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Abstract

In this thesis we make use of integer linear programming methods to obtain solutions
to the shift design problem, the break scheduling problem, and the shifts and breaks
design problem. Results are obtained by using the commercially available optimisation
package Cplex. By using integer linear programming we are able to proof optimal
solutions for many instances of shift design which were not known before. Furthermore
this approach shows better results than existing methods when allowing only a short
running time. Our approach to break scheduling shows not to be competitive with
results in the literature, however it shows to be effective in our two-phased approach
to the shifts and break design problem.

We combine our approaches used for shift design and break scheduling to form a two-
phased approach to the shifts and breaks design problem. This two-phased approach
out performs the current best method for shifts and breaks design on a set of randomly
generated instances as well as on a set of real life instances.
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1 Introduction

Personnel scheduling was first introduced by Edie [17] and formulated as a set covering
problem by Dantzig [11] in the 1950’s. After its introduction it has received a great deal
of attention in the literature and has been applied to numerous different areas such as
airlines, health care systems, police, call centres and retail stores [18]. The interest can be
explained by labour cost being a major direct cost component for companies.

In this thesis we will consider the shifts and breaks design problem [15] which combines the
shift design problem [28] and the break scheduling problem [6]. The shift design problem is
a variation on the personnel scheduling problem and was first introduced by Musliu et al.
[28]. The problem arose in a project involving members of Vienna University of Technology
and Ximes Corp., a company offering software and consulting services regarding working
hours. Based on the forecasted number of employees needed during each time period of
a planning horizon, a set of shifts are designed and a number of employees (duties) are
assigned to the shifts for each day. A goal in the shift design problem is to have a low num-
ber of shifts. These shifts can be re-used over multiple days and this makes the problem
different from other personnel scheduling problems discussed in the literature. Schedules
with a low number of shifts are easier to read and manage, and make employee scheduling
easier such that groups of people stay together.

The break scheduling problem, as we will consider here, was first considered by Beer et al.
[6]. Their solution methods were applied to real life instances of supervisory personnel.
For this problem a set of duties are given where each duty represents a set of consecutive
time slots in which an employee will be present. Breaks need to be scheduled for each
duty such that many conditions are satisfied and the forecasted staffing requirements are
closely met. Supervisory personnel spends most of their time in front of computer monitors
and it is required to keep a high level of concentration throughout the day. Therefore the
problem formulation requires many small breaks as well as a lunch break somewhere in the
middle of the shift. The large number of break possibilities produce a complex problem
and separates the break scheduling problem from other problems discussed in the literature.

The shifts and breaks design problem combines the two problems mentioned above. The
goal is to design shifts and breaks for each duty such that the staffing requirements are
closely followed and the number of shifts used is small. Tackling this combined problem
was first done by Di Gaspero et al. [15]. In their formulation a large number of breaks as
well as a large number of possible shifts are allowed and as a consequence the search space
is enormous.

Solution methods to the shift design and the break scheduling problems are part of a
commercial product called Operating Hours Assistant [35].
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1 Introduction

1.1 Aim of the Master’s Thesis

In this thesis we will investigate the shifts and breaks design problem and propose a solu-
tion approach to improve current best found solutions. In our solution approach we split
the shifts and breaks design problem into two different phases and use integer linear pro-
gramming to find solutions for each phase. The first phase is similar to the shift design
problem and the second phase in an instance of break scheduling. We use parts of our
solution approach to compare the effectiveness of integer linear programming for the shift
design problem and the break scheduling problem, as compared to local search methods
proposed in the literature. In short the three goals of this thesis are as follows.

1. Propose a solution approach to the shifts and breaks design problem to improve so-
lutions found by Di Gaspero et al. [15]

2. Compare the effectiveness of integer linear programming methods on instances of
shift design as compared to local search methods used in the literature.

3. Compare the effectiveness of integer linear programming methods on instances of
break scheduling as compared to local search methods used in the literature.

1.2 Results of the Master’s Thesis

Integer linear programming shows to be effective on instances of shift design, both in prov-
ing optimal solutions and in finding good quality solutions quickly. For break scheduling
our approach using integer linear programming shows not to be competitive with other
approaches available in the literature. Our two-phased approach to the shifts and breaks
design problem shows to outperform the current best available method.
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1.3 Structure of the Master’s Thesis

1.3 Structure of the Master’s Thesis

The remaining chapters of this thesis are organized as follows.

Chapter 2 describes the shift design problem, the break scheduling problem, and
the shifts and breaks design problem.

Chapter 3 gives an overview of literature regarding personnel scheduling with a
special focus towards shift design, break scheduling, and shifts and breaks design.

Chapter 4 shows our solution approach and results for the shift design problem.

Chapter 5 shows our solution approach and results for the break scheduling problem.

Chapter 6 shows our solution approach and results for the shifts and breaks design
problem.

Chapter 7 summarises our results and gives suggestions for future research.
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2 Problem Descriptions

In this section we will describe the three problems discussed in this thesis, the shift design
problem, the break scheduling problem, and the shifts and breaks design problem. For
each problem we will start with an introduction and give a formal description afterwards.

2.1 Shift Design

In this section we will first introduce the shift design problem and give a give a formal
description afterwards. The problem is formulated as described by Di Gaspero et al. [14].

2.1.1 Introduction

The shift design problem considers the design of shifts and assigning a number of workers
to each shift such that the number of workers present over the planning horizon closely
aligns with the workforce requirements. The planning horizon consists of multiple days
which are split up into n equally long consecutive time periods. The desired staffing level,
requirements, for each time period are given. Furthermore the problem is considered to be
cyclic, which means that employees starting on the last day and working overnight will be
considered to be active from the first time period onwards. Figure 1 shows an example of
staffing requirements spread out over a two day cycle.

The requirements state how many duties are necessary in order to cope with the demand
at any time period and therefore it is desired to have at least as many employees working
as the requirements. On the other hand having too many employees working is a waste
of resources. Therefore it is desired to follow the requirements closely. In order to mea-
sure deviations from the requirements we will use the terms overstaffing and understaffing.
Overstaffing counts the surplus in number of employees over the staffing requirements and
understaffing counts the deficit. Both overstaffing and understaffing are allowed in the shift
design problem and different importance can be put into these two factors.

In shift design it is also desirable to have a small number of shifts. In the context of
shift design (and this thesis!) a shift is determined by its starting time, ranging from 00:00
to 23:59, and its length. A shift is considered to be active on all days of the planning hori-
zon and can be assigned a different number of workers on each day. An example of a shift
would be a morning shift starting at 06:00 and lasting 8 hours. Employees can be assigned
to this shift on each day, thus it is possible to have a different number of employees on this
shift on each day. More specifically, for each shift in the shift design problem we assign a
number of duties for each day in the planning horizon. The term duty is chosen because it
represents a workload which has to be fulfilled by a single employee. Hence the decisions
made in shift design are designing the shifts and assigning a number of duties to each shift
for each day. There are various reasons for wanting to have a small number of distinct

8



2 Problem Descriptions

Figure 1: Example Staffing Requirements

Table 1: Example Shift Types

Abbr. Name
Earliest

start
Latest
start

Minimum
length

Maximum
length

M Morning Shift 05:00 08:00 7:00 9:00

D Day Shift 09:00 11:00 7:00 9:00

E Evening Shift 13:00 15:00 7:00 9:00

N Night Shift 21:00 23:00 7:00 9:00

shifts. As stated by Di Gaspero et al. [14] : ”once a shift is selected (at least one person
works in this shift during any day) it is neither really important how many persons work at
this shift, nor on how many days the shift is reused. Nevertheless, it is important to have
only few shifts as they lead to schedules that have a number of advantages. For example,
they are more adequate if one wants to keep teams of persons together, whenever this is
necessary because of managerial or qualification reasons. Besides this, there are further
advantages of obtaining schedules with fewer shifts. For example, they lead to schedules
that are easier to design with or without software support [27]. Fewer shifts also make
schedules easier to read, check, manage and administer, being each of these activities a
burden in itself.”
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2.1 Shift Design

The shifts can only be chosen based on a set of shift types. A shift type specifies the earliest
and latest starting time of a shift, as well as the shortest and longest duration of a shift.
In Table 1 an example of possible shift types are shown. Using these shift types we can
design three different shifts and a number of duties for each shift on each of the two days
to exactly meet the requirements from Figure 1. This solution is shown in Table 2 and
Figure 2.

Figure 2: Example Solution Graph

Table 2: Example Solution Table

Shift
Type

Start End
Duties
Day 1

Duties
Day 2

Morning 08:00 16:00 2 3

Evening 13:00 20:00 3 3

Night 21:00 05:00 1 4

10



2 Problem Descriptions

2.1.2 Formal Description

In this section we give a formal description of the shift design problem. First the factors
describing an instance of shift design are given. Afterwards the decision variables are
described. Finally we show the objective of the problem.

Instance Description
An instance of shift design can be described by the following.

• D consecutive days.

• These days are spanned by n equally long consecutive time slots T = {t1, t2, ..., tn},
The problem is cyclic hence t1 follows tn.

• Staffing requirements Rt ∀t ∈ T .

• Set of shift types Y, each shift type, y ∈ Y contains the minimum and maximum start
and duration of a shift of that type:
y.min start, y.max start, y.min length, y.max length.

• W1,W2 and W3 representing respectively the penalty for
overstaffing, understaffing, and the number of shifts.

Decision Variables
The decision variables in the shift design problem are the following.

• A set of shifts S, where for each s ∈ S we choose the type, start and length,
s.type, s.start and s.length.
The start and length of each shift need to comply with the shift type hence we require

s.type.min start ≤s.start ≤s.type.max start ∀s ∈ S

s.type.min length ≤s.length ≤s.type.max length ∀s ∈ S

• For each shift the number of duties at each day
ws,d ∀s ∈ S, d ∈ {1, ..., D}

Objective
The objective is made up of three parts: the overstaffing, the understaffing and the num-
ber of shifts. In order to calculate the overstaffing and understaffing we define the active
workers for each time period represented by at ∀t ∈ T . at will be equal to the number of
employees working at time period t.

at =
∑
s∈S

xs,d, where xs,d =

{
ws,d if time slot t belongs to the interval of shift s on day d

0 otherwise

11



2.1 Shift Design

We will use O to denote the total overstaffing and U to denote the total understaffing. We
define them as follows.

O =
∑
t∈T

max{at −Rt, 0}

U =
∑
t∈T

max{Rt − at, 0}

The objective is to minimise the weighted sum of overstaffing, understaffing and the number
of shifts.

minimize W1 ·O + W2 · U + W3 · |S| (1)

12



2 Problem Descriptions

2.2 Break Scheduling

First we will give an introduction to the break scheduling problem. The formulation that
we use is taken from [33]. The break scheduling problem uses characteristics of the shift
design problem and we use similar notation as in the shift design problem. Therefore we
will describe break scheduling as the problem of scheduling breaks for each duty as opposed
to breaks for a shift. This will allow us to smoothly combine the two separate problems to
formulate the shifts and breaks design problem afterwards.

2.2.1 Introduction

The break scheduling problem considers the allocation of breaks to a workforce. In this
problem the planned shifts and number of employees on each day are considered to be fixed.
In the break scheduling problem we are deciding on which breaks to allocate for each duty.
A break can be characterised by its starting time and the length. Various restrictions are
set on the breaks. These restrictions are usually set to ensure that workers can function
optimally and are based on labour rules and therefore must be satisfied.

A duty is made up of two complementary time periods namely the breaks and the working
periods. Therefore the working periods represent the time periods of a duty in which the
employee is continuously working. We do however not consider a duty to be active on the
first time period following a break. Instead we consider the duty to be getting accustomed
with a new working situation after their break. Hence the first time period following a
break does not count towards the break time of a duty and neither to the staffing require-
ments.

In Figure 3 an example of the staffing requirements and the present workers of an in-
stance of break scheduling are shown. The present workers are the number duties who are
working without accounting for breaks. Table 3 shows the duties used in this example,
as well as a break allocation for each duty which will result in a perfect coverage i.e. no
overstaffing nor understaffing. It should be noted that this example was constructed such
that exact coverage was possible, it is not guaranteed that such a solution exists.

13



2.2 Break Scheduling

Figure 3: Example Staffing Requirements

Table 3: Example Duties and Breaks

Duty Start End Breaks (Start, Length)
1 08:00 16:00 08:40, 10 10:10, 20 12:10, 30 13:20, 10 14:10, 10 15:00, 10
2 08:00 16:00 08:30, 10 09:20, 10 10:10, 10 12:00, 30 13:10, 10 13:50, 10 14:40, 10
3 13:00 20:00 13:30, 10 14:20, 10 15:00, 10 16:30, 30 17:40, 10 18:20, 10
4 13:00 20:00 13:40, 10 14:30, 10 15:20, 10 16:10, 10 17:30, 30 18:40, 10
5 13:00 20:00 14:40, 20 15:30, 10 17:00, 30 18:00, 10 18:40, 10
6 21:00 05:00 21:40, 10 22:30, 10 23:10, 10 00:50, 30 02:00, 10 02:40, 10 03:30, 10

The restriction on breaks and working periods are as follows.

• Total break length is fixed (depends on the length of the duty).

• Breaks have a minimum and maximum length.

• Working periods have a minimum and maximum length.

• If the working periods is longer than long working period the next break has a higher
minimum length.

• Break cannot start too early or too late for a duty so that employees is always working
in the first few and last few time periods of their duty.

• Duties which last longer than minimum length for lunch need to be allocated a lunch
break. This lunch break has a fixed length and needs to positioned be around the
middle of the duty.

14



2 Problem Descriptions

2.2.2 Formal Description

In this section we give a formal description of the break scheduling problem. First we
give the factors used to describe an instance of break scheduling. Afterwards the decision
variables are described. Next the restrictions on feasible break patterns are specified.
Finally we show the objective of the problem.

Instance Description
An instance of break scheduling can be described by the following.

• A set of n equally long consecutive time slots T = {t1, t2, ..., tn},
The problem is cyclic hence t1 follows tn.

• Staffing requirements Rt ∀t.

• Set of duties E, Each duty e has a starting time slot and a length,
e.start, and e.length.

• W1 and W2 representing respectively the penalty for overstaffing and understaffing.

• Parameters for the constraints:

total break time ( for each duty)
break minimum length and break maximum length
working period minimum length and working period maximum length
long working period and long break minimum length
earliest break start and latest break start
min length for lunch, lunch break length,
earliest lunch break start and latest lunch break start.

Decision Variables
For each duty we are deciding on the number of breaks, and for each break on the start and
length of the break. We let e.breaks denote the number of breaks of duty e. Furthermore
we let be,i refer to the ith break of duty e.
Then the decision variables are

• e.breaks ∀e ∈ E

• be,i.start ∀i ∈ {1, e.start}, e ∈ E

• be,i.length ∀i ∈ {1, e.start}, e ∈ E

15



2.2 Break Scheduling

be,i.start denotes the start of the break relative to the start of duty e, i.e. be,i = 1 implies
that the ith break of duty e starts on the 1st time period of duty e.
These variables also determine the working periods. we will use wpe,i to denote the length of
the ith working period of duty e. If duty e contains e.breaks breaks it contains e.breaks+1
working periods.

Restrictions
The total break time of each duty is given, we will use e.total break time to denote this
for duty e. In order to ensure exactly this amount of break time is allocated we require
the following constraints.

e.breaks∑
i=1

be,i.length = e.total break time ∀e ∈ E (2)

A break has a minimum and a maximum length. The following constraints ensure this.

break minimum length ≤ bi,e.length ∀i = 1, ..., e.breaks, e ∈ E (3)

break maximum length ≥ bi,e.length ∀i = 1, ..., e.breaks, e ∈ E (4)

Similarly, the working periods have a minimum and maximum length.

working period minimum length ≤ wpe,i ∀i = 1, ..., e.breaks + 1, e ∈ E (5)

working period maximum length ≥ wpe,i ∀i = 1, ..., e.breaks + 1, e ∈ E (6)

Breaks following a long working period have a different minimum length. We require this
by the following implication.

wpe,i ≥ long working period =⇒
be,i ≥ long break minimum length ∀i = 1, ..., e.breaks, e ∈ E (7)

Breaks have an earliest and latest possible starting time.

be,i.start ≥ earliest break start ∀i = 1, ..., e.breaks, e ∈ E (8)

be,i.start ≤ latest break start ∀i = 1, ..., e.breaks, e ∈ E (9)

In case that the length of a duty is longer than the minimum length required for a lunch
break, one of the breaks needs to be assigned the status of lunch break. This break has a
fixed length and bounds on the earliest and latest start.

e.length ≥min length for lunch =⇒ ∃i s.t.

be,i.start ≥ earliest lunch break start ∧
be,i.start ≤ latest lunch break start ∧
be,i.length = lunch break length ∀e ∈ E (10)

16



2 Problem Descriptions

Objective
In the break scheduling problem the objective is made up of two parts: the overstaffing and
the understaffing. In this section we define the active workers again which has a different
meaning as compared to the shift design problem. However the implication of the active
workers remains: it is the number of employee who are present and actively working at
each time period.

at =
∑
e∈E

xt,e, where xt,e =


1 if time slot t belongs to the interval of duty e and

the duty is not on break on period t or period t-1

0 otherwise

A duty is not active on the time period after a break since we assumed that this time
period is used to acclimatize to new working conditions after returning from a break.

As in the shift design problem we will use O to denote the total overstaffing and U to
denote the total understaffing. We define them as follows.

O =
∑
t∈T

max{at −Rt, 0}

U =
∑
t∈T

max{Rt − at, 0}

The objective is to minimise the weighted sum of overstaffing and understaffing.

minimize W1 ·O + W2 · U (11)

17



2.3 Shifts and Breaks Design

2.3 Shifts and Breaks Design

In this section we start with an introduction to the shifts and breaks design problem.
Afterwards we will give a formal description of the problem. We follow the formulation
used by [15].

2.3.1 Introduction

The shifts and breaks design problem combines the shift design and the break scheduling
problem. The staffing requirements over a planning horizon are given. The goal of the
problem is to find a small set of shifts with a number of duties allocated to each shift
on each day, and a break allocation to each duty, such that the staffing requirements are
closely followed.

The shifts can be chosen from a set of shift types as outlined in the shift design prob-
lem. There are many restrictions set on a feasible break allocation as is described in the
break scheduling problem.

2.3.2 Formal Description

First we will list the factors which describe an instance of shifts and breaks design. After-
wards we define the decision variables of the problem. In the next section we will state the
restrictions on the decision variables. Finally we give the objective function.

Instance Description

• D Consecutive days.

• These days are spanned by n equally long consecutive time slots T = {t1, t2, ..., tn},
The problem is cyclic hence t1 follows tn.

• Staffing requirements Rt ∀t.

• Shift types y ∈ Y , each shift type contains the minimum and maximum length and
duration of a shift of that type:
y.min start, y.max start, y.min length, y.max length.

• W1,W2 and W3 representing respectively the penalty for
overstaffing, understaffing, and the number of shifts.

• a function f(s) which gives the total break time for shift s.

18



2 Problem Descriptions

• parameters for the constraints on breaks:
break minimum length and break maximum length
working period minimum length and working period maximum length
long working period and long break minimum length
earliest break start and latest break start
min length for lunch, lunch break length,
earliest lunch break start and latest lunch break start.

Decision Variables
In this problem we are designing the shifts. For each shift we decide on the number of
duties it will have on each day. Furthermore for each of these duties we decide on their
break allocation. We use the following decision variables regarding the design of the shifts.

• A set of shifts S, where for each shift s ∈ S we decide on the type, start and length,
s.type, s.start and s.length.

• For each shift the number of duties at each day,
ws,d ∀s ∈ S, d ∈ {1, ..., D}.

We will use sd,e.breaks to denote the number of breaks for duty e starting on day d of shift
s. Furthermore we let bs,d,e,i refer to the ith break of duty e starting on day d of shift s.
Then the decision variables regarding the breaks are the following.

• sd,e.breaks ∀s ∈ S, d ∈ {1, ..., D}, e ∈ {1, ..., ws,d}

• bs,d,e,i.start ∀s ∈ S, d ∈ {1, ..., D}, e ∈ {1, ..., ws,d}, i ∈ {1, ..., sd,e.breaks}

• bs,d,e,i.length ∀s ∈ S, d ∈ {1, ..., D}, e ∈ {1, ..., ws,d}, i ∈ {1, ..., sd,e.breaks}

Restrictions
The shifts need to be of a type as defined in the input and the start and length of each
shift need to comply with its type. Hence we require the following constraints.

s.type.min start ≤ s.start ≤ s.type.max start ∀s ∈ S

s.type.min length ≤ s.length ≤ s.type.max length ∀s ∈ S

Furthermore a set of restrictions is placed on the break allocation of each duty. The total
break time of each shift is given by f(s) and the break time allocated to each duty of this
shift needs to be equal to this.

es,d.breaks∑
i=1

bs,d,e,i.length = f(s) ∀s ∈ S, d ∈ {1, ..., D}, e ∈ {1, ..., ws,d} (12)

19



2.3 Shifts and Breaks Design

The following constraints need to hold for all breaks, which means the constraints should
hold ∀s ∈ S, d ∈ {1, ..., D}, e ∈ {1, ..., ws,d}, i ∈ {1, ..., es,d.breaks}

bs,d,e,i.length ≥ break minimum length (13)

bs,d,e,i.length ≤ break maximum length (14)

wps,d,e,i ≥ working period minimum length (15)

wps,d,e,i ≤ working period maximum length (16)

wps,d,e,i ≥ long working period =⇒
bs,d,e,i ≥ long break minimum length (17)

bs,de,i.start ≥ earliest break start (18)

bs,d,e,i.start ≤ latest break start (19)

(20)

Lastly, for each shift of sufficient length, all duties need to be allocated a lunch break.

e.length ≥min length for lunch =⇒ ∃is.t.
bs,d,e,i.start ≥ earliest lunch break start ∧
bs,d,e,i.start ≤ latest lunch break start ∧
bs,d,e,i.length = lunch break length ∀s ∈ S, d ∈ {1, ..., D}, e ∈ {1, ..., ws,d}

(21)

Objective
The objective function is the weighted sum of overstaffing understaffing and the number
of shifts. In order to define the overstaffing and understaffing we define the active workers
again. We use the notation e ∈ sd to denote the duties which are part of shift s and start
on day d.

at =
∑
s∈S

xs,d, where

xs,d =

{
ws,d −

∑
e∈sd ye,t, if t belongs to the interval of the duties of shift s that start on day d

0 otherwise

ye,t =

{
1 if duty e is on a break in t or t− 1

0 otherwise

This means that for each time period we count how many duties are active in that time
period (taking duties that are on break in the time period or in the previous time period
as not active).
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2 Problem Descriptions

Using the active workers we define the overstaffing and understaffing which lead to the
objective function. We will use O to denote the total overstaffing and U to denote the
total understaffing. We define them as follows.

O =
∑
t∈T

max{at −Rt, 0}

U =
∑
t∈T

max{Rt − at, 0}

The objective is to minimise the weighted sum of overstaffing, understaffing and the number
of shifts.

minimize W1 ·O + W2 · U + W3 · |S| (22)
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This section is split up into four different parts. In the first part we will give an overview of
literature regarding personnel scheduling. We will also note the differences between most
available literature regarding personnel scheduling problems and the shifts and breaks
design problem. Afterwards we will give an overview of literature directly related to the
shift design problem as discussed in this thesis. Next we will do the same for the break
scheduling problem and finally we will give an overview of literature directly related to the
shifts and breaks design problem.

3.1 Personnel Scheduling

After the scheduling problem was introduced by Dantzig [11] many different formulations
of personnel scheduling problems have been considered. Efficient methods for solving per-
sonnel scheduling problems without breaks are available for some specific formulations.
The constraint matrix in the integer linear programming formulation of Dantzig [11], who
described a set covering problem, is a consecutive ones matrix if the problem contains no
cyclicity nor breaks, i.e. all duties are active on a consecutive number of time slots. Matri-
ces with consecutive ones are totally unimodular, as first showed by Veinott and Wagner
[32], and hence integer linear programs containing such a constraint matrix can be effi-
ciently solved by solving the linear programming relaxation. Bartholdi et al. [4] show that
personnel scheduling problems with a row circular matrix can be solved efficiently by con-
sidering at most a bounded number of flow problems. These row circular matrices follow
if all duties are of the same length and contain no breaks. Furthermore Bartholdi et al. [4]
show that the formulation of Dantzig [11] can be slightly changed to allow for problems in
which, next to the linear cost for using a duty, a linear penalty cost for overstaffing and un-
derstaffing can be considered for which the efficient solution methods as discussed still hold.

At this point we make a note that, ignoring the problem of minimizing the number of
shifts, the constraint matrix for the shift design problem has neither the consecutive ones
property, nor the circular row property. The constraint matrix is column circular. Cyclic
Scheduling problems involving duties without breaks will always have the circular ones
property in the columns. In Hochbaum and Levin [21] the hardness of problems with a
column circular matrix is shown to be equivalent to the exact matching problem which is
in the complexity class NRC [26]. It is currently unknown whether the problem is in P .

Aykin [2] studied a problem for a continuous 24 hour workday (cyclical) and giving each
duty one half hour lunch break and two smaller 15 minute breaks. Each break is allowed to
start in a period of 3 to 6 time periods. For this problem an integer linear program formu-
lation is described which differs from original set cover formulation proposed by Dantzig
[11] by requiring three breaks to be scheduled. Rekik et al. [30] considered an extension
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of the model and tested instances for which exactly three breaks were required for each
duty, having a combined duration of two hours. Furthermore, the second break was re-
quired to be the longest break and the continuous periods in-between two breaks (working
period) was restricted to have a length between one and three hours. For this problem
Rekik et al. [30] propose two integer linear program formulations and compare their results
with modified versions of integer linear programming formulations given by Bechtold and
Jacobs [5] and Aykin [2]. Rekik et al. [30] show that their model is slightly slower than
the formulations in [5] and Aykin [2] which is explained by the added flexibility that their
model gives. The slight modification considered of the model proposed by Bechtold and
Jacobs [5], show that this modified model gives better results than the model proposed by
Aykin [2] which is opposed of findings by Aykin [3] who compared the unmodified models.

A recent overview of personnel scheduling is given by Van den Bergh et al. [31]. The
authors note that a wide range of solution methods are used to find solution to person-
nel scheduling problems. The two main approaches used are mathematical programming
methods such as linear programming, goal programming, integer programming and column
generation, and heuristic methods such as simulated annealing, tabu search and genetic
algorithms. Other approaches include simulation, constraint programming and queueing.

The shifts and breaks design problem is different from problems discussed in the liter-
ature. In this problem shifts have to be designed, instead of duties, in such a way that the
shifts can be efficiently reused over multiple days instead of just a single day. Furthermore
the formulation allows for a large number of breaks in the shifts (up to 10 breaks for the
real-life instances). An overview of literature regarding shift design and break scheduling
is given by Di Gaspero et al. [16].

3.2 Shift Design

The shift design problem was first introduced by [28]. The authors make use of local search
to find a solution. Tabu search [19] is used to guide the local search. The authors state
that they rely on local search techniques because the shift design problem is proven to be
NP hard [23], as well that there exists a constant c < 1 such that approximating the shifts
design problem within c lnn is NP hard (here n refers to the total number of time periods
in shift design). The authors also use domain knowledge during the search by identifying
shifts during the longest period of shortage/excess and trying to improve these shifts. Fur-
thermore a ’good’ initial solution is constructed. The main idea for this good solution is
that time points in which the demand drastically rises (falls) needs to be a time point for
shift starts (ends).

Di Gaspero et al. [14] use a hybrid heuristic, which consists of a greedy heuristic fol-
lowed by a local search algorithm, which outperforms the previous results. The greedy
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heuristic is based on the relation of the shift design problem to a flow problem as described
in [23]. A polynomial min cost max flow problem can be used to compute optimal staffing
with weighted cost on the overstaffing and understaffing. This approach does however not
minimize the number of shifts used. Furthermore this approach can only be used when
cyclicity is not considered in the problem. The authors still consider a cyclic problem and
do so by making different calls to the greedy heuristic where in each call only a subset of
the shifts is considered so that the problem is not cyclic. For the local search algorithm
the authors consider less neighbourhood relations as compared to [28]. It should be noted
that the problem described in this paper is slightly different to the one described in [28].
Namely in the (chronologically) first article the objective function covers an additional
term: a penalty for the distance of the average number of duties per week. This term is
meant to penalise a set of shifts in which the workload is divided into many small shifts.
In the later article the authors note this difference and state that, ”In practice further op-
timization criteria clutter the problem. [...] Fortunately, this and most further criteria can
easily be handled by straightforward extensions of the heuristics described in this paper.”

Bonutti et al. [7] formulate a variation on the shift design problem. Their formulation
extends the shift design problem to have multiple types of skills for employees. The re-
quirements at each time period state the required number of employees at each time period
for each skill. For each shift the number of workers for each day and each skill have to be
specified. Furthermore in this formulation it is possible for shifts to contain a single break.
Local search is used for this problem and the neighbourhood relations are an extension on
the relations used in Di Gaspero et al. [14]. Furthermore simulated annealing [22] is used
to guide the search process.

Answer Set Programming (ASP) [8] is an exact solution technique and has been applied to
shift design by Brewka et al. [8]. ASP is able to find most best known solutions within 60
minutes on instances of shift design where those solutions have no overstaffing and under-
staffing. While the execution times are often not competitive with results from [14] there
are instances on which ASP works very well. Solutions found for the instances in which
a solution without overstaffing and understaffing might not exist are not competitive with
results from the literature. The authors state that a combination of ASP together with
domain-specific heuristics is a promising area for further research.

3.3 Break Scheduling

Break scheduling, as we will be discussing in this thesis, was first introduced by Beer et al.
[6]. In their formulation different constraints are given with different weights to each type
of violation and there are no hard constraints. Their formulation uses either a random
assignment of breaks as an initial solution or a solution following from a simple temporal
problem [13]. After the initial solution has been constructed the authors use local search
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guided by either tabu search, simulated-annealing, or a minimum conflicts-based heuristic
[24]. The best results are obtained by using a minimum conflicts-based heuristic. Beer
et al. [6] conclude that the two different initial solutions did not have a significant impact
on the solution quality.

A memetic algorithm for break scheduling was proposed by Musliu et al. [29]. Memetic
algorithms combine population based method with local search techniques and were first
mentioned in [25]. The memetic algorithm keeps a number of individuals, the population,
each representing a solution to the break scheduling problem. An individual is made up
of memes, in this formulation each meme representing a duty. At each iteration of the
algorithm the best individual is kept unaltered for the next iteration. A subset of the
other individuals are chosen and either a crossover or mutation operator is applied to each
individual in this subset. The crossover operator takes as input two individuals (the second
being random) and outputs an individual (offspring) which inherits a part of the solution
(memes) of each input (parent). The mutation operator performs a random move on an
individual chosen using a local search approach. After this local search is used to improve
the m fittest individuals at each iteration. The authors compare their results with the min-
imum conflicts-based heuristic as proposed by Beer et al. [6]. The algorithms both score
best on half of the test instances and hence conclusions regarding the better algorithm are
indecisive.

An improved memetic algorithm is given in [33]. In this approach a part of the constraints
in the break scheduling problem are considered hard and, ignoring the other constraints
which regard the staffing requirements, a simple temporal problem [13] can be formulated.
Solutions from this are taken as initial solutions for the memetic algorithm. In this ap-
proach memes are defined by a set of time slots and each duty is assigned to exactly one
meme in which most of the timeslots of the duty are. The reason for this approach as
opposed to the approach used in [29] is that duties have a strong interference is satisfying
the staffing requirements, and therefore it is difficult to find effective crossover operations
when a meme represents a duty. The authors use a penalty value for each meme based on
the last iteration in which the break pattern of that meme was updated. This ensures that
memes stuck in local optima are not passed on to offspring. The algorithm also keeps an
individual which contains all memes having the best value over all individuals. This en-
sures that global optima are not discarded. Individuals are also mutated using local search.
The algorithm is used on publicly available instances and it finds new best solutions on 28
out of 30 instances. This memetic algorithm is also shown in [34]. In this paper it is also
proven that break scheduling is NP-Complete, under the condition that all feasible break
patterns of each duty are given explicitly in the input.
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3.4 Shifts and Breaks Design

The shifts and breaks design problem is introduced in [15]. The authors state that to
the best of their knowledge the whole problem as described in their paper has not been
addressed in the literature. Various similar problems have been discussed in the literate
as described in section 3.1. The authors propose an approach combining local search (LS)
and constraint programming (CP) [1]. Their approach starts of with finding an initial
randomly generated solution for the assignment of shifts. LS is employed on a part of the
solution, namely a solution which specifies the shifts, the number of duties for each shift
on each day, and the number of breaks for each duty. The CP model uses this information
to try to find a break allocation within a time limit. For each iteration of the algorithm a
random move is chosen which changes either the start or end of a shift by one time unit,
the number of duties of a single day for a shift by one duty, the number of breaks for all
duties on a single day of a shift, or by merging two shifts together. This new solution is
given to the CP model and after the break allocation is determined this new solution is
accepted if the objective value is better than the objective value before the random move.
The algorithm fixes a part of the break variables in the CP model when a solution to the
full program cannot be found in a timely manner.

Since the authors are the first to tackle the shifts and breaks design problem there are
no results to compare to. The authors use a set of randomly generated instances as well as
a set of real-life instances which are publicly available [12]. The authors used a time limit
of one hour for each instance.
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In this section we will first give an integer linear program (ILP) formulation for the shift
design problem. Afterwards we will describe the set of problem instances used to test the
effectiveness of this ILP formulation for the shift design problem. Finally we will use the
commercially available optimisation package Cplex [10] to solve instances available in the
literature and compare our results to results obtained by Di Gaspero et al. [14]. A modi-
fied version of the ILP for shift design will also be used in the first phase of our solution
approach to the Shifts and Breaks Design problem.

4.1 ILP Shift Design

In this section we give an integer linear programming formulation to the shifts design prob-
lem. A compact overview of this ILP is given in the appendix (9.1). We use this ILP to
find results to the shift design problem in Section 4.3. A modified version of this ILP is
also used in the first phase of our algorithm to the shifts and breaks design problem.

The shift design problem is made up of time periods, days and shifts. We will use the
following variables to refer to a single element of each set.

• t refers to a single time period.

• d refers to a single day.

• s refers to a single shift.

The time periods and the days are part of the input, but the shifts are not explicitly
given. However we can use the shift types to determine all possible shifts. For each
possible starting time of a shift type, all possible lengths are possible. As an example,
Table 4 shows all possible shifts for the shift type with min start=07:00, max start=08:00,
min length=08:00, max length=09:00 and a time period of 30 minutes. It should be noted
that decreasing the time granularity drastically increases the number of possible shifts. A
time granularity of 15 minutes for this example would allow for 25 possible shifts and a
time period of 5 minutes allows for 169 possible shifts.
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Table 4: Possible Shifts

Start End

07:00 15:00
07:00 15:30
07:00 16:00

07:30 15:30
07:30 16:00
07:30 16:30

08:00 16:00
08:00 16:30
08:00 17:00

For each shift we are making the decision of using it or not. In the case that a shift is
used, we call it active and we can assign a number of duties to it on each day. For these
decisions we introduce the following variables.

as =

{
1 if shift s is active

0 otherwise

wd,s = the number of duties of shift s starting on day d

If a shift is inactive the number of duties on each day are forced to be 0. To model this
constraint we use the parameter M = maxt{Rt}. Recall that Rt denotes the staffing
requirements at time period t. Note that using more duties than this number will lead to
unnecessary overstaffing. The following constraints force the number of duties to be 0 in
case the corresponding shift is not active.

wd,s ≤M · as ∀d, s (23)

Using the number of duties for each shift we can can calculate the overstaffing and the
understaffing. For this we need a parameter denoting on which time periods the duties of
a shift starting on a specific day are active. We introduce the following.

ot = the amount of overstaffing at time period t, ot ≥ 0

ut = the amount of understaffing at time period t, ut ≥ 0

As,d,t =

{
1 if the duties of shift s starting on day d are active on time period t

0 otherwise

The following constraints specify, respectively, the understaffing and the overstaffing.∑
s,d

(
As,d,t · wd,s

)
+ ut ≥ Rt ∀t (24)
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ot =
∑
s,d

(
As,d,t · wd,s

)
+ ut −Rt ∀t (25)

In an optimal solution if ut > 0 then (24) will be an equality. To see this note that if the
left hand side would be strict then we could decrease ut which would decrease the objec-
tive. The objective function is the weighted sum of the overstaffing, understaffing and the
number of shifts.

Results of this ILP on instances of shift design are given in Section 4.3. In our two-
phase approach to the Shifts and Breaks design problem we use a modified version of this
ILP. The modified ILP is based on using virtual shifts which will be described in the next
section.

minimize W1

∑
t

ut + W2

∑
t

ot + W3

∑
s

as (26)

4.2 Problem Instances

Instances used for testing the integer linear programming approach for shift design are
available online at [20]. We compare the results of our integer linear programming ap-
proach to results obtained by Di Gaspero et al. [14]. Hereto we use the first 30 instances
from the first set and all 30 instances of the third set of the publicly available instances.
The instances are created by randomly selecting a set of shifts and number of duties per
shift for each day. The time granularity for these instances is randomly chosen to be ei-
ther 15, 30, or 60 minutes. The weights for these instances were W1 = W2 = 1. W3 was
chosen to be equal to the length of a time period. Instances of the first set only feature
legal shifts and therefore the existence of a solution in which there is no overstaffing and
understaffing is guaranteed. The instances of the third set are constructed using shifts for
which the starting time and/or length can exceed that of the given shift types. Therefore
the existence of a solution providing exact coverage to the requirements is not guaranteed.

These instances allow for a total of 39 possible shifts for instances with a time granu-
larity of 60 minutes, 110 for instances with a time granularity of 30 minutes and 360 for
instances with a time granularity of 15 minutes. The instances contain an average of 10
shifts with an average of 3 duties per day.
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Table 5: Shift Types

Abbr. Name
Earliest

start
Latest
start

Minimum
length

Maximum
length

M Morning Shift 05:00 08:00 7:00 9:00

D Day Shift 09:00 11:00 7:00 9:00

E Evening Shift 13:00 15:00 7:00 9:00

N Night Shift 21:00 23:00 7:00 9:00

4.3 Results

The integer linear program for shift design was written in C++ using Microsoft Visual
Studio 2013 [9], using the commercially available optimisation package Cplex [10] to solve
it.

In this section we compare the results of our ILP approach to the results obtained by
Di Gaspero et al. [14]. Overall the authors found their best results using a combination
of a greedy min-cost max-flow formulation and local search. The authors refer to this
approach by ’GrMCMF+LS’. We compare our results to the results of GrMCMF+LS.

For the instances of the first data set the authors were interested in the time it took
for their approach to reach the ’best known’ solutions of shift design. The best known
solutions are equal to either the solution used for constructing the instance or a better so-
lution as found in their article. The authors report average running time of their algorithm
to obtain the best known solutions. For one of the instances GrMCMF+LS was unable to
find the best known solution.

Using integer linear programming we were able to find optimal solutions to all instances
of the first set allowing a time limit of up to 30 minutes. We show our results in Ta-
ble 6. For each instance we report the ’best known’ solution and the optimal solution
found by the integer linear program. We have highlighted the instances were the optimal
solution was lower than the best known solution. Furthermore we show the average run-
ning time of GrMCMF+LS and the running time of the ILP rounded to the nearest second.

Di Gaspero et al. [14] used the third dataset to determine the quality of quickly found
solutions. Hereto the authors ran each instance 100 times using a time limit of 1 second
and reported the average solution value. For our comparison we ran the ILP model two
times, the first time also with a 1 second time limit and the second time with a 30 minute
time limit. Results are shown in Table 7. For the ILP with a 1 second time limit we report
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the found solution and gap of this solution. In Cplex the gap is defined as

|bestnode− bestinteger|
10−10 + |bestinteger|

(27)

where bestnode is a lowerbound to the problem, a solution of a linear relaxation of the
ILP, and bestinteger is the current best solution to the ILP. Thus the gap is the ratio of a
difference between the best found solution and a lowerbound divided by the lowerbound.
For the ILP with a time limit of 30 minutes we also report the found solution and the gap,
indicated by ’ILP+’. We also report the running time of the ILP in seconds, which can be
lower than 1800 if the optimal solution is found.

The results show that ILP obtains better results than the average value obtained by GrM-
CMF+LS. Furthermore the ILP is able to find and proof an optimal solution in 54 out of
the 60 instances. All the instances for which optimality could not be proved are part of the
third set. This shows evidence for the idea that the instances constructed from a feasible
seed solution might be biased since a solution providing exact coverage need not to exist.
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Table 6: Shift Design Comparison Set 1

Instance Objective Time (secs)

GrMCMF+LS ILP GrMCMF+LS ILP

1-1 480 320 1 2
1-2 300 212 40 21
1-3 600 374 2 2
1-4 450 340 109 165
1-5 480 319 2 2
1-6 420 213 1 1
1-7 270 237 7 1
1-8 150 147 11 149
1-9 150 149 9 29
1-10 330 289 84 141
1-11 30 30 1 1
1-12 90 81 4 3
1-13 105 105 4 9
1-14 195 187 61 425
1-15 180 170 0 1
1-16 225 209 152 1552
1-17 540 394 288 283
1-18 720 447 7 6
1-19 180 177 31 54
1-20 540 353 2 2
1-21 120 119 2 7
1-22 75 75 4 4
1-23 150 150 22 100
1-24 480 343 1 6
1-25 480 352 n.a. 168
1-26 600 347 9 5
1-27 480 393 2 3
1-28 270 222 4 32
1-29 360 289 10 58
1-30 75 75 2 2

Average 318 237 30 108
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Table 7: Shift Design Comparison Set 3

Instance Objective Gap Time (secs)

GrMCMF+LS ILP ILP+ ILP ILP+ ILP+

3-1 2386 318 318 0.31 0 8
3-2 7691 845 536 0.58 0 87
3-3 9597 924 542 0.55 0 25
3-4 6681 1427 500 0.77 0 119
3-5 9996 551 508 0.28 0 5
3-6 2077 1892 315 0.89 0 65
3-7 6087 642 585 0.28 0 72
3-8 8861 725 537 0.45 0 47
3-9 6036 2527 570 0.83 0 420
3-10 3002 462 366 0.52 0 62
3-11 5491 1024 474 0.73 0 195
3-12 4171 3514 520 0.91 0.04 1800
3-13 4662 3131 535 0.89 0.07 1800
3-14 9661 701 461 0.42 0 3
3-15 11445 1112 641 0.57 0 151
3-16 10734 638 477 0.38 0 3
3-17 4729 3011 523 0.89 0.04 1800
3-18 6692 893 526 0.67 0 200
3-19 5157 2677 594 1 0.13 1800
3-20 9175 1845 606 0.80 0 232
3-21 6054 4674 718 1 0.10 1800
3-22 12870 2063 720 0.76 0.03 1800
3-23 8390 699 630 0.42 0 18
3-24 10418 741 590 0.43 0 5
3-25 13252 847 635 0.41 0 5
3-26 13118 1042 724 0.50 0 193
3-27 10081 1034 633 0.56 0 7
3-28 10604 887 539 0.53 0 5
3-29 6690 1045 571 0.69 0 263
3-30 13724 1011 607 0.53 0 6

Average 7984 1430 550 0.62 0.01 433

34



4 Shift Design

35



5 Break Scheduling

In this section will formulate a solution approach to the break scheduling problem. We
will first formulate the problem of assigning an optimal break allocation for a single duty
as an integer linear program. Afterwards we state how this problem can be modified so
that multiple duties can be considered at the same time. We will propose two algorithms
which use these ILP models to find break patterns for all duties. We will compare results
of both our algorithms as well as results obtained by Widl and Musliu [33].

5.1 ILP Break Scheduling Single Duty

In this section will formulate the problem of optimally allocating the break allocation for
a single duty. A compact overview of this ILP is given in the appendix 9.2.

First we will define the set of possible breaks for a duty. Since the total break time
for a duty is given, as well as the minimum break length, we can calculate the maximum
possible number of breaks in a duty. We let Mbreaks be this maximum number of breaks+1.
The 1 is added such that we can use the same set to denote the working periods, since
there is always 1 more working period than breaks. We use the following set to enumerate
all breaks.

B = {1, 2, ...,Mbreaks} (28)

For each (possible) break we first need to decide whether the break will be active, and in
case a break is active we need to decide the starting period and the length of the break.
We use the binary variables ab to indicate whether break b is active. First we impose the
following constraint which force the breaks to be in chronological order since a break can
only be active if the previous break was also active.

ab ≤ ab−1 ∀b ∈ B \ {1} (29)

Breaks following a long working period are considered different since they have a different
minimum length. Furthermore, one of the breaks (might) need to be assigned the status
of lunch break, which requires it to be somewhere in the middle of the duty and have a
specific length. We will use the binary variables alb to indicate whether break b needs to
be long, and the binary variables lb to denote whether break b is assigned the status of
lunch break. Only active breaks can be long or lunch and therefore we require the following
constraint.

alb + lb ≤ ab ∀b ∈ B (30)

This constraint also ensures that an (active) break can be either long or lunch but not both.
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We use integer variables blb to denote the length of the bth break in number of time peri-
ods. Since the total break time (Tbt = total break time) is given we require the following
constraint. ∑

b

blb = Tbt (31)

In order to enforce some of the logical constraints we will use M to denote a sufficiently
large variable, in this case M will be equal to the length of the duty expressed in number of
time periods. First we set a minimum and maximum length on the breaks, using Bminl =
break minimum length and Bmaxl = break maximum length, on all active break
lengths. Note that the length of inactive breaks gets forced to 0. The lunch break length
might exceed the maximum normal break length hence we also account for this by making
the constraint inactive for the break assigned the status of lunch break.

M · (1− ab) + blb ≥ Bminl ∀b ∈ B (32)

blb ≤ Bmaxl · ab + M · lb ∀b ∈ B (33)

Long breaks will have a different minimum length. This is specified by the following
constraint using Lbml = long break minimum length.

alb · Lbml ≤ blb ∀b ∈ B (34)

The variables bsb will correspond to the start of break b i.e. the first time period on which
the respective break is active. We use t to refer to the time periods in this ILP. Later we
will introduce constraints such that the break start is forced to be on a time period. Using
that the duty lasts a total of Length time periods, the set of time periods is given by

T = {1, 2, ..., Length} (35)

Breaks can not start too close to the shift extremes (Ebs = earliest break start and
Lbs = latest break start). Therefore we add the following constraints which are only
active for active breaks.

bsb ≥ Ebs ∀b ∈ B (36)

bsb ≤ Length− Lbs + (1− ab) · (Lbs + 1) ∀b ∈ B (37)

Constraint (37) combined with Constraint 38 ensures that the break start of inactive breaks
is set to the first time period following the shift end. This is useful for defining the working
periods.

bsb ≥ (Length + 1) · (1− ab) ∀b ∈ B (38)

We let the variables wpb denote the length (in time periods) of the bth working period.
The first working period starts at the first time period of the duty and ends one period
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before the first break starts. For the other working periods, the bth working period start
after the b− 1th break has ended and ends when break b starts.

wp1 = bs1 − 1 (39)

wpb = bsb − (bsb−1 + blb−1) ∀b ∈ B \ {1} (40)

Active working periods have a lower and upper bound on their length. These are given by
the parameters Wpminl = working period minimum length and
Wpmaxl = working period maximum length. Note that a working period wpb is
active if break b− 1 is active, and that wp1 is always active.

wpb ≤Wpmaxl ∀b ∈ B (41)

wp1 ≥Wpminl (42)

M · (1− ab−1) + wpb ≥Wpminl ∀b ∈ B \ {1} (43)

The following constraints ensure, respectively, that alb or lbis forced to 1 if break b fol-
lows a long working period and to 0 otherwise. Hereto we use the parameter Mlwp =
minimum long working period. We have earlier specified that a break can be either
long or lunch, and only if it is active, and therefore we let the first constraint be inac-
tive for the break which is the lunch break. By doing this we make the assumption that
minimum long working period ≤ lunch break length. The constraint is also inac-
tive for inactive breaks, this is necessary because otherwise we could force an inactive break
to be long which is not feasible.

wpb −Mlwp + 1 ≤ alb ·M + lb ·M + (1− ab) ·M ∀b ∈ B (44)

Mlwp− wpb ≤ (1− alb) ·M ∀b ∈ B (45)

If a lunch break is required there needs to be exactly one lunch break. We will use the
parameter L which will be equal to 1 if a shift needs a lunch break and 0 otherwise. We
have already introduced lb, indicating whether a break is the lunch break. Therefore we
require the following. ∑

b

lb = L (46)

A lunch break has a fixed length of Lbl = Lunch break length, a minimum start at
Elbs = Earliest lunch break start, and a maximum start at Llbs = Latest lunch break start.
In order to ensure that the break which will be the lunch break does not violate any of these
constraints we add the following four types of constraints. Respectively the constraints en-
sure that the lunch break does not: last shorter than allowed, last longer than allowed,
start earlier than allowed, and that the lunch break does not start later than allowed.

(1− lb) ·M ≥ Lbl − blb ∀b ∈ B (47)
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(1− lb) ·M ≥ blb − Lbl ∀b ∈ B (48)

(1− lb) ·M ≥ Elbs− bsb ∀b ∈ B (49)

(1− lb) ·M ≥ bsb − Llbs ∀b ∈ B (50)

Up until this point we have defined variables which specify all breaks. What is left is
to define variables for the overstaffing and understaffing. To do this we need to specify
whether the duty is active at a time period. In order to do this we add binary variables
zst∗,b and zet∗,b. Note that we use t∗ to index these variables rather than t. This is done to
highlight the fact that, since inactive breaks have their break start and break end one time
period after the last time period of the duty, an additional time period is needed for these
variables. Therefore we use the set T ∗ for these variables instead of T where

T ∗ = {1, 2, ..., Length, Length + 1} (51)

zst∗,b =

{
1 if time period t∗ is the first time period on which the bth break is active

0 otherwise

zet∗,b =

{
1 if time period t∗ is is the last time period on which the bth break is active

0 otherwise

All other variables of the ILP can be derived from these two types of variables since they
specify all breaks. Furthermore the variables zst∗,b, z

e
t∗,b, ab, a

l
b, and lb are the only binary

variables in the ILP model. The other variables, such as the break start bsb and the break
length blb can be relaxed to be continuous. We will add constraints to ensure that these
variables only take on integer values.

We use the following 4 types of constraints to determine the break start and length using
the variables zst∗,b and zet∗,b. Constraint (52) ensures that exactly 1 time period is taken
as the break start. Constraint (53) constraint ensures that the continuous variables bsb are
correctly taken based on zst∗,b. Constraint (54) ensures that exactly 1 time period is taken

as the break end. Constraint (55) ensures that the continuous variables blb are correctly
taken based on zet∗,b, note that the term 1 − ab is needed to correct the constraint for
inactive breaks since inactive breaks have a length of 0.∑

t∗

zst∗,b = 1 ∀b ∈ B (52)∑
t∗

t∗ · zst∗,b = bsb ∀b ∈ B (53)
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5.1 ILP Break Scheduling Single Duty∑
t∗

zet∗,b = 1 ∀b ∈ B (54)∑
t∗

t∗ · zet∗,b = bsb + blb − 1 + (1− ab) ∀b ∈ B (55)

The following two types of continuous variables are used to determine whether a duty is
on a break in a time period. This is necessary for verifying whether a duty is active on a
time period. We use the following variables.

zbt,b =

{
1 if time period t is before the start of the bth break

0 otherwise

zat,b =

{
1 if time period t is after the bth break has ended

0 otherwise

The following two constraints ensure that these variables take on the correct value. Con-
straint (56) ensures that zbt,b is correctly defined, note that a time period is before a break
if the break start is after the time period. Constraint (57) ensures that zat,b is correctly
defined, note that a time period is after a break if the break end is before the time period.

Length+1∑
i=t+1

zsi,b = zbt,b ∀t ∈ T, b ∈ B (56)

t−1∑
i=1

zei,b = zat,b ∀t ∈ T, b ∈ B (57)

We will use the variables zt,b denote whether the duty is on its bth break on time period t.
A duty is on its bth break at time period t if the time period is not before the break start
and not after the break end. We have already introduced variables to indicate these cases
and since a time period is either before a break, during a break, or after a break we use
the following constraint to determine zt,b.

zt,b + zat,b + zbt,b = 1 ∀t ∈ T, b ∈ B (58)

xt will indicate whether the duty is active on time period t. This is true if and only if the
duty is not on any break in the time period nor on the time period before. The following
constraints do the following. Constraint (59) forces the duty to be inactive on a time period
if the duty is on a break. Constraint (60) forces the duty to be not active in case a break
ended on the previous time period. Constraint (61) forces the first period to be active in
case the duty is on no breaks in the first time period. Constraint (62) forces the other time
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periods of the duty to be active in case the duty is not on any break and no break ended
the previous time period.

1− xt ≥
∑
b

zt,b ∀t ∈ T (59)

1− xt ≥
∑
b

zet−1,b ∀t ∈ T \ {1} (60)

1− x1 ≤
∑
b

z1,b (61)

1− xt ≤
∑
b

zt,b +
∑
b

zet−1,b ∀t ∈ T (62)

The last variables we define are the overstaffing and understaffing variables. These will
be used in the objective function. For this ILP we assume that the allocation of other
shifts is fixed. This fixed allocation together with the assumption that the duty, for which
the breaks are to be decided, takes no breaks, make up the fixed staffing. Let us use Dt

to determine the demand at time period t which is a parameter used in this ILP. Dt is
equal to the requirements at period t minus the fixed staffing at period t. Note that the
duty considered in the ILP is considered to have no breaks while determining the fixed
staffing. We use the following two (in)equalities to base the overstaffing and understaffing
constraints on.

fixed staffing + xt − 1 + understaffing ≥ requirements

overstaffing = xt − 1 + understaffing + fixed staffing− requirements

Then the following constraints specify the over and understaffing, using ot to define the
overstaffing at time period t and ut to define the understaffing at time period t.

xt − 1 + ut ≥ Dt ∀t ∈ T (63)

ot − ut − xt + 1 = −Dt ∀t ∈ T (64)

ot, ut ≥ 0 (65)

Finally we specify the objective function.

minimize W1

∑
t

ot + W2

∑
t

ut (66)

5.2 ILP Break Scheduling Multiple Duties

The ILP of the previous section can easily be extended to allow for multiple duties to
be considered at the same time as long as these duties all have the same starting time
and length. Therefore it can be used to optimally allocate all duties starting on the same
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day of a shift. For this ILP all variables as described in the previous section, except
for the understaffing and overstaffing, need an additional subscript e indicating the duty.
Then all constraints except the constraints specifying understaffing, Constraint 63, and
overstaffing, Constraint 64, need to hold for all duties. These two mentioned constraints
should be replaced by the following constraints.∑

e

(
xt,e − 1

)
+ ut ≥ Dt ∀t ∈ T (67)

ot,e − ut,e −
∑
e

(
xt,e + 1

)
= −Dt ∀t ∈ T (68)

5.3 Algorithms for Break Scheduling

In this section we will propose two algorithms used to allocate all breaks using the break
scheduling ILP’s from the previous two sections. The first algorithm will only use the
break ILP model from Section 5.1 which allocates the break pattern for a single duty. The
second algorithm will also use the ILP from section 5.2 and use it to find the optimal
break allocation for two duties at the same time. In Section ?? we compare results of these
two algorithms on instances of break scheduling. After introducing the two algorithms we
will show a way to improve the running time of both algorithms by not considering the
break allocation of duties for which nothing changed since their break allocation was last
considered.

5.3.1 Using Single Duties

We will give a short description of the algorithm used to allocate all break allocations using
only the ILP model from Section 5.1. Pseudocode of this algorithm is also shown. The
algorithm starts with a random duty and assigns a break allocation as specified by the
solution of the break scheduling ILP for a single duty. Afterwards the number of active
workers at each time period is updated and a break allocation is found for the next duty.
After all duties have been considered by this approach the algorithm starts over again
with the first duty. This process continuous until all duties have been considered in a row
without the objective function of the break scheduling problem changing.

Algorithm 1 shows the pseudocode for this algorithm. We use E to denote the set of
all duties. Since E contains all duties we can use it to determine the initial Active Workers
(assuming no breaks). We will use Obj(E) to denote the objective value to the shifts and
breaks design problem using the duties in E (and their possible break allocation).

5.3.2 Using Double Duties

Starting with no break allocations we will find an initial break allocation for each duty
by considering them by one at a time using the ILP model from Section 5.1. After each
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Initialise Active Workers using E (assuming no breaks)
Current Objective = Obj(E)
Previous Objective =∞
while Current Objective<Previous Objective do

for e ∈ E do
if e has a break allocation then

remove break allocation from e
update Active Workers

end
Solve Break Scheduling ILP for duty e using Active Workers
Use solution from ILP to allocate breaks to e
update Active Workers

end
Previous Objective=Current Objective
Current Objective=Obj(E)

end

Algorithm 1: Second Phase Algorithm Using Single Duties

duty has a break allocation we will use the ILP from Section 5.2 to optimally allocate the
breaks for two duties at the same time. Hereto we first search for any pair of two duties,
having same start time and length, and having at least one time period in common in
which there is understaffing and both of the duties are inactive. Since the duties need to
have the same starting time and length the duties have to belong to the same shift and
day. The reasoning for looking for duties satisfying these properties is that time periods
with understaffing are where most of the improvements can be found since the penalty for
understaffing is higher in our instances than the penalty for overstaffing. We keep doing
this until there is no such pair of duties, or until all shifts and days have been considered
in a row without finding improvements.

Pseudocode for this algorithm is shown in Algorithm 2. We will use S to denote the
set of all shifts and D to denote the set of all days. In the pseudocode we use the following
notation.

T (s, d) Time periods belonging to the duties of shift s starting on day d

E(s, d) Duties of shift s starting on day d

e(t) =

{
1 if duty e is active on time period t

0 if duty e is not active on time period t

43



5.3 Algorithms for Break Scheduling

Initialise Active Workers using E (assuming no breaks)
for e ∈ E do

Solve Break Scheduling ILP for duty e using Active Workers
Use solution from ILP to allocate breaks to e
update Active Workers

end
Current Objective = Obj(E)
Previous Objective =∞
while Current Objective<Previous Objective do

for s ∈ S do
for d ∈ D do

for e ∈ Es,d do
for e′ ∈ Es,d \ {e} do

if t ∈ Ts,d where e(t) + e′(t) = 0 then
remove break allocation from e and e′

Solve Break Scheduling ILP Multiple duties for e and e′

Use solution from IP to allocate breaks of e and e′

update Active Workers
end

end

end

end

end
Previous Objective=Current Objective
Current Objective=Obj(E)

end

Algorithm 2: Second Phase Algorithm Using Two Duties
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5.3.3 Improvement

Both algorithms naively loop over all duties. However each duty only influences a subset
of the time periods on the planning horizon. During the first round of the while loop all
duties should be considered as they all obtain a new break allocation. However it might
be possible that there is a single duty which has no time periods overlapping with another
duty. It would be useless to consider this duty again in the next while loop since the fixed
staffing has not changed and hence the break scheduling ILP will return the same solution.
It is also possible that during the third round of the while loop some duties are considered
for the break ILP but the fixed staffing of the time periods of that duty have not changed
to the situation in the second while loop. In this case we also do not have to solve the
break allocation ILP since we already know the optimal solution.

In order to check whether the fixed staffing for the break scheduling ILP of a duty has
changed we will keep track of the variables Ft,e which we define as follows.

Ft,e =

{
1 if time period t is part of duty e and the break allocation has changed last iteration

0 otherwise

We use these variables to check whether we will solve a break scheduling problem for a
duty or not. We will solve a break scheduling problem for duty e if there exists at least one
other duty which has at least one time period in common with duty e and for which the
break allocation changed in the last iteration. By abuse of notation we will write t ∈ e to
denote that time period t is part of duty e. Using these variables we can rewrite Algorithm
1 to Algorithm 3 which is shown on the next page.

5.4 Problem Instances

For testing our algorithms for break scheduling we used instances available at [12]. We
test our approach to compare results to approaches used in the literature. In total we test
our algorithm on 10 different instances. The instances are based on randomly generated
instances for shift design. For each of the constructed solutions containing no overstaffing
and understaffing, a feasible break allocation was computed for each duty. The number of
active workers at each time period using this break allocation is taken to be the staffing
requirement for that time period. The constructed shifts without breaks are given. For
these randomly generated instances it is therefore guaranteed that a break allocation for
each duty can be found such that the staffing requirement are met exactly.
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Initialise Active Workers using E (assuming no breaks)
Current Objective = Obj(E).
Previous Objective =∞;
Ft,e = 1 ∀t, e
while Current Objective<Previous Objective do

for e ∈ E do
if ∃ e′ 6= e s.t. Ft,e′ = 1 and t ∈ e then

if e has a break allocation then
remove break allocation from e
update Active Workers

end
Solve Break Scheduling ILP for duty e using Active Workers
Use solution from ILP to allocate breaks to e
Update Active Workers
Update Ft,e ∀t.

end

end
Previous Objective=Current Objective
Current Objective=Obj(E).

end

Algorithm 3: Second Phase Updated Algorithm Using Single Duties
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Table 8: Parameters

Parameter Value

Days 7
Time Granularity 5 minutes
W1 2
W2 10

total break time (L = length of duty in minutes)

{
if L ≤ 10 hours

⌊
(L− 20)÷ 50

⌋
· 10

else L÷ 4

break minimum length 10 minutes
break maximum length 60 minutes
working period minimum length 30 minutes
working period maximum length 100 minutes
long working period 50 minutes
long break minimum length 20 minutes
earliest break start 30 minutes (from duty start)
latest break start 30 minutes (from duty end)
min length for lunch 360 minutes (6 hours)
earliest lunch break start 210 minutes (from duty start)
latest lunch break start 330 minutes (from duty start)
lunch break length 30 minutes

The parameters defining these instances are given in 8. For the break scheduling ILP, these
parameters allow for a total of 336, 599 possible break allocations for duties with a length
of 7 hours and duties with a length of 8 hours have 1, 878, 678 possible break allocations.
These numbers were found by initialising a break scheduling ILP to Cplex with an empty
objective value. Cplex offers a populate method which can be used to find all optimal
solutions. Since the objective function is empty all feasible solutions are optimal. We also
tried this method to find the number of feasible break allocations for duties of length 9.
After 30 minutes Cplex found over 6, 000, 000 possible solutions, however at this point we
interrupted the search so more solutions might be possible.

A solution to the break scheduling problem corresponds to exactly one break allocation.
This can be verified by noting that the variables ab, lb, b

l
b, and bsb uniquely define a solu-

tion. These variables define all other variables. The only possible exception to this would
be if the solution could change the lunch break status from one break to another. How-
ever changing the constrains such that at least two lunch breaks were necessary yielded 0
solutions for all duty lengths and hence we can exclude this possibility.

47



5.5 Results

Table 9: Results Break Scheduling

Instance Overstaffing Understaffing Objective Time (mins)

Single Double Single Double Memetic Single Double Single Double

1-1 152 268 61 188 440 914 2416 20 30
1-2 185 369 109 303 476 1460 3768 15 30
1-5 157 306 85 239 418 1164 3002 15 30
1-7 179 306 73 230 583 1088 2912 21 30
1-9 199 339 122 263 423 1618 3308 15 30
1-13 129 227 77 186 445 1028 2314 15 30
1-24 190 274 110 213 611 1480 2678 15 30
1-28 139 219 91 178 318 1188 2218 11 30
2-1 233 361 121 261 889 1676 3332 24 30
2-4 188 334 109 265 535 1466 3318 16 30

Average 175 300 96 232 514 1308 2927 17 30

5.5 Results

The algorithm for breaks scheduling was written in C++ using Microsoft Visual Studio
2013 [9]. The integer linear programs were solved using the commercially available optimi-
sation package Cplex [10].

For break scheduling we compare algorithms 1 and 2 which we refer to by ’Single’, and
’Double’, respectively. Recall that the ’Single’ algorithm only considers the break allocation
for a single duty at a time and the ’Double’ algorithm also considers the break allocation
for two duties. For both algorithms we also used to variables Ft,e to skip unnecessary
break scheduling ILP’s. In Table 9 results are shown. We also show results by Widl and
Musliu [34]. For our approach we report the number of overstaffing and understaffing. The
objective function for all three approaches is equal to the value in break scheduling and
hence there is no penalty for the number of shifts used. For our approaches we also show
the running time in minutes, we allowed a maximum of 30 minutes.

Widl and Musliu [34] used a memetic algorithm and gave the instances a running time
of 50 minutes. The reported values for the memetic algorithm are average results over 10
runs per instance. Note that the memetic algorithm outperforms our approaches and al-
gorithm 1 outperforms 2. Our first algorithm however converges to a local minimum since
the running time of 30 minutes is never reached. Our second algorithm can not consider
as much ILP models as the first algorithm since optimally allocating the breaks for two
duties at the same time takes much longer. Generally the most time taken for the break
allocation of a single duty was around 10 seconds while for two duties at the same time
the allocation took multiple minutes.

48



5 Break Scheduling

49



6 Shifts and Breaks Design

In this section we will first describe our approach used for finding solutions to the shifts
and breaks design problem. Hereto we first introduce virtual shifts. These virtual shifts
are used to modify the shift design ILP introduced in 4.1. This modified ILP will form the
first phase of our solution approach. The second phase will use Algorithm 3 to allocate
breaks to all duties. This algorithm uses only the break scheduling ILP for a single duty.

We decided to use a two-phase approach since the search space of the shifts and breaks
design problem is enormous (2800 possible shifts with 7 days leading to 19600 possible
different duties and over 1, 000, 000 possible break allocations per duty). We choose to
make use of integer linear programming in each phase. Integer linear programming is a
widely used method for personnel scheduling problems. The literature review of Van den
Bergh et al. [31] shows that it is the most used method. An advantage of the approach is
that many problems are easily formulated as an ILP and good solvers for ILP are available.
Furthermore ILP is an exact method and will therefore return an optimal solution if time
permits. If this can not be done in a timely manner then the best found solution, as well
as a lowerbound to the problem are still given by ILP solvers.

After having shown our solution method we describe the set of randomly generated in-
stances used to test it. We will then compare our results to results obtained by Di Gaspero
et al. [15]. Based on these results we will propose an improvement for the first phase of our
algorithm. We will show results for this improvement on the randomly generated instances
as well as 5 real life instances used by Di Gaspero et al. [15].

6.1 Virtual Shifts

While finding a set of shifts in the first phase we want to account for the break time which
will be allocated in the second phase. In order to do this we introduce the concept of virtual
shifts. We will associate a virtual shift for each possible shift. A shift is either active in
a time period or it is not. We allow virtual shifts to be only partially active. In the shift
design ILP this means that the parameters As,d,t, which were binary and indicated whether
duties of shift s starting on day d were active on time period t, can take any value between
0 and 1.

In order to define values for As,d,t we use the number of inactive time slots for a shift
compared to the number of active time slots. A duty is not active on their breaks and on
the first time period following a break. The total break time required for a duty is given
as part of the input by the parameter total break time. Before assigning the breaks we
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do not know the number of breaks that a duty will have and hence we can not determine
the number of inactive periods of that duty exactly. In order to calculate the number of
inactive periods, let us denote this by IP , we will assume breaks of minimum length. This
assumption is done since it gives the most inactive time periods. Since the penalty for
overstaffing is smaller than the penalty for understaffing, at least in the tested instances,
we rather aim for too much staffing than too little. Furthermore we take into account the
possible need for a lunch break while calculating IP . In short: IP is made up of 3 parts,
the total break time, the inactive period following each break of minimum length, and
possible the inactive period following the lunch break. We determine IP by the following
equation assuming that all parameters are given in number of time periods. We use L
which will be equal to 1 if the shift requires a lunch break.

IP = total break time +

⌈
total break time− L · lunch break length

break minimum length

⌉
+L (69)

For each duty we know that the first earliest break start time periods and the last
working periods minimum length-1 time periods can not contain any breaks. In the
input we considered there were a lot of feasible break allocations. There did not seem to
be a further bias for certain time slots having a higher chance probability of being inactive.
Therefore we ’divide’ the rest of the inactive periods evenly over the remaining periods of
the shift. Let us use R∗s to denote the ratio of inactive periods to active periods of shift s,
excluding the first earliest break start and last working periods minimum length-1
time periods.

R∗s =
IP

s.length− earliest break start− (working period minimum length− 1)
(70)

Using IPs to denote the number of inactive periods for shift s we define the parameters
As,d,t for the virtual shifts as follows, using ebs = earliest break start and wpml =
working period maximum length.

As,d,t =


0 if t is not part of the duties of shift s starting on day d

1 if t is in the first ebs time periods of the duties of shift s starting on day d

1 if t is in the last wpml -1 time periods of the duties of shift s starting on day d

1−R∗s otherwise

(71)
In Figure 4 we have plotted the number of demand fulfilled by a shift, as well as the cor-
responding virtual shift, starting at 09:00, ending at 17:00 and having 10 duties. For this
example we use that ebs = 30 minutes and wpml = 30 minutes. Furthermore we take
the lunch break to be 30 minutes, the minimum length of a break to be 10 minutes, and
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Figure 4: Shift and Virtual Shift

the shift is required to have a total break time of 80 minutes. Taking a time period of 5
minutes, we find that InactivePeriods is equal to 14 . Note that the demand fulfilled by
the two is equal for the first few and last few time periods of the shift, but the virtual
shift has a lower number of active workers in the rest of the periods. This is to account for
break time which has to be scheduled.

While finding solutions we noticed that by choosing a lower value for the number of inactive
periods we obtained better results. More specifically be using IP ∗ for the inactive periods
instead, where

IP ∗ = total break time (72)

Later we will show results for both definitions of the inactive periods and argue their
difference. After we have shown results for shifts and breaks design we will also propose
an improvement for the method which is based on the different results obtained by both
definitions of inactive periods.
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6.2 Algorithm Shifts and Breaks Design

Our solution approach to the shifts and breaks design problem consists of two phases. In
the first phase we formulate an ILP model of shift design, as described in section 4.1, using
the virtual shifts as described in Section 6.1. From the solution of this resulting ILP a
set of shifts and number of duties per shift for each day is constructed. In the second
phase of our algorithm we find a break allocation for each duty. Hereto we use Algorithm
3. Pseudocode for the full algorithm to the shits and breaks design problem is given in
Algorithm 4.

First Phase
Construct virtual shift for each possible shift
Solve shift design for virtual shifts
Construct initial solution with shifts according to virtual shifts

Second Phase
Initialise Active Workers using E (assuming no breaks)
Current Solution = Obj(E).
Previous Solution =∞;
Ft,e = 1 ∀t, e
while Current Solution<Previous Solution do

for e ∈ E do
if ∃ e′ 6= e s.t. Ft,e′ = 1 and t ∈ e then

if e has a break allocation then
remove break allocation from e
update Active Workers

end
Solve Break Scheduling ILP for duty e using Active Workers
Use solution from ILP to allocate breaks to e
Update Active Workers
Update Ft,e ∀t.

end

end
Previous Solution=Current Solution
Current Solution=Obj(E).

end

Algorithm 4: Shifts and Breaks Design Algorithm
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6.3 Problem Instances

We have used three sets of instances to test our algorithm. All of the instances are available
at [12]. The first two sets contain randomly generated instances. The shift types for these
instances is identical to the shift types given for the shift design problem and hence shown
in Table 5. The parameters for break scheduling are identical to parameters used for the
break scheduling instances are given in Table 8. For instances of the first two sets there is a
’best known’ solution which was used to construct the staffing requirements and therefore
the best known solution provides exact coverage of the requirements. Furthermore the
penalty for the number of shifts is taken to be W3 = 60. According to Di Gaspero et al.
[15]: ”these weights were selected based on experience with solving problems in real life
applications.”

The third set of instances are based on a real world example. For these instances a solu-
tion in which there is no overstaffing and understaffing is not guaranteed to exist. These
instances are also publicly available at [12]. The real life instances are smaller than the
randomly generated instances judging by the total staffing requirements. For the real life
case the average value for the sum of the staffing requirements over all time periods was
equal to 10193, for the randomly generated instances this number was 16535. However
the given shift types for the real life instances allowed for more possible shifts. These shift
types are given in 10. Other parameters are equal to those used for the randomly generated
instances. For these instances the total number of possible shifts is equal to 8645. Also the
number of feasible break allocations for breaks can be higher since the shift types allow
for shifts longer than shifts in the randomly generated instances. As for the smaller shifts,
those lasting 5 hours have 17, 084 feasible break allocations and shifts lasting 6 hours have
114, 321. Shifts lasting 6:05 hours only have 955 different break allocations, this number is
much lower since these are the shortest shifts requiring a lunch break and there is not a lot
of flexibility possible for the break allocation. We also tried to find the number of feasible
break allocations for long shifts. However after 30 minutes Cplex found over 6, 000, 000
possible break allocations for shifts lasting 10 hours, which is equal to the lowerbound
found for shifts lasting 9 hours.

Due to the higher number of possible shifts we were not able to find satisfactory results
when solving an ILP containing all possible shifts in the first phase. In order to solve this
issue we only considered shifts at a time granularity of 15 minutes for the real life instances.
This brings the number of possible shifts from 8645 to 1075 shifts.
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6 Shifts and Breaks Design

Table 10: Shift Types for Real Life Instances

Abbr. Name
Earliest

Start
Latest
Start

Minimum
Length

Maximum
Length

F Earlyshift 05:30 08:00 06:00 12:45

T Dayshift 10:00 12:30 07:00 12:00

S Lateshift 14:00 17:30 05:00 09:00

N Nightshift 20:00 23:00 08:00 12:00

6.4 Results

The algorithm for shifts and breaks design was written in C++ using Microsoft Visual
Studio 2013 [9]. The integer linear programs were solved using the commercially available
optimisation package Cplex [10]. The algorithm was performed on a PC with an Intel
i7-4702MQ quad core processor with 2.2Ghz and 8GB RAM memory. Di Gaspero et al.
[15] used a time limit of 60 minutes to obtain their results for the shifts and breaks design
problem, and for these results we allowed our algorithm a maximum of 30 minutes for the
first phase and no time limit for the second phase.

In this section we will show results for the randomly generated instances. Afterwards
we will propose an improvement for the first phase of our solution approach and show
results obtained for the improved method for the randomly generated instances as well as
results for the real life instances. Tables 11 and 12 show results for the first and second
set of data. For these results we used two versions of Algorithm 4. Recall that Algorithm
4 uses the virtual shifts in the first phase, and in the second phase the break schedul-
ing ILP for a single duty is used as well as the variables Ft,e to skip unnecessary break
scheduling ILP’s. For the first version of this algorithm the virtual shifts are constructed
where the number of breaks is included while calculating the inactive periods. In the tables
this method is indicated by the column header ’yes’. For the other algorithm the virtual
shifts were constructed by only counting the total break time as inactive periods. This
approach is indicated by ’No’.

For each of our approaches we show the total overstaffing, understaffing and number of
shifts used. We also show the time taken to reach our results in minutes. Note that we set
a time limit of 30 minutes for the first phase. For each instance we also report the objective
value as found by Di Gaspero et al. [15] as indicated by the column ’Hybrid’. Note that
the authors did not report results for 1 − 11 and 2 − 11. The Best Known solutions are
the solutions used for constructing the staffing requirements of each instance. Therefore
these solutions have no penalty cost on the number of overstaffing and understaffing (since
those are 0) and only penalise the number of shifts used. The results show that the ’No’
approach outperforms the ’Yes’ approach on all instances and both approaches outperform
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the method by Di Gaspero et al. [15] on all instances.

The 30 minutes were used in all instances for the first phase. No optimal solution was
found (or proven) in this phase. The average optimality gap was 0.34 (SD=0.08) for the
’No’ approach and 0.37 (SD=0.08) for the ’yes’ approach.

6.5 Improvement

Based on results obtained using Algorithm 4 we propose an improvement to it. We will
first describe the reasoning for this improvement and then we will formulate an update to
the ILP used in the first phase. We will use this modified ILP to obtain new results to the
randomly generated instances as well as the real life instances.

The results showed that the ’Yes’ leads to less understaffing. However the overstaffing
increases substantially, so much that the objective value for ’Yes’ is worse than the ’No’
approach. The reason for this is that the virtual shifts used in the shift design ILP have
no flexibility. Instead the number of active workers at each time period is fixed based on
the selected shifts. Therefore there are time periods in which the ILP chooses to use a
higher number of duties than necessary. In the shift design ILP, only the number of duties
active according to the virtual shifts can be considered while in the shifts and breaks design
problem it is possible to not plan any breaks at a time period and hence have more active
workers than calculated by the virtual shifts.

In the first phase we use the virtual shifts to account for the break time which has to
be scheduled. However we assume that all break time will be scheduled uniformly across
the interval of a duty. In the shifts and breaks design problem it is possible to schedule
breaks in a way to handle fluctuations in demand. In order to allow for better solutions
we will modify the ILP of Section 4.1 such that the number of active workers at each time
period is not completely fixed.

We introduce parameters A∗s,d,t. Their value will be equal to the parameters for the actual
shifts (instead of virtual shifts). Therefore we can define them in terms of As,d,t as follows.

A∗s,d,t =


0 if As,d,t = 0

1 if As,d,t = 1

1 otherwise

(73)

The constraint specifying the understaffing is rewritten to∑
s,d

(
A∗s,d,t · wd,s

)
+ ut ≥ Rt ∀t (74)
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6 Shifts and Breaks Design

Table 11: Results Shifts and Breaks Design First Set

Instance Overstaffing Understaffing Shifts Objective Time (mins)

No Yes No Yes No Yes No Yes Hybrid Best No Yes

1-1 1025 1979 86 16 11 20 3570 5318 10540 480 45 40
1-2 1714 2567 141 65 31 47 6698 8604 14904 600 44 40
1-3 1077 2221 115 34 17 36 4324 6942 15330 600 51 43
1-4 1680 3281 203 18 68 81 9470 11602 18652 960 56 49
1-5 1270 2140 100 14 15 28 4440 6100 11656 480 43 39
1-6 934 1564 93 30 17 13 3818 4208 8756 420 37 35
1-7 1117 2008 97 15 23 35 4584 6266 10042 540 43 40
1-8 1457 2592 176 19 39 62 7014 9094 14210 600 49 43
1-9 1092 1983 118 41 27 24 4984 5816 12120 600 43 42
1-10 1583 2511 165 16 55 53 8116 8662 15804 660 54 54
1-11 916 1421 24 4 5 7 2372 3302 n.a. 120 36 35
1-12 919 1573 103 44 11 13 3528 4366 8360 360 47 47
1-13 1355 2242 116 35 16 21 4830 6094 12306 420 51 46
1-14 1337 3394 263 17 72 82 9624 11878 18146 780 84 74
1-15 856 998 7 5 5 5 2082 2346 4774 180 32 33
1-16 1361 2782 134 38 60 61 7662 9604 15820 900 59 63
1-17 1357 3165 167 15 86 78 9544 11160 18402 1080 106 92
1-18 1626 2797 75 8 42 48 6522 8554 16668 720 53 95
1-19 778 2305 174 33 44 39 5936 7280 13582 720 63 97
1-20 1768 2765 112 82 27 29 6276 8090 16794 540 51 103
1-21 1334 1695 79 57 21 23 4718 5340 10188 480 40 73
1-22 770 1314 133 30 5 6 3170 3288 9816 300 45 38
1-23 1594 2916 69 23 48 57 6758 9482 13626 600 48 40
1-24 1134 2117 107 33 30 23 5138 5944 11730 480 42 39
1-25 1110 2918 223 29 63 64 8230 9966 18436 960 58 47
1-26 1336 2593 133 26 47 42 6822 7966 16286 660 48 44
1-27 1457 2903 109 20 15 20 4904 7206 18484 480 61 53
1-28 1587 2065 80 35 22 24 5294 5920 9952 540 39 38
1-29 1260 2521 147 29 52 57 7110 8752 13646 720 57 47
1-30 905 1674 105 13 13 12 3640 4198 8604 300 36 36

Average 1257 2300 122 28 33 37 5706 7112 13367 576 51 52
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Table 12: Results Shifts and Breaks Design Second Set

Instance Overstaffing Understaffing Shifts Objective Time (mins)

No Yes No Yes No Yes No Yes Hybrid Best No Yes

2-1 1424 2246 182 56 49 52 7244 8172 14002 720 51 47
2-2 1647 2723 95 12 38 50 6524 8566 12866 720 60 53
2-3 1207 2933 165 95 69 63 8204 10596 13858 720 72 67
2-4 1231 2343 162 35 35 36 6182 7196 12780 720 53 54
2-5 1520 2743 102 15 47 45 6880 8336 12962 720 66 66
2-6 1592 2888 170 50 59 63 8424 10056 16214 720 83 81
2-7 1437 2835 138 62 56 55 7614 9590 17044 720 92 45
2-8 1440 2811 228 37 33 48 7140 8872 13684 720 83 41
2-9 1628 2708 102 101 34 49 6316 9366 14932 720 50 45
2-10 1161 2761 191 15 56 65 7592 9572 17972 720 65 52
2-11 1289 2897 163 40 66 65 8168 10094 n.a. 960 54 44
2-12 1133 2870 159 28 74 69 8296 10160 16028 960 55 46
2-13 1147 2489 257 17 79 92 9604 10668 17446 960 68 47
2-14 1164 3003 298 50 55 74 8608 10946 18636 960 65 48
2-15 1278 2526 253 38 67 76 9106 9992 19032 960 58 53
2-16 1068 2702 257 21 68 74 8786 10054 18950 960 70 58
2-17 1063 3219 308 43 61 35 8866 8968 15754 960 60 55
2-18 1304 3035 221 31 79 84 9558 11420 18616 960 63 56
2-19 1214 2544 220 44 72 82 8948 10448 19456 960 69 61
2-20 1415 3186 148 14 65 78 8210 11192 18688 960 70 59
2-21 1286 2781 228 16 95 106 10552 12082 18890 1200 89 75
2-22 1463 3556 240 24 84 88 10366 12632 19804 1200 84 77
2-23 1304 3126 232 60 93 99 10508 12792 17236 1200 72 71
2-24 1250 3222 162 70 80 77 8920 11764 18178 1200 78 50
2-25 1455 3358 237 48 85 91 10380 12656 19198 1200 100 49
2-26 1346 2756 258 30 74 83 9712 10792 19662 1200 117 53
2-27 1636 3767 235 37 83 99 10602 13844 20200 1200 78 56
2-28 1128 3097 208 37 84 90 9376 11964 16414 1200 63 47
2-29 1400 3038 241 12 77 83 9830 11176 18574 1200 70 55
2-30 1139 3650 457 33 89 110 12188 14230 24462 1200 94 62

Average 1326 2927 211 39 67 73 8757 10607 17294 960 72 56
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6 Shifts and Breaks Design

It follows that we only count understaffing in the case that there are not enough present
workers. In such a case understaffing in the shifts and breaks design problem would be
inevitable. The overstaffing needs to be changed slightly to avoid the overstaffing becoming
negative. Note that we use the parameters corresponding to virtual shifts for the next
constraint.

ot ≥
∑
s,d

(
As,d,t · wd,s

)
+ ut −Rt ∀t (75)

(76)

Therefore we only count overstaffing if there are too many employees using the virtual
shifts. This updated ILP considers there to be no overstaffing nor understaffing if the
number of present workers is between the number specified by the shifts and the virtual
shifts.

A problem in this formulation can be that overall too few present workers are scheduled
since the ILP allows for each duty to always be working. In order to solve this issue we
enforce that over a certain number of time periods the sum of requirements are for filled
using the parameters As,d,t as specified by the virtual shifts. Hereto we use the parameter
C. This will indicate the number of consecutive time periods over which the sum of re-
quirements must be satisfied using the virtual shifts. The following constraint forces this.
Note that we abuse notation by allowing the index t + i to be greater than the number
of time periods (n). Since the first time period follows the last time period t + i should
actually be (t + i) mod n

C∑
i=1

(∑
s,d

As,d,t+i · wd,s

)
≥

C∑
i=1

Rt+i ∀t (77)

6.6 Improved Results

In this section we will show results to the shifts and breaks design problem using the
techniques discussed in the previous section. After some initial testing we decided to use
C = 25 as it gave the best results. In Table 14 we show results of this improved algorithm,
shown in the columns called ’2P-ILP’, from two-phase integer linear programming. We
compare the results to results obtained without the improvement, indicated by the term
’Prev’. For comparison results of Di Gaspero et al. [15] and the best known solutions are
also shown. The running time (in minutes) of both our approaches is also shown. Note
that we did not set a time limit for the second phase in the approach ’Prev’ but for the
’2P-ILP’ approach we set a maximum time limit of 30 minutes for the second phase. Table
15 shows results for instances of the second set.
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We have also applied our improved algorithm to the real-life instances. As mentioned
when describing the problem instances we only considered possible shifts with a time gran-
ularity of 15 minutes as opposed to the 5 minutes specified by the instances. Results are
shown in Table 13. We compare our results, as indicated by ’2P-ILP’, to the results of
Di Gaspero et al. [15], as indicated by ’Hybrid’. For each of the 5 instances we report the
overstaffing, understaffing, number of shifts and the objective value for both approaches.
We also show the number of minutes it took for our two-phase approach to reach the solu-
tions. The results of Di Gaspero et al. [15] were reached by allowing a running time of 60
minutes. We allowed our algorithm a maximum time of 30 minutes for each phase.

During the first phase the maximum time of 30 minutes was always reached. The av-
erage optimality gap for the randomly generated instances was 0.50 (SD=0.10), for the
real life instances this number was 0.86 (SD=0.02). For 20 out of the 60 instances the
algorithm of the second phase could not be completed within 30 minutes. The average
number of iterations done by the break allocation algorithm was 3.7 (SD=0.85) for the
randomly generated instances and 3.6 (SD=1.02) for the real life instances.

We find further improvements for 57 out of the 60 randomly generated instances. On
average our obtained solutions are over 7 times as much as the best known solution. The
results even show that for all of the randomly generated instances we use more shifts than
the best known solution.

Table 13: Results: Shifts and Breaks Design - Real Life

Instance Overstaffing Understaffing Shifts Objective Time

Hybrid 2P-ILP Hybrid 2P-ILP Hybrid 2P-ILP Hybrid 2P-ILP 2P-ILP

2fc04a 2636 1224 173 5 23 30 8382 4298 56
3fc04a 2732 1227 130 1 21 36 8024 4624 57
4fc04a 2710 1081 94 4 21 32 7620 4122 56
50fc04 2636 1130 180 4 29 29 8812 4040 60
51fc04 2890 1343 209 0 23 32 9250 4606 60

Average 2720 1201 157 3 23 32 8418 4338 58
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6 Shifts and Breaks Design

Table 14: Results Shifts and Breaks Design 2P-ILP Set 1

Instance Overstaffing Understaffing Shifts Objective Time (mins)

Prev 2P-ILP Prev 2P-ILP Prev 2P-ILP Prev 2P-ILP Hybrid Best Prev 2P-ILP

1-1 1025 1237 86 3 11 13 3570 3284 10540 480 45 42
1-2 1714 1740 141 2 31 31 6698 5360 14904 600 44 40
1-3 1077 1129 115 7 17 13 4324 3108 15330 600 51 48
1-4 1680 2215 203 16 68 47 9470 7410 18652 960 56 56
1-5 1270 1537 100 10 15 22 4440 4494 11656 480 43 42
1-6 934 1005 93 4 17 13 3818 2830 8756 420 37 37
1-7 1117 1716 97 12 23 22 4584 4872 10042 540 43 48
1-8 1457 1715 176 4 39 33 7014 5450 14210 600 49 53
1-9 1092 1470 118 6 27 24 4984 4440 12120 600 43 51
1-10 1583 1895 165 8 55 38 8116 6150 15804 660 54 60
1-11 916 948 24 0 5 3 2372 2076 n.a. 120 36 39
1-12 919 1132 103 8 11 10 3528 2944 8360 360 47 51
1-13 1355 1494 116 7 16 14 4830 3898 12306 420 51 60
1-14 1337 2035 263 5 72 44 9624 6760 18146 780 84 60
1-15 856 1059 7 1 5 7 2082 2548 4774 180 32 34
1-16 1361 2023 134 12 60 39 7662 6506 15820 900 59 48
1-17 1357 2079 167 7 86 52 9544 7348 18402 1080 106 59
1-18 1626 1824 75 10 42 28 6522 5428 16668 720 53 58
1-19 778 1246 174 12 44 36 5936 4772 13582 720 63 60
1-20 1768 1734 112 11 27 21 6276 4838 16794 540 51 60
1-21 1334 1523 79 3 21 22 4718 4396 10188 480 40 43
1-22 770 782 133 2 5 6 3170 1944 9816 300 45 37
1-23 1594 1851 69 14 48 33 6758 5822 13626 600 48 45
1-24 1134 1483 107 11 30 23 5138 4456 11730 480 42 42
1-25 1110 1757 223 10 63 44 8230 6254 18436 960 58 54
1-26 1336 1622 133 8 47 39 6822 5644 16286 660 48 48
1-27 1457 1746 109 21 15 11 4904 4362 18484 480 61 60
1-28 1587 1579 80 4 22 20 5294 4398 9952 540 39 40
1-29 1260 1813 147 12 52 36 7110 5906 13646 720 57 51
1-30 905 1444 105 0 13 8 3640 3368 8604 300 36 39

Average 1257 1561 122 8 33 25 5706 4702 13367 576 51 49

61



6.6 Improved Results

Table 15: Results Shifts and Breaks Design 2P-ILP Set 2

Instance Overstaffing Understaffing Shifts Objective Time (mins)

Prev 2P-ILP Prev 2P-ILP Prev 2P-ILP Prev 2P-ILP Hybrid Best Prev 2P-ILP

2-1 1424 1485 182 13 49 38 7244 5380 14002 720 51 52
2-2 1647 1792 95 3 38 33 6524 5594 12866 720 60 60
2-3 1207 1982 165 45 69 38 8204 6694 13858 720 72 60
2-4 1231 1501 162 6 35 37 6182 5282 12780 720 53 58
2-5 1520 1610 102 8 47 35 6880 5400 12962 720 66 60
2-6 1592 1678 170 58 59 46 8424 6696 16214 720 83 60
2-7 1437 1603 138 19 56 57 7614 6816 17044 720 92 49
2-8 1440 1848 228 2 33 34 7140 5756 13684 720 83 44
2-9 1628 1720 102 15 34 42 6316 6110 14932 720 50 47
2-10 1161 1868 191 7 56 40 7592 6206 17972 720 65 58
2-11 1289 1844 163 8 66 48 8168 6648 n.a. 960 54 48
2-12 1133 1786 159 3 74 58 8296 7082 16028 960 55 52
2-13 1147 1704 257 2 79 58 9604 6908 17446 960 68 57
2-14 1164 1976 298 8 55 42 8608 6552 18636 960 65 60
2-15 1278 2104 253 24 67 47 9106 7268 19032 960 58 60
2-16 1068 1785 257 20 68 60 8786 7370 18950 960 70 60
2-17 1063 1787 308 7 61 55 8866 6944 15754 960 60 53
2-18 1304 1871 221 16 79 52 9558 7022 18616 960 63 60
2-19 1214 1935 220 5 72 51 8948 6980 19456 960 69 60
2-20 1415 1988 148 16 65 52 8210 7256 18688 960 70 54
2-21 1286 2147 228 7 95 74 10552 8804 18890 1200 89 60
2-22 1463 1869 240 5 84 59 10366 7328 19804 1200 84 58
2-23 1304 2000 232 25 93 69 10508 8390 17236 1200 72 58
2-24 1250 1774 162 8 80 60 8920 7228 18178 1200 78 59
2-25 1455 1854 237 12 85 60 10380 7428 19198 1200 100 60
2-26 1346 2168 258 17 74 59 9712 8046 19662 1200 117 60
2-27 1636 2324 235 34 83 66 10602 8948 20200 1200 78 60
2-28 1128 1953 208 1 84 65 9376 7816 16414 1200 63 60
2-29 1400 2105 241 54 77 63 9830 8530 18574 1200 70 60
2-30 1139 1996 457 6 89 66 12188 8012 24462 1200 94 58

Average 1326 1869 211 15 67 52 8757 7016 17294 960 72 57
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7 Conclusion

In this thesis we proposed an algorithm for the shifts and breaks design problem. The al-
gorithm improves results found in the literature. Our approach splits the problem up into
two different parts. First we find a set of shifts and a number of duties for shifts on each
day. Second we allocate breaks to each duty. During the first phase we obtain a solution
to an integer linear program which has an average optimality gap of 0.50 for the randomly
generated instances and 0.86 for the real life instances. Our algorithm for allocating breaks
shows to be effective in allocating breaks to the shifts and duties obtained from this so-
lution since a solution to the shifts and breaks design problem with little understaffing is
found.

From the real life examples we have seen that the number of possible shifts to be con-
sidered in the first phase grows too large Cplex will not manage to find a (satisfactory)
solution. We proposed to solve this issue by only considering all possible shifts using a
time granularity of 15 minutes as opposed to 5 minutes. It is possible to apply a similar
method to other instances in which the number of possible shifts is too large.

Furthermore we tested the effectiveness of integer linear programming for shift design
and for break scheduling. ILP showed to be effective for shift design as we were able to
find (and prove) optimal solutions to 54 out of the 60 tested instances. For the other 6
instances we improved the best known solutions as well as proving an upperbound to the
problems (using the gap as reported by Cplex). Furthermore we tested the effectiveness of
Cplex in obtaining fast solutions and showed that Cplex found better solutions than the
GrMCMF+LS method proposed by Di Gaspero et al. [14].

We were not able to find exact solutions to the break scheduling problem using integer
linear programming. The reasoning for this is the large number of feasible break alloca-
tions allowed per duty. We proposed an algorithm which optimally allocates the breaks
for a single duty. This algorithm was outperformed by the memetic algorithm of Widl and
Musliu [33]. Since the algorithm was fully completed for some runs of break scheduling
we also show that the local minimum reached by our algorithm is unlikely to be a global
minimum.

Since we were not able to solve the ILP in the first phase to optimality we are not sure
of the performance of our algorithm in case the optimal solution for this ILP would be
found. Another issue with our approach is that it can take a long time to obtain a feasible
solution. We were able to find a solution to all instances within 60 minutes however this
might not be true for larger instances.

64



7 Conclusion

For the randomly generated instances, for which a solution with exact coverage is known,
our solution costs where still more than 5 times greater than the cost of the solution having
exact coverage. In order to further improve results to the shifts and breaks desing problem
it might be worthwhile to combine ILP methods with other methods such as local search.
As an example the usage of integer linear programming on instances of break scheduling
showed to be less effective than the use of memetic algorithms. Furthermore we did not
use the break allocation to change the selected shifts. After breaks have been scheduled it
could be possible to use this information to add or remove a shift or duty.
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[15] Luca Di Gaspero, Johannes Gärtner, Nysret Musliu, Andrea Schaerf, Werner Schafhauser,
and Wolfgang Slany. A hybrid LS-CP solver for the shifts and breaks design problem. In
International Workshop on Hybrid Metaheuristics, pages 46–61, Heidelberg, 2010. Springer.
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9 Appendix

9.1 ILP Shift Design

Sets
Time Periods t
days d
shifts s
Variables
as Binary variable indicating whether shift s is active
wd,s Integer variable indicating how many workers will be working on shift s on day d
ut Will denote the understaffing at time period t
ot Will denote the overstaffing at time period t
Parameters
Rt The requirement at time period t
As,d,t Binary, indicating if the duty starting on day d of shift s is active on time period t
W1 Penalty cost for overstaffing
W2 Penalty cost for understaffing
W3 Penalty cost for the number of shifts
M Is used as a large constant, here it is the maximum demand at any time period

Constraints

wd,s ≤M · as ∀d, s (78)∑
s,d

(
As,d,t · wd,s

)
+ ut ≥ Rt ∀t (79)

ot =
∑
s,d

(
As,d,t · wd,s

)
+ ut −Rt ∀t (80)

as ∈ {0, 1} ∀s (81)

wd,s ∈ N0 ∀d, s (82)

ot, ut ≥ 0 ∀t (83)

(84)

Objective

minimize W1

∑
t

ot + W2

∑
t

ut + W3

∑
s

as (85)
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9.2 ILP Break Scheduling Single Duty

Sets
Time Periods t = {1, ..., Length}
Time Periods Extra t∗ = {1, ..., Length + 1}
Breaks b = {1, ...,Mbreaks}
Parameters
Dt The demand for staffing at time period t
Mbreaks The maximum number of different breaks+1
Tbt The total amount of break time required
Length Length of the duty s (number of time periods)
Bminl Minimum length of a break
Bmaxl Maximum length of a break
Mlwp Minimum long working period
Lbml Long break minimum length
Wpminl Working period minimum length
Wpmaxl Working period maximum length
Ebs Earliest break start (breaks can start this many time periods after shift start)
Lbs Latest break start (breaks can start this many time periods from shift end)
L Binary, indicating whether a lunch break is required
Elbs Earliest lunch break start
Llbs Latest lunch break start
Lbl Lunch break length
W1 Penalty cost for overstaffing
W2 Penalty cost for understaffing
M Used as a sufficiently large constant. Equal to the number of time periods in the duty
Variables
ab Binary variable indicating whether the bth break is active
alb Binary variable indicating whether break b needs to be long
lb Binary variable indicating whether break b is the lunch break
blb The length (in time slots) that the bth break takes
bsb First time slot on which break b is active
wpb Indicates the length of the bth working period
zst∗,b Binary indicating if the first time period of the bth break is the t∗th time period

zet∗,b Binary indicating if the last time period of the bth break is the t∗th time period

zt,b Binary1 indicating if the duty is on its bth break during time period t
zbt,b Binary1 indicating if time period t is before the start of the bth break

zat,b Binary1 indicating if time period t is after the end of the bth break

xt Binary1 indicating if the duty is working during a time period t
ut Understaffing in time period t
ot Overstaffing in time period t

1These variables can be relaxed to continuous variables on [0,1]. By the binary restriction on zst,b and
zet,b the variables are forced to be either 0 or 1.
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9.2 ILP Break Scheduling Single Duty

Constraints

ab ≤ ab−1 ∀b ∈ B \ {1} (86)

alb + lb ≤ ab ∀b (87)∑
b

blb = Tbt (88)

M · (1− ab) + blb ≥ Bminl ∀b (89)

blb ≤ Bmaxl · (ab) + M · (lb) ∀b (90)

alb · Lbml ≤ blb ∀b (91)

bsb ≥ Ebs ∀b (92)

bsb ≤ Length− Lbs + (1− ab) · (1 + Lbs) ∀b (93)

bsb ≥ (Length + 1) · (1− ab) ∀b (94)

wp1 = bs1 − 1 (95)

wpb = bsb − (bsb−1 + blb−1) ∀b ∈ B \ {1} (96)

wpb ≤Wpmaxl ∀b (97)

wp1 ≥Wpminl (98)

M · (1− ab−1) + wpb ≥Wpminl ∀b ∈ B \ {1} (99)

wpb −Mlwp + 1 ≤ alb ·M + lb ·M + (1− ab) ·M ∀b (100)

Mlwp− wpb ≤ (1− alb) ·M ∀b (101)∑
b

lb = L (102)

(1− lb) ·M ≥ Lbl − blb ∀b (103)

(1− lb) ·M ≥ blb − Lbl ∀b (104)

(1− lb) ·M ≥ Elbs− bsb ∀b (105)

(1− lb) ·M ≥ bsb − Llbs ∀b (106)∑
t∗

zst∗,b = 1 ∀b (107)∑
t∗

t∗ · zst,b = bsb ∀b (108)∑
i=1>Length+1

zsi,b = zbt,b ∀t, b (109)

∑
t∗

zet∗,b = 1 ∀b (110)∑
t∗

t · zet∗,b = bsb + blb − 1 + (1− ab) ∀b (111)∑
i=1<t−1

zei,b = zat,b ∀t, b (112)

zt,b + zat,b + zbt,b = 1 ∀t, b (113)
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1− xt ≥
∑
b

zt,b ∀t ∈ T (114)

1− xt ≥
∑
b

zet−1,b ∀t ∈ T \ {1} (115)

1− x1 ≤
∑
b

z1,b (116)

1− xt ≤
∑
b

zt,b +
∑
b

zet−1,b ∀t ∈ T (117)

xt − 1 + ut ≥ Dt ∀t (118)

ot − ut − xt + 1 = −Dt ∀t (119)

ab, a
l
b, lb ∈ {0, 1} ∀b (120)

zst,b, z
e
t,b ∈ {0, 1} ∀t, b (121)

ot, ut ≥ ∀ t (122)

Objective

minimize W1

∑
t

ot + W2

∑
t

ut (123)
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