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Abstract

In this thesis a new way of implementing a Class - D amplifier controller is presented. A
Class - D amplifier controller is a system that essentially performs Sigma - Delta modulation
to quantize discrete digital input into a 1 - bit Pulse Width modulated signal that is used to
drive a power amplifier. The system has internal control loops that perform the necessary
noise filtering thus providing quantization noise - free modulated output. This system in a
digital implementation traditionally follows digital design flow starting from a VHDL descrip-
tion, which can be time consuming for a controller design that has a greater complexity.

The approach investigated in this thesis involves modeling of the system in a functional
programming language Haskell. In the model, elementary mathematical equations that are
used to describe the system are modeled in the form of higher order functions. The Haskell
code is then converted to a CλaSH (CAES Language for Synchronous Hardware) code,
which is a sub-set of Haskell that is used to describe sequential digital hardware. The con-
version involves minor changes to the base Haskell model. With its native compiler, CλaSH
is used to generate VHDL code from the Haskell modelled system.

Simulations are performed on Haskell and CλaSH models and compared with the simu-
lation of an equivalent Simulink model. The comparison shows that the CλaSH implemen-
tation respects the intended functionality of the system.
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Chapter 1

Introduction

Among many applicative areas of signal processing, audio is perhaps one of the most in-
teresting and challenging fields. Right from recording of the source, processing and repro-
duction of the original audio source, there are many stages and intricate steps involved to
achieve a pure audio reproduction. Over time, audio systems dedicated to an efficient audio
reproduction moved away from the traditional analog domain to digital, proving faster pro-
cessing rates and much better elimination of noise in the audio band.

An audio amplifier is an electronic system that reinforces low power auditory signal such
that it is strong enough to drive a power load, in this case a loudspeaker. Most audio am-
plifiers are analog devices, in the sense that the signal is in the from of an analog wave.
However, amplifying audio from a digital source requires digital to analog conversion. A
class of amplifier suitable for such a task is the Class - D amplifier, which operates on Pulse-
Width Modulation (PWM) of audio samples. The amplifier drives a switching power stage to
fully ON or fully OFF states, hence giving a theoretical efficiency of 100%. A purely digital
solution of this class is therefore faster and efficient.

The design of digital systems start with a general specification of the system with re-
spect to its operational characteristics, energy efficiency, speed of operation and resources
consumed, notably among many more. In the next step, the specifications are translated in
hardware descriptive languages like VHDL or Verilog. Synthesis tools have been developed
that can derive a gate-level hardware implementation of a digital system from a behavioral
description in a Hardware Descriptive code (HDL).

The traditional hardware descriptive languages mentioned previously fall short when de-
velopment time is a crucial factor. Depending on the demands , the system can be quite
complex, making the development process much time consuming and error-prone. Hence,
the need for a higher level of abstraction is imminent, making the designer focus more on
the behavioral aspects and let the tool handle the implementation. To achieve a greater
abstraction, functional programming is preferred. In a functional style of programming, the
behavior is described as mathematical equations or abstract definitions in the form of basic
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4 CHAPTER 1. INTRODUCTION

functions, and function calls will eventually describe the intended system. The advantage of
such abstraction is that the system description is more concise, short and less error prone,
and more importantly the development time of complex systems gets much shorter.

A tool that generates fully synthesizeable VHDL code from a specification written in the
functional programming language Haskell exists, developed by CAES group in University of
Twente. This tool is called CAES Language for Synchronous Hardware design (CλaSH),
and it gives the opportunity to describe a system at a high abstraction level by describing its
mathematical properties using functional expressions. By describing a problem description
in a functional programming language, the simulations on the system can be done without
any transformations to a programming language with other semantics. The direct transfor-
mation from the description in CλaSH to a hardware description in VHDL also eliminates the
need for a manual conversion step which can introduce errors in the system.

In this research, a simple Class - D amplifier controller is modeled and implemented
in CλaSH. The way to implementation first goes through modeling the required system in
Haskell and subsequently implementation in CλaSH. Simulations are performed in their re-
spective native environments to evaluate the correctness and also the performance results,
since it will be a point of interest in answering the question:

Is CλaSH a suitable language and environment to design application specific signal
processing systems?

1.1 Objectives of research

The primary objective of this research is a demonstration of how a digital Class-D amplifier
controller can me implemented in CλaSH. As a start, the system is first modeled in Haskell
and eventually translated to CλaSH code. Finally, the extent at which CλaSH can be em-
ployed to implement complex architectures can be established.

It is shown that linearity of Class - D operation increases with increasing the sampling
rate of the system [1]. However, problems associated with sample rate increase arise during
an attempt to obtain a high resolution audio signal. To circumvent this issue, DSP techniques
like noise shaping is employed, which is a process by which noise in audio band is reduced
while using a low resolution modulator, while using a slower clock speed. This technique is
described in Sigma - Delta (Σ∆) Modulation theory.

Concepts of sample rate conversion is quintessential in digital signal processing (DSP)
operations, however, these concepts will be briefly described in theory and not as a part of
implementation. The research contains following points of discussion:

• Investigating feasibility of modeling DSP structures in a pure functional language.
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• Implementation of the architecture in the Functional Hardware Descriptive Language
(FHDL) CλaSH.

• Evaluating simulation response of CλaSH with a reference Haskell model, and

• Analyzing synthesis results of CλaSH generated VHDL description of the system.

Analysis of imperfections caused in this system is not discussed as the central point of
this research is implementation. However, improvements associated with the system can be
a topic of future development.

1.2 Structure of Thesis

The structure of this thesis is presented below.

Chapter 2 gives a brief introduction of digital audio. A general signal chain of audio
recording to reproduction is presented. Further explanation is given about Pulse Width
Modulator (PWM) amplifiers and their internal workings. Major focus is given on the concept
of noise shaping and determination of an optimal noise shaper. The last part of the chapter
focuses on modeling the Class - D amplifier controller mathematically and in functional pro-
gramming language Haskell. This step lays the foundation for implementing the system in
CλaSH, which is the primary focus of this research.

Chapter 3 introduces CλaSH as a Functional Hardware Descriptive Language (FHDL).
A brief introduction to its similarities with Haskell and advantages of designing digital hard-
ware is presented. Steps necessary to translate Haskell model into CλaSH implementation
is laid out. Concluding remarks include the similarities with Haskell and intuitive reasoning
of system implementation.

Chapter 4 compares simulation results of Haskell and CλaSH implementations. A quan-
titative proof is presented and comparisons are made between outputs of each implemen-
tation. Furthermore, the results of Haskell and CλaSH models are compared against a
Simulink model to establish feasibility and verity of modeling the system in functional envi-
ronment.

Chapter 5 discusses possible future modifications and directions of improvement for this
model. In general, it is to be noted that more efficient higher order functions can be im-
plemented and the system can be greatly improved, for example increasing the order by
utilizing the power of higher order formalisms.
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Chapter 2

Background

This chapter introduces a brief background on digital audio formats along with a standard
digital audio system chain. Furthermore, sections are dedicated to mention the theory of a
Class - D amplifier. Also included are fundamentals of Haskell, a functional programming
language and CλaSH, which is a functional language for describing synthesizable digital
hardware in a functional paradigm.

2.1 Digital Audio

Digital audio is a format that is used for sound recording and reproduction, where analog
signals are recored into a digital format. Digital audio over time has replaced analog record-
ing and reproduction techniques in view of its efficiency and speed.

Digital audio processing systems require input in the form of digital encoded values of
sampled analog signals. A digital audio system thus starts first with sound converted into
an analog signal by a microphone. The analog signal is then encoded into a digital signal
by using an Analog - to - Digital converter (ADC). Normally, a digital signal is a Pulse - Code
Modulated (PCM) signal that has a resolution depending on the resolution of the ADC which
is used. In typical digital audio systems, the resolution used is 16 - bit, and the audio sig-
nal is sampled at 44.1 kHz, which gives 44100 samples per second, in case of CD audio.
For other formats, different sampling frequencies and resolutions exist. With common digital
tools and techniques, the encoded digital values can be stored and/or processed. To output
the processed signal, a Digital - to - Analog converter (DAC) is used to obtain an analog
equivalent of the digital signal, which is then passed through a power amplifier and given
to a loudspeaker or headphones. The entire process of recording to reproducing an audio
signal can be visualized in an audio reproduction chain as shown in Figure 2.1.
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8 CHAPTER 2. BACKGROUND

Figure 2.1: Audio recording and reproduction chain

2.2 Introduction to Haskell

A functional programming language, or paradigm, utilizes functions. Executions and calcu-
lations are performed by calling functions, that build the required structure. In other words,
program execution happens by constant evaluation of expressions that are defined in the
said functions. For instance, a function can call another primitive function to evaluate one of
its arguments, the result of which is used to evaluate another internally defined operation.
One such language is Haskell, which builds the basis for CλaSH in this research.

In imperative languages like C, operations are performed by giving the computer a series
of tasks and executions are handled by the computer. Most expressions are evaluated in an
’implied’ fashion, that means the program has an internal state and the state can change.
For example, a variable can have an initial value, and the same variable can be put into
an expression that makes it increment by a value. In a pure functional environment how-
ever, the computer or program can only be told what the assignments are. For example, a
function defined to calculate a sum of all numbers in a list needs to be told what that list
is as an argument, and it results in an evaluated value. Also, the function is guaranteed
to return the same value if called with the same argument. This has an advantage, in that
the function lacks side - effects. The intended behavior is thus proven at any point of time [2].

A famous attribute of Haskell is it’s laziness. A Haskell program does not evaluate func-
tions and provide results unless called otherwise. This is also known as the ’lazy evaluation
strategy’, which delays the evaluation of an expression until its value is needed. By this
strategy, control flow is more abstracted and possibly infinite data structures can be defined.
Furthermore, unnecessary calculations can be avoided with lazy evaluation, thus increasing
performance of programs [2].

Haskell, combined with its compiler, has more advantages. Most programs during devel-
opment encounter data type errors. A Haskell program, when compiled, takes care of the
data type by type inference, which means that the compiler will determine which variable is
of which data type, depending on the assignment. The compiler is also quite extensive in
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error reporting, which means debugging is quick as common errors are identified at compile
time.

2.2.1 Recursive definitions

An important advantage of describing architectures in functional programming is that func-
tional paradigm supports higher order functions and recursive definitions. From a hardware
descriptive point of view, a higher order function could for example be composed of a direct
mathematical relation that is instantiated in another function, and so on. A mathematical
relation can be anything from a simple adder to modules like full adders that can be called
in a carry look-ahead adder structure. With each adder (in this example) having the same
mathematical relation inside them, the model becomes more concise and easier to debug.
While this is straightforward for combinatorial logic, sequential logic needs to be tackled in
a different way in a functional environment, since it does not support loops like imperative
environments.

Recursive modeling is the backbone of any Functional Hardware Descriptive Language
(FHDL). Most digital designs are evidently sequential, with internal states keeping track of
states of data at every clock tick. In an imperative way, they can be modeled simply by
formulating a loop with the required number of iterations and the loop takes care of itera-
tions implicitly. Functional languages like Haskell, however, evaluate things differently in this
respect, as the evaluation is lazy and functions are pure, i.e, every evaluation with a same
input gives the same output. Hence, a sense of previous state has to be introduced. This
can be done again with the help of higher order functions, created solely for the purpose of
”storing” a previously calculated value.

A simple example to consider for demonstrating this strategy can be a mealy machine.
In a mealy machine, the present output depends on the present input and a previously cal-
culated output, which can be a result of any combinatorial (or mathematical) calculation,
for example an accumulator. To model an accumulator in Haskell, two functions are to be
declared, one that contains the actual mathematical (combinatorial) addition and the state
for one computation, and another to recursively call the previously defined function. Listing
2.1 illustrates the example in Haskell, which models an accumulator.

In this simple code, the function acc is modeled to have a state s and an input a as argu-
ments, and result a tuple of next state s′ and present output y as (s′, y). Function simulate
is also defined that calls any function f , initial state s and an input list as as arguments. A
case can now be considered when running simulate with f as acc. It outputs a value y and
then calls itself again with arguments acc, updated state s′ resulting from function evaluation
(single evaluation) of acc, since the tuple (s′, y) maps to the resulting tuple evaluation of acc.
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Important point to note here is how the next state s′ of simulate is mapped to the next
state s′ of acc. Since the next state s′ is simply y, the next state definition becomes s′ = y.
When recursively calling simulate with s′, s′ takes on the value y and maps it to the present
state, and the process repeats. When simulated with a list ranging from 1 to 10, the result is
a list with accumulated additions, characteristic of an accumulator. In this way, a state ma-
chines can be realized and this fundamental behavior of recursive calling forms an important
base for defining mealy function in CλaSH, which will be discussed later.

1 acc s a = (s’,y)

2 where

3 y = s + a

4 s’ = y

5

6 simulate f s (a:as) = y : simulate f s’ as

7 where

8 (s’,y) = f s a

Listing 2.1: Haskell definition of an accumulator

2.2.2 Functional Hardware Descriptive Languages (FHDL)

Haskell’s features like lazy evaluation, recursive definition and polymorphism could be used
to describe hardware, as demonstrated in Listing 2.1. This recognition transformed into
an idea of developing functional languages around 1980’s, where the focus was mainly
in reducing the design time by using abstract descriptions of digital hardware. An added
advantage of using a functional environment becomes apparent when the process of verify-
ing described hardware is faster and less complex. As a result, over time many functional
hardware descriptive languages (FHDLs) emerged which either incorporated syntax and/or
semantics of Haskell. There are many such FHDLs existing for a long time, notable among
them are ForSyDe and Lava. Of the two mentioned FHDLs, Lava has been used to describe
and design hardware for a long time. The fact that Lava can be used not just to describe
digital hardware but even implement it by generating a synthesizable VHDL code, made it a
long standing choice for FHDL. CλaSH is also an FHDL, possessing the same functionali-
ties as Lava. However, CλaSH directly uses Haskell syntax, whereas Lava has syntax of its
own.

2.3 Pulse Width Modulation Amplifier

This chapter describes the concept of a basic Pulse - Width Modulator amplifier, also known
as a Class - D amplifier. For brevity, a simple flow of operation is presented to emphasize
the workings of the amplifier. In addition, the problems associated with a simple amplifier
configuration are mentioned.
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Figure 2.2: Basic Class - D operation

Basic operation

A Class-D amplifier is an electronic system where the amplification devices are, at any par-
ticular moment, in fully on or off states. The basic aim of a Class-D operation is to create
a train of pulses that is an encoded representation of the input. This is known as Pulse-
Width Modulation, where when the pulses are averaged, original data information can be
obtained [3]. Operation of a Class - D system can be visualized as shown in Figure 2.2.
The system consists of a PWM that encodes incoming signals to two specified levels (usu-
ally (-1,1)), by comparing instantaneous levels of the modulating carrier signal and the input
signal, at the carrier’s sampling rate. The resulting output signal of the PWM is then a rectan-
gular pulse train with instantaneous amplitudes being either of the two specified levels. The
pulse train, when driving the amplification devices (power amplifier), produces an amplified
version of the PWM output pulse train. This amplified pulse train is used to drive a low pass
RLC filter (LPF) to produce an analog equivalent of the input signal.

A digital Class - D amplifier controller is a digital control system that provides in - band
noise reduction for a pulse width modulator amplifier. The control system is realized by
enclosing the pulse width modulator in a negative feedback loop with a filter structure (loop
filter) that is responsible for passing in - band frequency components of the input signal and
moving the quantization noise from the PWM out of the bandwidth. A general structure of
the controller is shown in Figure 2.3.

The resulting width modulated output consists of just two levels, which appear at a fixed
frequency. The time it is high or low states is not always 50%, but it varies according to the
instantaneous amplitudes of the signal. This way, when the input signal increases, the high
state will be present for longer than the lower state, and vice versa. The mean value of the
signal for one cycle is then
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Figure 2.3: Basic digital Class - D amplifier controller

Vavg = Vh ∗K + Vl ∗ (1−K) (2.1)

where K is the duty cycle, ratio of ON time and period of the carrier.

As an example, calculation of the mean value of a 50% duty cycle, where both ON and
OFF states are present for exactly the same amount of time, with a signal going from +1V to
-1V is performed as follows

Vavg = 1 ∗ 0.5 + (−1) ∗ 0.5 = 0V (2.2)

The output of a Class-D amplifier in the absence of input is thus a square signal switching
from the positive to the negative rail voltages, with 50% duty cycle. If the input is nearly at
the maximum, for example 90%, then

Vavg = 1 ∗ 0.90 + (−1) ∗ 0.10 = 0.8V (2.3)

Pulse-Width Modulation

Pulse - Width Modulation is a method of representing information in the form of a pulse train
based on the input’s instantaneous amplitude. It is seen as a form of encoding the signal’s
value in the form of pulses with varying widths. The interpretation of original input value from
averaging of pulses is explained in the preceding section. Here, the internal workings of the
modulator are presented.

The modulation scheme is detailed by a simple process. Whenever the instantaneous
amplitude of the input is larger than the instantaneous amplitude of the carrier, the output
of comparator is a high value. Conversely, if the instantaneous amplitude of the input is
lesser than that of the carrier, the comparator output is a low value.The carrier can be either
a leading-edge or falling-edge sawtooth waveform, or a triangular waveform. Furthermore,



2.3. PULSE WIDTH MODULATION AMPLIFIER 13

the modulated output depends on the type of the sampling used.

The carrier frequency is to be at least twice the maximum frequency of the input, to
satisfy the Nyquist criterion. In practice, however, the carrier frequency is chosen about 10
times the maximum frequency of the input signal bandwidth.

fcarr ≥ 10 ∗ fmax (2.4)

PWM Sampling

Pulse width modulation sampling is a term representing the kind of sampled modulation
that takes place in a pulse width modulator in presence of a sampled input signal. In other
words, a type of PWM sampling that depends on how an input reference signal that needs
to be modulated is sampled in the first place. Accordingly, there are two types of PWM sam-
pling, one that is based on continuous time and the other based on discrete time reference
signals, known as Natural PWM and (NPWM) and Uniform PWM (UPWM) sampling. For
analog systems, NPWM inherently occurs in PWM schemes, however for digital systems,
UPWM is used as digital systems operate on discrete uniformly sampled quantized levels.
NPWM fundamentally differs from UPWM, as illustrated in Figure 2.4.

In Figure 2.4, NPWM and UPWM schemes are presented, where n refers to sampling
instants. In an NPWM sampling scheme, the reference signal (shown in red) is sampled at
continuous time. In contrast, the reference signal for a UPWM scheme stays at a constant
level (shown in blue), since this level is assumed to be a quantized value of the continuous
time sampled equivalent. As a consequence, the carrier samples the continuous time ref-
erence sample in NPWM earlier, compared to UPWM (in this example), when the carrier
is a rising edge sawtooth waveform in this instance. When NPWM and UPWM waveforms
are compared against each other, it becomes clear that there are errors present in UPWM
scheme (e1 and e2), which contribute to distortion.

From this example, it would seem that NPWM is a better choice to guarantee distortion
- free system. However, for a digital system working on quantized values, NPWM cannot
be realized and UPWM can, although UPWM gives rise to distortion. To circumvent around
this issue, additional processing needs to be performed on the sampled input itself. The
idea involves sampling the input at a higher rate such that the presence of higher number
of samples will allow more resolution to quantize the input, making the uniformly sampled
signal resemble closer to its naturally sampled counterpart. These processing steps are
called preprocessing and are discussed in the next section.
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Figure 2.4: Natural and Uniform sampling for PWM

Preproccessing

In the previous section, it has been established that for a purely digital solution, UPWM
scheme is realizable. The idea that UPWM operates on discrete samples of data drives a
straightforward implementation of the PWM algorithm in the digital domain. However, UPWM
suffers from errors as compared to NPWM. The challenge is therefore to design a UPWM
scheme that satisfactorily comes close to matching NPWM.

To realize such a UPWM scheme, the incoming audio sample needs to undergo two
stages of processing, namely oversampling and interpolation. Oversampling enables the
incoming data to be sampled high enough to provide more number of samples than what is
required by the Nyquist criteria. Interpolation is a ’reconstruction’ of the oversampled data
and new data points are extracted from the interpolated signal, at the sample rate matching
that of the oversampled data. The presence of a larger number of samples thus makes
UPWM operation to be as close as possible to NPWM.

Converting sample rates is quite useful in DSP applications like communications, au-
dio, speech processing and various other multi-rate systems. Sample rate conversions,
upsampling and downsampling, exist to increase or decrease the sample rates of a signal
respectively. In audio applications, oversampling is quite useful for increasing the frequency
bandwidth of the signal, in order to employ Uniform PWM techniques, and eventually certain
noise shaping techniques to improve the quality of audio.

In a digital system, upsampling by a factor K can be easily performed by adding K - 1
zero valued samples after each input sample. This is seen as zero-padding, which results
in data that can be sampled at a rate K.
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Consider an input signal x(n). The upsampling algorithm is then given as

wm =

{
x(m/K); m = 0,±K,±2K....

0; otherwise
(2.5)

Translating wm into the z - domain, we get

W (z) =
∞∑

m=−∞
w(m)z−m

=
∞∑

m=−∞
x(m)z−mK

= X(zK)

(2.6)

This method of increasing the sampling rate is, therefore, much straightforward. How-
ever, there are fundamental frequency translated problems associated with it. The effective
bandwidth now increases by upsampling, but replicas of the original signal now sit within the
expanded bandwidth. This causes aliasing due to the replicas. It becomes evident when
spectral content of the upsampled signal is compared to that of the original.

Interpolation in DSP sense is a process of smoothening the areas between two samples.
It is a process of constructing a continuous function from discrete points of a signal, or more
generally, it is a method of finding missing data within two consecutive samples of sampled
data.

Interpolation is a much preferred application in cases where the data’s sample rate is
to be changed. In the previous section, it has been shown that upsampling data by zero-
padding causes replicas of original signal to be present in the expanded bandwidth. The
objective is thus to remove those replicas by means of filtering. Filters constructed for this
sole application are called interpolation filters.

In DSP theory, many interpolation schemes exist. The basic objective is low pass filter-
ing the upsampled signal, with a passband set to the band of interest, in this case 20kHz
for audio, and suppress frequencies beyond that point. Common filter architectures with the
said specifications can be employed. FIR filters are easier to implement on hardware where
area and resources are not constrained. Recursive filters like IIR can also be employed for
the same purpose.
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(a) ∆ Modulation (b) ∆ Demodulation

Figure 2.5: ∆ Modulation and demodulation chain

Noise Shaping

In previous sections, techniques like oversampling and interpolation of an input signal are
used to increase the bandwidth of the audio band. The extended frequency band now en-
ables further signal processing techniques that can be employed to reduce quantization
noise by moving the noise outside the audio band, thus improving the quality of the output
signal. The technique to perform this operation is known as noise shaping. With this method,
it is possible to attain high - resolution audio while running at a moderate bit rate.

Noise shaping is seen as having a high pass characteristic, as it just relocates noise
present in the system out of the audio band. This is an important step as the output low
pass filter at the power stage filters out noise that has been moved out of the band of inter-
est. The popular method to achieve noise shaping is to enclose the Pulse - Width modulator
in a negative feedback loop [4]. The negative feedback enables error correction mechanism
that is useful for reduction of noise. This structure is reminiscent of a Sigma - Delta (Σ∆)
modulator, where the system can operate on a high sample rate and the quantizer can be 1
- bit.

Digital noise shaping is primarily a Sigma - Delta (Σ∆) modulation by nature. The Σ∆

modulator structure is derived from the established ∆ modulator - demodulator structure
shown in Figure 2.5 [5]. It consists of a quantizer, loop closed with an integrator in its feed-
back path. The output of the modulator is then fed to a feed-forward integrator , which is
then passed through the usual low pass filter to obtain the filtered output. Delta modulation
is based on quantizing the change of the signal at each sample.

Derivation of a Σ∆ modulation from Figure 2.5 is straightforward. The ∆ modulation -
demodulation process uses two integators. By the property of linearity in integration, the
integrator before the output loop filter can be first moved before quantizer at the input of the
summation point. After that, the feedback integrator and the integrator at the input can be
merged to form a single integrator before the quantizer). The resultant structure is called a
Σ∆ modulatior, as shown in Figure 2.6.
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Figure 2.6: 1 - bit Σ∆ modulator

A loop filter is a structure often used in modulators that are required to have a high
performance while maintaining a modest resolution. The loop filter replaces the integrator
in a Σ∆ modulator by extending its structure to a slightly more complex architecture. There
are many standard loop filter architectures for the purpose of noise shaping in a 1 - bit
quantizer system. A choice can be made based on requirements like resource utilization
or complexity, but for the major part, the design of loop the filter depends fundamentally on
deriving transfer functions and extracting the filter specifications from the resulting transfer.
Primary requirement for a loop filter is to have a high gain in the bandwidth to ensure a large
reduction of error [6].

2.4 Class - D Amplifier Controller

In previous sections, a PWM amplifier was introduced. For this investigation, modeling and
implementation of Class - D amplifier controller first starts with formalizing the implementa-
tion in terms of a mathematical model, since functional modeling is based on mathematical
relations. While mathematical modeling is performed for system analysis, modeling and
implementation of the system has a modular approach, wherein each behavior is treated
individually. The system primarily consists of a PWM module, which has a comparator and
quantizer functionality in - built, along with a loop filter module which is interfaced with PWM
in a feedback loop. The translation from mathematical model to architectural model is then
demonstrated by performing appropriate simulations on the architectural model.

2.4.1 Mathematical modeling

The mathematical modeling is performed to formulate the intended system behavior in a
mathematical description. This step represents the first fundamental point that leads to-
wards developing the Class - D amplifier controller system in a functional environment. The
mathematical formulation is presented for describing the relations of the PWM and the loop
filter that is included in the closed loop system. The major part of the mathematical formula-
tion rests in describing the loop filter. The Class - D amplifier controller is essentially a 1 - bit
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Figure 2.7: 1 - bit Σ∆ modulator s - domain analysis

quantizer with some amount of quantization error reduction due to the inclusion of a filter in
the loop, and the architecture is that of a 1 - bit Σ∆ modulator, described in [5]. The loop filter
can be designed to be either a simple first order type or a complex nth order type. To achieve
a good performance, techniques are described in [7] and [8] which help in understanding the
way to design a suitable transfer function behavior for higher order filters. In extension to the
above mentioned methods, a loop filter architecture is derived after formulating a loop filter
transfer function [9].

In Figure 2.6, a 1 - bit Σ∆ modulator was presented. The 1 - bit quantizer is considered
as a noise source that provides the system with quantization noise. The system can then be
re-visualized as shown in Figure 2.7, where the quantizer is now replaced with a summing
point that adds a noise component N(s). At this stage, the noise shaping mechanism can
now be modeled in the s - domain as follows.

Y (s) =
X(s)− Y (s)

s

Y (s)

X(s)
=

1
s

1 + 1
s

=
1

s+ 1

(2.7)

Y (s) = N(s)− Y (s)

s
Y (s)

N(s)
=

1

1 + 1
s

=
s

s+ 1

(2.8)

The feedback loop integrates the difference between signal and noise, thereby low -
passing the signal and high - passing the noise. This means that the signal is not changed
as long as it’s frequency is not above the filter’s cut - off limits. Equations mentioned above
also illustrate the primary characteristic of noise shaping, in that the noise shaper acts as a
high pass filter for noise and a low pass filter for signal. Noise shaping, and the modulator
in extension, thus requires a wide bandwidth for it to operate, which is only possible by over-
sampling the input signal to a high degree.

For formulating in the digital domain, the s domain model of an integrator is translated to
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z domain as shown below. The integrator in s domain is an approximation of a continuous
time model

Y (s)

X(s)
=

1

s

⇒ y(t) =

∫ t

0
x(t)dt

(2.9)

Realizing an integrator in discrete time is done by considering sampled time kT (T = time
period, k = sample) and evaluating integrals over those limits. As a result, y(t) now becomes

y((k + 1)T ) =

∫ (k+1)T

0
x(t)dt

⇒
∫ kT

0
x(t)dt+

∫ (k+1)T

kT
x(t)dt

⇒ y(kT ) +

∫ (k+1)T

kT
x(t)dt

(2.10)

The discrete time approximation can now be translated into the z domain by the Euler
integration approximation method. In this approximation, a change of output is calculated
over the area under x(kT ). This area can also be approximated as a rectangle of total area
Tx(k).

y((k + 1)T ) = y(kT ) + Tx(k)

y((k + 1)T )− y(kT ) = Tx(k)
(2.11)

After taking z transforms for above equations, the relation now becomes

zY (z)− Y (z) = TX(z)

Y (z)

X(z)
=

T

z − 1

Y (z)

X(z)
=

Tz−1

1− z−1

H(z) =
Tz−1

1− z−1

(2.12)

Equation 2.12 is the transfer function of a discrete time integrator, and it can be seen as
a unit delay with a positive feedback, shown in Figure 2.8. For a single sampling step T , the
transfer function simply becomes z−1/1− z−1. The Noise transfer function (NTF) for an nth

order transfer is given by (from Equation 2.7)

NTF =
1

1 + z−1

1−z−1

⇒ NTF = 1− z−1

NTF = (1− z−1)n For nthorder

(2.13)
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Figure 2.8: Integrator from unit delay

It is known that the higher the order of the noise shaper, the higher will be the SNR, and
a modulator which includes an nth order noise shaper in its implementation is known as an
nth order modulator. It then would mean that the order could be made sufficiently high, but
the straightforward solution is impractical as the size of the filter would be large.

H(z) is seen as a first - order loop filter in the system, but having a single order filter is
not sufficient to attain a high signal to noise ratio (SNR) of the system, since the gain pro-
vided by a single pole filter (integrator) is not high enough. There are also issues like high
frequency components folding back into the system, which are otherwise not filtered out by
H(z).

The open loop magnitude response of an integrator is a typical downward sloping re-
sponse with a slope -20dB/decade. Addition of poles to the transfer function will increase
the rate of decay. However, when determining the response, it is desirable to have a flat
slope at least in the band of interest. The slope can be flattened out by placing an additional
complex pole pair and zero pair at higher frequencies [7] [8]. Addition of complex conjugate
pairs of poles can be realized from the transfer function. Any filter with zeros b0, b1, b2..bm
and poles a0, a1, a2..an can be realized by the transfer function

Y (z)

X(z)
=
bmz

m + bm−1z
m−1 + ..+ b1z + b0

anzn + an−1zn−1 + ..+ a1z + a0 (2.14)

Assuming there are no zeros placed, the real poles translate to integrators (first order).
Complex poles are then realized as a cascade of two first order sections with negative feed-
back to each, with feedback gain (1− c1) + (1− c2), if c1 and c2 are the complex pole pairs.
The resultant realization is shown in Figure 2.9. This structure is termed as a resonator [9].

The transfer function of a resonator can now be derived as follows. Typically, a resonator
is a second order type noise shaper.
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Figure 2.9: Resonator structure

Yr(z)

Xr(z)
=

1

(z − 1)((z − 1) +K) +K

=
1

(z − 1)2 + (z − 1)K +K

=
1

z2 + (K − 2)z + 1

(2.15)

There exist a variety of filter transfers to implement in the modulator. For a higher order
1 - bit Σ∆ modulator, there are four typical structures of higher order loop filters that can
be implemented, varying in complexity and size. Since the focus is on implementing a fil-
ter with resonator section, a Cascaded Integrators with Feed Forward summation (CIFF) is
chosen. The CIFF structure is realized by interfacing an integrator with a resonator, in that
order. This is due to the fact that an integrator can provide the highest dynamic range over
the required bandwidth, and a resonator can keep the response of the passband flat. The
filter is realized with the following transfer function, and architecture resembling Figure 2.10,
which is a third order filter consisting of a first order section (integrator) and a second order
section (resonator).

H(z) =
1

z − 1
+

1

z2 − 2z +K + 1
+

1

(z2 − 2z +K + 1)(K − 1)
(2.16)

2.5 Functional Hardware Descriptions in Haskell

2.5.1 Modeling in Haskell

Modeling in Haskell follows four steps that involves PWM, loop filter, system level modeling
and finally simulations for analysis. In subsequent sections, the straightforward implementa-
tion of the modules and the system are described with floating point data types, as the focus
is primarily on modeling than on performance.
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Figure 2.10: 3rd order CIFF structure

Pulse - Width Modulator

The module definition for pulse - width modulator is defined in Listing 2.2. This module
contains a triangular wave generator and a comparator that compares instantaneous values
of input sample with instantaneous sample of the triangular wave generator’s output.

1 module Pwm

2 ( pwm -- main pwm function

3 , Slope

4 ) where

Listing 2.2: Module PWM definition

The module exports the function pwm and data type Slope to the top level. The function
pwm is responsible for generating a triangular wave, which is based an example presented
in [10], which is a Haskell model of an up - down counter. A triangular wave is chosen as the
carrier wave, as the objective is to perform double - sided PWM modulation. The definition
of pwm is given in Listing 2.3.
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1 data Slope = Up | Down

2

3 pwm :: (Num a,Fractional a,Floating a,Ord a) => (a,Slope) -> a -> ((a,Slope),a)

4 pwm (v,s) x = ((v’,s’),y)

5 where

6 v’ = case s of

7 Up -> v + 1/64

8 Down -> v - 1/64

9

10 s’ = case s of

11 Up | v’ < 1.0 -> Up

12 | otherwise -> Down

13 Down | v’ > -1.0 -> Down

14 | otherwise -> Up

15

16 y

17 | (x - v’) >= 0.0 = 1.0

18 | otherwise = -1.0

Listing 2.3: pwm definition

The type declaration for pwm is defined so as to make it polymorphic. Polymorphism in
Haskell comes from defining function types with type variables. In triM , the type variable is
considered to be a. The type declaration then states that a can be any number, as long as it
is of numerical type Num, which is defined in the standard Haskell library Prelude. The type
definition further defines variable a to be as Fractional and Floating types, which support
fractional and floating point operations. The function triM also involves comparison of ar-
guments, hence the typeclass Ord is also used to declare variable a to support > operation.

Mentioning a with the additional types Floating and Fractional ensure variable a to be a
floating point number and that which can support fractional values and comparison as well.
This means that effectively a is constrained to represent a floating point number, and the
process of putting such constraining a variable is done by declaring additional typeclasses.

After establishing the type of variables pwm operates on, the type definition of pwm is
to be further extended with type behavior. pwm takes a tuple (v, s) containing a floating
point number v and a state denoting a switching state (explained later) s, and a value x as
arguments, and the evaluation is the resulting tuple ((v′, s′), y), where y is the present out-
put. The switching state s and s′ (next switching state) is defined by a user-defined datatype
Slope, which can at a time take Up or Down. Accordingly, the type definition for tuple argu-
ment (v, s) will be (a, Slope), n will be a and finally ((v′, s′), y) becomes ((a, Slope), a).

In Listing 2.3, v is a present initial value, v′ is the next step of increment, s is the initial
direction of increment and s′ is the next direction of increment defined by datatype Slope,
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which at any point of time can take up either of the fields Up or Down, thus signifying the
direction of traversal. The step size is an important parameter, as the step size effectively
determines the frequency of the resulting wave, as described in Equation 2.17. Here, n
refers to number of steps of increment for 0 to maximum amplitude traversal or 0 to minimum
amplitude traversal. Hence for a single cycle, there are 4n number of traversal steps.

ftri =
fclk
4n

(2.17)

The triangular wave is generated as follows. The function is initialized in a predefined
start condition, in this case, value 0 and direction of increment as Up. Since the specified
incremental direction is Up, the next calculated output will be a positive increment of the
present value, with a fraction of step size. In this juncture, it is important to note that the
fraction of the step size depends on the final peak amplitude of the required wave. For this
research, the requirement is 2 V peak to peak, meaning the maximum traversals of the wave
should be +1 and -1 V. Hence, increment step becomes 1/n. For a peak value k, the incre-
ment is k/n.

Along with the aforementioned process, pwm also takes care of direction switching. It
constantly evaluates the next traversal direction by comparing the output value against the
required peak values. If the present traversal is Up and the output is less than the peak,
the direction switch stays Up else it switches to Down. When the traversal is Down, the
present output is decremented with the same traversal step until it matches the minimum
peak amplitude, and the switch turns to Up again. In this way, a triangular wave is created.

In the introduction for PWM, it is mentioned that in practical applications, the frequency
of the carrier should be high enough, about 10 times or more, than the highest frequency
component in the bandwidth. For this PWM model, the simulations for triangular wave gen-
eration are carried out by considering two values of n as 32 and 64, by providing an input
sine wave at 20 KHz, since it is the highest frequency considered in the audio bandwidth.
The simulation results are shown in Figures 2.11a and 2.11b respectively. From the simula-
tions, it can be seen that for n as 64, the triangular wave is nearly 10 times the frequency of
the input and for n as 32, the triangular wave is about 20 times. For the purpose of imple-
mentation, n as 64 is considered sufficient.

Second phase of the PWM module is comparison. This functionality is defined by the
declaration for y which compares the input x and current triangular wave sample value v′ by
first subtracting them and comparing the resultant difference with 0. If the difference is ≥ 0,
the output is +1, otherwise -1. The definition of function y is given in Listing 2.4.
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(a) 32 steps per rising/falling edge

(b) 64 steps per rising/falling edge

Figure 2.11: Simulation results for n = 32 and n = 64

Figure 2.12: PWM output
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1 y

2 | (x - v’) >= 0.0 = 1.0

3 | otherwise = -1.0

Listing 2.4: pwm definition

The function pwm is simulated with an input with frequency 2KHz and a triangular wave
carrier with 64 steps per rising/falling edge (n), and the result is shown in Figure 2.12. It can
be seen that the result of pwm function varies in widths corresponding to the duration of the
input staying high or low.

Loop Filter

Module definition of the loop filter is given in Listing 2.5. Similar to PWM, it exports function
lfilter to the top level for system integration.

1 module Lfilter

2 (lfilter

3 )where

Listing 2.5: Lfilter module definition

Listing 2.6 shows the model of the lfilter function. The loop filter architecture is a mod-
ified version of the one presented in Figure 2.10, where intermediary gains are inserted to
ensure loop stability, resulting in a structure shown in Figure 2.13. Function lfilter models
mathematical operations that are essential to the architecture in Haskell definitions. Similar-
ities can be observed between Figure 2.10 and lfilter, which is explained below.

In Section 2.3, the theory of loop filter is presented wherein the loop filter that is con-
sidered for this case consisted of a first order integrator cascaded with a resonator, and the
transfer functions of both sections were derived in the z domain. For realizing the lfilter

model from the mathematical descriptions of the loop filter stages, the transfer functions of
each stage is first converted into discrete time domain. Equation 2.18 shows the discrete
time model of the first order integrator stage, and Equation 2.19 shows the discrete time
model of the resonator stage. In Equation 2.18, y1[n] and x1[n] are present state output and
input of the first order integrator respectively, and y1[n+ 1] is the next state output.

Y1(z)

X1(z)
=

1

z − 1

⇒ zY1(z)− Y1(z) = X1(z)

⇒ y1[n+ 1] = y1[n] + x1[n]

(2.18)



2.5. FUNCTIONAL HARDWARE DESCRIPTIONS IN HASKELL 27

Figure 2.13: Loop filter implementation

Similarly in Equation 2.19, the discrete time equation for resonator is derived by deriving the
individual transfer functions of each integrator in the structure, thus resulting in y2[n+ 1] and
y3[n+ 1] next state outputs for the second and the third integrator respectively.

y2[n+ 1] = y2[n] + x2[n]− a23y3[n]

y3[n+ 1] = y3[n] + x3[n]− a33y3[n]

(2.19)

Thus, the output of the loop filter y[n + 1] is given in Equation 2.20. The equation de-
scribes the mathematical expression of a third order CIFF loop filter in discrete time domain.

y[n+ 1] = y1[n+ 1] + y2[n+ 1] + y3[n+ 1]

y[n+ 1] = x1[n] + x2[n] + x3[n] + y1[n] + y2[n] + y3[n]− a23y3[n]− a33y3[n] (2.20)

After including feed-forward gain multiplying factors a21 and a32, the equation now be-
comes as shown in Equation 2.21. Also, since the values x2[n] and x3[n] are originating
directly from y1[n] and y2[n] respectively, they can be substituted with y1[n] and y2[n].

y[n+ 1] = 1 ∗ x1[n] + a21 ∗ y1[n] + a32 ∗ y2[n]

+ y1[n] + y2[n] + y3[n]− 0 ∗ y3[n]− a23 ∗ y3[n]− a33 ∗ y3[n]

⇒ y[n+ 1] = g1 + g2 + g3

Where, g1 = 1 ∗ x1[n] + y1[n] + 0 ∗ y3[n]

g2 = a21 ∗ y1[n] + y2[n] + (−a23) ∗ y3[n]

g3 = a32 ∗ y2[n] + y3[n] + (−a33) ∗ y3[n]

(2.21)

A correspondence is now made between the discrete time formulation derived in Equa-
tion 2.21, and the Haskell model of lfilter, as shown in Figure 2.14. To model this equation,
lists can be employed to enable the use of list specific functions that perform mathematical
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Figure 2.14: lfilter model in Haskell

operations on the elements of those lists. For example, the feed-forward gain factors are
defined as ffcoef, which is a list containing values (1,a21,a32) and the feedback gain factors
are defined by the list fbcoef containing the values (0,a23,a33). The present outputs can
be represented by a list s of 3 elements that models the present states. The operations in
the above defined groups g1, g2 and g3 are carried out by three different functions, which
are present in the Haskell Prelude library. To multiply the feed-forward gain factors, the
zipWith(∗) function is used to multiply ffcoef with a list xs composed of (x1[n], y1[n], y2[n])

and the feedback gain factors fbcoef are multiplied with y3[n] by using the map(∗(last s))
function. Results of gain factor multiplications are all lists, and they are added with present
states s to essentially form a list vs containing (g1, g2, g3) of Equation 2.21. Finally, the out-
put is obtained by adding the elements (g1, g2, g3) by using the foldl(+) function, that adds
all the elements in a list.

1 lfilter :: (Num a,Floating a) => [a] -> (a,a) -> ([a],a)

2 lfilter s (x1,x2) = (s’,y)

3 where

4 (a21,a23,a32,a33) = ((2.368164*(10**(-2))),(-1.617432*(10**(-3))),

5 (1.208496*(10**(-2))),(-1.955032*(10**(-5))))

6

7 fbcoef = [0,a23,a33]

8 ffcoef = [1,a21,a32]

9

10 x = x1 + x2

11 us = map (*(last s)) fbcoef
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12 ls = zipWith (+) us s

13 xs = zipWith (*) ([x] ++ init s) ffcoef

14 vs = zipWith (+) xs ls

15

16 s’ = vs

17 y = foldl (+) 0 s

Listing 2.6: lfilter function definition

Closed loop system

Listing 2.7 details the Haskell model for the Class - D amplifier controller, which is visualized
in Figure 2.15. In this function, state s is a list of four values, with the first three values rep-
resenting states of the loop filter, while the last value represents a state for the entire closed
loop system to enable feedback modeling.

1 cdAmp :: (Floating a, Ord a,Enum a) => [a] -> a -> ([a],a)

2 cdAmp s x = (s’,y)

3 where

4 s1 = init s

5 s2 = tail s

6

7 (s1’,u) = lfilter s1 ((-1) * last s) x

8 y = snd $ pwm (0,Up) u

9

10 s2’ = [y]

11

12 s’ = s1’ ++ s2’

Listing 2.7: Closed loop model CDAmp

2.6 Conclusions

This chapter explained the introductory theory about a PWM amplifier and associated fun-
damentals essential to it. Further explanation was given about a 1 - bit Σ∆ modulator. The
most important section of a Σ∆ modulation scheme is the loop filter, and the choice of a suit-
able topology to obtain required characteristics is shown. For this research, a CIFF structure
was chosen due to its simplicity.

A brief introduction to functional programming is given by introducing Haskell and its
primary features. It is later shown how a Class - D amplifier controller can be modeled in
Haskell in the form of functions representing different modules of the system. Representing
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Figure 2.15: System model in Haskell

internal states of loop filter and system state from top level is an interesting step, and gives
insight about how high level user defined functions can be used. Further improvements can
be sought, however, the central focus of this exercise is to explore the possibility of modeling
the system in a functional programming language.



Chapter 3

Implementation in CλaSH

3.1 Introduction

In Chapter 2, the concept of describing digital hardware in functional languages was pre-
sented with examples of two existing languages that have been used for a long time. The
languages mentioned are called embedded domain specific languages, or EDSLs, which
contain pre-defined special functions to simulate a hardware specification. The language
CλaSH is a sub-set of Haskell, that borrows syntax and semantics from Haskell. This
means that the compiler environment is also the same. Aside from type conversions and
rewriting, a CλaSH specification is the same as the Haskell model, and the simulations can
be performed by a native Haskell compiler [11]. In addition to that, CλaSH also supports
polymorphism and higher order application of functions directly, since it is based on Haskell.

The retyping is done in order to properly convert a Haskell base model into a CλaSH
implementation. There are two major type conversions to be done. This is necessary since
some dynamic structures like lists and trees in Haskell are not directly realizable in hard-
ware implementation [11]. To overcome this, lists in Haskell are converted to V ectors, which
have a defined size and are recognized by CλaSH. Another retyping is done for represent-
ing integers and floating point values. Currently, CλaSH supports representation of fixed
point numbers in both Signed and Unsigned forms. Conversion of floating point types to
fixed point types can be made by retyping the function type with appropriate representation
formats.

In the beginning of this research, a core reference model of Class - D amplifier was made
in Haskell. The following sections describe retyping of the Haskell code to convert it into a
CλaSH specification.

31
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3.1.1 Data types and conversions

In Haskell model, a global type that represented values in all phases of operations was
floating point. For most designs and even actual DSP processes, floating point arithmetic
is preferred over fixed - point, due to its superior precision. However, implementing floating
point on hardware is resource intensive, specially in areas where operations are performed
with word lengths exceeding 24 bits wide. A trade-off is thus usually considered by selecting
fixed - point representation for values.

There are issues working with fixed - point representation. First, there is the issue of
integer overflow, which happens when the number of bits used in the format are not enough
to represent extreme values. Secondly, care should be taken in selecting a fixed - point
format when employing signed values. Fortunately, CλaSH compiler can be used to inspect
maximum and minimum bounds of representation with full precision, after which one can
select a suitable format.

In this CλaSH implementation, a signed fixed - point format Q6.18 was selected. The
decision was made by observing the impulse response of the loop filter, maximum and
minimum values of coefficients and the resolution of triangular wave carrier. The impulse re-
sponse is presented in Figure 3.1, where the maximum amplitude of the response is around
31. Also, the triangular wave (carrier) is implemented to have peak values as -1 and +1.
Thus, the format to accommodate the value 31 in signed fixed point needs to contain 6
bits integer bits, since the minimum and maximum bounds for 6 integer bits are (-32,31),
whereas for 5 integer bits are (-16,15), and the limits were found by using the minBound

and maxBound functions available in the CLaSH.F ixed library. The number of fractional
bits can now be anything from 0 to 26. To get a better precision, Q2.26 can be used to utilize
a full 32 - bit length, however, keeping in mind standard audio format is 24 bits wide, Q6.18
was chosen instead.

Pulse Width Modulator

Listing 3.1 shows CλaSH implementation of pwm. Similar to Haskell model, the primary
function is pwm, and step size is defined with value 0.015625 (requirement 1/64 per step
per half edge traversal). The datatype Slope is also retained to switch between Up and
Down. As discussed in previous section, a type Sample is defined as signed fixed point type
in Q6.18 format. Additionally, -1 and +1, being floating point values, need to be defined as
Sample as well. For this conversion, fLit function available in CλaSH Prelude library [12] is
used, which is a function that converts a signed floating point number to a signed fixed point
value. The conversions for both -1 and +1 are stored in two appropriate constants for lower
limit and upper limit, denoted by llim and ulim respectively.
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Figure 3.1: Loop filter impulse response

1 type Sample = SFixed 6 18

2

3 n = $$(fLit 0.015625) :: Sample

4 llim = $$(fLit (-1.0)) :: Sample

5 ulim = $$(fLit 1.0) :: Sample

6

7 data Slope = Up | Down

8

9 pwm :: (Sample,Slope)

10 -> Sample

11 -> ((Sample,Slope),Sample)

12 pwm (v,s) x = ((v’,s’),y)

13 where

14 v’ = case s of

15 Up -> v + n

16 Down -> v - n

17

18 s’ = case s of

19 Up | v’ < ulim -> Up

20 | otherwise -> Down

21 Down | v’ > llim -> Down

22 | otherwise -> Up

23

24 y

25 | (x - v’) >= 0 = ulim

26 | otherwise = llim

Listing 3.1: CλaSH implementation of PWM
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Loop Filter

Conversion from lists used in Haskell code to Vectors is perhaps best shown in Listing 3.2,
which shows the CλaSH implementation of loop filter. For modeling lists as vectors, a new
type SampleV ec3 is declared, which is a vector of size 3, and each value of that vector is
signed fixed - point Q6.18 Sample. Another vector operation to note is vector initialization.
In CλaSH, it is done with a :> operator, which appends a value left to it to the value on the
right. In this implementation for example, vector ffcoef is initialized with values a23 and a33,
In this way, list ffcoef of Haskell model is modeled in CλaSH, and similarly fbcoef as well.

CλaSH implementation of lfilter differs from its Haskell counterpart in some ways. While
most of the algorithm remains same, multiplication (in function fpmult) is realized in CλaSH
implementation by using the function ‘times‘ after which the result is resized to the required
datatype using ‘resizeF ‘, which is a resizing function for fixed point numbers. Both ‘times‘

and ‘resizeF ‘ functions are available in ’Prelude.Fixed’ library of CλaSH.

1 type Sample = SFixed 6 18

2 type SampleVect3 = Vec 3 Sample

3

4 a33 = -1.955032e-5 :: Sample

5 a23 = -1.617432e-3 :: Sample

6 a21 = 2.368164e-2 :: Sample

7 a32 = 1.208496e-2 :: Sample

8

9 fbcoef = 0 :> a23 :> a33 :> Nil

10 ffcoef = 1 :> a21 :> a32 :> Nil

11

12 fpmult :: Sample -> Sample -> Sample

13 fpmult a b = c

14 where

15 c = resizeF (a ‘times‘ b) :: Sample

16

17 lfilter :: SampleVect3 -> (Sample,Sample) -> (SampleVect3, Sample)

18 lfilter s (x1,x2) = (s’, y)

19 where

20 x = resizeF (x1 ‘plus‘ x2) :: Sample

21 us = map (fpmult (last s)) fbcoef

22 ls = zipWith (‘plus‘) us s

23 xs = zipWith (fpmult) ([x] ++ init s) ffcoef

24 vs = zipWith (‘plus‘) xs ls

25

26 s’ = vs

27 y = foldl (‘plus‘]) 0 s

Listing 3.2: CλaSH implementation of Loop filter



3.1. INTRODUCTION 35

3.1.2 Closed loop system

Listing 3.3 shows the CλaSH implementation of Class - D amplifier. The type CDSample is
also Q6.18 since the type is propagated to other modules. Afterwards, a function bundle is
used, which takes two values of type Signal and merges them into a tuple of the type Signal
that is synchronous with system clock. Top entity annotations are defined for creating an RTL
code that acts as a wrapper for actual topEntity declaration.

1 {-# ANN topEntity

2 (defTop

3 { t_name = "cdamparchM"

4 , t_inputs = ["I_in"]

5 , t_outputs = ["O_out"]

6 }) #-}

7

8 type CDSample = SFixed 6 18

9 type CDSampleVect4 = Vec 4 CDSample

10

11 cdAmp :: CDSampleVect4 -> CDSample -> (CDSampleVect4,CDSample)

12 cdAmp s x = (s’,y)

13 where

14 s1 = init s

15 s2 = last s

16

17 (s1’,u) = lfilter s1 (x,(last s))

18 y = snd $ pwm (0,Up) u

19

20 s2’ = y :> Nil

21 s’ = s1’ ++ s2’

22

23 cdamparchM = mealy cdAmp (repeat 0)

24

25 topEntity :: Signal CDSample -> Signal CDSample

26 topEntity = cdamparchM

Listing 3.3: CλaSH closed loop model CDAmp

In Haskell models, a notion of state was modeled in the pwm and lfilter functions. How-
ever, in CλaSH, sequential designs which contain a notion of state need to be declared with
an initial state. This is done by using the mealy function for the cdAmp function. In CλaSH,
the function type of mealy is described as shown in Listing 3.4 [12]. mealy takes a function
having the signature of the type s → i → (s′, o), where s is present state, i is input and the
tuple (s′, o) is the next state and output. A second argument is input i of the type Signal,
which is used in functions that are translated to top level entities. The output is denoted by
Signal o. Since cdAmp has a type definition similar to s → i → (s′, o), the function cdAmp
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can be converted to mealy state machine function, given by cdamparchM .

1 mealy :: (s -> i -> (s, o))

2 -> Signal i

3 -> Signal o

Listing 3.4: CλaSH mealy function type description

3.2 Conclusions

In this chapter, modeling and implementation of a basic Class - D amplifier has been carried
out. In Haskell, modeling was performed in a modular fashion to accentuate the structural
design aspect of design in a functional semantic environment, and to also to make the model
easier to read. Implementation in CλaSH was done by transforming the Haskell code with
modifications, without sacrificing the original approach.

In the next chapter, results of Haskell and CλaSH models are shown and compared
against each other. As an additional exercise, both models are also compared against a
Simulink model. The reason behind this exercise is to show how in a basic sense Haskell
itself can be used to model digital systems in the first place, and then how CλaSH imple-
mentation agrees to both models.



Chapter 4

Results and Comparisons

In the previous chapter, modeling and implementation of a Class - D amplifier controller in
Haskell and CλaSH were discussed respectively. In this chapter, simulation results of both
models are presented and compared.

For both Haskell and CλaSH simulations, a simulation flow was built, as shown in Figure
4.1. In case of Haskell simulations, primary inputs were given to the top level function, and
results were written to a text file by using IO functionality. The text file was transformed
to a comma - separated values (.csv) file from which values were extracted by a MATLAB
script (see Appendix B) that calculates Power Spectrum Density (PSD) and performance
figures [13]. CλaSH simulation differed from Haskell in that the input was defined in top level
CλaSH code, using simulate function provided in the CλaSH library.

After performing the required simulations on Haskell and CλaSH models, comparisons
are made on an existing Simulink model of the system. This model was built to represent
the intended system as a basic reference. It is speculative at this point as to whether the
Haskell model itself could represent as reference, however, since the CλaSH implementation
was done by translating Haskell code itself, the Simulink model was also brought into this

Figure 4.1: Simulation Environment flow
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perspective to illustrate how the Haskell model agrees to its implementation in the first place.
The Simulink top level is shown in Figure 4.2. Here, the subsystem blocks are connected as
per the Class - D amplifier controller architecture.

The simulation results of the Simulink model, the Haskell model and the CλaSH imple-
mentation include two points of comparison. The first subject of comparison is the intended
behavior of the system. It has been discussed in Chapter 2 that the Class - D amplifier
controller system should exhibit a noise shaping behavior. This means that the noise, which
is the quantization noise occuring around the frequency of the carrier signal and its integer
multiples, should be moved outside the band of interest, which is from 0 Hz to 20 KHz, and
the behavior is viewed in the form of power spectral density (PSD) plots. In the obtained
PSD plots, the points of interest are the central frequency gain occuring at the frequency of
the applied input signal, and the quantization noise out of the band exhibiting a high pass
behavior. The second subject of comparison is done from the obtained signal to noise ratio
(SNR) values from the system’s response. However, most of the interest is on evaluating the
noise shaping behavior of the system.

4.1 Haskell Simulation

Simulation is performed by passing a list containing sampled values of a sine function. The
sine wave has a frequency of 6 kHz, with sampling frequency 49.152 MHz. This frequency
was chosen keeping in view that this frequency was required to generate a triangular carrier
of 192 kHz and that which contains 256 steps in one cycle, since the PWM sampling for one
cycle contains 256*192 K = 49152 K samples. Also, the amplitude of the input was kept 0.5.

Figure 4.3 shows the pulse spectrum density (PSD) plots of Simulink model and Haskell
model output. It clearly shows the expected noise shaping that happens out of the audio
band. The first carrier frequency component occurs at 192 kHz and its copies are at integral
multiples of its base frequency.

4.2 CλaSH Simulation

The CλaSH simulation follows the Haskell simulation in terms of parameters, whereas the
method is different. As shown in Listing 4.1, the keyword simulate is used which evaluates
the function cdAmp with the input list inpdata. Just like with other values in the code, the
input should also follow the same format, which is signed fixed - point Q6.18.

Figure 4.4 shows the PSD plots of Simulink and CλaSH simulation results. Here too,
it can be seen that the system performs noise shaping as expected, with PWM carrier’s
fundamental and higher frequency components outside the audio band. There is also a high
gain around the input frequency.



4.2. CλASH SIMULATION 39

(a) Top level Simulink model

(b) Pulse Width Modulator

(c) Triangular wave generator (carrier)

(d) Loop filter

Figure 4.2: Simulink model top view and subsystem
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(a) Simulink Simulation

(b) Haskell Simulation

Figure 4.3: Simulation results of Simulink (a) and Haskell (b) models



4.2. CλASH SIMULATION 41

(a) Simulink Simulation

(b) CλaSH Simulation

Figure 4.4: Simulation results of Simulink (a) and CλaSH (b) models
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1 f6 = 5812.5

2 w6 t = 0.5*(sin(2*pi*f6*t))

3 st = [0,(1/(1024*48000))..1]

4

5 inpdata = L.map fLitR (L.map w6 st) :: [CDSample]

6

7 res = simulate cdAmp inpdata

Listing 4.1: CλaSH simulation of Class - D amplifier

The MATLAB script also calculated signal parameters like Signal - to - Noise Ratio (SNR)
and Total Harmonic Distortion plus Noise (THDN). Table 4.1 gives an overview of the calcu-
lated values for both Haskell and CλaSH simulations.

Simulation SNR (dB) THDN (dB)
Simulink 109.06 -106.14
Haskell 109.75 -104.13
CλaSH 110.88 -103.19

Table 4.1: Simulation comparisons of Simulink, Haskell and CλaSH

From the values obtained, it is clearly seen that the Signal to noise ratio is well above
100 dB for all three models, which is usually a characteristic of a 1 - bit Class - D modulator.
The difference of about 1 dB between the Haskell model and the CλaSH implementation
can be because of the differences between floating point and fixed point formats.

4.3 Synthesis

Any RTL code that needs to be realized as physical hardware, should be synthesizable. In
the beginning of this research CλaSH was introduced along with a feature that enables it to
generate VHDL code that is synthesizable. When developing a design in bare VHDL, one
must follow certain coding guidelines in order to make the design synthesizable. CλaSH
generated code however is readily synthesizable on to hardware.

The generated VHDL top entity code is an entity with port descriptions mentioned in the
top level ANN annotations. In addition, CλaSH also generates other RTL files on which
the top level design description depends. To see how the design is synthesized, the gen-
erated top entity cdAmp.vhdl is synthesized by Quartus with target device set to Cyclone II
EP2C20F484C7. The synthesis results are shown in Figure 4.5.

The RTL view of cdAmp is also presented in Figure 4.6. In this RTL view, the block
cdamp lfilter is the loop filter and the block cdamp pwm is the PWM block. The system’s
input is denoted as x[23..0] which represents the 24 bit Q6.18 value. Similarly the output is
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Figure 4.5: Synthesis result of cdAmp.vhdl

Figure 4.6: RTL view of cdAmp.vhdl

denoted as result.tup2 1 sel1[23..0] which at top level is connected to y[23..0] and it follows
the same datatype as the input.

4.4 Conclusions

In this chapter, simulations were first performed on a Haskell model and a CλaSH imple-
mentation of a Class - D amplifier controller. Since the CλaSH implementation was derived
from Haskell, the Haskell model’s correctness was first established by comparing its simula-
tion results with a Simulink model. The simulation verification was performed on two fronts,
obtaining the PSD response and a quantitative comparison of obtained performance figures.
Haskell model’s results closely resembled that of Simulink variant.

Simulation results obtained from the CλaSH model reflected the resemblance with it’s
Haskell counterpart. The results compared in a similar way with Simulink results confirmed
the similarities with the CλaSH implementation and the Haskell model. Furthermore, the
performance figures recorded by both CλaSH and Haskell were comparable and very less
difference could be seen between them.
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Synthesis was performed on the top level entity VHDL description that was generated
by the CλaSH compiler. The results show that the design is indeed synthesizable, with the
design occupying just about 3% of the logic elements available in the FPGA. The RTL view
generated by Quartus indicated that the synthesized model has a structure resembling that
of the theory and the Simulink implementation.
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Conclusions

In this thesis, a method to design hardware that uses functional semantics was investigated.
The method uses an FHDL called CλaSH, which is a functional programming language used
to describe and implement digital hardware, and was sued to design a Class - D amplifier
controller system.

The research begins with introducing a Class - D amplifier system and how the system
performance can be improved by the means of digital control. The system was analyzed by
formulating the system in mathematical form. A notable observation from this formulation is
the derivation of the structure of a disctrete time integrator, which forms an important part
of the control system. Further analysis showed that the integrator, when extended to formu-
late a resonator structure, introduces more stability in the system. Combining the integrator
structure with the resonator structure resulted in a well known loop filter structure from Σ∆

theory, called the Cascaded Integrators with Feed Forward summation (CIFF). The basic
system design involving a loop filter and a pulse width modulator resembles a 1 - bit Σ∆

modulator.

The next step taken was to model the system in Haskell. This step is crucial and ben-
eficial to this research, as the Haskell model forms a basis for a CλaSH implementation,
and also to prove the correspondence between implementation and modeling. The Haskell
model was then simulated with a sampled input of a fixed frequency to establish the initial
performance of the system. Performance figures like signal power, SNR and noise power
were recorded.

Implementation of the system in CλaSH required an established Haskell model, which
meant verifying the Haskell model with a reference. The simulations performed in Haskell
matched with a Simulink reference model with respect to the noise shaping behavior and
performance figures. The next step then involved translating Haskell definitions to CλaSH.
This step majorly involved changing the floating point datatypes used in Haskell model to
a signed fixed point representation, keeping in mind that the system needs to be hard-
ware efficient. This meant sacrificing performance of the system, but since the system that
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is described and implemented in this research is a basic 1 - bit Class - D amplifier con-
troller, the focus rested solely on obtaining a comparable performance and an expected
noise shaping behavior. Other modifications included transformation of lists to vectors and
introducing mealy definitions to implement subsystem modules as sequential designs. The
final CλaSH model resembled the base Haskell model and simulation comparison with the
Simulink model again proved its correctness. Performance figures obtained from simulations
closely matched with those of Haskell model, further strengthening the claim that the CλaSH
implementation respects the system behavior.

The RTL code generated from CλaSH description was synthesized to evaluate resource
usage. It was found that the design used only upto 3% of resources on the chosen FPGA
Cyclone II EP2C20F484C7. The RTL views generated in Quartus also respect the overall
system structure. This strengthens the validity of the CλaSH implementation.

In conclusion, CλaSH is a viable option to design systems involving audio signal pro-
cessing applications. The design steps were direct and the obtained performance figures
were comparable to what is expected of a Class - D amplifier controller system. Further im-
provements can be made on the system design with higher order function applications, for
example implementing a higher order loop filter by using the lfilter implementation, which
will improve the system’s performance and greatly reduce development time.
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Future Work

The previous chapter summarizes simulation results of Class - D amplifier controller models
described in Haskell and CλaSH and how they compare against each other. When observ-
ing the general noise shaped PSD and even performance figures of both implementations,
compared against their Simulink counterpart, it can be immediately deduced that describing
the Class - D system in CλaSH is feasible. However, when designing systems that focus on
DSP applications, there is a lot of room for improvement. A first important area to improve
the implementation is performance. Class - D designs aim to get as low a noise floor as
possible and as high SNR as possible. A lot of factors come into play that determine the
resultant performance of this system; factors like choice of fixed point representation, type
of loop filter, coefficient values and such.

The implemented system is a basic Class - D system for a single stream of output. In
audio applications, for example, there is a requirement to serve at least two channels at the
system’s output for two respective input streams. The CλaSH implementation of the function
cdAmp could then be used as a higher order function to implement a system that involves
two instances of cdAmp. This higher order application saves a lot of design time when im-
plementing a Class - D controller system that is required drive 4 channels or more.

In a similar approach, increasing the order of the loop filter using higher order application
can also be investigated. Typically, the state of the art Class - D controller systems [Source
Aixgn] use loop filters of upto 7th order per channel. Also, each channel loop filter is serially
connected with loop filters of further stages for a much better noise reduction. Furthermore,
it can also be highly desirable to have the system extensively configurable. Configurability
can be implemented for programming gains and coefficients used in the loop filters, and
the programming could be from system level. This level of programmable system design
enables great flexibility in tuning the performance of the system from system level.

Describing digital hardware has come a long way with regards to working with CλaSH.
Cuurently, CλaSH is a highly stable FHDL to develop sequential designs in Haskell, a highly
advantageous fact for developers familiar with Haskell. Designs based on pure digital oper-
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ations can be easily described and implemented in this environment, however for designs
targeting both digital and analog domains (mixed signal), the language does not yet support
analog modeling. The idea comes from looking at HDLs like Verilog - AMS which can sup-
port analog primitives for behaviorally modeling continuous time systems [14]. Introducing
analog primitives in CλaSH can be an ambitious task, but can be very beneficial in cases
where verification that involves interaction of the system with the analog world needs to be
locally performed in the CλaSH tooling environment.
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Appendix A

A.1 VHDL Code for cdAmp entity

1 entity cdAmp is

2 port(I_in : in signed(23 downto 0);

3 -- clock

4 system1000 : in std_logic;

5 -- asynchronous reset: active low

6 system1000_rstn : in std_logic;

7 O_out : out signed(23 downto 0));

8 end;

A.2 VHDL Code for cdAmp top level

1 -- Automatically generated VHDL-93

2 library IEEE;

3 use IEEE.STD_LOGIC_1164.ALL;

4 use IEEE.NUMERIC_STD.ALL;

5 use IEEE.MATH_REAL.ALL;

6 use std.textio.all;

7 use work.all;

8 use work.cdamp_types.all;

9

10 entity cdamp_cdamp is

11 port(s : in cdamp_types.array_of_signed_24(0 to 3);

12 x : in signed(23 downto 0);

13 result : out cdamp_types.tup2_1);

14 end;

15

16 architecture structural of cdamp_cdamp is

17 signal app_arg : cdamp_types.array_of_signed_24(0 to 3);

18 signal y : signed(23 downto 0);
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19 signal case_alt : cdamp_types.array_of_signed_24(0 to 3);

20 signal y_case_scrut : cdamp_types.tup2_2;

21 signal ds : cdamp_types.tup2_0;

22 signal app_arg_0 : cdamp_types.array_of_signed_24(0 to 0);

23 signal s1 : cdamp_types.array_of_signed_24(0 to 2);

24 signal y_app_arg : signed(23 downto 0);

25 signal y1 : signed(23 downto 0);

26 signal ds_app_arg : cdamp_types.array_of_signed_24(0 to 2);

27 signal ds_app_arg_0 : cdamp_types.tup2;

28 signal ds_app_arg_1 : signed(23 downto 0);

29 signal u : signed(23 downto 0);

30 begin

31 result <= (tup2_1_sel0 => app_arg

32 ,tup2_1_sel1 => y);

33

34 app_arg <= case_alt;

35

36 y <= y1;

37

38 case_alt <= cdamp_types.array_of_signed_24’(cdamp_types.array_of_signed_24’(s1) &

cdamp_types.array_of_signed_24’(app_arg_0));

39

40 cdamp_pwm_y_case_scrut : entity cdamp_pwm

41 port map

42 (result => y_case_scrut

43 ,x => y_app_arg);

44

45 cdamp_lfilter_ds : entity cdamp_lfilter

46 port map

47 (case_alt => ds

48 ,rs => ds_app_arg

49 ,ds => ds_app_arg_0);

50

51 app_arg_0 <= cdamp_types.array_of_signed_24’(0 => y);

52

53 s1 <= ds.tup2_0_sel0;

54

55 y_app_arg <= u;

56

57 y1 <= y_case_scrut.tup2_2_sel1;

58

59 -- init begin

60 ds_app_arg <= s(0 to s’high - 1);

61 -- init end

62

63 ds_app_arg_0 <= (tup2_sel0 => x

64 ,tup2_sel1 => ds_app_arg_1);
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65

66 -- last begin

67 ds_app_arg_1 <= s(s’high);

68 -- last end

69

70 u <= ds.tup2_0_sel1;

71 end;

A.3 VHDL Code for lfilter

1 -- Automatically generated VHDL-93

2 library IEEE;

3 use IEEE.STD_LOGIC_1164.ALL;

4 use IEEE.NUMERIC_STD.ALL;

5 use IEEE.MATH_REAL.ALL;

6 use std.textio.all;

7 use work.all;

8 use work.cdamp_types.all;

9

10 entity cdamp_lfilter is

11 port(rs : in cdamp_types.array_of_signed_24(0 to 2);

12 ds : in cdamp_types.tup2;

13 case_alt : out cdamp_types.tup2_0);

14 end;

15

16 architecture structural of cdamp_lfilter is

17 signal x2 : signed(23 downto 0);

18 signal x1 : signed(23 downto 0);

19 signal result : signed(23 downto 0);

20 signal ws1 : cdamp_types.array_of_signed_24(0 to 2);

21 signal ws : cdamp_types.array_of_signed_24(0 to 3);

22 signal ws1_app_arg : cdamp_types.array_of_signed_24(0 to 2);

23 signal app_arg : cdamp_types.array_of_signed_24(0 to 2);

24 signal app_arg_0 : cdamp_types.array_of_signed_24(0 to 2);

25 signal app_arg_1 : cdamp_types.array_of_signed_24(0 to 2);

26 signal app_arg_2 : cdamp_types.array_of_signed_24(0 to 1);

27 signal app_arg_3 : signed(23 downto 0);

28 signal app_arg_4 : cdamp_types.array_of_signed_24(0 to 2);

29 signal app_arg_5 : cdamp_types.array_of_signed_24(0 to 1);

30 signal app_arg_6 : cdamp_types.array_of_signed_24(0 to 1);

31 signal ds1 : signed(24 downto 0);

32 signal result_0 : signed(23 downto 0);

33 signal shiftedl : signed(24 downto 0);

34 signal case_alt_0 : signed(23 downto 0);

35 signal case_alt_1 : signed(23 downto 0);
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36 signal case_scrut : boolean;

37 signal case_alt_2 : signed(23 downto 0);

38 signal case_scrut_0 : boolean;

39 signal app_arg_7 : signed(24 downto 0);

40 begin

41 x2 <= ds.tup2_sel1;

42

43 x1 <= ds.tup2_sel0;

44

45 case_alt <= (tup2_0_sel0 => app_arg

46 ,tup2_0_sel1 => result);

47

48 -- last begin

49 result <= ws(ws’high);

50 -- last end

51

52 -- zipWith begin

53 zipwith : for i in ws1’range generate

54 begin

55 cdamp_lfilter_specf_0 : entity cdamp_lfilter_specf

56 port map

57 (result => ws1(i)

58 ,x => rs(i)

59 ,y => ws1_app_arg(i));

60 end generate;

61 -- zipWith end

62

63 ws <=

cdamp_types.array_of_signed_24’(signed’(shift_left(to_signed(0,24),to_integer(to_signed(18,64))))

& ws1);

64

65 -- init begin

66 ws1_app_arg <= ws(0 to ws’high - 1);

67 -- init end

68

69 -- zipWith begin

70 zipwith_1 : for i_0 in app_arg’range generate

71 begin

72 cdamp_satplus_1 : entity cdamp_satplus

73 port map

74 (result => app_arg(i_0)

75 ,a => app_arg_4(i_0)

76 ,b => app_arg_0(i_0));

77 end generate;

78 -- zipWith end

79

80 -- zipWith begin
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81 zipwith_3 : for i_1 in app_arg_0’range generate

82 begin

83 cdamp_satplus_2 : entity cdamp_satplus

84 port map

85 (result => app_arg_0(i_1)

86 ,a => app_arg_1(i_1)

87 ,b => rs(i_1));

88 end generate;

89 -- zipWith end

90

91 app_arg_1 <=

cdamp_types.array_of_signed_24’(signed’(shift_left(to_signed(0,24),to_integer(to_signed(18,64))))

& app_arg_2);

92

93 -- map begin

94 map_r : block

95 signal vec_1 : cdamp_types.array_of_signed_24(0 to 1);

96 begin

97 vec_1 <= cdamp_types.array_of_signed_24’(-to_signed(424,24),-to_signed(5,24));

98 map_r_0 : for i_2 in app_arg_2’range generate

99 begin

100 cdamp_fpmult_3 : entity cdamp_fpmult

101 port map

102 (result => app_arg_2(i_2)

103 ,a => app_arg_3

104 ,b => vec_1(i_2));

105 end generate;

106 end block;

107 -- map end

108

109 -- last begin

110 app_arg_3 <= rs(rs’high);

111 -- last end

112

113 app_arg_4 <= cdamp_types.array_of_signed_24’(signed’(result_0) & app_arg_5);

114

115 -- zipWith begin

116 zipwith_5 : block

117 signal vec1_2 : cdamp_types.array_of_signed_24(0 to 1);

118 signal vec2_2 : cdamp_types.array_of_signed_24(0 to 1);

119 begin

120 vec1_2 <= app_arg_6;

121 vec2_2 <= cdamp_types.array_of_signed_24’(to_signed(6207,24),to_signed(3167,24));

122 zipwith_6 : for i_3 in app_arg_5’range generate

123 begin

124 cdamp_fpmult_4 : entity cdamp_fpmult

125 port map
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126 (result => app_arg_5(i_3)

127 ,a => vec1_2(i_3)

128 ,b => vec2_2(i_3));

129 end generate;

130 end block;

131 -- zipWith end

132

133 -- init begin

134 app_arg_6 <= rs(0 to rs’high - 1);

135 -- init end

136

137 cdamp_fextendingnumfixedfixed_cminus1_ds1 : entity

cdamp_fextendingnumfixedfixed_cminus1

138 port map

139 (result => ds1

140 ,ds => x1

141 ,ds1 => x2);

142

143 result_0 <= case_alt_0 when case_scrut else

144 case_alt_1;

145

146 shiftedl <= shift_left(ds1,to_integer(to_signed(0,64)));

147

148 with (app_arg_7) select

149 case_alt_0 <= case_alt_2 when "0000000000000000000000000",

150 signed’(0 => ’0’, 1 to 24-1 => ’1’) when others;

151

152 case_alt_1 <= case_alt_2 when case_scrut_0 else

153 signed’(0 => ’1’, 1 to 24-1 => ’0’);

154

155 case_scrut <= ds1 >= to_signed(0,25);

156

157 case_alt_2 <= resize(shiftedl,24);

158

159 case_scrut_0 <= app_arg_7 = (not (resize((signed’(0 => ’0’, 1 to 24-1 =>

’1’)),25)));

160

161 app_arg_7 <= shiftedl and (not (resize((signed’(0 => ’0’, 1 to 24-1 => ’1’)),25)));

162 end;

A.4 VHDL Code for pwm

1 -- Automatically generated VHDL-93

2 library IEEE;

3 use IEEE.STD_LOGIC_1164.ALL;
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4 use IEEE.NUMERIC_STD.ALL;

5 use IEEE.MATH_REAL.ALL;

6 use std.textio.all;

7 use work.all;

8 use work.cdamp_types.all;

9

10 entity cdamp_pwm is

11 port(x : in signed(23 downto 0);

12 result : out cdamp_types.tup2_2);

13 end;

14

15 architecture structural of cdamp_pwm is

16 signal app_arg : cdamp_types.tup2_4;

17 signal app_arg_0 : signed(23 downto 0);

18 signal app_arg_1 : unsigned(0 downto 0);

19 signal case_scrut : boolean;

20 signal v : signed(23 downto 0);

21 signal case_scrut_0 : boolean;

22 signal app_arg_2 : signed(23 downto 0);

23 signal v_case_alt : signed(23 downto 0);

24 signal v_case_scrut : std_logic_vector(0 downto 0);

25 signal v_case_alt_0 : signed(23 downto 0);

26 signal v_case_alt_1 : signed(23 downto 0);

27 signal v_app_arg : std_logic_vector(0 downto 0);

28 signal r : std_logic_vector(23 downto 0);

29 signal v_case_scrut_app_arg : cdamp_types.tup2_3;

30 signal v_case_scrut_app_arg_0 : std_logic_vector(0 downto 0);

31 signal v_case_alt_0_case_scrut_app_arg : std_logic_vector(0 downto 0);

32 signal v_case_alt_0_case_scrut_app_arg_app_arg : std_logic_vector(0 downto 0);

33 signal v_case_alt_0_case_scrut_app_arg_app_arg_0 : std_logic_vector(0 downto 0);

34 signal r_case_scrut_app_arg : cdamp_types.tup2_3;

35 begin

36 result <= (tup2_2_sel0 => app_arg

37 ,tup2_2_sel1 => app_arg_0);

38

39 app_arg <= (tup2_4_sel0 => v

40 ,tup2_4_sel1 => app_arg_1);

41

42 app_arg_0 <= to_signed(262144,24) when case_scrut else

43 to_signed(-262144,24);

44

45 app_arg_1 <= to_unsigned(0

46 ,1) when case_scrut_0 else

47 to_unsigned(1,1);

48

49 case_scrut <= app_arg_2 >=

(shift_left(to_signed(0,24),to_integer(to_signed(18,64))));
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50

51 -- split begin

52 split: block

53 signal bv : std_logic_vector(24 downto 0);

54 begin

55 bv <=

(std_logic_vector((resize((shift_left(to_signed(0,24),to_integer(to_signed(18,64)))),25)

+ resize(to_signed(4096,24),25))));

56 v_case_scrut_app_arg <= (bv(bv’high downto 24)

57 ,bv(24-1 downto 0)

58 );

59 end block;

60 -- split end

61

62 v <= v_case_alt;

63

64 case_scrut_0 <= v < to_signed(262144,24);

65

66 cdamp_satmin_app_arg_2 : entity cdamp_satmin

67 port map

68 (result => app_arg_2

69 ,a => x

70 ,b => v);

71

72 with (v_case_scrut) select

73 v_case_alt <= v_case_alt_1 when "0",

74 v_case_alt_0 when others;

75

76 -- msb begin

77 msb : block

78 signal bv_0 : std_logic_vector(24 downto 0);

79 begin

80 bv_0 <=

(std_logic_vector((resize((shift_left(to_signed(0,24),to_integer(to_signed(18,64)))),25)

+ resize(to_signed(4096,24),25))));

81 v_case_scrut_app_arg_0 <= bv_0(bv_0’high downto bv_0’high);

82 end block;

83 -- msb end

84

85 v_case_scrut <= v_case_scrut_app_arg_0 xor v_app_arg;

86

87 -- msb begin

88 msb_0 : block

89 signal bv_1 : std_logic_vector(23 downto 0);

90 begin

91 bv_1 <=

(std_logic_vector((shift_left(to_signed(0,24),to_integer(to_signed(18,64))))));
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92 v_case_alt_0_case_scrut_app_arg_app_arg <= bv_1(bv_1’high downto bv_1’high);

93 end block;

94 -- msb end

95

96 -- msb begin

97 msb_1 : block

98 signal bv_2 : std_logic_vector(23 downto 0);

99 begin

100 bv_2 <= (std_logic_vector(to_signed(4096,24)));

101 v_case_alt_0_case_scrut_app_arg_app_arg_0 <= bv_2(bv_2’high downto bv_2’high);

102 end block;

103 -- msb end

104

105 v_case_alt_0_case_scrut_app_arg <= v_case_alt_0_case_scrut_app_arg_app_arg and

v_case_alt_0_case_scrut_app_arg_app_arg_0;

106

107 with (v_case_alt_0_case_scrut_app_arg) select

108 v_case_alt_0 <= signed’(0 => ’0’, 1 to 24-1 => ’1’) when "0",

109 signed’(0 => ’1’, 1 to 24-1 => ’0’) when others;

110

111 v_case_alt_1 <= signed(r);

112

113 -- msb begin

114 v_app_arg <= r(r’high downto r’high);

115 -- msb end

116

117 -- split begin

118 split_0: block

119 signal bv_4 : std_logic_vector(24 downto 0);

120 begin

121 bv_4 <=

(std_logic_vector((resize((shift_left(to_signed(0,24),to_integer(to_signed(18,64)))),25)

+ resize(to_signed(4096,24),25))));

122 r_case_scrut_app_arg <= (bv_4(bv_4’high downto 24)

123 ,bv_4(24-1 downto 0)

124 );

125 end block;

126 -- split end

127

128 r <= r_case_scrut_app_arg.tup2_3_sel1;

129 end;
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B.1 MATLAB script to calculate system performance

The following script is credited to Tim van Doesum of Axign B.V. This script calculates
FFT of the pwm samples recorded in ”cdampout”, csv haskell and csv clash obtained from
Simulink, Haskell and CλaSH models respectively. This main script is a part of a spectrum
analysis toolbox and for general description only the main script is presented here.

1 figIndex = 3;

2 nfft = 2^18;

3 fs = 1024*48e3;

4 bandwidth = [0 20e3];

5 window = ’hann’;

6

7

8 % Settings for generated signal:

9 ampDB = -20;

10 amplitude = 10^(ampDB/20);

11 findesired = 5.8125e3; % near to 6kHz

12 offset = 0;

13 Anoise = 1e-6;

14

15 fin = calcFFTFreq(findesired, fs, ’nsamples’, nfft);

16

17 inS = cdampout;

18 inH = csvread(’csv_haskell.csv’);

19 inC = csvread(’csv_clash.csv’);

20

21 % Calculate the FFT for Simulink

22 [psdS, freqS] = calcFFT(inS, fs, window, nfft);

23

24 % Calculate the FFT for Haskell

25 [psdH, freqH] = calcFFT(inH, fs, window, nfft);

26

61
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27 % Calculate the FFT for Clash

28 [psdC, freqC] = calcFFT(inC, fs, window, nfft);

29

30 % function performanceFigures calculates and outputs SNR, Signal power, THD and

noise power

31 %performanceFigures(psdS, fin, fs, nfft, window, ’bandwidth’, bandwidth);

32 %performanceFigures(psdH, fin, fs, nfft, window, ’bandwidth’, bandwidth);

33 %performanceFigures(psdC, fin, fs, nfft, window, ’bandwidth’, bandwidth);

34

35 % plotting

36 figure(figIndex);

37 title(’Simulink model’);

38 plotSpectrum(freqS, psdS, nfft, fs, window, ’bandwidth’, bandwidth, ’inputFreqs’,

fin);

39

40 figure(figIndex+1);

41 plotSpectrum(freqH, psdH, nfft, fs, window, ’bandwidth’, bandwidth, ’inputFreqs’,

fin);

42 title(’Haskell model’);

43

44 figure(figIndex+2);

45 plotSpectrum(freqC, psdC,freqH, psdH, nfft, fs, window, ’bandwidth’, bandwidth,

’inputFreqs’, fin);

46 title(’Clash model’);
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