the input is within the maximum and minimum window values, the output is 0; otherwise, the output 

is the input. A sample behavior of the window-filter is depicted in Figure 14 below, where the 

maximum and minimum window values are set to ±0.3, respectively: 

 

 
Figure 14. Window-filter sample response 

 

The window values for the accelerometer were derived in practice, by simply leaving the robotic 

system in a static position without disturbances and observing the accelerometer readings, which 

were typically within ±0.02 m/s2.  
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With the accelerometer readings properly pre-processed with both low-pass and window filters, the 

linear speed can finally be estimated through an integration method. A common approach is to utilize 

the 1st order trapezoidal rule, that approximates an integral by accumulating the area of several 

trapezoids, as shown in Figure 15 below. 

 

 
Figure 15. Illustration of the trapezoidal method 

  

Formally, the trapezoidal rule is defined for continuous time as follows: 

 

 ∫ 𝑓(𝑥) 𝑑𝑥 ≈ (𝑏 − 𝑎) ∗ (
𝑓(𝑎) − 𝑓(𝑏)

2
)

𝑏

𝑎

 (2.20) 

 

For discrete time and considering the application, however, (2.20) reduces to the following formula 

which is derived from both the trapezoidal rule combined with (2.16): 

 

 𝑣𝑛 = 𝑣𝑛−1 +
(𝑎𝑐𝑐𝑛 + 𝑎𝑐𝑐𝑛−1) ∗ ∆𝑡

2
 (2.21) 

 

With 𝑣𝑛  being the speed estimation, 𝑎𝑐𝑐𝑛  the linear acceleration, and ∆𝑡  the sampling time for 

sample 𝑛. Not only does the trapezoidal rule greatly reduce integration error, but it has a simple 

implementation and requires a single floating-point multiplication, hence this method was chosen for 

speed estimation. 

 

Although the integration error is small, the speed estimation drifts over time due to error 

accumulation. This issue will be further suppressed by the complementary filter, but can be treated 

with a post-processing movement-end check, which forces the speed to zero, thus resets the 

integration method and consequently the error. When moving the robotic system, there is typically 

an initial acceleration or deceleration until a maximum velocity is reached, before the acceleration 

changes direction (i.e. signal) until it reaches zero once more [26]. Considering that the velocity is the 

result of the area below the acceleration curve, the speed will only be zero when both areas above 

the negative and below the positive side of the curve are the same, which is extremely unlikely to 

happen in a real-world scenario, consequently making the speed estimation to be unstable. Due to 

this fact, a movement-end check is performed after the integration process to prevent speed 

instability: if a certain amount of consecutive accelerometer readings is zero, the speed is set to zero. 
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After several tests, the maximum quantity of consecutive readings allowed before forcing the speed 

to zero was set to 25. 

 

Encoder based 

Deriving the speed with the encoder is a simpler matter, due the fact the sensor’s output signals are 

captured by the microcontroller, with the library handling the conversion from PPR to RPM, as 

previously discussed. However, the robotic system uses two encoder motors to move around, and 

information from both encoders must be properly combined, which result in a 1D speed as required. 

Thus, encoder-based speed estimation is reduced to standard odometry of the robotic system. 

 

Due the fact there is no interest in performing dead-reckoning, neither heading or position are 

estimated and using a partial-odometry is enough for the application. Considering the simplistic 

robotic system structure, a basic model was derived based on [27, 28, 29, 30, 31] in which slippage is 

not considered [32]. In this scenario, the combined encoder speed 𝑣𝑒𝑛𝑐 is the mean of the encoder 

readings from both sides: 

 

 𝑣𝑒𝑛𝑐 =
𝑣𝑅 + 𝑣𝐿
2

 (2.22) 

 

With 𝑣𝑅  and 𝑣𝐿  being the right and left encoder readings, respectively, in RPM. Alternatively, one 

might compute the velocity of each encoder motor, in meters per second, based on the wheel’s radius 

𝑅 , encoder’s resolution 𝑃𝑃𝑅 , pulse difference ∆𝑝𝑢𝑙𝑠𝑒𝑠  and time between measurements ∆𝑡 , as 

follows: 

 

 𝑣 =
2 ∗ 𝜋 ∗ 𝑅 ∗ ∆𝑝𝑢𝑙𝑠𝑒𝑠

𝑃𝑃𝑅 ∗ ∆𝑡
 (2.23) 

 

Note that if the encoder’s resolution and wheel’s radius of both sides are the same, the resulting 

encoder speed can be computed with the following formula, derived from (2.22) and (2.23): 

 

 𝑣𝑒𝑛𝑐 =
𝜋 ∗ 𝑅

𝑃𝑃𝑅 ∗ ∆𝑡
∗ (∆𝑝𝑢𝑙𝑠𝑒𝑠𝑅 + ∆𝑝𝑢𝑙𝑠𝑒𝑠𝐿) (2.24) 

 

Finally, the combined speed is computed with (22) and converted from RPM to meters per second in 

order to be fused with the complementary filter. Such conversion is elementary, being only dependent 

on the wheel’s radius 𝑅 and the track thickness, which were measured and correspond to a combined 

value 0.032 meters (3.2 centimeters). The following formulas are used for conversion between RPM 

and m/s: 

 

 𝑣 =
𝜋 ∗ 𝑅𝑡
30

∗ 𝑅𝑃𝑀 (2.25) 

   

 𝑅𝑃𝑀 =
30 ∗ 𝑣

𝜋 ∗ 𝑅𝑡
 (2.26) 

 

With 𝑅𝑡 = 0.032 𝑚, 𝑣 the speed in meters per second, and RPM the speed in rotations per minute. 
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Pitch correction 

The gyroscope data might be relevant depending on the terrain conditions in which the robotic system 

will operate. For this application, it is assumed the robot will function on a flat surface, hence strictly 

changing its heading. Although the IMU is calibrated upon initialization, when the robot is normally 

moving, the gyroscope outputs non-zero pitch and roll information with the latter not affecting the 

1D speed (forwards or backwards). The pitch, on the other hand, directly influences the resulting 

speed either estimated with the IMU, or combined with the complementary filter. 

 

 
Figure 16. Illustration of the robotic system going up a ramp 

 

Considering a pitch 𝛿 as depicted in Figure 16 above, the 1D speed component 𝑣 with relation to the 

flat surface must be correct, and is computed as follows: 

 

 𝑣 = 𝑣′ ∗ cos(𝛿) (2.27) 
 

During normal operation, the maximum pitch recorded was 5° (about 0.09 radians). Due the fact the 

pitch will be, at most, 5°, the small-angle approximation can be used to simplify (2.27): 

 

cos(𝛿) ≈ 1 −
𝛿2

2
= 1 −

0.092

2
= 0.996 

 

Due the fact the pitch contribution is extremely low, it will be neglected for this project. Note, 

however, that if the robotic system operates on a non-flat surface, it will present unexpected behavior.  

 

2.4.3 Results 

 

Several minor tests were performed to debug, get used to components, and validate implementations 

before finally testing the whole robotic system, more specifically the speed estimation and 

complementary filter algorithms. This section presents the major results obtained during a procedure 

in which a sequence of different forward and backward speeds are set for a certain period of time, as 

presented in Table 1 below. In addition to RPM, the ground speed is also presented, which is calculated 

with (2.25) and will be used for all results in this section. 

 
Table 1. Complete test sequence 

  
 

RPM 0 40 -50 82 -103 125 -142 167 182

Ground speed (m/s) 0.000 0.134 -0.168 0.275 -0.345 0.419 -0.476 0.560 0.610

Period (s) 1 3 3 2 2 2 1 1 1
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Moreover, different results are presented and compared based on the RMSE, which can be computed 

with (2.1). However, in order to correctly validate the speed estimation procedure (either encoder- or 

accelerometer-based) and the complementary filter implementations, a ground truth speed should 

be available. Unfortunately, measuring the speed of a system in an accurate manner is not 

straightforward, and is mostly performed with expensive equipment or demands an extensive 

approach. 

 

As measuring the speed was not the main goal of this thesis, an alternative and simpler concept was 

utilized: encoder readings present typically accurate results, being as low as ±0.04% for a 360 PPR 

encoder [33]; thus, by fitting the encoder measurements, one might consider such approximation the 

ground truth, at least currently for this project. Initially, the test sequence was applied and the 

encoder readings logged, which yielded the results shown in Figure 17 below, with a RMSE of about 

0.12 m/s.  

 

 
Figure 17. Encoder readings based on the test sequence 

 

It is noticeable by observing Figure 17 above and the speed controller response (Figure 9) that the 

encoder readings follow an exponential curve. To address the ground truth issue, then, the reference 

values used for the test are fed to an offline EMA algorithm, in order to fit the encoder readings. 

However, the EMA implementation, as previously discussed, requires a specific number of samples 𝑁 

to be defined a priori. The number of samples 𝑁 was varied from 0 to 100, and the RMSE computed 

for the exponential moving averaged (EMAd) reference and the encoder readings to select a proper 

𝑁 which produced the smallest RMSE as possible. The result of this procedure is depicted in Figure 18 

below: 
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Figure 18. RMSE versus number of samples 𝑁 

 

The lowest RMSE value obtained was about 0.03 m/s, for 𝑁 = 54 (𝛼 ≅ 0.036). Furthermore, the 

EMAd reference for this specific number of samples is shown in Figure 19 below. Note the encoder 

readings fairly fit, thus from now on in this section, reference will correspond to the EMAd reference 

and is considered as the ground truth speed for all RMSE calculations. It is relevant to notice, however, 

that this EMA is a post-processing technique, being implemented offline exclusively. 

 

 
Figure 19. Exponential moving averaged reference for N=54, alongside the encoder readings 

 

Subsequently, the accelerometer-based speed estimation was assessed with the same test sequence, 

with the results depicted in Figure 20. Note only the speed on the axis of interested is presented, and 

neither the reference was not modified nor RMSE computed for this graph 
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Figure 20. Accelerometer readings based on the test sequence 

 

Moreover, it is relevant to notice the movement-end check impact on the estimated speed, which 

forces the output to zero only after twenty-five (25) consecutive zero readings, clearly visible when 

the reference is set to zero. Moreover, notice that estimation procedure does drift over time, which 

is evident for the first two iterations and the fifth, due the fact their longer duration, when this effect 

becomes more visible. Finally, it is clear the speed estimation is less accurate than the encoder 

readings, but outputs data three times faster (150 Hz) with the current data processing required by 

the speed estimation algorithm. 

 

Complementary Filter 

The IMU and encoder data are fused through a complementary filter, in order to reduce the overall 

noise of the derived speed before forwarding such information to the Pre-Kalman filter and, 

subsequently, to the Kalman filter itself, which is further explored in the next chapter. Both 1st and 2nd 

order complementary filters were implemented offline to simplify the procedure of tuning their 

respective gains. Additionally, considering the complementary filter implementation consists basically 

of hard-coding equations (2.4) for the 1st order or (2.7-2.11) for the 2nd order, the bottleneck in terms 

of how fast the robotic system can provide a filtered output is not influenced by the additional 

operations. Thus, the offline implementation for tuning the gains should present the same behavior 

as the real one, given a 150Hz frequency is respected. 

 

Initially, the 1st order complementary filter was tested by varying the gain 𝐾  from 0 to 1, which 

corresponds to not considering or only considering the accelerometer speed estimation, respectively. 

For each gain, RMSE is computed based on the EMAd reference value and the filter’s output, which 

yielded the following graph: 
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Figure 21. RMSE versus 1st order CF gain 

 

The smallest and consequently the best RMSE obtained was 0.0312 m/s, which corresponds to a gain 

of 𝐾 = 0.02. Note that this value represents the filter outputs reliable speeds when the accelerometer 

speed estimation is given a 2% weight, meanwhile the encoder readings 98% weight. With the gain 

properly defined, the complementary filter was implemented and the whole test performed once 

more. The results were logged and plotted, as shown in Figure 22 below. Note both the reference and 

the encoder values are hardly visible, with the filter smoothly fusing the data and outputting a more 

stable speed. 

 
Figure 22. 1st order complementary filter results 

 

Although the 1st order filter presented fairly good results, the 2nd order complementary filter was also 

implemented in order to check how a higher order structure would behave and decide whether its 
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more complex structure is worth to be chosen instead of the 1st order filter. The procedure applied to 

the 1st order filter is repeated, with the gain 𝐾 being varied from 0 to 20 and each respective RMSE 

calculated. The results are depicted in Figure 23 below: 

 

 
Figure 23. RMSE versus 2nd order CF gain 

 

Based on Figure 23 above, it is evident the 2nd order CF is rather unstable for this system in terms of 

RMSE. However, in order to fully check its behavior, the filter was implemented and tested with 𝐾 =

18, which corresponds to the best RMSE obtained (0.0322 m/s) – note that based on the RMSE, it is 

possible to conclude this implementation is worse than the 1st order one, that presented a smaller 

value: 0.0312m/s. The logged data was plotted and is shown in Figure 24 below. Note, however, that 

such implementation behaves properly and its output is similar to the 1st order, except when the speed 

goes to 0 – in which case the output presents an overshoot.  
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Figure 24. 2nd order complementary filter results 

 

Comparison 

In summary, both 1st and 2nd order complementary filter implementations had similar performances, 

with the former slightly outperforming the latter. However, the 2nd order version requires extra 

memory, is slightly harder to implement, and presents an undesirable behavior (i.e. overshoot) which 

may further influence the Kalman filter’s behavior. Due to these facts, the 1st order complementary 

filter was chosen to be used. Another interesting point is that although the RMSE of the 1st order 

version is higher than the pure encoder readings, the output of the filter itself has a smaller standard 

deviation (0.25699 in comparison to 0.24778), thus is more stable. Figure 25 compares both filter 

versions’ implementations, for the whole test sequence. 

 

 
Figure 25. 1st and 2nd order complementary filter results 
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Not only does the complementary filter reduce the overall standard deviation, but it also improves 

the sampling frequency of the speed. Previously, the speed could only be updated once every 20 

milliseconds (50 Hz) due to the encoder limitation. By combining the encoder readings with the 

accelerometer speed estimation, one can poll at a much faster rate: every 6 milliseconds (166 Hz), 

about 3.3x faster. It is advisable, however, to retrieve data at a lower rate due the fact the system 

might be late when asynchronous events (i.e. references update) triggered by a master (i.e. tracking 

system) must be processed. In practice, the refresh rate used corresponds to 140 Hz. 

 

Finally, the robotic system comprises the implementation of this technique due the fact it is 

considered the low-level control system. Hence, it is responsible for driving the motors, providing the 

current (filtered) speed, and additionally the gyroscope data required by the Pre-Kalman filter. 

 

2.5 Communication protocol 
 

Communication between the robotic system and a master (e.g. tracking system), more specifically the 

MegaPi board – PC (or ideally Zynq) data exchange must respect guidelines in order to proper send or 

receive data. Thus, a (micro)protocol under certain bus configurations was implemented, and will be 

addressed in this section. Such protocol is serial-based and implements data transfer with the Most 

Significant Byte being sent first (MSB first), and neither CRC nor ACK are implemented, to keep it as 

simple and fast as possible. 

 

Data transfer is implemented through an UART bus, with both devices configured as follows: 

• Baud rate: 5000000 bps (62.5 kbps) – advisable to increase it in the future 

• Word length: 8 bits 

• Stop bit(s): 1 

• Parity: None 

• Flow control: None 

 

The only and essential communication between the robotic and tracking systems is full-duplex, with 

both systems being able to send and receive data. Currently, two (2) message packets are supported, 

one for retrieving sensor data and another for setting new speed references. These packets are 

composed, generally, by a synchronization word (2 bytes), a command byte (1 byte), and data bytes. 

The former is used for synchronization purposes, the command is dedicated to specifying the 

requested functionality, followed by data bytes when applicable.  

 

The generic data packet for requesting sensor data from the robotic system and its respective 

response are shown in Figure 26. On the other hand, setting speed references does not require any 

response from the robotic system, and its general packet is depicted in Figure 27. 
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Figure 26. Master (tracking system) – Robotic system sensor data request (top) and response (bottom) data packets 

 

 
Figure 27. Master (tracking system) – Robotic system references data packet 

 

Requesting sensor data corresponds to sending three bytes, the sync word and the corresponding 

command (0x00). The robotic system replies with: current speed, yaw, pitch and roll (4 bytes each). A 

synchronization word is also added in the beginning of such message; thus, the total number of bytes 

sums up to 19 bytes for the response. Setting speed references requires 11 bytes in total to be sent: 

sync word, command (0x01), followed by the right and left reference speeds (4 bytes each). Note that 

all speed values are in RPM so data is platform-independent and a simple conversion is required to be 

done in another platform. Furthermore, positive and negative references correspond to moving 

forwards and backwards, respectively. Gyroscope data, on the other hand, is pre-processed (i.e. 

converted to °/s) due to the fact its sensitivity and other device-specific configurations should not be 

relevant to the master. 

 

Note that floating-point values are sent via serial, and in order to do so a union structure is used for 

both sending and retrieving these numbers. Check Appendix C: Embedded Software for an example 

on how to implement such technique. 
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2.6 Final Implementation 
 

With each component of the robotic system properly defined and tested, it is possible to merge them 

to compose the whole final implementation. This section presents an overview of the complete 

robotic system in terms of structure, hardware and software, with the setup itself being depicted in 

Figure 28 below. 

 

 
Figure 28. Robotic system final setup 

 

In addition to the components previously discussed, a camera is attached to the robotic system, as 

shown in Figure 28 above. Note, however, that such device is only placed together with this system, 

but it is part of the tracking system which will be discussed in the next chapter. Moreover, the current 

setup does not comprise a dedicated board (i.e. Zynq) that would perform the high-level operations 

related to the camera, due the fact the tracking system is running on a PC that connects to the robotic 

system with an USB cable. Ideally, the PC should be replaced by another board and the communication 

between systems realized with direct UART connections – Tx, Rx, VCC and GND. 

 

2.6.1 Hardware 

 

With respect to hardware, the robotic system comprises two (2) encoder motors, their respective 

drivers, the MegaPi board, a RJ25 shield to interface with the IMU module (accelerometer and 

gyroscope), and a Bluetooth module which is currently unused. Additionally, it has an UART 

connection to an external tracking system, which makes uses of the µprotocol discussed in section 

2.5. Finally, a 3-cell Li-Po battery is used to power the whole system (ideally the tracking system as 

well), capable of providing 14.4Wh (11.1V @ 1.3A) and thus enough power to all modules and more 

importantly, both encoder motors. The overview of the robotic system is depicted in Figure 29 below. 

Although it is not shown, the IMU module is connected to slot eight (8) of the RJ25 shield, the right 

and left encoder motors (and drivers) are attached to PORT1 and PORT2, respectively. Bluetooth 

utilizes UART3, and communication with the other system uses UART1. 
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Figure 29. Final hardware architecture of the robotic system 

 

Notice the IMU module was placed on the same platform as the battery (check Figure 28), which 

defines the reference axis for the module’s data: the positive X axis points to the front, positive Y to 

the left and positive Z to the top of the robot, respectively. This configuration directly impacts the data 

signaling retrieved from the module, and was taken into consideration during development. Based on 

the module’s orientation, heading (or yaw), pitch and roll are rotation around the XY, XZ and YZ planes, 

respectively, with the gyroscope and accelerometer data correspondence being summarized in Table 

2 below. 

 
Table 2. Movement type, axis, and signaling correspondence for the IMU module 

 
 

2.6.2 Software 

 

In terms of software, the robotic system is responsible for retrieving and processing IMU and 

encoder’s data, alongside applying the complementary filter and driving the motors. Moreover, it 

must comply to the µprotocol discussed and react to asynchronous serial events. It is relevant to 

notice that the software runs in a single-core microcontroller, in a sequential manner, with the 

Arduino IDE being the development tool used. The first step is initializing peripherals, as shown in 

Figure 30 below: 

 

 
Figure 30. Robotic system’s initialization procedure 

 

Initialization is rather simple, with relevant I/O pins begin initialized first, followed by the encoder 

motors which requires setting up related timers for PWM and encoders’ interrupts. Then, the IMU 

Accelerometer Gyroscope Positive Negative

Heading - Z Turning left Turning right

Pitch - Y Going downhill Going uphill

Roll - X Rolling right Rolling left

Linear X - Going forward Going backward

Signal meaning
Movement

Axis

Initialize pins
Initialize 

encoder motors
Initialize IMU Initialize UART

Enable 
interrupts
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module is calibrated and initialized, alongside the UART used for communication (or debugging), and 

finally all interrupts are enabled. After this step, the main loop runs, with a single execution depicted 

in Figure 31 below: 

 

 
Figure 31. Robotic system’s single loop execution sequence 

 

Driving the motors corresponds to setting the latest speed references to the PID controllers. Next, the 

encoder readings are retrieved and converted to m/s, followed by the speed estimation procedure 

based on the (filtered) accelerometer readings. The complementary filter is then applied to both 

speeds derived, and finally internally stored in RPM. Although filtering the gyroscope was not 

previously discussed, another instance of the EMA was implemented specifically for noise reduction, 

as such information is forwarded to the tracking system. Moreover, the filter gain chosen during 

testing and for the final implementation was  𝛼 ≅ 0.33 , which corresponds to 𝑁 = 5  samples. 

Similarly to the speed estimation procedure applied to the accelerometer readings, the gyroscope 

data should be fed to a window-filter, with a maximum and minimum window values equal to ±0.2 

°/s, respectively, which were derived in practice. 

 

Asynchronous serial events triggered by a master may happen at any moment, and should be handled 

properly. This is implemented within a receiver (RX) interrupt routine, that reflects the behavior of the 

state-machine depicted in Figure 32. 

 

 
Figure 32. State machine of the serial event handler 

 

Initially, the handler is in the synchronization state (Sync), in which at least three (3) bytes must be 

received in order to switch to the next state and further receiver or send data. If a correct 

synchronization word (2 bytes) is received, followed by a supported command (1 byte), the handler 

moves either to the Receive Speed References or Send Sensor Data states. The latter does not require 

any other data to be received, thus it immediately sends the requested sensor data to the master. 

When receiving speed references, it waits for a total of eight (8) bytes and update the internal 

reference values, which are later forwarded to the PID controllers if and only if the data is valid: values 

are within ±203.5 RPM, which is the absolute maximum rating of the encoder motors. 

 

To avoid data inconsistency during transmissions, flags are used before and after each step, preventing 

incorrect data of being sent. However, this requires saving data from the previous loop, thus memory 

Drive motors
Get encoders' 

speed

Run speed 
estimation & filter 

gyroscope data

Apply 
complementary 

filter

Convert speed to 
RPM
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usage is higher and the algorithm is more complex. Data inconsistency is avoided, in summary, in the 

following manner: before retrieving data (either encoder’s or IMU’s), the respective step flag is set to 

false, and the data retrieval is triggered; if by any chance an asynchronous serial event occurs during 

this procedure, the data that will be sent refers to the previous iteration because the respective flag 

is checked; finally, after correctly retrieving the data, it is copied to a fail-safe variable, alongside the 

flag being set to true (setting the flag occurs first). 

 

In the beginning of the source code, relevant parameters are defined and commented, such as: 

• Micro protocol configurations: baud rate, synchronization word and total amount of bytes to 

be sent or received; 

• Gyroscope and accelerometer data configurations: bias (window-filter), index of the relevant 

axes, sign correction (accelerometer only) and EMA filter parameters; 

• Speed estimation configurations: gravity value, robot’s wheel (and track) total radius, and 

movement-end check maximum counter; 

• Complementary Filter configuration: gain. 

 

The high-level libraries used for this implementation are the “MeMegaPi” default library, and modified 

versions of the “MeEncoderOnBoard” and “MeGyro”. Refer to Appendix C: Embedded Software for 

more details. 
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3. Tracking system 
 

 
Figure 33. Tracking system outline 

 

With the robotic system correctly implemented and validated, the tracking system is the next one to 

be assessed. This is the core system of this project, and is responsible for maneuvering the robotic 

system in order to maintain the target object’s position with respect to the image (i.e. frame from the 

camera) coordinates outputted by a Neural Network. Furthermore, the target object’s coordinates are 

fed to a Kalman filter, which addresses the current flaws of the neural network: (1) deviation with 

respect to the output position, (2) false-negatives, and (3) occlusion scenarios. The smoothed position 

coordinates are then forwarded to the controller which handles the speed and direction of the robotic 

system. Figure 33 above depicts the most important blocks of the tracking system, which are detailed 

within this chapter. Although both camera and Neural Network are not the focus of this project, due 

the fact it was part of another colleague’s thesis, they are briefly discussed. 

 

Due to limitations on the Neural Network’s performance, which typically achieves 90% of accuracy 

during the training phase in most scenarios, and the localization algorithm which roughly estimates 

the coordinates (i.e. position) of the object in the image, a filtering technique is required to smooth 

the position output. Consequently, controlling where the object is in the image, thus indirectly 

controlling the distance the object is in relation to the robotic system, becomes more stable. Data 

coming from the robotic system (angular velocities and linear speed) is processed by the “Pre-Kalman 

Filter”, which is responsible for estimating how the ego-motion of the robot impacts the movement 

of the object (being tracked) in the image. The ego-motion itself refers to how the robotic setup is 

moving in terms of linear speed (translation, in m/s) and angular velocity w.r.t. heading (rotation, in 

°/s). Its impact on the tracking procedure, on the other hand, is analogous to estimating both 

translation and rotation movements in terms of pixels per seconds (px/s). Moreover, the latter is 

denoted as “pixel speed” throughout this thesis, and corresponds to the movement of both 

coordinates (X and Y) of the target which are derived by the neural network. The pixel speeds (X and 

Y axes) are finally forwarded to the Kalman filter, responsible for filtering the neural network’s output 

coordinates. Lastly, the filtered object coordinates are fed to the “Pixel Control” module, which 

controls the speed and direction of the robotic system in order to maintain the target object in a 

reference position. 
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Finally, a set of requirements and functionalities was defined for the tracking system, which must: 

• Interface with a camera, and programmatically access a frame; 

• Be compatible with a Linux-based platform; 

• Be able to execute a (simple) Neural Network model, ideally in an accelerator; 

• Provide stable position information of the target object; 

• Use ego-motion data to improve the position information, whenever possible; 

• Maintain the target object close to a reference position, with respect to the image; 

• Send speed references to the robotic system; 

• Retrieve sensor data from the robotic system: current speed and angular velocities; 

• Execute all tasks faster than the frame rate provided by the camera; 

• Provide a simple user interface. 

 

3.1 Camera 
 

Although sensor data is retrieved from the robotic system and used in the tracking system, the camera 

is considered the main sensor of this application. Not only does it usually represent a bottleneck due 

to its maximum frame rate, but also must be able to stream to an embedded platform. The latter is 

more problematic, due the fact most cameras are not capable of streaming at all. Moreover, handling 

a frame is different in hardware (i.e. FPGA) and software (i.e. microcontroller), thus even when 

streaming is a possibility, one must consider the interface. The most relevant camera interfaces used 

for streaming are: (1) USB, (2) HDMI output, (3) Wi-Fi and (4) direct I/O connections. The former 

requires a driver, do not meet real-time requirements, and might not meet the framerate, especially 

due the fact most USB cameras are webcams, thus framerate is not relevant as it is for this application. 

On the other hand, cameras with HDMI output require a more complex driver and are rather 

expensive because it is considered a “professional” feature, except for action cameras. Wi-Fi 

streaming is fairly common, especially for action cameras, but a delay is often present. Finally, 

interfacing a camera directly via its I/O pins present an even harder driver implementation, in addition 

to a low availability on the market. 

 

 
Figure 34. GoPro Hero4 Black mounted on top of the robotic system 

 

Considering all the aforementioned factors, it was decided to use a camera with both Wi-Fi and HDMI 

output options for streaming, with a reasonable price: the GoPro Hero4 Black [34]. Moreover, this 

camera can deliver up-to 240 frames per second (fps) at 720p resolution (1280x720 pixels), which is 

more than enough for the application, due the fact the bottleneck of the tracking system is the neural 
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network, which currently runs at 20 Hz (i.e. 20 fps) in a PC – this will be further detailed in this chapter. 

As this camera is considered an “action camera”, it could be easily placed on the robotic system, and 

is shown in Figure 34 above inside a waterproof case. 

Among other options, the user can choose the field of view of the camera for the specified resolution: 

Ultra-wide, Medium or Narrow. The former presents substantial lens distortion, and the latter is 

mostly used when a high frame rate is required. As distortions might impact the ego-motion 

translation to pixel motion, and 240 fps is rather excessive, the camera was configured to operate on 

Video Mode, with 720p resolution at 60 fps and Medium field of view. 

 

Streaming can be done by either using a mini HDMI cable to connect the camera to a monitor, or 

another hardware with HDMI input circuitry, or by connecting a Wi-Fi device to the camera’s access 

point. Initially, a platform with HDMI input capabilities were meant to be used, however the current 

implementation uses the Wi-Fi access point for streaming, due to its simplicity. There is a typical 0.5 

seconds delay when streaming over Wi-Fi which cannot be avoided, although it could be removed if 

the HDMI option is used instead. Moreover, the stream resolution over Wi-Fi is restrained to 640x480 

(480p), although the framerate remains unchanged (60 fps). 

 

Accessing the frame programmatically when streaming over Wi-Fi, however, requires reverse 

engineering due the fact the protocol used is proprietary: in summary, a HTTP request is sent to the 

camera to begin the stream, and keep-alive packets must be sent periodically every 2.5 seconds to 

maintain it. The frames themselves can be accessed in different ways, but saving each image to a file 

and replacing it whenever a newer frame arrives proved to be sufficient, and more importantly, 

uncomplicated to implement. Due to the complexity of the protocol and the upcoming neural network 

algorithm, handling the stream and running the neural network itself were both implemented in a 

Python application, which is Linux compatible. Moreover, this piece of software launches a ffmpeg 

[35] process, which saves the stream frames. For more details on the implementation, refer to the last 

section of this chapter and Appendix C: Embedded Software. 

 

3.2 Neural Network 
 

Although the neural network is part of another colleague’s work, it is necessary to briefly discuss it, in 

terms of expected inputs and outputs, in addition to timing. Generally, a convolutional neural network 

(CNN) is composed of layers with neurons that have learnable weights and biases, and, in a simplistic 

manner, filter the input data through convolutions, based on the weights of the neurons. Training is 

an essential procedure of a neural network implementation, in which several inputs are provided and 

the weight of each neuron is tuned. Several variations of neural network exist, although for this project 

a CNN is applied in frames from the camera. More specifically, two (2) neural networks are used, one 

meant for detecting the target (detection neural network), and another for localizing the target within 

the input image (localization neural network), which in the training phase (best-case scenario) was 

able to achieve around 90% accuracy. Both are denoted as Neural Network module, and its overall 

functionality is shown below: 
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Figure 35. Neural network functionality overview 

 

Whenever a frame is available to be processed, it is fed to the neural network. Initially, the detection 

neural network is applied, and whether the target is detected, valid coordinates (i.e. within the image 

boundaries) are outputted. If the detection fails, negative coordinates are provided as output. 

Specifically, the goal of the application is to follow the robot depicted in Figure 36, currently only from 

behind, hence the neural network was pre-trained with several images of the target object in different 

scenarios. 

 

 
Figure 36. Target object 

 

Another relevant factor is the frame resolution, in pixels, due the fact the training procedure 

constraints the required input size. For the neural networks used in this project, it is necessary to 

resize the incoming frame with a 480p resolution down to 360x240 and 224x224 pixels for the 

localization and detection layers, respectively. Although the initial goal was to have the neural network 

module implemented in hardware (i.e. FPGA), the current implementation is done in software, more 

specifically in Python, with the TensorFlow [50] library. During testing, the worst-case execution time 

of both neural networks observed was 40 milliseconds (25 Hz), thus framerates higher than 25 fps are 

useless in this scenario. The camera stream, however, was (soft-)limited to 20 fps thus the neural 

network has extra time (10 milliseconds) to process the frames and should not miss the deadline, 

except in unusual situations (e.g. high CPU load, cache problems). Notice that this limitation on the 

neural network module actually corresponds to the bottleneck of the system. 

 

Finally, it is important to note the TensorFlow library has a GPU variation, which can be used if a GPU 

is available, decreasing the execution time to about 20 milliseconds (50 Hz) and thus partially 

addressing the bottleneck, although a higher framerate (> 60 𝑓𝑝𝑠) is desired. Figure 37 below depicts 

a frame captured by the camera which is fed to the neural networks used (on the left), and the target 

coordinates are marked (on the right). Notice the position of the target does not correspond to the 

same coordinates for different frames, which is further addressed by the Kalman filter.  
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Figure 37. Sample input (a) and output (b) frames of the neural network 

 

Although one might argue the (upcoming) Kalman filter can be indirectly embedded in the neural 

network itself, this design requires a more complex structure for the neural network such as a 

Recurrent Neural Network (RNN). Moreover, the major problem would be obtaining a training set in 

this scenario, which would need manual and careful annotation. 

 

3.3 Pre-Kalman Filter 
 

Based on the robotic system’s output (linear speed and angular velocities) – namely the ego-motion -, 

a conversion must be performed in order to provide the correct input for the Kalman filter, which will 

be handling the target’s object coordinates in pixels. More specifically, the interest is in how the 

ego-motion of the robotic system impacts the position of the target in an image, due the fact the 

Kalman filter derives the object's motion directly in pixels/second. In summary, linear speed (m/s) and 

angular velocities (°/s) are translated to 2D pixel speeds (px/s): 𝑉𝑥 and 𝑉𝑦. The latter corresponds to 

how the target position is affected by the ego-motion itself, and is defined as “pixel speed”. 

 

There are specific techniques to transform real-world speed to pixel motion and vice-versa. However, 

algorithms such as an online camera external parameters calibration or SLAM [10, 36, 37, 38, 39, 40, 

41] requires computationally expensive image processing techniques (i.e. sift key points and RANSAC) 

combined with a dedicated Kalman Filter, with many relying on the camera calibration procedure. 

Considering the application will be implemented in an embedded platform, it requires simpler, and 

more importantly, faster techniques. Thus, the “Pre-Kalman Filter” module is proposed, addressing 

specifically the computational and implementation complexities issues, and will be detailed in this 

section. 
 

Initially, it is necessary to introduce the optical flow field of the camera, which relates both 

translational and rotational motions to pixel movement. More specifically, two types of field are 

usually discussed in literature: motion- and optical flow fields. The former is the real-world 3D motion 

of objects, meanwhile the latter is analogous to the projection of the motion field onto the 2D image. 
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The main idea of the Pre-Kalman filter is to abstract the real motion of the target, and estimate the 

optical flow field based strictly on the ego-motion data. According to [42] and [43], a pure translational 

motion of the camera (hence, the robotic system) corresponds to a point in the image moving towards 

or away from another point, called the focus of expansion (FOE). When the camera is rotating and 

translating at the same time, the optical flow field can be quite complex: the translational component 

and hence the optical flow field is cubic or even higher order for curved 3D surfaces, although the 

rotational component is always quadratic [42].  

 

Furthermore, the optical flow field is a function of 2D pixel coordinates, a rotation matrix (extrinsic 

parameters), and the camera’s focal length (intrinsic parameter). Notice that both intrinsic and 

extrinsic parameters are required, but not available and quite burdensome to determine on-the-fly, 

hence the Pre-Kalman filter module can use only the ego-motion data alongside specific coordinates 

to determine the pixel motion. Figure 38 below depicts the overview of the module, besides its inputs 

and outputs: 

 

 
Figure 38. Pre-Kalman Filter overview 

 

The input coordinates, however, must reflect the position of the target object, due the fact the interest 

in strictly on its movement. Hence, this module is initialized with “invalid” input coordinates, which 

forces it to be bypassed and is only activated once the following module (i.e. Kalman Filter) provides 

a valid (filtered) position.  

 

Provided that the output of the neural network is quantized and rather unstable, computing the ego-

motion for raw coordinates might negatively impact the overall behavior, thus it is desirable the input 

coordinates of the Pre-Kalman module are provided by the Kalman Filter itself. In order to correctly 

translate ego-motion to pixel speeds, both translational and rotational movement impacts are 

individually analyzed, approximated to 2D or 3D functions based on the available inputs and practical 

observations, and further combined as it is discussed in the upcoming subsections.  

 

It is relevant to note that the camera must be placed aligned to the center of the robotic system and 

facing downwards as shown in Figure 28 (section 2.6), due the fact the optical flow view is strictly 

dependent on the camera’s orientation and all approximations might differ. Moreover, the coordinate 

system used throughout this thesis is defined based on the image representation, with the origin being 

located on the top-left corner of the image, as depicted in Figure 39 below. 
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Figure 39. Pixel's coordinate system 

 

Notice that negative pixel coordinates are considered valid for only positive values in-between 0 and 

the maximum image dimensions (either height or width) and angle θ, denoted as slope in this 

chapter, is computed with: 

 

 𝜃 = tan−1 (|
∆𝑥

∆𝑦
|) (3.1) 

 

Although the image is resized on the final application to 320x240 pixels, it is relevant to note the image 

resolution used throughout this section corresponds to 640x480 pixels, due the fact analyzing smaller 

images is harder. However, simply resizing the image corresponds to dividing the final pixel speeds by 

two (2), in this case, hence there is no need to perform the upcoming steps once more. 

 

3.3.1 Translation impact 

 

Initially, the optical flow field for a pure translation was investigated. In order to illustrate the 

displacement of a few pixels, a checkboard pattern is positioned in front of the camera, and the robotic 

system is driven for a short period of time. For a pure translation movement, the initial test is 

straight-forward: a reference RPM is set to a constant value (+50 RPM), a video is recorded with the 

camera placed on the top of the robot, which is post-processed so the optical flow can be analyzed. 

Note that it is easier to evaluate the optical flow when the aforementioned pattern is put in front of 

the robot, as shown below: 

 

 
Figure 40. Optical flow field representation for pure translation 

 

After careful consideration on several optical flow fields obtained for different forward and backward 

speeds, the following points could be derived: 

• Pixel displacement is symmetric around the image's center column; 
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• Defining a slope and base speed is easier than directly deriving pixel speeds, although this 

implies using at least 2 approximation functions; 

• The image should be divided both vertically and horizontally, with more vertical divisions due 

the fact slopes changes more often; 

• The higher the speed, the larger the displacement, this increasing the speed corresponds to 

scaling a “base speed”; 

• In terms of implementation, a polynomial (surface) fitting yields more accurate results in 

comparison to a look-up table, at a cost of extra computational time. 

 

The modulus of the resulting pixel speed of a specific pixel can be approximated by multiplying a “base 

speed” value, which corresponds to the pixel speed for the minimum RPM. The corresponding angle, 

on the other hand, does not need scaling and can be directly derived. Potentially, all pixels of the 

image can be processed to compute an accurate approximation, however this is burdensome. Thus, 

one might apply the symmetry characteristic to reduce the overall data processing required, by 

dividing the image in sub-blocks as shown in Figure 41 below. Although the symmetry property can be 

applied, it requires a signal correction due to the fact the direction of the pixel speed is, in fact, 

mirrored with respect to the center of the image (check Figure 40 above). 

 

 
Figure 41. Symmetry grid 

 

Note that each division has a dimension of (W/6 x H/4) pixels, with 𝑊 = 640 and 𝐻 = 480 being the 

image width and height in pixels, respectively. By indexing the 4x3 sub-block on the left as a matrix, 

the central pixel coordinates of each division can be computed as follows: 

 

𝑃𝑚,𝑛 = ((2𝑛 − 1) ∗ 𝑥𝑑;  (2𝑚 − 1) ∗ 𝑦𝑑) 

 

𝑥𝑑 =
𝑊

2𝑀
=
320

𝑀
; 𝑦𝑑 =

𝐻

2𝑁
=
240

𝑁
 

 

With 𝑃𝑚,𝑛  being the central pixel coordinates of the 𝑚𝑛 division, 𝑚 the row, 𝑛 the column, 𝑀 the 

number of rows (i.e. 6), and 𝑁 the number of columns (i.e. 4). The number of rows and columns were 

chosen based on the observed optical flow fields previously observed, although increasing their 

quantities improves the upcoming approximations. Furthermore, for the given number of divisions 

and image dimension, the central pixel coordinates are: (53; 60), (160; 60), (267; 60), (53; 180), (160; 



48 
 

180), (267; 180), (53; 300), (160; 300), (267; 300), (53; 420), (160; 420) and (267; 420). The interest is, 

from now on, only on the left 4x3 sub-division and its corresponding central pixels. 

 

Finally, the pure translation impact on each central pixel can be approximated as follows: 

1. For each central pixel 

a. Compute its base speed (minimum RPM), in px/s; 

b. Compute its base angle, in degrees; 

c. Repeat (a-b) 5x, then average the result; 

d. Save central pixel coordinates, average base speed and angle; 

2. Compute a polynomial fir for base speed and angle. 

 

The angles are computed with (3.1), meanwhile the speeds as follows: 

 

 𝑣𝑝𝑖𝑥𝑒𝑙 =
√∆𝑥2 + ∆𝑦2

∆𝑡
 (3.2) 

   
With ∆𝑥 and ∆𝑦 being the x- and y-coordinate displacement, in pixels, and ∆𝑡 the total movement 

time, in seconds. 

 

Scale Factor: 𝜸(𝑹𝑷𝑴) 

As previously discussed, the base speed should be scaled based on the linear speed. Thus, the scale 

factor must be correctly estimated. By setting the RPM to a constant value, recording a video, and 

observing a single pixel, and repeating this for several RPMs, the scale factor function 𝛾(𝑅𝑃𝑀) 

function can be estimated. Such procedure, however, must be performed for a certain RPM range: 

from 15 up to 203.5 which corresponds to the minimum and maximum RPM, respectively. Moreover, 

when the minimum RPM is used, the pixel speed is called the “base speed” and the scale factor is 

determined by: 

 

 𝛾(𝑅𝑃𝑀) =
𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀|)

𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀𝑚𝑖𝑛|)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀|)

𝑣𝑝𝑖𝑥𝑒𝑙(15)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀|)

𝑣𝑏𝑎𝑠𝑒
 (3.3) 

 

Note that there is no reason to compute both pixel speed components (x and y), due the fact the 

interest is in the resulting (combined) speed, which is calculated with (3.2). The described procedure 

was performed to a specific initial pixel with a 10 RPM increment between measurements to avoid 

excessive data. The following graph and speed scale function were obtained: 
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Figure 42. Speed scale factor function for pure translation 

 

Fortunately, the scale factor can easily be approximated by a linear function, as shown above in the 

graph, and corresponds to: 

 

 𝛾(𝑅𝑃𝑀) = 0.1282 ∗ |𝑅𝑃𝑀| − 0.6138 (3.4) 
 

The standard deviation obtained for this approximation is 1.6 for 𝛾, and about 63 px/s for the pixel 

speed. The fact the scale factor approximation can be applied to any other pixel was validated by 

randomly picking other initial pixels, setting a known RPM within the valid range, observing its 

movement, and applying the above function to estimate both the scale factor, as well as the pixel 

speed which is computed through: 

 

 𝑣𝑝𝑖𝑥𝑒𝑙(𝑅𝑃𝑀) = 𝑣𝑝𝑖𝑥𝑒𝑙(𝑅𝑃𝑀𝑚𝑖𝑛) ∗ 𝛾(𝑅𝑃𝑀) = 𝑣𝑏𝑎𝑠𝑒 ∗ 𝛾(𝑅𝑃𝑀) (3.5) 

 

It is important to notice that 𝛾(𝑅𝑃𝑀)  should only be applied when |𝑅𝑃𝑀| ≥ 5 , preventing 

unnecessary calculations when the robotic system is static or rotating around an axis. Handling the 

RPM signal is discussed in the upcoming subsections. 

 

Base speed & angle 

 

 
Figure 43. Optical flow field representation for the central pixels, during a pure translational motion 
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Both the base speed and angle can be derived with the same test procedure used for the speed scale 

factor 𝛾, but for the minimum RPM (15) only. However, due to symmetry, only half of the image is 

considered (𝑥 <=  𝑊/2), and more specifically for the 3x4 grid division previously described (Figure 

41). The central pixel of each division is then analyzed, with its speed and angle computed 5 times, 

and stored in a table, then fed to a 3D surface fit function (polyfitn [44]), which computes both base 

speed 𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) and base angle 𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) functions. Note that both functions only depend on 

the pixel coordinates (x, y), and their respective plots are shown below. 

 

 
Figure 44. Surface fit for the base speed (pure translation) 

 

 
Figure 45. Surface fit for the base angle (pure translation) 

 

Note that in Figure 44, the slowest pixel speed is located around the top middle portion of the image, 

meanwhile the fastest one around the bottom edges of the image, which matches the observed 

optical flow field. For the base angle (Figure 45), the surface is slightly more complex, although it is 
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simple to notice the highest angle is located around the left corner of the image, and the lowest 

around the center, which also matches the observed optical flow field. It is important to notice the 

angle is converted to degrees, whenever applicable, because the coefficients of the approximated 

functions would be 
𝜋

180
 times smaller otherwise, thus requiring more precision. The obtained 

polynomial for the base speed and angle, respectively, are: 

 

 
𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000012𝑥

2 + 0.000166𝑥𝑦 − 0.0545𝑥 − 0.00016𝑦2

+ 0.09347𝑦 + 50.65 
(3.6) 

   

 
𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000105𝑥

2 + 0.000124𝑥𝑦 − 0.092𝑥 + 0.00009𝑦2 − 0.1068𝑦
+ 53.62 

(3.7) 

 

Polynomial order was chosen based on the available data points, required precision and standard 

deviation from the original values. The standard deviations obtained for the base speed and angle 

were 0.4414 px/s and 0.898°, respectively.  

 

Resulting function 

Both base speed and angle are combined to finally calculate the pixel speeds by applying equations 

(3.4), (3.5), (3.6) and (3.7) with the respective linear speed (in RPM) and pixel coordinates. 

Furthermore, due to the symmetry applied and considering both forward and backward movements, 

it is required to correct the signaling of the resulting speeds, thus two additional functions are defined 

as follows: 

 

 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) = {
+1, 𝑖𝑓 𝑥 > 𝑊/2 
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.8) 

   

 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) = {
+1, 𝑖𝑓 𝑅𝑃𝑀 ≥ 0 
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.9) 

 

𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) is related to the symmetry characteristic, and influences only the x-speed component. 

𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀), on the other hand, is related to forward/backward movement, and impacts only 

the y-speed component. Moreover, if the condition 𝑥 > 𝑊/2 is satisfied, the x coordinate value must 

be updated before applying it to the other equations: 𝑥 = 𝑊 − 𝑥 . In summary, the following 

algorithm is employed for the whole procedure: 

1. If |𝑅𝑃𝑀| ≥ 5, compute: 

a. 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) and correct x, if needed (𝑥 = 𝑊 − 𝑥) 

b. 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) 

c. 𝐶(𝑅𝑃𝑀, 𝑥, 𝑦) = 𝛾(𝑅𝑃𝑀) ∗ 𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) 

d. 𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) 

e. Both speed components 

i. 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 = 𝐶(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ sin(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) 

ii. 𝑣𝑦𝑡𝑟𝑎𝑛𝑠 = 𝐶
(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ cos(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) 

2. Else, 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 = 𝑣𝑦𝑡𝑟𝑎𝑛𝑠 = 0 
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For a better understanding, consider the following example that was actually used for validation 

purposes: the speed of the robot is set to 75 RPM, and the coordinates of the pixel of interest are 

(102; 141), which are the only parameters needed. The pixel speeds, then, are computed as follows: 

1. 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) = 𝑠𝑖𝑔𝑛𝑎𝑙(102) = −1 

2. 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) = 𝑠𝑖𝑔𝑛𝑎𝑙(75) = +1 

3. 𝐶(𝑅𝑃𝑀, 𝑥, 𝑦) = 𝐶(75,102,141) =  𝛾(75) ∗ 𝑣𝑡𝑟𝑎𝑛𝑠(102,141) = 9.0 ∗ 57.35 = 516.24 

4. 𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) = 𝜃𝑡𝑟𝑎𝑛𝑠(102,141) = 31.66 𝑑𝑒𝑔 

3. 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 = 𝐶(75,102,141) ∗ sin(31.554) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(102) = −270.94 
𝑝𝑥

𝑠
 

4. 𝑣𝑦𝑡𝑟𝑎𝑛𝑠
= 𝐶(75,102,141) ∗ cos(31.554) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(75) = 439.42 

𝑝𝑥

𝑠
 

 

The resulting speeds are illustrated in Figure 46 below: 

 

 
Figure 46. Illustration of the resulting speeds for pure translation 

 

In order to validate the calculated pixel speeds, both speed and angle are manually calculated with 

(3.1) and (3.2), considering a time span of 0.5 seconds, and the final pixel coordinates (-30, 341): 

 

𝑣𝑝𝑖𝑥𝑒𝑙 =
√∆𝑥2 + ∆𝑦2

∆𝑡
=
√(−30 − 102)2 + (341 − 141)2

0.5
= 479.27 

𝑝𝑥

𝑠
 

 

𝜃 = tan−1 (|
∆𝑥

∆𝑦
|) = tan−1 (|

(−30 − 102)

(341 − 141)
|) = 31.43° 

 

Note that both the manually derived speed and the angle are close to the values obtained through the 

approximated functions, thus the pure translational motion approximation was applied. 

 

3.3.2 Rotation impact 

 

In addition to pure translation, it is necessary to analyze the impact of a pure rotation motion, in order 

to combine both results and finally compute the resulting pixel speeds in both axes. The procedure is 

closely related to the previously applied for pure translation, with the only difference being the 

resulting speed of the robotic system which must always be zero (pure rotation). This is achieved by 

setting a positive RPM value for one of the motors, and (the same but) a negative RPM for the other. 

For instance, if the desired motion is a pure rotation to the left, one should set +25 RPM for the right 
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motor, and -25 RPM for the left one. A sample optical flow field is depicted in Figure 47 below for a 

pure rotation motion. 

 

 
Figure 47. Optical flow field representation for pure rotation 

 

Rotation information is retrieved from the IMU, more specifically the gyroscope of the robotic system. 

Although rotation around all axes are important, for this application only one is considered, which 

relates to changes in yaw (heading). Rolling and pitch are assumed not to happen, due to practical 

constraints: it is extremely difficult to set a constant pitch or roll value, which is a valid assumption 

considering the robot will operate in a flat surface, as previously discussed. Moreover, the robot 

moves slowly, with +-200 °/s (w.r.t. yaw) being considered the absolute maximum angular velocities. 

 

A pure rotation motion presents similar behavior with respect to the relevant points previously 

derived during the pure translation analysis. It is important to notice, however, that the gyroscope 

data (𝑤𝑦𝑎𝑤) is utilized instead of the RPM in this case, hence the scaling factor is dependent on the 

angular velocity. Moreover, symmetry can be applied once more, but requires extra signal correction 

due the fact the pixel speeds are mirrored with respect to two axes (check Figure 47 above), and the 

same 3x4 grid is used, with their respective central pixels. 

 

Scale Factor: 𝝆(𝝎𝒚𝒂𝒘) 

Initially, the rotation scale factor function must be computed, which depends on the yaw angular 

velocity. Note that the yaw depends on the set RPM, although RPM is not relevant in this case. By 

setting the RPM to a constant value for both sides (and thus approximately constant yaw), recording 

a video, and observing a single pixel, and repeating this for several yaw values, the scale factor function 

𝜌(𝜔𝑦𝑎𝑤) can be estimated. This procedure is performed for a certain range, from 3 to 110°/s, which 

corresponds to the minimum and maximum yaw, respectively. Furthermore, the base speed for the 

pure rotation case is defined as being the pixel speed for the minimum yaw, and the scale factor is 

determined by: 

 

 𝜌(𝜔𝑦𝑎𝑤) =
𝑣𝑝𝑖𝑥𝑒𝑙(|𝜔𝑦𝑎𝑤|)

𝑣𝑝𝑖𝑥𝑒𝑙 (|𝜔𝑦𝑎𝑤𝑚𝑖𝑛|)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝜔𝑦𝑎𝑤|)

𝑣𝑝𝑖𝑥𝑒𝑙(3)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝜔𝑦𝑎𝑤|)

𝑣𝑏𝑎𝑠𝑒
 (3.10) 

 

Once more, only the resulting speed is calculated with (3.2). Moreover, the described procedure was 

performed to a specific initial pixel with an 8°/s (i.e. 7 RPM) increment between measurements to 

avoid too much data. The following graph and speed scale function were obtained: 
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Figure 48. Speed scale factor function for pure rotation 

 

In contrast to the scale factor function obtained for the pure translation case, the pure rotation motion 

requires a second order polynomial function, as shown above in the graph, and corresponds to: 

 

 𝜌(𝜔𝑦𝑎𝑤) = −0.0005 ∗ |𝜔𝑦𝑎𝑤|
2
+ 0.1474 ∗ |𝜔𝑦𝑎𝑤| − 0.8033 (3.11) 

 

The standard deviation obtained for this approximation is 0.31 for 𝜌, and about 37.4 px/s for the pixel 

speed. Once more, the scale factor was validated by randomly picking other initial pixels, setting a 

known yaw within the valid range, observing its movement, and applying the above function to 

estimate both the scale factor, as well as the pixel speed which is computed through: 

 

 𝑣𝑝𝑖𝑥𝑒𝑙(𝜔𝑦𝑎𝑤) = 𝑣𝑝𝑖𝑥𝑒𝑙 (𝜔𝑦𝑎𝑤𝑚𝑖𝑛) ∗ 𝜌(𝜔𝑦𝑎𝑤) = 𝑣𝑏𝑎𝑠𝑒 ∗ 𝜌(𝜔𝑦𝑎𝑤) 
(3.12) 

 

It is important to notice that 𝜌(𝜔𝑦𝑎𝑤)  should only be applied when |𝜔𝑦𝑎𝑤| ≥ 3 , preventing 

unnecessary calculations when the robotic system is only vibrating due to normal movement. Handling 

the yaw signal is discussed in the upcoming subsections. 
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Base speed & angle 

 

 
Figure 49. Optical flow field representation for the central pixels, during a pure rotational motion 

 

The considerations applied to the pure translational scenario are once more used in order to 

determine the base speed and angle for the pure rotational motion: only half of the image is 

considered, and the central pixels of the 3x4 sub-division are analyzed. The test procedure, on the 

other hand, is performed as described in the previous sub-section, for the minimum yaw (3°/s). The 

3D surface fit function is applied after the necessary data is collected, and both base speed 𝑣𝑟𝑜𝑡(𝑥, 𝑦) 

and base angle 𝜃𝑟𝑜𝑡(𝑥, 𝑦)  functions are determined. Similarly to the pure translation case, both 

functions only depend on the pixel coordinates (x, y), with their respective plots shown below: 

 

 
Figure 50. Surface fit for the base speed (pure rotation) 
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Figure 51. Surface fit for the base angle (pure rotation) 

 

For the pure rotation scenario, the slowest pixel speeds are located around the bottom middle portion 

of the image (Figure 50), meanwhile the fastest ones around the top edge of the image. The surface 

is slightly more complex for the base angle (Figure 51), although it is simple to notice the highest angle 

values are located around the bottom middle of the image, and the lowest around the bottom corner. 

Both cases match the optical flow field previously observed. 

 

The obtained polynomial for the base speed and angle, respectively, are: 

 

 
𝑣𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00005𝑥

2 + 0.000002𝑥𝑦 − 0.0496𝑥 − 0.00004𝑦2 − 0.0793𝑦
+ 143.81 

(3.13) 

   

 
𝜃𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00008𝑥

2 + 0.0001𝑥𝑦 + 0.0183𝑥 − 0.000012𝑦2 − 0.0238𝑦
+ 80.461 

(3.14) 

 

The standard deviations obtained for the base speed and angle were 0.6548 px/s and 0.346°, 

respectively. 

 

Resulting function 

Both base speed and angle are combined to finally calculate the pixel speeds by applying equations 

(3.11), (3.12), (3.13) and (3.14) with the respective yaw velocity (in °/s) and pixel coordinates. Although 

signaling must be corrected in order to address the symmetry applied and considering both “turning 

right” and “turning left” movements, another function is defined and used in addition to equation 

(3.8): 

 

 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) = {
+1, 𝑖𝑓 𝜔𝑦𝑎𝑤 ≥ 0 

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.15) 

 

In contrast to the pure translation, 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥)  influences the y-speed component. 

𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤), on the other hand, impacts both x- and y-speed components. The algorithm 
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applied to estimate both speed components for the pure rotation case is extremely similar to the pure 

translation one, and is presented below: 

1. If |𝜔𝑦𝑎𝑤| ≥ 3, compute: 

a. 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) and correct x, if needed (𝑥 = 𝑊 − 𝑥) 

b. 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) 

c. 𝐶(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) = 𝜌(𝜔𝑦𝑎𝑤) ∗ 𝑣𝑟𝑜𝑡(𝑥, 𝑦) 

d. 𝜃𝑟𝑜𝑡(𝑥, 𝑦) 

e. If 𝜃𝑟𝑜𝑡(𝑥, 𝑦) > 90° → 𝜃𝑟𝑜𝑡(𝑥, 𝑦) = 90° 

f. Both speed components 

i. 𝑣𝑥𝑟𝑜𝑡 = 𝐶(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) ∗ sin(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) 

ii. 𝑣𝑦𝑟𝑜𝑡
= 𝐶(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) ∗ cos(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) ∗

𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) 

2. Else, 𝑣𝑥𝑟𝑜𝑡 = 𝑣𝑦𝑟𝑜𝑡
= 0 

 

Notice that step (e) is necessary for this case due the fact the base angle might result in a value greater 

than 90°, which is not possible in practice – during experiments, the maximum angle obtained was 

about 89°. Moreover, due the fact this algorithm is alike the one previously presented for the pure 

translation case, the whole procedure will not be shown for the pure rotation. However, the same 

calculations were performed during development in order to validate the pure rotational motion, with 

the manually derived speed and angle being compared to values obtained through the approximated 

functions, yielding adequate results. For demonstration purposes, the results of a single calculation 

for 𝜔𝑦𝑎𝑤 = +20 𝑑𝑒𝑔/𝑠 , pixel coordinates (380; 279) and 0.5 seconds total movement time, are 

presented below: 

 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛: {
𝑣𝑥𝑟𝑜𝑡 = 1.9447 ∗ 109.2 ∗ sin(90°) ∗ 1 ≅ 212.36 𝑝𝑥/𝑠

𝑣𝑦𝑟𝑜𝑡
= 1.9447 ∗ 109.2 ∗ cos(90°) ∗ 1 ∗ 1 = 0 𝑝𝑥/𝑠

 

 

𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛:

{
 
 

 
 
𝑣𝑝𝑖𝑥𝑒𝑙 =

√(483 − 380)2 + (281 − 279)2

0.5
≅ 206.04 𝑝𝑥/𝑠

𝜃 = tan−1 (|
(483 − 380)

(281 − 279)
|) ≅ 88.9°

 

 

3.3.3 Combined pixel speeds 

 

With both translation and rotation impacts correctly analyzed and defined, it is necessary to combine 

them to compute the resulting pixel speeds in both axes by simply adding their respective 

components. The interest is in the combined pixel speeds 𝑉𝑥 and 𝑉𝑦, which are computed as follows: 

 

 𝑉𝑥 = 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 + 𝑣𝑥𝑟𝑜𝑡 (3.16) 

   

 𝑉𝑦 = 𝑣𝑦𝑡𝑟𝑎𝑛𝑠 + 𝑣𝑦𝑟𝑜𝑡 (3.17) 

 

By substituting each component, (3.16) and (3.17) become: 
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𝑉𝑥 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ sin(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦)

∗ sin(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) 
(3.18) 

   

 

𝑉𝑦 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ cos(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤, 𝑥, 𝑦)

∗ cos(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) 

 

(3.19) 

In order to validate the combined pixel speeds, the robotic system is configured to run for a brief 

period with both translation and rotation movement, all data is logged and further processed, 

considering the pixel with coordinates (235; 253). By applying the above formulas for every sample, 

the final pixel coordinates computed are (235; 238), meanwhile the (real) coordinates determined 

manually is (252; 241): a deviation of 17 and 3 pixels in x and y, respectively. The combined pixel 

speeds, likewise both pixel coordinates for each iteration of the simulation are depicted in Figure 52 

and Figure 53 below. 

 

 
Figure 52. Pixel speeds computation based on real data 

 

 
Figure 53. Pixel coordinates computation based on real data, and the actual final coordinates (red) 
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Note that real pixel coordinate is propagated based on the determined speeds and fed to the module 

once more, which corresponds to a greater error accumulation for the long run. During normal 

execution, on the other hand, the real pixel coordinates are provided every couple iterations by the 

Kalman filter itself, thus the error only accumulates for a brief period of time. Hence, in practice the 

Pre-Kalman filter response is much better. 

 

Finally, the translation and rotation impacts division proved to be sufficient for this application. 

Although the data analysis needed for this procedure is rather burdensome to gather and process, this 

technique is much simpler and requires less processing power in comparison to standard techniques. 

The main advantages and disadvantages of the Pre-Kalman Filter module are summarized in Table 3 

below: 

 
Table 3. Overview of the advantages and disadvantages of the Pre-Kalman filter module 

 
 

Considering this method is far simpler and faster than most found in literature [10, 36, 37, 38, 39, 40, 

41], and the fact the implementation should be running in an embedded system, this module is 

considered a favorable alternative. Not only does it use floating-point divisions at all, but it only 

requires trigonometric functions (i.e. sine and cosine) support in terms of dependencies. Refer to 

Appendix B: Pre-Kalman Filter Equations for a summary with the relevant equations presented in this 

section. 

 

3.4 Kalman Filter 
 

There are several types of filters, with a few specific ones being applied in regular odometry and other 

robotic applications. Mainly Kalman filters (KF) are implemented for linear systems, although 

depending on the system's model, the filter operations may become computationally expensive, being 

considered a sensor fusion technique [47]. For non-linear systems, extensions of the Kalman filter may 

be used, such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), with the latter 

being potentially useful when the platform supports parallelism. Moreover, another relevant option 

is the Particle Filter which behaves similarly to the KF itself, and it has been applied in tracking 

applications [45]. Notice that the aforementioned filters are based on Bayesian probability, which, in 

simple terms, determines what is likely to be true, based on past information [46]. Extensive 

explanation of the Kalman Filter theory is not the goal of this section, thus a brief description is 

provided, with the focus begin on the design of the filter itself. 

 

Sensors do not output perfect information: not only are they noisy, but also frequently affected by 

external influences. More specifically, the latter refers to process noise, such as an ice path on the 

path of a car being tracked. Furthermore, purely relying on the sensor information is rather a simplistic 

approach, especially when the system can be modeled and past information used in order to infer 

information about the present more accurately. Consider, for instance, measuring temperature of a 

Advantages Disadvantages

Application-specific

Calibration required

Camera must be 

staticSimple and fast 

implementation
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room: on normal conditions, the temperature cannot greatly increase within seconds (i.e. 22°C to 35°), 

thus this information can be used to better predict the present temperature, based on previous 

samples. However, the heating system might have mal-functioned and the temperature indeed 

increased in an unusual way. This must modify the previous belief, and instead of being conservative 

one should trust more on the sensor readings, in this case. On the other hand, the characteristics of 

both sensor and system must be considered in order to properly reason about what is happening in 

reality. The KF was invented by Rudolf E. Kálmán to address this sort of problem in a mathematically 

optimal way, being initially applied in the aerospace sector and further in a variety of domains, such 

as aircrafts, submarines, financial market, chemical plants, among others [46]. In summary, whenever 

a sensor is part of the system and especially if sensor fusion is required, a Kalman filter or a similar 

technique is used. The KF is a model-based filter, and ponders (i.e. dynamically computes weights) 

between the model prediction and real measurements, considering noise characteristics of both. 

Although the KF can be generalized for colored noise and cross covariances, noises are assumed to be 

white gaussian and no correlation between process and measurement noises is expected for this 

thesis. 

 

For this application, a Kalman filter was chosen due to its simplicity in terms of implementation and 

understanding, alongside being the optimal filter for the system, which is linear. Moreover, the KF is 

widely applied in tracking applications, being able to indirectly estimate speed in addition to position, 

for instance, and is easily parallelized for two dimensions (i.e. x and y). The most important 

characteristics for this system, however, are its capability of providing an output when (1) the sensor 

fails (i.e. false negative from the neural network), that might occur due the neural network’s accuracy 

– 90%, in the best-case scenario –, (2) or in case of occlusions. Meanwhile, the deviation of the target 

position is also smoothed. 

 

The standard equations of the KF can be divided into two simple steps, predict and update: the former 

(a.k.a. time update) propagates the model, meanwhile the latter (a.k.a measurement update) 

computes the filter's output based on the new measurement, and updates the covariance matrices. 

These equations [2] are shown below, with all variables being matrices: 

• Predict step 

 𝑥𝑘|𝑘−1 = 𝐹 ∗ 𝑥𝑘−1|𝑘−1 + 𝐵 ∗ 𝑢𝑘 (3.20) 

 𝑃𝑘|𝑘−1 = 𝐹 ∗ 𝑃𝑘−1|𝑘−1 ∗ 𝐹
𝑇 + 𝑄𝑘 (3.21) 

• Update step 

 𝑆𝑘 = 𝐻 ∗ 𝑃𝑘|𝑘−1 ∗ 𝐻
𝑇 + 𝑅 (3.22) 

 𝐾𝑘 = 𝑃𝑘|𝑘−1 ∗ 𝐻 ∗ 𝑆𝑘
−1 (3.23) 

 �̃�𝑘 = 𝑧𝑘 −𝐻 ∗ 𝑥𝑘|𝑘−1 (3.24) 

 𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘 ∗ �̃�𝑘 (3.25) 

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘 ∗ 𝐻) ∗ 𝑃𝑘|𝑘−1 (3.26) 

 

With 𝑥  being the state matrix, 𝐹  the state transition model, 𝐵  the control input, 𝑃  the error 

covariance matrix, 𝑄  the process covariance matrix, 𝐻  the observation model, 𝑆  the innovation 

covariance matrix, 𝑅 the measurement covariance matrix, 𝐾 the Kalman gain matrix, �̃� the residual, 𝑧 

the measurements matrix and 𝐼 the identity matrix. It is extremely important to define the notation 

used for the indices, which respects the following (𝑀 is a generic variable): 
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• 𝑀𝑘−1|𝑘−1 : refers to the previous state, which combines all the previous states and 

observations; 

• 𝑀𝑘|𝑘−1 : refers to the a priori state, which combines the current state estimate without 

observations; 

• 𝑀𝑘|𝑘 : refers to the posteriori state, which combines the current state estimate with 

observations. 

 

Note the model can be propagated without measurements due the fact it is time-based, hence 

whenever the neural network outputs a false negative, the KF can still output a value. In the upcoming 

sub-sections, the filter matrices and parameters will be further detailed, except the Kalman gain 

matrix which is computed internally and does not need to be defined. 

 

3.4.1 Filter Design 

 

Several steps are necessary to design the filter, which requires different matrices to be properly 

defined and validated. Initially, the available input and required output data of the filter are analyzed, 

with the overview of the module being depicted in Figure 54: 

• Inputs 

o Target coordinates outputted by the neural network (in pixels); 

o Pixel speeds computed by the Pre-Kalman filter (in px/s). 

• Outputs 

o Filtered target coordinates (in pixels), which are forwarded to the pixel control; 

o (Optional) Target estimated speed (in px/s). 

 

 
Figure 54. Kalman Filter overview 

 

In order to reduce complexity, during the design only a single dimension (x) is contemplated instead 

of two, due the fact analysis is valid for both and would only increase the matrices sizes and overall 

complexity. However, the final implementation comprises two instances of the Kalman filter (KFx and 

KFy in Figure 54), one for each dimension, and can be run in parallel. 

 

Additionally, the filter requires extra prediction steps to keep track of objects that might disappear 

during run time due to occlusion, or a false negative outputted by the neural network module, as 

previously described. Occlusion might occur for several frames, and false negatives, on the other hand, 

are related to the neural network's accuracy and might happen for a few frames (e.g. 6 frames for a 

60 fps camera). It is also important to notice that the inputs are provided at different rates, which 

must be considered during implementation and testing. 
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State Transition model and variables 

Based on the available inputs, it is possible to define and analyze which model must be used. For this 

specific application, system modelling is straight-forward: the goal is to track an object in an image, 

thus Newton's (linear) equation of motion [46] can be applied (w.r.t. pixels instead of distance): 

 

 𝑥 = 𝑥0 + 𝑣 ∗ ∆𝑡 (3.27) 
 

With 𝑥 and 𝑥0 being the final and initial positions (in pixels), respectively, 𝑣 the target’s speed (in px/s) 

and ∆𝑡 the time. Moreover, constant acceleration and jerk can also be included, with their equations 

being shown below: 

 

 𝑥 = 𝑥0 + 𝑣 ∗ ∆𝑡 +
𝑎 ∗ ∆𝑡2

2
 (3.28) 

   

 𝑥 = 𝑥0 + 𝑣 ∗ ∆𝑡 +
𝑎 ∗ ∆𝑡2

2
+
𝑗 ∗ ∆𝑡3

6
 (3.29) 

 

With 𝑎 being the acceleration (in px/s2) and 𝑗 the jerk (in px/s3). However, incorporating acceleration, 

jerk, or both, overcomplicates the system by augmenting the size of matrices (and thus computation 

time), and does not necessarily increase the filter's performance [46]. More importantly, it also 

requires handling excessively large numbers (106), especially when jerk is used, which further 

increases computation time. Taking into account these facts, the 1st order model which considers only 

the position and speed was chosen to be used, with the state variables and matrix being defined as 

follows: 

 𝑥 = [
𝑥
�̇�
] (3.30) 

   

 𝐹 = [
1 ∆𝑡
0 1

] (3.31) 

 

With 𝑥 being the target’s position (in pixels), �̇� its speed (in px/s), and ∆𝑡 the time between prediction 

steps. Notice that, simplifying equation (3.20) to 𝑥𝑘|𝑘−1 = 𝐹 ∗ 𝑥𝑘−1|𝑘−1, it becomes clear how (3.30) 

and (3.31) relates to the model itself: 

 

{
𝑥𝑘|𝑘−1 = 𝑥𝑘−1|𝑘−1 + �̇�𝑘−1|𝑘−1 ∗ ∆𝑡

�̇�𝑘|𝑘−1 = �̇�𝑘−1|𝑘−1                              
 

 

Note that the object speed (�̇�, 1st derivative) is a hidden variable, which is estimated and updated 

internally by the filter, and this model is applied for both x- and y-coordinates. 

 

Control Input model and variables 

In addition to the state transition model which corresponds to the 1st order Newton's equation of 

motion, there is another input to the filter: the robot's ego-motion impact, or the pixel speeds derived 

by the Pre-Kalman filter module. Such information is relevant and is included in the model through 

the control input model and variables, being the trigger for the prediction step. It is relevant to note 

that the prediction step is executed every 7 milliseconds (140 Hz), due the fact ego-motion data is 
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available at this rate. For this implementation, we define the control input model and variable as 

follows: 

 

 𝐵 = [
∆𝑡
0
] (3.32) 

   

 𝑢𝑘 = [𝑣𝑥]𝑘 = 𝑣𝑥𝑘 (3.33) 

 

With 𝑣𝑥𝑘 being the combined pixel speed (in px/s), in this case only for the x-axis. Now, (3.20) can be 

fully unfolded, yielding: 

 

{
𝑥𝑘|𝑘−1 = 𝑥𝑘−1|𝑘−1 + (�̇�𝑘−1|𝑘−1 + 𝑣𝑥𝑘) ∗ ∆𝑡

�̇�𝑘|𝑘−1 = �̇�𝑘−1|𝑘−1                                               
 

 

These equations complete the modelling step and fully describe the system. Note that the new 

position 𝑥 is computed based on the target’s motion (�̇�𝑘−1|𝑘−1) plus the combined pixel speed (𝑣𝑥𝑘): 

their sum composes the final speed. Note that the robot’s ego-motion can be not used as a control 

input, which will be discussed in another sub-section, and once more this model is used for both filters 

(x and y coordinates). 

 

Process Noise and Initial Error Covariance 

The process noise matrix 𝑄 includes the standard deviation related to the external influences, namely 

the process. The variance of the process 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 comprises unpredictable changes on the system, 

such as bumps on the way when tracking a car, for instance. Moreover, the car might be slipping, and 

even the wind may impact the model, and these interferences must be taken into account through 

defining a coherent variance for the process, usually done experimentally [46, 47]. More specifically 

for this project, one can consider the absolute maximum speed the target could move in any direction, 

due the fact the target is another robot which can unpredictable maneuver. By reproducing the 

behavior of the target, which does not move fast, it was possible to roughly determine the standard 

deviation (and thus variance): on average, the maximum speed inferred did not exceed 6 px/s for ∆𝑡 =

0.05𝑠 (20 Hz, worst-case scenario) on both axes. Due the fact this value was derived in practice, only 

maneuvers were considered, and in order to cover about 97% of the possible cases, the process noise 

defined corresponds to at least 3𝜎 , thus 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠  should be 18, but was define as 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 20. 

According to [46] and [47], the process noise covariance matrix for a 1st order filter based on the 

presented Newton's equation of motion is defined as follows: 

 

𝑄𝑘 =

[
 
 
 
∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

 
 
 

𝑘

∗ 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 =

[
 
 
 
∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

 
 
 

𝑘

∗ 202 

 

The error covariance matrix 𝑃, on the other hand, can be initialized in several ways, depending on the 

knowledge one has about the system. Because this matrix is updated every iteration, it is commonly 

initialized as a diagonal matrix with the respective variance of the state variables [47] – the covariances 

between position and speed are dynamically computed by the filter itself. If the initial state (i.e. 
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position and speed) is known, it is common to initialize the matrix with zeros. Otherwise, the diagonal 

must be filled with either high values or the maximum expected variance of the variables. The generic 

form of the error covariance matrix for the system is as follows: 

 

 𝑃0 = 𝑑𝑖𝑎𝑔(𝜎𝑥
2, 𝜎�̇�

2) = [
𝜎𝑥

2 0

0 𝜎�̇�
2] (3.34) 

 

Due the fact the starting position is unknown, the initial variance of the position is set to the image 

width (320 pixels) and height (240 pixels) for x and y, respectively. Although the speed is also unknown 

at start up, one may reason about it due the fact this will be update during run-time by the filter itself: 

maximum speeds of 40 and 20 px/s were considered and used for x and y axes, respectively, as their 

standard deviations. The maximum speed used for the y-axis is smaller due the fact the target moves 

slower with respect to this axis, typically less than half the speed in comparison to the other axis. 

Considering these values, (3.34) was set to: 

  

𝑃0𝑥 = [
17.882 0
0 402

] , 𝑃0𝑦 = [
15.492 0
0 202

] 

 

Measurement Noise and Observation Model 

The measurements are also noisy, due to the sensor's characteristics and environmental factors, and 

are taken into account by the KF. The measurement noise 𝑅 is easier to define, as its variance can 

usually be calculated from real measurements. For this project, the measurements are provided by 

the neural network, which outputs two values – X and Y coordinates. A single coordinate corresponds 

to a single measurement, and does not comprise any speed measurements. Consequently, 𝑅  is 

reduced to a scalar value – the measurement variance – as shown below: 

 𝑅 = 𝑣𝑎𝑟(𝑥𝑠𝑒𝑛𝑠𝑜𝑟) = 𝜎𝑥𝑠𝑒𝑛𝑠𝑜𝑟
2 (3.35) 

 

In order to determine the measurement variance for both axes, the neural network output was 

analyzed for short videos (4 videos in total, 60 fps, 3-6 seconds duration) in which both target and 

robotic system are moving (i.e. dynamic). All frames were then manually annotated with the target’s 

position, and fed to the neural network. Both manual annotations and neural network’s output were 

compared by calculating the respective standard deviations for each axis, and finally the greatest 

standard deviation among the videos (i.e. worst case) were used: 𝜎𝑥𝑠𝑒𝑛𝑠𝑜𝑟 ≅ 10 and 𝜎𝑦𝑠𝑒𝑛𝑠𝑜𝑟 ≅ 10. 

Once more, in order to cover as many cases as possible, 3𝜎 values were used and rounded up, thus 

(3.35) becomes, for x and y, respectively: 

 

𝑅𝑥 = 30
2, 𝑅𝑦 = 30

2 

 

The observation model 𝐻 is used to combine the measurements with the state variables, and due the 

fact there is only a measurement for the position, it can be defined as follows for this project: 

 

𝐻 = [1 0] 
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Initial Conditions 

Finally, the initial conditions are the only missing definition before the complete filter structure is 

properly set. The initial state (i.e. position and speed) is assumed unknown, thus they are both set to 

zero, as follows: 

 

𝑥0 = [
0
0
] 

 

3.4.2 Design Space Exploration 

 

Before moving forward with testing the KF, it is important to present a few variations which are 

required for this application. More specifically, alternate formulations, smoothing techniques, 

steady-state filtering and adaptive filtering are explored in this sub-section. The former addresses 

mainly numerical problems (i.e. precision impact), and computational complexity, likewise 

steady-state filtering. Smoothing, on the other hand, tries to further stabilize the filter at a cost of 

introducing delays, and adaptive filtering addresses convergence of the filter when abrupt changes 

occur (e.g. target maneuvering). Due the fact only adaptive filtering was used in the final 

implementation, it will be thoroughly discussed meanwhile the other techniques are briefly explained.  

 

Furthermore, a few comparisons are required in order to refine both design and final implementation 

of the Kalman filter. The following points and questions are discussed in the end of this section, which 

required simulations: 

• Control input influence: How does the control input (ego-motion) impact the performance? 

• Higher order models: Do higher order models perform better? 

• Coupling: How does coupling (both x and y coordinates combined) impact the performance? 

• Adaptive Filtering: Is adaptive filtering necessary? Which technique? 

All these points were analyzed with a simulated KF in MATLAB, configured as discussed in the previous 

section. Tests are based on noisy non-realistic data, which respect the standard deviations defined. 

Moreover, the period was set based on the worst-case scenario, with the neural network providing 

data at 20 Hz and a maximum jitter of 10% to test the robustness of the filter (∆𝑡 = 0.05𝑠 ± 10%). 

The prediction step is executed Positive results were kept during the upcoming analysis, with 

modifications being done to the (simulated) KF implementation. 

 

Alternate formulations 

The Kalman Filter equations may be modified but remain mathematically equivalent, depending on 

the system and their specific characteristics. Note, however, that alternate formulations are usually 

constrained by additional requirements. For instance, in order to increase precision, one might 

implement a square root filtering technique [47] at a cost of increasing the complexity and implicitly 

defining the covariance matrix 𝑅  as either diagonal, or constant. Among others, the following 

formulations were considered relevant: 

• Sequential KF: avoids matrix inversions, as the measurement-update is done with a single 

measurement at a time. However, the covariance matrix must either be diagonal or constant; 

• Information filtering: applied when the number of measurements is much larger than the 

number of states, and both 𝑅 and 𝑄 are constant (implies constant ∆𝑡). Moreover, it is better 

when the uncertainties are large (𝑃 → ∞); 
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• Square Root and U-D filtering: Both methods require orthogonal transformation algorithms 

[47], with the measurement-update alike the sequential KF implementation. In general, both 

requires greater computational effort while mitigating numerical problems in 

implementations – which can be a concern in 16- and 8-bit precision controllers  

 

Considering only one measurement is received, and that the covariance matrix 𝑅 is constant for this 

application, one may be tempted to use the Sequential KF formulation. However, there is actual no 

need because the only inversion (performed in matrix 𝑆) is reduced to a division when a single axis is 

considered, which is the case for this application. Hence, no alternate formulation was necessary. For 

bigger matrices, however, the Sequential KF formulation may greatly reduce the computational 

complexity, especially for embedded systems and real-time applications. 

 

Smoothing 

Smoothing corresponds to stabilizing even further the output of the filter, and basically 3 different 

types of smoothers can be used [47]:  

• Fixed-Interval: computes the optimal state estimates of a batch of measurements at each time 

𝑗, mostly used for post-processing; 

• Fixed-Lag: computes the optimal state estimate at each time j, while using measurements up 

to and including time (𝑗 +  𝑁). 𝑁 is fixed and corresponds to the "lag" (i.e. delay); 

• Fixed-Point: computes the optimal state estimate at time 𝑗 , considering all future 

measurements – used for camera pose estimation [46], for instance. 

 

Notice that all techniques introduce delays, thus none are applied for this project due the fact one 

should cope with the slow refresh rate of the camera and neural network combination. However, 

fixed-lag smoothing could be of great use if the refresh rate is higher (e.g. 240 fps) and the introduced 

lag does not largely impact the result. 

 

Steady-State Filtering 

Although the standard KF is time-variant, implementations for time-invariant systems with also 

time-invariant process- and measurement-noise covariances exist and compose a specific class, 

namely steady-state KF. Such alternative is primarily employed in embedded systems with memory 

and computational effort constraints, as the Kalman gains are not dynamically computed in real-time. 

Even though the steady-state KF is not optimal as the Kalman gains are not computed at each time 

step, its performance is nearly indistinguishable from that of the time-varying filter [48], when there 

is no jitter present. Note that the steady-state KF is still a dynamic filter, with "steady-state" referring 

only to the Kalman gain matrix computation. Among others, the alpha-beta filter [49] is a steady-state 

KF that is applied to a two-state Newtonian system with position measurement [48], such as the one 

discussed in this project. The Kalman gain for this filter is defined as: 

 

 𝐾 = [
𝐾1
𝐾2
] = [

𝛼
𝛽

∆𝑡
] (3.36) 

   
The gains are computed as follows: 
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 𝐾1 = −
1

8
∗ [𝜆2 + 8𝜆 − (𝜆 + 4)√𝜆2 + 8𝜆] (3.37) 

   

 𝐾2 =
1

4
∗ [𝜆2 + 4𝜆 − 𝜆√𝜆2 + 8𝜆] (3.38) 

 

And 𝜆 is defined as: 

 

 𝜆 =
𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∗ ∆𝑡

2

𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 (3.39) 

 

Hence, 𝛼 and 𝛽 can be compute with the following formulas: 

 

{
𝛼 = 𝐾1         
𝛽 = ∆𝑡 ∗ 𝐾2

 

 

With ∆𝑡  corresponding to the sampling period, in seconds. This filter is particularly useful for 

embedded systems, especially when the sampling frequency is constant. As it can be seen above, 

lambda is a function of the sampling frequency and the advantage of not computing the Kalman gain 

every iteration is lost in case the refresh rate frequently changes or an adaptive filtering technique is 

used, with the filter performing poorly in both scenarios. Due the fact the robustness of the filter 

would be reduced, and considering the application might have jitter, the steady-state KF was not 

applied. 

 

Control Input Influence 

The control input corresponds to the robot ego-motion impact. By considering it (𝑢𝑘 ≠ 0), one 

segregates the speed of the object being tracked from the influence of the ego-motion, thus the actual 

target speed (in px/s) is tracked. When the control input is not considered (𝑢𝑘 = 0), the target 

estimate speed has an offset (Figure 55b) in comparison to when it is considered (Figure 55a), as 

depicted in Figure 55. It is relevant to notice the control input is directly related to the prediction step, 

which is executed every 7 milliseconds (140 Hz) and corresponds to the refresh rate of the ego-motion 

data. 

 

 
Figure 55. Control input influence on estimated speed, when being (a) and not begin (b) considered 



68 
 

 

The filter performance is greatly degraded when the robot, target, or both are maneuvering: the latter 

is the worst case in which the filter takes a long time to converge to the real values. Such scenario was 

simulated, and the results are shown in Figure 56 below: 

 

 
Figure 56. Control input influence on estimated position, when being (a) and not begin (b) considered 

 

Notice the case where the control input is not taken into account (Figure 56b), the KF takes longer to 

converge after the target maneuvers, in contrast to the other case (Figure 56a). In order to properly 

compare the results, the RMSE with respect to the input (fake) data, and the output of the (simulated) 

KF was calculated for both scenarios being considered, which resulted in 𝑅𝑀𝑆𝐸𝑤𝑖𝑡ℎ ≅ 231.47 𝑝𝑥 and 

𝑅𝑀𝑆𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ≅ 249.67 𝑝𝑥. Hence, the filter indeed performs better with the control input being 

considered. Although the filter currently performs poorly in maneuvering scenarios, adaptive filtering 

will be integrated to specifically address this issue. For now, it is enough to conclude the control input 

should be considered. 

 

State Transition model order 

As previously discussed, both acceleration and jerk can be included in the Newtonian model for the 

system (equations 3.16 and 3.17). However, performance is not always increased by doing so [46], 

thus higher models are further explored. Initially, only the acceleration is considered, due the fact 

including jerk increases complexity and in the case the performance decreases for the acceleration-

only scenario, it is not worth augmenting the order of the system even further. Although the derivation 

of the matrices and equations of the filter for this model are not presented, the position estimate for 

this case is shown below and the RMSE computed corresponds to 𝑅𝑀𝑆𝐸𝑎𝑐𝑐 ≅ 191.10 𝑝𝑥. 
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Figure 57. Position estimate when acceleration is included in the model 

 

Although the RMSE is smaller when the acceleration is included (in comparison to 𝑅𝑀𝑆𝐸𝑤𝑖𝑡ℎ), the 

estimated acceleration values might become extremely large (Figure 57a), and the Kalman gain for 

the acceleration is rather high with respect to the others (Figure 57b), as shown in Figure 57. The 

former corresponds to trusting the (hidden) acceleration estimate over the speed and position for the 

model - not optimal due the fact the filter trusts the model less, overall -, meanwhile the latter impacts 

on the computational complexity, which is greatly increased due to the matrix operations that must 

be performed. 

 

 
Figure 58. Acceleration estimate (a) and Kalman gains (b) when acceleration is included in the model 

 

Considering the aforementioned facts, including the acceleration corresponds to increasing 

complexity without greatly impacting the performance of the filter, hence the simplest model as 

previously discussed is chosen to be used. 

 

Coupling 

One might argue both coordinates (x and y) can be coupled in a single Kalman Filter, instead of being 

implemented in different instances. Coupling the coordinates corresponds to simply augmenting all 

matrices of the filter by a factor of two (2), which has no impact at all on the output(s), as can be seen 

in Figure 59 below which depicts a simulation for both coordinates: 
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Figure 59. Position (x and y) estimate for both coupled (C) and uncoupled (UC) implementations 

 

Note that for this simulation, the RMSE for each coordinate is computed, and corresponds to the same 

value: 𝑅𝑀𝑆𝐸𝐶 𝑜𝑟 𝑁𝐶 ≅ (17.34, 13.16) 𝑝𝑥 . Although the performance is the same when both 

coordinates are coupled, the uncoupled version is less computationally expensive due the fact it 

operates over smaller matrices. Furthermore, each uncoupled filter can be better tuned with respect 

to the adaptive filters discussed in the next sub-section, and is able to run in parallel as there is no 

data dependency. Considering these aspects, the uncoupled filter was chosen to be implemented. 

 

Adaptive Filtering 

The KF considers all previous samples in order to compute its output, and may be biased in case of 

sudden changes in the system. This directly impacts the responsiveness of the filter, which slows down 

and might take several iterations before converging to the real value. To address this issue, adaptive 

filtering techniques are widely used in applications in which abrupt changes or discontinuities may 

occur, such as tracking. There are several techniques for adaptive filtering, and one may combine 

different ones depending on the desired behavior and application. Only two are discussed for this 

application, which are simple and sufficient for tracking applications [46, 47]: Fading Memory and 

Adjustable Process Noise. Implementing both is adding unnecessary redundancy, hence each one is 

implemented separately and the best one chosen to be implemented. 

 

Adjustable Process Noise: ϵ version 

Initially, the adjustable process noise technique for detecting maneuvering targets is explored, in 

which the process noise is scaled accordingly based on a metric involving the residual (�̃�𝑘). Basically, 

the process noise is increased when the residual is large, or decreased otherwise. Hence, for the 

former, the KF will favor the measurement more. There are several ways of applying this idea, but 

only the Continuous Adjustment [47] is explored in this project due to its simplicity in terms of design 

and implementation, and more specifically the method from Bar-Shalom [48]. Such technique consists 

of normalizing the square of the residual for every iteration as follows: 
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 𝜖𝑘 = �̃�𝑘
𝑇 ∗ 𝑆𝑘 ∗ �̃�𝑘 (3.40) 

   
With �̃�𝑘  being the residual and 𝑆𝑘 the measurement covariance matrix. Note that when the former is 

a scalar, (3.40) simplifies to: 

 

 𝜖𝑘 =
�̃�𝑘

2

𝑆𝑘
 (3.41) 

 

Squaring the residual ensures the signal is always greater than zero, and normalizing by the 

measurement covariance scales the signal so that one can distinguish when the residual is markedly 

changed relative to the measurement noise [46]. Implementation is straight forward, with 𝜖𝑘 being 

computed in every filter iteration and compared with a maximum value. If such limit is exceeded, the 

process noise matrix 𝑄𝑘 is scaled up by a constant factor, or down otherwise. 

 

For the adjustable process noise, one must initially analyze the normalized square of the residual (𝜖) 

for each uncoupled filter, as shown in Figure 60, in order to properly define the threshold value. 

Additionally, in order to compare the filter with and without the adjustable process noise technique, 

the RMSE for the latter is computed, and corresponds to 𝑅𝑀𝑆𝐸𝑛𝑜−𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 ≅ (9.19, 5.65) 𝑝𝑥. 

 

 
Figure 60. Initial ϵ values for both coordinates 

 

Based on the graphs shown in Figure 60 above, thresholds of 4 and 7 were defined for the x and y 

filters, respectively, as they must react to changes rapidly. The scale factor for the process noise 

covariance matrix is then adjusted in order to obtain the lowest RMSE, and corresponds to 1000 for 

both cases: 𝑅𝑀𝑆𝐸𝑥(𝑠𝑐𝑎𝑙𝑒 = 1000) ≅ 9.44  px, 𝑅𝑀𝑆𝐸𝑦(𝑠𝑐𝑎𝑙𝑒 = 1000) ≅ 8.10  px. Instead of 

directly checking the position estimate, the residuals of both coordinates are more interesting for now 

due the fact they should be within ±1𝜎, and are depicted in Figure 61 below. The position estimate 

will only be depicted fort the best adaptive filtering technique. 
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Figure 61. Position residuals for the continuous adjustment technique 

 

Although the residuals are within an acceptable range of ±6𝜎 in general, being suppressed by the 

filtering technique applied, the filter is scaled quite often – peaks on Figure 61 for the standard 

deviation corresponds to a scale up or down procedure –, which increases execution time due the 

additional operations, especially for scaling the process noise matrix. The 𝜖 values when the technique 

is applied, on the other hand, are reduced as expected as shown below. 

 

 
Figure 62. ϵ values for the continuous adjustment implementation 
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Despite the continuous adjustment algorithm is interesting for applications in which there is not many 

abrupt changes, it might be the best option for this system. However, before deciding whether this 

adaptive filter should be implemented, the fading memory technique is discussed. 

 

Fading Memory 

Fading memory consists of giving more weight to recent samples and less to older ones by computing 

the error covariance matrix in a slightly different manner. Its implementation for low order kinematic 

filters is very simple, which drastically reduces the amount of computation required in comparison to 

other adaptive filtering techniques [47]. The only modification in the original KF formulation is on the 

error covariance matrix computation (3.21), which becomes: 

 

 𝑃𝑘|𝑘−1 = 𝜶
𝟐 ∗ 𝐹 ∗ 𝑃𝑘−1|𝑘−1 ∗ 𝐹

𝑇 + 𝑄𝑘 (3.41) 

 

Where 𝛼 is a scalar, greater or equal to 1, and typically in-between 1.01 and 1.05. The higher 𝛼 is, the 

less weight older samples have. Note that for the specific case where 𝛼 = 1, (3.39) reduces to (3.21) 

and the filter is a standard KF. The idea of this modification is straight-forward: by increasing the error 

covariance matrix, the KF is more uncertain about the estimate and hence gives more weight to the 

measurements provided by the neural network. This technique was applied for this project, and will 

be further explored in order to determine the best value for 𝛼. 

 

Due the fact the maximum value usually does not exceed 1.05 [46, 47], this adaptive technique was 

compared for 1.01 ≤ 𝛼 ≤ 1.05 , with 0.01  interval and the respective RMSEs computed for both 

coordinates. Finally, the chosen alphas correspond to the smallest RMSEs obtained: 𝑅𝑀𝑆𝐸𝑥(𝛼 =

1.02) = 4.51 px, 𝑅𝑀𝑆𝐸𝑦(𝛼 = 1.01) = 3.55 px. 

 

 
Figure 63. Position residuals for 𝛼𝑥 = 1.02 and 𝛼𝑦 = 1.01 

 



74 
 

In comparison to the adjustable process noise technique, the residuals are smaller overall. Note that 

by calculating epsilon when using the fading memory filter, it becomes evident that there is no need 

to implement an additional adaptive technique, as shown below: 

 

 
Figure 64. ϵ values for the fading memory implementation 

 

An overview of the RMSE values computed for both adaptive filtering techniques is summarized in 

Table 4. Note the adjustable process noise performs worse than when not using an adaptive filter 

technique, and ultimately the fading memory implementation improved about 49% and 63% for x and 

y coordinates, respectively. 

 
Table 4. RMSE comparison between adaptive filter techniques 

 
 

Not only is the fading memory technique simple to implement, but the residuals for this technique are 

better than the adjustable process noise. Hence, the fading memory technique was chosen as the 

adaptive filter to be used, which complies to the literature [46] due the fact in this application there 

might be several maneuvers from both robot and target. Although implementation of the fading 

memory filter is simpler, such technique modifies the KF by trusting the samples over the model, and 

more specifically, the most recent ones. The adjustable process noise algorithm, on the other hand, 

only gives more weight to the samples when a certain threshold is reached, instead of all the time. 

Moreover, this algorithm might be interesting when few abrupt changes occur. 

 

Finally, the fading memory filter was included in the simulation, and its respective position estimate 

is depicted in Figure 65. 

 

x 9.19 9.44 4.51 49.08

y 5.65 8.10 3.55 62.83

RMSE 

(px)

Coordinate

Adaptive filter technique

Not 

implemented

Adjustable 

Process Noise

Fading 

Memory

Improvement (%)
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Figure 65. Position (x and y) estimate for the fading memory implementation 

 

3.4.4 Real Data Analysis 

 

With the parameters and additional techniques correctly implemented in the simulation environment, 

the next step was to process real data to fully validated the design. The following procedures were 

applied in order to assess how the filter performs in practice: 

• Static setup: robot is always static, target is static; 

• Dynamic setup: robot follows a pre-defined path, meanwhile the target is dynamic, and visible 

around 90% of the time. 

 

A total of eight (8) videos were recorded, four (4) for each setup. Frames are extracted from all videos, 

and manually marked for the static setup scenario only, due the fact this procedure is burdensome for 

the other cases. The neural network is then fed with the frames (320x240 resolution), and its outputs 

logged. Moreover, data from the robotic system (ego-motion) is merged with the output of the neural 

network, for the dynamic setup scenario. Finally, the combined data is processed in MATLAB with the 

full Kalman filter implementation, with the position and speed estimates being plotted for each video, 

alongside the residual for the static setup case only (it requires the real coordinates of the target). 

Finally, a different video is composed and marked with both raw (neural network) input and (Kalman) 

filtered output in order to better observe the results -  raw inputs, filtered outputs, and prediction 

outputs are marked with green, red, and magenta circles, respectively. The latter (prediction outputs) 

corresponds to the prediction of the filter when the neural network outputs a false-negative. Note 

that the neural network timing was respected (videos were sub-sampled: 60 fps to 20 fps/Hz), 

alongside the refresh rate of the ego-motion data (140 Hz), for both setups. 
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Static setup 

For the static setup, only data from the neural network is relevant, due the fact the robotic system is 

not moving, thus ego-motion values correspond to zero (0). In this case, the Pre-Kalman filter module 

would always output pixel speeds equal to zero (0) as well, not impacting the filter. Note, however, 

that the prediction step is executed at 140 Hz due the fact it is dependent on this data. Only the finest 

two (2) results (out of 4) are presented in this section, with a sample frame extracted from both cases 

being shown in Figure 66. Notice both are marked with the raw input (green circle) and filtered output 

(red circle). 

 

 
Figure 66. Marked sample frames extracted from output videos 

 

The position and speed estimates for both cases and all iterations are shown in Figure 67 and Figure 

68 below: 

 

 
Figure 67. Position estimate for both static cases 
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Figure 68. Speed estimate for both static cases 

 

With respect to the graphs above, the Y coordinates were negated in order to reflect the actual pixel 

coordinate on the image and the estimates (filled circles) are chronologically ordered with a gradient 

from blue to yellow (Figure 67). Note the neural network does not deviate much, being completely 

stable for case (Figure 67b), thus the final speed estimates converge to zero. Moreover, both cases 

are rather similar, and converge to the measurements (open circles) after approximately 1 second (20 

complete iterations). 

 

Considering this setup is static, and consequently the target’s position also, the residual can be further 

analyzed: 

 

 
Figure 69. Position residuals for both static cases 

 

The residuals of both cases are within ±1𝜎  after initialization, with the Y coordinate slightly 

outperforming X. Not only does the filter converge, but additionally presents an exceptional behavior 

for this setup. This setup validates the previously discussed design of the Kalman filter, although the 

control input is set to zero (0) and the fading memory technique is not properly tested in these cases, 

because the target is static. However, the adaptive filtering was applied for the simulations presented 

and does not degrade the performance of the filter. 
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Dynamic setup 

Differently from the previous case, for the dynamic setup the ego-motion and neural network data 

must be merged, due the fact both robot and target are moving – thus, the Pre-Kalman filter module 

is included in the simulation. The former follows a predefined route, and the latter is moved around 

manually with a string attached to its front. Moreover, in these cases the neural network might not 

be able to identify and localize the target, due to its accuracy or occlusions that might occur for a few 

frames. As such cases frequently happens in reality, and in the final implementation must be treated 

accordingly, for now every time they occur, the update step is obviously not executed (i.e. no 

measurement available) but the respective output from the prediction step is stored. In fact, the final 

implementation will handle these cases in this way, but only for a few frames (i.e. measurements), 

with the filter being reset otherwise. 

   

Only the best (and clearest) result (out of 4) is presented for this case, with a sample frame extracted 

from the same scenario being shown in Figure 70. Notice Figure 70b is marked with the raw input 

(green circle) and filtered output (red circle), meanwhile Figure 70a is marked with the prediction 

output (magenta). 

 

 
Figure 70. Marked sample frames extracted from output video 

 

Although only one video is processed, an additional test was performed to further explore the 

Pre-Kalman filter impact and response to the ego-motion. It corresponds to considering (Figure 71a) 

or not (Figure 71b) the ego-motion data, with the respective position and speed estimates for each 

case shown below: 
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Figure 71. Position estimate for dynamic setup, considering (a) or not (b) the ego-motion 

 

 
Figure 72. Speed estimate for dynamic setup, considering (a) or not (b) the ego-motion 

 

Once more the Y coordinates were negated to reflect the actual pixel coordinate on the image and 

the estimates (filled circles) are chronologically ordered with a gradient from blue to yellow. On the 

other hand, the neural network does substantially deviate in the dynamic scenario, but is clearly 

smoothed by the Kalman filter. Moreover, both cases present similar results except during the first 

(dark blue) and last iterations (orange/yellow), due the fact the ego-motion data impacts the Kalman 

filter: in the beginning, the robot is moving forward, the pixel coordinates under consideration (initially 

0) are expected to move diagonally, from top to bottom, to the left; in the end, the opposite happens 

with respect to the direction, due the fact coordinates are on the right side of the image, hence move 

from bottom to top (considering the image coordinate system). Finally, although not visible, the 

false-negatives and occlusion cases are far better predicted for the case in which the ego-motion is 

considered. Notice the speed estimates (Figure 72) reflect the previously discussed behavior on 

considering or not the control input: when the ego-motion is not considered (Figure 72b), the output 

of the filter intrinsically combines the target speed (in px/s) and the ego-motion impact, thus not 

corresponding to the actual target speed only that happens in the other case (Figure 72a). 
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In summary, the designed Kalman filter presented an exceptional performance, in both static and 

dynamic cases, including the ego-motion data. Moreover, it validates both the Pre-Kalman module 

and the Kalman filter itself, in addition to the fading memory technique. 

 

3.4.5 Final Design 

 

Final design and implementation of the Kalman filter comprises the following characteristics: 

1. The 1st order Newtonian (linear) model is used; 

2. The control input corresponds to the ego-motion impact, and is considered; 

3. The process and measurement noise matrices are properly defined for the application; 

4. Each coordinate is implemented in a different (but similar) instance of the Kalman filter that 

may execute in parallel; 

5. The fading memory technique is used for handling abrupt changes. 

 

Additionally, the equations of each instance of the Kalman filter (for X and Y coordinates) may be 

hard-coded to avoid matrix operations. Not only does it reduce complexity, but also execution time 

and enables tuning the fade memory algorithm applied. This section briefly presents the final 

equations that were implemented for the Kalman filters designed. However, in order to keep this 

section short, only the equations for a single instance of the filter are presented, and each matrix 

element is represented by 𝑀𝑖𝑗 with 𝑀 being the element of the 𝑖th row and 𝑗th column: 

• Predict step 

o {
𝑥𝑘|𝑘−1 = 𝑥𝑘−1|𝑘−1 + �̇�𝑘−1|𝑘−1 ∗ ∆𝑡

�̇�𝑘|𝑘−1 = �̇�𝑘−1|𝑘−1                              
 

o 

{
 
 

 
 𝑃11𝑘|𝑘−1 = 𝛼𝑐

2 [𝑃11𝑘−1|𝑘−1 + ∆𝑡 ∗ (𝑃12𝑘−1|𝑘−1 + 𝑃21𝑘−1|𝑘−1 + ∆𝑡 ∗ 𝑃22𝑘−1|𝑘−1)] + 𝑄11𝑘

𝑃12𝑘|𝑘−1 = 𝛼𝑐
2 [𝑃12𝑘−1|𝑘−1 + ∆𝑡 ∗ 𝑃22𝑘−1|𝑘−1] + 𝑄12𝑘                                                                

𝑃21𝑘|𝑘−1 = 𝛼𝑐
2 [𝑃21𝑘−1|𝑘−1 + ∆𝑡 ∗ 𝑃22𝑘−1|𝑘−1] + 𝑄21𝑘                                                                

𝑃22𝑘|𝑘−1 = 𝛼𝑐
2 ∗ 𝑃22𝑘−1|𝑘−1 + 𝑄22𝑘                                                                                                   

 

 

• Update step 

o 𝑆𝑘 = 𝑃11𝑘|𝑘−1 + 𝜎𝑥𝑠𝑒𝑛𝑠𝑜𝑟
2 

o {
𝐾11𝑘 =

𝑃11𝑘|𝑘−1

𝑆𝑘

𝐾21𝑘 =
𝑃21𝑘|𝑘−1

𝑆𝑘

 

o �̃�𝑘 = 𝑥𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑥𝑘|𝑘−1 

o {
𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 +𝐾11𝑘 ∗ �̃�𝑘
�̇�𝑘|𝑘 = �̇�𝑘|𝑘−1 +𝐾21𝑘 ∗ �̃�𝑘

 

o 

{
 
 

 
 
𝑃11𝑘|𝑘 = 𝑃11𝑘|𝑘−1 ∗ (1 − 𝐾11𝑘) = 𝑃11𝑘|𝑘−1 −𝐾11𝑘 ∗ 𝑃11𝑘|𝑘−1

𝑃12𝑘|𝑘 = 𝑃12𝑘|𝑘−1 ∗ (1 − 𝐾11𝑘) = 𝑃12𝑘|𝑘−1 −𝐾11𝑘 ∗ 𝑃12𝑘|𝑘−1
𝑃21𝑘|𝑘 = 𝑃21𝑘|𝑘−1 − 𝐾21𝑘 ∗ 𝑃11𝑘|𝑘−1                                               

𝑃22𝑘|𝑘 = 𝑃22𝑘|𝑘−1 − 𝐾21𝑘 ∗ 𝑃12𝑘|𝑘−1                                              

 

 

Notice no matrix operations are required at all by implementing the equations presented above, in 

addition to only two floating-point divisions being required. 
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3.5 Pixel Control 
 

With the Kalman filters completely defined, tested and implemented, the next step was to address 

the final part of the application: given the target position is known within the image, how should the 

robotic system be driven in order to follow the target, ideally maintaining it in a reference position? 

Initially, controlling the distance between the robot and target was explored, but due the fact this 

would either require implementing an online camera external parameters calibration technique, or an 

ultrasonic sensor, another approach is introduced which abstract the distance. Moreover, the latter 

would likely perform poorly, as the robot and target must be correctly aligned. 

 

 
Figure 73. Pixel Control overview 

 

The Pixel Control module presented in Figure 73 above is then explored, which implements two PID 

controllers: one meant for controlling the base speed for both encoder motors, meanwhile the other 

for the direction of the robotic system. Moreover, the controllers may run in parallel as there is no 

direct data dependency. Both controller’s outputs are then merged, and the RPM references (right 

and left) are forwarded to the robotic system. Notice the filtered target position (𝑥𝑓 , 𝑦𝑓) is the input 

for the PID controllers, while the references (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓) are provided by the user. 

 

 
Figure 74. Detailed pixel control overview 

 

More specifically, 𝑥𝑓 is fed to the “Extra” PID controller, due the fact this coordinate only influences 

the direction, meanwhile 𝑦𝑓 is provided to the “Base” PID controller, because it impacts the forward 

or backward speed, as depicted in Figure 74. The merged outputs are computed as follows: 

 

{
𝑅𝑃𝑀𝑟 = 𝑅𝑃𝑀𝑏𝑎𝑠𝑒 + 𝑅𝑃𝑀𝑒𝑥𝑡𝑟𝑎
𝑅𝑃𝑀𝑙 = 𝑅𝑃𝑀𝑏𝑎𝑠𝑒 − 𝑅𝑃𝑀𝑒𝑥𝑡𝑟𝑎

 

 

Note that these equations assume the “Extra” PID controller outputs 𝑅𝑃𝑀𝑒𝑥𝑡𝑟𝑎 > 0 when 𝑥𝑓 < 𝑥𝑟𝑒𝑓. 

After implementing both PID controllers, their respective gains were tuned in practice for a sampling 
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frequency 𝑓𝑠 = 20 𝐻𝑧 (constrained by the neural network), with the proportional (𝐾𝑝), integral (𝑇𝑖) 

and derivative (𝑇𝑑) gains presented in Table 5 below. 

 
Table 5. Gains of the base and extra PID controllers 

 
 

In order to further analyze the behavior of the controllers implemented, their respective response for 

the reference sequences 𝑥𝑟𝑒𝑓 = [160, 240, 160,80] and  𝑦𝑟𝑒𝑓 = [96, 80, 120, 80] are shown below: 

 

 
Figure 75. Extra PID response (X coordinate) 

 

 
Figure 76. Base PID response (Y coordinate) 

Proportional Integral Derivative

Base 0.4 100 0.00001

Extra 0.1 100 0.001

GainPID 

Controller
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The discontinuity (𝑡 ≈ 23𝑠) in both graphs above is due to the Kalman filter being reset during normal 

operation, caused by consecutive false negatives outputted by the neural network. Furthermore, 

notice there is always a small delay in the beginning and whenever the references are changed, mainly 

due the wireless transmission which will be further analyzed. Although the PID controllers were tuned 

in practice and are stable, both present an oscillatory behavior in addition to overshoot, with the 

system taking roughly 5 seconds to come closer to the reference values. It is relevant to note the base 

controller slightly outperforms the extra controller, hence rotating the robot is harder than translating 

it – which is expected. Finally, both controllers should be further tuned to increase their performance, 

especially if the delay is reduced. Figure 77 below depicts the system response in terms of both X and 

Y (2D) coordinates: 

 

 
Figure 77. System response in terms of coordinates 

 

In summary, the proposed module is capable of abstracting the real distance between robot and 

target, in addition to properly driving the robotic system in order to keep the target around the desired 

reference coordinates. However, it is relevant to notice that the 0.5 seconds delay of the stream 

directly impacts the overall responsiveness of the system, hence both controllers could be greatly 

improved in the future and react faster. This issue is further addressed in Chapter 4. Additional 

information about the PID controller, its implementation and tuning procedure can be found in 

Appendix A: PID Controller. 

 

3.6 Final Implementation 
 

Considering all components of the tracking system were properly defined and tested, combining them 

is necessary for the final implementation. As the initial goal was to interface the camera and execute 

the tracking in an embedded system, software components were developed in C/C++ and tested in an 

embedded Linux during development (Zynq). However, executing this application fully in the 

embedded platform requires the neural network is already implemented in hardware, which was not 

the case in the end of this project. Hence, the application was ported to a PC running Linux, but 
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remained compatible and can be executed in an embedded Linux. This section presents an overview 

of the complete tracking system in terms of hardware and software, and relevant topics will be further 

explored. Figure 78 below depicts the final setup, with the tracking system running on a PC, connected 

via USB to the robotic system, and via Wi-Fi to the camera: 
 

 
Figure 78. Final implementation with target and both robotic and tracking systems running 

 

3.6.1 Hardware 

 

The tracking system is fairly simple in terms of hardware, and includes the main processor, a camera 

connected to it, and a serial communication to the robotic system. Specifically for the final 

implementation, the main controller is a PC running Linux (Ubuntu 14.04) in a Intel Core® i7 processor, 

connected to the GoPro Hero4 via a direct Wi-Fi connection (access point), and exchanges data with 

the robotic system through an USB-to-UART connection, with the UART communication complying to 

the µprotocol discussed in section 2.5. The overview of the tracking system is depicted in Figure 79 

below: 

 
Figure 79. Final hardware architecture of the tracking system 

 

Although the main processor is currently a PC, and the camera is connected via Wi-Fi, these parts are 

easily changeable. For instance, one might use an embedded platform (i.e. Zynq) instead, and connect 

the camera via HDMI, without changing the functionality of the tracking system. 
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3.6.2 Software 

 

The tracking system, in comparison to the robotic system, has a much more complex software 

architecture, mainly due the Wi-Fi connection needed – the neural network is simple. The 

fundamental functions had to be analyzed to be able to define tasks and segregate them into other 

applications, if needed. In terms of activities this system has to: 

• Handle the camera stream; 

• Process each frame of the stream with the neural networks (detection & localization, must be 

in Python using TensorFlow[50]); 

• Display a marked image to the user, with the filtered coordinates of the target; 

• Handle data exchange between robotic and tracking systems; 

• Implement the Pre-Kalman filter; 

• Implement two (2) Kalman filters, one for each coordinate; 

• Implement two (2) PID controllers; 

• Provide a user interface in order to manually set the reference coordinates; 

• Coordinate, merge, and forward data accordingly. 

 

Taking these activities into consideration and after several discussions and different implementations, 

three (3) applications are necessary: 

1. The main application (MAPP): responsible for the Pre-Kalman filter, Kalman filters, PID 

controllers, (simplistic) user interface, and communication with the robotic system; 

2. The GoPro/Neural Network (GPNN): start and keep the camera stream alive, in addition to 

running the neural network and displaying a marked image with the current target position; 

3. The stream capture: responsible for retrieving, resizing and saving in a file the frames of the 

camera stream. 

 

Not only do all applications execute concurrently, but also exchange data directly (i.e. message 

queues) and indirectly (i.e. files). In general terms, the Stream Capture captures frames from the 

camera stream, which are saved in a file. The GPNN then opens the image, fed it to the neural 

network(s) and sends the raw coordinates (𝑥𝑟𝑎𝑤 , 𝑦𝑟𝑎𝑤) of the target through a message queue to the 

MAPP, which process the raw coordinates and send back to the GPNN the filtered coordinates (𝑥𝑓 , 𝑦𝑓). 

The overview of the applications and their relations is presented below: 

 

 
Figure 80.Overview of the applications and their relations 

 

In order to simplify usage, the user should only run the MAPP, which is responsible for starting the 

GPNN programmatically, which in turn starts the Stream Capture. Consequently, whenever the main 

application is terminated, the others also are. Moreover, each application is implemented in different 
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programming languages: Stream Capture is a complete third-party application, which actually uses the 

ffmpeg; GPNN was developed in Python and; MAPP in C/C++. 

 

Initially, the stream capture is briefly discussed due the fact it is the simplest one, and corresponds to 

an ffmpeg application, launched by GPNN with a single bash command and necessary arguments. The 

framerate is limited to 20 fps, which matches the neural network requirements. A single iteration of 

the stream capture comprises retrieving a frame from the camera stream, resizing it (from 640x480 

to 320x240 resolution), and saving the resulting image in a file, as depicted in Figure 81 below. 

 

 
Figure 81. Simplified single execution of the stream capture application 

 

The GPNN initially elevates its priority (if permitted) to the maximum (-20) in order to reduce delay (it 

runs in a PC), and has three (3) different threads, one responsible for handling the camera’s stream 

(i.e. starting and maintaining it), another dedicated to the neural networks (detection and localization, 

if necessary), and one more dedicated to process data incoming from the MAPP which will not be 

discussed. The former starts the camera stream by sending a specific HTTP request, then launches the 

stream capture (ffmpeg) application, signals to the neural network thread it has done the previous 

steps and loops forever sending keep alive (UDP) packets to the camera every 2.5 seconds, in order to 

maintain the stream. The overview of its execution is shown in Figure 82. 

 

 
Figure 82. Execution flow of the camera handler thread of GPNN 

 

The other thread responsible for applying the neural networks comprises more steps. After initializing 

the models of the neural networks, it blocks until a signal from the camera handler thread is received. 

The neural network handler then opens the image file (saved by the stream capture application), 

deletes the file and resizes the image to 224x224 resolution which is required by the detection 

network. Moreover, the resized image is fed to the detection network, and if the target is detected, 

the localization network is fed with the original (320x240 resolution) frame. Subsequently, the raw 

coordinates are sent to the MAPP, and the current frame marked and displayed. In case the target is 

not localized, a negative value is sent to the MAPP, indicating so, and the frame is not marked (only 

displayed). The overview of the execution of the neural network handler thread after initialization is 

depicted in Figure 83, and a sample marked frame in Figure 84, with the green and yellow dot 

corresponding to the neural network raw and filtered outputs, respectively. 

 

 
Figure 83. Execution flow of the neural network handler of GPNN 
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Figure 84. Sample marked frame output of the GPNN 

 

Main Application (MAPP) 

The main application (MAPP) is the most complex piece of software of the system, being responsible 

of launching and communicating with the GPNN, handling the communication with the robotic 

system, providing a simple user interface, executing the Pre-Kalman filter, two Kalman filters, and two 

PID controllers. In terms of implementation, specific drivers were developed and tested for the Kalman 

filters and PID controllers, in addition to the communication with the robotic system. Main 

functionalities were segregated into threads, and in total nine (POSIX) threads were used and are 

summarized below with their respective functionalities: 

• NN Handler: Handles incoming data from the concurrent python application. Data is then 

forwarded to the Coordinator; 

• MegaPi Handler: Handles all incoming/outgoing data from/to the MegaPi. It forwards data 

sensor to the Pre-KF and set the respective RPMs received from the Coordinator; 

• Pre-KF: Process sensor data from MegaPi Handler, computing the ego-motion impact on the 

object being tracked. The pixel of interest is retrieved from the Kalman filters (KFx and KFy), 

and both pixel speeds are forwarded to the respective Kalman filter 

• KFx and KFy: Kalman filter implementations for X and Y coordinates, respectively. Data coming 

from Pre-KF is integrated in the update step, and prediction is performed when data is 

received from the Coordinator. The filters' outputs are sent to the PID controllers (bPID or 

ePID); 

• bPID and ePID: PID controllers for pixel distance control, with former being responsible for 

computing the (b)ase speed which depends on the object'ś Y coordinate. The latter computes 

the (e)xtra speed in order to set the robot to the correct direction which depends on the 

object’s X coordinate. Both controllers send their output (RPM) to the Coordinator which is 

computed based on the provided reference(s) from the Coordinator (which might come from 

the User Interface); 

• Coordinator: coordinator of the system, which makes high-level decisions and manages the 

whole operation. Retrieves, processes, and send data to relevant threads; 

• User Interface: Provides a simple menu for the user, which can set the reference coordinates 

for the PID controllers. New references are forwarded to the Coordinator, and subsequently 

to the controllers. 
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The overview of the software architecture is shown in Figure 85 below, where each box represents a 

thread (except the gray boxes), and arrows corresponds to message queues between them (except 

the connection to the robotic system). 

 

 
Figure 85. MAPP software architecture 

 

In summary, the MegaPi Handler forwards sensor data (current speed and angular velocities of the 

robotic system) to the Pre-KF thread, which derives both pixel speeds based on the ego-motion data, 

and the coordinates of the pixel of interest outputted by the Kalman filters. The latter, on the other 

hand, apply the designed Kalman filters and either predicts, updates, or both: whenever data (i.e. 

control input) is received from the Pre-KF, it performs the prediction step (should occur at 140 Hz); 

whenever measurement data is received from the Coordinator (coming from the NN Handler), it 

updates (should occur at 20 Hz) and forwards its output to the respective PID controller in addition to 

the GPNN application, in order to mark the image and display to the user. The controllers execute 

periodically, and initially check for new references from the Coordinator (coming from the UI), 

subsequently actuating, running the PID loop and forwarding their outputs. The Coordinator merges 

the RPMs outputted by the controllers and forwards to the MegaPi Handler (thus, to the robotic 

system itself), check for new references coming from the user interface and transmits them to the 

controllers, if necessary. Moreover, it retrieves the neural network raw data (should occur at 20 Hz) 

and delivers it to the respective Kalman filters. The user can set new reference values through the 

menu provided by the UI, by either manually inputting X and Y, or selecting a standard option, as 

depicted in Figure 86 below, where banner “VTROBOT” stands for “Visual Tracking Robot”, a nickname 

given to the project during development. Note that in total the application requires about 10 to 15 

seconds to initialize and normally execute, mainly due the time the camera stream takes to start. 
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Figure 86. Banner and menu provided by the UI 

 

This process also increases its priority to the maximum (-20), in order to reduce any delays or jitters, 

in addition to launching the GPNN and registering termination signals to gracefully shutdown. 

Initialization (main function) follows the procedure depicted in Figure 87 below: 

 

 
Figure 87. Initialization procedure of the MAPP 

 

It is relevant to state the Coordinator is responsible for handling false positives of the neural network, 

resetting the Kalman filter if necessary, alongside the PID controllers. In order to address this case, a 

maximum number of false negatives is defined, and correspond to 35% ∗ 20 𝑓𝑝𝑠 = 7, or 35% of the 

frame rate (20 fps). Note this value was initially set to 10% (considering the neural network’s accuracy 

is 90%) of the frame rate, but later modified to the aforementioned value due the fact the neural 

network performed worse in practice. Whenever a negative value is received by the coordinator (i.e. 

no car detected by the GPNN), a counter is incremented, and if it has reached the maximum number 

of false negatives, both the PID controllers and Kalman filters are reset. Otherwise, the Kalman filters 

keep performing the prediction step, thus the target can still be tracked up to 7 consecutive false 

negatives. 

 

Communication between (POSIX) threads are implemented through (POSIX) message queues. On the 

other hand, tasks are simpler and thus are agglomerated in the main C++ source file. In terms of 

priorities, all threads are considered critical, hence have the same priority (1), except the user 

interface which is not essential and is set to priority 0. All message queues have a max number of 

messages (i.e. tokens) set to 1, due the fact the threads read and process them as fast as possible, 
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although this is not guaranteed for every iteration because the application is running in a PC. 

Moreover, each task executes in a cooperative manner, suspending themselves for a brief period 

(1-100 microseconds) or blocking when sending/receiving a message, if synchronization is necessary. 

 

Both handlers use low-level drivers to communicate with the other systems, and lightning bolts in 

Figure 85 correspond to periodic tasks, triggered by Linux (real-time) timers with a 0.1 millisecond 

accuracy, enough for the refresh rates used (20 and 140 Hz). Moreover, notice the MegaPi Handler 

only delivers sensor data at 140 Hz, but do not send data to the robotic system at this rate – data is 

sent based on the PID controllers rate (20 Hz), which are merged by the Coordinator. Finally, it is 

important to note that one (1) serial communication (USB-to-UART) is used by the MegaPi Handler, 

namely USB0 (/dev/ttyUSB0), for communicating with the robotic system. Note, however, that the 

device name might change, and should be modified accordingly in the main.c file – if the Zynq platform 

is used, for instance, the serial port could be UART1 (/dev/ttyPS1). 

 

Although each thread was not addressed singularly, major aspects of the architecture were explained, 

and relevant code snippets can be found in Appendix C: Embedded Software. 

 

3.6.3 Drivers 

 

For the tracking system only three (3) drivers are currently needed: one for communication purposes, 

more specifically to communicate with the robotic system (namely megapi), and other two for the PID 

controller (namely pid) and Kalman filter (namely kf) implementations. All drivers were segregated in 

header and source files in which specifics can be easily modified in order to comply with future 

modifications. Implementation details will not be discussed, although code is fully commented and 

analyzing it should be simple. 

 

MegaPi 

The driver developed for communicating with the robotic system applies simple serial communication 

principles. To correctly send or retrieve data, the driver must be initialized with the corresponding 

serial port the robotic system is connected to – currently this is USB0, corresponding to 

“/dev/ttyUSB0” –, which has to be visible in the Linux machine. The configuration structure is defined 

as follows: 

1. // MegaPi config structure   
2. typedef struct megapi_t   
3. {   
4.     int fd;                 // File descriptor for tty port   
5.     bool init;              // Init flag   
6. } megapi_t;   

The synchronization words used by the protocol are defined in the source file, with other relevant 

defines: data packet sizes, baud rate, among others. Its usage is simple, with the summary of the user 

functions explained in Table 6. This driver is used specifically by the MegaPi Handler thread of the 

MAPP for exchanging data with robotic system. 
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Table 6. User functions of the MegaPi driver 

Function call Explanation 

bool megapi_init(megapi_t *mp, char *port) Initialize driver and handler 

bool megapi_setRPM(megapi_t *mp, RPM_t 
*rpms) 

Send RPM references to the module – both right 
and left RPMs 

bool megapi_getSensorData(megapi_t *mp, 
sensorData_t *data); 

Get sensor data from module – latest speed and 
angular velocities 

 

After being correctly initialized with the megapi_init(…) function, the link is established and ready to 

be used via the other functions which can send new RPM references or retrieve the latest sensor data 

from the robotic control system. 

 

PID controller 

The PID controller was also implemented, and comprises many functionalities such as defining 

minimum and maximum input and output values, minimum error, and offset for the output (in case a 

feed-forward is needed). Only the former is actually used in the final implementation to have a 

complete security layer, for both inputs and outputs of the controller. Moreover, the user is able to 

set a constant sampling frequency (standard behavior) or dynamically compute the time between loop 

calls instead. The configuration structure is defined as follows: 

1. // PID config structure   
2. typedef struct pidController_t   
3. {   
4.     // Gains   
5.     float kp;               // Proportional   
6.     float ti;               // Integral (1/ki)   
7.     float td;               // Derivative (1/kd)   
8.     // Error   
9.     float error[3];         // Last 3 errors are needed [e(i) e(i-1) e(i-2)]   
10.     float minError;         // Minimum error   
11.     // Output   
12.     float output[2];        // Last 2 outputs are neede [out(i) out(i-1)]   
13.     // Output with offset   
14.     float offOut;           // Only used for feed-forward control   
15.     // Time-related   
16.     float dT;               // Period, in seconds   
17.     float dT0;   
18.     // Security-related   
19.     float minInp, maxInp;   // Minimum/maximum input values   
20.     float minOut, maxOut;   // Minimum/maximum input values   
21.    
22.     // Others   
23.     struct timespec sT;     // Start & end time structures for computing dT   
24.     bool init;              // Init flag   
25.     bool first;             // First iteration flag   
26.     bool secInp, secOut;    // Apply security values for inputs/outputs?   
27.     bool useMinError;       // Use max error?   
28. } pidController_t;   

Its usage is simple, with the summary of the user functions explained in Table 7. This driver is used 

specifically by the ePID and bPID threads of the MAPP for determining the speed and direction of the 

robotic system. 
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Table 7. User functions of the PID driver 

Function call Explanation 

bool pid_init(pidController_t *pid, float kp, float ti, float td, 
float dT0) 

Initialize controller and handler 

bool pid_setInputs(pidController_t *pid, float minVal, 
float maxVal) 

Set and enable security layer for 
input values 

bool pid_setOutputs(pidController_t *pid, float minVal, 
float maxVal) 

Set and enable security layer for 
output values 

bool pid_setError(pidController_t *pid, float minVal) Set and enable minimum error value 

bool pid_loop(pidController_t *pid, float ref, float sensor, 
bool useDt0) 

Control loop itself, which should be 
called periodically 

bool pid_reset(pidController_t *pid) Reset controller 

 

After being correctly initialized with the pid_init(…) function, the controller is ready to be used via the 

pid_loop(…) function. Other functionalities are optional, but are available through the other functions. 

Details about the PID controller itself can be found in Appendix A: PID Controller 

 

Kalman Filter 

 

Finally, the last driver addressed is the Kalman filter implementation, which is customized due the fact 

no matrix operations are needed – each matrix element is singularly computed instead. Moreover, 

this implementation is capable of dynamically determining the time between prediction steps, as well 

as being reset whenever needed. The configuration structure is defined as follows: 

1. // Filter config structure   
2. typedef struct kf_t   
3. {   
4.     /* Details on model:  
5.      * x^ = | x |   F = | 1 dT |        Q = | dT^4/4 dT^3/2 |*sigma_process^2  
6.      *      | x.|       | 0  1 |            | dT^3/2 dT^2   |                 
7.      * P0 = | sigma_x^2          0 |    K = | K1 |  
8.      *      |         0 sigma_x.^2 |        | K2 |  
9.      *  B = | dT |      u = vr (self-speed)  
10.      *      |  0 |      H = | 1 0 |     R = sigma_measurement^2  
11.      */   
12.     // Main variables   
13.     float alpha2;           // Fading Memory filter, default = 1.00 - this is ALPHA^2   
14.     float pos, spd;         // Position/Speed (x_hat)   
15.     Q_t Q;                  // Process noise covariance matrix   
16.     P_t P;                  // Error covariance matrix   
17.     float S;                // Innovation covariance matrix   
18.     K_t K;                  // Kalman gains   
19.     float dT;               // Delta time between samples   
20.    
21.     // Variances (std = sqrt(var))   
22.     float proVar;           // Process variance   
23.     float posVar, spdVar;   // Position/Speed variances (initial guess only)   
24.     float senVar;           // Sensor (measurment) variance   
25.    
26.     // Others   
27.     struct timespec sT;     // Start & end time structures for computing dT   
28.     bool idle;              // Enable flag for timing purposes   
29.     bool init;              // Init flag   
30.     bool first;             // First iteration flag   
31.     float pos0, spd0;       // Aux for reset   
32.     float dT0;   
33. } kf_t;   
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Notice the model is fully detailed in the beginning. Its usage is simple, with the summary of the user 

functions explained in Table 8. This driver is used specifically by the KFx and KFy threads of the MAPP 

for filtering the neural network’s output. 
 

Table 8. User functions of the PID driver 

Function call Explanation 

bool kf_init(kf_t *kf, float alp, float p0, float v0, float proStd, 
float posStd, float spdStd, float senStd, float dT0, bool start) 

Initialize filter, handler, and 
optionally the filter itself 

bool kf_set(kf_t *kf, bool enable) Enable or disable the filter (timing 
purposes) 

bool kf_predict(kf_t *kf, float vr, bool useDt0) Perform the prediction step 

bool kf_update(kf_t *kf, float sensorVal) Perform the update step 

bool kf_reset(kf_t *kf); Reset filter 

 

After being correctly initialized with the kf_init(…) function, the filter is ready to be used via the other 

functions. Further details about the predict and update steps can be found in Appendix C: Embedded 

Software. 
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4. System analysis 
 

Until this moment, both robotic and tracking systems have been extensively detailed. However, the 

complete system will be analyzed in this chapter, with the focus being in two relevant aspects: 

real-time behavior and delay impact on control performance. The former refers to modelling the 

current software implementation with simple assumptions, such that real-time tools can be used in 

the future to determine bounds on the throughput, prior to actual deployment of the system. The 

latter, on the other hand, addresses the delay in the control loop and its impact on the control 

behavior. Focus will be given to the delay impact, due the fact the model considered for the real-time 

analysis is rather simple. Moreover, as the current implementation runs on a Linux PC, there are no 

tight timing guarantees possible. 

  

4.1 Delay impact 
 

Although the final application yielded reasonable results, it is rather slow due to, mainly, the following 

facts: 

1. The neural network is implemented in software, and is capable of running at, at most, 25 Hz 

(20 Hz was used instead), hence is the bottleneck of the system; 

2. The camera streams over Wi-Fi, which results in a 0.5 seconds delay corresponding to the time 

between the time each frame is captured by the camera and sent to the neural network 

executed on a PC – namely, the (camera) stream delay; 

3. Data exchange between tracking system (i.e. PC) and robotic system introduce delays to the 

response of the latter. 

 

Considering that increasing the frequency in order to address (1) is currently not a possibility, and that 

(3) corresponds to a much smaller delay with respect to item (2), only the latter will be analyzed in 

more detail. Moreover, the largest delay of the system is due to the stream delay, which greatly affects 

the overall responsiveness of the system. Initially, we model the final setup in Simulink considering 

only the extra PID controller, a 1st order plant, and the delay itself, as depicted in Figure 88 below. It 

is reasonable to consider the plant as a 1st order system, due the fact the interest is on the delay 

impact itself. 

 

 
Figure 88. Simulink model for delay analysis, with 𝐷 = 0.5𝑠 and 𝑇𝑠 = 0.05𝑠 

 

Moreover, notice the model under analysis is discrete, with the sampling period, delay, and (extra) 

PID gains analogous to the values used in the practical setup: 𝑇𝑠 = 0.05𝑠, 𝐷 = 0.5𝑠 and 𝐾𝑝 = 0.1, 
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𝑇𝑖 = 100 , 𝑇𝑑 = 0.001 , respectively. The discrete PID controller, plant, and delay formulas are 

presented below, correspondingly: 

 

 𝐾𝑝 +
𝑇𝑠
𝑇𝑖
∗

1

𝑧 − 1
+ 𝑇𝑑 ∗

1

1 +
𝑇𝑠
𝑧 − 1

 (4.1) 

   

 
𝑧

𝑧 − 𝑒−𝑇𝑠
 (4.2) 

   

 
1

𝑧
𝐷
𝑇𝑠⁄

 (4.3) 

 

Note that (4.1), (4.2) and (4.3) are in the Z-domain (discrete system), with the plant being modeled as 

a 1st order system [51]. Moreover, the delay is presented in terms of the delay time 𝐷 and sampling 

period 𝑇𝑠, both in seconds. Considering the values previously presented for the (extra) PID controller 

gains, sampling and delay times, the above equations are reduced to, respectively: 
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Based on (4.4), (4.5) and (4.6), one is already able to reason about how the delay impacts the system: 

poles are added to the control system due the 𝐷/𝑇𝑠 ratio, direct impacting the stability. Notice that 

for a virtually zero delay (𝐷 = 0), no poles are added at all. The model presented in Figure 88 

considering equations presented above was then simulated, for two cases: with (𝐷 = 0.5𝑠) and 

without (𝐷 = 0𝑠) delay. Their step response and root locus are presented in Figures 89 and 90 below, 

respectively. Notice a discrete system is stable when all poles and zeros are within the unit circle. 

 

 
Figure 89. Root locus (a) and step response (b) for 𝐷 = 0.5𝑠 
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Figure 90. Root locus (a) and step response (b) for 𝐷 = 0𝑠 

 

By comparing both root locus presented above, it becomes clear the delay indeed adds poles to the 

control system. Not only does this constrain stability, but also it increases system analysis’ complexity, 

and tuning is restricted due the fact the system might become unstable. When delay is negligible, one 

has more flexibility while tuning the system, which is typically stable: zeros and poles are within the 

unit circle (Figure 90a). In terms of response, an oscillatory behavior followed by an exponential 

envelope is observed for 𝐷 = 0.5𝑠 (Figure 89b), which results in a disappointingly slow response – 

resembling the effects of lowering the sampling frequency of the system. Finally, by tuning a 

(proportional) compensator for no delay, it is possible to significantly decrease the settling time of its 

step response (𝐺𝑎𝑖𝑛 = 200 in Figure 90b). For the case in which delay is present, on the other hand, 

tuning is more constrained, with the system becoming unstable for 𝐺𝑎𝑖𝑛 ≥ 1.9 (𝐺𝑎𝑖𝑛 = 1.8 in Figure 

89b). Overall, this initial analysis shows the delay considered is significant, and negatively impacts 

system design, stability and response. 

 

In order to further investigate how the delay impacts the system, the aforementioned model is further 

refined and presented in Figure 91 below: 

 

 
Figure 91. Model used for analyzing the delay impact 

 

Moreover, the model above was implemented in MATLAB and simulated while taking into account 

the following: 

• Both coordinates are considered. Hence, two Kalman filters and two PID controllers are 

instantiated; 

• Image dimensions are respected (320x240); 

• The target remains static; 



97 
 

• Whenever possible, noises are added and correspond to values used during the 

implementation of the project; 

• PID controllers use the same implementation as the real setup, including the gains; 

• Kalman filters use the same implementation as the real setup; 

• The plant makes use of the Pre-Kalman filter equations, which is possible due the PID 

controllers output RPM and the angular velocity can be derived as well; 

• Kalman filters, PID controllers and Neural Network run at 20 𝐻𝑧 ± 10%; 

• An initial position is set for the target, and for every iteration a new position is computed 

based on the previous one, augmented by the pixel speeds derived by the Pre-Kalman 

equations multiplied by the sampling time (0.5𝑠 ± 10%). The new position corresponds to 

the neural network output; 

• The delay corresponds to buffering the neural network’s output in a FIFO manner. Moreover, 

it is parametrized in the implementation in order to be easily modifiable; 

• Preferably, the references for the PID controllers must be changed a couple of times. 

 

The model presented in Figure 91 was implemented considering all aforementioned points, and the 

results for an initial position (𝑥0, 𝑦0) = (220, 100), and a delay 𝐷 = 0.5 𝑠 are presented in Figure 89 

below (for 1000 iterations): 

 

 
Figure 92. Model results for 𝐷 = 0.5𝑠 

 

Notice that the references were changed four (4) times in total, and correspond to the following 

sequence for the X coordinate: 80, 70, 290, 25. The Y coordinate, on the other hand, follows the 

sequence: 100, 70, 160, 35. More importantly, the observed settling time to an output value equal to 

95% of the reference value corresponds to about 5 seconds. Besides, the oscillation observed on the 

“real” coordinate values (more visible for 𝑡 ≥ 25𝑠) is mainly due the sensor standard deviation (i.e. 

neural network deviation) being included in the new position computation for every iteration. Finally, 

it is relevant to be aware of the fact the PID controllers use the gains obtained for the practical setup 

and were not tuned for this simulation setup, which is not exactly the same as the real application. 



98 
 

The same procedure was then applied for a delay 𝐷 = 0𝑠, which yielded the following results: 

 

 
Figure 93. Model results for 𝐷 = 0𝑠 

 

In comparison to the case where 𝐷 = 0.5𝑠, the results are far superior even for non-tuned gains of 

the PID controllers. Furthermore, by comparing Figures 92 and 93, it becomes evident the delay hugely 

impacts the performance of the system. Although not visible in Figure 93 due the limited number of 

iterations, the system eventually converges to the reference values, but it is clear the settling time to 

an output value equal to 95% of the reference value is reduced and is equivalent to approximately 2 

seconds. Instead of analyzing the control for X and Y coordinates separately, a 2D plot is provided to 

observe the behavior, as shown in Figure 94 below: 

 

 
Figure 94. Position results of the model for 𝐷 = 0𝑠 
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The position ranges from dark blue to bright yellow in Figure 94 above, with the former corresponding 

to the initial position, meanwhile the references are shown in red. Notice the model reacts rapidly and 

once it is close to the reference, oscillates around it mainly due the neural network’s deviation. Tuning 

the gains for the PID controllers would theoretically improves even further the response, but such 

procedure was not performed for the simulation setup. 

 

In summary, not only does the stream delay remarkably decreases the responsiveness of the system, 

but it also slows it down and restrains stability. Even though the analyzed models are approximations 

of the real system, the obtained results are comparable to the observed behavior in practice. By simply 

decreasing the delay, the settling time was reduced even for the same gains of the PID controllers, 

hence replacing the interface used for processing the camera stream is extremely beneficial. However, 

due to the current implementation constraints, it is not possible to reduce the stream delay, because 

the neural network executes on a PC. 

 

4.2 Real-time analysis 
 

Ideally, the tracking system implementation should be analyzed prior to deployment through a 

dataflow graph, derived from its respective task graph. However, the current implementation is rather 

complex in terms of communication, runs in a Linux operating system and utilizes both synchronous 

and asynchronous events. Hence, in order to simplify the current architecture but keep it close to the 

real implementation, the following points were made: 

• Stream delay is considered; 

• The neural network executes at 20 Hz; 

• Sensor data is provided at 140 Hz; 

• No handler tasks (NN Handler or MegaPi Handler) are considered; 

• There is no Coordinator task: a “merger” is used instead; 

• Worst-case execution times are unknown; 

• Behavior of the Kalman filter is approximated (i.e. prediction and update steps are not 

segregated); 

• Arbitration effects are not considered; 

• Scheduling policy of the operating system is not contemplated. 

 

Considering the aforementioned points, the Single Rate Dataflow (SRDF) graph in Figure 95 was 

derived for this system. Actor D corresponds to the delay, NN to the neural network, KFx and KFy to 

the Kalman filters, S to the sensor data retrieval, PKF to the Pre-Kalman filter, ePID and bPID to the 

PID controllers and M to the merging procedure. The latter essentially combines the RPMs and 

forwards it to the robotic system. 𝜌 and 𝛿 correspond to the worst-case execution time of each actor 

(i.e. task) and number of tokens (i.e. size of the message queue) between actors, respectively. 
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Figure 95. Tracking system SRDF graph model 

 

Note the model does not completely matches the implementation. Communication and behavior of 

Pre-Kalman filter and Kalman filters are the most notable cases, due the fact the prediction step of 

the Kalman filters is performed whenever data is received from the Pre-Kalman filter – which is not 

captured in the current model. A multi-rate dataflow graph (MRDF) is more suitable for describing this 

behavior, alongside partitioning the Kalman filter into two (2) actors instead of one, with each actor 

comparable to the prediction and update steps, respectively. Even with such modifications, token 

consumption is dependent on worst-case execution times of both neural network and Pre-Kalman 

filter. 

 

Although 𝜌𝑁𝑁 , 𝜌𝐷 , and 𝜌𝑆  are considered the maximum worst-case execution times of the neural 

network, delay, and sensor actors, respectively, are not accurate due the fact they do not consider the 

actual execution time of the tasks. Instead, they are solely based on their current sampling rate (for 

the neural network and sensor cases). Moreover, the execution time of each actor cannot be easily 

nor accurately derived because this application currently runs on a Linux machine, thus a non-

determinist multi-thread environment, being influenced by arbitrary delays introduced by other 

applications on the PC (workload), in addition to the influence of the scheduling policy (arbitration). 

Both effects, however, can be included in the model, with the former using a two parameter (𝜎, 𝜌) 

characterization and the latter using a latency-rate dataflow model [52, 53]. Moreover, both 

characterizations can be combined and, in simple terms, a task is represented by two actors instead 

of one. 

 

Even for such model, however, it is possible to ponder about the major bottlenecks in terms of 

throughput and latency. The delay currently dictates the latter, due the fact 𝜌𝐷 ≫ 𝜌𝑜𝑡ℎ𝑒𝑟𝑠 : the 

execution time of other actors are much greater than the delay itself. The throughput, on the other 

hand, is constrained by the neural network actor (NN) which presents the greatest execution time 

after the delay, and triggers the core actors. Thus, delay and neural network are the bottlenecks and 

must be addressed in order to increase both throughput and latency of the system. 
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Table 9. WCET characterization 

 
 

Finally, the WCET characterization presented in Table 9 above was derived in practice for the core 

tasks: Pre-KF, KF, PID and Merger (i.e. Coordinator). Both neural network and sensor data retrieval 

from the robotic setup were assumed periodic. The former is essentially what triggers all other tasks, 

thus the estimated execution time for a single activation can be estimated by simply adding the 

execution time of the core tasks, which results in 10.1 milliseconds, as shown in Table 9. Hence, the 

absolute maximum frequency the current implementation can (theoretically) achieve is analogous to 

99.0 Hz, with the current bottleneck being the neural network itself running at 20 Hz. 

  

Taking into account the presented shortcomings of the model, there is no point on pondering about 

its throughput nor latency. However, it is presented here alongside the rough WCET characterization 

for the core tasks in order to serve as a starting point for future work, requiring further refinement. 

More specifically, the Kalman filters and actors modelling overall, alongside fine grain precision on 

worst-case execution time of the tasks.  

Time (ms) Frequency (Hz)

Execution 

Time (ms)
5.7 3.2 0.2 1.0 10.1 99.0

Total
Task Pre-KF KF PID Merger
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5. Conclusions and future work 
 

The main objectives of this research comprised implementing, investigating, and evaluating a practical 

implementation of a system with tracking and sensor fusion techniques, for an embedded platform. 

A complete practical working setup was the major outcome of the graduation project described in this 

thesis, and based on results, the research questions were answered. 

 

The uncomplicated and fast complementary filter was used to fuse encoder and IMU data, which 

greatly increased the ego-motion sampling frequency from 50 to 140 Hz, in addition to increasing its 

accuracy. The estimation of the ego-motion impact, in terms of pixel movement, was implemented 

through approximation functions that are only dependent on the derived speed and gyroscope data, 

and proved to be fairly accurate without the need for more complex procedures. The standard Kalman 

filter implemented considers the pixel speeds derived with the ego-motion data, and proved to handle 

false-negatives, target occlusions and decrease the position deviation in a reliable manner meanwhile 

dealing with several uncertainties. However, due the fact that a pure software solution was used for 

the tracking system and a 0.5 seconds delay was introduced by the wireless transmission of the video 

stream, the complete implementation has a noticeably slow responsive behavior. Ultimately, 

responsiveness of the system is strictly related to the execution time of the neural network, in addition 

to the delay present: both must be reduced in order to enhance performance. 

 

During development computational complexity was always considered and reduced whenever 

possible. Firmware running on the robotic system, for instance, only uses floating-point divisions for 

the speed control loop (PID controller), and double precision is avoided at all costs. Moreover, the Pre-

Kalman filter module only requires sine and cosine functions to properly compute the pixel speeds 

based on the ego-motion data, and in the worst-case scenario might be bypassed at a cost of 

decreasing the performance of the Kalman filter. A specific library was developed for the latter, which 

includes dynamic timing computation (if desired), uses float precision, few variables (thus does not 

require lots of memory) and does not implement matrix operations (i.e. inversion) in order to further 

reduce execution time of the implementation. The PID controllers were also implemented in a specific 

library, and are similar in terms of precision and memory usage in comparison to the Kalman filter. 

Both instances of the Kalman filters and PID controllers can be instantiated and run in parallel, as there 

is no data dependency, hence they can be directly mapped to processing elements in a FPGA. 

 

Although the final implementation executes on a PC, this gives room to exploring jitter and 

non-deterministic behavior, and does not invalidate the research; in practice, most industrial 

applications still make use of PCs. Moreover, the whole application is implemented such that it can be 

easily ported to an embedded Linux. The necessary modifications correspond to the usage of a 

retrieval method of the neural network output, modification of the serial port used for communicating 

with the robotic system, and tuning the PID controllers once more in case their sampling frequency is 

changed. Finally, both systems must be correctly connected and interfaced to properly communicate. 

If a bare-metal implementation is desired, however, modifications are rather complex. Both software 

and hardware implementations followed guidelines during development and can be easily modified 

to fulfill future requirements. This is possible because development considered possible functionalities 

addition in forthcoming versions, likewise understandability such that others can continue with the 

results of this graduation project. 



103 
 

Despite the final setup performed reasonably good given the constraints imposed by mainly the 

tracking system implementation, some parts are not ideal and can be improved. Reviewing the project 

arduously, the following aspects can be enhanced: 

• Complementary filter: The filter can be better tuned, however a reliable way of accurately 

determining the speed of the robot must be used in order to do so; 

• Speed estimation: Pitch correction can be included, while considering roll and implementing 

mechanisms to prevent accumulating speed when the robot is rolling or pitching; 

• Communication between tracking and robotic system: Instead of using an USB cable to 

connect both systems, a direct (serial) connection would be a far superior implementation; 

• Real-time implementation: The neural network should be ported to a FPGA, alongside the 

other software components being totally (or partially) ported to an embedded Linux (or 

bare-metal). Not only would it hugely decrease the current delay introduced by the stream, 

but also mitigate the bottleneck of the neural network and remove the need for extra 

applications, thus increasing the system performance. Finally, multiple-object detection and 

localization, alongside power optimization are relevant topics, and might be addressed; 

• Pre-Kalman filter: The number of points considered to estimate the base speed and angle 

functions can be further augmented to increase the precision of this module. Moreover, 

alternatives to estimating the ego-motion impact might be explored; 

• Kalman filter: A variation of the standard Kalman filter or even a completely different method 

might perform better, and could be explored in the future. Moreover, the current design can 

be augmented with other techniques and improved with further testing; 

• Pixel control: Re-tuning and greater sampling frequency might be addressed. Furthermore, 

steering the robot can be performed in a different manner, or completely modified to a 

distance control approach. Finally, the control can be optimized for delay and uncertainties; 

• Additional modules: The robotic system may include extra modules, such as a compass for 

determining the current heading, thus positioning is possible. Moreover, a Bluetooth can 

replace the USB connection with the PC, although its protocol stack might introduce delays. 

Additionally, the camera can be mounted on top of a servo motor, in order to follow the target 

by moving the camera, although this complicates the design and invalidate the current 

ego-motion impact estimation. Finally, an ultrasonic sensor can be placed in front of the 

robotic system to derive the distance to other objects; 

• Communication protocol: The protocol does not implement any type of Cyclic Redundancy 

Check (CRC) nor ACK/NACK procedures, which may compromise the communication in the 

long term. Hence, it is advisable to improve such protocol, especially when relevant data is 

sent or received, alongside increasing the serial baud rate, if supported by the tracking system; 

• Neural network and Kalman filter combination: Instead of filtering out the output of the neural 

network, the Kalman filter might be combined with the neural network itself. However, a 

more complex network architecture and training set are required in this case; 

• Real-Time analysis: RT tools were not used to analyze the tracking system software, hence 

future work should determine the theoretical bounds on throughput and latency. 

 

It is important to keep in mind that a system can always be improved. Moreover, a wide variety of 

alternative designs might be derived from the current realization.  
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7. Appendices 
 

Appendix A: PID Controller 
 

A PID controller is simple and intuitive to implement, reliable, and widely used for Single-Input 

Single-Output (SISO) systems. Not only does it not require a theoretical model, but can be easily tuned 

in practice even if the sensors or actuators are changed. However, timing must be respected, thus an 

accurate timer which has enough granularity with respect to the sampling frequency has to be used. 

In total, four (4) PID controllers were used in this project, two (2) for the low-level speed control (RPM 

control) of the encoder motors, and another (2) for the high-level control (speed and direction 

control). All of them were implemented according to the following formula [A.1]: 

 

𝑢𝑛 = 𝑢𝑛 + 𝐾𝑝 ∗ [𝑒𝑛 − 𝑒𝑛−1] +
𝐾𝑝 ∗ 𝑇𝑠

𝑇𝑖
∗ 𝑒𝑛 +

𝐾𝑝 ∗ 𝑇𝑑

𝑇𝑠
∗ [𝑒𝑛 − 2 ∗ 𝑒𝑛−1 + 𝑒𝑛−2] 

 

With 𝐾𝑝, 𝑇𝑖  and 𝑇𝑑  being the proportional, integral and derivative gains, 𝑇𝑠  the sampling period in 

seconds, and 𝑒𝑛 and 𝑢𝑛 the error and absolute control value at iteration 𝑛. More specifically, 𝑒𝑛 =

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑛 − 𝑆𝑒𝑛𝑠𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑛. 

 

The PID controller takes care of decreasing the error to a minimum, but it requires tuning and a 

sampling time must be defined. It is a common technique to implement the PID controller as depicted 

in Figure 96 below, where the Actuate phase is done with respect to the previous iteration output, 

instead of the current one. This is done to guarantee the exact same sampling time between iterations 

of the controller. 

 

 
Figure 96. PID controller implementation 

 

Additionally, the control loop is usually guarded with both in- and out-security layers, with both 

preventing invalid values to be processed or outputted by the controller. In summary, the PID 

coefficients are found in practice, following this sequence: 

1. 𝑇𝑖 is set to a high value, 𝑇𝑑 and 𝐾𝑝 to zero; 

2. 𝐾𝑝 is increased until the rise time is sufficient; 

3. 𝑇𝑑 is slowly increased to decrease overshoot (damping);  

4. 𝑇𝑖 is slowly increased until the results are satisfying and; 

5. Steps 2-4 are repeated to improve the response. 

 

[A.1] Available at 

http://www.kirp.chtf.stuba.sk/moodle/pluginfile.php/66882/mod_resource/content/0/tidsdiskret_p

id_reg.pdf. Accessed in: November 5th, 2017. 

  

Actuate
Retrieve 

sensor data
Run control 

loop
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Appendix B: Pre-Kalman Filter Equations 
 

Within this appendix, a summary of the equations used for the Pre-Kalman filter module is presented. 

The combined pixel speeds are calculated with the following equations: 

 

𝑉𝑥 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ sin(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) ∗ sin(𝜃𝑟𝑜𝑡(𝑥, 𝑦))

∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) 

 

𝑉𝑦 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ cos(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤, 𝑥, 𝑦)

∗ cos(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) 

 

With  𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) = 𝛾(𝑅𝑃𝑀) ∗ 𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) , and 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤, 𝑥, 𝑦) = 𝜌(𝜔𝑦𝑎𝑤) ∗ 𝑣𝑟𝑜𝑡(𝑥, 𝑦) . 

Moreover, the signal functions are defined as follows: 

 

𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) = {
+1, 𝑖𝑓 𝑥 > 𝑊/2 
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) = {
+1, 𝑖𝑓 𝑅𝑃𝑀 ≥ 0 
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) = {
+1, 𝑖𝑓 𝜔𝑦𝑎𝑤 ≥ 0 

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

B.1 Translation 

 

The translation components are calculated with the following equations: 

 

𝛾(𝑅𝑃𝑀) = 0.1282 ∗ |𝑅𝑃𝑀| − 0.6138 

 

𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000012𝑥
2 + 0.000166𝑥𝑦 − 0.0545𝑥 − 0.00016𝑦2 + 0.09347𝑦 + 50.65 

 

𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000105𝑥
2 + 0.000124𝑥𝑦 − 0.092𝑥 + 0.00009𝑦2 − 0.1068𝑦 + 53.62 

 

B.2 Rotation 

 

The rotation components are calculated with the following equations: 

 

𝜌(𝜔𝑦𝑎𝑤) = −0.0005 ∗ |𝜔𝑦𝑎𝑤|
2
+ 0.1474 ∗ |𝜔𝑦𝑎𝑤| − 0.8033 

 

𝑣𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00005𝑥
2 + 0.000002𝑥𝑦 − 0.0496𝑥 − 0.00004𝑦2 − 0.0793𝑦 + 143.81 

 

𝜃𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00008𝑥
2 + 0.0001𝑥𝑦 + 0.0183𝑥 − 0.000012𝑦2 − 0.0238𝑦 + 80.461 
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Appendix C: Embedded Software 
 

Snippet 1. Encoder motor (init, interrupts, usage) 

Snippet 2. IMU module (init, usage) 

Snippet 3. Pre-Kalman Filter (implementation) 

Snippet 4. Kalman Filter’s prediction & update steps 

Snippet 5. GoPro Stream Handler 

Snippet 6. Neural Network with TensorFlow 

Snippet 7. ffmpeg invocation and parameters 

Snippet 8. MAPP compilation options 

Snippet 9. POSIX: Message queue creation and usage example 

Snippet 10. POSIX: Thread creation example 

Snippet 11. Float over serial example 

 

Snippet 1. Encoder motor 

This is the most relevant code in megapi_fw.ino file of the application running on the robotic system, 

used to initialize and drive the encoder motors. 

1. /* Code omitted */   
2.    
3. // Motors + Encoders   
4. MeEncoderOnBoard encR(SLOT1);                       // Forward, speed > 0   
5. MeEncoderOnBoard encL(SLOT2);                       // Forward, speed < 0   
6.    
7. /* INTERRUPTS */   
8. // Interrupts for encoders   
9. void ISR_encR(void)   
10. {   
11.   if(digitalRead(encR.getPortB()) == 0)   
12.     encR.pulsePosMinus();   
13.   else   
14.     encR.pulsePosPlus();   
15. }   
16. void ISR_encL(void)   
17. {   
18.   if(digitalRead(encL.getPortB()) == 0)   
19.     encL.pulsePosMinus();   
20.   else   
21.     encL.pulsePosPlus();   
22. }   
23.    
24. void setup()    
25. {   
26.   /* Code omitted */   
27.  // Motors + Encoders   
28.   TCCR1A = _BV(WGM10);                    // 8kHz PWM   
29.   TCCR1B = _BV(CS11) | _BV(WGM12);   
30.   TCCR2A = _BV(WGM21) | _BV(WGM20);   
31.   TCCR2B = _BV(CS21);   
32.   encR.setPulse(8);                       // Set the pulse number of encoder code disc 

  
33.   encL.setPulse(8);   
34.   encR.setRatio(46.67);                   // Set ratio of encoder motor   
35.   encL.setRatio(46.67);   
36.   encR.setSpeedPid(1.7, 0.1, 0.0001);     // Set internal PID values for speed control 

(RPM)   
37.   encL.setSpeedPid(1.7, 0.1, 0.0001);   
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38.   encR.setMotionMode(PID_MODE);           // Set to standard SPEED PID controller   
39.   encL.setMotionMode(PID_MODE);   
40.    
41.   attachInterrupt(encR.getIntNum(), ISR_encR, RISING);  // Encoder interrupts   
42.   attachInterrupt(encL.getIntNum(), ISR_encL, RISING);   
43.   /* ... */   
44. }   
45.    
46. void loop()    
47. {   
48.   // Drive   
49.   drive();   
50. }   
51.    
52. void drive()   
53. {   
54.   // Set speeds   
55.   encR.runSpeed(+100);      // Move robot forwards @ 100 RPM   
56.   encL.runSpeed(-100);   
57.   // Update encoder values   
58.   encR.loop();   
59.   encL.loop();   
60. }   

Snippet 2. IMU module 

This is the most relevant code in megapi_fw.ino file of the application running on the robotic system, 

used to initialize and retrieve data from the IMU (gyroscope and accelerometer) module. 

1. /* Code omitted */   
2.    
3. // Gyro + acc   
4. MeGyro gyroacc(0, 0x68);                            // Gyro+Acc   
5. double pData[6];                                  // Pre-processed data   
6.    
7. void setup()    
8. {   
9.   /* Code omitted */   
10.   // Gyro + Acc   
11.   gyroacc.begin();                        // Calibrate already   
12.    
13.   /* ... */   
14. }   
15.    
16. void loop()    
17. {   
18.   // Retrieve pre-processed data   
19.   gyroacc.getProcessedData(&pData[0]);   
20.    
21.   /* process it ... */   
22. }   

Snippet 3. Pre-Kalman Filter 

This is the most relevant code of the Pre-Kalman filter thread in main.c file of the main application. 

1. // Defines   
2. #define IMAGE_WIDTH         (320)               // Image dimensions   
3. #define IMAGE_HEIGHT        (240)   
4. #define MIN_RPM_PREKF       (5.0f)              // Minimum RPM for Pre-KF   
5. #define MIN_WYAW_PREKF      (3.0f)              // Minimum yaw for Pre-KF   
6. // Macros   
7. #define DEG_TO_RAD(x)       (float)(x*PI/180.0f)  // Degrees to radians conversion 
8.    
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9. /* Code omitted */   
10.    
11. // Pre-KF thread   
12. void *prekfThread(void *arg)   
13. {   
14.     /* Initialization omitted */   
15.    
16.     /* Assuming data is received from Robotic system & Kalman Filters */   
17.     // Check if data is valid   
18.     if(x >= -20 && x < (IMAGE_WIDTH+20) &&    
19.        y >= -20 && y < (IMAGE_HEIGHT+20) &&   
20.        !isnan(sensors.speed) && !isinf(sensors.speed) &&   
21.        !isnan(sensors.heading) && !isinf(sensors.heading) &&   
22.        !isnan(sensors.pitch) && !isinf(sensors.pitch) &&   
23.        !isnan(sensors.roll) && !isinf(sensors.roll) )   
24.     {   
25.         /* RPM & WYAW correction */   
26.         // RPM   
27.         if(sensors.speed < 0)   
28.             auxRPM = -sensors.speed;   
29.         else   
30.             auxRPM = +sensors.speed;   
31.         // wyaw   
32.         if(sensors.heading < 0)   
33.             auxWy = -sensors.heading;   
34.         else   
35.             auxWy = +sensors.heading;   
36.         /* SYMMETRY & SIGNAL(X) */   
37.         if(x > (IMAGE_WIDTH/2))   
38.         {   
39.             auxX = IMAGE_WIDTH - x;   
40.             sig_x = +1;   
41.         }   
42.         else   
43.         {   
44.             sig_x = -1;   
45.             auxX = x;   
46.         }   
47.         /* SIGNALS */   
48.         // signal(RPM)   
49.         if(sensors.speed >= 0)   
50.             sig_rpm = +1;   
51.         else   
52.             sig_rpm = -1;   
53.         // signal(yaw)   
54.         if(sensors.heading >= 0)   
55.             sig_wy = +1;   
56.         else   
57.             sig_wy = -1;   
58.         /* SCALE FACTORS */   
59.         // Translation   
60.         if(auxRPM < MIN_RPM_PREKF)   
61.             gama = 0;   
62.         else   
63.             gama = 0.1282f*auxRPM - 0.6138f;   
64.         // Rotation   
65.         if(auxWy < MIN_WYAW_PREKF)   
66.             rho = 0;   
67.         else   
68.             rho = -0.0005f*auxWy*auxWy + 0.1474f*auxWy - 0.8033;   
69.         /* SPEEDS */   
70.         St = -

0.000012f*auxX*auxX + 0.0001655f*auxX*y - 0.05445f*auxX       // Translation   
71.              -0.0001632f*y*y + 0.0934647f*y + 50.6455;   
72.         Sr = 0.000052f*auxX*auxX + 0.000002f*auxX*y - 0.04962f*auxX         // Rotation
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73.              -0.000037f*y*y - 0.07933f*y + 143.8089f;   
74.         Ct = gama*St;   
75.         Cr = rho*Sr;   
76.         /* ANGLES */   
77.         Tt = -

0.000105f*auxX*auxX + 0.000124f*auxX*y - 0.0922076f*auxX      // Translation   
78.              +0.000086f*y*y - 0.10679f*y + 53.616f;   
79.         Tr = 0.000079f*auxX*auxX + 0.000101f*auxX*y + 0.0183f*auxX          //Rotation 

  
80.              -0.000012f*y*y - 0.02381f*y + 80.4608f;   
81.         if(Tr > 90)   
82.             Tr = 90;   
83.         // Convert to radians   
84.         Tt = DEG_TO_RAD(Tt);   
85.         Tr = DEG_TO_RAD(Tr);   
86.         /* FINAL SPEEDS */   
87.         // Compute Vx and Vy - finally :) – Divided by two due the image resizing 
88.         Vx = (Ct*sin(Tt)*sig_x   + Cr*sin(Tr)*sig_wy)/2; 
89.         Vy = (Ct*cos(Tt)*sig_rpm + Cr*cos(Tr)*sig_x*sig_wy)/2;   
90.     }   
91.     // Invalid coordinates, cannot estimate Vx and Vy...   
92.     else   
93.         Vx = Vy = 0;   
94.    
95.     /* Pixel speeds are then forwarded to the KFs */   
96. }   

Snippet 4. Kalman Filter’s prediction & update steps 

This is the most relevant code in kf.c file, used for the predictio and update steps of the Kalman filter 

implementation. 

1. // Local functions declaration   
2. void kf_computeQ(kf_t *kf);   
3. float kf_getDt(struct timespec *sT);   
4.    
5. /* Code omitted */   
6.    
7. //------------------------------------------------------------------------------   
8. // Perform the prediction step   
9. // kf        : Config structure   
10. // vr        : Self-motion impact, in px/s   
11. // useDt0    : Use period defined in kf_init(...)?   
12. // return    : TRUE if successful, FALSE otherwise   
13. bool kf_predict(kf_t *kf, float vr, bool useDt0)   
14. {   
15.     /* Prediction equations:  
16.      * x^(k|k-1) = F*x^(k-1|k-1) + B*u  
17.      * P(k|k-1) = alpha^2*F*P(k-1|k-1)*F' + Q  
18.      */   
19.    
20.     // Sanity check   
21.     if(kf != NULL && kf->init && !kf->idle)   
22.     {   
23.         // Compute dT   
24.         if(!useDt0 && !kf->first)   
25.         {   
26.             kf->dT = kf_getDt(&kf->sT);   
27.             // Recompute Q based on dT   
28.             kf_computeQ(kf);   
29.         }   
30.         // Else, everything already set...   
31.         kf->first = false;       // Make sure it is not the first one anymore   
32.    
33.         // Actual prediction   
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34.         kf->pos     = kf->pos + (kf->spd + vr)*kf->dT;   
35.         kf->spd     = kf->spd;   
36.         kf->P.P11   = kf->alpha2*(kf->P.P11 + kf->dT*(kf->P.P12 + kf->P.P21 + kf-

>dT*kf->P.P22)) + kf->Q.Q11;   
37.         kf->P.P12   = kf->alpha2*(kf->P.P12 + kf->dT*kf->P.P22) + kf->Q.Q12;   
38.         kf->P.P21   = kf->alpha2*(kf->P.P21 + kf->dT*kf->P.P22) + kf->Q.Q21;   
39.         kf->P.P22   = kf->alpha2*kf->P.P22 + kf->Q.Q22;   
40.    
41.         // DONE!           
42.         return true;   
43.      }   
44.      else   
45.         return false;   
46. }   
47.    
48. //------------------------------------------------------------------------------   
49. // Perform the update step   
50. // kf        : Config structure   
51. // sensorVal : Sensor value   
52. // return    : TRUE if successful, FALSE otherwise   
53. bool kf_update(kf_t *kf, float sensorVal)   
54. {   
55.     /* Update equations:  
56.      * y(k) = z(k) - H*x^(k|k-1)  
57.      * S(k) = H*P(k|k-1)*H' + R  
58.      * K(k) = P(k|k-1)*H'*inv(S(k))  
59.      * x^(k|k) = x^(k|k-1)+K(k)*y(k)  
60.      * P(k|k) = (I-K(k)*H)*P(k|k-1)  
61.      */   
62.    
63.     // Auxiliar variables   
64.     float yk = 0;   
65.     float p11 = 0;   
66.     float p12 = 0;   
67.    
68.     // Sanity check   
69.     if(kf != NULL && kf->init && !kf->idle)   
70.     {   
71.         yk = sensorVal - kf->pos;   
72.         kf->S = kf->P.P11 + kf->senVar;   
73.         kf->K.K1 = kf->P.P11/kf->S;   
74.         kf->K.K2 = kf->P.P21/kf->S;   
75.         kf->pos = kf->pos + kf->K.K1*yk;   
76.         kf->spd = kf->spd + kf->K.K2*yk;   
77.         // Copy to aux vars   
78.         p11 = kf->P.P11; p12 = kf->P.P12;   
79.         kf->P.P11 = p11*(1 - kf->K.K1);   
80.         kf->P.P12 = p12*(1 - kf->K.K1);   
81.         kf->P.P21 = kf->P.P21 - kf->K.K2*p11;   
82.         kf->P.P22 = kf->P.P22 - kf->K.K2*p12;   
83.    
84.         // DONE!   
85.         return true;   
86.     }   
87.     else   
88.         return false;   
89. }   
90.    
91. /* INTERNAL FUNCTIONS */   
92. //------------------------------------------------------------------------------   
93. // Compute Q (process noise covariance matrix) based on dT   
94. void kf_computeQ(kf_t *kf)   
95. {   
96.     // Does not perform sanity because it is an internal function...   
97.     float dT = kf->dT;   
98.     float dT2 = dT*dT;   
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99.     float dT3 = dT2*dT;   
100.    float dT4 = dT3*dT;   
101.    
102.    // Compute elements   
103.    kf->Q.Q11 = kf->proVar*dT4/4;   
104.    kf->Q.Q12 = kf->proVar*dT3/2;   
105.    kf->Q.Q21 = kf->Q.Q12;   
106.    kf->Q.Q22 = kf->proVar*dT2;   
107. }   
108.    
109. //------------------------------------------------------------------------------   
110. // Compute dT, in seconds   
111. float kf_getDt(struct timespec *sT)   
112. {   
113.     // Variables   
114.     float dT = 0;   
115.     struct timespec eT;   
116.    
117.     // Get time   
118.     clock_gettime(CLOCK_REALTIME, &eT);   
119.     // Compute dT, in seconds   
120.     dT = (eT.tv_sec - sT->tv_sec) + (eT.tv_nsec - sT->tv_nsec)/1000000000.0f;   
121.     // Overwrite initial time   
122.     clock_gettime(CLOCK_REALTIME, sT);   
123.    
124.     // Return   
125.     return dT;   
126. }   

Snippet 5. GoPro Stream Handler 

This is the most relevant code in gopro.py file (GPNN application), used to initialize the camera stream, 

launch the ffmpeg application and keep alive the stream. 

1. # Libs   
2. from time import sleep   
3. import socket                                       # Keep alive is sent via UDP   
4. import urllib.request                               # HTTP get for triggering stream   
5. import subprocess                                   # Launch ffmpeg   
6. import threading                                    # Keep Alive thread for GoPro   
7.    
8. # Variables   
9. # Threading   
10. pipeSemaphore = threading.Semaphore(0)              # Semaphore for syncrhonization   
11. threadFlag = True                                   # Flag for shutting down threads   
12.    
13. # Code omitted #   
14.    
15. # GoPro-specific command message   
16. def get_command_msg(id):   
17.     return "_GPHD_:%u:%u:%d:%1lf\n" % (0, 0, 2, 0)   
18.    
19. # GoPro streaming thread   
20. def gopro_stream():   
21.     # GoPro-specific variables   
22.     UDP_IP = "10.5.5.9"   
23.     UDP_PORT = 8554   
24.     KEEP_ALIVE_PERIOD = 2500                            # Period in seconds   
25.     KEEP_ALIVE_CMD = 2                                  # Do not change this   
26.     # Get keep alive cmd for GoPro   
27.     MESSAGE = bytes(get_command_msg(KEEP_ALIVE_CMD), "utf-8")   
28.     # Triggers streaming   
29.     urllib.request.urlopen("http://10.5.5.9/gp/gpControl/execute?p1=gpStream&a1=proto_v

2&c1=restart").read()   
30.     # Launch ffmpeg (stream preview or save to file only)   
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31.     subprocess.Popen("ffmpeg -loglevel panic -f:v mpegts -an -probesize 8192 -
i rtp://10.5.5.9:8554 -vf scale=320:240 -r 20 -updatefirst 1 -y img.png", shell=True)   

32.     print("GoPro> Streaming started...")   
33.     # Release semaphore   
34.     pipeSemaphore.release()     # NN   
35.     pipeSemaphore.release()     # KF   
36.     # Keep alive loop   
37.     while threadFlag:   
38.         sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)   
39.         sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))   
40.         sleep(KEEP_ALIVE_PERIOD/1000)   

Snippet 6. Neural Network with TensorFlow 

This is the most relevant code in gopro.py file (GPNN application), used to initialize the neural 

networks used, launch the ffmpeg application and keep alive the stream. 

1. # Libs   
2. from __future__ import print_function   
3. from keras.models import load_model, Model          # Neural Network   
4. import keras   
5. import tensorflow as tf   
6. import numpy as np                                  # For arrays   
7. import cv2                                          # OpenCV   
8. import os                                           # OS utilities   
9. from os import remove   
10. from time import sleep   
11. import socket                                       # Keep alive is sent via UDP   
12. import urllib.request                               # HTTP get for triggering stream   
13. import subprocess                                   # Launch ffmpeg   
14. import threading                                    # Keep Alive thread for GoPro   
15. # 3rd party POSIX IPC   
16. import posix_ipc   
17.    
18. # Variables   
19. # Threading   
20. pipeSemaphore = threading.Semaphore(0)              # Semaphore for syncrhonization   
21. threadFlag = True                                   # Flag for shutting down threads   
22. # Message queue   
23. MQOUT = "/gopro2mainappMQ"                          # Create in main app, MAXMSG=1, MSG

SIZE=sizeof(int32_t), BLOCKING   
24. mqout = posix_ipc.MessageQueue(MQOUT)   
25. # Others   
26. normImgs = np.zeros((1,240,320,3),np.uint8)         # Create image arrays   
27. classImgs = np.zeros((1, 224, 224, 3), np.uint8)   
28. # Load models   
29. model = load_model('mobilenet_binary_1.h5', custom_objects={'relu6': keras.applications

.mobilenet.relu6, 'DepthwiseConv2D': keras.applications.mobilenet.DepthwiseConv2D})   
30. small_model = load_model('videoModel_improved.h5')              # Small model   
31. # Copy only the convolutional layers to a new model for localization   
32. conv_model = Model(inputs=small_model.input, outputs=small_model.layers[13].output)   
33.    
34.    
35. # Code omitted #   
36.    
37. # Neural network itself   
38. def neural_network():   
39.     # Run prediction on both models to prevent freezing (with fake images)   
40.     prediction = model.predict(classImgs, 1, 0)   
41.     auxLayer = conv_model.predict(normImgs, 1, 0)   
42.    
43.     # Wait for Stream to start...   
44.     pipeSemaphore.acquire()   
45.    
46.     print("NN> Init done!")   
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47.     # Loop   
48.     while threadFlag:   
49.         start = time.time()   
50.         # Tries reading image   
51.         while True:   
52.             normImg = cv2.imread('img.png', 1)   
53.             if (normImg is not None):   
54.                 break   
55.             else:   
56.                 time.sleep(0.0001)   
57.    
58.         # Delete last image   
59.         remove('img.png')   
60.         # Resize image   
61.         classImg = cv2.resize(normImg, (224, 224))   
62.         # Re-arrange colors   
63.         classImgs[0] = classImg[...,::-1]   
64.         normImgs[0] = normImg[...,::-1]        
65.    
66.         # Run prediction for big model   
67.         prediction = model.predict(classImgs, 1, 0)   
68.    
69.         xVal = -1   
70.         yVal = -1   
71.         # Check if a car was detected   
72.         if (np.argmax(prediction)):   
73.             # Car detected, run prediction for small model   
74.             auxLayer = conv_model.predict(normImgs, 1, 0)      
75.             auxLayer2 = auxLayer[0,:,:,0]   
76.             coordinates = np.unravel_index(auxLayer2.argmax(), auxLayer2.shape)   
77.             xVal = (coordinates[1]*8 + 10).tolist() # x   
78.             yVal = (coordinates[0]*8 + 30).tolist() # y   
79.    
80.             # Modify image   
81.             cv2.circle(normImg, (xVal,yVal), 4, (0,255,0), -1)   
82.    
83.         # Get KF output and add a purple circle   
84.         try:   
85.             xAux = xList.pop()   
86.             yAux = yList.pop()   
87.             cv2.circle(normImg, (xAux,yAux), 5, (0,255,255), -1)   
88.         except IndexError:   
89.             pass    # Do nth...   
90.    
91.         # Show image   
92.         cv2.imshow('Stream', normImg)   
93.         cv2.waitKey(1)   
94.    
95.         # Send data to Main App   
96.         x = (xVal).to_bytes(2, byteorder='little', signed=True)   
97.         y = (yVal).to_bytes(2, byteorder='little', signed=True)   
98.         mqout.send(x + y)   
99.    
100.         time.sleep(0.0001)      # Yield processor (100us)   

Snippet 7. ffmpeg invocation and parameters 

The ffmpeg (Stream Capture) application is launched by the GPNN, using the following bash command: 

1. ffmpeg -loglevel panic -f:v mpegts -an -probesize 8192 -i rtp://10.5.5.9:8554 -
vf scale=320:240 -r 20 -updatefirst 1 -y img.png   

The parameters are described below: 

• -loglevel panic: (optional) display only panic messages; 
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• -f:v mpegts: camera’s stream format; 

• -an: (optional) disable audio from stream; 

• -probesize 8192: used to reduce stream’s latency; 

• -i rtp://10.5.5.9:8554: indicate the specific IP/RTP port used by the camera; 

• -vf scale=320:240: video filter for resizing the incoming frame to 320x240 resolution; 

• -r 20: (soft-)limit the frame rate to 20 fps; 

• -updatefirst 1: overwrites output image, if it already exists; 

• -y: force [y]es option for any prompts; 

• img.png: name of the output image file. 

 

Snippet 8. MAPP compilation options 

The main application is normally compiled (line 1) and run (line 2) with the following bash command: 

1. bash> gcc main.c kf.c pid.c megapi.c typedefs.c -pthread -lrt -lm   
2. bash> sudo ./a.out   

However, the following additional flags can be used for compilation, either singularly or combined, if 

needed: 

• -DDEBUG: Used for debugging, print out debugging messages during execution; 

• -DEXECTIME: Used for estimating the WCET of all threads; 

• -DBYPASS: Used during testing, bypass the Pre-Kalman filter computations (𝑉𝑥 = 𝑉𝑦 = 0); 

• -DFAKENN: Used during testing, launches a fake GPNN application; 

• -DWEBCAM: Used during testing, launches a similar GPNN application which process a camera 

stream from a USB webcam. 

 

Notice the only restriction is -DFAKENN and -DWEBCAM cannot be used together. For standard 

operation, use the compilation command without extra flags. 

 

Snippet 9. POSIX: Message queue creation example 

This is an example on how to create message queues when using POSIX in a Linux environment for the 

high-level control system. 

1. #include <mqueue.h>               // Message queues   
2.    
3. // Message queue name   
4. char *mqName        = "/mq";   
5.    
6. // Message queue object   
7. mqd_t mq;   
8.    
9. bool create_mqueue(mqd_t *mqueue, char *name, long maxmsg, long msgsize, int flags)   
10. {   
11.     // Local attributes   
12.     struct mq_attr attr;   
13.    
14.     // Sanity check   
15.     if(mqueue != NULL && name != NULL && maxmsg != 0 && msgsize != 0)   
16.     {   
17.         // Set attributes   
18.         attr.mq_maxmsg = maxmsg;        // Max capacity   
19.         attr.mq_msgsize = msgsize;      // Msg size, in bytes   
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20.         attr.mq_flags = 0;              // Blocking   
21.         umask(0);                       // Change permission mask   
22.    
23.         // Create mqueue   
24.         if( ((*mqueue) = mq_open(name, flags | O_CREAT, 0666, &attr)) < 0)   
25.             return false;   
26.    
27.         // Done!   
28.         return true;   
29.     }   
30.     else   
31.         return false;   
32. }   
33. void main()   
34. {   
35.     /* CREATE MQUEUES */   
36.     // Create a non-blocking uint16_t message queue, size 2   
37.     // For a blocking message queue, omit flag O_NONBLOCK   
38.     if( !create_mqueue(&mq, mqName, 2, sizeof(uint16_t), O_RDWR | O_NONBLOCK) )   
39.     {   
40.         printf("MAIN> Could not create %s.\r\n", mqName);   
41.         exit(-1);   
42.     }   
43. }   

Snippet 10. POSIX: Thread creation example 

This is an example on how to create threads when using POSIX in a Linux environment for the 

high-level control system. 

1. #include <pthread.h>          // Posix threads   
2. #include <sched.h>            // Tweaking priorities   
3.    
4. /* THREADS */   
5. // Thread function   
6. void *thread(void *arg)   
7. { /* Do sth... */ }   
8.    
9. bool setPriority(pthread_attr_t *attr, struct sched_param *param, int priority)   
10. {   
11.     // Sanity check   
12.     if( attr != NULL && param != NULL &&   
13.        (priority >= -20 && priority <= 19) )   
14.     {   
15.         // Init attributes + scheduling variables   
16.         pthread_attr_init(attr);   
17.         pthread_attr_getschedparam(attr, param);   
18.         // Set priority   
19.         param->sched_priority = priority;   
20.         // Set new scheduling parameters   
21.         pthread_attr_setschedparam(attr, param);   
22.    
23.         // Done... user can create thread now   
24.         return true;   
25.     }   
26.     else   
27.         return false;   
28. }   
29. void main()   
30. {   
31.     // Threads   
32.     pthread_t th;   
33.     // Attributes - for priority tweak   
34.     pthread_attr_t attr;   
35.     struct sched_param sched;   
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36.    
37.     /* CREATE THREADS */   
38.     // Create thread with priority 0 - default   
39.     setPriority(&attr, &sched, 0);   
40.     if( pthread_create(&th, &attr, thread, NULL) != 0)   
41.     {   
42.         printf("Could not create thread.\r\n");   
43.         exit(-1);   
44.     }   
45.    
46.     // Shut down "main" thread   
47.     pthread_exit(NULL);   
48.     return 0;   
49. }   

Snippet 11. Float over serial example 

This is an example on how to send and receive 32-bit floating point values over serial which handles 

bytes. 

1. // Union structure for float values   
2. typedef union u_tag   
3. {   
4.     uint8_t     b[4];   
5.     float32_t   fval;   
6. } u_tag;   
7.    
8. void sendF(float32_t val)   
9. {   
10.     // Create union   
11.     u_tag tag;   
12.     // Copy value to union   
13.     tag.fval = val;   
14.     // Send each byte, LSB   
15.     send(tag.b[3]);   
16.     send(tag.b[2]);   
17.     send(tag.b[1]);   
18.     send(tag.b[0]);   
19. }   
20.    
21. void recvF(float32_t *val)   
22. {   
23.     // Create union   
24.     u_tag tag;   
25.     // Read and copy bytes, LSB   
26.     recv(tag.b[3]);   
27.     recv(tag.b[2]);   
28.     recv(tag.b[1]);   
29.     recv(tag.b[0]);   
30.     // Copy to output variable   
31.     (*val) = tag.fval;   
32. }   
33.    
34. void main()   
35. {   
36.     // Variables   
37.     float toSend = 4.21f;   
38.     float toRecv = 0.0f;   
39.    
40.     // Send float value   
41.     sendF(toSend);   
42.     // Receive float value   
43.     recvF(&toRecv);   
44. }   


