

COMPUTATIONALLY EFFICIENT

VISION-BASED ROBOT CONTROL

Matheus Terrivel
Master Thesis

December 2017

Examination Committee:

Prof. dr. ir. M.J.G. Bekooij

V. E. Hakim, MSc.

Ir. J. (Hans) Scholten

Computer Architecture for

Embedded Systems Group

Faculty of Electrical Engineering,

Mathematics and Computer Science

University of Twente

7522 NH Enschede

The Netherlands

Faculty of Electrical Engineering,

Mathematics & Computer Science

Abstract

Video target tracking systems is a trending research topic, with a plethora of applications emerging

from recent studies, with both visual object detection and tracking disciplines being the most notable,

principally on embedded platforms. Not only are they employed in various fields, but also remarkably

combines several branches of studies, such as control engineering, video processing, and more

recently, machine learning and sensor fusion. Autonomous vehicles are a notable example, being

equipped with a variety of sensors, including cameras, and widely apply image processing and sensor

fusion techniques, thus providing more concise and high-level information, which increases

robustness and more importantly, certainty, on decision making. However, such techniques must

respect real-time constraints, especially in terms of timing, due the fact a delay might have a high cost

under certain circumstances.

Currently, there is a broad interest in processing images with neural networks, which are superior in

terms of performance and robustness in comparison to traditional image processing algorithms.

Although the rapid development of image sensors in combination with neural network technology,

computational power of the underlying platform is still a bottleneck, especially for embedded

applications. Moreover, the platform is commonly responsible for multiple tasks, which might include

a user interface, data processing, (digital) filtering and high-level control, thus cannot be fully

dedicated to the neural network itself. Finally, modern system-on-chips comprise hardware

accelerators and multiple processing cores, which enable embedded systems to accomplish the

desired throughputs, and achieve better results and efficiency in comparison to pure software

implementations. Most of the time, these SoCs are completely customizable and interaction between

software and hardware is facilitated.

In this thesis, the focus is on both implementation and evaluation of a computational efficient robot

control, based on neural networks to detect and localize a specific target (another robot), on an

embedded platform. Sensor fusion and Kalman filtering are addressed, with the latter being used to

post-process the output of the neural network, meanwhile the former combines encoder,

accelerometer and gyroscope data which is used to derive the ego-motion information of the robot.

Moreover, a specific approach for estimating the ego-motion impact in terms of pixels is proposed

and discussed. The neural network, however, is not the focus, thus is only briefly discussed. During

development, computational complexity, project extensibility and parallel tasks were the main

concern, with the former being reduced whenever possible.

A complete working setup was the result of this endeavor, with the application being a toy example:

its goal is to track a specific target, and follow it by means of controlling another robotic platform.

Sensor fusion is accomplished with a complementary filter, which boosts the ego-motion speed

accuracy and refresh rate. The estimation of the ego-motion impact, in terms of pixel movement, was

implemented through approximation functions that are only dependent on the derived speed and

gyroscope data, and proved to be fairly accurate without the need of complex procedures. The

standard Kalman filters implemented proved to handle false-negatives and target occlusions in a

reliable manner, and can be instantiated and run in parallel. Although the final implementation

executes in a PC running Linux, the whole application can be easily ported to an embedded Linux.

3

Acknowledgements

Initially, I would like to laud my supervisor, Professor Marco Bekooij, for providing me with his

orientation, involvement and valuable feedback and monitoring throughout the development of my

master thesis. Furthermore, the proposed project constantly provided new challenges, in addition to

comprising different fields which regularly encouraged me to amass relevant knowledge and pushed

me outside the comfort zone. Not only did I improve academically, but also personally, hence I am

extremely grateful for this opportunity.

Next, I would like to thank all colleagues in both Robotics and Mechatronics (RaM) and Computer

Architecture for Embedded Systems (CAES) groups, more specifically Viktorio El Hakim, Oğuz Meteer,

Zhiyuan Wang, Konstantinos Fatseas, and Kiavash Mortezavi Matin, for every moment spent together,

either by keeping me company, listening to silly problems, sharing a coffee, discussing scientific and

personal topics, and providing relevant feedback during the development of this thesis.

Subsequently, not only am I grateful to each person I came across during my studies abroad, but also

to every friend back in Brazil. Thanks to your cheering and encouragement to pursue and fulfill my

aspirations, I was able to smoothly surpass countless adversities and finally achieve my goals.

Ultimately, I dedicate all work to my family, more specifically my father Geraldo José Domingues

Terrível and my mother Rosária de Campos Teixeira, which supported me unconditionally during my

studies. I own this achievement to you both, and hope you recognize that. Moreover, I wish my effort

will be re-used in the future to impact peoples’ lives in a favorable manner.

Matheus Terrivel,

Enschede, November 22nd, 2017

4

Glossary

Term Definition

0b__ Represents a binary value (usually an 8-bit value)

0x__ Represents a hexadecimal value (usually a 8 or 16-bit value)

ACK Acknowledge – In some communications when a message is sent, the receiver sends
back an Acknowledge package to confirm that it received successfully the previous
information

bps Bits per second – Refers to speed (i.e. baud rate) in a communication protocol

C, C++, C# C, C plus plus and C sharp – Refers to programming languages

CRC Cyclic Redundancy Check – Algorithm used to perform error check when transmitting
data

DC Direct Current

DoF Degree(s) of Freedom – Refers to how many degrees of freedom a device has

EKF Extended Kalman Filter – Non-linear version of the Kalman Filter

fps Frames per second – Refers to camera frame rates

FPU Floating-Point Unit – Unit that is dedicated to floating-point arithmetic operations,
usually a dedicated piece of hardware

GND Ground – Refers to ground or reference of a circuit

GPIO General-Purpose Input/Output, usually related to a microcontroller pin

GPU Graphics Processing Unit – Refers to a graphic card

I/O Input/Output, normally refers to direction of a pin

I2C Inter-integrated Circuit – Intra-board communication protocol

IC Integrated Circuit – Refers to a small chip

IMU Inertial Measurement Unit – Combination of motion sensors, usually a accelerometer,
a gyroscope and a magnetometer

KF Kalman Filter – Optimal filter for linear systems, mainly used for data fusion

LED Light-Emitting Diode – Electronic component which emits a light

LSB Least Significant Bit/Byte – Refers to ordination of bits/bytes

MCU Microcontroller Unit

MSB Most Significant Bit/Byte – Refers to ordination of bits/bytes

PC Personal Computer

PCB Printed Circuit Board

POSIX Portable Operating System Interface

PWM Pulse-width modulation – Modulation technique that sets an average voltage by
switching on/off the voltage. Used for different kind of applications like RGB LEDs
dimming

RMSE Root-Mean-Square Error – Measure of differences between values

RPM Rotations Per Minute

RT Real-Time

SoC System-on-Chip – Refers to an integrated circuit which comprises components of a
computer and other electronic systems

UART Universal Asynchronous Receiver/Transmitter – Serial protocol

UI User interface

UKF Unscented Kalman Filter – Non-linear version of the Kalman Filter, parallelism is a
possibility

5

Table of Contents

Abstract ... 2

Acknowledgements ... 3

Glossary ... 4

Table of Contents .. 5

1. Introduction .. 7

1.1 Problem definition .. 8

1.2 Contributions .. 9

1.3 Thesis outline .. 10

2. Robotic system .. 11

2.1 Structure ... 12

2.2 Embedded hardware .. 13

2.2.1 MegaPi board ... 13

2.2.2 Sensors & Actuators ... 14

2.3 Library improvements ... 16

2.3.1 Speed Controller .. 16

2.3.2 IMU... 18

2.4 Complementary Filter ... 19

2.4.1 Filter structures .. 20

2.4.2 Speed Estimation ... 22

2.4.3 Results .. 27

2.5 Communication protocol .. 34

2.6 Final Implementation .. 36

2.6.1 Hardware ... 36

2.6.2 Software ... 37

3. Tracking system... 40

3.1 Camera .. 41

3.2 Neural Network ... 42

3.3 Pre-Kalman Filter .. 44

3.3.1 Translation impact ... 46

3.3.2 Rotation impact.. 52

3.3.3 Combined pixel speeds .. 57

3.4 Kalman Filter ... 59

3.4.1 Filter Design ... 61

6

3.4.2 Design Space Exploration ... 65

3.4.4 Real Data Analysis .. 75

3.4.5 Final Design .. 80

3.5 Pixel Control .. 81

3.6 Final Implementation .. 83

3.6.1 Hardware ... 84

3.6.2 Software ... 85

3.6.3 Drivers .. 90

4. System analysis ... 94

4.1 Delay impact ... 94

4.2 Real-time analysis ... 99

5. Conclusions and future work .. 102

6. Bibliography .. 104

7. Appendices .. 107

Appendix A: PID Controller ... 107

Appendix B: Pre-Kalman Filter Equations ... 108

B.1 Translation .. 108

B.2 Rotation .. 108

Appendix C: Embedded Software ... 109

Snippet 1. Encoder motor ... 109

Snippet 2. IMU module ... 110

Snippet 3. Pre-Kalman Filter ... 110

Snippet 4. Kalman Filter’s prediction & update steps .. 112

Snippet 5. GoPro Stream Handler ... 114

Snippet 6. Neural Network with TensorFlow .. 115

Snippet 7. ffmpeg invocation and parameters ... 116

Snippet 8. MAPP compilation options .. 117

Snippet 9. POSIX: Message queue creation example ... 117

Snippet 10. POSIX: Thread creation example ... 118

Snippet 11. Float over serial example ... 119

7

1. Introduction

Video target tracking systems have become a trend research topic, especially for embedded systems,

covering several fields such as image, signal and video processing, machine learning, pattern

recognition, and control engineering. Moreover, multiple sensors and thus sensor fusion techniques

have been applied in order to improve the tracking performance [1]. Not only do vision tracking

systems enable machines to perform complex tasks, but also require less hardware requirements and

are easier to be implemented in comparison to other traditional systems, such as radar- or

LiDAR-based systems. Thus, video target tracking is widely applied in commercial applications, ranging

from medical to autonomous vehicles. Whenever multiple sensors are used, sensor fusion techniques

are used in order to derive relevant information and improve the overall performance of the system,

with the Kalman filter and its variations being the most commonly used.

In terms of target detection and localization, the state-of-the-art techniques are based on neural

networks, which have been replacing traditional image processing techniques due to their superior

performance and robustness. However, neural networks are computationally expensive and other

technologies are still utilized for object detection in embedded systems, such as radar, due the fact

data processing is faster, thus real-time processing is possible. In terms of sensors, most video target

tracking systems comprise cheap and accurate inertial measurement units (IMUs), in addition to

(mono- or stereo-)cameras, mainly focusing on improving the tracking algorithm and performing

Simultaneous Localization and Mapping (SLAM). However, multiple sensors increase overall

complexity of the system, which must include sensor fusion techniques, hence requires even more

resources from the underlying platform.

The rapid development of image sensors enables stable streams with high framerate and image

quality, easily achieving 60 fps at 1080p or higher resolution, which contribute to increasing the target

recognition, especially for neural network-based implementations. Moreover, advances on sensor

technologies provide lightweight and more accurate devices. Over the last decade, however, most

video tracking systems had been implemented on a remote computer or cluster, equipped with high

performance CPUs and GPUs, specifically addressing the computational complexity issue of both

image processing and sensor fusion techniques. The remote device then transmits back commands to

the embedded platform, which introduces latency for (mobile) applications, decreasing their

performance because real-time requirements cannot be guaranteed. Moreover, standard computers

are not power-efficient, expensive and relatively large, hence not feasible for mobile applications.

More recently, several system-on-chips significantly improved their hardware capabilities, enabling

data processing to be performed in the embedded platform itself, as the hardware conditions do not

represent a bottleneck to implementing complex video processing and sensor fusion algorithms.

Considering such SoCs comprise hardware accelerators and multiple processing cores, being most of

the time completely customizable and simplifying interaction between software and hardware,

embedded systems are capable of achieving the desired throughputs, achieving better results and

efficiency in comparison to pure software implementations.

Initially, the main goal of this project was to utilize the ZYBO [2] board, which comprises a Zynq-7010

SoC [3] with a dual ARM Cortex-A9 and FPGA fabric. Moreover, it is equipped with many peripherals

8

such as a dual-role HDMI port, and supports bare-metal code, alongside embedded Linux and

hardware accelerators. Hence, the focus of this thesis is to implement and evaluate a video tracking

system with object recognition and tracking, which exploits both the FPGA fabric for executing the

neural network – the most computationally expensive part of the application –, and the ARM

Cortex-A9 for data fusion and high-level control. The application is a toy example, and its goal is to not

only track a specific target, but also follow it by means of controlling another robotic platform

equipped with sensors and actuators. This thesis summarizes and describes the whole design process

and decisions during the development of such system, except the neural network hardware

implementation. More specifically, due to the fact the neural network in the end of this project was

still not ported to the FPGA, a PC was used instead. However, decisions during the project were made

taking into account the underlying platform would be an embedded system with limited resources,

thus the final implementation can be easily ported to the ZYBO board, for instance.

This chapter introduces the research problem: initially, the problem is explained in more detail and

the major research objectives are defined; subsequently, the contributions of this thesis are presented

and briefly discussed, followed by the outline of this report in the last section.

1.1 Problem definition

Porting a visual tracking system that comprises both tracking with a neural network and sensor fusion

is not an easy task. A pure software solution demands vast computational capabilities, with the neural

network being extremely computationally intensive due the required operations performed on the

frames. A pure hardware solution, on the other hand, is limited by the amount of resources available,

and is commonly limited in terms of flexibility and configurations. Recent solutions utilize multiple

sensors and complex sensor fusion techniques in order to navigate, instead of perform tracking, such

as SLAM [4], Extended Kalman Filters [5, 6, 7, 8], Unscented Kalman Filters [8, 9, 10], among others, in

addition to some combining different techniques [5, 6, 9] which demands even more resources, thus

computational power. Camera-IMU setups are widely applied for positioning [10, 11], which requires

online camera external parameters calibration, performed by Kalman filters. Neural networks are

rarely used in mobile applications due its complexity and execution time which restrains real-time

requirements, with either traditional image processing techniques being applied instead, or third-

party libraries used, such as skeleton tracking [4], for instance. Moreover, whenever a neural network

is indeed utilized for object detection and tracking, it is executed in a remote PC [12], and filtering its

output is rarely implemented, which greatly degrades the performance in occlusion scenarios [4] or

false-negatives. Instead, Kalman filters usually are applied to pre-process data which is inputted to the

neural network [13, 14].

Considering the aforementioned facts, this thesis addresses an alternative solution in order to detect

and localize an object with a neural network, taking into account the ego-motion impact and filtering

the output of the neural network with a robust filtering technique, in order to properly steer a robot

and follow a target, all implemented in a resource-constrained embedded system. Moreover, this

thesis stresses the following objectives:

1. Implement a low-level system which is responsible for sensor fusing data and steering a robot:

a. Using a resource-constrained embedded system;

b. Considering both encoder and IMU data;

9

c. Improving the refresh rate of the ego-motion data;

d. Properly controlling the speed;

e. Providing ego-motion data to a higher-level system.

2. Realize a robust visual object tracking system:

a. Using software which interacts with hardware in a resource-constrained embedded

system;

b. Using a neural network-based detection and localization implementation, ideally on

hardware – implementation of the neural network is NOT addressed, however;

c. Coupling a Kalman filter to improve stability and addressing both tracking with

occlusion and possible false negatives outputted by the neural network;

d. Retrieving ego-motion data from the lower-level system;

e. Considering the ego-motion impact on the target being tracked, in pixel speeds;

f. Interacting with the low-level system in order to follow the target.

3. Analyze and evaluate the complete system:

a. Considering delays;

b. Identifying bottlenecks;

4. Test the complete system in practice.

In summary, the research questions are as follows: Is it possible to implement application which

comprises tracking and sensor fusion techniques on a practical embedded system? Furthermore, what

are the complications for such system?

1.2 Contributions

In summary, this thesis contributes to five major points. Initially, it (1) addresses the usage of a

complementary filter to fuse encoder and IMU data, more specifically accelerometer and gyroscope

information. Not only does such filter reduces computational complexity, but also boosts the

ego-motion speed accuracy and refresh rate, being particularly useful when low-cost and

low-accuracy sensors are deployed, although this technique is currently not often applied.

Secondly, the ego-motion, more specifically speed and angular velocity with respect to heading, is

considered and its impact on the object being tracked is estimated by a simpler (but specific) method,

which does not require computationally expensive algorithms (2). The output of the neural network

applied for detection and localization is additionally filtered by standard Kalman filters, which are

based on a linear model and their implementation do not depend on matrix operations, reducing even

further the require computational power of the underlying platform (3). Moreover, the derived

ego-motion impact is used by the Kalman filters, making it possible to keep tracking the target when

occlusions occur, in addition to common false-negatives outputted by the neural network (4).

Finally, distance control is abstracted by investigating pixel control instead, hence complex

translations between camera and world coordinates are avoided (5). Furthermore, two PID controllers

are combined in order to simplify steering the robot.

With respect to internal contributions, this thesis describes an implementation that was tested in

practice and validates the correct behavior of the integrated system, combining multiple techniques

10

from different areas. Hence, the implementation is a complete base system in terms of structure,

hardware and software, which can be applied in a variety of applications.

1.3 Thesis outline

Heretofore, the topic of this thesis and related research has been introduced. In the upcoming

chapters, the whole system is extensively discussed, with its complete overview being depicted in

Figure 1 below:

Figure 1. Complete system overview

Chapter 2 describes the robotic system (highlighted in red), by introducing the overall structure, the

related embedded hardware, improvements done to the standard libraries, followed by the

complementary filter used for fusing encoder and IMU data and the respective results. Finally, the

protocol used for communicating with this system is discussed and the final implementation detailed.

Chapter 3 is the unit of this thesis, and addresses the tracking system (highlighted in black), briefly

introducing the camera used and the neural network scheme. Subsequently, the Pre-Kalman filter

module is detailed, which is responsible for translating the ego-motion impact to pixel speeds which

are forwarded to the Kalman filter. The Kalman filter used for filtering the output of the neural

network is then assessed, regarding its design and additional algorithms applied specifically for

tracking, alongside the obtained results. Subsequently, the Pixel Control module is presented and

explained, which is responsible for computing the speed and direction that must be forwarded to the

robotic system in order to it properly follow the target. Finally, the final implementation in terms of

both hardware and software related to the tracking system is explored, including the drivers

developed for the Kalman filters, PID controllers and communication with the robotic system.

Chapter 4 analyzes the complete system behavior, exploring the impact of the delay on the

performance, alongside a basic dataflow graph discussion to explore RT analysis techniques.

Finally, Chapter 5 concludes the thesis and presents future work and final thoughts.

11

2. Robotic system

Figure 2. Robotic system outline

In order to introduce the complementary filter, which is the first main part of this project, the

underlying robotic system used – the Makeblock Ultimate Robot Kit V2.0 10-in-1 [15] -, with its

mechanical structure, key hardware modules likewise extra ones and their capabilities, are briefly

discussed. Moreover, improvements with respect to the default software libraries are assessed,

considering the desired functionalities of the complementary filter itself in addition to overall

improvements, such as the low-level speed controller. Finally, the filter is explained and analyzed,

alongside the micro-protocol used for communicating with the robotic system, as well as the final

architecture in terms of both software and hardware. In summary, the highlighted blocks shown in

Figure 2 above are detailed in the upcoming sections.

The Makeblock Ultimate Robot Kit has many structural parts, a mainboard – the MegaPi -, Bluetooth

connectivity and several (proprietary) modules. This kit was readily available in the beginning of the

project and comprised, among others, an Inertial Measuring Unit (IMU) module, DC motors coupled

with encoders, and their respective drivers, which are required for the final application: follow an

object. Moreover, it is simple to use and tailor to this application, without much effort. All

development tools are provided in the seller’s website, and the system can be fully customized by the

user, in terms of software and structure. Hardware components, on the other hand, are complete

modules and is up to the user to integrate them or not. For a detailed description, one should refer to

[15].

Although the complementary filter will be extensively discussed later in this chapter, it is important to

define its inputs and outputs briefly due the fact most design decisions were based on what it requires

for the desired behavior. In summary, the complementary filter is used to improve and complement

the speed estimation procedure, and fuses data from both encoder and accelerometer, which is

relevant for the tracking system. Moreover, the tracking system requires data from a gyroscope, but

this will be further explored in Chapter 3. Taking this into consideration, the complementary filter’s

inputs are: linear speed which is derived from linear accelerations retrieved from an accelerometer,

12

and the linear speed derived with the encoder. The output, on the other hand, is the fused linear

speed, with the gyroscope data being directly forwarded to the tracking system.

Furthermore, a set of basic requirements and functionalities was defined for the robotic system, which

should follow another robot, and thus must be able to:

• Move forwards, backwards, and turn;

• Support a camera on top: the frames will be further processed by the tracking system;

• Process data from an IMU: necessary for the complementary filter;

• Control the speed of the motors: low-level speed control;

• Receive speed references from the tracking system;

• Send relevant data to the tracking system: current speed and angular velocities.

2.1 Structure

The kit used in this project has several mechanical parts, such as plastic gears, acrylic supports, screws,

and metal part, which can be assembled in different ways. Although there are default configurations

provided by the seller alongside the respective piece of software, such as “Robotic Arm Tank”, “Self-

Balancing Robot” and “Robotic Bartender” [15], for this project a custom setup was built which

contemplates a base structure with two tracks driven by two separate DC motors, and two elevated

platforms: a shorter one for supporting the battery, and a taller one to accommodate the camera.

Finally, a support for the main board is required and should be located as close as possible to the

modules used. The structure used is shown in Figure 3 below:

Figure 3. Robotic system structure

The tracks have been utilized due the fact driving the robot in a different manner would

overcomplicate its odometry model and drive procedure, especially when changing direction. Not only

do the tracks simplifies the operation, but also improves robustness due the fact they overcome

obstacles easier. Furthermore, this structure complies with the previous requirements:

• Move forwards, backwards, and turn: with tracks and two separate motors, the robot can be

steered properly;

• Support a camera on top.

The battery platform is necessary for powering the system, but in this case also provides a stable

support for the IMU module. Moreover, adding modules and (most likely) structures were taken into

consideration, thus this platform can still be augmented in the future.

13

2.2 Embedded hardware

Besides the mechanical parts, the kit includes a microcontroller board based on ATmega2560 [16] –

the MegaPi, which is both Raspberry Pi and Arduino compatible. Programming is done through USB,

and for this application only the Arduino IDE was necessary during development, although it is possible

to use different development tools. Moreover, the kit comprises several electronic modules which are

plug-and-play, with the most relevant ones being: Bluetooth, DC motor driver, ultrasonic sensor, RJ25

shield for I2C/UART modules, 3-axis accelerometer and gyroscope sensor, and a compass. In total,

three (3) encoder motors are also included, apart from the aforementioned modules, which are DC

motors coupled with encoders. Cables are provided and connections are simple to use, thus will not

be explained in this section. The complete parts list can be found in [15].

With respect to hardware requirements, the system must support, at least:

• Driving 2 DC motors simultaneously;

• IMU connection for the complementary filter;

• Serial communication or (optimally) wireless module for exchanging data with a master and

debugging;

• Floating-point operations for control loops, filtering and data processing.

2.2.1 MegaPi board

The MegaPi, as explained before, is based on the ATmega2560 microcontroller and can drive up to 10

servo motors, 8 DC or 4 stepper motors simultaneously. Additionally, most I/O pins are exposed and

can be used for custom hardware and software implementations, as depicted in Figure 4 below. Note

that the motors’ circuitry is highlighted in purple, power input and switch in gray, Bluetooth in orange

and the microcontroller itself in yellow.

Figure 4. MegaPi board, with highlighted relevant parts

For this project, the MegaPi board and modules are sufficient and meets the requirements:

• DC motors: it is capable of driving up to 4 simultaneously;

• IMU: a 3-axis accelerometer and gyroscope sensor are included in the kit;

• Serial communication or wireless module: in addition to the Bluetooth and USB (Virtual COM),

it supports an extra UART connection;

14

Although the ATmega2560 is an 8-bit microcontroller, it has software support for floating-point

operations which are typically fast (< 1 milliseconds for division), and commonly used for control loops

and filtering techniques. Taking into consideration that both the complementary filter and data

processing (for the IMU) are simple and do not require many calculations, this platform is capable of

performing the necessary operations on time.

Finally, it is important to note that this board operates at 5V, and its power-in range must be between

6-12V, in case a battery is used. The complete specifications of the board and ATmega2560 can be

found in [15] and [16], respectively. In terms of software, the MegaPi has a complete open-source

library, available at [17]

2.2.2 Sensors & Actuators

Before defining and integrating all components, it is important to consider both the available sensors

and actuators. Despite that several electronic modules are included in the kit, only few are required

for the application:

• IMU unit, more specifically an accelerometer and a gyroscope, for the complementary filter;

• DC motors for movement;

• DC motor drivers;

• Encoders for speed control;

• Wireless module for communication: optional, as a wired connection is more reliable.

This section describes the motors used, alongside the feedback sensors necessary for speed control

and finally the IMU required by the complementary filter.

Encoder motors

In total the kit includes three (3) 25mm encoder motors, which are DC motors coupled with an

incremental encoder: all three operate at 9V, but only two can achieve a higher speed (185 RPM ±10%)

with the other being slower (86 RPM ±10%). The latter, however, has a higher torque in comparison

to the former, and is typically used for lifting a robotic arm, which is not the case for this application.

Thus, both identical encoder motors are used for driving the robot, one on each side. The encoder

motor is depicted in Figure 5a below, with the encoder being in the back, close to the proprietary

connection. Other specifications can be found in [18].

Figure 5. Encoder motor (a) and its driver (b)

DC motors are usually controlled with an H-bridge, which translates a low-voltage PWM input to the

required proportional voltage (nominal voltage of the motor) output. Moreover, it can be stopped in

15

different ways – coasting (free rotation) or braking – and its rotation direction can also be determined.

Fortunately, the kit also provides the driver module for the encoder motors, which is shown in Figure

5b above, and must be place in either slot 1 or 2 of MegaPi (check Figure 4). Moreover, the encoder

connections are properly routed to the microcontroller pins in order to derive the speed.

There are different ways of keeping track of a motor’s RPM, with tachometers and hall-effect sensors

being an example. However, when considering all aspects of each technology, quadrature incremental

or absolute encoders stand apart due their price, size, availability, and reliability. Not only do encoders

require less mechanical components, but also are easy to mount and require simple data processing.

A quadrature relative or incremental encoder measures a change in position, and usually outputs two

channels (A and B – the quadrature signals) and one index pulse (X). The former signals are toggled in

a certain order depending on the rotation direction (clockwise or counter-clockwise), and the latter is

pulsed once every complete revolution (Figure 6). The amount of pulses per revolution (PPR)

outputted by a one channel is stated in the datasheet, thus rotations per second can easily be derived

and converted (e.g. to Hz, RPM) either from the two output channels, or from the index pulse itself by

measuring the time between one or several pulses, which is less accurate (i.e. integer number of

revolutions). Hence, such encoder provides rotational velocity, direction, and relative position

feedback, and one per motor is required.

Figure 6. Quadrature signals and index for counter-clockwise rotation (a), outputted by the incremental encoder (b)

Although the encoder motor already includes an incremental encoder, no datasheet is provided by

the supplier. This is not a problem, as by visually inspection it is possible to determine it is a low-quality

device with 8 PPR, thus low resolution, which negatively impacts the speed control. However, the

supplier does provide the necessary drivers [3] to derive the RPM and no extra hardware nor

mechanical parts are needed. With respect to software, the “MeEncoderOnBoard” driver is used for

initializing, configuring, and utilizing the encoder motors. Check Appendix C: Embedded Software for

further details.

IMU

An Inertial Measurement Unit (IMU) usually embeds three sensors: accelerometer, gyroscope and

magnetometer. These devices are often cheaper than individual sensors, and provide complete

inertial information, which is relevant for many applications, such as dead reckoning and simultaneous

localization and mapping (SLAM). The accelerometer is a compact electromechanical device designed

to measure linear acceleration forces (i.e. change in speed). A gyroscope, on the other hand, is small

and inexpensive sensor that measure angular velocity, either in degrees per second (°/s) or revolutions

per second (RPS). It can be used to determine orientation through data fusion, and is found in most

autonomous navigation systems, usually combined with accelerometers for improved performance

with a Kalman filter or a complementary filter.

16

One of the modules included in the kit is a 3-axis accelerometer and gyroscope (Figure 7b), which has

been and will be referred to an IMU throughout this document, even though the magnetometer is not

involved. Moreover, the application only requires data from an accelerometer and gyroscope, with

the former being used to determine the linear speed, meanwhile data from the latter is directly

forwarded to the tracking system. Hence, the magnetometer will not be discussed in this section.

Figure 7. RJ25 shield (a), and 3-axis accelerometer and gyroscope module (b)

The module shown in Figure 7b above is an I2C device and both accelerometer and gyroscope full-scale

ranges are programmable, with the core IC being the MPU6050 – full specifications can be found in

[19]. Moreover, the module uses a RJ25 connector and must be correctly connected to the MegaPi

board through the RJ25 shield (Figure 7a). Note that the module has a white label on top of its

connector, which must match one of the colors on top of the RJ25 shield. In this case, it should be

connected to connector number 6, 7 or 8. Usage is straight forward with respect to software, which

depends only on the “MeGyro” driver for initializing, configuring, and utilizing the encoder motors –

Check Appendix C: Embedded Software for further details.

2.3 Library improvements

The processing board and its compatible modules work out-of-the box with the open-source library

provided [3]. More specifically for this application, however, two drivers are used:

“MeEncoderOnBoard” and “MeGyro”, which handle the encoder motors and the IMU module,

respectively. By exploring the source code of both libraries, one may find points of improvement, or

customize it in order to add specific functionalities, for instance. The former relates to a problem found

in the speed control, and the latter to instability issues and a lack of flexibility with the data retrieved

from the IMU module. The main goal of modifying such drivers is to improve the overall behavior,

robustness and stability of the robotic system, and in this section the major modifications are

presented, further explained and justified.

2.3.1 Speed Controller

The first issue addressed is the speed controller provided by the “MeEncoderOnBoard” driver, which

handles the encoder motors. Although the MegaPi documentation indicates a PID controller is used,

its implementation is a simple proportional one. Initially, the performance of the proportional

controller was assessed in order to decide whether a more complex would be implemented. The

proportional gain was set to 0.18, and the sampling frequency to 25 Hz which are the default values

17

according to the documentation. It is important to notice that the reference must always be provided

in RPM, and in this scenario the same speed is provided for both encoder motors. Initially, however,

both sides were tested and presented highly similarities, thus the upcoming results depict one side

only. Two metrics are used to compare the performance: the settling time for 95%, and the

root-mean-square error (RMSE), with the latter being computed with the following formula:

 𝑅𝑀𝑆𝐸 = √
1

𝑁
∗∑(𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑖 − 𝑠𝑒𝑛𝑠𝑜𝑟𝑖)

2

𝑁

𝑖=1

 (2.1)

The performance is shown in Figure 8 below, with the reference depicted in red and the actual sensor

(i.e. encoder) readings in green.

Figure 8. Proportional controller response

Even though the controller behavior is satisfactory, abrupt reference changes result in a slow

response, especially when changing direction, with this implementation having a 0.8 second settling

time (95%) and a RMSE of 63.08 RPM. Thus, prior to implementing the complementary filter described

in the next section, the speed controller of the robotic system was modified to contemplate a PID

controller, instead of a simple proportional one, which theoretically could improve overall

performance, and more specifically the settling time. After implementing the PID controller, the

response was evaluated in the same manner as before, and the result is shown in Figure 9 below:

18

Figure 9. PID controller response

In this setup, the proportional (𝐾𝑝), integral (𝑇𝑖) and derivative (𝑇𝑑) gains were tuned to 1.7, 0.1 and

0.0001, respectively, and the sampling frequency was increased to 50 Hz. With such configuration, the

settling time was reduced to 0.3 second, corresponding to a reduction of 62.5% in comparison to the

original controller. Moreover, overshoots do not surpass 5% of the reference value, and the RMSE was

decreased to 27.86 RPM (55.83% reduction). The oscillation in the steady state will be further

addressed by the complementary filter, which outputs a more stable speed value. Additional

information about the PID controller, its implementation and tuning procedure can be found in

Appendix A: PID Controller.

2.3.2 IMU

The IMU library is called “MeGyro”, although is comprises both an accelerometer and a gyroscope.

During initial tests with the module, a few drawbacks were discovered:

• The calibration procedure did not take into consideration the accelerometer offsets (advised

in the datasheet [19]);

• The driver only outputted fused (with a complementary filter) gyroscope data: yaw, roll and

pitch. Hence the name “MeGyro”;

• The driver only outputted processed data – raw data from the sensors could not be retrieved.

Note that raw data corresponds to integer values directly retrieved from the sensors,

meanwhile processed considers both offset and sensitivity, resulting in a meaningful value

and unit (i.e. m/s2 and °/s);

• If the module was placed nearby metal parts, the system would often halt during initialization

due magnetic interferences.

Initially, the calibration procedure was addressed in order to stabilize and reduce the bias of both

gyroscope and accelerometer readings. Implementation is rather simple: the last step of the

initialization is dedicated to retrieving raw data from the sensors several times (currently 500x), which

are averaged in the end and internally saved as the offsets. Such values are later used when the user

19

requests processed data from the driver, by simply deducting the offsets from the raw readings. Note

that calibration is always performed upon startup, thus the robotic system must always be in a flat

surface and not be disturbed during initialization, otherwise behavior might be unpredictable due to

wrong readings.

As the complementary filter input requires a speed value derived from the IMU, it is necessary to make

the accelerometer data available in addition to the gyroscope data, which will further be used to

calculate the speed. Additionally, it is rather advantageous to provide both raw and processed data

retrieved from the sensors for debugging purposes. These modifications were both addressed

simultaneously, by including specific functions to the library. Due the fact unique methods were

added, usage of this driver is different from the original version. For more details, one should refer to

Appendix C: Embedded Software.

Data signaling depends on how the module is placed with respect to the robot, and will be discussed

in the end of this chapter. It is extremely important to keep the module away from metal parts and

motors, and ideally it should be placed on top of an acrylic platform. Otherwise, the robotic system

will most likely malfunction due to interferences and halt during initialization.

Finally, the accelerometer and gyroscope sensitivities were set to 2g and 500 °/s, respectively. The

former corresponds to the highest resolution, and was used due the fact the linear accelerations are

as precise as possible, which decreases errors for the following speed estimation step. The gyroscope

sensitivity, on the other hand, can be further decreased to 250 °/s which corresponds to the best

resolution, but it is not required for this application: based on tests, the robotic system is not capable

of turning faster than 360 °/s. Furthermore, both sensitivities constrain the sampling frequency, and

for this specific configuration up to 1kHz can be achieved. This is enough for both complementary filter

and tracking system (most likely running below 200Hz). The former benefits from this high sampling

frequency, as currently bottleneck the sampling frequency for the speed is restrained by the encoder

readings.

2.4 Complementary Filter

Estimating the ego-motion of the robotic system is an important part of the application, considering

such information will be further used by the Kalman filter and directly impacts the overall

performance. Thus, being able to estimate the speed as precise and fast as possible is required. One

might assume the encoder readings are enough, but in fact it only updates the readings at 50Hz, with

the software improvements previously discussed. The IMU readings, on the other hand, are

considerably faster for the presented sensitivities: 1kHz. Hence, by fusing both sensor data it is

possible to achieve a sampling frequency of 1kHz in a low-cost platform.

The Kalman filter is widely used in sensor fusion scenarios, however it might be rather complex

depending on the sensors applied and computationally expensive, especially due the amount of

floating-point operations. Considering the microcontroller being used has a software floating-point

support, and will be performing other tasks which require floating-point operations, another approach

is needed. One simplistic alternative to the Kalman filter is the complementary filter [20], which is less

complex, less computationally expensive, but yields similar results [21]. As mentioned before, the

20

original implementation of the IMU module (“MeGyro” driver) utilized a complementary filter to fuse

accelerometer and gyroscope data and output less noisy and more accurate angular speeds (i.e. yaw,

roll and pitch). Such technique is widely used for this type of sensor fusion, with many practical

examples found in literature [21, 22, 23]. Furthermore, other applications use the same technique but

the interest is specifically on estimating heading (i.e. yaw) and attitude [24, 25]. In summary, the

complementary filter enhances accuracy, increases the sampling frequency, reduces complexity, and

can be implemented in a low-cost platform as well. Hence, this section further explores the

complementary filter (1st and 2nd order), addresses the necessary speed estimation techniques, and

finally presents comparisons and results.

2.4.1 Filter structures

The 1st order complementary filter corresponds to two filters in parallel, with the same cut-off

frequency: a high-pass and a low-pass filter. Moreover, the filter’s name corresponds to the relations

between both high- and low-pass filter gains, which are complementary: 𝐺𝐻𝑃𝐹 + 𝐺𝐿𝑃𝐹 = 1 . The

general structure of the 1st order complementary filter for the robotic system is depicted in Figure 10

below.

Figure 10. First-order Complementary Filter

The generic implementation of the 1st order complementary filter is straight-forward:

 𝑜𝑢𝑡𝑛 = 𝐾 ∗ 𝑖𝑛𝑝𝑢𝑡1𝑛 + (1 − 𝐾) ∗ 𝑖𝑛𝑝𝑢𝑡2𝑛 (2.2)

 𝐾 =
𝑓𝑐

(𝑇𝑠 + 𝑓𝑐)
 (2.3)

With 𝐾 being the time constant, 𝑓𝑐 the cut-off frequency, and 𝑇𝑠 the sampling period. The timing

constant can be interpreted as a boundary between trusting one reading and the other, being usually

tuned in practice, even though there are methods in literature to calculate it [23]. Note that 𝐾 can be

computed on-the-fly, if the 𝑇𝑠 (or 𝑓𝑠) is correctly measured and the cut-off frequency is known a priori.

However, 𝑓𝑐 is commonly unknown thus 𝐾 is defined or computed offline. The high-pass filter gain

corresponds to 𝐾 itself, meanwhile the low-pass filter gain is the complement: 𝐾 − 1. Thus, both

inputs must be carefully selected to match the desired filters.

The linear speed is estimated through integration based on the linear accelerations outputted by the

IMU which naturally has a tendency to drift over time, hence it is reliable on the short-term and a

high-pass filter is used. The encoder readings, on the other hand, are more reliable on the long-term,

thus a low-pass filter is utilized. For this application the cut-off frequency is unknown, thus the time

21

constant is not computed dynamically, but defined as a constant, and by considering all the

aforementioned information, (2) becomes:

 𝑣𝑓 = 𝐾 ∗ 𝑣𝐼𝑀𝑈 + (1 − 𝐾) ∗ 𝑣𝑒𝑛𝑐 (2.4)

With 𝑣𝑓 being the fused speed, 𝑣𝐼𝑀𝑈 the speed derived from the IMU, and 𝑣𝑒𝑛𝑐 the speed derived

from the encoder.

A 2nd order complementary filter might be implemented as well, because it theoretically yields a better

result at a cost of a more complex structure [23, 25], which involves two integrations as shown in

Figure 11 below.

Figure 11. Second-order Complementary Filter

Note that 𝐾1 and 𝐾2 are positive gains, typically tuned in practice, and can be related as follows to

simply work with a single gain 𝐾:

 𝐾1 = 2 ∗ 𝐾 (2.5)

 𝐾2 = 𝐾

2 (2.6)

Implementation is more complex, and can be divided into intermediate steps. Based on Figure 11, one

might use the following equations to realize the 2nd order complementary filter:

 𝐴𝑛 = 𝑖𝑛𝑝𝑢𝑡2𝑛 − 𝑜𝑢𝑡𝑛−1 (2.7)

 𝐵1 = 𝐴𝑛 ∗ 2 ∗ 𝐾 (2.8)

 𝐵2𝑛 = 𝐴𝑛 ∗ 𝑇𝑠 ∗ 𝐾
2 + 𝐵2𝑛−1 (2.9)

 𝐶𝑛 = 𝐵1 + 𝐵2𝑛 + 𝑖𝑛𝑝𝑢𝑡1𝑛 (2.10)

 𝑜𝑢𝑡𝑛 = 𝐶𝑛 ∗ 𝑇𝑠 + 𝑜𝑢𝑡𝑛−1 (2.11)

For this application, (2.7), (2.10) and (2.11) become:

 𝐴𝑛 = 𝑣𝑒𝑛𝑐𝑛 − 𝑣𝑓𝑛−1
 (2.12)

22

 𝐶𝑛 = 𝐵1 + 𝐵2𝑛 + 𝑣𝐼𝑀𝑈𝑛 (2.13)

 𝑣𝑓𝑛
= 𝐶𝑛 ∗ 𝑇𝑠 + 𝑣𝑓𝑛−1

 (2.14)

It is important to notice that regardless the filter order, an integration method must be implemented

to estimate the speed, which will be addressed in the next section. Obviously, both inputs must be

provided in the same unit and in this case, meters/second was used.

2.4.2 Speed Estimation

Integration is strictly related to the complementary filter, due the fact a typical 1st order

implementation requires so. More specifically, the accelerometer provides 3-axis linear accelerations

which must be integrated to derive the speed, as follows:

 𝑣(𝑡) = ∫ 𝑎(𝑡)𝑑𝑡
𝑡

0

 (2.15)

With 𝑣(𝑡) being the linear speed, and 𝑎(𝑡) the linear acceleration, for a single axis. Notice that

integration is related to continuous time, but the system is digital, thus a summation is used for the

implementation. In this case, the speed at moment 𝑛 is computed by summing the previous speed

(𝑣𝑛 = 0, 𝑛 < 0) and the value retrieved with an approximation rule, being generalized as follows:

 𝑣𝑛 = 𝑣𝑛−1 + {𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑟𝑢𝑙𝑒} (2.16)

Although there are many ways of estimating the speed in a robotic system, in this setup the procedure

was purely encoder based. Such method delivers fairly accurate results, basically dependent on the

encoder resolution itself and does not require an integration method for computing the speed, but

may be improved by sensor fusing the IMU data that, on the other hand, does need an integration

procedure. Furthermore, the interest is in estimating a 1D speed for this application, that basically

corresponds to a forward or backward movement due to the robot's constraints (tracks): it can neither

move sideways or up/down. Although the robot might be yawing, rolling or pitching, only the latter

affects the 1D speed component. This section discusses optional approaches for speed estimation,

considering the available hardware and computational capabilities of the underlying platform.

Accelerometer based

As previously stated, 3-axis linear accelerations are retrieved from the accelerometer, in m/s2, and in

order to estimate the speed an (digital) integration method must be implemented. Moreover, the

accelerometer should be correctly calibrated for its static linear accelerations (offset), and go through

the following procedures [26] in order to yield reasonable results:

1. Low-pass filter for noise reduction;

2. Window-filter for mechanical noise reduction;

3. Movement-end check to force the integration to 0, when the system has stopped.

Notice that these procedures must be applied to all relevant axis for the application, which in this case

is the one corresponding to moving the robotic system forwards or backwards. The whole procedure

23

for estimating the speed is depicted in Figure 12 below. Due the fact the offsets are computed during

the IMU initialization and automatically used when processed data is requested, the low-pass filter

procedure for noise reduction is initially addressed. Reducing the noise is critical in order to decrease

major errors during the integration procedure, which is performed by both the low-pass and window

filters [26].

Figure 12. Accelerometer-based speed estimation procedure

One of the simplest implementations of a low-pass filter in digital systems is averaging: high-frequency

disturbances are filtered out. However, simple averaging adds unnecessary delay to the system, as at

least 𝑁 samples must be averaged before outputting a filtered value. There are alternatives that

specifically address this issue, such as the moving average: the output is computed whenever a sample

is retrieved by averaging it with the previous 𝑁 − 1 samples. Notice, however, that this method still

comprises a delay of 𝑁 samples, but only during initialization. Another issue of the moving average

(and simple average) is the division, which is computationally expensive. The exponential moving

average (EMA) is then introduced, which yields surprisingly similar results with respect to the moving

average, does not require division operations and is simpler to implement. Taking these factors into

consideration, alongside the underlying platform, the EMA was chosen to be implemented. The EMA

for a single sample is computed as follows:

 𝑜𝑢𝑡𝑛 = 𝛼 ∗ 𝑖𝑛𝑝𝑢𝑡𝑛 + (1 − 𝛼) ∗ 𝑜𝑢𝑡𝑛−1 (2.17)

 𝛼 =
2

(𝑁 + 1)
 (2.18)

With 𝛼 being defined based on the filter order 𝑁, thus can be computed a priori. Setting 𝑁 to a high

value can result in a loss of data, meanwhile setting it to a low can result in an inaccurate output value.

The exponential behavior corresponds to the (1 − 𝛼) factor which is multiplied by the previous

output 𝑜𝑢𝑡𝑛−1, differently from the moving average that considers the previous input values instead.

Typical EMA responses for a noisy input signal and different 𝑁 values are shown in Figure 13.

Apply offsets Low-pass filter Window-filter Integration
Movement-
end check

24

Figure 13. EMA sample responses for different N values

With respect to this application, the best results for the accelerometer readings were obtained with

𝑁 = 3 during testing, hence (2.17) becomes:

 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑎𝑐𝑐𝑛 = 0.5 ∗ (𝑎𝑐𝑐𝑛 + 𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 𝑎𝑐𝑐𝑛−1) (2.19)

Next step is to implement a window-filter to reduce mechanical noise, as minor errors in acceleration

could be interpreted as a constant velocity and will be summed [26]. Moreover, the low-pass filter

might produce residual erroneous data, so a window of discrimination between valid and invalid data

and for the no-movement condition must be implemented [26]. Implementation is straight forward:

if the input is within the maximum and minimum window values, the output is 0; otherwise, the output

is the input. A sample behavior of the window-filter is depicted in Figure 14 below, where the

maximum and minimum window values are set to ±0.3, respectively:

Figure 14. Window-filter sample response

The window values for the accelerometer were derived in practice, by simply leaving the robotic

system in a static position without disturbances and observing the accelerometer readings, which

were typically within ±0.02 m/s2.

25

With the accelerometer readings properly pre-processed with both low-pass and window filters, the

linear speed can finally be estimated through an integration method. A common approach is to utilize

the 1st order trapezoidal rule, that approximates an integral by accumulating the area of several

trapezoids, as shown in Figure 15 below.

Figure 15. Illustration of the trapezoidal method

Formally, the trapezoidal rule is defined for continuous time as follows:

 ∫ 𝑓(𝑥) 𝑑𝑥 ≈ (𝑏 − 𝑎) ∗ (
𝑓(𝑎) − 𝑓(𝑏)

2
)

𝑏

𝑎

 (2.20)

For discrete time and considering the application, however, (2.20) reduces to the following formula

which is derived from both the trapezoidal rule combined with (2.16):

 𝑣𝑛 = 𝑣𝑛−1 +
(𝑎𝑐𝑐𝑛 + 𝑎𝑐𝑐𝑛−1) ∗ ∆𝑡

2
 (2.21)

With 𝑣𝑛 being the speed estimation, 𝑎𝑐𝑐𝑛 the linear acceleration, and ∆𝑡 the sampling time for

sample 𝑛. Not only does the trapezoidal rule greatly reduce integration error, but it has a simple

implementation and requires a single floating-point multiplication, hence this method was chosen for

speed estimation.

Although the integration error is small, the speed estimation drifts over time due to error

accumulation. This issue will be further suppressed by the complementary filter, but can be treated

with a post-processing movement-end check, which forces the speed to zero, thus resets the

integration method and consequently the error. When moving the robotic system, there is typically

an initial acceleration or deceleration until a maximum velocity is reached, before the acceleration

changes direction (i.e. signal) until it reaches zero once more [26]. Considering that the velocity is the

result of the area below the acceleration curve, the speed will only be zero when both areas above

the negative and below the positive side of the curve are the same, which is extremely unlikely to

happen in a real-world scenario, consequently making the speed estimation to be unstable. Due to

this fact, a movement-end check is performed after the integration process to prevent speed

instability: if a certain amount of consecutive accelerometer readings is zero, the speed is set to zero.

26

After several tests, the maximum quantity of consecutive readings allowed before forcing the speed

to zero was set to 25.

Encoder based

Deriving the speed with the encoder is a simpler matter, due the fact the sensor’s output signals are

captured by the microcontroller, with the library handling the conversion from PPR to RPM, as

previously discussed. However, the robotic system uses two encoder motors to move around, and

information from both encoders must be properly combined, which result in a 1D speed as required.

Thus, encoder-based speed estimation is reduced to standard odometry of the robotic system.

Due the fact there is no interest in performing dead-reckoning, neither heading or position are

estimated and using a partial-odometry is enough for the application. Considering the simplistic

robotic system structure, a basic model was derived based on [27, 28, 29, 30, 31] in which slippage is

not considered [32]. In this scenario, the combined encoder speed 𝑣𝑒𝑛𝑐 is the mean of the encoder

readings from both sides:

 𝑣𝑒𝑛𝑐 =
𝑣𝑅 + 𝑣𝐿
2

 (2.22)

With 𝑣𝑅 and 𝑣𝐿 being the right and left encoder readings, respectively, in RPM. Alternatively, one

might compute the velocity of each encoder motor, in meters per second, based on the wheel’s radius

𝑅 , encoder’s resolution 𝑃𝑃𝑅 , pulse difference ∆𝑝𝑢𝑙𝑠𝑒𝑠 and time between measurements ∆𝑡 , as

follows:

 𝑣 =
2 ∗ 𝜋 ∗ 𝑅 ∗ ∆𝑝𝑢𝑙𝑠𝑒𝑠

𝑃𝑃𝑅 ∗ ∆𝑡
 (2.23)

Note that if the encoder’s resolution and wheel’s radius of both sides are the same, the resulting

encoder speed can be computed with the following formula, derived from (2.22) and (2.23):

 𝑣𝑒𝑛𝑐 =
𝜋 ∗ 𝑅

𝑃𝑃𝑅 ∗ ∆𝑡
∗ (∆𝑝𝑢𝑙𝑠𝑒𝑠𝑅 + ∆𝑝𝑢𝑙𝑠𝑒𝑠𝐿) (2.24)

Finally, the combined speed is computed with (22) and converted from RPM to meters per second in

order to be fused with the complementary filter. Such conversion is elementary, being only dependent

on the wheel’s radius 𝑅 and the track thickness, which were measured and correspond to a combined

value 0.032 meters (3.2 centimeters). The following formulas are used for conversion between RPM

and m/s:

 𝑣 =
𝜋 ∗ 𝑅𝑡
30

∗ 𝑅𝑃𝑀 (2.25)

 𝑅𝑃𝑀 =
30 ∗ 𝑣

𝜋 ∗ 𝑅𝑡
 (2.26)

With 𝑅𝑡 = 0.032 𝑚, 𝑣 the speed in meters per second, and RPM the speed in rotations per minute.

27

Pitch correction

The gyroscope data might be relevant depending on the terrain conditions in which the robotic system

will operate. For this application, it is assumed the robot will function on a flat surface, hence strictly

changing its heading. Although the IMU is calibrated upon initialization, when the robot is normally

moving, the gyroscope outputs non-zero pitch and roll information with the latter not affecting the

1D speed (forwards or backwards). The pitch, on the other hand, directly influences the resulting

speed either estimated with the IMU, or combined with the complementary filter.

Figure 16. Illustration of the robotic system going up a ramp

Considering a pitch 𝛿 as depicted in Figure 16 above, the 1D speed component 𝑣 with relation to the

flat surface must be correct, and is computed as follows:

 𝑣 = 𝑣′ ∗ cos(𝛿) (2.27)

During normal operation, the maximum pitch recorded was 5° (about 0.09 radians). Due the fact the

pitch will be, at most, 5°, the small-angle approximation can be used to simplify (2.27):

cos(𝛿) ≈ 1 −
𝛿2

2
= 1 −

0.092

2
= 0.996

Due the fact the pitch contribution is extremely low, it will be neglected for this project. Note,

however, that if the robotic system operates on a non-flat surface, it will present unexpected behavior.

2.4.3 Results

Several minor tests were performed to debug, get used to components, and validate implementations

before finally testing the whole robotic system, more specifically the speed estimation and

complementary filter algorithms. This section presents the major results obtained during a procedure

in which a sequence of different forward and backward speeds are set for a certain period of time, as

presented in Table 1 below. In addition to RPM, the ground speed is also presented, which is calculated

with (2.25) and will be used for all results in this section.

Table 1. Complete test sequence

RPM 0 40 -50 82 -103 125 -142 167 182

Ground speed (m/s) 0.000 0.134 -0.168 0.275 -0.345 0.419 -0.476 0.560 0.610

Period (s) 1 3 3 2 2 2 1 1 1

28

Moreover, different results are presented and compared based on the RMSE, which can be computed

with (2.1). However, in order to correctly validate the speed estimation procedure (either encoder- or

accelerometer-based) and the complementary filter implementations, a ground truth speed should

be available. Unfortunately, measuring the speed of a system in an accurate manner is not

straightforward, and is mostly performed with expensive equipment or demands an extensive

approach.

As measuring the speed was not the main goal of this thesis, an alternative and simpler concept was

utilized: encoder readings present typically accurate results, being as low as ±0.04% for a 360 PPR

encoder [33]; thus, by fitting the encoder measurements, one might consider such approximation the

ground truth, at least currently for this project. Initially, the test sequence was applied and the

encoder readings logged, which yielded the results shown in Figure 17 below, with a RMSE of about

0.12 m/s.

Figure 17. Encoder readings based on the test sequence

It is noticeable by observing Figure 17 above and the speed controller response (Figure 9) that the

encoder readings follow an exponential curve. To address the ground truth issue, then, the reference

values used for the test are fed to an offline EMA algorithm, in order to fit the encoder readings.

However, the EMA implementation, as previously discussed, requires a specific number of samples 𝑁

to be defined a priori. The number of samples 𝑁 was varied from 0 to 100, and the RMSE computed

for the exponential moving averaged (EMAd) reference and the encoder readings to select a proper

𝑁 which produced the smallest RMSE as possible. The result of this procedure is depicted in Figure 18

below:

29

Figure 18. RMSE versus number of samples 𝑁

The lowest RMSE value obtained was about 0.03 m/s, for 𝑁 = 54 (𝛼 ≅ 0.036). Furthermore, the

EMAd reference for this specific number of samples is shown in Figure 19 below. Note the encoder

readings fairly fit, thus from now on in this section, reference will correspond to the EMAd reference

and is considered as the ground truth speed for all RMSE calculations. It is relevant to notice, however,

that this EMA is a post-processing technique, being implemented offline exclusively.

Figure 19. Exponential moving averaged reference for N=54, alongside the encoder readings

Subsequently, the accelerometer-based speed estimation was assessed with the same test sequence,

with the results depicted in Figure 20. Note only the speed on the axis of interested is presented, and

neither the reference was not modified nor RMSE computed for this graph

30

Figure 20. Accelerometer readings based on the test sequence

Moreover, it is relevant to notice the movement-end check impact on the estimated speed, which

forces the output to zero only after twenty-five (25) consecutive zero readings, clearly visible when

the reference is set to zero. Moreover, notice that estimation procedure does drift over time, which

is evident for the first two iterations and the fifth, due the fact their longer duration, when this effect

becomes more visible. Finally, it is clear the speed estimation is less accurate than the encoder

readings, but outputs data three times faster (150 Hz) with the current data processing required by

the speed estimation algorithm.

Complementary Filter

The IMU and encoder data are fused through a complementary filter, in order to reduce the overall

noise of the derived speed before forwarding such information to the Pre-Kalman filter and,

subsequently, to the Kalman filter itself, which is further explored in the next chapter. Both 1st and 2nd

order complementary filters were implemented offline to simplify the procedure of tuning their

respective gains. Additionally, considering the complementary filter implementation consists basically

of hard-coding equations (2.4) for the 1st order or (2.7-2.11) for the 2nd order, the bottleneck in terms

of how fast the robotic system can provide a filtered output is not influenced by the additional

operations. Thus, the offline implementation for tuning the gains should present the same behavior

as the real one, given a 150Hz frequency is respected.

Initially, the 1st order complementary filter was tested by varying the gain 𝐾 from 0 to 1, which

corresponds to not considering or only considering the accelerometer speed estimation, respectively.

For each gain, RMSE is computed based on the EMAd reference value and the filter’s output, which

yielded the following graph:

31

Figure 21. RMSE versus 1st order CF gain

The smallest and consequently the best RMSE obtained was 0.0312 m/s, which corresponds to a gain

of 𝐾 = 0.02. Note that this value represents the filter outputs reliable speeds when the accelerometer

speed estimation is given a 2% weight, meanwhile the encoder readings 98% weight. With the gain

properly defined, the complementary filter was implemented and the whole test performed once

more. The results were logged and plotted, as shown in Figure 22 below. Note both the reference and

the encoder values are hardly visible, with the filter smoothly fusing the data and outputting a more

stable speed.

Figure 22. 1st order complementary filter results

Although the 1st order filter presented fairly good results, the 2nd order complementary filter was also

implemented in order to check how a higher order structure would behave and decide whether its

32

more complex structure is worth to be chosen instead of the 1st order filter. The procedure applied to

the 1st order filter is repeated, with the gain 𝐾 being varied from 0 to 20 and each respective RMSE

calculated. The results are depicted in Figure 23 below:

Figure 23. RMSE versus 2nd order CF gain

Based on Figure 23 above, it is evident the 2nd order CF is rather unstable for this system in terms of

RMSE. However, in order to fully check its behavior, the filter was implemented and tested with 𝐾 =

18, which corresponds to the best RMSE obtained (0.0322 m/s) – note that based on the RMSE, it is

possible to conclude this implementation is worse than the 1st order one, that presented a smaller

value: 0.0312m/s. The logged data was plotted and is shown in Figure 24 below. Note, however, that

such implementation behaves properly and its output is similar to the 1st order, except when the speed

goes to 0 – in which case the output presents an overshoot.

33

Figure 24. 2nd order complementary filter results

Comparison

In summary, both 1st and 2nd order complementary filter implementations had similar performances,

with the former slightly outperforming the latter. However, the 2nd order version requires extra

memory, is slightly harder to implement, and presents an undesirable behavior (i.e. overshoot) which

may further influence the Kalman filter’s behavior. Due to these facts, the 1st order complementary

filter was chosen to be used. Another interesting point is that although the RMSE of the 1st order

version is higher than the pure encoder readings, the output of the filter itself has a smaller standard

deviation (0.25699 in comparison to 0.24778), thus is more stable. Figure 25 compares both filter

versions’ implementations, for the whole test sequence.

Figure 25. 1st and 2nd order complementary filter results

34

Not only does the complementary filter reduce the overall standard deviation, but it also improves

the sampling frequency of the speed. Previously, the speed could only be updated once every 20

milliseconds (50 Hz) due to the encoder limitation. By combining the encoder readings with the

accelerometer speed estimation, one can poll at a much faster rate: every 6 milliseconds (166 Hz),

about 3.3x faster. It is advisable, however, to retrieve data at a lower rate due the fact the system

might be late when asynchronous events (i.e. references update) triggered by a master (i.e. tracking

system) must be processed. In practice, the refresh rate used corresponds to 140 Hz.

Finally, the robotic system comprises the implementation of this technique due the fact it is

considered the low-level control system. Hence, it is responsible for driving the motors, providing the

current (filtered) speed, and additionally the gyroscope data required by the Pre-Kalman filter.

2.5 Communication protocol

Communication between the robotic system and a master (e.g. tracking system), more specifically the

MegaPi board – PC (or ideally Zynq) data exchange must respect guidelines in order to proper send or

receive data. Thus, a (micro)protocol under certain bus configurations was implemented, and will be

addressed in this section. Such protocol is serial-based and implements data transfer with the Most

Significant Byte being sent first (MSB first), and neither CRC nor ACK are implemented, to keep it as

simple and fast as possible.

Data transfer is implemented through an UART bus, with both devices configured as follows:

• Baud rate: 5000000 bps (62.5 kbps) – advisable to increase it in the future

• Word length: 8 bits

• Stop bit(s): 1

• Parity: None

• Flow control: None

The only and essential communication between the robotic and tracking systems is full-duplex, with

both systems being able to send and receive data. Currently, two (2) message packets are supported,

one for retrieving sensor data and another for setting new speed references. These packets are

composed, generally, by a synchronization word (2 bytes), a command byte (1 byte), and data bytes.

The former is used for synchronization purposes, the command is dedicated to specifying the

requested functionality, followed by data bytes when applicable.

The generic data packet for requesting sensor data from the robotic system and its respective

response are shown in Figure 26. On the other hand, setting speed references does not require any

response from the robotic system, and its general packet is depicted in Figure 27.

35

Figure 26. Master (tracking system) – Robotic system sensor data request (top) and response (bottom) data packets

Figure 27. Master (tracking system) – Robotic system references data packet

Requesting sensor data corresponds to sending three bytes, the sync word and the corresponding

command (0x00). The robotic system replies with: current speed, yaw, pitch and roll (4 bytes each). A

synchronization word is also added in the beginning of such message; thus, the total number of bytes

sums up to 19 bytes for the response. Setting speed references requires 11 bytes in total to be sent:

sync word, command (0x01), followed by the right and left reference speeds (4 bytes each). Note that

all speed values are in RPM so data is platform-independent and a simple conversion is required to be

done in another platform. Furthermore, positive and negative references correspond to moving

forwards and backwards, respectively. Gyroscope data, on the other hand, is pre-processed (i.e.

converted to °/s) due to the fact its sensitivity and other device-specific configurations should not be

relevant to the master.

Note that floating-point values are sent via serial, and in order to do so a union structure is used for

both sending and retrieving these numbers. Check Appendix C: Embedded Software for an example

on how to implement such technique.

36

2.6 Final Implementation

With each component of the robotic system properly defined and tested, it is possible to merge them

to compose the whole final implementation. This section presents an overview of the complete

robotic system in terms of structure, hardware and software, with the setup itself being depicted in

Figure 28 below.

Figure 28. Robotic system final setup

In addition to the components previously discussed, a camera is attached to the robotic system, as

shown in Figure 28 above. Note, however, that such device is only placed together with this system,

but it is part of the tracking system which will be discussed in the next chapter. Moreover, the current

setup does not comprise a dedicated board (i.e. Zynq) that would perform the high-level operations

related to the camera, due the fact the tracking system is running on a PC that connects to the robotic

system with an USB cable. Ideally, the PC should be replaced by another board and the communication

between systems realized with direct UART connections – Tx, Rx, VCC and GND.

2.6.1 Hardware

With respect to hardware, the robotic system comprises two (2) encoder motors, their respective

drivers, the MegaPi board, a RJ25 shield to interface with the IMU module (accelerometer and

gyroscope), and a Bluetooth module which is currently unused. Additionally, it has an UART

connection to an external tracking system, which makes uses of the µprotocol discussed in section

2.5. Finally, a 3-cell Li-Po battery is used to power the whole system (ideally the tracking system as

well), capable of providing 14.4Wh (11.1V @ 1.3A) and thus enough power to all modules and more

importantly, both encoder motors. The overview of the robotic system is depicted in Figure 29 below.

Although it is not shown, the IMU module is connected to slot eight (8) of the RJ25 shield, the right

and left encoder motors (and drivers) are attached to PORT1 and PORT2, respectively. Bluetooth

utilizes UART3, and communication with the other system uses UART1.

37

Figure 29. Final hardware architecture of the robotic system

Notice the IMU module was placed on the same platform as the battery (check Figure 28), which

defines the reference axis for the module’s data: the positive X axis points to the front, positive Y to

the left and positive Z to the top of the robot, respectively. This configuration directly impacts the data

signaling retrieved from the module, and was taken into consideration during development. Based on

the module’s orientation, heading (or yaw), pitch and roll are rotation around the XY, XZ and YZ planes,

respectively, with the gyroscope and accelerometer data correspondence being summarized in Table

2 below.

Table 2. Movement type, axis, and signaling correspondence for the IMU module

2.6.2 Software

In terms of software, the robotic system is responsible for retrieving and processing IMU and

encoder’s data, alongside applying the complementary filter and driving the motors. Moreover, it

must comply to the µprotocol discussed and react to asynchronous serial events. It is relevant to

notice that the software runs in a single-core microcontroller, in a sequential manner, with the

Arduino IDE being the development tool used. The first step is initializing peripherals, as shown in

Figure 30 below:

Figure 30. Robotic system’s initialization procedure

Initialization is rather simple, with relevant I/O pins begin initialized first, followed by the encoder

motors which requires setting up related timers for PWM and encoders’ interrupts. Then, the IMU

Accelerometer Gyroscope Positive Negative

Heading - Z Turning left Turning right

Pitch - Y Going downhill Going uphill

Roll - X Rolling right Rolling left

Linear X - Going forward Going backward

Signal meaning
Movement

Axis

Initialize pins
Initialize

encoder motors
Initialize IMU Initialize UART

Enable
interrupts

38

module is calibrated and initialized, alongside the UART used for communication (or debugging), and

finally all interrupts are enabled. After this step, the main loop runs, with a single execution depicted

in Figure 31 below:

Figure 31. Robotic system’s single loop execution sequence

Driving the motors corresponds to setting the latest speed references to the PID controllers. Next, the

encoder readings are retrieved and converted to m/s, followed by the speed estimation procedure

based on the (filtered) accelerometer readings. The complementary filter is then applied to both

speeds derived, and finally internally stored in RPM. Although filtering the gyroscope was not

previously discussed, another instance of the EMA was implemented specifically for noise reduction,

as such information is forwarded to the tracking system. Moreover, the filter gain chosen during

testing and for the final implementation was 𝛼 ≅ 0.33 , which corresponds to 𝑁 = 5 samples.

Similarly to the speed estimation procedure applied to the accelerometer readings, the gyroscope

data should be fed to a window-filter, with a maximum and minimum window values equal to ±0.2

°/s, respectively, which were derived in practice.

Asynchronous serial events triggered by a master may happen at any moment, and should be handled

properly. This is implemented within a receiver (RX) interrupt routine, that reflects the behavior of the

state-machine depicted in Figure 32.

Figure 32. State machine of the serial event handler

Initially, the handler is in the synchronization state (Sync), in which at least three (3) bytes must be

received in order to switch to the next state and further receiver or send data. If a correct

synchronization word (2 bytes) is received, followed by a supported command (1 byte), the handler

moves either to the Receive Speed References or Send Sensor Data states. The latter does not require

any other data to be received, thus it immediately sends the requested sensor data to the master.

When receiving speed references, it waits for a total of eight (8) bytes and update the internal

reference values, which are later forwarded to the PID controllers if and only if the data is valid: values

are within ±203.5 RPM, which is the absolute maximum rating of the encoder motors.

To avoid data inconsistency during transmissions, flags are used before and after each step, preventing

incorrect data of being sent. However, this requires saving data from the previous loop, thus memory

Drive motors
Get encoders'

speed

Run speed
estimation & filter

gyroscope data

Apply
complementary

filter

Convert speed to
RPM

39

usage is higher and the algorithm is more complex. Data inconsistency is avoided, in summary, in the

following manner: before retrieving data (either encoder’s or IMU’s), the respective step flag is set to

false, and the data retrieval is triggered; if by any chance an asynchronous serial event occurs during

this procedure, the data that will be sent refers to the previous iteration because the respective flag

is checked; finally, after correctly retrieving the data, it is copied to a fail-safe variable, alongside the

flag being set to true (setting the flag occurs first).

In the beginning of the source code, relevant parameters are defined and commented, such as:

• Micro protocol configurations: baud rate, synchronization word and total amount of bytes to

be sent or received;

• Gyroscope and accelerometer data configurations: bias (window-filter), index of the relevant

axes, sign correction (accelerometer only) and EMA filter parameters;

• Speed estimation configurations: gravity value, robot’s wheel (and track) total radius, and

movement-end check maximum counter;

• Complementary Filter configuration: gain.

The high-level libraries used for this implementation are the “MeMegaPi” default library, and modified

versions of the “MeEncoderOnBoard” and “MeGyro”. Refer to Appendix C: Embedded Software for

more details.

40

3. Tracking system

Figure 33. Tracking system outline

With the robotic system correctly implemented and validated, the tracking system is the next one to

be assessed. This is the core system of this project, and is responsible for maneuvering the robotic

system in order to maintain the target object’s position with respect to the image (i.e. frame from the

camera) coordinates outputted by a Neural Network. Furthermore, the target object’s coordinates are

fed to a Kalman filter, which addresses the current flaws of the neural network: (1) deviation with

respect to the output position, (2) false-negatives, and (3) occlusion scenarios. The smoothed position

coordinates are then forwarded to the controller which handles the speed and direction of the robotic

system. Figure 33 above depicts the most important blocks of the tracking system, which are detailed

within this chapter. Although both camera and Neural Network are not the focus of this project, due

the fact it was part of another colleague’s thesis, they are briefly discussed.

Due to limitations on the Neural Network’s performance, which typically achieves 90% of accuracy

during the training phase in most scenarios, and the localization algorithm which roughly estimates

the coordinates (i.e. position) of the object in the image, a filtering technique is required to smooth

the position output. Consequently, controlling where the object is in the image, thus indirectly

controlling the distance the object is in relation to the robotic system, becomes more stable. Data

coming from the robotic system (angular velocities and linear speed) is processed by the “Pre-Kalman

Filter”, which is responsible for estimating how the ego-motion of the robot impacts the movement

of the object (being tracked) in the image. The ego-motion itself refers to how the robotic setup is

moving in terms of linear speed (translation, in m/s) and angular velocity w.r.t. heading (rotation, in

°/s). Its impact on the tracking procedure, on the other hand, is analogous to estimating both

translation and rotation movements in terms of pixels per seconds (px/s). Moreover, the latter is

denoted as “pixel speed” throughout this thesis, and corresponds to the movement of both

coordinates (X and Y) of the target which are derived by the neural network. The pixel speeds (X and

Y axes) are finally forwarded to the Kalman filter, responsible for filtering the neural network’s output

coordinates. Lastly, the filtered object coordinates are fed to the “Pixel Control” module, which

controls the speed and direction of the robotic system in order to maintain the target object in a

reference position.

41

Finally, a set of requirements and functionalities was defined for the tracking system, which must:

• Interface with a camera, and programmatically access a frame;

• Be compatible with a Linux-based platform;

• Be able to execute a (simple) Neural Network model, ideally in an accelerator;

• Provide stable position information of the target object;

• Use ego-motion data to improve the position information, whenever possible;

• Maintain the target object close to a reference position, with respect to the image;

• Send speed references to the robotic system;

• Retrieve sensor data from the robotic system: current speed and angular velocities;

• Execute all tasks faster than the frame rate provided by the camera;

• Provide a simple user interface.

3.1 Camera

Although sensor data is retrieved from the robotic system and used in the tracking system, the camera

is considered the main sensor of this application. Not only does it usually represent a bottleneck due

to its maximum frame rate, but also must be able to stream to an embedded platform. The latter is

more problematic, due the fact most cameras are not capable of streaming at all. Moreover, handling

a frame is different in hardware (i.e. FPGA) and software (i.e. microcontroller), thus even when

streaming is a possibility, one must consider the interface. The most relevant camera interfaces used

for streaming are: (1) USB, (2) HDMI output, (3) Wi-Fi and (4) direct I/O connections. The former

requires a driver, do not meet real-time requirements, and might not meet the framerate, especially

due the fact most USB cameras are webcams, thus framerate is not relevant as it is for this application.

On the other hand, cameras with HDMI output require a more complex driver and are rather

expensive because it is considered a “professional” feature, except for action cameras. Wi-Fi

streaming is fairly common, especially for action cameras, but a delay is often present. Finally,

interfacing a camera directly via its I/O pins present an even harder driver implementation, in addition

to a low availability on the market.

Figure 34. GoPro Hero4 Black mounted on top of the robotic system

Considering all the aforementioned factors, it was decided to use a camera with both Wi-Fi and HDMI

output options for streaming, with a reasonable price: the GoPro Hero4 Black [34]. Moreover, this

camera can deliver up-to 240 frames per second (fps) at 720p resolution (1280x720 pixels), which is

more than enough for the application, due the fact the bottleneck of the tracking system is the neural

42

network, which currently runs at 20 Hz (i.e. 20 fps) in a PC – this will be further detailed in this chapter.

As this camera is considered an “action camera”, it could be easily placed on the robotic system, and

is shown in Figure 34 above inside a waterproof case.

Among other options, the user can choose the field of view of the camera for the specified resolution:

Ultra-wide, Medium or Narrow. The former presents substantial lens distortion, and the latter is

mostly used when a high frame rate is required. As distortions might impact the ego-motion

translation to pixel motion, and 240 fps is rather excessive, the camera was configured to operate on

Video Mode, with 720p resolution at 60 fps and Medium field of view.

Streaming can be done by either using a mini HDMI cable to connect the camera to a monitor, or

another hardware with HDMI input circuitry, or by connecting a Wi-Fi device to the camera’s access

point. Initially, a platform with HDMI input capabilities were meant to be used, however the current

implementation uses the Wi-Fi access point for streaming, due to its simplicity. There is a typical 0.5

seconds delay when streaming over Wi-Fi which cannot be avoided, although it could be removed if

the HDMI option is used instead. Moreover, the stream resolution over Wi-Fi is restrained to 640x480

(480p), although the framerate remains unchanged (60 fps).

Accessing the frame programmatically when streaming over Wi-Fi, however, requires reverse

engineering due the fact the protocol used is proprietary: in summary, a HTTP request is sent to the

camera to begin the stream, and keep-alive packets must be sent periodically every 2.5 seconds to

maintain it. The frames themselves can be accessed in different ways, but saving each image to a file

and replacing it whenever a newer frame arrives proved to be sufficient, and more importantly,

uncomplicated to implement. Due to the complexity of the protocol and the upcoming neural network

algorithm, handling the stream and running the neural network itself were both implemented in a

Python application, which is Linux compatible. Moreover, this piece of software launches a ffmpeg

[35] process, which saves the stream frames. For more details on the implementation, refer to the last

section of this chapter and Appendix C: Embedded Software.

3.2 Neural Network

Although the neural network is part of another colleague’s work, it is necessary to briefly discuss it, in

terms of expected inputs and outputs, in addition to timing. Generally, a convolutional neural network

(CNN) is composed of layers with neurons that have learnable weights and biases, and, in a simplistic

manner, filter the input data through convolutions, based on the weights of the neurons. Training is

an essential procedure of a neural network implementation, in which several inputs are provided and

the weight of each neuron is tuned. Several variations of neural network exist, although for this project

a CNN is applied in frames from the camera. More specifically, two (2) neural networks are used, one

meant for detecting the target (detection neural network), and another for localizing the target within

the input image (localization neural network), which in the training phase (best-case scenario) was

able to achieve around 90% accuracy. Both are denoted as Neural Network module, and its overall

functionality is shown below:

43

Figure 35. Neural network functionality overview

Whenever a frame is available to be processed, it is fed to the neural network. Initially, the detection

neural network is applied, and whether the target is detected, valid coordinates (i.e. within the image

boundaries) are outputted. If the detection fails, negative coordinates are provided as output.

Specifically, the goal of the application is to follow the robot depicted in Figure 36, currently only from

behind, hence the neural network was pre-trained with several images of the target object in different

scenarios.

Figure 36. Target object

Another relevant factor is the frame resolution, in pixels, due the fact the training procedure

constraints the required input size. For the neural networks used in this project, it is necessary to

resize the incoming frame with a 480p resolution down to 360x240 and 224x224 pixels for the

localization and detection layers, respectively. Although the initial goal was to have the neural network

module implemented in hardware (i.e. FPGA), the current implementation is done in software, more

specifically in Python, with the TensorFlow [50] library. During testing, the worst-case execution time

of both neural networks observed was 40 milliseconds (25 Hz), thus framerates higher than 25 fps are

useless in this scenario. The camera stream, however, was (soft-)limited to 20 fps thus the neural

network has extra time (10 milliseconds) to process the frames and should not miss the deadline,

except in unusual situations (e.g. high CPU load, cache problems). Notice that this limitation on the

neural network module actually corresponds to the bottleneck of the system.

Finally, it is important to note the TensorFlow library has a GPU variation, which can be used if a GPU

is available, decreasing the execution time to about 20 milliseconds (50 Hz) and thus partially

addressing the bottleneck, although a higher framerate (> 60 𝑓𝑝𝑠) is desired. Figure 37 below depicts

a frame captured by the camera which is fed to the neural networks used (on the left), and the target

coordinates are marked (on the right). Notice the position of the target does not correspond to the

same coordinates for different frames, which is further addressed by the Kalman filter.

44

Figure 37. Sample input (a) and output (b) frames of the neural network

Although one might argue the (upcoming) Kalman filter can be indirectly embedded in the neural

network itself, this design requires a more complex structure for the neural network such as a

Recurrent Neural Network (RNN). Moreover, the major problem would be obtaining a training set in

this scenario, which would need manual and careful annotation.

3.3 Pre-Kalman Filter

Based on the robotic system’s output (linear speed and angular velocities) – namely the ego-motion -,

a conversion must be performed in order to provide the correct input for the Kalman filter, which will

be handling the target’s object coordinates in pixels. More specifically, the interest is in how the

ego-motion of the robotic system impacts the position of the target in an image, due the fact the

Kalman filter derives the object's motion directly in pixels/second. In summary, linear speed (m/s) and

angular velocities (°/s) are translated to 2D pixel speeds (px/s): 𝑉𝑥 and 𝑉𝑦. The latter corresponds to

how the target position is affected by the ego-motion itself, and is defined as “pixel speed”.

There are specific techniques to transform real-world speed to pixel motion and vice-versa. However,

algorithms such as an online camera external parameters calibration or SLAM [10, 36, 37, 38, 39, 40,

41] requires computationally expensive image processing techniques (i.e. sift key points and RANSAC)

combined with a dedicated Kalman Filter, with many relying on the camera calibration procedure.

Considering the application will be implemented in an embedded platform, it requires simpler, and

more importantly, faster techniques. Thus, the “Pre-Kalman Filter” module is proposed, addressing

specifically the computational and implementation complexities issues, and will be detailed in this

section.

Initially, it is necessary to introduce the optical flow field of the camera, which relates both

translational and rotational motions to pixel movement. More specifically, two types of field are

usually discussed in literature: motion- and optical flow fields. The former is the real-world 3D motion

of objects, meanwhile the latter is analogous to the projection of the motion field onto the 2D image.

45

The main idea of the Pre-Kalman filter is to abstract the real motion of the target, and estimate the

optical flow field based strictly on the ego-motion data. According to [42] and [43], a pure translational

motion of the camera (hence, the robotic system) corresponds to a point in the image moving towards

or away from another point, called the focus of expansion (FOE). When the camera is rotating and

translating at the same time, the optical flow field can be quite complex: the translational component

and hence the optical flow field is cubic or even higher order for curved 3D surfaces, although the

rotational component is always quadratic [42].

Furthermore, the optical flow field is a function of 2D pixel coordinates, a rotation matrix (extrinsic

parameters), and the camera’s focal length (intrinsic parameter). Notice that both intrinsic and

extrinsic parameters are required, but not available and quite burdensome to determine on-the-fly,

hence the Pre-Kalman filter module can use only the ego-motion data alongside specific coordinates

to determine the pixel motion. Figure 38 below depicts the overview of the module, besides its inputs

and outputs:

Figure 38. Pre-Kalman Filter overview

The input coordinates, however, must reflect the position of the target object, due the fact the interest

in strictly on its movement. Hence, this module is initialized with “invalid” input coordinates, which

forces it to be bypassed and is only activated once the following module (i.e. Kalman Filter) provides

a valid (filtered) position.

Provided that the output of the neural network is quantized and rather unstable, computing the ego-

motion for raw coordinates might negatively impact the overall behavior, thus it is desirable the input

coordinates of the Pre-Kalman module are provided by the Kalman Filter itself. In order to correctly

translate ego-motion to pixel speeds, both translational and rotational movement impacts are

individually analyzed, approximated to 2D or 3D functions based on the available inputs and practical

observations, and further combined as it is discussed in the upcoming subsections.

It is relevant to note that the camera must be placed aligned to the center of the robotic system and

facing downwards as shown in Figure 28 (section 2.6), due the fact the optical flow view is strictly

dependent on the camera’s orientation and all approximations might differ. Moreover, the coordinate

system used throughout this thesis is defined based on the image representation, with the origin being

located on the top-left corner of the image, as depicted in Figure 39 below.

46

Figure 39. Pixel's coordinate system

Notice that negative pixel coordinates are considered valid for only positive values in-between 0 and

the maximum image dimensions (either height or width) and angle θ, denoted as slope in this

chapter, is computed with:

 𝜃 = tan−1 (|
∆𝑥

∆𝑦
|) (3.1)

Although the image is resized on the final application to 320x240 pixels, it is relevant to note the image

resolution used throughout this section corresponds to 640x480 pixels, due the fact analyzing smaller

images is harder. However, simply resizing the image corresponds to dividing the final pixel speeds by

two (2), in this case, hence there is no need to perform the upcoming steps once more.

3.3.1 Translation impact

Initially, the optical flow field for a pure translation was investigated. In order to illustrate the

displacement of a few pixels, a checkboard pattern is positioned in front of the camera, and the robotic

system is driven for a short period of time. For a pure translation movement, the initial test is

straight-forward: a reference RPM is set to a constant value (+50 RPM), a video is recorded with the

camera placed on the top of the robot, which is post-processed so the optical flow can be analyzed.

Note that it is easier to evaluate the optical flow when the aforementioned pattern is put in front of

the robot, as shown below:

Figure 40. Optical flow field representation for pure translation

After careful consideration on several optical flow fields obtained for different forward and backward

speeds, the following points could be derived:

• Pixel displacement is symmetric around the image's center column;

47

• Defining a slope and base speed is easier than directly deriving pixel speeds, although this

implies using at least 2 approximation functions;

• The image should be divided both vertically and horizontally, with more vertical divisions due

the fact slopes changes more often;

• The higher the speed, the larger the displacement, this increasing the speed corresponds to

scaling a “base speed”;

• In terms of implementation, a polynomial (surface) fitting yields more accurate results in

comparison to a look-up table, at a cost of extra computational time.

The modulus of the resulting pixel speed of a specific pixel can be approximated by multiplying a “base

speed” value, which corresponds to the pixel speed for the minimum RPM. The corresponding angle,

on the other hand, does not need scaling and can be directly derived. Potentially, all pixels of the

image can be processed to compute an accurate approximation, however this is burdensome. Thus,

one might apply the symmetry characteristic to reduce the overall data processing required, by

dividing the image in sub-blocks as shown in Figure 41 below. Although the symmetry property can be

applied, it requires a signal correction due to the fact the direction of the pixel speed is, in fact,

mirrored with respect to the center of the image (check Figure 40 above).

Figure 41. Symmetry grid

Note that each division has a dimension of (W/6 x H/4) pixels, with 𝑊 = 640 and 𝐻 = 480 being the

image width and height in pixels, respectively. By indexing the 4x3 sub-block on the left as a matrix,

the central pixel coordinates of each division can be computed as follows:

𝑃𝑚,𝑛 = ((2𝑛 − 1) ∗ 𝑥𝑑; (2𝑚 − 1) ∗ 𝑦𝑑)

𝑥𝑑 =
𝑊

2𝑀
=
320

𝑀
; 𝑦𝑑 =

𝐻

2𝑁
=
240

𝑁

With 𝑃𝑚,𝑛 being the central pixel coordinates of the 𝑚𝑛 division, 𝑚 the row, 𝑛 the column, 𝑀 the

number of rows (i.e. 6), and 𝑁 the number of columns (i.e. 4). The number of rows and columns were

chosen based on the observed optical flow fields previously observed, although increasing their

quantities improves the upcoming approximations. Furthermore, for the given number of divisions

and image dimension, the central pixel coordinates are: (53; 60), (160; 60), (267; 60), (53; 180), (160;

48

180), (267; 180), (53; 300), (160; 300), (267; 300), (53; 420), (160; 420) and (267; 420). The interest is,

from now on, only on the left 4x3 sub-division and its corresponding central pixels.

Finally, the pure translation impact on each central pixel can be approximated as follows:

1. For each central pixel

a. Compute its base speed (minimum RPM), in px/s;

b. Compute its base angle, in degrees;

c. Repeat (a-b) 5x, then average the result;

d. Save central pixel coordinates, average base speed and angle;

2. Compute a polynomial fir for base speed and angle.

The angles are computed with (3.1), meanwhile the speeds as follows:

 𝑣𝑝𝑖𝑥𝑒𝑙 =
√∆𝑥2 + ∆𝑦2

∆𝑡
 (3.2)

With ∆𝑥 and ∆𝑦 being the x- and y-coordinate displacement, in pixels, and ∆𝑡 the total movement

time, in seconds.

Scale Factor: 𝜸(𝑹𝑷𝑴)

As previously discussed, the base speed should be scaled based on the linear speed. Thus, the scale

factor must be correctly estimated. By setting the RPM to a constant value, recording a video, and

observing a single pixel, and repeating this for several RPMs, the scale factor function 𝛾(𝑅𝑃𝑀)

function can be estimated. Such procedure, however, must be performed for a certain RPM range:

from 15 up to 203.5 which corresponds to the minimum and maximum RPM, respectively. Moreover,

when the minimum RPM is used, the pixel speed is called the “base speed” and the scale factor is

determined by:

 𝛾(𝑅𝑃𝑀) =
𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀|)

𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀𝑚𝑖𝑛|)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀|)

𝑣𝑝𝑖𝑥𝑒𝑙(15)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝑅𝑃𝑀|)

𝑣𝑏𝑎𝑠𝑒
 (3.3)

Note that there is no reason to compute both pixel speed components (x and y), due the fact the

interest is in the resulting (combined) speed, which is calculated with (3.2). The described procedure

was performed to a specific initial pixel with a 10 RPM increment between measurements to avoid

excessive data. The following graph and speed scale function were obtained:

49

Figure 42. Speed scale factor function for pure translation

Fortunately, the scale factor can easily be approximated by a linear function, as shown above in the

graph, and corresponds to:

 𝛾(𝑅𝑃𝑀) = 0.1282 ∗ |𝑅𝑃𝑀| − 0.6138 (3.4)

The standard deviation obtained for this approximation is 1.6 for 𝛾, and about 63 px/s for the pixel

speed. The fact the scale factor approximation can be applied to any other pixel was validated by

randomly picking other initial pixels, setting a known RPM within the valid range, observing its

movement, and applying the above function to estimate both the scale factor, as well as the pixel

speed which is computed through:

 𝑣𝑝𝑖𝑥𝑒𝑙(𝑅𝑃𝑀) = 𝑣𝑝𝑖𝑥𝑒𝑙(𝑅𝑃𝑀𝑚𝑖𝑛) ∗ 𝛾(𝑅𝑃𝑀) = 𝑣𝑏𝑎𝑠𝑒 ∗ 𝛾(𝑅𝑃𝑀) (3.5)

It is important to notice that 𝛾(𝑅𝑃𝑀) should only be applied when |𝑅𝑃𝑀| ≥ 5 , preventing

unnecessary calculations when the robotic system is static or rotating around an axis. Handling the

RPM signal is discussed in the upcoming subsections.

Base speed & angle

Figure 43. Optical flow field representation for the central pixels, during a pure translational motion

50

Both the base speed and angle can be derived with the same test procedure used for the speed scale

factor 𝛾, but for the minimum RPM (15) only. However, due to symmetry, only half of the image is

considered (𝑥 <= 𝑊/2), and more specifically for the 3x4 grid division previously described (Figure

41). The central pixel of each division is then analyzed, with its speed and angle computed 5 times,

and stored in a table, then fed to a 3D surface fit function (polyfitn [44]), which computes both base

speed 𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) and base angle 𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) functions. Note that both functions only depend on

the pixel coordinates (x, y), and their respective plots are shown below.

Figure 44. Surface fit for the base speed (pure translation)

Figure 45. Surface fit for the base angle (pure translation)

Note that in Figure 44, the slowest pixel speed is located around the top middle portion of the image,

meanwhile the fastest one around the bottom edges of the image, which matches the observed

optical flow field. For the base angle (Figure 45), the surface is slightly more complex, although it is

51

simple to notice the highest angle is located around the left corner of the image, and the lowest

around the center, which also matches the observed optical flow field. It is important to notice the

angle is converted to degrees, whenever applicable, because the coefficients of the approximated

functions would be
𝜋

180
 times smaller otherwise, thus requiring more precision. The obtained

polynomial for the base speed and angle, respectively, are:

𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000012𝑥

2 + 0.000166𝑥𝑦 − 0.0545𝑥 − 0.00016𝑦2

+ 0.09347𝑦 + 50.65
(3.6)

𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000105𝑥

2 + 0.000124𝑥𝑦 − 0.092𝑥 + 0.00009𝑦2 − 0.1068𝑦
+ 53.62

(3.7)

Polynomial order was chosen based on the available data points, required precision and standard

deviation from the original values. The standard deviations obtained for the base speed and angle

were 0.4414 px/s and 0.898°, respectively.

Resulting function

Both base speed and angle are combined to finally calculate the pixel speeds by applying equations

(3.4), (3.5), (3.6) and (3.7) with the respective linear speed (in RPM) and pixel coordinates.

Furthermore, due to the symmetry applied and considering both forward and backward movements,

it is required to correct the signaling of the resulting speeds, thus two additional functions are defined

as follows:

 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) = {
+1, 𝑖𝑓 𝑥 > 𝑊/2
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.8)

 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) = {
+1, 𝑖𝑓 𝑅𝑃𝑀 ≥ 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3.9)

𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) is related to the symmetry characteristic, and influences only the x-speed component.

𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀), on the other hand, is related to forward/backward movement, and impacts only

the y-speed component. Moreover, if the condition 𝑥 > 𝑊/2 is satisfied, the x coordinate value must

be updated before applying it to the other equations: 𝑥 = 𝑊 − 𝑥 . In summary, the following

algorithm is employed for the whole procedure:

1. If |𝑅𝑃𝑀| ≥ 5, compute:

a. 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) and correct x, if needed (𝑥 = 𝑊 − 𝑥)

b. 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀)

c. 𝐶(𝑅𝑃𝑀, 𝑥, 𝑦) = 𝛾(𝑅𝑃𝑀) ∗ 𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)

d. 𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)

e. Both speed components

i. 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 = 𝐶(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ sin(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥)

ii. 𝑣𝑦𝑡𝑟𝑎𝑛𝑠 = 𝐶
(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ cos(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀)

2. Else, 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 = 𝑣𝑦𝑡𝑟𝑎𝑛𝑠 = 0

52

For a better understanding, consider the following example that was actually used for validation

purposes: the speed of the robot is set to 75 RPM, and the coordinates of the pixel of interest are

(102; 141), which are the only parameters needed. The pixel speeds, then, are computed as follows:

1. 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) = 𝑠𝑖𝑔𝑛𝑎𝑙(102) = −1

2. 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) = 𝑠𝑖𝑔𝑛𝑎𝑙(75) = +1

3. 𝐶(𝑅𝑃𝑀, 𝑥, 𝑦) = 𝐶(75,102,141) = 𝛾(75) ∗ 𝑣𝑡𝑟𝑎𝑛𝑠(102,141) = 9.0 ∗ 57.35 = 516.24

4. 𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) = 𝜃𝑡𝑟𝑎𝑛𝑠(102,141) = 31.66 𝑑𝑒𝑔

3. 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 = 𝐶(75,102,141) ∗ sin(31.554) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(102) = −270.94
𝑝𝑥

𝑠

4. 𝑣𝑦𝑡𝑟𝑎𝑛𝑠
= 𝐶(75,102,141) ∗ cos(31.554) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(75) = 439.42

𝑝𝑥

𝑠

The resulting speeds are illustrated in Figure 46 below:

Figure 46. Illustration of the resulting speeds for pure translation

In order to validate the calculated pixel speeds, both speed and angle are manually calculated with

(3.1) and (3.2), considering a time span of 0.5 seconds, and the final pixel coordinates (-30, 341):

𝑣𝑝𝑖𝑥𝑒𝑙 =
√∆𝑥2 + ∆𝑦2

∆𝑡
=
√(−30 − 102)2 + (341 − 141)2

0.5
= 479.27

𝑝𝑥

𝑠

𝜃 = tan−1 (|
∆𝑥

∆𝑦
|) = tan−1 (|

(−30 − 102)

(341 − 141)
|) = 31.43°

Note that both the manually derived speed and the angle are close to the values obtained through the

approximated functions, thus the pure translational motion approximation was applied.

3.3.2 Rotation impact

In addition to pure translation, it is necessary to analyze the impact of a pure rotation motion, in order

to combine both results and finally compute the resulting pixel speeds in both axes. The procedure is

closely related to the previously applied for pure translation, with the only difference being the

resulting speed of the robotic system which must always be zero (pure rotation). This is achieved by

setting a positive RPM value for one of the motors, and (the same but) a negative RPM for the other.

For instance, if the desired motion is a pure rotation to the left, one should set +25 RPM for the right

53

motor, and -25 RPM for the left one. A sample optical flow field is depicted in Figure 47 below for a

pure rotation motion.

Figure 47. Optical flow field representation for pure rotation

Rotation information is retrieved from the IMU, more specifically the gyroscope of the robotic system.

Although rotation around all axes are important, for this application only one is considered, which

relates to changes in yaw (heading). Rolling and pitch are assumed not to happen, due to practical

constraints: it is extremely difficult to set a constant pitch or roll value, which is a valid assumption

considering the robot will operate in a flat surface, as previously discussed. Moreover, the robot

moves slowly, with +-200 °/s (w.r.t. yaw) being considered the absolute maximum angular velocities.

A pure rotation motion presents similar behavior with respect to the relevant points previously

derived during the pure translation analysis. It is important to notice, however, that the gyroscope

data (𝑤𝑦𝑎𝑤) is utilized instead of the RPM in this case, hence the scaling factor is dependent on the

angular velocity. Moreover, symmetry can be applied once more, but requires extra signal correction

due the fact the pixel speeds are mirrored with respect to two axes (check Figure 47 above), and the

same 3x4 grid is used, with their respective central pixels.

Scale Factor: 𝝆(𝝎𝒚𝒂𝒘)

Initially, the rotation scale factor function must be computed, which depends on the yaw angular

velocity. Note that the yaw depends on the set RPM, although RPM is not relevant in this case. By

setting the RPM to a constant value for both sides (and thus approximately constant yaw), recording

a video, and observing a single pixel, and repeating this for several yaw values, the scale factor function

𝜌(𝜔𝑦𝑎𝑤) can be estimated. This procedure is performed for a certain range, from 3 to 110°/s, which

corresponds to the minimum and maximum yaw, respectively. Furthermore, the base speed for the

pure rotation case is defined as being the pixel speed for the minimum yaw, and the scale factor is

determined by:

 𝜌(𝜔𝑦𝑎𝑤) =
𝑣𝑝𝑖𝑥𝑒𝑙(|𝜔𝑦𝑎𝑤|)

𝑣𝑝𝑖𝑥𝑒𝑙 (|𝜔𝑦𝑎𝑤𝑚𝑖𝑛|)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝜔𝑦𝑎𝑤|)

𝑣𝑝𝑖𝑥𝑒𝑙(3)
=
𝑣𝑝𝑖𝑥𝑒𝑙(|𝜔𝑦𝑎𝑤|)

𝑣𝑏𝑎𝑠𝑒
 (3.10)

Once more, only the resulting speed is calculated with (3.2). Moreover, the described procedure was

performed to a specific initial pixel with an 8°/s (i.e. 7 RPM) increment between measurements to

avoid too much data. The following graph and speed scale function were obtained:

54

Figure 48. Speed scale factor function for pure rotation

In contrast to the scale factor function obtained for the pure translation case, the pure rotation motion

requires a second order polynomial function, as shown above in the graph, and corresponds to:

 𝜌(𝜔𝑦𝑎𝑤) = −0.0005 ∗ |𝜔𝑦𝑎𝑤|
2
+ 0.1474 ∗ |𝜔𝑦𝑎𝑤| − 0.8033 (3.11)

The standard deviation obtained for this approximation is 0.31 for 𝜌, and about 37.4 px/s for the pixel

speed. Once more, the scale factor was validated by randomly picking other initial pixels, setting a

known yaw within the valid range, observing its movement, and applying the above function to

estimate both the scale factor, as well as the pixel speed which is computed through:

 𝑣𝑝𝑖𝑥𝑒𝑙(𝜔𝑦𝑎𝑤) = 𝑣𝑝𝑖𝑥𝑒𝑙 (𝜔𝑦𝑎𝑤𝑚𝑖𝑛) ∗ 𝜌(𝜔𝑦𝑎𝑤) = 𝑣𝑏𝑎𝑠𝑒 ∗ 𝜌(𝜔𝑦𝑎𝑤)
(3.12)

It is important to notice that 𝜌(𝜔𝑦𝑎𝑤) should only be applied when |𝜔𝑦𝑎𝑤| ≥ 3 , preventing

unnecessary calculations when the robotic system is only vibrating due to normal movement. Handling

the yaw signal is discussed in the upcoming subsections.

55

Base speed & angle

Figure 49. Optical flow field representation for the central pixels, during a pure rotational motion

The considerations applied to the pure translational scenario are once more used in order to

determine the base speed and angle for the pure rotational motion: only half of the image is

considered, and the central pixels of the 3x4 sub-division are analyzed. The test procedure, on the

other hand, is performed as described in the previous sub-section, for the minimum yaw (3°/s). The

3D surface fit function is applied after the necessary data is collected, and both base speed 𝑣𝑟𝑜𝑡(𝑥, 𝑦)

and base angle 𝜃𝑟𝑜𝑡(𝑥, 𝑦) functions are determined. Similarly to the pure translation case, both

functions only depend on the pixel coordinates (x, y), with their respective plots shown below:

Figure 50. Surface fit for the base speed (pure rotation)

56

Figure 51. Surface fit for the base angle (pure rotation)

For the pure rotation scenario, the slowest pixel speeds are located around the bottom middle portion

of the image (Figure 50), meanwhile the fastest ones around the top edge of the image. The surface

is slightly more complex for the base angle (Figure 51), although it is simple to notice the highest angle

values are located around the bottom middle of the image, and the lowest around the bottom corner.

Both cases match the optical flow field previously observed.

The obtained polynomial for the base speed and angle, respectively, are:

𝑣𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00005𝑥

2 + 0.000002𝑥𝑦 − 0.0496𝑥 − 0.00004𝑦2 − 0.0793𝑦
+ 143.81

(3.13)

𝜃𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00008𝑥

2 + 0.0001𝑥𝑦 + 0.0183𝑥 − 0.000012𝑦2 − 0.0238𝑦
+ 80.461

(3.14)

The standard deviations obtained for the base speed and angle were 0.6548 px/s and 0.346°,

respectively.

Resulting function

Both base speed and angle are combined to finally calculate the pixel speeds by applying equations

(3.11), (3.12), (3.13) and (3.14) with the respective yaw velocity (in °/s) and pixel coordinates. Although

signaling must be corrected in order to address the symmetry applied and considering both “turning

right” and “turning left” movements, another function is defined and used in addition to equation

(3.8):

 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) = {
+1, 𝑖𝑓 𝜔𝑦𝑎𝑤 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.15)

In contrast to the pure translation, 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) influences the y-speed component.

𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤), on the other hand, impacts both x- and y-speed components. The algorithm

57

applied to estimate both speed components for the pure rotation case is extremely similar to the pure

translation one, and is presented below:

1. If |𝜔𝑦𝑎𝑤| ≥ 3, compute:

a. 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) and correct x, if needed (𝑥 = 𝑊 − 𝑥)

b. 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤)

c. 𝐶(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) = 𝜌(𝜔𝑦𝑎𝑤) ∗ 𝑣𝑟𝑜𝑡(𝑥, 𝑦)

d. 𝜃𝑟𝑜𝑡(𝑥, 𝑦)

e. If 𝜃𝑟𝑜𝑡(𝑥, 𝑦) > 90° → 𝜃𝑟𝑜𝑡(𝑥, 𝑦) = 90°

f. Both speed components

i. 𝑣𝑥𝑟𝑜𝑡 = 𝐶(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) ∗ sin(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤)

ii. 𝑣𝑦𝑟𝑜𝑡
= 𝐶(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) ∗ cos(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) ∗

𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥)

2. Else, 𝑣𝑥𝑟𝑜𝑡 = 𝑣𝑦𝑟𝑜𝑡
= 0

Notice that step (e) is necessary for this case due the fact the base angle might result in a value greater

than 90°, which is not possible in practice – during experiments, the maximum angle obtained was

about 89°. Moreover, due the fact this algorithm is alike the one previously presented for the pure

translation case, the whole procedure will not be shown for the pure rotation. However, the same

calculations were performed during development in order to validate the pure rotational motion, with

the manually derived speed and angle being compared to values obtained through the approximated

functions, yielding adequate results. For demonstration purposes, the results of a single calculation

for 𝜔𝑦𝑎𝑤 = +20 𝑑𝑒𝑔/𝑠 , pixel coordinates (380; 279) and 0.5 seconds total movement time, are

presented below:

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛: {
𝑣𝑥𝑟𝑜𝑡 = 1.9447 ∗ 109.2 ∗ sin(90°) ∗ 1 ≅ 212.36 𝑝𝑥/𝑠

𝑣𝑦𝑟𝑜𝑡
= 1.9447 ∗ 109.2 ∗ cos(90°) ∗ 1 ∗ 1 = 0 𝑝𝑥/𝑠

𝑀𝑎𝑛𝑢𝑎𝑙 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛:

{

𝑣𝑝𝑖𝑥𝑒𝑙 =

√(483 − 380)2 + (281 − 279)2

0.5
≅ 206.04 𝑝𝑥/𝑠

𝜃 = tan−1 (|
(483 − 380)

(281 − 279)
|) ≅ 88.9°

3.3.3 Combined pixel speeds

With both translation and rotation impacts correctly analyzed and defined, it is necessary to combine

them to compute the resulting pixel speeds in both axes by simply adding their respective

components. The interest is in the combined pixel speeds 𝑉𝑥 and 𝑉𝑦, which are computed as follows:

 𝑉𝑥 = 𝑣𝑥𝑡𝑟𝑎𝑛𝑠 + 𝑣𝑥𝑟𝑜𝑡 (3.16)

 𝑉𝑦 = 𝑣𝑦𝑡𝑟𝑎𝑛𝑠 + 𝑣𝑦𝑟𝑜𝑡 (3.17)

By substituting each component, (3.16) and (3.17) become:

58

𝑉𝑥 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ sin(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦)

∗ sin(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤)
(3.18)

𝑉𝑦 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ cos(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤, 𝑥, 𝑦)

∗ cos(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥)

(3.19)

In order to validate the combined pixel speeds, the robotic system is configured to run for a brief

period with both translation and rotation movement, all data is logged and further processed,

considering the pixel with coordinates (235; 253). By applying the above formulas for every sample,

the final pixel coordinates computed are (235; 238), meanwhile the (real) coordinates determined

manually is (252; 241): a deviation of 17 and 3 pixels in x and y, respectively. The combined pixel

speeds, likewise both pixel coordinates for each iteration of the simulation are depicted in Figure 52

and Figure 53 below.

Figure 52. Pixel speeds computation based on real data

Figure 53. Pixel coordinates computation based on real data, and the actual final coordinates (red)

59

Note that real pixel coordinate is propagated based on the determined speeds and fed to the module

once more, which corresponds to a greater error accumulation for the long run. During normal

execution, on the other hand, the real pixel coordinates are provided every couple iterations by the

Kalman filter itself, thus the error only accumulates for a brief period of time. Hence, in practice the

Pre-Kalman filter response is much better.

Finally, the translation and rotation impacts division proved to be sufficient for this application.

Although the data analysis needed for this procedure is rather burdensome to gather and process, this

technique is much simpler and requires less processing power in comparison to standard techniques.

The main advantages and disadvantages of the Pre-Kalman Filter module are summarized in Table 3

below:

Table 3. Overview of the advantages and disadvantages of the Pre-Kalman filter module

Considering this method is far simpler and faster than most found in literature [10, 36, 37, 38, 39, 40,

41], and the fact the implementation should be running in an embedded system, this module is

considered a favorable alternative. Not only does it use floating-point divisions at all, but it only

requires trigonometric functions (i.e. sine and cosine) support in terms of dependencies. Refer to

Appendix B: Pre-Kalman Filter Equations for a summary with the relevant equations presented in this

section.

3.4 Kalman Filter

There are several types of filters, with a few specific ones being applied in regular odometry and other

robotic applications. Mainly Kalman filters (KF) are implemented for linear systems, although

depending on the system's model, the filter operations may become computationally expensive, being

considered a sensor fusion technique [47]. For non-linear systems, extensions of the Kalman filter may

be used, such as the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF), with the latter

being potentially useful when the platform supports parallelism. Moreover, another relevant option

is the Particle Filter which behaves similarly to the KF itself, and it has been applied in tracking

applications [45]. Notice that the aforementioned filters are based on Bayesian probability, which, in

simple terms, determines what is likely to be true, based on past information [46]. Extensive

explanation of the Kalman Filter theory is not the goal of this section, thus a brief description is

provided, with the focus begin on the design of the filter itself.

Sensors do not output perfect information: not only are they noisy, but also frequently affected by

external influences. More specifically, the latter refers to process noise, such as an ice path on the

path of a car being tracked. Furthermore, purely relying on the sensor information is rather a simplistic

approach, especially when the system can be modeled and past information used in order to infer

information about the present more accurately. Consider, for instance, measuring temperature of a

Advantages Disadvantages

Application-specific

Calibration required

Camera must be

staticSimple and fast

implementation

60

room: on normal conditions, the temperature cannot greatly increase within seconds (i.e. 22°C to 35°),

thus this information can be used to better predict the present temperature, based on previous

samples. However, the heating system might have mal-functioned and the temperature indeed

increased in an unusual way. This must modify the previous belief, and instead of being conservative

one should trust more on the sensor readings, in this case. On the other hand, the characteristics of

both sensor and system must be considered in order to properly reason about what is happening in

reality. The KF was invented by Rudolf E. Kálmán to address this sort of problem in a mathematically

optimal way, being initially applied in the aerospace sector and further in a variety of domains, such

as aircrafts, submarines, financial market, chemical plants, among others [46]. In summary, whenever

a sensor is part of the system and especially if sensor fusion is required, a Kalman filter or a similar

technique is used. The KF is a model-based filter, and ponders (i.e. dynamically computes weights)

between the model prediction and real measurements, considering noise characteristics of both.

Although the KF can be generalized for colored noise and cross covariances, noises are assumed to be

white gaussian and no correlation between process and measurement noises is expected for this

thesis.

For this application, a Kalman filter was chosen due to its simplicity in terms of implementation and

understanding, alongside being the optimal filter for the system, which is linear. Moreover, the KF is

widely applied in tracking applications, being able to indirectly estimate speed in addition to position,

for instance, and is easily parallelized for two dimensions (i.e. x and y). The most important

characteristics for this system, however, are its capability of providing an output when (1) the sensor

fails (i.e. false negative from the neural network), that might occur due the neural network’s accuracy

– 90%, in the best-case scenario –, (2) or in case of occlusions. Meanwhile, the deviation of the target

position is also smoothed.

The standard equations of the KF can be divided into two simple steps, predict and update: the former

(a.k.a. time update) propagates the model, meanwhile the latter (a.k.a measurement update)

computes the filter's output based on the new measurement, and updates the covariance matrices.

These equations [2] are shown below, with all variables being matrices:

• Predict step

 𝑥𝑘|𝑘−1 = 𝐹 ∗ 𝑥𝑘−1|𝑘−1 + 𝐵 ∗ 𝑢𝑘 (3.20)

 𝑃𝑘|𝑘−1 = 𝐹 ∗ 𝑃𝑘−1|𝑘−1 ∗ 𝐹
𝑇 + 𝑄𝑘 (3.21)

• Update step

 𝑆𝑘 = 𝐻 ∗ 𝑃𝑘|𝑘−1 ∗ 𝐻
𝑇 + 𝑅 (3.22)

 𝐾𝑘 = 𝑃𝑘|𝑘−1 ∗ 𝐻 ∗ 𝑆𝑘
−1 (3.23)

 �̃�𝑘 = 𝑧𝑘 −𝐻 ∗ 𝑥𝑘|𝑘−1 (3.24)

 𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 + 𝐾𝑘 ∗ �̃�𝑘 (3.25)

 𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘 ∗ 𝐻) ∗ 𝑃𝑘|𝑘−1 (3.26)

With 𝑥 being the state matrix, 𝐹 the state transition model, 𝐵 the control input, 𝑃 the error

covariance matrix, 𝑄 the process covariance matrix, 𝐻 the observation model, 𝑆 the innovation

covariance matrix, 𝑅 the measurement covariance matrix, 𝐾 the Kalman gain matrix, �̃� the residual, 𝑧

the measurements matrix and 𝐼 the identity matrix. It is extremely important to define the notation

used for the indices, which respects the following (𝑀 is a generic variable):

61

• 𝑀𝑘−1|𝑘−1 : refers to the previous state, which combines all the previous states and

observations;

• 𝑀𝑘|𝑘−1 : refers to the a priori state, which combines the current state estimate without

observations;

• 𝑀𝑘|𝑘 : refers to the posteriori state, which combines the current state estimate with

observations.

Note the model can be propagated without measurements due the fact it is time-based, hence

whenever the neural network outputs a false negative, the KF can still output a value. In the upcoming

sub-sections, the filter matrices and parameters will be further detailed, except the Kalman gain

matrix which is computed internally and does not need to be defined.

3.4.1 Filter Design

Several steps are necessary to design the filter, which requires different matrices to be properly

defined and validated. Initially, the available input and required output data of the filter are analyzed,

with the overview of the module being depicted in Figure 54:

• Inputs

o Target coordinates outputted by the neural network (in pixels);

o Pixel speeds computed by the Pre-Kalman filter (in px/s).

• Outputs

o Filtered target coordinates (in pixels), which are forwarded to the pixel control;

o (Optional) Target estimated speed (in px/s).

Figure 54. Kalman Filter overview

In order to reduce complexity, during the design only a single dimension (x) is contemplated instead

of two, due the fact analysis is valid for both and would only increase the matrices sizes and overall

complexity. However, the final implementation comprises two instances of the Kalman filter (KFx and

KFy in Figure 54), one for each dimension, and can be run in parallel.

Additionally, the filter requires extra prediction steps to keep track of objects that might disappear

during run time due to occlusion, or a false negative outputted by the neural network module, as

previously described. Occlusion might occur for several frames, and false negatives, on the other hand,

are related to the neural network's accuracy and might happen for a few frames (e.g. 6 frames for a

60 fps camera). It is also important to notice that the inputs are provided at different rates, which

must be considered during implementation and testing.

62

State Transition model and variables

Based on the available inputs, it is possible to define and analyze which model must be used. For this

specific application, system modelling is straight-forward: the goal is to track an object in an image,

thus Newton's (linear) equation of motion [46] can be applied (w.r.t. pixels instead of distance):

 𝑥 = 𝑥0 + 𝑣 ∗ ∆𝑡 (3.27)

With 𝑥 and 𝑥0 being the final and initial positions (in pixels), respectively, 𝑣 the target’s speed (in px/s)

and ∆𝑡 the time. Moreover, constant acceleration and jerk can also be included, with their equations

being shown below:

 𝑥 = 𝑥0 + 𝑣 ∗ ∆𝑡 +
𝑎 ∗ ∆𝑡2

2
 (3.28)

 𝑥 = 𝑥0 + 𝑣 ∗ ∆𝑡 +
𝑎 ∗ ∆𝑡2

2
+
𝑗 ∗ ∆𝑡3

6
 (3.29)

With 𝑎 being the acceleration (in px/s2) and 𝑗 the jerk (in px/s3). However, incorporating acceleration,

jerk, or both, overcomplicates the system by augmenting the size of matrices (and thus computation

time), and does not necessarily increase the filter's performance [46]. More importantly, it also

requires handling excessively large numbers (106), especially when jerk is used, which further

increases computation time. Taking into account these facts, the 1st order model which considers only

the position and speed was chosen to be used, with the state variables and matrix being defined as

follows:

 𝑥 = [
𝑥
�̇�
] (3.30)

 𝐹 = [
1 ∆𝑡
0 1

] (3.31)

With 𝑥 being the target’s position (in pixels), �̇� its speed (in px/s), and ∆𝑡 the time between prediction

steps. Notice that, simplifying equation (3.20) to 𝑥𝑘|𝑘−1 = 𝐹 ∗ 𝑥𝑘−1|𝑘−1, it becomes clear how (3.30)

and (3.31) relates to the model itself:

{
𝑥𝑘|𝑘−1 = 𝑥𝑘−1|𝑘−1 + �̇�𝑘−1|𝑘−1 ∗ ∆𝑡

�̇�𝑘|𝑘−1 = �̇�𝑘−1|𝑘−1

Note that the object speed (�̇�, 1st derivative) is a hidden variable, which is estimated and updated

internally by the filter, and this model is applied for both x- and y-coordinates.

Control Input model and variables

In addition to the state transition model which corresponds to the 1st order Newton's equation of

motion, there is another input to the filter: the robot's ego-motion impact, or the pixel speeds derived

by the Pre-Kalman filter module. Such information is relevant and is included in the model through

the control input model and variables, being the trigger for the prediction step. It is relevant to note

that the prediction step is executed every 7 milliseconds (140 Hz), due the fact ego-motion data is

63

available at this rate. For this implementation, we define the control input model and variable as

follows:

 𝐵 = [
∆𝑡
0
] (3.32)

 𝑢𝑘 = [𝑣𝑥]𝑘 = 𝑣𝑥𝑘 (3.33)

With 𝑣𝑥𝑘 being the combined pixel speed (in px/s), in this case only for the x-axis. Now, (3.20) can be

fully unfolded, yielding:

{
𝑥𝑘|𝑘−1 = 𝑥𝑘−1|𝑘−1 + (�̇�𝑘−1|𝑘−1 + 𝑣𝑥𝑘) ∗ ∆𝑡

�̇�𝑘|𝑘−1 = �̇�𝑘−1|𝑘−1

These equations complete the modelling step and fully describe the system. Note that the new

position 𝑥 is computed based on the target’s motion (�̇�𝑘−1|𝑘−1) plus the combined pixel speed (𝑣𝑥𝑘):

their sum composes the final speed. Note that the robot’s ego-motion can be not used as a control

input, which will be discussed in another sub-section, and once more this model is used for both filters

(x and y coordinates).

Process Noise and Initial Error Covariance

The process noise matrix 𝑄 includes the standard deviation related to the external influences, namely

the process. The variance of the process 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 comprises unpredictable changes on the system,

such as bumps on the way when tracking a car, for instance. Moreover, the car might be slipping, and

even the wind may impact the model, and these interferences must be taken into account through

defining a coherent variance for the process, usually done experimentally [46, 47]. More specifically

for this project, one can consider the absolute maximum speed the target could move in any direction,

due the fact the target is another robot which can unpredictable maneuver. By reproducing the

behavior of the target, which does not move fast, it was possible to roughly determine the standard

deviation (and thus variance): on average, the maximum speed inferred did not exceed 6 px/s for ∆𝑡 =

0.05𝑠 (20 Hz, worst-case scenario) on both axes. Due the fact this value was derived in practice, only

maneuvers were considered, and in order to cover about 97% of the possible cases, the process noise

defined corresponds to at least 3𝜎 , thus 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 should be 18, but was define as 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 20.

According to [46] and [47], the process noise covariance matrix for a 1st order filter based on the

presented Newton's equation of motion is defined as follows:

𝑄𝑘 =

[

∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

𝑘

∗ 𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠
2 =

[

∆𝑡4

4

∆𝑡3

2
∆𝑡3

2
∆𝑡2]

𝑘

∗ 202

The error covariance matrix 𝑃, on the other hand, can be initialized in several ways, depending on the

knowledge one has about the system. Because this matrix is updated every iteration, it is commonly

initialized as a diagonal matrix with the respective variance of the state variables [47] – the covariances

between position and speed are dynamically computed by the filter itself. If the initial state (i.e.

64

position and speed) is known, it is common to initialize the matrix with zeros. Otherwise, the diagonal

must be filled with either high values or the maximum expected variance of the variables. The generic

form of the error covariance matrix for the system is as follows:

 𝑃0 = 𝑑𝑖𝑎𝑔(𝜎𝑥
2, 𝜎�̇�

2) = [
𝜎𝑥

2 0

0 𝜎�̇�
2] (3.34)

Due the fact the starting position is unknown, the initial variance of the position is set to the image

width (320 pixels) and height (240 pixels) for x and y, respectively. Although the speed is also unknown

at start up, one may reason about it due the fact this will be update during run-time by the filter itself:

maximum speeds of 40 and 20 px/s were considered and used for x and y axes, respectively, as their

standard deviations. The maximum speed used for the y-axis is smaller due the fact the target moves

slower with respect to this axis, typically less than half the speed in comparison to the other axis.

Considering these values, (3.34) was set to:

𝑃0𝑥 = [
17.882 0
0 402

] , 𝑃0𝑦 = [
15.492 0
0 202

]

Measurement Noise and Observation Model

The measurements are also noisy, due to the sensor's characteristics and environmental factors, and

are taken into account by the KF. The measurement noise 𝑅 is easier to define, as its variance can

usually be calculated from real measurements. For this project, the measurements are provided by

the neural network, which outputs two values – X and Y coordinates. A single coordinate corresponds

to a single measurement, and does not comprise any speed measurements. Consequently, 𝑅 is

reduced to a scalar value – the measurement variance – as shown below:

 𝑅 = 𝑣𝑎𝑟(𝑥𝑠𝑒𝑛𝑠𝑜𝑟) = 𝜎𝑥𝑠𝑒𝑛𝑠𝑜𝑟
2 (3.35)

In order to determine the measurement variance for both axes, the neural network output was

analyzed for short videos (4 videos in total, 60 fps, 3-6 seconds duration) in which both target and

robotic system are moving (i.e. dynamic). All frames were then manually annotated with the target’s

position, and fed to the neural network. Both manual annotations and neural network’s output were

compared by calculating the respective standard deviations for each axis, and finally the greatest

standard deviation among the videos (i.e. worst case) were used: 𝜎𝑥𝑠𝑒𝑛𝑠𝑜𝑟 ≅ 10 and 𝜎𝑦𝑠𝑒𝑛𝑠𝑜𝑟 ≅ 10.

Once more, in order to cover as many cases as possible, 3𝜎 values were used and rounded up, thus

(3.35) becomes, for x and y, respectively:

𝑅𝑥 = 30
2, 𝑅𝑦 = 30

2

The observation model 𝐻 is used to combine the measurements with the state variables, and due the

fact there is only a measurement for the position, it can be defined as follows for this project:

𝐻 = [1 0]

65

Initial Conditions

Finally, the initial conditions are the only missing definition before the complete filter structure is

properly set. The initial state (i.e. position and speed) is assumed unknown, thus they are both set to

zero, as follows:

𝑥0 = [
0
0
]

3.4.2 Design Space Exploration

Before moving forward with testing the KF, it is important to present a few variations which are

required for this application. More specifically, alternate formulations, smoothing techniques,

steady-state filtering and adaptive filtering are explored in this sub-section. The former addresses

mainly numerical problems (i.e. precision impact), and computational complexity, likewise

steady-state filtering. Smoothing, on the other hand, tries to further stabilize the filter at a cost of

introducing delays, and adaptive filtering addresses convergence of the filter when abrupt changes

occur (e.g. target maneuvering). Due the fact only adaptive filtering was used in the final

implementation, it will be thoroughly discussed meanwhile the other techniques are briefly explained.

Furthermore, a few comparisons are required in order to refine both design and final implementation

of the Kalman filter. The following points and questions are discussed in the end of this section, which

required simulations:

• Control input influence: How does the control input (ego-motion) impact the performance?

• Higher order models: Do higher order models perform better?

• Coupling: How does coupling (both x and y coordinates combined) impact the performance?

• Adaptive Filtering: Is adaptive filtering necessary? Which technique?

All these points were analyzed with a simulated KF in MATLAB, configured as discussed in the previous

section. Tests are based on noisy non-realistic data, which respect the standard deviations defined.

Moreover, the period was set based on the worst-case scenario, with the neural network providing

data at 20 Hz and a maximum jitter of 10% to test the robustness of the filter (∆𝑡 = 0.05𝑠 ± 10%).

The prediction step is executed Positive results were kept during the upcoming analysis, with

modifications being done to the (simulated) KF implementation.

Alternate formulations

The Kalman Filter equations may be modified but remain mathematically equivalent, depending on

the system and their specific characteristics. Note, however, that alternate formulations are usually

constrained by additional requirements. For instance, in order to increase precision, one might

implement a square root filtering technique [47] at a cost of increasing the complexity and implicitly

defining the covariance matrix 𝑅 as either diagonal, or constant. Among others, the following

formulations were considered relevant:

• Sequential KF: avoids matrix inversions, as the measurement-update is done with a single

measurement at a time. However, the covariance matrix must either be diagonal or constant;

• Information filtering: applied when the number of measurements is much larger than the

number of states, and both 𝑅 and 𝑄 are constant (implies constant ∆𝑡). Moreover, it is better

when the uncertainties are large (𝑃 → ∞);

66

• Square Root and U-D filtering: Both methods require orthogonal transformation algorithms

[47], with the measurement-update alike the sequential KF implementation. In general, both

requires greater computational effort while mitigating numerical problems in

implementations – which can be a concern in 16- and 8-bit precision controllers

Considering only one measurement is received, and that the covariance matrix 𝑅 is constant for this

application, one may be tempted to use the Sequential KF formulation. However, there is actual no

need because the only inversion (performed in matrix 𝑆) is reduced to a division when a single axis is

considered, which is the case for this application. Hence, no alternate formulation was necessary. For

bigger matrices, however, the Sequential KF formulation may greatly reduce the computational

complexity, especially for embedded systems and real-time applications.

Smoothing

Smoothing corresponds to stabilizing even further the output of the filter, and basically 3 different

types of smoothers can be used [47]:

• Fixed-Interval: computes the optimal state estimates of a batch of measurements at each time

𝑗, mostly used for post-processing;

• Fixed-Lag: computes the optimal state estimate at each time j, while using measurements up

to and including time (𝑗 + 𝑁). 𝑁 is fixed and corresponds to the "lag" (i.e. delay);

• Fixed-Point: computes the optimal state estimate at time 𝑗 , considering all future

measurements – used for camera pose estimation [46], for instance.

Notice that all techniques introduce delays, thus none are applied for this project due the fact one

should cope with the slow refresh rate of the camera and neural network combination. However,

fixed-lag smoothing could be of great use if the refresh rate is higher (e.g. 240 fps) and the introduced

lag does not largely impact the result.

Steady-State Filtering

Although the standard KF is time-variant, implementations for time-invariant systems with also

time-invariant process- and measurement-noise covariances exist and compose a specific class,

namely steady-state KF. Such alternative is primarily employed in embedded systems with memory

and computational effort constraints, as the Kalman gains are not dynamically computed in real-time.

Even though the steady-state KF is not optimal as the Kalman gains are not computed at each time

step, its performance is nearly indistinguishable from that of the time-varying filter [48], when there

is no jitter present. Note that the steady-state KF is still a dynamic filter, with "steady-state" referring

only to the Kalman gain matrix computation. Among others, the alpha-beta filter [49] is a steady-state

KF that is applied to a two-state Newtonian system with position measurement [48], such as the one

discussed in this project. The Kalman gain for this filter is defined as:

 𝐾 = [
𝐾1
𝐾2
] = [

𝛼
𝛽

∆𝑡
] (3.36)

The gains are computed as follows:

67

 𝐾1 = −
1

8
∗ [𝜆2 + 8𝜆 − (𝜆 + 4)√𝜆2 + 8𝜆] (3.37)

 𝐾2 =
1

4
∗ [𝜆2 + 4𝜆 − 𝜆√𝜆2 + 8𝜆] (3.38)

And 𝜆 is defined as:

 𝜆 =
𝜎𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∗ ∆𝑡

2

𝜎𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡
 (3.39)

Hence, 𝛼 and 𝛽 can be compute with the following formulas:

{
𝛼 = 𝐾1
𝛽 = ∆𝑡 ∗ 𝐾2

With ∆𝑡 corresponding to the sampling period, in seconds. This filter is particularly useful for

embedded systems, especially when the sampling frequency is constant. As it can be seen above,

lambda is a function of the sampling frequency and the advantage of not computing the Kalman gain

every iteration is lost in case the refresh rate frequently changes or an adaptive filtering technique is

used, with the filter performing poorly in both scenarios. Due the fact the robustness of the filter

would be reduced, and considering the application might have jitter, the steady-state KF was not

applied.

Control Input Influence

The control input corresponds to the robot ego-motion impact. By considering it (𝑢𝑘 ≠ 0), one

segregates the speed of the object being tracked from the influence of the ego-motion, thus the actual

target speed (in px/s) is tracked. When the control input is not considered (𝑢𝑘 = 0), the target

estimate speed has an offset (Figure 55b) in comparison to when it is considered (Figure 55a), as

depicted in Figure 55. It is relevant to notice the control input is directly related to the prediction step,

which is executed every 7 milliseconds (140 Hz) and corresponds to the refresh rate of the ego-motion

data.

Figure 55. Control input influence on estimated speed, when being (a) and not begin (b) considered

68

The filter performance is greatly degraded when the robot, target, or both are maneuvering: the latter

is the worst case in which the filter takes a long time to converge to the real values. Such scenario was

simulated, and the results are shown in Figure 56 below:

Figure 56. Control input influence on estimated position, when being (a) and not begin (b) considered

Notice the case where the control input is not taken into account (Figure 56b), the KF takes longer to

converge after the target maneuvers, in contrast to the other case (Figure 56a). In order to properly

compare the results, the RMSE with respect to the input (fake) data, and the output of the (simulated)

KF was calculated for both scenarios being considered, which resulted in 𝑅𝑀𝑆𝐸𝑤𝑖𝑡ℎ ≅ 231.47 𝑝𝑥 and

𝑅𝑀𝑆𝐸𝑤𝑖𝑡ℎ𝑜𝑢𝑡 ≅ 249.67 𝑝𝑥. Hence, the filter indeed performs better with the control input being

considered. Although the filter currently performs poorly in maneuvering scenarios, adaptive filtering

will be integrated to specifically address this issue. For now, it is enough to conclude the control input

should be considered.

State Transition model order

As previously discussed, both acceleration and jerk can be included in the Newtonian model for the

system (equations 3.16 and 3.17). However, performance is not always increased by doing so [46],

thus higher models are further explored. Initially, only the acceleration is considered, due the fact

including jerk increases complexity and in the case the performance decreases for the acceleration-

only scenario, it is not worth augmenting the order of the system even further. Although the derivation

of the matrices and equations of the filter for this model are not presented, the position estimate for

this case is shown below and the RMSE computed corresponds to 𝑅𝑀𝑆𝐸𝑎𝑐𝑐 ≅ 191.10 𝑝𝑥.

69

Figure 57. Position estimate when acceleration is included in the model

Although the RMSE is smaller when the acceleration is included (in comparison to 𝑅𝑀𝑆𝐸𝑤𝑖𝑡ℎ), the

estimated acceleration values might become extremely large (Figure 57a), and the Kalman gain for

the acceleration is rather high with respect to the others (Figure 57b), as shown in Figure 57. The

former corresponds to trusting the (hidden) acceleration estimate over the speed and position for the

model - not optimal due the fact the filter trusts the model less, overall -, meanwhile the latter impacts

on the computational complexity, which is greatly increased due to the matrix operations that must

be performed.

Figure 58. Acceleration estimate (a) and Kalman gains (b) when acceleration is included in the model

Considering the aforementioned facts, including the acceleration corresponds to increasing

complexity without greatly impacting the performance of the filter, hence the simplest model as

previously discussed is chosen to be used.

Coupling

One might argue both coordinates (x and y) can be coupled in a single Kalman Filter, instead of being

implemented in different instances. Coupling the coordinates corresponds to simply augmenting all

matrices of the filter by a factor of two (2), which has no impact at all on the output(s), as can be seen

in Figure 59 below which depicts a simulation for both coordinates:

70

Figure 59. Position (x and y) estimate for both coupled (C) and uncoupled (UC) implementations

Note that for this simulation, the RMSE for each coordinate is computed, and corresponds to the same

value: 𝑅𝑀𝑆𝐸𝐶 𝑜𝑟 𝑁𝐶 ≅ (17.34, 13.16) 𝑝𝑥 . Although the performance is the same when both

coordinates are coupled, the uncoupled version is less computationally expensive due the fact it

operates over smaller matrices. Furthermore, each uncoupled filter can be better tuned with respect

to the adaptive filters discussed in the next sub-section, and is able to run in parallel as there is no

data dependency. Considering these aspects, the uncoupled filter was chosen to be implemented.

Adaptive Filtering

The KF considers all previous samples in order to compute its output, and may be biased in case of

sudden changes in the system. This directly impacts the responsiveness of the filter, which slows down

and might take several iterations before converging to the real value. To address this issue, adaptive

filtering techniques are widely used in applications in which abrupt changes or discontinuities may

occur, such as tracking. There are several techniques for adaptive filtering, and one may combine

different ones depending on the desired behavior and application. Only two are discussed for this

application, which are simple and sufficient for tracking applications [46, 47]: Fading Memory and

Adjustable Process Noise. Implementing both is adding unnecessary redundancy, hence each one is

implemented separately and the best one chosen to be implemented.

Adjustable Process Noise: ϵ version

Initially, the adjustable process noise technique for detecting maneuvering targets is explored, in

which the process noise is scaled accordingly based on a metric involving the residual (�̃�𝑘). Basically,

the process noise is increased when the residual is large, or decreased otherwise. Hence, for the

former, the KF will favor the measurement more. There are several ways of applying this idea, but

only the Continuous Adjustment [47] is explored in this project due to its simplicity in terms of design

and implementation, and more specifically the method from Bar-Shalom [48]. Such technique consists

of normalizing the square of the residual for every iteration as follows:

71

 𝜖𝑘 = �̃�𝑘
𝑇 ∗ 𝑆𝑘 ∗ �̃�𝑘 (3.40)

With �̃�𝑘 being the residual and 𝑆𝑘 the measurement covariance matrix. Note that when the former is

a scalar, (3.40) simplifies to:

 𝜖𝑘 =
�̃�𝑘

2

𝑆𝑘
 (3.41)

Squaring the residual ensures the signal is always greater than zero, and normalizing by the

measurement covariance scales the signal so that one can distinguish when the residual is markedly

changed relative to the measurement noise [46]. Implementation is straight forward, with 𝜖𝑘 being

computed in every filter iteration and compared with a maximum value. If such limit is exceeded, the

process noise matrix 𝑄𝑘 is scaled up by a constant factor, or down otherwise.

For the adjustable process noise, one must initially analyze the normalized square of the residual (𝜖)

for each uncoupled filter, as shown in Figure 60, in order to properly define the threshold value.

Additionally, in order to compare the filter with and without the adjustable process noise technique,

the RMSE for the latter is computed, and corresponds to 𝑅𝑀𝑆𝐸𝑛𝑜−𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒 ≅ (9.19, 5.65) 𝑝𝑥.

Figure 60. Initial ϵ values for both coordinates

Based on the graphs shown in Figure 60 above, thresholds of 4 and 7 were defined for the x and y

filters, respectively, as they must react to changes rapidly. The scale factor for the process noise

covariance matrix is then adjusted in order to obtain the lowest RMSE, and corresponds to 1000 for

both cases: 𝑅𝑀𝑆𝐸𝑥(𝑠𝑐𝑎𝑙𝑒 = 1000) ≅ 9.44 px, 𝑅𝑀𝑆𝐸𝑦(𝑠𝑐𝑎𝑙𝑒 = 1000) ≅ 8.10 px. Instead of

directly checking the position estimate, the residuals of both coordinates are more interesting for now

due the fact they should be within ±1𝜎, and are depicted in Figure 61 below. The position estimate

will only be depicted fort the best adaptive filtering technique.

72

Figure 61. Position residuals for the continuous adjustment technique

Although the residuals are within an acceptable range of ±6𝜎 in general, being suppressed by the

filtering technique applied, the filter is scaled quite often – peaks on Figure 61 for the standard

deviation corresponds to a scale up or down procedure –, which increases execution time due the

additional operations, especially for scaling the process noise matrix. The 𝜖 values when the technique

is applied, on the other hand, are reduced as expected as shown below.

Figure 62. ϵ values for the continuous adjustment implementation

73

Despite the continuous adjustment algorithm is interesting for applications in which there is not many

abrupt changes, it might be the best option for this system. However, before deciding whether this

adaptive filter should be implemented, the fading memory technique is discussed.

Fading Memory

Fading memory consists of giving more weight to recent samples and less to older ones by computing

the error covariance matrix in a slightly different manner. Its implementation for low order kinematic

filters is very simple, which drastically reduces the amount of computation required in comparison to

other adaptive filtering techniques [47]. The only modification in the original KF formulation is on the

error covariance matrix computation (3.21), which becomes:

 𝑃𝑘|𝑘−1 = 𝜶
𝟐 ∗ 𝐹 ∗ 𝑃𝑘−1|𝑘−1 ∗ 𝐹

𝑇 + 𝑄𝑘 (3.41)

Where 𝛼 is a scalar, greater or equal to 1, and typically in-between 1.01 and 1.05. The higher 𝛼 is, the

less weight older samples have. Note that for the specific case where 𝛼 = 1, (3.39) reduces to (3.21)

and the filter is a standard KF. The idea of this modification is straight-forward: by increasing the error

covariance matrix, the KF is more uncertain about the estimate and hence gives more weight to the

measurements provided by the neural network. This technique was applied for this project, and will

be further explored in order to determine the best value for 𝛼.

Due the fact the maximum value usually does not exceed 1.05 [46, 47], this adaptive technique was

compared for 1.01 ≤ 𝛼 ≤ 1.05 , with 0.01 interval and the respective RMSEs computed for both

coordinates. Finally, the chosen alphas correspond to the smallest RMSEs obtained: 𝑅𝑀𝑆𝐸𝑥(𝛼 =

1.02) = 4.51 px, 𝑅𝑀𝑆𝐸𝑦(𝛼 = 1.01) = 3.55 px.

Figure 63. Position residuals for 𝛼𝑥 = 1.02 and 𝛼𝑦 = 1.01

74

In comparison to the adjustable process noise technique, the residuals are smaller overall. Note that

by calculating epsilon when using the fading memory filter, it becomes evident that there is no need

to implement an additional adaptive technique, as shown below:

Figure 64. ϵ values for the fading memory implementation

An overview of the RMSE values computed for both adaptive filtering techniques is summarized in

Table 4. Note the adjustable process noise performs worse than when not using an adaptive filter

technique, and ultimately the fading memory implementation improved about 49% and 63% for x and

y coordinates, respectively.

Table 4. RMSE comparison between adaptive filter techniques

Not only is the fading memory technique simple to implement, but the residuals for this technique are

better than the adjustable process noise. Hence, the fading memory technique was chosen as the

adaptive filter to be used, which complies to the literature [46] due the fact in this application there

might be several maneuvers from both robot and target. Although implementation of the fading

memory filter is simpler, such technique modifies the KF by trusting the samples over the model, and

more specifically, the most recent ones. The adjustable process noise algorithm, on the other hand,

only gives more weight to the samples when a certain threshold is reached, instead of all the time.

Moreover, this algorithm might be interesting when few abrupt changes occur.

Finally, the fading memory filter was included in the simulation, and its respective position estimate

is depicted in Figure 65.

x 9.19 9.44 4.51 49.08

y 5.65 8.10 3.55 62.83

RMSE

(px)

Coordinate

Adaptive filter technique

Not

implemented

Adjustable

Process Noise

Fading

Memory

Improvement (%)

75

Figure 65. Position (x and y) estimate for the fading memory implementation

3.4.4 Real Data Analysis

With the parameters and additional techniques correctly implemented in the simulation environment,

the next step was to process real data to fully validated the design. The following procedures were

applied in order to assess how the filter performs in practice:

• Static setup: robot is always static, target is static;

• Dynamic setup: robot follows a pre-defined path, meanwhile the target is dynamic, and visible

around 90% of the time.

A total of eight (8) videos were recorded, four (4) for each setup. Frames are extracted from all videos,

and manually marked for the static setup scenario only, due the fact this procedure is burdensome for

the other cases. The neural network is then fed with the frames (320x240 resolution), and its outputs

logged. Moreover, data from the robotic system (ego-motion) is merged with the output of the neural

network, for the dynamic setup scenario. Finally, the combined data is processed in MATLAB with the

full Kalman filter implementation, with the position and speed estimates being plotted for each video,

alongside the residual for the static setup case only (it requires the real coordinates of the target).

Finally, a different video is composed and marked with both raw (neural network) input and (Kalman)

filtered output in order to better observe the results - raw inputs, filtered outputs, and prediction

outputs are marked with green, red, and magenta circles, respectively. The latter (prediction outputs)

corresponds to the prediction of the filter when the neural network outputs a false-negative. Note

that the neural network timing was respected (videos were sub-sampled: 60 fps to 20 fps/Hz),

alongside the refresh rate of the ego-motion data (140 Hz), for both setups.

76

Static setup

For the static setup, only data from the neural network is relevant, due the fact the robotic system is

not moving, thus ego-motion values correspond to zero (0). In this case, the Pre-Kalman filter module

would always output pixel speeds equal to zero (0) as well, not impacting the filter. Note, however,

that the prediction step is executed at 140 Hz due the fact it is dependent on this data. Only the finest

two (2) results (out of 4) are presented in this section, with a sample frame extracted from both cases

being shown in Figure 66. Notice both are marked with the raw input (green circle) and filtered output

(red circle).

Figure 66. Marked sample frames extracted from output videos

The position and speed estimates for both cases and all iterations are shown in Figure 67 and Figure

68 below:

Figure 67. Position estimate for both static cases

77

Figure 68. Speed estimate for both static cases

With respect to the graphs above, the Y coordinates were negated in order to reflect the actual pixel

coordinate on the image and the estimates (filled circles) are chronologically ordered with a gradient

from blue to yellow (Figure 67). Note the neural network does not deviate much, being completely

stable for case (Figure 67b), thus the final speed estimates converge to zero. Moreover, both cases

are rather similar, and converge to the measurements (open circles) after approximately 1 second (20

complete iterations).

Considering this setup is static, and consequently the target’s position also, the residual can be further

analyzed:

Figure 69. Position residuals for both static cases

The residuals of both cases are within ±1𝜎 after initialization, with the Y coordinate slightly

outperforming X. Not only does the filter converge, but additionally presents an exceptional behavior

for this setup. This setup validates the previously discussed design of the Kalman filter, although the

control input is set to zero (0) and the fading memory technique is not properly tested in these cases,

because the target is static. However, the adaptive filtering was applied for the simulations presented

and does not degrade the performance of the filter.

78

Dynamic setup

Differently from the previous case, for the dynamic setup the ego-motion and neural network data

must be merged, due the fact both robot and target are moving – thus, the Pre-Kalman filter module

is included in the simulation. The former follows a predefined route, and the latter is moved around

manually with a string attached to its front. Moreover, in these cases the neural network might not

be able to identify and localize the target, due to its accuracy or occlusions that might occur for a few

frames. As such cases frequently happens in reality, and in the final implementation must be treated

accordingly, for now every time they occur, the update step is obviously not executed (i.e. no

measurement available) but the respective output from the prediction step is stored. In fact, the final

implementation will handle these cases in this way, but only for a few frames (i.e. measurements),

with the filter being reset otherwise.

Only the best (and clearest) result (out of 4) is presented for this case, with a sample frame extracted

from the same scenario being shown in Figure 70. Notice Figure 70b is marked with the raw input

(green circle) and filtered output (red circle), meanwhile Figure 70a is marked with the prediction

output (magenta).

Figure 70. Marked sample frames extracted from output video

Although only one video is processed, an additional test was performed to further explore the

Pre-Kalman filter impact and response to the ego-motion. It corresponds to considering (Figure 71a)

or not (Figure 71b) the ego-motion data, with the respective position and speed estimates for each

case shown below:

79

Figure 71. Position estimate for dynamic setup, considering (a) or not (b) the ego-motion

Figure 72. Speed estimate for dynamic setup, considering (a) or not (b) the ego-motion

Once more the Y coordinates were negated to reflect the actual pixel coordinate on the image and

the estimates (filled circles) are chronologically ordered with a gradient from blue to yellow. On the

other hand, the neural network does substantially deviate in the dynamic scenario, but is clearly

smoothed by the Kalman filter. Moreover, both cases present similar results except during the first

(dark blue) and last iterations (orange/yellow), due the fact the ego-motion data impacts the Kalman

filter: in the beginning, the robot is moving forward, the pixel coordinates under consideration (initially

0) are expected to move diagonally, from top to bottom, to the left; in the end, the opposite happens

with respect to the direction, due the fact coordinates are on the right side of the image, hence move

from bottom to top (considering the image coordinate system). Finally, although not visible, the

false-negatives and occlusion cases are far better predicted for the case in which the ego-motion is

considered. Notice the speed estimates (Figure 72) reflect the previously discussed behavior on

considering or not the control input: when the ego-motion is not considered (Figure 72b), the output

of the filter intrinsically combines the target speed (in px/s) and the ego-motion impact, thus not

corresponding to the actual target speed only that happens in the other case (Figure 72a).

80

In summary, the designed Kalman filter presented an exceptional performance, in both static and

dynamic cases, including the ego-motion data. Moreover, it validates both the Pre-Kalman module

and the Kalman filter itself, in addition to the fading memory technique.

3.4.5 Final Design

Final design and implementation of the Kalman filter comprises the following characteristics:

1. The 1st order Newtonian (linear) model is used;

2. The control input corresponds to the ego-motion impact, and is considered;

3. The process and measurement noise matrices are properly defined for the application;

4. Each coordinate is implemented in a different (but similar) instance of the Kalman filter that

may execute in parallel;

5. The fading memory technique is used for handling abrupt changes.

Additionally, the equations of each instance of the Kalman filter (for X and Y coordinates) may be

hard-coded to avoid matrix operations. Not only does it reduce complexity, but also execution time

and enables tuning the fade memory algorithm applied. This section briefly presents the final

equations that were implemented for the Kalman filters designed. However, in order to keep this

section short, only the equations for a single instance of the filter are presented, and each matrix

element is represented by 𝑀𝑖𝑗 with 𝑀 being the element of the 𝑖th row and 𝑗th column:

• Predict step

o {
𝑥𝑘|𝑘−1 = 𝑥𝑘−1|𝑘−1 + �̇�𝑘−1|𝑘−1 ∗ ∆𝑡

�̇�𝑘|𝑘−1 = �̇�𝑘−1|𝑘−1

o

{

 𝑃11𝑘|𝑘−1 = 𝛼𝑐

2 [𝑃11𝑘−1|𝑘−1 + ∆𝑡 ∗ (𝑃12𝑘−1|𝑘−1 + 𝑃21𝑘−1|𝑘−1 + ∆𝑡 ∗ 𝑃22𝑘−1|𝑘−1)] + 𝑄11𝑘

𝑃12𝑘|𝑘−1 = 𝛼𝑐
2 [𝑃12𝑘−1|𝑘−1 + ∆𝑡 ∗ 𝑃22𝑘−1|𝑘−1] + 𝑄12𝑘

𝑃21𝑘|𝑘−1 = 𝛼𝑐
2 [𝑃21𝑘−1|𝑘−1 + ∆𝑡 ∗ 𝑃22𝑘−1|𝑘−1] + 𝑄21𝑘

𝑃22𝑘|𝑘−1 = 𝛼𝑐
2 ∗ 𝑃22𝑘−1|𝑘−1 + 𝑄22𝑘

• Update step

o 𝑆𝑘 = 𝑃11𝑘|𝑘−1 + 𝜎𝑥𝑠𝑒𝑛𝑠𝑜𝑟
2

o {
𝐾11𝑘 =

𝑃11𝑘|𝑘−1

𝑆𝑘

𝐾21𝑘 =
𝑃21𝑘|𝑘−1

𝑆𝑘

o �̃�𝑘 = 𝑥𝑠𝑒𝑛𝑠𝑜𝑟 − 𝑥𝑘|𝑘−1

o {
𝑥𝑘|𝑘 = 𝑥𝑘|𝑘−1 +𝐾11𝑘 ∗ �̃�𝑘
�̇�𝑘|𝑘 = �̇�𝑘|𝑘−1 +𝐾21𝑘 ∗ �̃�𝑘

o

{

𝑃11𝑘|𝑘 = 𝑃11𝑘|𝑘−1 ∗ (1 − 𝐾11𝑘) = 𝑃11𝑘|𝑘−1 −𝐾11𝑘 ∗ 𝑃11𝑘|𝑘−1

𝑃12𝑘|𝑘 = 𝑃12𝑘|𝑘−1 ∗ (1 − 𝐾11𝑘) = 𝑃12𝑘|𝑘−1 −𝐾11𝑘 ∗ 𝑃12𝑘|𝑘−1
𝑃21𝑘|𝑘 = 𝑃21𝑘|𝑘−1 − 𝐾21𝑘 ∗ 𝑃11𝑘|𝑘−1

𝑃22𝑘|𝑘 = 𝑃22𝑘|𝑘−1 − 𝐾21𝑘 ∗ 𝑃12𝑘|𝑘−1

Notice no matrix operations are required at all by implementing the equations presented above, in

addition to only two floating-point divisions being required.

81

3.5 Pixel Control

With the Kalman filters completely defined, tested and implemented, the next step was to address

the final part of the application: given the target position is known within the image, how should the

robotic system be driven in order to follow the target, ideally maintaining it in a reference position?

Initially, controlling the distance between the robot and target was explored, but due the fact this

would either require implementing an online camera external parameters calibration technique, or an

ultrasonic sensor, another approach is introduced which abstract the distance. Moreover, the latter

would likely perform poorly, as the robot and target must be correctly aligned.

Figure 73. Pixel Control overview

The Pixel Control module presented in Figure 73 above is then explored, which implements two PID

controllers: one meant for controlling the base speed for both encoder motors, meanwhile the other

for the direction of the robotic system. Moreover, the controllers may run in parallel as there is no

direct data dependency. Both controller’s outputs are then merged, and the RPM references (right

and left) are forwarded to the robotic system. Notice the filtered target position (𝑥𝑓 , 𝑦𝑓) is the input

for the PID controllers, while the references (𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓) are provided by the user.

Figure 74. Detailed pixel control overview

More specifically, 𝑥𝑓 is fed to the “Extra” PID controller, due the fact this coordinate only influences

the direction, meanwhile 𝑦𝑓 is provided to the “Base” PID controller, because it impacts the forward

or backward speed, as depicted in Figure 74. The merged outputs are computed as follows:

{
𝑅𝑃𝑀𝑟 = 𝑅𝑃𝑀𝑏𝑎𝑠𝑒 + 𝑅𝑃𝑀𝑒𝑥𝑡𝑟𝑎
𝑅𝑃𝑀𝑙 = 𝑅𝑃𝑀𝑏𝑎𝑠𝑒 − 𝑅𝑃𝑀𝑒𝑥𝑡𝑟𝑎

Note that these equations assume the “Extra” PID controller outputs 𝑅𝑃𝑀𝑒𝑥𝑡𝑟𝑎 > 0 when 𝑥𝑓 < 𝑥𝑟𝑒𝑓.

After implementing both PID controllers, their respective gains were tuned in practice for a sampling

82

frequency 𝑓𝑠 = 20 𝐻𝑧 (constrained by the neural network), with the proportional (𝐾𝑝), integral (𝑇𝑖)

and derivative (𝑇𝑑) gains presented in Table 5 below.

Table 5. Gains of the base and extra PID controllers

In order to further analyze the behavior of the controllers implemented, their respective response for

the reference sequences 𝑥𝑟𝑒𝑓 = [160, 240, 160,80] and 𝑦𝑟𝑒𝑓 = [96, 80, 120, 80] are shown below:

Figure 75. Extra PID response (X coordinate)

Figure 76. Base PID response (Y coordinate)

Proportional Integral Derivative

Base 0.4 100 0.00001

Extra 0.1 100 0.001

GainPID

Controller

83

The discontinuity (𝑡 ≈ 23𝑠) in both graphs above is due to the Kalman filter being reset during normal

operation, caused by consecutive false negatives outputted by the neural network. Furthermore,

notice there is always a small delay in the beginning and whenever the references are changed, mainly

due the wireless transmission which will be further analyzed. Although the PID controllers were tuned

in practice and are stable, both present an oscillatory behavior in addition to overshoot, with the

system taking roughly 5 seconds to come closer to the reference values. It is relevant to note the base

controller slightly outperforms the extra controller, hence rotating the robot is harder than translating

it – which is expected. Finally, both controllers should be further tuned to increase their performance,

especially if the delay is reduced. Figure 77 below depicts the system response in terms of both X and

Y (2D) coordinates:

Figure 77. System response in terms of coordinates

In summary, the proposed module is capable of abstracting the real distance between robot and

target, in addition to properly driving the robotic system in order to keep the target around the desired

reference coordinates. However, it is relevant to notice that the 0.5 seconds delay of the stream

directly impacts the overall responsiveness of the system, hence both controllers could be greatly

improved in the future and react faster. This issue is further addressed in Chapter 4. Additional

information about the PID controller, its implementation and tuning procedure can be found in

Appendix A: PID Controller.

3.6 Final Implementation

Considering all components of the tracking system were properly defined and tested, combining them

is necessary for the final implementation. As the initial goal was to interface the camera and execute

the tracking in an embedded system, software components were developed in C/C++ and tested in an

embedded Linux during development (Zynq). However, executing this application fully in the

embedded platform requires the neural network is already implemented in hardware, which was not

the case in the end of this project. Hence, the application was ported to a PC running Linux, but

84

remained compatible and can be executed in an embedded Linux. This section presents an overview

of the complete tracking system in terms of hardware and software, and relevant topics will be further

explored. Figure 78 below depicts the final setup, with the tracking system running on a PC, connected

via USB to the robotic system, and via Wi-Fi to the camera:

Figure 78. Final implementation with target and both robotic and tracking systems running

3.6.1 Hardware

The tracking system is fairly simple in terms of hardware, and includes the main processor, a camera

connected to it, and a serial communication to the robotic system. Specifically for the final

implementation, the main controller is a PC running Linux (Ubuntu 14.04) in a Intel Core® i7 processor,

connected to the GoPro Hero4 via a direct Wi-Fi connection (access point), and exchanges data with

the robotic system through an USB-to-UART connection, with the UART communication complying to

the µprotocol discussed in section 2.5. The overview of the tracking system is depicted in Figure 79

below:

Figure 79. Final hardware architecture of the tracking system

Although the main processor is currently a PC, and the camera is connected via Wi-Fi, these parts are

easily changeable. For instance, one might use an embedded platform (i.e. Zynq) instead, and connect

the camera via HDMI, without changing the functionality of the tracking system.

85

3.6.2 Software

The tracking system, in comparison to the robotic system, has a much more complex software

architecture, mainly due the Wi-Fi connection needed – the neural network is simple. The

fundamental functions had to be analyzed to be able to define tasks and segregate them into other

applications, if needed. In terms of activities this system has to:

• Handle the camera stream;

• Process each frame of the stream with the neural networks (detection & localization, must be

in Python using TensorFlow[50]);

• Display a marked image to the user, with the filtered coordinates of the target;

• Handle data exchange between robotic and tracking systems;

• Implement the Pre-Kalman filter;

• Implement two (2) Kalman filters, one for each coordinate;

• Implement two (2) PID controllers;

• Provide a user interface in order to manually set the reference coordinates;

• Coordinate, merge, and forward data accordingly.

Taking these activities into consideration and after several discussions and different implementations,

three (3) applications are necessary:

1. The main application (MAPP): responsible for the Pre-Kalman filter, Kalman filters, PID

controllers, (simplistic) user interface, and communication with the robotic system;

2. The GoPro/Neural Network (GPNN): start and keep the camera stream alive, in addition to

running the neural network and displaying a marked image with the current target position;

3. The stream capture: responsible for retrieving, resizing and saving in a file the frames of the

camera stream.

Not only do all applications execute concurrently, but also exchange data directly (i.e. message

queues) and indirectly (i.e. files). In general terms, the Stream Capture captures frames from the

camera stream, which are saved in a file. The GPNN then opens the image, fed it to the neural

network(s) and sends the raw coordinates (𝑥𝑟𝑎𝑤 , 𝑦𝑟𝑎𝑤) of the target through a message queue to the

MAPP, which process the raw coordinates and send back to the GPNN the filtered coordinates (𝑥𝑓 , 𝑦𝑓).

The overview of the applications and their relations is presented below:

Figure 80.Overview of the applications and their relations

In order to simplify usage, the user should only run the MAPP, which is responsible for starting the

GPNN programmatically, which in turn starts the Stream Capture. Consequently, whenever the main

application is terminated, the others also are. Moreover, each application is implemented in different

86

programming languages: Stream Capture is a complete third-party application, which actually uses the

ffmpeg; GPNN was developed in Python and; MAPP in C/C++.

Initially, the stream capture is briefly discussed due the fact it is the simplest one, and corresponds to

an ffmpeg application, launched by GPNN with a single bash command and necessary arguments. The

framerate is limited to 20 fps, which matches the neural network requirements. A single iteration of

the stream capture comprises retrieving a frame from the camera stream, resizing it (from 640x480

to 320x240 resolution), and saving the resulting image in a file, as depicted in Figure 81 below.

Figure 81. Simplified single execution of the stream capture application

The GPNN initially elevates its priority (if permitted) to the maximum (-20) in order to reduce delay (it

runs in a PC), and has three (3) different threads, one responsible for handling the camera’s stream

(i.e. starting and maintaining it), another dedicated to the neural networks (detection and localization,

if necessary), and one more dedicated to process data incoming from the MAPP which will not be

discussed. The former starts the camera stream by sending a specific HTTP request, then launches the

stream capture (ffmpeg) application, signals to the neural network thread it has done the previous

steps and loops forever sending keep alive (UDP) packets to the camera every 2.5 seconds, in order to

maintain the stream. The overview of its execution is shown in Figure 82.

Figure 82. Execution flow of the camera handler thread of GPNN

The other thread responsible for applying the neural networks comprises more steps. After initializing

the models of the neural networks, it blocks until a signal from the camera handler thread is received.

The neural network handler then opens the image file (saved by the stream capture application),

deletes the file and resizes the image to 224x224 resolution which is required by the detection

network. Moreover, the resized image is fed to the detection network, and if the target is detected,

the localization network is fed with the original (320x240 resolution) frame. Subsequently, the raw

coordinates are sent to the MAPP, and the current frame marked and displayed. In case the target is

not localized, a negative value is sent to the MAPP, indicating so, and the frame is not marked (only

displayed). The overview of the execution of the neural network handler thread after initialization is

depicted in Figure 83, and a sample marked frame in Figure 84, with the green and yellow dot

corresponding to the neural network raw and filtered outputs, respectively.

Figure 83. Execution flow of the neural network handler of GPNN

Retrieve frame from
camera stream @ 20 fps

Resize to 320x240
resolution

Save to file

Send HTTP
request

Launch ffmpeg
Signal the other

thread
Send keep alive
packets forever

Open image
file (frame)

Delete
image file

Resize to
224x224

resolution

Run
detection
network

Run
localization

network

Send raw
data to
MAPP

Mark &
display
frame

87

Figure 84. Sample marked frame output of the GPNN

Main Application (MAPP)

The main application (MAPP) is the most complex piece of software of the system, being responsible

of launching and communicating with the GPNN, handling the communication with the robotic

system, providing a simple user interface, executing the Pre-Kalman filter, two Kalman filters, and two

PID controllers. In terms of implementation, specific drivers were developed and tested for the Kalman

filters and PID controllers, in addition to the communication with the robotic system. Main

functionalities were segregated into threads, and in total nine (POSIX) threads were used and are

summarized below with their respective functionalities:

• NN Handler: Handles incoming data from the concurrent python application. Data is then

forwarded to the Coordinator;

• MegaPi Handler: Handles all incoming/outgoing data from/to the MegaPi. It forwards data

sensor to the Pre-KF and set the respective RPMs received from the Coordinator;

• Pre-KF: Process sensor data from MegaPi Handler, computing the ego-motion impact on the

object being tracked. The pixel of interest is retrieved from the Kalman filters (KFx and KFy),

and both pixel speeds are forwarded to the respective Kalman filter

• KFx and KFy: Kalman filter implementations for X and Y coordinates, respectively. Data coming

from Pre-KF is integrated in the update step, and prediction is performed when data is

received from the Coordinator. The filters' outputs are sent to the PID controllers (bPID or

ePID);

• bPID and ePID: PID controllers for pixel distance control, with former being responsible for

computing the (b)ase speed which depends on the object'ś Y coordinate. The latter computes

the (e)xtra speed in order to set the robot to the correct direction which depends on the

object’s X coordinate. Both controllers send their output (RPM) to the Coordinator which is

computed based on the provided reference(s) from the Coordinator (which might come from

the User Interface);

• Coordinator: coordinator of the system, which makes high-level decisions and manages the

whole operation. Retrieves, processes, and send data to relevant threads;

• User Interface: Provides a simple menu for the user, which can set the reference coordinates

for the PID controllers. New references are forwarded to the Coordinator, and subsequently

to the controllers.

88

The overview of the software architecture is shown in Figure 85 below, where each box represents a

thread (except the gray boxes), and arrows corresponds to message queues between them (except

the connection to the robotic system).

Figure 85. MAPP software architecture

In summary, the MegaPi Handler forwards sensor data (current speed and angular velocities of the

robotic system) to the Pre-KF thread, which derives both pixel speeds based on the ego-motion data,

and the coordinates of the pixel of interest outputted by the Kalman filters. The latter, on the other

hand, apply the designed Kalman filters and either predicts, updates, or both: whenever data (i.e.

control input) is received from the Pre-KF, it performs the prediction step (should occur at 140 Hz);

whenever measurement data is received from the Coordinator (coming from the NN Handler), it

updates (should occur at 20 Hz) and forwards its output to the respective PID controller in addition to

the GPNN application, in order to mark the image and display to the user. The controllers execute

periodically, and initially check for new references from the Coordinator (coming from the UI),

subsequently actuating, running the PID loop and forwarding their outputs. The Coordinator merges

the RPMs outputted by the controllers and forwards to the MegaPi Handler (thus, to the robotic

system itself), check for new references coming from the user interface and transmits them to the

controllers, if necessary. Moreover, it retrieves the neural network raw data (should occur at 20 Hz)

and delivers it to the respective Kalman filters. The user can set new reference values through the

menu provided by the UI, by either manually inputting X and Y, or selecting a standard option, as

depicted in Figure 86 below, where banner “VTROBOT” stands for “Visual Tracking Robot”, a nickname

given to the project during development. Note that in total the application requires about 10 to 15

seconds to initialize and normally execute, mainly due the time the camera stream takes to start.

89

Figure 86. Banner and menu provided by the UI

This process also increases its priority to the maximum (-20), in order to reduce any delays or jitters,

in addition to launching the GPNN and registering termination signals to gracefully shutdown.

Initialization (main function) follows the procedure depicted in Figure 87 below:

Figure 87. Initialization procedure of the MAPP

It is relevant to state the Coordinator is responsible for handling false positives of the neural network,

resetting the Kalman filter if necessary, alongside the PID controllers. In order to address this case, a

maximum number of false negatives is defined, and correspond to 35% ∗ 20 𝑓𝑝𝑠 = 7, or 35% of the

frame rate (20 fps). Note this value was initially set to 10% (considering the neural network’s accuracy

is 90%) of the frame rate, but later modified to the aforementioned value due the fact the neural

network performed worse in practice. Whenever a negative value is received by the coordinator (i.e.

no car detected by the GPNN), a counter is incremented, and if it has reached the maximum number

of false negatives, both the PID controllers and Kalman filters are reset. Otherwise, the Kalman filters

keep performing the prediction step, thus the target can still be tracked up to 7 consecutive false

negatives.

Communication between (POSIX) threads are implemented through (POSIX) message queues. On the

other hand, tasks are simpler and thus are agglomerated in the main C++ source file. In terms of

priorities, all threads are considered critical, hence have the same priority (1), except the user

interface which is not essential and is set to priority 0. All message queues have a max number of

messages (i.e. tokens) set to 1, due the fact the threads read and process them as fast as possible,

Elevate
process
priority

Create
message

queues (18)

Create
threads (9)

Register
termination

signals

Launch
GPNN

90

although this is not guaranteed for every iteration because the application is running in a PC.

Moreover, each task executes in a cooperative manner, suspending themselves for a brief period

(1-100 microseconds) or blocking when sending/receiving a message, if synchronization is necessary.

Both handlers use low-level drivers to communicate with the other systems, and lightning bolts in

Figure 85 correspond to periodic tasks, triggered by Linux (real-time) timers with a 0.1 millisecond

accuracy, enough for the refresh rates used (20 and 140 Hz). Moreover, notice the MegaPi Handler

only delivers sensor data at 140 Hz, but do not send data to the robotic system at this rate – data is

sent based on the PID controllers rate (20 Hz), which are merged by the Coordinator. Finally, it is

important to note that one (1) serial communication (USB-to-UART) is used by the MegaPi Handler,

namely USB0 (/dev/ttyUSB0), for communicating with the robotic system. Note, however, that the

device name might change, and should be modified accordingly in the main.c file – if the Zynq platform

is used, for instance, the serial port could be UART1 (/dev/ttyPS1).

Although each thread was not addressed singularly, major aspects of the architecture were explained,

and relevant code snippets can be found in Appendix C: Embedded Software.

3.6.3 Drivers

For the tracking system only three (3) drivers are currently needed: one for communication purposes,

more specifically to communicate with the robotic system (namely megapi), and other two for the PID

controller (namely pid) and Kalman filter (namely kf) implementations. All drivers were segregated in

header and source files in which specifics can be easily modified in order to comply with future

modifications. Implementation details will not be discussed, although code is fully commented and

analyzing it should be simple.

MegaPi

The driver developed for communicating with the robotic system applies simple serial communication

principles. To correctly send or retrieve data, the driver must be initialized with the corresponding

serial port the robotic system is connected to – currently this is USB0, corresponding to

“/dev/ttyUSB0” –, which has to be visible in the Linux machine. The configuration structure is defined

as follows:

1. // MegaPi config structure
2. typedef struct megapi_t
3. {
4. int fd; // File descriptor for tty port
5. bool init; // Init flag
6. } megapi_t;

The synchronization words used by the protocol are defined in the source file, with other relevant

defines: data packet sizes, baud rate, among others. Its usage is simple, with the summary of the user

functions explained in Table 6. This driver is used specifically by the MegaPi Handler thread of the

MAPP for exchanging data with robotic system.

91

Table 6. User functions of the MegaPi driver

Function call Explanation

bool megapi_init(megapi_t *mp, char *port) Initialize driver and handler

bool megapi_setRPM(megapi_t *mp, RPM_t
*rpms)

Send RPM references to the module – both right
and left RPMs

bool megapi_getSensorData(megapi_t *mp,
sensorData_t *data);

Get sensor data from module – latest speed and
angular velocities

After being correctly initialized with the megapi_init(…) function, the link is established and ready to

be used via the other functions which can send new RPM references or retrieve the latest sensor data

from the robotic control system.

PID controller

The PID controller was also implemented, and comprises many functionalities such as defining

minimum and maximum input and output values, minimum error, and offset for the output (in case a

feed-forward is needed). Only the former is actually used in the final implementation to have a

complete security layer, for both inputs and outputs of the controller. Moreover, the user is able to

set a constant sampling frequency (standard behavior) or dynamically compute the time between loop

calls instead. The configuration structure is defined as follows:

1. // PID config structure
2. typedef struct pidController_t
3. {
4. // Gains
5. float kp; // Proportional
6. float ti; // Integral (1/ki)
7. float td; // Derivative (1/kd)
8. // Error
9. float error[3]; // Last 3 errors are needed [e(i) e(i-1) e(i-2)]
10. float minError; // Minimum error
11. // Output
12. float output[2]; // Last 2 outputs are neede [out(i) out(i-1)]
13. // Output with offset
14. float offOut; // Only used for feed-forward control
15. // Time-related
16. float dT; // Period, in seconds
17. float dT0;
18. // Security-related
19. float minInp, maxInp; // Minimum/maximum input values
20. float minOut, maxOut; // Minimum/maximum input values
21.
22. // Others
23. struct timespec sT; // Start & end time structures for computing dT
24. bool init; // Init flag
25. bool first; // First iteration flag
26. bool secInp, secOut; // Apply security values for inputs/outputs?
27. bool useMinError; // Use max error?
28. } pidController_t;

Its usage is simple, with the summary of the user functions explained in Table 7. This driver is used

specifically by the ePID and bPID threads of the MAPP for determining the speed and direction of the

robotic system.

92

Table 7. User functions of the PID driver

Function call Explanation

bool pid_init(pidController_t *pid, float kp, float ti, float td,
float dT0)

Initialize controller and handler

bool pid_setInputs(pidController_t *pid, float minVal,
float maxVal)

Set and enable security layer for
input values

bool pid_setOutputs(pidController_t *pid, float minVal,
float maxVal)

Set and enable security layer for
output values

bool pid_setError(pidController_t *pid, float minVal) Set and enable minimum error value

bool pid_loop(pidController_t *pid, float ref, float sensor,
bool useDt0)

Control loop itself, which should be
called periodically

bool pid_reset(pidController_t *pid) Reset controller

After being correctly initialized with the pid_init(…) function, the controller is ready to be used via the

pid_loop(…) function. Other functionalities are optional, but are available through the other functions.

Details about the PID controller itself can be found in Appendix A: PID Controller

Kalman Filter

Finally, the last driver addressed is the Kalman filter implementation, which is customized due the fact

no matrix operations are needed – each matrix element is singularly computed instead. Moreover,

this implementation is capable of dynamically determining the time between prediction steps, as well

as being reset whenever needed. The configuration structure is defined as follows:

1. // Filter config structure
2. typedef struct kf_t
3. {
4. /* Details on model:
5. * x^ = | x | F = | 1 dT | Q = | dT^4/4 dT^3/2 |*sigma_process^2
6. * | x.| | 0 1 | | dT^3/2 dT^2 |
7. * P0 = | sigma_x^2 0 | K = | K1 |
8. * | 0 sigma_x.^2 | | K2 |
9. * B = | dT | u = vr (self-speed)
10. * | 0 | H = | 1 0 | R = sigma_measurement^2
11. */
12. // Main variables
13. float alpha2; // Fading Memory filter, default = 1.00 - this is ALPHA^2
14. float pos, spd; // Position/Speed (x_hat)
15. Q_t Q; // Process noise covariance matrix
16. P_t P; // Error covariance matrix
17. float S; // Innovation covariance matrix
18. K_t K; // Kalman gains
19. float dT; // Delta time between samples
20.
21. // Variances (std = sqrt(var))
22. float proVar; // Process variance
23. float posVar, spdVar; // Position/Speed variances (initial guess only)
24. float senVar; // Sensor (measurment) variance
25.
26. // Others
27. struct timespec sT; // Start & end time structures for computing dT
28. bool idle; // Enable flag for timing purposes
29. bool init; // Init flag
30. bool first; // First iteration flag
31. float pos0, spd0; // Aux for reset
32. float dT0;
33. } kf_t;

93

Notice the model is fully detailed in the beginning. Its usage is simple, with the summary of the user

functions explained in Table 8. This driver is used specifically by the KFx and KFy threads of the MAPP

for filtering the neural network’s output.

Table 8. User functions of the PID driver

Function call Explanation

bool kf_init(kf_t *kf, float alp, float p0, float v0, float proStd,
float posStd, float spdStd, float senStd, float dT0, bool start)

Initialize filter, handler, and
optionally the filter itself

bool kf_set(kf_t *kf, bool enable) Enable or disable the filter (timing
purposes)

bool kf_predict(kf_t *kf, float vr, bool useDt0) Perform the prediction step

bool kf_update(kf_t *kf, float sensorVal) Perform the update step

bool kf_reset(kf_t *kf); Reset filter

After being correctly initialized with the kf_init(…) function, the filter is ready to be used via the other

functions. Further details about the predict and update steps can be found in Appendix C: Embedded

Software.

94

4. System analysis

Until this moment, both robotic and tracking systems have been extensively detailed. However, the

complete system will be analyzed in this chapter, with the focus being in two relevant aspects:

real-time behavior and delay impact on control performance. The former refers to modelling the

current software implementation with simple assumptions, such that real-time tools can be used in

the future to determine bounds on the throughput, prior to actual deployment of the system. The

latter, on the other hand, addresses the delay in the control loop and its impact on the control

behavior. Focus will be given to the delay impact, due the fact the model considered for the real-time

analysis is rather simple. Moreover, as the current implementation runs on a Linux PC, there are no

tight timing guarantees possible.

4.1 Delay impact

Although the final application yielded reasonable results, it is rather slow due to, mainly, the following

facts:

1. The neural network is implemented in software, and is capable of running at, at most, 25 Hz

(20 Hz was used instead), hence is the bottleneck of the system;

2. The camera streams over Wi-Fi, which results in a 0.5 seconds delay corresponding to the time

between the time each frame is captured by the camera and sent to the neural network

executed on a PC – namely, the (camera) stream delay;

3. Data exchange between tracking system (i.e. PC) and robotic system introduce delays to the

response of the latter.

Considering that increasing the frequency in order to address (1) is currently not a possibility, and that

(3) corresponds to a much smaller delay with respect to item (2), only the latter will be analyzed in

more detail. Moreover, the largest delay of the system is due to the stream delay, which greatly affects

the overall responsiveness of the system. Initially, we model the final setup in Simulink considering

only the extra PID controller, a 1st order plant, and the delay itself, as depicted in Figure 88 below. It

is reasonable to consider the plant as a 1st order system, due the fact the interest is on the delay

impact itself.

Figure 88. Simulink model for delay analysis, with 𝐷 = 0.5𝑠 and 𝑇𝑠 = 0.05𝑠

Moreover, notice the model under analysis is discrete, with the sampling period, delay, and (extra)

PID gains analogous to the values used in the practical setup: 𝑇𝑠 = 0.05𝑠, 𝐷 = 0.5𝑠 and 𝐾𝑝 = 0.1,

95

𝑇𝑖 = 100 , 𝑇𝑑 = 0.001 , respectively. The discrete PID controller, plant, and delay formulas are

presented below, correspondingly:

 𝐾𝑝 +
𝑇𝑠
𝑇𝑖
∗

1

𝑧 − 1
+ 𝑇𝑑 ∗

1

1 +
𝑇𝑠
𝑧 − 1

 (4.1)

𝑧

𝑧 − 𝑒−𝑇𝑠
 (4.2)

1

𝑧
𝐷
𝑇𝑠⁄

 (4.3)

Note that (4.1), (4.2) and (4.3) are in the Z-domain (discrete system), with the plant being modeled as

a 1st order system [51]. Moreover, the delay is presented in terms of the delay time 𝐷 and sampling

period 𝑇𝑠, both in seconds. Considering the values previously presented for the (extra) PID controller

gains, sampling and delay times, the above equations are reduced to, respectively:

 0.1 +
0.0005

𝑧 − 1
+

0.001

1 +
0.05
𝑧 − 1

 (4.4)

𝑧

𝑧 − 𝑒−0.05
≅

𝑧

𝑧 − 0.9512
 (4.5)

1

𝑧
0.5

0.05⁄
=

1

𝑧10
 (4.6)

Based on (4.4), (4.5) and (4.6), one is already able to reason about how the delay impacts the system:

poles are added to the control system due the 𝐷/𝑇𝑠 ratio, direct impacting the stability. Notice that

for a virtually zero delay (𝐷 = 0), no poles are added at all. The model presented in Figure 88

considering equations presented above was then simulated, for two cases: with (𝐷 = 0.5𝑠) and

without (𝐷 = 0𝑠) delay. Their step response and root locus are presented in Figures 89 and 90 below,

respectively. Notice a discrete system is stable when all poles and zeros are within the unit circle.

Figure 89. Root locus (a) and step response (b) for 𝐷 = 0.5𝑠

96

Figure 90. Root locus (a) and step response (b) for 𝐷 = 0𝑠

By comparing both root locus presented above, it becomes clear the delay indeed adds poles to the

control system. Not only does this constrain stability, but also it increases system analysis’ complexity,

and tuning is restricted due the fact the system might become unstable. When delay is negligible, one

has more flexibility while tuning the system, which is typically stable: zeros and poles are within the

unit circle (Figure 90a). In terms of response, an oscillatory behavior followed by an exponential

envelope is observed for 𝐷 = 0.5𝑠 (Figure 89b), which results in a disappointingly slow response –

resembling the effects of lowering the sampling frequency of the system. Finally, by tuning a

(proportional) compensator for no delay, it is possible to significantly decrease the settling time of its

step response (𝐺𝑎𝑖𝑛 = 200 in Figure 90b). For the case in which delay is present, on the other hand,

tuning is more constrained, with the system becoming unstable for 𝐺𝑎𝑖𝑛 ≥ 1.9 (𝐺𝑎𝑖𝑛 = 1.8 in Figure

89b). Overall, this initial analysis shows the delay considered is significant, and negatively impacts

system design, stability and response.

In order to further investigate how the delay impacts the system, the aforementioned model is further

refined and presented in Figure 91 below:

Figure 91. Model used for analyzing the delay impact

Moreover, the model above was implemented in MATLAB and simulated while taking into account

the following:

• Both coordinates are considered. Hence, two Kalman filters and two PID controllers are

instantiated;

• Image dimensions are respected (320x240);

• The target remains static;

97

• Whenever possible, noises are added and correspond to values used during the

implementation of the project;

• PID controllers use the same implementation as the real setup, including the gains;

• Kalman filters use the same implementation as the real setup;

• The plant makes use of the Pre-Kalman filter equations, which is possible due the PID

controllers output RPM and the angular velocity can be derived as well;

• Kalman filters, PID controllers and Neural Network run at 20 𝐻𝑧 ± 10%;

• An initial position is set for the target, and for every iteration a new position is computed

based on the previous one, augmented by the pixel speeds derived by the Pre-Kalman

equations multiplied by the sampling time (0.5𝑠 ± 10%). The new position corresponds to

the neural network output;

• The delay corresponds to buffering the neural network’s output in a FIFO manner. Moreover,

it is parametrized in the implementation in order to be easily modifiable;

• Preferably, the references for the PID controllers must be changed a couple of times.

The model presented in Figure 91 was implemented considering all aforementioned points, and the

results for an initial position (𝑥0, 𝑦0) = (220, 100), and a delay 𝐷 = 0.5 𝑠 are presented in Figure 89

below (for 1000 iterations):

Figure 92. Model results for 𝐷 = 0.5𝑠

Notice that the references were changed four (4) times in total, and correspond to the following

sequence for the X coordinate: 80, 70, 290, 25. The Y coordinate, on the other hand, follows the

sequence: 100, 70, 160, 35. More importantly, the observed settling time to an output value equal to

95% of the reference value corresponds to about 5 seconds. Besides, the oscillation observed on the

“real” coordinate values (more visible for 𝑡 ≥ 25𝑠) is mainly due the sensor standard deviation (i.e.

neural network deviation) being included in the new position computation for every iteration. Finally,

it is relevant to be aware of the fact the PID controllers use the gains obtained for the practical setup

and were not tuned for this simulation setup, which is not exactly the same as the real application.

98

The same procedure was then applied for a delay 𝐷 = 0𝑠, which yielded the following results:

Figure 93. Model results for 𝐷 = 0𝑠

In comparison to the case where 𝐷 = 0.5𝑠, the results are far superior even for non-tuned gains of

the PID controllers. Furthermore, by comparing Figures 92 and 93, it becomes evident the delay hugely

impacts the performance of the system. Although not visible in Figure 93 due the limited number of

iterations, the system eventually converges to the reference values, but it is clear the settling time to

an output value equal to 95% of the reference value is reduced and is equivalent to approximately 2

seconds. Instead of analyzing the control for X and Y coordinates separately, a 2D plot is provided to

observe the behavior, as shown in Figure 94 below:

Figure 94. Position results of the model for 𝐷 = 0𝑠

99

The position ranges from dark blue to bright yellow in Figure 94 above, with the former corresponding

to the initial position, meanwhile the references are shown in red. Notice the model reacts rapidly and

once it is close to the reference, oscillates around it mainly due the neural network’s deviation. Tuning

the gains for the PID controllers would theoretically improves even further the response, but such

procedure was not performed for the simulation setup.

In summary, not only does the stream delay remarkably decreases the responsiveness of the system,

but it also slows it down and restrains stability. Even though the analyzed models are approximations

of the real system, the obtained results are comparable to the observed behavior in practice. By simply

decreasing the delay, the settling time was reduced even for the same gains of the PID controllers,

hence replacing the interface used for processing the camera stream is extremely beneficial. However,

due to the current implementation constraints, it is not possible to reduce the stream delay, because

the neural network executes on a PC.

4.2 Real-time analysis

Ideally, the tracking system implementation should be analyzed prior to deployment through a

dataflow graph, derived from its respective task graph. However, the current implementation is rather

complex in terms of communication, runs in a Linux operating system and utilizes both synchronous

and asynchronous events. Hence, in order to simplify the current architecture but keep it close to the

real implementation, the following points were made:

• Stream delay is considered;

• The neural network executes at 20 Hz;

• Sensor data is provided at 140 Hz;

• No handler tasks (NN Handler or MegaPi Handler) are considered;

• There is no Coordinator task: a “merger” is used instead;

• Worst-case execution times are unknown;

• Behavior of the Kalman filter is approximated (i.e. prediction and update steps are not

segregated);

• Arbitration effects are not considered;

• Scheduling policy of the operating system is not contemplated.

Considering the aforementioned points, the Single Rate Dataflow (SRDF) graph in Figure 95 was

derived for this system. Actor D corresponds to the delay, NN to the neural network, KFx and KFy to

the Kalman filters, S to the sensor data retrieval, PKF to the Pre-Kalman filter, ePID and bPID to the

PID controllers and M to the merging procedure. The latter essentially combines the RPMs and

forwards it to the robotic system. 𝜌 and 𝛿 correspond to the worst-case execution time of each actor

(i.e. task) and number of tokens (i.e. size of the message queue) between actors, respectively.

100

Figure 95. Tracking system SRDF graph model

Note the model does not completely matches the implementation. Communication and behavior of

Pre-Kalman filter and Kalman filters are the most notable cases, due the fact the prediction step of

the Kalman filters is performed whenever data is received from the Pre-Kalman filter – which is not

captured in the current model. A multi-rate dataflow graph (MRDF) is more suitable for describing this

behavior, alongside partitioning the Kalman filter into two (2) actors instead of one, with each actor

comparable to the prediction and update steps, respectively. Even with such modifications, token

consumption is dependent on worst-case execution times of both neural network and Pre-Kalman

filter.

Although 𝜌𝑁𝑁 , 𝜌𝐷 , and 𝜌𝑆 are considered the maximum worst-case execution times of the neural

network, delay, and sensor actors, respectively, are not accurate due the fact they do not consider the

actual execution time of the tasks. Instead, they are solely based on their current sampling rate (for

the neural network and sensor cases). Moreover, the execution time of each actor cannot be easily

nor accurately derived because this application currently runs on a Linux machine, thus a non-

determinist multi-thread environment, being influenced by arbitrary delays introduced by other

applications on the PC (workload), in addition to the influence of the scheduling policy (arbitration).

Both effects, however, can be included in the model, with the former using a two parameter (𝜎, 𝜌)

characterization and the latter using a latency-rate dataflow model [52, 53]. Moreover, both

characterizations can be combined and, in simple terms, a task is represented by two actors instead

of one.

Even for such model, however, it is possible to ponder about the major bottlenecks in terms of

throughput and latency. The delay currently dictates the latter, due the fact 𝜌𝐷 ≫ 𝜌𝑜𝑡ℎ𝑒𝑟𝑠 : the

execution time of other actors are much greater than the delay itself. The throughput, on the other

hand, is constrained by the neural network actor (NN) which presents the greatest execution time

after the delay, and triggers the core actors. Thus, delay and neural network are the bottlenecks and

must be addressed in order to increase both throughput and latency of the system.

101

Table 9. WCET characterization

Finally, the WCET characterization presented in Table 9 above was derived in practice for the core

tasks: Pre-KF, KF, PID and Merger (i.e. Coordinator). Both neural network and sensor data retrieval

from the robotic setup were assumed periodic. The former is essentially what triggers all other tasks,

thus the estimated execution time for a single activation can be estimated by simply adding the

execution time of the core tasks, which results in 10.1 milliseconds, as shown in Table 9. Hence, the

absolute maximum frequency the current implementation can (theoretically) achieve is analogous to

99.0 Hz, with the current bottleneck being the neural network itself running at 20 Hz.

Taking into account the presented shortcomings of the model, there is no point on pondering about

its throughput nor latency. However, it is presented here alongside the rough WCET characterization

for the core tasks in order to serve as a starting point for future work, requiring further refinement.

More specifically, the Kalman filters and actors modelling overall, alongside fine grain precision on

worst-case execution time of the tasks.

Time (ms) Frequency (Hz)

Execution

Time (ms)
5.7 3.2 0.2 1.0 10.1 99.0

Total
Task Pre-KF KF PID Merger

102

5. Conclusions and future work

The main objectives of this research comprised implementing, investigating, and evaluating a practical

implementation of a system with tracking and sensor fusion techniques, for an embedded platform.

A complete practical working setup was the major outcome of the graduation project described in this

thesis, and based on results, the research questions were answered.

The uncomplicated and fast complementary filter was used to fuse encoder and IMU data, which

greatly increased the ego-motion sampling frequency from 50 to 140 Hz, in addition to increasing its

accuracy. The estimation of the ego-motion impact, in terms of pixel movement, was implemented

through approximation functions that are only dependent on the derived speed and gyroscope data,

and proved to be fairly accurate without the need for more complex procedures. The standard Kalman

filter implemented considers the pixel speeds derived with the ego-motion data, and proved to handle

false-negatives, target occlusions and decrease the position deviation in a reliable manner meanwhile

dealing with several uncertainties. However, due the fact that a pure software solution was used for

the tracking system and a 0.5 seconds delay was introduced by the wireless transmission of the video

stream, the complete implementation has a noticeably slow responsive behavior. Ultimately,

responsiveness of the system is strictly related to the execution time of the neural network, in addition

to the delay present: both must be reduced in order to enhance performance.

During development computational complexity was always considered and reduced whenever

possible. Firmware running on the robotic system, for instance, only uses floating-point divisions for

the speed control loop (PID controller), and double precision is avoided at all costs. Moreover, the Pre-

Kalman filter module only requires sine and cosine functions to properly compute the pixel speeds

based on the ego-motion data, and in the worst-case scenario might be bypassed at a cost of

decreasing the performance of the Kalman filter. A specific library was developed for the latter, which

includes dynamic timing computation (if desired), uses float precision, few variables (thus does not

require lots of memory) and does not implement matrix operations (i.e. inversion) in order to further

reduce execution time of the implementation. The PID controllers were also implemented in a specific

library, and are similar in terms of precision and memory usage in comparison to the Kalman filter.

Both instances of the Kalman filters and PID controllers can be instantiated and run in parallel, as there

is no data dependency, hence they can be directly mapped to processing elements in a FPGA.

Although the final implementation executes on a PC, this gives room to exploring jitter and

non-deterministic behavior, and does not invalidate the research; in practice, most industrial

applications still make use of PCs. Moreover, the whole application is implemented such that it can be

easily ported to an embedded Linux. The necessary modifications correspond to the usage of a

retrieval method of the neural network output, modification of the serial port used for communicating

with the robotic system, and tuning the PID controllers once more in case their sampling frequency is

changed. Finally, both systems must be correctly connected and interfaced to properly communicate.

If a bare-metal implementation is desired, however, modifications are rather complex. Both software

and hardware implementations followed guidelines during development and can be easily modified

to fulfill future requirements. This is possible because development considered possible functionalities

addition in forthcoming versions, likewise understandability such that others can continue with the

results of this graduation project.

103

Despite the final setup performed reasonably good given the constraints imposed by mainly the

tracking system implementation, some parts are not ideal and can be improved. Reviewing the project

arduously, the following aspects can be enhanced:

• Complementary filter: The filter can be better tuned, however a reliable way of accurately

determining the speed of the robot must be used in order to do so;

• Speed estimation: Pitch correction can be included, while considering roll and implementing

mechanisms to prevent accumulating speed when the robot is rolling or pitching;

• Communication between tracking and robotic system: Instead of using an USB cable to

connect both systems, a direct (serial) connection would be a far superior implementation;

• Real-time implementation: The neural network should be ported to a FPGA, alongside the

other software components being totally (or partially) ported to an embedded Linux (or

bare-metal). Not only would it hugely decrease the current delay introduced by the stream,

but also mitigate the bottleneck of the neural network and remove the need for extra

applications, thus increasing the system performance. Finally, multiple-object detection and

localization, alongside power optimization are relevant topics, and might be addressed;

• Pre-Kalman filter: The number of points considered to estimate the base speed and angle

functions can be further augmented to increase the precision of this module. Moreover,

alternatives to estimating the ego-motion impact might be explored;

• Kalman filter: A variation of the standard Kalman filter or even a completely different method

might perform better, and could be explored in the future. Moreover, the current design can

be augmented with other techniques and improved with further testing;

• Pixel control: Re-tuning and greater sampling frequency might be addressed. Furthermore,

steering the robot can be performed in a different manner, or completely modified to a

distance control approach. Finally, the control can be optimized for delay and uncertainties;

• Additional modules: The robotic system may include extra modules, such as a compass for

determining the current heading, thus positioning is possible. Moreover, a Bluetooth can

replace the USB connection with the PC, although its protocol stack might introduce delays.

Additionally, the camera can be mounted on top of a servo motor, in order to follow the target

by moving the camera, although this complicates the design and invalidate the current

ego-motion impact estimation. Finally, an ultrasonic sensor can be placed in front of the

robotic system to derive the distance to other objects;

• Communication protocol: The protocol does not implement any type of Cyclic Redundancy

Check (CRC) nor ACK/NACK procedures, which may compromise the communication in the

long term. Hence, it is advisable to improve such protocol, especially when relevant data is

sent or received, alongside increasing the serial baud rate, if supported by the tracking system;

• Neural network and Kalman filter combination: Instead of filtering out the output of the neural

network, the Kalman filter might be combined with the neural network itself. However, a

more complex network architecture and training set are required in this case;

• Real-Time analysis: RT tools were not used to analyze the tracking system software, hence

future work should determine the theoretical bounds on throughput and latency.

It is important to keep in mind that a system can always be improved. Moreover, a wide variety of

alternative designs might be derived from the current realization.

104

6. Bibliography

[1] Kim, Tae-Il, et al. "Vision system for mobile robots for tracking moving targets, based on robot

motion and stereo vision information." System Integration (SII), 2011 IEEE/SICE International

Symposium on. IEEE, 2011.

[2] Available at: http://store.digilentinc.com/zybo-zynq-7000-arm-fpga-soc-trainer-board/. Accessed

in: November 6th, 2017.

[3] Available at: https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html. Accessed in:

November 6th, 2017.

[4] Babaians, Edwin, et al. "Skeleton and visual tracking fusion for human following task of service

robots." Robotics and Mechatronics (ICROM), 2015 3rd RSI International Conference on. IEEE, 2015.

[5] Wang, Howard, and Sing Kiong Nguang. "Video target tracking based on fusion state estimation."

Technology Management and Emerging Technologies (ISTMET), 2014 International Symposium on.

IEEE, 2014.

[6] Franken, Dietrich, and Andreas Hupper. "Unified tracking and fusion for airborne collision

avoidance using log-polar coordinates." Information Fusion (FUSION), 2012 15th International

Conference on. IEEE, 2012.

[7] Crowley, James L., and Yves Demazeau. "Principles and techniques for sensor data fusion." Signal

processing 32.1-2 (1993): 5-27.

[8] Castanedo, Federico. "A review of data fusion techniques." The Scientific World Journal 2013

(2013).

[9] Shaikh, Muhammad Muneeb, et al. "Mobile robot vision tracking system using unscented Kalman

filter." System Integration (SII), 2011 IEEE/SICE International Symposium on. IEEE, 2011.

[10] Panahandeh, Ghazaleh, Magnus Jansson, and Seth Hutchinson. "IMU-camera data fusion:

Horizontal plane observation with explicit outlier rejection." Indoor Positioning and Indoor

Navigation (IPIN), 2013 International Conference on. IEEE, 2013.

[11] Antonello, Riccardo, et al. "IMU-aided image stabilization and tracking in a HSM-driven camera

positioning unit." Industrial Electronics (ISIE), 2013 IEEE International Symposium on. IEEE, 2013.

[12] Kim, Tae-Il, et al. "Vision system for mobile robots for tracking moving targets, based on robot

motion and stereo vision information." System Integration (SII), 2011 IEEE/SICE International

Symposium on. IEEE, 2011.

[13] Vaidehi, V., et al. "Neural network aided Kalman filtering for multitarget tracking applications."

Computers & Electrical Engineering 27.2 (2001): 217-228.

[14] Yu, Zhi-Jun, et al. "Neural network aided unscented kalman filter for maneuvering target

tracking in distributed acoustic sensor networks." Computing: Theory and Applications, 2007.

ICCTA'07. International Conference on. IEEE, 2007.

[15] Available at: https://makeblockshop.eu/products/makeblock-ultimate-robot-kit-v2. Accessed in:

November 6th, 2017.

[16] Available at: http://www.atmel.com/Images/Atmel-2549-8-bit-AVR-Microcontroller-

ATmega640-1280-1281-2560-2561_datasheet.pdf. Accessed in: November 6th, 2017.

[17] Available at: https://github.com/Makeblock-official/Makeblock-Libraries/archive/master.zip.

Accessed in: November 6th, 2017.

[18] Available at: https://www.kiwi-electronics.nl/optical-encoder-motor-25-9v-86rpm?lang=en.

Accessed in: November 6th, 2017.

105

[19] Available at: https://store.invensense.com/datasheets/invensense/MPU-

6050_DataSheet_V3%204.pdf. Accessed in: November 6th, 2017.

[20] Higgins, Walter T. "A comparison of complementary and Kalman filtering." IEEE Transactions on

Aerospace and Electronic Systems 3 (1975): 321-325.

[21] Available at: http://robottini.altervista.org/kalman-filter-vs-complementary-filter

[22] Quoc, Dung Duong, Jinwei Sun, and Lei Luo. "Complementary Filter Performance Enhancement

through Filter Gain." International Journal of Signal Processing, Image Processing and Pattern

Recognition 8.7 (2015): 97-110.

[23] Min, Hyung Gi, and Eun Tae Jeung. "Complementary filter design for angle estimation using

mems accelerometer and gyroscope." Department of Control and Instrumentation, Changwon

National University, Changwon, Korea (2015): 641-773.

[24] Yoo, Tae Suk, et al. "Gain-scheduled complementary filter design for a MEMS based attitude and

heading reference system." Sensors11.4 (2011): 3816-3830.

[25] Lai, Ying-Chih, Shau-Shiun Jan, and Fei-Bin Hsiao. "Development of a low-cost attitude and

heading reference system using a three-axis rotating platform." Sensors 10.4 (2010): 2472-2491.

[26] Seifert, Kurt, and Oscar Camacho. "Implementing positioning algorithms using accelerometers."

Freescale Semiconductor (2007): 1-13.

[27] Olson, Edwin. "A primer on odometry and motor control." (2004): 1-15.

[28] Available at: http://www.robotnav.com/position-estimation/. Accessed in: November 6th, 2017.

[29] Available at: http://ttuadvancedrobotics.wikidot.com/odometry. Accessed in: November 6th,

2017.

[30] Available at:

http://www.seattlerobotics.org/encoder/200610/Article3/IMU%20Odometry,%20by%20David%20A

nderson.htm. Accessed in: November 6th, 2017.

[31] Available at: http://faculty.salina.k-

state.edu/tim/robotics_sg/Control/kinematics/odometry.html. Accessed in: November 6th, 2017.

[32] Yamauchi, Genki, Daiki Suzuki, and Keiji Nagatani. "Online slip parameter estimation for tracked

vehicle odometry on loose slope." Safety, Security, and Rescue Robotics (SSRR), 2016 IEEE

International Symposium on. IEEE, 2016.

[33] Khanniche, M. S., and Yi Feng Guo. "A microcontroller-based real-time speed measurement for

motor drive systems." Journal of microcomputer applications 18.1 (1995): 39-53.

[34] Available at: https://gopro.com/help/HERO4-Black. Accessed in: November 6th, 2017.

[35] Available at: https://www.ffmpeg.org/. Accessed in: November 6th, 2017.

[36] Lee, Chang-Ryeol, Ju Hong Yoon, and Kuk-Jin Yoon. "Robust calibration of an ultralow-cost inertial

measurement unit and a camera: Handling of severe system uncertainty." Robotics and Automation

(ICRA), 2014 IEEE International Conference on. IEEE, 2014.

[37] Fang, Wei, Lianyu Zheng, and Huanjun Deng. "A motion tracking method by combining the IMU

and camera in mobile devices." Sensing Technology (ICST), 2016 10th International Conference on.

IEEE, 2016.

[38] Faion, Florian, et al. "Camera-and IMU-based pose tracking for augmented reality." Multisensor

Fusion and Integration for Intelligent Systems (MFI), 2016 IEEE International Conference on. IEEE,

2016.

[39] Lee, Yongseok, et al. "Camera-GPS-IMU sensor fusion for autonomous flying." Ubiquitous and

Future Networks (ICUFN), 2016 Eighth International Conference on. IEEE, 2016.

106

[40] Li, Mingyang, and Anastasios I. Mourikis. "3-D motion estimation and online temporal calibration

for camera-IMU systems." Robotics and Automation (ICRA), 2013 IEEE International Conference on.

IEEE, 2013.

[41] Li, Mingyang, and Anastasios I. Mourikis. "Online temporal calibration for camera–IMU systems:

Theory and algorithms." The International Journal of Robotics Research 33.7 (2014): 947-964.

[42] Heeger, David J. "Notes on motion estimation." (1996).

[43] Forsyth, David, and Jean Ponce. Computer vision: a modern approach. Upper Saddle River, NJ;

London: Prentice Hall, 2011.

[44] Available at: https://nl.mathworks.com/matlabcentral/fileexchange/34765-polyfitn. Accessed in:

November 6th, 2017.

[45] Hakim, V. S. Implementation and Analysis of Real-time Object Tracking on the Starburst MPSoC.

MS thesis. University of Twente, 2015.

[46] Labbe, R. R. "Kalman and bayesian filters in python." (2015).

[47] Simon, Dan. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley

& Sons, 2006.

[48] Bar-Shalom, Y., Xiao-Rong L., and Thiagalingam Kirubarajan. Estimation with Applications to

Tracking and Navigation. New York: Wiley, 2001.

[49] E. Brookner, Tracking and Kalman Filtering Made Easy, John Wiley & Sons, New York, 1998.

[50] Available at: https://www.tensorflow.org/. Accessed in: November 6th, 2017.

[51] Aström, Karl Johan, and Richard M. Murray. Feedback systems: an introduction for scientists and

engineers. Princeton university press, 2010.

[52] Wiggers, Maarten H., Marco JG Bekooij, and Gerard JM Smit. "Modelling run-time arbitration by

latency-rate servers in dataflow graphs." Proceedingsof the 10th international workshop on Software

& compilers for embedded systems. ACM, 2007.

[53] Wiggers, Maarten H., Marco JG Bekooij, and Gerard JM Smit. "Monotonicity and run-time

scheduling." Proceedings of the seventh ACM international conference on Embedded software. ACM,

2009.

107

7. Appendices

Appendix A: PID Controller

A PID controller is simple and intuitive to implement, reliable, and widely used for Single-Input

Single-Output (SISO) systems. Not only does it not require a theoretical model, but can be easily tuned

in practice even if the sensors or actuators are changed. However, timing must be respected, thus an

accurate timer which has enough granularity with respect to the sampling frequency has to be used.

In total, four (4) PID controllers were used in this project, two (2) for the low-level speed control (RPM

control) of the encoder motors, and another (2) for the high-level control (speed and direction

control). All of them were implemented according to the following formula [A.1]:

𝑢𝑛 = 𝑢𝑛 + 𝐾𝑝 ∗ [𝑒𝑛 − 𝑒𝑛−1] +
𝐾𝑝 ∗ 𝑇𝑠

𝑇𝑖
∗ 𝑒𝑛 +

𝐾𝑝 ∗ 𝑇𝑑

𝑇𝑠
∗ [𝑒𝑛 − 2 ∗ 𝑒𝑛−1 + 𝑒𝑛−2]

With 𝐾𝑝, 𝑇𝑖 and 𝑇𝑑 being the proportional, integral and derivative gains, 𝑇𝑠 the sampling period in

seconds, and 𝑒𝑛 and 𝑢𝑛 the error and absolute control value at iteration 𝑛. More specifically, 𝑒𝑛 =

𝑅𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑛 − 𝑆𝑒𝑛𝑠𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑛.

The PID controller takes care of decreasing the error to a minimum, but it requires tuning and a

sampling time must be defined. It is a common technique to implement the PID controller as depicted

in Figure 96 below, where the Actuate phase is done with respect to the previous iteration output,

instead of the current one. This is done to guarantee the exact same sampling time between iterations

of the controller.

Figure 96. PID controller implementation

Additionally, the control loop is usually guarded with both in- and out-security layers, with both

preventing invalid values to be processed or outputted by the controller. In summary, the PID

coefficients are found in practice, following this sequence:

1. 𝑇𝑖 is set to a high value, 𝑇𝑑 and 𝐾𝑝 to zero;

2. 𝐾𝑝 is increased until the rise time is sufficient;

3. 𝑇𝑑 is slowly increased to decrease overshoot (damping);

4. 𝑇𝑖 is slowly increased until the results are satisfying and;

5. Steps 2-4 are repeated to improve the response.

[A.1] Available at

http://www.kirp.chtf.stuba.sk/moodle/pluginfile.php/66882/mod_resource/content/0/tidsdiskret_p

id_reg.pdf. Accessed in: November 5th, 2017.

Actuate
Retrieve

sensor data
Run control

loop

108

Appendix B: Pre-Kalman Filter Equations

Within this appendix, a summary of the equations used for the Pre-Kalman filter module is presented.

The combined pixel speeds are calculated with the following equations:

𝑉𝑥 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ sin(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤 , 𝑥, 𝑦) ∗ sin(𝜃𝑟𝑜𝑡(𝑥, 𝑦))

∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤)

𝑉𝑦 = 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) ∗ cos(𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) + 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤, 𝑥, 𝑦)

∗ cos(𝜃𝑟𝑜𝑡(𝑥, 𝑦)) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) ∗ 𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥)

With 𝐶𝑡𝑟𝑎𝑛𝑠(𝑅𝑃𝑀, 𝑥, 𝑦) = 𝛾(𝑅𝑃𝑀) ∗ 𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) , and 𝐶𝑟𝑜𝑡(𝜔𝑦𝑎𝑤, 𝑥, 𝑦) = 𝜌(𝜔𝑦𝑎𝑤) ∗ 𝑣𝑟𝑜𝑡(𝑥, 𝑦) .

Moreover, the signal functions are defined as follows:

𝑠𝑖𝑔𝑛𝑎𝑙𝑥(𝑥) = {
+1, 𝑖𝑓 𝑥 > 𝑊/2
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑖𝑔𝑛𝑎𝑙𝑅𝑃𝑀(𝑅𝑃𝑀) = {
+1, 𝑖𝑓 𝑅𝑃𝑀 ≥ 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑠𝑖𝑔𝑛𝑎𝑙𝜔𝑦𝑎𝑤(𝜔𝑦𝑎𝑤) = {
+1, 𝑖𝑓 𝜔𝑦𝑎𝑤 ≥ 0

−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

B.1 Translation

The translation components are calculated with the following equations:

𝛾(𝑅𝑃𝑀) = 0.1282 ∗ |𝑅𝑃𝑀| − 0.6138

𝑣𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000012𝑥
2 + 0.000166𝑥𝑦 − 0.0545𝑥 − 0.00016𝑦2 + 0.09347𝑦 + 50.65

𝜃𝑡𝑟𝑎𝑛𝑠(𝑥, 𝑦) ≅ −0.000105𝑥
2 + 0.000124𝑥𝑦 − 0.092𝑥 + 0.00009𝑦2 − 0.1068𝑦 + 53.62

B.2 Rotation

The rotation components are calculated with the following equations:

𝜌(𝜔𝑦𝑎𝑤) = −0.0005 ∗ |𝜔𝑦𝑎𝑤|
2
+ 0.1474 ∗ |𝜔𝑦𝑎𝑤| − 0.8033

𝑣𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00005𝑥
2 + 0.000002𝑥𝑦 − 0.0496𝑥 − 0.00004𝑦2 − 0.0793𝑦 + 143.81

𝜃𝑟𝑜𝑡(𝑥, 𝑦) ≅ 0.00008𝑥
2 + 0.0001𝑥𝑦 + 0.0183𝑥 − 0.000012𝑦2 − 0.0238𝑦 + 80.461

109

Appendix C: Embedded Software

Snippet 1. Encoder motor (init, interrupts, usage)

Snippet 2. IMU module (init, usage)

Snippet 3. Pre-Kalman Filter (implementation)

Snippet 4. Kalman Filter’s prediction & update steps

Snippet 5. GoPro Stream Handler

Snippet 6. Neural Network with TensorFlow

Snippet 7. ffmpeg invocation and parameters

Snippet 8. MAPP compilation options

Snippet 9. POSIX: Message queue creation and usage example

Snippet 10. POSIX: Thread creation example

Snippet 11. Float over serial example

Snippet 1. Encoder motor

This is the most relevant code in megapi_fw.ino file of the application running on the robotic system,

used to initialize and drive the encoder motors.

1. /* Code omitted */
2.
3. // Motors + Encoders
4. MeEncoderOnBoard encR(SLOT1); // Forward, speed > 0
5. MeEncoderOnBoard encL(SLOT2); // Forward, speed < 0
6.
7. /* INTERRUPTS */
8. // Interrupts for encoders
9. void ISR_encR(void)
10. {
11. if(digitalRead(encR.getPortB()) == 0)
12. encR.pulsePosMinus();
13. else
14. encR.pulsePosPlus();
15. }
16. void ISR_encL(void)
17. {
18. if(digitalRead(encL.getPortB()) == 0)
19. encL.pulsePosMinus();
20. else
21. encL.pulsePosPlus();
22. }
23.
24. void setup()
25. {
26. /* Code omitted */
27. // Motors + Encoders
28. TCCR1A = _BV(WGM10); // 8kHz PWM
29. TCCR1B = _BV(CS11) | _BV(WGM12);
30. TCCR2A = _BV(WGM21) | _BV(WGM20);
31. TCCR2B = _BV(CS21);
32. encR.setPulse(8); // Set the pulse number of encoder code disc

33. encL.setPulse(8);
34. encR.setRatio(46.67); // Set ratio of encoder motor
35. encL.setRatio(46.67);
36. encR.setSpeedPid(1.7, 0.1, 0.0001); // Set internal PID values for speed control

(RPM)
37. encL.setSpeedPid(1.7, 0.1, 0.0001);

110

38. encR.setMotionMode(PID_MODE); // Set to standard SPEED PID controller
39. encL.setMotionMode(PID_MODE);
40.
41. attachInterrupt(encR.getIntNum(), ISR_encR, RISING); // Encoder interrupts
42. attachInterrupt(encL.getIntNum(), ISR_encL, RISING);
43. /* ... */
44. }
45.
46. void loop()
47. {
48. // Drive
49. drive();
50. }
51.
52. void drive()
53. {
54. // Set speeds
55. encR.runSpeed(+100); // Move robot forwards @ 100 RPM
56. encL.runSpeed(-100);
57. // Update encoder values
58. encR.loop();
59. encL.loop();
60. }

Snippet 2. IMU module

This is the most relevant code in megapi_fw.ino file of the application running on the robotic system,

used to initialize and retrieve data from the IMU (gyroscope and accelerometer) module.

1. /* Code omitted */
2.
3. // Gyro + acc
4. MeGyro gyroacc(0, 0x68); // Gyro+Acc
5. double pData[6]; // Pre-processed data
6.
7. void setup()
8. {
9. /* Code omitted */
10. // Gyro + Acc
11. gyroacc.begin(); // Calibrate already
12.
13. /* ... */
14. }
15.
16. void loop()
17. {
18. // Retrieve pre-processed data
19. gyroacc.getProcessedData(&pData[0]);
20.
21. /* process it ... */
22. }

Snippet 3. Pre-Kalman Filter

This is the most relevant code of the Pre-Kalman filter thread in main.c file of the main application.

1. // Defines
2. #define IMAGE_WIDTH (320) // Image dimensions
3. #define IMAGE_HEIGHT (240)
4. #define MIN_RPM_PREKF (5.0f) // Minimum RPM for Pre-KF
5. #define MIN_WYAW_PREKF (3.0f) // Minimum yaw for Pre-KF
6. // Macros
7. #define DEG_TO_RAD(x) (float)(x*PI/180.0f) // Degrees to radians conversion
8.

111

9. /* Code omitted */
10.
11. // Pre-KF thread
12. void *prekfThread(void *arg)
13. {
14. /* Initialization omitted */
15.
16. /* Assuming data is received from Robotic system & Kalman Filters */
17. // Check if data is valid
18. if(x >= -20 && x < (IMAGE_WIDTH+20) &&
19. y >= -20 && y < (IMAGE_HEIGHT+20) &&
20. !isnan(sensors.speed) && !isinf(sensors.speed) &&
21. !isnan(sensors.heading) && !isinf(sensors.heading) &&
22. !isnan(sensors.pitch) && !isinf(sensors.pitch) &&
23. !isnan(sensors.roll) && !isinf(sensors.roll))
24. {
25. /* RPM & WYAW correction */
26. // RPM
27. if(sensors.speed < 0)
28. auxRPM = -sensors.speed;
29. else
30. auxRPM = +sensors.speed;
31. // wyaw
32. if(sensors.heading < 0)
33. auxWy = -sensors.heading;
34. else
35. auxWy = +sensors.heading;
36. /* SYMMETRY & SIGNAL(X) */
37. if(x > (IMAGE_WIDTH/2))
38. {
39. auxX = IMAGE_WIDTH - x;
40. sig_x = +1;
41. }
42. else
43. {
44. sig_x = -1;
45. auxX = x;
46. }
47. /* SIGNALS */
48. // signal(RPM)
49. if(sensors.speed >= 0)
50. sig_rpm = +1;
51. else
52. sig_rpm = -1;
53. // signal(yaw)
54. if(sensors.heading >= 0)
55. sig_wy = +1;
56. else
57. sig_wy = -1;
58. /* SCALE FACTORS */
59. // Translation
60. if(auxRPM < MIN_RPM_PREKF)
61. gama = 0;
62. else
63. gama = 0.1282f*auxRPM - 0.6138f;
64. // Rotation
65. if(auxWy < MIN_WYAW_PREKF)
66. rho = 0;
67. else
68. rho = -0.0005f*auxWy*auxWy + 0.1474f*auxWy - 0.8033;
69. /* SPEEDS */
70. St = -

0.000012f*auxX*auxX + 0.0001655f*auxX*y - 0.05445f*auxX // Translation
71. -0.0001632f*y*y + 0.0934647f*y + 50.6455;
72. Sr = 0.000052f*auxX*auxX + 0.000002f*auxX*y - 0.04962f*auxX // Rotation

112

73. -0.000037f*y*y - 0.07933f*y + 143.8089f;
74. Ct = gama*St;
75. Cr = rho*Sr;
76. /* ANGLES */
77. Tt = -

0.000105f*auxX*auxX + 0.000124f*auxX*y - 0.0922076f*auxX // Translation
78. +0.000086f*y*y - 0.10679f*y + 53.616f;
79. Tr = 0.000079f*auxX*auxX + 0.000101f*auxX*y + 0.0183f*auxX //Rotation

80. -0.000012f*y*y - 0.02381f*y + 80.4608f;
81. if(Tr > 90)
82. Tr = 90;
83. // Convert to radians
84. Tt = DEG_TO_RAD(Tt);
85. Tr = DEG_TO_RAD(Tr);
86. /* FINAL SPEEDS */
87. // Compute Vx and Vy - finally :) – Divided by two due the image resizing
88. Vx = (Ct*sin(Tt)*sig_x + Cr*sin(Tr)*sig_wy)/2;
89. Vy = (Ct*cos(Tt)*sig_rpm + Cr*cos(Tr)*sig_x*sig_wy)/2;
90. }
91. // Invalid coordinates, cannot estimate Vx and Vy...
92. else
93. Vx = Vy = 0;
94.
95. /* Pixel speeds are then forwarded to the KFs */
96. }

Snippet 4. Kalman Filter’s prediction & update steps

This is the most relevant code in kf.c file, used for the predictio and update steps of the Kalman filter

implementation.

1. // Local functions declaration
2. void kf_computeQ(kf_t *kf);
3. float kf_getDt(struct timespec *sT);
4.
5. /* Code omitted */
6.
7. //--
8. // Perform the prediction step
9. // kf : Config structure
10. // vr : Self-motion impact, in px/s
11. // useDt0 : Use period defined in kf_init(...)?
12. // return : TRUE if successful, FALSE otherwise
13. bool kf_predict(kf_t *kf, float vr, bool useDt0)
14. {
15. /* Prediction equations:
16. * x^(k|k-1) = F*x^(k-1|k-1) + B*u
17. * P(k|k-1) = alpha^2*F*P(k-1|k-1)*F' + Q
18. */
19.
20. // Sanity check
21. if(kf != NULL && kf->init && !kf->idle)
22. {
23. // Compute dT
24. if(!useDt0 && !kf->first)
25. {
26. kf->dT = kf_getDt(&kf->sT);
27. // Recompute Q based on dT
28. kf_computeQ(kf);
29. }
30. // Else, everything already set...
31. kf->first = false; // Make sure it is not the first one anymore
32.
33. // Actual prediction

113

34. kf->pos = kf->pos + (kf->spd + vr)*kf->dT;
35. kf->spd = kf->spd;
36. kf->P.P11 = kf->alpha2*(kf->P.P11 + kf->dT*(kf->P.P12 + kf->P.P21 + kf-

>dT*kf->P.P22)) + kf->Q.Q11;
37. kf->P.P12 = kf->alpha2*(kf->P.P12 + kf->dT*kf->P.P22) + kf->Q.Q12;
38. kf->P.P21 = kf->alpha2*(kf->P.P21 + kf->dT*kf->P.P22) + kf->Q.Q21;
39. kf->P.P22 = kf->alpha2*kf->P.P22 + kf->Q.Q22;
40.
41. // DONE!
42. return true;
43. }
44. else
45. return false;
46. }
47.
48. //--
49. // Perform the update step
50. // kf : Config structure
51. // sensorVal : Sensor value
52. // return : TRUE if successful, FALSE otherwise
53. bool kf_update(kf_t *kf, float sensorVal)
54. {
55. /* Update equations:
56. * y(k) = z(k) - H*x^(k|k-1)
57. * S(k) = H*P(k|k-1)*H' + R
58. * K(k) = P(k|k-1)*H'*inv(S(k))
59. * x^(k|k) = x^(k|k-1)+K(k)*y(k)
60. * P(k|k) = (I-K(k)*H)*P(k|k-1)
61. */
62.
63. // Auxiliar variables
64. float yk = 0;
65. float p11 = 0;
66. float p12 = 0;
67.
68. // Sanity check
69. if(kf != NULL && kf->init && !kf->idle)
70. {
71. yk = sensorVal - kf->pos;
72. kf->S = kf->P.P11 + kf->senVar;
73. kf->K.K1 = kf->P.P11/kf->S;
74. kf->K.K2 = kf->P.P21/kf->S;
75. kf->pos = kf->pos + kf->K.K1*yk;
76. kf->spd = kf->spd + kf->K.K2*yk;
77. // Copy to aux vars
78. p11 = kf->P.P11; p12 = kf->P.P12;
79. kf->P.P11 = p11*(1 - kf->K.K1);
80. kf->P.P12 = p12*(1 - kf->K.K1);
81. kf->P.P21 = kf->P.P21 - kf->K.K2*p11;
82. kf->P.P22 = kf->P.P22 - kf->K.K2*p12;
83.
84. // DONE!
85. return true;
86. }
87. else
88. return false;
89. }
90.
91. /* INTERNAL FUNCTIONS */
92. //--
93. // Compute Q (process noise covariance matrix) based on dT
94. void kf_computeQ(kf_t *kf)
95. {
96. // Does not perform sanity because it is an internal function...
97. float dT = kf->dT;
98. float dT2 = dT*dT;

114

99. float dT3 = dT2*dT;
100. float dT4 = dT3*dT;
101.
102. // Compute elements
103. kf->Q.Q11 = kf->proVar*dT4/4;
104. kf->Q.Q12 = kf->proVar*dT3/2;
105. kf->Q.Q21 = kf->Q.Q12;
106. kf->Q.Q22 = kf->proVar*dT2;
107. }
108.
109. //--
110. // Compute dT, in seconds
111. float kf_getDt(struct timespec *sT)
112. {
113. // Variables
114. float dT = 0;
115. struct timespec eT;
116.
117. // Get time
118. clock_gettime(CLOCK_REALTIME, &eT);
119. // Compute dT, in seconds
120. dT = (eT.tv_sec - sT->tv_sec) + (eT.tv_nsec - sT->tv_nsec)/1000000000.0f;
121. // Overwrite initial time
122. clock_gettime(CLOCK_REALTIME, sT);
123.
124. // Return
125. return dT;
126. }

Snippet 5. GoPro Stream Handler

This is the most relevant code in gopro.py file (GPNN application), used to initialize the camera stream,

launch the ffmpeg application and keep alive the stream.

1. # Libs
2. from time import sleep
3. import socket # Keep alive is sent via UDP
4. import urllib.request # HTTP get for triggering stream
5. import subprocess # Launch ffmpeg
6. import threading # Keep Alive thread for GoPro
7.
8. # Variables
9. # Threading
10. pipeSemaphore = threading.Semaphore(0) # Semaphore for syncrhonization
11. threadFlag = True # Flag for shutting down threads
12.
13. # Code omitted #
14.
15. # GoPro-specific command message
16. def get_command_msg(id):
17. return "_GPHD_:%u:%u:%d:%1lf\n" % (0, 0, 2, 0)
18.
19. # GoPro streaming thread
20. def gopro_stream():
21. # GoPro-specific variables
22. UDP_IP = "10.5.5.9"
23. UDP_PORT = 8554
24. KEEP_ALIVE_PERIOD = 2500 # Period in seconds
25. KEEP_ALIVE_CMD = 2 # Do not change this
26. # Get keep alive cmd for GoPro
27. MESSAGE = bytes(get_command_msg(KEEP_ALIVE_CMD), "utf-8")
28. # Triggers streaming
29. urllib.request.urlopen("http://10.5.5.9/gp/gpControl/execute?p1=gpStream&a1=proto_v

2&c1=restart").read()
30. # Launch ffmpeg (stream preview or save to file only)

115

31. subprocess.Popen("ffmpeg -loglevel panic -f:v mpegts -an -probesize 8192 -
i rtp://10.5.5.9:8554 -vf scale=320:240 -r 20 -updatefirst 1 -y img.png", shell=True)

32. print("GoPro> Streaming started...")
33. # Release semaphore
34. pipeSemaphore.release() # NN
35. pipeSemaphore.release() # KF
36. # Keep alive loop
37. while threadFlag:
38. sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
39. sock.sendto(MESSAGE, (UDP_IP, UDP_PORT))
40. sleep(KEEP_ALIVE_PERIOD/1000)

Snippet 6. Neural Network with TensorFlow

This is the most relevant code in gopro.py file (GPNN application), used to initialize the neural

networks used, launch the ffmpeg application and keep alive the stream.

1. # Libs
2. from __future__ import print_function
3. from keras.models import load_model, Model # Neural Network
4. import keras
5. import tensorflow as tf
6. import numpy as np # For arrays
7. import cv2 # OpenCV
8. import os # OS utilities
9. from os import remove
10. from time import sleep
11. import socket # Keep alive is sent via UDP
12. import urllib.request # HTTP get for triggering stream
13. import subprocess # Launch ffmpeg
14. import threading # Keep Alive thread for GoPro
15. # 3rd party POSIX IPC
16. import posix_ipc
17.
18. # Variables
19. # Threading
20. pipeSemaphore = threading.Semaphore(0) # Semaphore for syncrhonization
21. threadFlag = True # Flag for shutting down threads
22. # Message queue
23. MQOUT = "/gopro2mainappMQ" # Create in main app, MAXMSG=1, MSG

SIZE=sizeof(int32_t), BLOCKING
24. mqout = posix_ipc.MessageQueue(MQOUT)
25. # Others
26. normImgs = np.zeros((1,240,320,3),np.uint8) # Create image arrays
27. classImgs = np.zeros((1, 224, 224, 3), np.uint8)
28. # Load models
29. model = load_model('mobilenet_binary_1.h5', custom_objects={'relu6': keras.applications

.mobilenet.relu6, 'DepthwiseConv2D': keras.applications.mobilenet.DepthwiseConv2D})
30. small_model = load_model('videoModel_improved.h5') # Small model
31. # Copy only the convolutional layers to a new model for localization
32. conv_model = Model(inputs=small_model.input, outputs=small_model.layers[13].output)
33.
34.
35. # Code omitted #
36.
37. # Neural network itself
38. def neural_network():
39. # Run prediction on both models to prevent freezing (with fake images)
40. prediction = model.predict(classImgs, 1, 0)
41. auxLayer = conv_model.predict(normImgs, 1, 0)
42.
43. # Wait for Stream to start...
44. pipeSemaphore.acquire()
45.
46. print("NN> Init done!")

116

47. # Loop
48. while threadFlag:
49. start = time.time()
50. # Tries reading image
51. while True:
52. normImg = cv2.imread('img.png', 1)
53. if (normImg is not None):
54. break
55. else:
56. time.sleep(0.0001)
57.
58. # Delete last image
59. remove('img.png')
60. # Resize image
61. classImg = cv2.resize(normImg, (224, 224))
62. # Re-arrange colors
63. classImgs[0] = classImg[...,::-1]
64. normImgs[0] = normImg[...,::-1]
65.
66. # Run prediction for big model
67. prediction = model.predict(classImgs, 1, 0)
68.
69. xVal = -1
70. yVal = -1
71. # Check if a car was detected
72. if (np.argmax(prediction)):
73. # Car detected, run prediction for small model
74. auxLayer = conv_model.predict(normImgs, 1, 0)
75. auxLayer2 = auxLayer[0,:,:,0]
76. coordinates = np.unravel_index(auxLayer2.argmax(), auxLayer2.shape)
77. xVal = (coordinates[1]*8 + 10).tolist() # x
78. yVal = (coordinates[0]*8 + 30).tolist() # y
79.
80. # Modify image
81. cv2.circle(normImg, (xVal,yVal), 4, (0,255,0), -1)
82.
83. # Get KF output and add a purple circle
84. try:
85. xAux = xList.pop()
86. yAux = yList.pop()
87. cv2.circle(normImg, (xAux,yAux), 5, (0,255,255), -1)
88. except IndexError:
89. pass # Do nth...
90.
91. # Show image
92. cv2.imshow('Stream', normImg)
93. cv2.waitKey(1)
94.
95. # Send data to Main App
96. x = (xVal).to_bytes(2, byteorder='little', signed=True)
97. y = (yVal).to_bytes(2, byteorder='little', signed=True)
98. mqout.send(x + y)
99.
100. time.sleep(0.0001) # Yield processor (100us)

Snippet 7. ffmpeg invocation and parameters

The ffmpeg (Stream Capture) application is launched by the GPNN, using the following bash command:

1. ffmpeg -loglevel panic -f:v mpegts -an -probesize 8192 -i rtp://10.5.5.9:8554 -
vf scale=320:240 -r 20 -updatefirst 1 -y img.png

The parameters are described below:

• -loglevel panic: (optional) display only panic messages;

117

• -f:v mpegts: camera’s stream format;

• -an: (optional) disable audio from stream;

• -probesize 8192: used to reduce stream’s latency;

• -i rtp://10.5.5.9:8554: indicate the specific IP/RTP port used by the camera;

• -vf scale=320:240: video filter for resizing the incoming frame to 320x240 resolution;

• -r 20: (soft-)limit the frame rate to 20 fps;

• -updatefirst 1: overwrites output image, if it already exists;

• -y: force [y]es option for any prompts;

• img.png: name of the output image file.

Snippet 8. MAPP compilation options

The main application is normally compiled (line 1) and run (line 2) with the following bash command:

1. bash> gcc main.c kf.c pid.c megapi.c typedefs.c -pthread -lrt -lm
2. bash> sudo ./a.out

However, the following additional flags can be used for compilation, either singularly or combined, if

needed:

• -DDEBUG: Used for debugging, print out debugging messages during execution;

• -DEXECTIME: Used for estimating the WCET of all threads;

• -DBYPASS: Used during testing, bypass the Pre-Kalman filter computations (𝑉𝑥 = 𝑉𝑦 = 0);

• -DFAKENN: Used during testing, launches a fake GPNN application;

• -DWEBCAM: Used during testing, launches a similar GPNN application which process a camera

stream from a USB webcam.

Notice the only restriction is -DFAKENN and -DWEBCAM cannot be used together. For standard

operation, use the compilation command without extra flags.

Snippet 9. POSIX: Message queue creation example

This is an example on how to create message queues when using POSIX in a Linux environment for the

high-level control system.

1. #include <mqueue.h> // Message queues
2.
3. // Message queue name
4. char *mqName = "/mq";
5.
6. // Message queue object
7. mqd_t mq;
8.
9. bool create_mqueue(mqd_t *mqueue, char *name, long maxmsg, long msgsize, int flags)
10. {
11. // Local attributes
12. struct mq_attr attr;
13.
14. // Sanity check
15. if(mqueue != NULL && name != NULL && maxmsg != 0 && msgsize != 0)
16. {
17. // Set attributes
18. attr.mq_maxmsg = maxmsg; // Max capacity
19. attr.mq_msgsize = msgsize; // Msg size, in bytes

118

20. attr.mq_flags = 0; // Blocking
21. umask(0); // Change permission mask
22.
23. // Create mqueue
24. if(((*mqueue) = mq_open(name, flags | O_CREAT, 0666, &attr)) < 0)
25. return false;
26.
27. // Done!
28. return true;
29. }
30. else
31. return false;
32. }
33. void main()
34. {
35. /* CREATE MQUEUES */
36. // Create a non-blocking uint16_t message queue, size 2
37. // For a blocking message queue, omit flag O_NONBLOCK
38. if(!create_mqueue(&mq, mqName, 2, sizeof(uint16_t), O_RDWR | O_NONBLOCK))
39. {
40. printf("MAIN> Could not create %s.\r\n", mqName);
41. exit(-1);
42. }
43. }

Snippet 10. POSIX: Thread creation example

This is an example on how to create threads when using POSIX in a Linux environment for the

high-level control system.

1. #include <pthread.h> // Posix threads
2. #include <sched.h> // Tweaking priorities
3.
4. /* THREADS */
5. // Thread function
6. void *thread(void *arg)
7. { /* Do sth... */ }
8.
9. bool setPriority(pthread_attr_t *attr, struct sched_param *param, int priority)
10. {
11. // Sanity check
12. if(attr != NULL && param != NULL &&
13. (priority >= -20 && priority <= 19))
14. {
15. // Init attributes + scheduling variables
16. pthread_attr_init(attr);
17. pthread_attr_getschedparam(attr, param);
18. // Set priority
19. param->sched_priority = priority;
20. // Set new scheduling parameters
21. pthread_attr_setschedparam(attr, param);
22.
23. // Done... user can create thread now
24. return true;
25. }
26. else
27. return false;
28. }
29. void main()
30. {
31. // Threads
32. pthread_t th;
33. // Attributes - for priority tweak
34. pthread_attr_t attr;
35. struct sched_param sched;

119

36.
37. /* CREATE THREADS */
38. // Create thread with priority 0 - default
39. setPriority(&attr, &sched, 0);
40. if(pthread_create(&th, &attr, thread, NULL) != 0)
41. {
42. printf("Could not create thread.\r\n");
43. exit(-1);
44. }
45.
46. // Shut down "main" thread
47. pthread_exit(NULL);
48. return 0;
49. }

Snippet 11. Float over serial example

This is an example on how to send and receive 32-bit floating point values over serial which handles

bytes.

1. // Union structure for float values
2. typedef union u_tag
3. {
4. uint8_t b[4];
5. float32_t fval;
6. } u_tag;
7.
8. void sendF(float32_t val)
9. {
10. // Create union
11. u_tag tag;
12. // Copy value to union
13. tag.fval = val;
14. // Send each byte, LSB
15. send(tag.b[3]);
16. send(tag.b[2]);
17. send(tag.b[1]);
18. send(tag.b[0]);
19. }
20.
21. void recvF(float32_t *val)
22. {
23. // Create union
24. u_tag tag;
25. // Read and copy bytes, LSB
26. recv(tag.b[3]);
27. recv(tag.b[2]);
28. recv(tag.b[1]);
29. recv(tag.b[0]);
30. // Copy to output variable
31. (*val) = tag.fval;
32. }
33.
34. void main()
35. {
36. // Variables
37. float toSend = 4.21f;
38. float toRecv = 0.0f;
39.
40. // Send float value
41. sendF(toSend);
42. // Receive float value
43. recvF(&toRecv);
44. }

