
The Creation of a Flexible,
Functional Simulation

Generator for the Montium
Tile Processor

Master’s Thesis
by

L. Ordelmans

July 2, 2007

graduation committee:
Prof. Dr. Ir. G.J.M. Smit
Dr. Ir. A.B.J. Kokkeler
Dr. Ir. L.T. Smit
Ir. K.L. Hofstra

Computer Architecture for Embedded Systems
Department of Computer Science

University of Twente





Voorwoord

Dit verslag beschrijft het werk dat ik heb uitgevoerd ter afronding van mijn
Master opleiding Computer Science aan de Universiteit Twente. Het be-
schrijft het ontwerp en de implementatie van een simulator voor de Montium,
een herconfigureerbare chip, waarbij gebruik gemaakt wordt van code gene-
ratie.
Ik heb veel plezier gehad tijdens het werken aan deze opdracht, met name
toen de eerste delen begonnen te werken en ik de principes onder de knie
kreeg.
Toen ik begon met afstuderen zou ik eigenlijk een andere opdracht uitvoe-
ren, het was de bedoeling dat ik een DSP algorithme zou gaan mappen op
de zojuist genoemde chip. Vrij snel ontdekte ik echter dat deze opdracht
mij helemaal niet lag, en na een tijd getwijfeld te hebben besloot ik hiermee
bij mijn begeleider aan te kloppen, en had ik mij er reeds bij neergelegd
dat ik opnieuw op zoek moest naar een afstudeerplek. Tot mijn aangename
verassing bleek het team van Recore Systems best bereid was om samen
met mij een nieuwe opdracht uit te zoeken. Na ongeveer een goed deel van
de middag ideeën te hebben uitgewisseld, ben ik mij vervolgens gaan ver-
diepen in de nieuwe opdracht, waarvan u het eindverslag nu aan het lezen
bent. Ik wil dan ook graag de mensen van Recore Systems bedanken voor
het mogelijk maken van deze opdracht en alle ondersteuning tijdens mijn
afstudeer periode. Met name Lodewijk, Klaas, Paul en Gerard bij wie ik
terecht kon met vragen over mijn opdracht danwel over de Montium, maar
ook de rest van het team voor de gezellige tijd. Tevens wil ik natuurlijk mijn
begeleiders van de UT, Gerard Smit en André Kokkeler bedanken voor hun
inbreng tijdens de maandelijkse voortgangsgesprekken.
Ter afsluiting wil ik nog bedanken mijn moeder en Inge, mijn vriendin, voor
hun steun tijdens mijn toch best lange studieweg van ruim 6 jaar.

Enschede, Juni 2007
Luke Ordelmans

3





Abstract

Simulation is an important tool for (DSP) software developers. In order to
test, debug, analyze and improve algorithms the developer needs to be able
to see how his work gets executed by the target system. This thesis de-
scribes the design and implementation of a functional simulator created for
the Montium Tile Processor, a domain specific reconfigurable accelerator,
that makes use of code-generation to achieve the speed of a binary compiled
simulator but preserves the flexibility of an interpretive one. The simulation
generator uses a binary configuration compiled for the Montium TP together
with some (optional) design parameters of the specific Montium instance to
generate program source code that is compilable on a general purpose desk-
top computer. By implementing this simulation generator in Java SE 6, the
program will be portable between different machines and operating systems.
Another benefit from this choice is that it becomes possible for the gener-
ated simulation to be compiled and instantiated internally (without leaving
the generator to start a external compiler) and instantly, totally invisible
for the end-user, effectively making the generator itself work as a flexible
and fast simulator. In order to make interaction with the simulator as easy
as possible, a graphical user interface was build around it. This gives the
developer the possibility to edit his source code, compile it and simulate it
all in a single, easy to use, environment.
Benchmarks show that this new simulation approach is a factor of 10 times
faster than the existing interpretive simulator, while providing more flexi-
bility in terms of Montium design parameters (directly available to the end-
user). Benchmarks also show that even though using C instead of Java as
the target language for code-generation, will result in somewhat faster sim-
ulations, the difference in performance isn’t big enough to provide a good
reason to abandon the portability and extendability benefits provided by
using Java.





Contents

1 Introduction 13
1.1 The Montium Tile Processor . . . . . . . . . . . . . . . . . . 13
1.2 Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.3 Structure of this report . . . . . . . . . . . . . . . . . . . . . 19

2 Related Work 21
2.1 Simulation techniques . . . . . . . . . . . . . . . . . . . . . . 21

2.1.1 (V)HDL simulators . . . . . . . . . . . . . . . . . . . . 21
2.1.2 Instruction level simulators . . . . . . . . . . . . . . . 22
2.1.3 Binary compiled simulation . . . . . . . . . . . . . . . 22

2.2 The ‘Simsation’ simulator . . . . . . . . . . . . . . . . . . . . 23
2.3 The Montium TP Simulation Generator . . . . . . . . . . . . 23

3 Design 25
3.1 Benefits of a functional simulator . . . . . . . . . . . . . . . . 25
3.2 Simulation generation . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Target Language . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4 Required functionality (API) . . . . . . . . . . . . . . . . . . 28
3.5 Software Design . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6.1 Montium design parameters . . . . . . . . . . . . . . . 29
3.6.2 Functional behaviour . . . . . . . . . . . . . . . . . . . 29

3.7 Initial State and end-results . . . . . . . . . . . . . . . . . . . 30
3.8 The optimization steps . . . . . . . . . . . . . . . . . . . . . . 30

3.8.1 Straight forward optimizations . . . . . . . . . . . . . 30
3.8.2 Look-back optimizations . . . . . . . . . . . . . . . . . 31
3.8.3 Look-ahead optimizations . . . . . . . . . . . . . . . . 31

4 Implementation 33
4.1 Configuration parser . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Sequencer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2.1 Cycle code generation . . . . . . . . . . . . . . . . . . 35
4.2.2 State Machine . . . . . . . . . . . . . . . . . . . . . . 35

3



4.2.3 Switch/case bottleneck issue . . . . . . . . . . . . . . 36
4.3 Code generation . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3.1 Decoders . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 Global and Local Interconnections . . . . . . . . . . . 39
4.3.3 Streaming IO . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.4 Register Files . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.5 Address Generation Units . . . . . . . . . . . . . . . . 42
4.3.6 Code generation visitor for the ALUs . . . . . . . . . 43

4.4 Code generation summarized . . . . . . . . . . . . . . . . . . 48
4.5 Code Compilation process . . . . . . . . . . . . . . . . . . . . 49

4.5.1 Compilation of Java code . . . . . . . . . . . . . . . . 49
4.5.2 Compilation of C code . . . . . . . . . . . . . . . . . . 49

4.6 Backwards stepping via snapshots . . . . . . . . . . . . . . . 50
4.7 Optimizations . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.7.1 Data dependencies (external) . . . . . . . . . . . . . . 51
4.7.2 Data dependencies (internal) . . . . . . . . . . . . . . 52
4.7.3 Selective code generation . . . . . . . . . . . . . . . . 52
4.7.4 Hotspot or Loop detection . . . . . . . . . . . . . . . . 54

5 Communication and Configuration Unit 57
5.1 The Hydra CCU . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Simulating the CCU . . . . . . . . . . . . . . . . . . . . . . . 59

6 Reconfigurable fabric of the Annabelle 63

7 Results 67
7.1 Flexibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Runtime flexibility . . . . . . . . . . . . . . . . . . . . 67
7.1.2 Compile time flexibility . . . . . . . . . . . . . . . . . 68

7.2 Simulation Performance . . . . . . . . . . . . . . . . . . . . . 68
7.2.1 Motivation and Overview . . . . . . . . . . . . . . . . 68
7.2.2 Benchmark setup . . . . . . . . . . . . . . . . . . . . . 69
7.2.3 Performance Java versus C Output . . . . . . . . . . . 70
7.2.4 Performance compared to ‘Simsation’ without CCU . 75
7.2.5 Performance compared to ‘Simsation’ with CCU . . . 76
7.2.6 Improvements achieved by optimizations . . . . . . . . 77
7.2.7 Running multiple simulations in parallel . . . . . . . . 80

8 Conclusion and Recommendations 81
8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
8.2 Recommendations for Future Work . . . . . . . . . . . . . . . 81

8.2.1 Simulation of a complete Annabelle SoC . . . . . . . . 82
8.2.2 Design Parameters in CFG Files . . . . . . . . . . . . 82
8.2.3 ‘Undefined’ values . . . . . . . . . . . . . . . . . . . . 83

4



8.2.4 Generation of Java byte-code . . . . . . . . . . . . . . 83
8.2.5 More integration with other tools . . . . . . . . . . . . 84
8.2.6 Create a complete test-suite . . . . . . . . . . . . . . . 84
8.2.7 Create a framework to integrate the simulation gener-

ator with a Scripting environment . . . . . . . . . . . 84

A The Simulator API 87

B Montium Design Parameters 91

C Simulation Datastructure 93

D FU Helper Methods 95

E Source used for Benchmarking the CCU 97

5





List of Figures

1.1 Montium Tile Processor and CCU . . . . . . . . . . . . . . . 14
1.2 Simplified schematic of the Arithmetic and Logic Unit . . . . 15
1.3 Register File inside an ALU . . . . . . . . . . . . . . . . . . . 15
1.4 Control of an Montium ALU . . . . . . . . . . . . . . . . . . 17

3.1 Code Generation schematic . . . . . . . . . . . . . . . . . . . 26
3.2 The Simulation Generation process using Java (above) or C . 27
3.3 Simplified UML overview of the Simulator design . . . . . . . 29

4.1 Simulation Generator overview . . . . . . . . . . . . . . . . . 33
4.2 Register File CR (4 positions) . . . . . . . . . . . . . . . . . . 34
4.3 Register File CR (8 positions) . . . . . . . . . . . . . . . . . . 35
4.4 Small piece of the ALU datapath . . . . . . . . . . . . . . . . 44
4.5 Functional Units in the ALU datapath . . . . . . . . . . . . . 46
4.6 Transitions from type 1 instructions . . . . . . . . . . . . . . 51
4.7 Transition from type 2 instructions . . . . . . . . . . . . . . 51
4.8 Transition from type 3 instruction . . . . . . . . . . . . . . . 51
4.9 Selective code generation for RF read addresses . . . . . . . . 53
4.10 Selective code generation for an ALU . . . . . . . . . . . . . . 54

5.1 the Montium Tile connected to a NoC router . . . . . . . . . 57
5.2 State diagram for the CCU[1] . . . . . . . . . . . . . . . . . . 58

6.1 Reconfigurable fabric of the Annabelle chip . . . . . . . . . . 63
6.2 UML overview of approach 1 . . . . . . . . . . . . . . . . . . 64
6.3 UML overview of approach 2 . . . . . . . . . . . . . . . . . . 65
6.4 Graphical representation of a router configuration. . . . . . . 66

7.1 Simulation speed for FIR algorithms . . . . . . . . . . . . . . 71
7.2 Simulation speed for FFT algorithms . . . . . . . . . . . . . . 72
7.3 Simulation speed for the 1920-points FFT with input-scaling 73
7.4 Optimization Effects on Performance (non-streaming) . . . . 79

8.1 Block diagram of the Annabelle chip . . . . . . . . . . . . . . 82

7





List of Listings

4.1 Structural description of a Register File configuration register 35
4.2 Main simulator loop - the step() method . . . . . . . . . . . . 36
4.3 Generated switch/case tree . . . . . . . . . . . . . . . . . . . 37
4.4 Example generated code for individual interconnects, trans-

fers a value from memory 9 to register A of the first processing
part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5 Example generated code for combined interconnects . . . . . 39
4.6 Example generated code for Streaming IO input . . . . . . . 41
4.7 Example generated code for Streaming IO output . . . . . . . 41
4.8 Example generated code for a Register File . . . . . . . . . . 41
4.9 Example generated AGU code . . . . . . . . . . . . . . . . . . 42
4.10 Code describing the datapath fragment shown in Figure 4.4 . 44
4.11 Example generated ALU code 1 . . . . . . . . . . . . . . . . . 46
4.12 Example generated ALU code 2 . . . . . . . . . . . . . . . . . 46
4.13 Example generated ALU code 3 . . . . . . . . . . . . . . . . . 46
4.14 Example generated code for an entire cycle . . . . . . . . . . 48
6.1 Simulating the reconfigurable part of the Annabelle . . . . . . 66
6.2 Example router configuration file . . . . . . . . . . . . . . . . 66
7.1 Example parametric datapath . . . . . . . . . . . . . . . . . . 68
7.2 Benchmark Loop . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Benchmark Loop for Simsation . . . . . . . . . . . . . . . . . 75
7.4 Benchmark Loop for Simsation (CCU) . . . . . . . . . . . . . 76
A.1 Simulation API . . . . . . . . . . . . . . . . . . . . . . . . . . 87
C.1 Basic Simulation Datastructure . . . . . . . . . . . . . . . . . 93
D.1 FU Helper Methods . . . . . . . . . . . . . . . . . . . . . . . 95
E.1 CDL Source used for Benchmarking the CCU . . . . . . . . . 97

9





Glossary

AGU Address Generation Unit
ALU Arithmetic and Logic Unit
API Application Programming Interface
CCU Communication and Configuration Unit
DSP Digital Signal Processing
DSRA Domain Specific Reconfigurable Accelerator
FFT Fast Fourier Transformation
FIR Finite Impulse Response
GPI General Purpose Input
GPO General Purpose Output
GUI Graphical User Interface
ISA Instruction Set Architecture
MAC Multiply Accumulate
Montium TP Montium Tile Processor
NoC Network-on-Chip
PC Program Counter: the address indicating

where a processor is in its instruction se-
quence

PPA Processing Part Array
SB Status Bits
SIO Streaming Input and Output
SoC System-on-Chip
UML Unified Modeling Language
VHDL Very High Speed Integrated Circuit Hardware

Description Language

11





Chapter 1

Introduction

1.1 The Montium Tile Processor

Battery powered mobile devices nowadays tend to be given more and more
functionality. To support this functionality the demand for more processing
power and flexibility increases while energy consumption needs to be kept
at a minimum. For addressing this problem the Chameleon System-on-Chip
template was designed. In the Chameleon SoC, heterogeneous processing
tiles are connected via a network-on-chip. The essence of this idea is that
the processing of a task is performed by a tile that has the best support for
that specific kind of task[1]. The Montium Tile processor[1][2] is a domain
specific reconfigurable accelerator, DSRA, for a Chameleon System-on-Chip.
It is less flexible than a general purpose processor, but more efficient in do-
ing the specific tasks it is targeted for. The target application domain the
Montium TP was designed for is the domain of 16-bit DSP algorithms like
Finite Impulse Response (FIR-) filters and Fast Fourier Transformations
(FFTs). The Montium TP is capable of doing multiple calculations in a
single clock-cycle by using 5 rich ALUs, specifically designed for DSP algo-
rithms, in parallel. Every one of these ALUs can do some logic functions,
a Multiply-Accumulate (MAC) and a butterfly operation all together in a
single clock-cycle. A Montium Tile consist of a Montium Tile processor
and a Communication and Configuration Unit (CCU) connecting the Tile
within the SoC. Within the Smart chips for Smart Surroundings (4S) project
[4] the Annabelle prototype chip was developed. The Annabelle consist of,
among other things, an ARM926 general purpose processor with a 5-layer
AMBA bus, 4 Montium Tile Processors, a Viterbi decoder, two digital down
converters (DDCs), memory and external connections[3].

13



Figure 1.1: Montium Tile Processor and CCU

Figure 1.1 show the Montium Tile Processor together with the Commu-
nication and Configuration Unit. An single ALU together with its register
files and two memories is called a Processing Part (PP). The five ALUs
together are referred to as the Processing Part Array (PPA).

The Montium ALUs

Figure 1.2 shows a simplified schematic of the Montium’s Arithmetic and
Logic Unit (ALU). To accommodate many DSP operations that work on
more than two operands, e.g. a Multiply-Accumulate (MAC) operation
works on three operands, the Montium ALU has four input operands (most
ALUs have only two input operands). Each of these input operands has
a private register file, which cannot be bypassed, and can be written by
multiple sources (e.g. memories or interconnects). Every cycle the Montium
ALU produces two outputs which are directly connected to the interconnect.
The ALU consist of an upper and a lower level. The upper level contains four
function units, these function units implement general arithmetic and logic
functions. The lower level contains an MAC and a butterfly unit typically
used in many DSP algorithms. Each ALU has a single status bit output
that can be tested by the sequencer that controls the Processing Part Array
(PPA).

14



Figure 1.2: Simplified schematic of the Arithmetic and Logic Unit

remark: To minimize the number of configuration registers used, the
Montium compiler will try to merge instructions whenever possible. Ex-
ample given: Assume an algorithm that needs a ALU to performs a
MAC operation every other clock cycle, but doesn’t need the ALU the
remaining cycle. The Montium configuration will simple contain a sin-
gle configuration for the ALU, containing the MAC operation. The un-
wanted result, generated every clock cycle the MAC isn’t needed, simply
gets disregarded, since it will not be used/written anywhere.

Register Files

Every ALU in the Montium Tile has four register files, one for every single
input A, B, C and D. Every one of these register files can hold up to four 16
bit values. Each register file is controlled by a read address, a write address
and a write enable signal.

Figure 1.3: Register File inside an ALU

15



The Montium AGUs

There are 10 local memories on the Tile, every PP has two local memo-
ries, denoted as left-hand side memory and right-hand side memory. Every
memory in the Montium has its own reconfigurable Address Generation Unit
(AGU). These AGUs can generate simple memory access sequences typically
used in DSP algorithms. Operations that these AGUs include are, among
others, incrementation, bit-reversal, apply-ing and-masks.

Interconnect System

The Montium Processing Part Array has a reconfigurable interconnect for
flexible routing of data within the Tile, that can use a different configuration
every clock cycle. There are 10 Global Busses (GB01..GB10) used for inter-
process communication and every PP has a local bus connecting the ALU
to its local register files and two local memories. In total there are 20 data
sources in the PPA (10 memories and 10 ALU outputs) and 30 data sinks
(10 memories and 20 register files). In addition to on-tile communication
the CCU can use the Global Busses to connect the tile to the outside world,
every cycle at most 4 inputs and 4 outputs can enter and exit the Tile via
the CCU.

Control in the Montium TP

The combinations of concurrent functions the five ALUs can perform in a
single clock cycle is called a pattern. The flexibility of the PPA results in
a vast amount of possible patterns. The programmability of the PPA is
limited for efficiency reasons. For example[7] take the control of an ALU
(see Figure 1.2). In the Montium each ALU has 37 control signals, resulting
in 237 possible function patterns per ALU. In practise however, only a few
combinations are actually used. The functions an ALU needs to execute
a stored in ALU instruction registers. Each ALU has 8 of these registers,
at runtime every clock cycle one of these registers is selected to control the
function of the ALU. An ALU decoder register, which is also a configura-
tion register, determines which ALU instruction register is been selected for
every ALU. As there are five ALUs on the PPA, there are 85 different com-
binations possible. However in practise not all of these are actually used for
one application. Therefore, there are only 32 ALU decoder registers in the
Montium.

16



Figure 1.4: Control of an Montium ALU

Every cycle the sequencer instruction selects a ALU decoder register which
will select an ALU instruction register for every ALU. In summary the 185
(5 x 37) control signals for the ALUs are reduces to 5 signals for selection
of the ALU decoder register. This same two layered scheme is also used for
the memories, register files and interconnect configurations.

The Montium Sequencer

The Montium sequencer is basically a state machine, that in every clock
selects a register for every decoder (ALU decoder, memory decoder, register
decoder and interconnect decoder). The current address in the sequencer
program, called the Program Counter (PC), specifies which register to select
in every decoder. The flow trough this sequencer program can be influenced
by the sequencer instruction and arguments. The Montium sequencer has a
fixed instruction set:

encoding mnemonic description
000 JCC Jump Condition Code
001 JNC Jump Not Condition (code)
010 LLC Load Loop Counter
011 LOOP Loop
100 SIG General purpose IO signaling
101 CCC Call Condition Code
110 CNC Call Not Condition (code)
111 RET Return

17



The branch instructions (JCC, JNC, CCC and CNC) can use the ALU sta-
tus outputs, handshake signals from the CCU and internal sequencer flags.
Although the sequencer supports conditional jumps, their usage should be
kept to a minimum for optimum performance. Algorithms that require a lot
of conditional code can better be implemented on a general purpose proces-
sor. The Montium Tile has four 11-bit loop counters that can be used either
individually or combined in pairs. A simple Montium sequencer program
could look like this:

PC sequencer instruction arguments description
0 JNC GPI0 0 wait for ”Data Valid” (GPI0)
1 JNC TRUE 0 single cycle
2 LLC 0 1022 load LC0 with 1022
3 LOOP 0 3 loop on LC0 (to PC 3)
4 SIG 0 1 set GPO0

5 SIG 1 0 clear GPO0

6 JCC TRUE jump to beginning

1.2 Assignment

Development and study of algorithm mapping onto a coarse grained reconfig-
urable architecture requires the possibility to verify and debug the produced
code. Several reasons exist why testing on a real chip is not always a good
option:

1. A development board may not always be available to a developer, since
these development boards are expensive to produce.

2. During the development process the developer needs to be able to see
how his code is being processed, how variable values change over time,
where data comes from and goes to (the developer needs to be able to
look inside the contents of the chips registers and memories).

3. The developer needs to be able to observe and verify the implementa-
tion effects of his algorithm, especially in the field of DSP algorithms
some effects may only become visible or reliable after extensive simu-
lation (e.g. quantization effects). For these reasons a fast simulator of
the target architecture is needed.

The simulator currently available for the Montium TP, ‘Simsation’, has some
disadvantages:

1. It is not very flexible for the end-user. While compiler options are
available to developers to change certain attributes of the Montium
TP instance, these changes do not work on the current simulator (in
fact a binary compiled with custom parameters will not work in the
current simulator at all).

18



2. Since it simulates the internals of the architecture it has to do a lot
of (extra) work not really interesting to a software developer who just
wants to verify the results of his program. Speed especially becomes an
important issue when algorithm precision needs to be analyzed, since
verifying (average) bit-error-rates of certain scaling or quantization
effects often requires simulating many billions of cycles.

3. It proofed to be somewhat burdensome to implement a Graphical User
Interface on top of it. Communication with the simulator is possible
only via a (telnet) socket and thus a lot of message passing and parsing
needs to be done. Exporting a public API could greatly simplify this
process.

The goal of this project is to research, design, implement and test a func-
tional simulation generator for the Montium TP which has to be flexible in
terms of architecture parameters and fast in execution.

1.3 Structure of this report

After this introduction, in Chapter 2, some related work will briefly be
summarized to place this work in perspective to what has already been
done in similar research projects. In Chapter 3 some design choices made
in the early stage of the project will be discussed. After the design choices
are made clear the implementation of the simulation generation process is
explained in Chapter 4, there the reader can also find examples of generated
code blocks. In Chapter 5 the Communication and Configuration Unit of
the Montium Tile will be discussed. Chapter 6 will show how the created
simulation generator is extended to simulate the Annabelle prototype chip,
created within the 4S project. Chapter 7 will present the results achieved
in this project, including benchmarks and comparisons. These results will
be followed by some conclusions and recommendations in Chapter 8 which
will be the final chapter in this report.

19





Chapter 2

Related Work

Probably since the day digital chips where first introduced there has been
a need for software that can simulate those chips. This need comes for
the same reasons that where already mentioned in the introduction: the
unavailability of real hardware and the possibility for the developer to see
inside the chip while a program is running. So a lot of research has been
performed in the field of simulators. This chapter summarizes some research
projects related to this project in order to give some perspective.

2.1 Simulation techniques

Several different approaches can be identified for creating simulators: (1)
(V)HDL Simulators, (2) Instruction Level Simulators and (3) Binary com-
piled simulations

2.1.1 (V)HDL simulators

Simulations based upon VHDL or Verilog hardware description languages
emulate all signals that exist in the real hardware thus provide a real close
one-to-one relation to the actual chip. This is particularly useful when the
correct functional behaviour of the chip has to be examined. This approach
can also be used for examining real elapsed time or energy consumption of
the chip (or the specific implementation of an algorithm). The main disad-
vantage of this approach is that it is really slow, the simulator will typically
require many thousands of host cycles to simulate a single target cycle.
An approach close to HDL simulation was researched by Aly and Salem
[8], [9]. They build RTLJava, an RTL (Register Transfer Level) simulator
written in Java. They use Java’s built-in multithreading and observabil-
ity features to deal with concurrency, parallel execution of statements, and
reactivity problems that most HDL simulators cope with. This approach
results in a simulator that resembles the hardware closely, but is easier to

21



modify, operate and link to other software than a VHDL simulation. A
disadvantage is that it has to do a lot of update calls to all the primitive
objects to simulate a single cycle.

2.1.2 Instruction level simulators

Instruction level simulators usually act as op-code interpreters, a target pro-
gram is executed by decoding every op-code instruction sequentially, just
before execution (just as the real chip would do). However, the internals of
the simulator do not necessarily resemble the real chip at all. Because all
decoding and interpreting steps have to be done at runtime, these simulators
tend to perform rather poorly.
A big problem often faced when creating instruction level simulators lies in
the fact that it is quite a lot of work to develop one for every newly devel-
oped chip. Sleipnir [10] is a tool that eases writing IL-(instruction level)
simulators. It makes the development of IL-simulators easier by only re-
quiring a description of the target chip. It works by compiling a machine
description language into C source code files, which can be compiled to an
executable simulator. The generated simulator is an interpretive simula-
tor, meaning it has to decode instructions at runtime. Togawa et al. [11]
also use code-generation to generate an instruction level simulator for DSP
type processors. Their main goal was to include support for packed SIMD
instructions.

2.1.3 Binary compiled simulation

In case of binary compiled simulation the simulator generates a native bi-
nary for the host platform directly based upon the input program meant for
the target chip. So for every target program a new unique simulator binary
will be generated. This approach generally results in very fast simulations,
but very often lacks end-user flexibility because the hardware description of
the target platform is usually embedded inside the binary generator.
Pees et al. [12] designed a compiled binary simulator based on the machine
description language LISA. Later this work was extended by Nohl et al. [13]
with their so-called JIT-CSS, Just-In-Time Cache Compiler, technique to re-
gain the flexibility of an interpretive simulator. It worked by pre-compiling
all instruction blocks beforehand, placing them in a cache and then run
the simulation just like an ‘interpretive’ simulator would but instead of in-
terpreting every instruction it will fetch the desired one from the compiler
cache.

22



2.2 The ‘Simsation’ simulator

Another project closely related to this project is the currently existing Mon-
tium TP simulator, ‘Simsation’, already mentioned in the Introduction.
‘Simsation’ is an interpretive simulator that simulates all internal signals
that exist inside the Montium TP hardware architecture. The user has to
navigate through a tree like structure to locate the different variables of
interest (or create scripts to do so). Though this simulator works correctly,
it has a few drawbacks: (1) It lacks end-user flexibility in terms of Mon-
tium design parameters, (2) It is not really fast, and finally (3) There is no
Graphical User Interface available (and it is not designed so that one can
easily be added on top of it).

2.3 The Montium TP Simulation Generator

In this project we will try to combine the flexibility of interpretive simula-
tors with the performance of binary simulation. We do this by creating a
simulation generator that can generate and compile new binary simulations
internally (based on a binary target program and design parameters for the
target). Because in the case of the Montium Tile Processor we have an en-
tire configuration, (≈ the program), available beforehand, we can generate
and compile code not just for single instructions, but for the entire con-
figuration at once. Another difference with Instruction Set Architectures,
or ISA, is that ISA based systems all start every cycle by decoding the
next instruction, fetching operands, doing some calculation on the operands
and finally writing the result back to some memory entity. The Montium
TP however, being a coarse-grained reconfigurable chip, doesn’t have this
sequential behaviour so obviously available.

23





Chapter 3

Design

3.1 Benefits of a functional simulator

A functional simulator simulates the functional behaviour of its target plat-
form, in contrast to simulating all internal signals. This means that the
functional behaviour can be implemented in a way that is efficient on the
host architecture, for example a multiplier that uses multiple steps in the
VHDL description, with or without intermediate results, would also take
multiple steps to simulate in a VHDL simulator approach but in a func-
tional simulator it would just be passed to the host processor as a single
multiply instruction with two operands. Obviously this functional approach
results in much better performance of the resulting simulator.

3.2 Simulation generation

Instead of simulating a Montium program by interpreting a configuration
cycle for cycle we instead generate Java code for the configuration, compile
it (internally) and start an instance of this newly created program. This
gives us the best of two worlds of simulators. It provides the flexibility of
an interpreter, because we can use runtime variables. But it should also
give us the performance of a binary compiled simulation, because we in fact
generate a compilable version of the current program and compile it. The
generator will thus use two inputs: (1) the binary Montium configuration
and (2) the specific Montium Design Parameters (if the latter is omitted,
the generator will continue with the default Montium Design Parameters).

25



Figure 3.1: Code Generation schematic

Figure 3.1 shows schematically how the Simulation Generation process
works. The generator has up to three inputs:

1. CFG, the pseudo-binary Montium configuration as is generated by the
Montium Compiler (mandatory input).

2. PRM, the Montium Design Parameters (optional, as there are default
parameters).

3. CDL Source, the source code that was used to create the binary Mon-
tium configuration (optional, not actually used in the code-generation
process but only used for visualization).

Though it would have been possible to build a simulation generator that uses
CDL source as primary input, there are several reasons why the compiled
configuration file was chosen for this:

• Several steps the compiler performs are needed before simulation gen-
eration. If CDL source would be the primary input for the simulation
generator these steps would have to be duplicated:

– Semantic checking of the source code.

– Allocation of global- and local interconnects.

• By using the binary configuration format as input the simulation gen-
erator will also be able to simulate configurations compiled with future
(higher level language) compilers.

26



3.3 Target Language

Because the final simulator needs to be portable, Java was chosen as the tar-
get language. All end-users will need to have, in order to use the simulator,
is a JDK installed on their system. No external libraries will be required.
Using Java also makes it easy to separate the program functionality from
the user interface, making it easy to embed the simulation generator in a
future integrated development environment or maybe even embed it a some
sort of scriptable environment.
Another important reason to prefer Java is the new compiler feature intro-
duced in JDK 6 SE. This new internal compiler feature makes it possible
to create a simulation generator that will perform the code generation and
compilation process internally, hiding these details from end-users. This
means the end-user doesn’t need to understand, or even know about this
code generation and compilation process, nor does he need to make explicit
calls to a compiler or build tool. In case of C code generation a complete C
toolchain (e.g. GCC and make) is required on the running machine.
However, since C is still assumed to be faster than Java in program execu-
tion, the generator will be designed so that it can produce either Java or C
code. Benchmarks will be performed to see whether Java truly is a viable
choice.

Figure 3.2: The Simulation Generation process using Java (above) or C

27



3.4 Required functionality (API)

For operation of the simulation the generated simulator will have to export
a public accessible API. This API will provide the end-user, via a graphical
interface or even directly from an Java program, with basic controls needed
to manipulate a running simulation. The basic API should in some way
provide at least the following functionality to the end-user:

run(int n) run n cycles
step() run a single cycle
back() step back a single cycle
back(int n) step back n cycles
get(name) show the current value of:

- a register
- a memory location
- a status bit

set(name) override the current value of:
- a register
- a memory location
- a status bit

watch(name) break upon the value change of:
- a register
- a memory location
- a status bit

Please note that this is not the final implemented API. For a complete
overview of the final implemented API see appendix A.

3.5 Software Design

Figure 3.3 is a simplified UML view of how the final generated Simula-
tor is build, the ASimulation class is an abstract class that is needed so
we can refer to Simulation methods inside the encapsulating program (e.g.
make calls to getMem(int m, int l) from inside the GUI classes) without
having an actual Simulation class instantiated, or even compiled. The Sim-
ulation class is the most important class, this is the class that has to be
generated by the generation process. It will implicitly contain the Montium
design parameters and the Montium Configuration that were passed as in-
puts to the simulation generator. The SimulationController is responsible
for loading and managing the Simulation instance. It also keeps track of
cycles simulated (the Simulation doesn’t care about cycles), and provides
some higher-level interactions with the Simulation (e.g. parse command-
line commands containing Strings like setReg(pp1 A 6) or running until a
certain value changes). The SequencerStateMachine is responsible for cal-

28



culating the new Program Counter every cycle, based upon the current PC,
the tile SB (status bits), the current instruction and the arguments given.

Figure 3.3: Simplified UML overview of the Simulator design

3.6 Flexibility

One of the two goals of this new simulator was to obtain more flexibility with
regard to Montium design parameters and internal functional behaviour.

3.6.1 Montium design parameters

The currently available Montium compiler supports several parameters de-
scribing characteristics of a Montium Tile instance. This flexibility should
also be available in the simulator, not just to the engineers at Recore Sys-
tems that have access to the simulator source code, but also to their clients.
Thus these parameters should be runtime configurable.
These parameters should include, but not necessarily be limited to, the
height of decoder and configuration registers, the width of memory addresses
(thus the size of memories) and the depth of register files. For a complete
list or currently implemented parameters see appendix B.

3.6.2 Functional behaviour

Besides parametric changes it should also be possible to easily extend/change
the functionality of the functional units of the Tile. Even making changes to
the datapath should stay simple enough to be performed whenever needed.

29



Examples of such changes could be removal of one or both levels of functional
units or extending the level 1 functional units with MIN and MAX function
(by default only available in the level 2 functional units). Because clients
probably shouldn’t be allowed complete freedom to the datapath function-
ality, this flexibility is not necessary at runtime. Moreover implementing
this kind of flexibility at runtime would require some sort of specification
language for describing this functional behaviour, and using that language
would require skills similar to normal programming skills. Rather than in-
venting a new specification language one could just as well use Java code
itself for the specification, assuming it is possible to isolate this code in a
single place. This code isolation can be achieved by using the Visitor pat-
tern for code generation of ALU expressions and creating helper functions
for the different operation in the Functional Units.

3.7 Initial State and end-results

For testing of algorithms it is often useful to start a simulator with all the
memories and register files filled with some initial values. For fast correctness
testing it can also be useful to compare the final contents of all memories and
registers with some pre-defined expected results. Finally, to produce some
figures about results it can be convenient to be able to write all memory-
and register contents to easily parseable output files at any time during the
simulation. For these input and output files it was chosen to use the same
format the currently available simulator uses, so that these are interchange-
able and don’t have to be created twice. The format is quite simple, the
files have an hexadecimal address-value pair on every line.

3.8 The optimization steps

One of the prospected advantages of functional simulation in contrast with
full signal simulation, combined with the fact that we analyze the entire
configuration beforehand, is that now several optimization steps can be per-
formed. Everything that has no effect on the final state change of the sim-
ulator can be removed from the generated code.

3.8.1 Straight forward optimizations

The most straight-forward form of optimization lies in disregarding state-
ments that don’t change anything to begin with. For example calculating
the output of a functional unit that isn’t really used can be skipped.

30



3.8.2 Look-back optimizations

All transition from one line in the sequencer program to the next can be
deduction from the configuration. This means that already at generation
time the generator can identify what the previous PC could have been. If
for all these predecessors a certain read address were the same as for the
current PC, than the simulation code for that assignment can be left out in
the code for this PC (this will probably remove close to 20 assignments in
many cycles, since in many cycles the register file read addresses remain the
same).

3.8.3 Look-ahead optimizations

This is probably the most effective optimization scheme, for it is capable of
removing big blocks of unnecessary calculations. The Montium Tile proces-
sor generates 10 outputs for its 5 ALUs, but many of these outputs are never
actually written anywhere. At generation time it should be possible for the
generator to check all possible next-states of the current state, if none of
these followers write a specific output to a memory, register or global in-
terconnect we can remove the calculations that provide that specific output
without changing the end-results of the simulation.

31





Chapter 4

Implementation

This Chapter describes the implementation of the Simulation Generator.
The overall flow of a simulation is shown in Figure 4.1. The white boxes
represent steps in the Simulation Generator and the colored boxes are an
example of how a Simulation run could look like.

Figure 4.1: Simulation Generator overview

33



4.1 Configuration parser

The Montium compiler produces pseudo-binary output files containing a
Montium TP configuration which can be loaded into a Montium processor
via its configuration interface. Because the configuration data bus of the
Montium is 16 bits wide but configuration lines can vary in width, e.g. an
ALU configuration line is currently 37-bits wide, two different views of the
configuration entity exist: (1) the normal view, in which every entity has
it’s own specific width and (2) the configuration view, in which every entity
is at most 16-bits wide.
The pseudo-binary configuration file contains the 16-bits configuration view,
but for processing the information and building a simulator the normal view
is needed. So the first task the simulation generator has when it receives a
new configuration is decoding this flat configuration view into a datastruc-
ture for which all information can be retrieved easily and selectively. Later,
during the code generation process, the internal datastructure, created dur-
ing this parse, can be called to return individual register contents within
the entire Montium configuration. e.g. assuming the datastructure for the
Montium configuration is stored in config then:

Bv Sequencer Ins t ruct ion i n s t r = ( Bv Sequencer Ins t ruct ion ) c on f i g . getImSeq ( ) [N ] ;

will assign the N th line in the sequencer program, and subsequently calling:

int a l u i = i n s t r . get ( " a l u _ i " ) ;

will assign the active line number to select in the Alu Decoder. Similar calls
can be made to fetch any entity within the loaded configuration.
Because the simulation generator has to be flexible when it comes to Mon-
tium design parameters, the conversion from the configuration view to the
internal datastructure has to take into account these parameters al well. If
for example the design parameters state that the register files should have
a depth of 8 (instead of the default depth of 4) the conversion from config-
uration view to normal view has to realize that for addressing within these
register files now 3 bits are required. So, consequently an register file config-
uration line will be 4 bits wider as well (see examples, one bit extra for both
read addresses and one bit extra for both write addresses). So, the simula-
tion generator will have to ‘know’ how all the design parameters affect the
configuration space.

rfA rd rfA wr rfA we rfB rd rfB wr rfB we
00 00 0 11 00 0

Figure 4.2: An example Register File configuration line, for 4 position deep
register files

34



rfA rd rfA wr rfA we rfB rd rfB wr rfB we
000 000 0 101 000 0

Figure 4.3: An example Register File configuration line, for 8 position deep
register files

The defaults for all these column names and sizes are stored in respectively
the Constants class and the StructureVariables class, and are overridden (if
necessary) during the reading of the Montium design parameter file (passed
to the generator program as a start-up parameter). A single structure defi-
nition looks like Listing 4.1.

CR RFAB COLNAMES = { " r f A _ r d " , " r f A _ w r " , " r f A _ w e " , " r f B _ r d " , " r f B _ w r " , " r f B _ w e " } ;
CR RFAB COLWIDTH = { 2 , 2 , 1 , 2 , 2 , 1 } ;

Listing 4.1: Structural description of a Register File configuration register

4.2 Sequencer

Simulation of the Montium sequencer consist of two very distinct parts. The
first sequencer related task is collecting all actions for the Tile to perform for
a certain line in the sequencer program. This part is done by the simulation
generator. The second sequencer related task is the runtime task to provide
the simulation with the next address in the sequencer program, or the PC,
to execute.

4.2.1 Cycle code generation

For every line in the sequencer program a block of code is generated that is
the functional equivalent of what the real Montium Tile would do during ex-
ecution of this sequencer line. This step in code generation will create by far
the biggest and most important part of the Simulation class. Whenever the
step() function is called the simulator will check the current PC (Program
Counter), execute the code generated for that specific sequencer instruction:
update memory, register and global bus values, calculate required ALU out-
puts, etc and finally return. All the information about actions to perform in
a certain PC cycle can be found in the binary configuration. This process
is thoroughly described later on.

4.2.2 State Machine

The second sequencer related task, providing the simulation with the next
PC, depends on data that is only available at runtime, during a simula-
tion ‘run’. This cannot be done at generation time, so for this purpose
a SequencerStateMachine class is created which will be instantiated by the

35



simulation at runtime. All this class does is generate the new PC and update
the Loop Counters and the General Purpose Out signals whenever necessary.

4.2.3 Switch/case bottleneck issue

Because the first thing that needs to happen when stepping into the next
cycle is jumping to the code specific for the active sequencer line, the naive
way of building up the step function is to create one huge switch/-case
statement containing the code blocks for all possible sequencer lines.
public void s tep (){

switch (PC){
case 0 :

. . .
case N:

}
}

Listing 4.2: Main simulator loop - the step() method

This approach would however create a lot of runtime overhead, because
most cases would not be taken (a program that uses all sequencer lines in
an evenly distributed fashion would produce N/2 jump misses on average for
every cycle). This is in fact a known problem/drawback of big switch/case
statements in today’s software world. C in fact has a solution for this:
create an array of function pointers and use that as a table to get the jump
addresses from. To find out whether this would pose a big problem in our
generated simulation some benchmarks where performed on two different
approaches:

1. Use C function pointers as a reference.

2. Use a single huge switch/case statement, as described above.

3. Use so-called anonymous classes extending some interface that has a
run() method, and place these anonymous classes in an array (this
resembles the C function pointer approach).

minutes seconds calls/sec score
C (function pointers) 9.48 588 1.13E+11 100
Anonymous Classes 16.58 1018 6.55E+10 57.76
One big Switch Case 13.41 821 8.12E+10 71.62

Table 4.1: Benchmark results ‘anonymous classes’ vs. switch

The above benchmarks where executed with 256 different case statements,
with a single line of actual code inside them. To prevent the compiler from
optimizing the step out of the actual execution the code was setup to return
an integer depending on input values, which is again passed to the next

36



step() call. The results of this benchmark showed that using anonymous
classes was not a solution to our problem, but it also showed that using the
switch/case wasn’t as bad as expected. So it was decided to proceed with
this approach (hoping to optimize it somewhat more later on).
Because Java has a hard limit on the maximum length a method can be the
switch/case statement was split up in two levels. In the first level step()
jump to step1() if the PC to execute next lies between 0 and 15, jump to
step2() if it lies between 16 and 31, and so on for all possible lines in the
sequencer program. Mid-way during the project it was discovered that this
approach indeed still held back performance by some sort of bottleneck issue,
so some different variations on this approach where tested and finally some
extra trial-and-error testing showed that the best approach was in fact:

• Create a tree with a maximum of four levels, balancing the code blocks
amongst the number of required levels (if there are just 4 lines in the
sequencer program, create only one level, if there are 12 lines create 2
levels with 3 leaves in all the second level methods.... and so on (when
all 256 sequencer configurations are used this will give a 4 level tree
with 4 ‘leaves’ in the final levels).

public void s tep (){
switch (PC){

case 0 : . . . case 63 :
return s t ep 1 0 ( )

. . .
public void s t ep 1 0 (){

case 0 : . . case 15 :
return s t e p 2 0 0 ( )

. . .

public void s t e p 2 0 0 (){
case 0 : . . case 3 :

return s t e p 3 0 0 0 ( ) ;
. . .

public void s t e p 3 0 0 0 (){
case 0 :

/∗ code f o r PC 0 here ∗/
. . .

case 3 :
/∗ code f o r PC 3 here ∗/

}

Listing 4.3: Generated switch/case tree

4.3 Code generation

When the code generation process starts first the basic simulation necessities
are written to the Simulation class. These necessities contain the following
distinct elements:

• Montium Tile datastructure, placeholders for all internal variables like
memories, registers and intermediate results.

• Simulation initialization functions, methods that take care of reading
input files, writing output files, resetting the simulation and so forth.

37



• Simulation API, these are the get() and set() functions used to ob-
tain/manipulate the Tile’s state information during simulation

• Helper functions, that implement the special functions inside the Func-
tional Units that can not be expressed in ’in-fix’ java notation, these
helper functions also include status bit update methods.

The full Tile datastructure is given in Appendix C and the Function Unit
Helper functions can be found in Appendix D. The other methods are
not included in this report, because they have little value to people other
that the software maintainer of this project. When these basic simulation
necessities are written to a Simulation class, the Sequencer code generation
process is started. This will add the code blocks for every sequencer line
present in the loaded configuration. The configuration however, contains all
the actions without any notion of precedence. In order to create a sequential
piece of java code for every block, a sequence1 in which things should happen
has to be created:

1. check if tile blocked by IO (if so break without change)

2. Fetch value from lane in lanes

3. Write values to lane out lanes

4. Calculate next Program Counter

5. Reset Status Bits

6. Set read addresses for the register files

7. Write registers, using the correct write addresses

8. Undo previous bit-reversal and calculate new AGU outputs

9. Write memories

10. Calculate ALU outputs

4.3.1 Decoders

The decoders of the Montium Tile processor only select the active addresses
for different configuration registers. So they do not need to become a real
part of the simulation at runtime. For every cycle for which the generator
needs to generate code it will select all the decoder lines to use, based upon
the active sequencer line. With these decoder lines the generator can select
the correct configuration register for every entity (Register File, ALU, AGU
or Interconnect) it should generate code for.

1The correct sequence is not uniquely defined, several correct variations also exist.

38



4.3.2 Global and Local Interconnections

For transferring data from the different data sources to data sinks the Mon-
tium PPA (Processing Part Array) has a configurable interconnect that can
be reconfigured every clock cycle. Several components of this interconnect
can be configured individually:

• The active global interconnect configuration registers define the sources
for the global busses.

• The active streaming IO configuration register defines whether any of
the global busses is connected to the outside world via in- and output
lanes.

• The active local interconnect to memory configuration registers define
the sources for local busses to the local memories of the processing
parts.

• The active local interconnect to register configuration registers define
the sources for local busses to the local register files of the processing
parts.

Sequentially resolving these connections individually would result in code
like in Listing 4.4 for a single write action.

// g i n t −> connec t memory 9 to g l o b a l bus 2
GB02 = mem left [ 4 ] [ memL address [ 4 ] ] ;

// l i n t 2 r −> connec t g l o b a l bus 2 to t h e l o c a l i n t e r c onn e c t to
// r e g i s t e r o f t h e f i r s t p r o c e s s i n g pa r t
l i n t r fA c onn e c t i o n [ 0 ] = GB02 ;

// rfAB −> wr i t e t h e v a l u e on the l o c a l i n t e r c onn e c t to r e g i s t e r
// to r e g i s t e r A addre s s 0
rfA [ 0 ] [ r fA wr po in t e r [ 0 ] ] = l i n t r fA c onn e c t i o n [ 0 ] ;

Listing 4.4: Example generated code for individual interconnects, transfers
a value from memory 9 to register A of the first processing part

Because all this information is available at generation time, and since we
are only interested in simulation of the functional behaviour, this generated
code can be reduced to a single assignment like shown in Listing 4.5.
For every write actions in a Register or Memory, and for every Stream-
ing output, the source that produced the value to the interconnect can be
discovered by combining the information in the active local interconnect to
memory, local interconnect to register, global interconnect and streaming IO
configuration registers mentioned above.

rfA [ 0 ] [ r fA wr po in t e r [ 0 ] ] = mem left [ 4 ] [ memL address [ 4 ] ] ;

Listing 4.5: Example generated code for combined interconnects

39



Because this source determination has to be done at several places in the
code, namely for all Register writes, Memory writes and Streaming IO out-
puts the GlobalInterconnect class was created. Given the target in the spe-
cific local interconnect (or ‘lane2gb’), the active configuration for the global
interconnects and the active streaming IO configuration, it returns a String
representing the source variable inside the generated Simulation class (this
String is then immediately added to the generated code). These Strings
returned by the GlobalInterconnect can be any of:

”mem left[0..4][memL address[0..4]]” any left-hand side memory.
”mem right[0..4][memR address[0..4]]” any right-hand side memory.
”res out1[0..4]” the 1st result of any ALU.
”res out2[0..4]” the 2nd result of any ALU.
”GB[0..9]” any global bus (indirectly

connected via the Streaming
IO configuration (see next
section)).

4.3.3 Streaming IO

To allow streaming algorithms, the Montium Tile is connected to a NoC
(Network-on-Chip), via a CCU (Communication and Configuration Unit).
One of the tasks of this CCU is providing data to- and consuming data from
the global busses in the Montium. The CCU part of this process consist
of adding data to- and reading data from a FIFO buffer. In streaming
algorithms the Montium configuration decides when to connect a global bus
to an external lane. Via this connection the Montium can now receive data
from the CCU output buffer or write data to the CCU input buffer.
During code generation this means that when streaming IO is enabled for
a certain line in the sequencer program, the code generator needs to check
whether a certain global bus is connected to a lane input and if so generate
code for fetching the next value from the CCU buffer and assign it to the
specific global bus variable (global busses are represented by a single variable
in the simulator). If later in that cycle that global bus is used as a source
for a register or memory write, we can simple assign the variable name for
that bus. Also some code has to be added that breaks out of the current
execution if there is no value received from the CCU. That way the simulator
would remain executing the same block over-and-over until the next value
is available thus simulating blocked IO. Code generated in a cycle using
streaming IO input will look like Listing 4.6.

40



i f ( l an e i n r e ady [ 0 ] == fa l se ){
return ; // b l o c k e d by IO

} // ’ e l s e ’ :
GB[ 0 ] = l an e i n bu f [ 0 ] ; // g e t v a l u e from l a n e i n b u f f e r to GB01
i f ( l an e i n r e ady [ 1 ] == fa l se ){

return ; // b l o c k e d by IO
} // ’ e l s e ’ :
GB[ 1 ] = l an e i n bu f [ 1 ] ; // g e t v a l u e from l a n e i n b u f f e r to GB02

. . .
mem left [ 1 ] [ memL addr [ 1 ] ] = GB[ 1 ] ;

. . .
mem left [ 0 ] [ memL addr [ 0 ] ] = GB[ 0 ] ;

. . .

Listing 4.6: Example generated code for Streaming IO input

If any of the gb2lane columns in the active streaming IO configuration is
non-zero, then code will be generated for placing an output value on that
specific lane, the CCU will retrieve this value after the Tile is done for this
cycle. Code generated in a cycle using streaming IO output will look like
this:
FType = 0 ; // s e t f l i t −t ype f o r data to CCU
l an e ou t bu f [ 0 ] = r e s ou t1 [ 0 ] ; // s e t da ta ready f o r r ead ing by CCU
data wa i t ing [ 0 ] = true ; // inform the CCU th e r e i s new data

Listing 4.7: Example generated code for Streaming IO output

4.3.4 Register Files

Every ALU in the Montium Tile has four register files, one for every single
input A, B, C and D. The current Tile has four positions for every one of
these register files (the compiler and the simulator can vary this depth, by
altering the RF DEPTH parameter).
Before calculations can be done the simulator has to know the active read
and write positions in these register files. They can be obtained from con-
figuration registers cr rfab and cr rfcd of the processing part, selected by
the Register decoder. Write sources can be decoded by combining the infor-
mation in the local interconnect to register, the global interconnect and the
streaming IO configurations. For a single processing part this will result in
code blocks like this one:
r fA rd po i n t e r [ 4 ] = 0 ;
r fB rd po i n t e r [ 4 ] = 0 ;
r fC rd po i n t e r [ 4 ] = 0 ;
r fD rd po in t e r [ 4 ] = 0 ;
rfA [ 4 ] [ 0 ] = r e s ou t2 [ 4 ] ; // LB2
rfB [ 4 ] [ 0 ] = mem right [ 0 ] [ memR address [ 0 ] ] ; // GB06
rfC [ 4 ] [ 0 ] = r e s ou t1 [ 4 ] ; // LB1
rfD [ 4 ] [ 0 ] = mem right [ 2 ] [ memR address [ 2 ] ] ; // GB07

Listing 4.8: Example generated code for a Register File

41



4.3.5 Address Generation Units

The Montium Tile processor contains a reconfigurable Address Generation
Unit or AGU for every memory on the tile. These AGUs are capable of
generating simple addressing schemes often used in DSP algorithms[1].
The code generation for the AGUs works according to the following sequence:
(all references to registers refer to configuration registers, their values are
retrievable from the currently loaded Montium configuration.)

1. check (the add offset register to see) if the sel offset register for this
cycle should be added to the previous address or be used directly as
new offset. And add the corresponding code to the simulation.

2. add code to the simulation that applies the AND mask from the
sel mask register to the memory address

3. check (the add base register to see) if the sel base register for this cycle
should be added to the previous base-register or be used directly as
new base. Add the corresponding code to the simulation.

4. check if load addr is set for this cycle, if so then decode the source
location from the local and global interconnect registers and add code
for using either the low, if load low is set, or the high part of received
16-bit value as new memory address.

5. save a backup of the address register and apply bit-reversal on the
output address if br width ! = 0 (This backup is restored in the next
cycle just before the AGU will produce a new output).

6. check if the we, write enable, bit is set in the current memory configu-
ration register and if so, decode the source from the local interconnect
to memory, the global interconnect and the streaming IO configuration
registers values and write this to the active memory address.

The code generated for a single AGU could look like this:
memL address [ 4 ] = ( memL address [ 4 ] + 1) & MEM MINUS ONE;
memL address [ 4 ] = ( memL address [ 4 ] & 63 ) ;
memL base [ 4 ] = 1 ;
memL address [ 4 ] = ( memL address [ 4 ] ) | (memL base [ 4 ] << MEM WIDTH WO BASE) ;
prev memL address [ 4 ] = memL address [ 4 ] ;
memL address [ 4 ] = B i tUt i l . r e v e r s eB i t s ( memL address [ 4 ] , 6 , MEM ADDR WIDTH) ;

Listing 4.9: Example generated AGU code

42



4.3.6 Code generation visitor for the ALUs

As mentioned before in Sectionr̃efsect:funcflex, the visitor pattern was used
to create so-called abstract syntax trees (ASTs) of the ALU instructions.
This way all code related to the code-generation can be kept in one single
place, in the JavaCodeGenerationVisitor. AST nodes have been made for:

name parents description
IntNode none fixed integer value
NullNode none fixed ’0’
VarNode none a variable name accessible in

the Simulation class, e.g.
”rfA[pp][rfa rd pointer[pp]]”

Add in0, in1, enable addition node
FU std lvl1 in0, in1, ctf top-level Functional Unit
FU std lvl2 in0, in1, ctf second level Functional Unit
Mult in0, in1, sel multiplication node
Mux in0 .. inN, sel multiplexer node
RtMux in0, in1 multiplexer node, that can only

make a decision at runtime
Convert115to216 in0 add precision bits
Convert115to416 in0 add precision bits
Convert170to171 in0 add precision bits
Convert216to316 in0 add precision bits
Convert316to416 in0 add precision bits
ConvertEnable in0, status enables a parent node, or pass

’0’
GetHigh in0 node that takes high part of a

32-bit multiplier result
(fixed-point multiplication)

Saturate32to17 in0 saturates a 32-bit multiplier
result to 17.0 fixed-point value
(integer multiplication)

Saturateto216 in0 saturates the east-west result
to 2.16

Scale in0, sel scale the end result if requested
Roundto415 in0 rounds the end result
Saturateto115 in0 saturates the end result to 1.15

Table 4.2: Overview of AST Nodes

43



These AST nodes are interconnected in Alu.java to represent the current
datapath structure. This datapath structuring code remains quite readable,
so that future modifications to the datapath can be implemented in the
simulation generator with minimal effort. It’s even possible to extend this
structure with conditional connections, creating runtime flexibility in the
datapath. Listing 4.10 shows an example of the ALU connection code,
for the fragment of the Montium datapath shown in Figure 4.4, the entire
datapath can be described in this very syntax:

// l e v e l 2 .mux
mux mX = new Mux( new Wire (new NullNode ( ) ) , wA, wB,

new Wire ( fu [ 2 ] ) , selmx
) ;

mux mY = new Mux( new Wire (new NullNode ( ) ) , wC, wD,
new Wire ( fu [ 3 ] ) , selmy

) ;
// l e v e l 2 . m u l t i p l i e r
mult = new Mult ( new Wire (mux mX) , new Wire (mux mY) ,

selmw
) ;

// l e v e l 2 . c o n v e r t e r s and muxes l e f t
conv [ 0 ] = new Saturate32to17 (new Wire ( mult ) ) ;
conv [ 1 ] = new GetHigh (new Wire ( mult ) ) ;
conv [ 2 ] = new Convert115to216 (new Wire (mux mX) ) ;
conv [ 3 ] = new Convert115to216 (new Wire (mux mY) ) ;
conv [ 4 ] = new Convert170to171 (new Wire ( conv [ 0 ] ) ) ;
mux mW = new Mux( new Wire ( conv [ 2 ] ) , new Wire ( conv [ 3 ] ) ,

new Wire ( conv [ 4 ] ) , new Wire ( conv [ 1 ] ) ,
selmw

) ;

Listing 4.10: Code describing the datapath fragment shown in Figure 4.4

Figure 4.4: Small piece of the ALU datapath

44



An ALU code block can be generated simply by setting all selection signals
from the ALU configuration and then calling the visit() method on the
two lowest multiplexers selecting the ALU outputs (res out1 and res out2).
The AST is then build bottom-up, meaning the code generation visitor will
traverse upwards in the datapath, only generating code for Nodes it actually
passes.

example
Take the above datapath image and assume that: selmx = 01, selmy =
11 and selmw = 11 (this means that the output of the multiplexer
mux mW should become the 18-bit fixed-point value of A ∗ Z1B).

If mux mW is now visited by the visitor, it will traverse up to the
GetHigh converter Node, because selmw selects the 4th input of the
multiplexer. Next the visitor will traverse to the mult Node and from
there it will traverse to the mux mX Node and the mux mY Node. From
the mux mX Node it will traverse to the wA Node, because selmx selects
the second input of the multiplier. From there the visitor will traverse
no further, because it has reached the top of this AST path (the wA
Node is a VarNode that only generates code and has no parent nodes).
From the mux mY node it will traverse up to the FU4 Node outside
the range of the above image.

Just before the Sequencer starts generating code for all the lines in the se-
quencer program all ALUs are ‘asked’ to generate code for every instruction
in their configuration registers and save them in the so-called CodeKeeper.
This way it is not necessary to run the code generation visitor over-and-
over again for all sequencer lines that re-use a certain ALU configuration.
At code generation time the Sequencer just retrieves the correct code block
from the CodeKeeper and writes that down. Every ALU generates up to
three outputs, first it will generate an expression for the ZA output just
below the accumulator in the MAC level of the ALU. This output is used
not only in the butterfly level of this ALU but also as an east input for the
neighbouring ALU. The other two expressions that an ALU generates are
for the two res out outputs. The final code generated for these are pretty
straightforward Java expressions, example blocks of ALU code generated for
a cycle could look like these2:
(1) generated expression for an ALU that performs the calculations:

D + (A fmul C − east) → res out1
D − (A fmul C − east) → res out2

2In the code listings ‘rfX rd pointer’ variables are abbreviated by ‘Xptr’ to improve
readability

45



ZA[ 0 ] = ( ( ( ( ( rfA [ 0 ] [ Aptr [ 0 ] ] ) ∗ ( rfC [ 0 ] [ Cptr [ 0 ] ] ) ) >> 14))−(( sa turate216 (ZA [ 1 ] ) ) ) ) ;
r e s ou t1 [ 0 ] = ( ( saturate115 ( ( ( ( ( ( rfD [ 0 ] [ Dptr [ 0 ] ] ) << 1)+ZA[ 0 ] ) ) + 1) >> 1 ) ) ) ;
r e s ou t2 [ 0 ] = ( ( saturate115 ( ( ( ( ( ( rfD [ 0 ] [ Dptr [ 0 ] ] ) << 1)−ZA[ 0 ] ) ) + 1) >> 1 ) ) ) ;

Listing 4.11: Example generated ALU code 1

(2) generated expression for an ALU that performs the calculations:

B + (A imul (C sadd D)) → res out1
C sadd D → res out2

ZA[ 0 ] = ( ( ( ( rfA [ 0 ] [ Aptr [ 0 ] ] ) ∗ ( sadd ( rfC [ 0 ] [ Cptr [ 0 ] ] , rfD [ 0 ] [ Dptr [ 0 ] ] ) ) ) >> 14) )+(0) ;
r e s ou t1 [ 0 ] = ( ( saturate115 ( ( ( ( ( ( rfB [ 0 ] [ Bptr [ 0 ] ] ) << 1)+ZA[ 0 ] ) ) + 1) >> 1 ) ) ) ;
r e s ou t2 [ 0 ] = ( sadd ( rfC [ 0 ] [ Cptr [ 0 ] ] , rfD [ 0 ] [ Dptr [ 0 ] ] ) ) ;

Listing 4.12: Example generated ALU code 2

(3) generated expression for an ALU that performs the calculations:

C sadd D → res out1
A sadd B → res out2

ZA[ 0 ] = ( ( ( ( 0 ) << 1 ) )+(0 ) ) ;
r e s ou t1 [ 0 ] = ( sadd ( rfC [ 4 ] [ Cptr [ 4 ] ] , rfD [ 4 ] [ Dptr [ 4 ] ] ) ) ;
r e s ou t2 [ 0 ] = ( setZeroNeg ( sadd wsb ( rfA [ 4 ] [ Aptr [ 4 ] ] , rfB [ 4 ] [ Bptr [ 4 ] ] , 4 ) , 4 , 0 ) ) ;

Listing 4.13: Example generated ALU code 3

Status Bits

The first level of the Montium TP ALU has four functional units that can
do operation like shifting, saturated addition, exclusive OR and so on. All
of these Functional units have two 16-bit inputs and a single 16-bit output,
this means that things like overflow or underflow can occur.

Figure 4.5: Functional Units in the ALU datapath

46



These overflow conditions are not visible from the result a Unit generates,
therefore the Functional Units also generate 3 status bits, respectively for
zero, negative and overflow. These status bits can be used in the DSP algo-
rithm to choose between inputs for the seconds level of the ALU datapath
and/or to control the program flow of the algorithm (jump to a different
section of the algorithm).
Every cycle at most one Functional Unit is selected for generating the status
bit for the PP via the selms part of the active ALU configuration register
and the meaning of the status bit is configured via the status part. Because
the simulation generator has this information beforehand we only need to
generate code for generation of the status bits for the FU that is selected by
selms. In the third example (Listing 4.13) the part setZeroNeg(sadd wsb())
comes from the fact that that specific FU, performing that calculation, is
selected for setting the ws status bits, for this ALU. The outer setZeroNeg()
function checks a value for being zero or being negative and also updates the
final single status bit (wsb) for this PP. The inner sadd wsb() does exactly
the same as the normal FU helper function sadd() but in addition to that
it also sets the status bit for overflow if saturation has occurred. Similarly
there are also extended helper functions for other operations that can affect
a status bit.

47



4.4 Code generation summarized

To give an impression of the code generated for a single clockcycle please see
the example shown in Listing 4.14. The example shows a cycle where two
inputs, read from input lanes, are assigned to the registers of four processing
parts. The input sample from lane0 goes to reg.A of PP1 and PP3, denoted
by rfA[0] and rfA[2] in the code, and the input sample from lane1 goes to
reg.A of PP2 and PP4, rfA[1] and rfA[3] in the code. The reg.C registers of
these four processing parts are filled with results calculated in the previous
cycle. AGU outputs are calculated for the 10 memory units. And finally
outputs are calculated for processing parts 1,2 and 3 and for the west output
of processing part 4 (since that is needed as an east input for PP3).

i f ( l an e i n r e ady [ 0 ] == fa l se ){
return g PC ; // b l o c k e d by IO

}
GB[ 0 ] = l an e i n bu f [ 0 ] ; // g e t v a l u e from l a n e i n b u f f e r
i f ( l an e i n r e ady [ 1 ] == fa l se ){

return g PC ; // b l o c k e d by IO
}
GB[ 1 ] = l an e i n bu f [ 1 ] ; // g e t v a l u e from l a n e i n b u f f e r
FType = 0 ; // s e t f l i t −t ype f o r data to CCU
// Cyc le done , c a l c u l a t e new PC, and GPO
ssm . getNextPC (1 , 0 ) ;
g SB = 0 ; ws [ 0 ] = 0 ; ws [ 1 ] = 0 ; ws [ 2 ] = 0 ; ws [ 3 ] = 0 ; ws [ 4 ] = 0 ;
rfA [ 3 ] [ 0 ] = GB[ 1 ] ; // GB02 from CCU
l a n e i n r e ady [ 1 ] = fa l se ; // s t reaming va l u e consumed .
rfC [ 3 ] [ 0 ] = r e s ou t1 [ 0 ] ; // GB03
rfA [ 2 ] [ 0 ] = GB[ 0 ] ; // GB01 from CCU
l a n e i n r e ady [ 0 ] = fa l se ; // s t reaming va l u e consumed .
rfC [ 2 ] [ 0 ] = r e s ou t1 [ 2 ] ; // LB1
rfA [ 1 ] [ 0 ] = GB[ 1 ] ; // GB02 from CCU
l a n e i n r e ady [ 1 ] = fa l se ; // s t reaming va l u e consumed .
rfC [ 1 ] [ 0 ] = r e s ou t1 [ 2 ] ; // GB04
rfA [ 0 ] [ 0 ] = GB[ 0 ] ; // GB01 from CCU
l a n e i n r e ady [ 0 ] = fa l se ; // s t reaming va l u e consumed .
rfC [ 0 ] [ 0 ] = r e s ou t1 [ 0 ] ; // LB1
memL address [ 4 ] = ( memL address [ 4 ] & 1023) ;
memL address [ 4 ] = ( memL address [ 4 ] ) | (memL base [ 4 ] << MEM WIDTH WO BASE) ;
prev memL address [ 4 ] = memL address [ 4 ] ;
memR address [ 4 ] = (memR address [ 4 ] & 1023) ;
memR address [ 4 ] = (memR address [ 4 ] ) | (memR base [ 4 ] << MEM WIDTH WO BASE) ;
prev memR address [ 4 ] = memR address [ 4 ] ;

// code f o r memories 3 , 2 and 1 was cu t out here

memL address [ 0 ] = ( memL address [ 0 ] & 1023) ;
memL address [ 0 ] = ( memL address [ 0 ] ) | (memL base [ 0 ] << MEM WIDTH WO BASE) ;
prev memL address [ 0 ] = memL address [ 0 ] ;
memR address [ 0 ] = (memR address [ 0 ] & 1023) ;
memR address [ 0 ] = (memR address [ 0 ] ) | (memR base [ 0 ] << MEM WIDTH WO BASE) ;
prev memR address [ 0 ] = memR address [ 0 ] ;
ZA [ 3 ] = ( ( ( ( ( rfA [ 3 ] [ Aptr [ 3 ] ] ) ∗ ( rfC [ 3 ] [ Cptr [ 3 ] ] ) ) >> 14 ) )+(0 ) ) ;
ZA [ 2 ] = ( ( ( ( ( rfA [ 2 ] [ Aptr [ 2 ] ] ) ∗ ( rfC [ 2 ] [ Cptr [ 2 ] ] ) ) >> 14))+(( saturate216 (ZA [ 3 ] ) ) ) ) ;
r e s ou t1 [ 2 ] = ( ( saturate115 ( ( ( ( ( 0 << 1)+ZA[ 2 ] ) ) + 1) >> 1 ) ) ) ;
r e s ou t2 [ 2 ] = ( setZeroNeg ( rfB [ 2 ] [ Bptr [ 2 ] ] , 2 , 0 ) ) ;
ZA [ 1 ] = ( ( ( ( ( rfA [ 1 ] [ Aptr [ 1 ] ] ) ∗ ( rfC [ 1 ] [ Cptr [ 1 ] ] ) ) >> 14 ) )+(0 ) ) ;
r e s ou t2 [ 1 ] = ( setZeroNeg ( rfB [ 1 ] [ Bptr [ 1 ] ] , 1 , 0 ) ) ;
ZA [ 0 ] = ( ( ( ( ( rfA [ 0 ] [ Aptr [ 0 ] ] ) ∗ ( rfC [ 0 ] [ Cptr [ 0 ] ] ) ) >> 14))−(( sa turate216 (ZA [ 1 ] ) ) ) ) ;
r e s ou t1 [ 0 ] = ( ( saturate115 ( ( ( ( ( 0 << 1)+ZA[ 0 ] ) ) + 1) >> 1 ) ) ) ;

Listing 4.14: Example generated code for an entire cycle

48



4.5 Code Compilation process

As mentioned in the Design, Chapter 3, the simulation generator produces
source code that is functional equivalent to the Montium TP program to be
simulated. There are some slight differences in doing this for Java code and
doing this for C code (or any other target language for that matter).

4.5.1 Compilation of Java code

In case of Java code generation we can keep the process of code genera-
tion and compilation internal to the simulation generator, invisible for the
outside world. To make this happen, all generated code is appended to a
single String, this String is than placed inside a JavaSourceFromString Ob-
ject that extends the normal SimpleJavaFileObject. This Object is added to
the modules list of a JavaCompiler.CompilationTask and that task will be
given to the JavaCompiler. For keeping the resulting class Object in mem-
ory as well the JavaCompiler is also given a RAMFileManager that has a
RAMClassLoader. Now, every time we need an instance of this internally
kept class we can call:

Class s im c l a s s = manager . getClassLoader ( null ) . l oadClas s ( " S i m u l a t i o n " ) ;
sim = ( ASimulation ) s im c l a s s . newInstance ( ) ;

4.5.2 Compilation of C code

When instead of generating Java code we want C code to be generated, and
compile a native system binary executable from that C source, this it what
happens: First there is a Framework containing the sources and header files
that do not change from simulation to simulation. This Framework contains:

Makefile build information.
bit util.c, bit util.h bit level utility functions.

(e.g. bit-reversal)
sim util.c, sim util.h sim level utility functions.

(e.g. reading initial mems from file)
sequencer.c, sequencer.h calculation of next PC.
run sim.c, run sim.h runs sim until GPO changes.

Next the generated Java cycle code is converted to valid C code. This is
basically a find and replace algorithm that seeks for certain Java specific
statements and replaces them with C equivalents. This is possible since the
generated cycle source for the Simulator class contains only expressions that
have one-to-one equivalents in C (no Object usage, no try/catch statements
and so on). This cycle code, now valid C code, is added to static datastruc-
tures for storing the simulation state, and helper functions for the functional
units, and written to a file.

49



All these files are written to a temporary directory, make is called to build
the simulation, the generated executable ‘run sim’ is moved to the path the
simulation generator was started in and the temporary directory containing
the source files is removed.
It is the end-users responsibility to have a working make, GCC compiler and
C development libraries available on the system.

4.6 Backwards stepping via snapshots

Debugging an algorithm often involves running a Simulation until a certain
event, e.g. a register change, occurs and then stepping back one, or a few,
cycles to see where this change originates from. Normally stepping back a
single cycle from cycle number N in the simulator would mean: resetting
the simulator, reloading the initial values and running N-1 cycles. This
can become slow when N becomes large. For this reasons the Simulation-
Controller is given a so-called TileStateStore to save snapshots of states the
simulation was previously in. The number of states to remember can be con-
trolled by a parametric value, and is a trade-off between memory usage and
fast back-stepping to many different locations. When the CCU is included
in the simulation the CCU will also keep a CCUStateStore for recalling of
previous states.
Now whenever a back() or an undo() is called, first the StateStores will be
checked for availability of the state requested, if the requested state (iden-
tified by the number of cycles the CCU resp. the Tile has stepped at that
point) is available then is will be restored, else the normal procedure of reset,
rëınitialize and running N-1 steps is performed.

4.7 Optimizations

To perform the optimizations mentioned in Section 3.8, we need to calculate
possible predecessors (and followers) for every state. The possible transition
from the current state to the next depends on the current Program Counter
(≈ sequencer instruction), the Tile SB (Status Bits) and the GPI (General
Purpose Inputs). Since these are not available at generation time, we can
only know where we possibly could end up after this cycle. There are three
distinct scenarios for determining the possible next states, depending on the
current sequencer instruction:

50



Figure 4.6: Tran-
sitions from type 1
instructions

(1) Sequencer instructions JCC, JNC, LOOP,
CCC and CNC
Most sequencer instructions have two possible next-
state addresses, one is given by the parameter of the
sequencer instruction and the other one is the next
line in the sequencer program. For example a JCC
can either go to PC+1 if the condition evaluates to
true or to address if the condition evaluates to false. If
the argument holds a fixed TRUE or FALSE, we can
determine the single possible next-state. Otherwise,
when the evaluation of the condition is not available
at generation time, we have to add both to the list of
possible next-states.

Figure 4.7: Transi-
tion from type 2 in-
structions

(2) Sequencer instructions LLC, SIG
If for the current line in the sequencer program the se-
lected sequencer instruction is either LLC (Load Loop
Counter) or SIG (set or clear Signals) the single avail-
able transition is to the next sequencer line PC+1. So
for this state the only possible transition to the next-
state is to state PC+1, and this state is a possible pre-
decessor of state PC+1 (but not necessarily the only
predecessor).

Figure 4.8: Transi-
tion from type 3 in-
struction

(3) Sequencer instruction RET
If for the current line in the sequencer program the
selected sequencer instruction is RET (Return from a
call) the single available transition is to the sequencer
address on the stack, since the stack is not a know value
at generation time we cannot determine the next-state
from the information available in this state. We can
however check the entire configuration for all CCC
and CNC instructions and add them as possible next-
states, because we know that we will jump to one of
these states.

4.7.1 Data dependencies (external)

Now that we know the possible next-states for a certain state we can elimi-
nate unnecessary code. To do that we first collect all data dependencies of
the possible next-states. The data dependencies of a cycle are all outputs
that are written to a register, memory or streamed to a lane out (via the

51



global bus). The union of data dependencies of all possible next-states is all
that needs to be calculated in this state.

example:
state with sequencer line PC has possible next states: S1 and S2.
S1 has data dependencies for: (pp1.res out1, pp4.res out1)
S2 only has data dependencies for: (pp1.res out2, pp2.res out2)
this means that in state PC we need to add code for the calculation of:

(pp1.res out1, pp4.res out1) ∪ (pp1.res out2, pp2.res out2) =
(pp1.res out1, pp1.res out2, pp2.res out2, pp4.res out1)

and that we don’t need to add code for the calculation of:

(pp2.res out1, pp3.res out1, pp3.res out2,
pp4.res out2, pp5.res out1, pp5.res out2)

4.7.2 Data dependencies (internal)

The east-west connection between the different ALUs inside the Montium
Tile can also create data dependencies inside a state itself. For example if
PP1 needs an input from its neighbour, PP2, this will create an internal
dependency on PP2. However if the results pp2.res out1 and pp2.res out2
are not member of the external data dependency lists, it is not necessary to
calculate the entire PP2 ALU. In that case we can suffice by just calculat-
ing the function units and the multiply accumulate (we can thus skip the
butterfly, scaling and rounding that happened in lower part of level 2).

4.7.3 Selective code generation

Now that we know both the data dependencies for every possible line in the
sequencer program and we know all state transitions for every line in the
sequencer program, we can selectively decide to generate specific blocks of
code.

Selective code generation for the Register Files

Instead of blindly assigning all read addresses for all register files, we can
now check the read addresses in the preceding states. If in every of these
preceding states a certain register file read address is the same as the one
we would generate code for in this state then we can omit generating the
assignment. If however in any single one of the possible predecessor state the
read address is different, then we have to generate the assignment code here.
Since for many algorithms register file read addresses don’t alter for every
state transition this selective code generation can save up to 20 assignments
per cycle. Figure 4.9 shows the general idea. For the state at the bottom

52



only one read address really needs to be assigned, namely rfB, because this
is the only one that had a different value in one of the predecessors (the
state in the middle reads from position 1 instead of position 0 for rfB).

Figure 4.9: Example of selective code generation for RF read addresses

Even though this optimization step removes a lot of lines in the generated
code, it will not provide a big speed-up, since all the lines are just single
assignments, already taking very little time compared to other work that
has to be done in a cycle (and it is not unthinkable either that the Java
compiler will optimize some of these as well).

Selective code generation for the ALUs

The Montium Tile processor generates 2 outputs for each ALU, or 10 outputs
in total every single cycle. Not all of these outputs are always used by the
algorithm currently running on the Tile, or in terms of Montium actions:
they are not written anywhere the next cycle.
For ALU outputs, not listed in any of the data dependency lists of possible
successor states, we can skip the generation of code. In the example in
Figure 4.10 we can see that the lowest state only writes one of the two
results produced by the upper state to memory. Since the lower state is the
only successor for the upper state, we can omit calculation of the second
result res out2[1] in the upper state without changing the end results the
algorithm will finally produce.

53



Figure 4.10: Example of selective code generation for an ALU

Because the code omitted by this optimization step actually contains heavy
workloads, these are all actual calculations that otherwise have to be pro-
cessed by the host computer running the simulator, this optimization should
give us some measurable speed-up.

Selective code generation for the AGUs

Bit reversals inside the Address generation Units do not affect the address
register in the real Montium Chip, rather they only affect the output of
the ALU during the current cycle [2]. To implement this in the simulator
an ‘prev addr’ variable was introduced for every AGU, whenever the AGU
should apply bit-reversal it first saves the current address to this ‘prev addr’.
Every cycle this ‘prev addr’ is used to override the current address variable
just before calculation of the new address. Since we now posses a list of
possible predecessors to the current state we can do this undo-ing selectively,
only when in a previous state actual bit-reversal took place. Again, just
like the selective code generation for register files this will not provide a
substantial speed-up.

4.7.4 Hotspot or Loop detection

When a Montium Configuration becomes bigger, in other words when the
sequencer program will have more unique configuration lines, the tree men-
tioned in Listing 4.3 becomes more saturated. This means that every cycle
the simulation has to call 4 levels of step() methods before reaching the
code to be executed. Because many DSP algorithm kernels consist of a sin-
gle (or a few) small loops it might show prudent to identify the most heavily
called PC and move this code block into the top-level step() method. This
is what the Hotspot optimizer in the simulation generator does, it performs
a dry loop of the sequencer program, meaning it does the loop without pro-
cessing any data and thus without taking status changes into account, and

54



counts how many times it executed every line in the sequencer program.
This of course does not necessarily provide a completely accurate invocation
counts, but should in many cases be able to find the most frequently called
instruction correctly. When done the simulator can place the line with the
highest execution count into the top-level of the generated tree (this is very
likely the most heavily called PC in a real simulation as well, so this should
reduce the method call overhead somewhat in the simulation depending on
the simulated algorithm).
Since most streaming algorithm only terminate after the last data sample
is received from the CCU (by looping on a sequencer line until an interrupt
occurs) the Optimization step does not work well for these algorithms (be-
cause the dry run doesn’t terminate), therefore this step is skipped when
the CCU is used during simulation.

55





Chapter 5

Communication and
Configuration Unit

5.1 The Hydra CCU

For communication with the outside world and configuration of the Tile
Processor the Montium Tile is equipped with a Communication and Con-
figuration Unit, or CCU (see Figure 1.1). This CCU is again connected to
the network-on-chip via a router (see Figure 5.1). In the Annabelle SoC this
CCU is implemented by the Hydra CCU[5].

Figure 5.1: the Montium Tile connected to a NoC router

The state diagram for the CCU tasks are shown in Figure 5.2 and consists
of: Configuring the Montium TP, loading initial data into the memories and
registers of the Montium TP via DMA, executing the algorithm (putting
the Tile in run mode), and finally retrieving results from the Montium TP’s
memories and registers. When the Tile is in run mode, the CCU is respon-
sible for feeding the Montium TP with streaming input data and retrieving
streaming output data from the Montium TP and forwarding that data to
the NoC.
Communication units between the CCU and the routers are called flits, a
flit contains a 2-bit FT, flit-type, field and a 16-bit data field, together cre-
ating an 18-bit atomic unit. Every clockcycle every channel can transport a

57



single flit. The Hydra CCU discussed here, has 8 of these physical channels
for communication with the network: 4 ingoing channels and 4 outgoing
channels.

Figure 5.2: State diagram for the CCU[1]

Besides the (obvious needed) data flits, the CCU recognizes 3 other flit types,
making the total list of flits:

FT flit type Function
00 data carries user data
01 address carries an address
10 tail marks the end of a message
11 command carries a command for the CCU

Table 5.1: Overview of flit types

Command flits change the state of the CCU, they affect the way the CCU will
handle the rest of the incoming data (or message). The Hydra understands
single flit messages as well as multi-flit messages.

58



An overview of supported messages is shown in Table 5.2. For a more
detailed description please refer to the ”Hydra Design Specification”[5] In the
current implementation of the CCU, command messages are only supported
via lane0. Input lanes 1, 2 and 3 are only used for loading data during load
and for streaming data during run.

Encoding Command Message
000 Start configuring (cmd start cfg)((addr)(data)+)+(tail)
001 Start loading data (cmd start load)((addr)(data)+)+(tail)
010 Start retrieving data (cmd start retr)((addr)(data))+(tail)
011 Get GPo (cmd get gpo)
100 Run (cmd run)
101 Idle (cmd idle)
110 Reset (cmd reset)
111 Unused

Table 5.2: Overview of commands and corresponding messages

5.2 Simulating the CCU

After realization of the simulation generator for the Tile Processor, the sim-
ulator is extended to simulate the Hydra CCU as well. The input files that
the CCU simulator will accept are the same input files as used by the cur-
rent simulator, this again to improve portability of test-suites between the
two simulators. The format is quite simple:every line in a lane in (.lix) file
contains a hexadecimal flit-type and a hexadecimal data value. Every cycle
the CCU (simulator) handles the next flit (=line) available from every active
lane.
A new flit is processed every cycle. However the Tile Processor (simulation)
doesn’t necessarily consume data every cycle. Therefore a FIFO buffer is in
place between the CCU (simulation) and the Simulation. If the Simulation
needs an input but the FIFO doesn’t provide one, the Simulation will retry,
simulating blocked IO transfers. In hardware all flits go through this FIFO,
but since the simulated Tile Processor can only exist after a complete con-
figuration was found and processed by the simulation generator (only then
a Simulation class exists), only data meant for streaming during run mode
is buffered.
Loading and retrieving data can be simulated by calling methods from the
Simulation API directly, thus instead of simulating the DMA process, the
way it happens inside the real chip, the simulated CCU can just decode the
destination address and call the appropriate get() or set() function from
the Simulator.

59



Below the description is given of how commands are processed by the sim-
ulated CCU.
000 - Start configuring

1. Clear the configuration space ‘flat config’.

2. Add all incoming data from lane0 to the ‘flat config’ (cycle for cycle).

3. When the tail flit arrives pass the ‘flat config’ to the configuration
parser and pass the MontiumConfig ‘cfg’ to the SimulationController.
The SimulationController will generate and instantiate a new Simula-
tion instance.

001 - Start loading data

1. Read the target address flit next cycle.

2. Decode the target address flit from previous cycle and write the value
to the Simulation with setMem() or setReg() and increment the target
address.

3. (a) If the next flit is a data flit then decode the (incremented) target
address and write the value to the Simulation with setMem() or
setReg() and increment the target address again and continue
from (3).

(b) If the next flit is an address flit then store this new target address
and continue from (2).

010 - Start retrieving data

1. Read the start address from the next address flit.

2. Read the ‘num results’ field from the next flit and store it in a ”re-
quested results” counter.

3. Retrieve a result every cycle, by calling the appropriate get() function,
and decrement the counter, until all requested results are retrieved.

011 - Get GPo

1. Call sim.getGPO() (from SimulationController) and place the result
on lane out immediately (this represents the General Purpose Output
of the Tile Processor).

60



100 - Run

1. Enable CCU ‘run mode’.

2. Enable all lanes for streaming IO.

3. Call sim.setGPI(run param) (from SimulationController).

4. From now on include a sim.step() in every cycle.

101 - Idle

1. Enable ‘hold mode’, don’t take sim.step() actions anymore.

110 - Reset

1. Enable ‘hold mode’, don’t take sim.step() actions anymore.

2. Reset all datastructures and variables, also drop Simulation instance.

61





Chapter 6

Reconfigurable fabric of the
Annabelle

Figure 6.1: Reconfigurable fabric of the Annabelle chip

As mentioned in the introduction, within the 4S project an ‘Annabelle’
prototype chip was developed. This Annabelle contains four Montium Tiles
together with other (processing and non-processing) elements. The reconfig-
urable part of the Annabelle (the four Montium Tiles and the two routers)
can be implemented by glue-ing 4 simulation generators together.
Since the simulator is completely single-threaded running 2 simulations in
parallel on a dual-core host system runs approximately as fast as a single
simulation on a single core (see benchmarks in chapter 7). This should also
scale for more than 2 cores, thus the reconfigurable part of the Annabelle
chip can probably be simulated quite effectively on a multi-core system.

63



There are two plausible alternatives for implementing a simulator for the
Annabelle reconfigurable fabric, with a trade-off between flexibility and run-
time overhead:

1. Run 4 simulations in parallel (thus on 4 separate Java Virtual Ma-
chines, JVMs) and create some router entity that reads the output
data generated by all simulations and passes this as inputs to desti-
nation simulations if required. This approach shouldn’t be too much
of an effort to implement. The only thing that is needed for this to
work is the mechanism to pass data from one simulation to the next.
This approach is very flexible because a Simulator instance can easily
be exchanged with some other program, as long as that program can
use the same input/output formats.
There are however two reasons why this approach wouldn’t work very
well: (1) all data leaving a Simulation is converted to hexadecimal
output and thus needs to be converted back to integer values in the
receiving Simulation, this is slow. (2) using 4 separate Virtual Ma-
chines would introduce a lot of unnecessary overhead, since it is also
possible to run all Simulations on a single JVM.

Figure 6.2: UML overview of approach 1

2. A different approach would be to create a class that instantiates 2
router entities and 4 simulations (or actually simulation generators).
Important is that these simulations are implemented as separate Threads,
otherwise the entire Annabelle simulation would become singe-threaded.
This approach should be more efficient because it would only require
a single JVM, and it can just pass the integers from one thread to
another.

64



Figure 6.3: UML overview of approach 2

Because simulation speed remains an important issue, the latter alternative
is chosen (Use one JVM and start multiple Threads).
The routers in the Annabelle NoC are circuit switched routers[6]. This
means that once configured, the routes are fixed (until reconfiguration of
the router). Thus entities on the NoC do not need to specify where data is
meant to go (packages do not need addressing information). Every router
has 4 ports and every port has 4 input lanes and 4 output lanes. The
configuration of a router contains a (port,input lane) tuple for every (router)
output lane (where port is relative to the port of the output lane). Output
lane indexes are calculated via: port lane = port out ∗ 4 + lane out (e.g.
port(1)lane out(2) will have index 6). (port,input lane) tuples are encoded
according to the following scheme:

Encoding Description
- - - -0 all zero
00 001 port out+1 mod 4, lane 0
00 011 port out+1 mod 4, lane 1
00 101 port out+1 mod 4, lane 2
00 111 port out+1 mod 4, lane 3
01 001 port out+2 mod 4, lane 0
01 011 port out+2 mod 4, lane 1
01 101 port out+2 mod 4, lane 2
01 111 port out+2 mod 4, lane 3
10 001 port out+3 mod 4, lane 0
10 011 port out+3 mod 4, lane 1
10 101 port out+3 mod 4, lane 2
10 111 port out+3 mod 4, lane 3

Table 6.1: Router port lane configuration scheme

65



Simulation of the reconfigurable fabric in pseudo code looks like:
route r [ 0 , 1 ] . c on f i gu r e ( f i l ename )
while ( ! f i n i s h e d ) do

route r [ 0 , 1 ] . getData ( )
for ( l i n e s in con f i g ) do

route r [ 0 , 1 ] . copyData ( source , dest )
end
t i l e [ 0 , 1 , 2 , 3 ] . s tep ( )

end
wr i t eResu l t s ( )

Listing 6.1: Simulating the reconfigurable part of the Annabelle

The simulation will use up to 10 input files:

• 2 router configurations (mandatory)

• Up to 8 input files for Queues 0 and 1 (see Figure 8.1).

The simulation will produce 8 output files for Queues 0 and 1. Together with
the input files the simulator will need to know how many cycles it has to run.
This parameter can be given on the commandline as well. The input and
output files for the lanes are identical to those described in Section 5.2. The
router configuration files will contain hexadecimal addresses, data tuples
similar to these lane files. An example of a router configuration could look
like this:
0x0 0x09 // l ane 0 w i l l connec t to po r t 2 l ane 0 ( TP0 in0 <− Q0 out0 )
0x4 0x03 // l ane 4 w i l l connec t to po r t 2 l ane 2 ( TP1 in0 <− Q0 out2 )
0x8 0x09 // l ane 8 w i l l connec t to po r t 0 l ane 0 ( Q0 in0 <− TP0 out0 )
0x9 0x13 // l ane 9 w i l l connec t to po r t 1 l ane 0 ( Q0 in1 <− TP1 out0 )

Listing 6.2: Example router configuration file

Figure 6.4 shows the above router configuration in a graphical representa-
tion.

Figure 6.4: Graphical representation of a router configuration.

66



Chapter 7

Results

The initial goal of this project was to research, design, implement and test
a functional simulation generator for the Montium TP which is flexible in
terms of architecture parameters and fast in execution (See Chapter 1).
The next section discusses the flexibility that was achieved. To determine
whether the performance goal was achieved, the simulator generator was
benchmarked and compared to the existing ‘Simsation’ simulator, the results
of these benchmarks will be presented in Section 7.2.

7.1 Flexibility

Flexibility in the created simulator can be divided into two different types of
flexibility. The first important kind of flexibility is defined by the parameters
that can be altered at runtime, by end-users. The second form of flexibility
is the flexibility in the software design of the simulator, how easy can it be
extended to include function X and how easy is it to embed the simulator
in other programs.

7.1.1 Runtime flexibility

For runtime flexibility there was a well defined list created prior to the
implementation of the project. All the parameters available in the compiler
should also become available in the simulator and it should also be possible
to adapt the register file depths of the simulated Tile at runtime. Both these
requirements are met by the created simulator and further more it is also
possible to change the number of loop counters. In the final design it is also
taken into account that future versions might want the number of processing
parts and the datapath width to be variable at runtime.

67



7.1.2 Compile time flexibility

To make extending or altering the datapath functionality flexible the, Visi-
tor pattern was used. The result is that all the code that has to be generated
for the ALUs can be found in a single, quite well readable class: the Java-
CodeGenerationVisitor. Changes to the datapath layout can be made quite
fast by simple adjustments in the ALU class (see Listing 4.10). New func-
tionality in the functional units need two additions: (1) add a new fu xyz()
helper method in the FUBaseCode class (2) add code generation for the
correct method call in the JavaCodeGenerationVisitor.
These three classes could also be extended to include some conditional state-
ment, creating a simulator that can simulate different instances of Montium
Tiles. Listing 7.1 show how easy it is to implement a runtime variable into
the simulation generator, that can remove the Functional Units from the
simulated Tile.
MontiumParameterReader . java :

TILE WITHOUT FUS = parameters . getProperty (TILE WITHOUT FUS) . equa l s ( " t r u e " ) ;

Alu . java :
NullNode nn = new NullNode ( ) ;
i f (TILE WITHOUT FUS){

mux [ 0 ] = new Mux(new Wire (nn , wA, wB, nn , nn ) ) ;
mux [ 1 ] = new Mux(new Wire (nn , wC, wD, nn , nn ) ) ;

} else {
fu [ 0 ] = new FU std lv l1 (wA, wB, c t f [ 0 ] , f u l o g i c 1 ) ;
fu [ 1 ] = new FU std lv l1 (wC, wD, c t f [ 1 ] , f u l o g i c 2 ) ;
fu [ 2 ] = new FU std lv l2 (new Wire ( fu [ 0 ] ) , new Wire ( fu [ 1 ] ) , c t f [ 2 ] , f u l o g i c 3 ) ;
fu [ 3 ] = new FU std lv l2 (new Wire ( fu [ 1 ] ) , new Wire ( fu [ 0 ] ) , c t f [ 3 ] , f u l o g i c 4 ) ;

mux [ 0 ] = new Mux(new Wire (nn , wA, wB, new Wire ( fu [ 2 ] ) , s e l [ 2 ] ) ) ;
mux [ 1 ] = new Mux(new Wire (nn , wC, wD, new Wire ( fu [ 3 ] ) , s e l [ 3 ] ) ) ;

}

Listing 7.1: Example parametric datapath

7.2 Simulation Performance

7.2.1 Motivation and Overview

Several benchmarks were performed in order to answer the questions:

1. Is Java a viable alternative for creating fast simulations (for Montium
TP programs)?

2. Do code generation and functional simulation indeed result in faster
simulations?

In the following sections first the benchmark setup will be described. After
that, in Section 7.2.3, the performance of simulations generated in Java
versus simulations generated in C will be compared. Sections 7.2.4 and 7.2.5
will compare the speed of the new simulation generator with the speed of the
already existing ‘Simsation’ simulator. Finally in Section 7.2.6 the effects of
the optimization steps will be presented.

68



7.2.2 Benchmark setup

• Because different algorithms may behave differently with respect to
speed, several different types of algorithms where benchmarked, some
variations of a Finite Input Response (FIR) filters, some variations
of a Fast Fourier Transforms (FFT) and some other algorithms that
where available.

• Most algorithms finish in a few thousands of cycles, therefore for
benchmarking they are placed within a loop. Pseudo code for the
loop looks like this:

i n i t ( ) ;
while ( loop++ < parameter ){

startTime = System . nanoTime ( ) ;
while ( c y c l e s++ < CYCLES FOR ONE ITERATION){

s tep ( ) ;
}
stopTime = System . nanoTime ( ) ;
runTime += ( stopTime − startTime ) ;
c y c l e s = 0 ;
r e s e t ( ) ;

}

Listing 7.2: Benchmark Loop

• The benchmarks were all performed on the same system, a Intel(R)
Core(TM)2 CPU 6600 @ 2.40GHz, which is in fact a dual core CPU but
given the single-threaded nature of the simulations one core remains
idle when benchmarking.

• All benchmarks were performed after office-hours, to ensure a mini-
mum load on the test system.

• All benchmarks were perform threefold, each time keeping the best
result. This choice was made because this eliminates benches where
the test-system was performing background tasks during the bench-
mark. The three different iterations where executed with much time
in between, so that (long) background tasks would influence iterations
of different benchmarks and not a single one over and over.

• All C sources were compiled with GCC and the following flags: ‘-Wall
-pedantic -std=c99 -O3’

• The C performance was measured using the RDTSC 1 instruction
inside the CPU. This gives a cycle-count measurement which, together
with the clock speed of the processor, can be translated to a time
measurement.

1RDTSC stands for Read Time Stamp Counter, in which the TSC is a 64-bit cycle
counter available in Pentium class systems

69



• The Java performance was measured using the System.nanoTime()
call, which, according to the JDK documentation, uses the best avail-
able timer available in the system.

7.2.3 Performance Java versus C Output

The main difference between C and Java execution lies in the fact that the
C program is a native compiled binary, ready to run directly on the system
CPU when invoked, and the Java program consists of Java byte-code, which
will at first be interpreted by the Java Virtual Machine and compiled at
runtime when the JVM detects multiple invocations of code-blocks (Just-
in-Time compilation).
This means that the Java version will likely have a slow start-up perfor-
mance, which will increase until the point where (almost) all code-blocks
are actually compiled.
Benchmarks quickly showed that the number of simulated cycles has little or
no effect on the performance of the C program. The following performance
results where achieved for the different algorithms:

Algorithm Speed
FIR 5-taps ∼7500 kHz
FIR 20-taps ∼9800 kHz
FFT 64-points ∼6700 kHz
FFT 1024-points ∼7500 kHz
FFT 1920-points ∼7500 kHz

The fact that the 64-points FFT runs slower than the 1024- and 1920-points
FFTs can probably be attributed to the fact that the 64-points FFT is fin-
ished in just 205 cycles, so benchmarking will have a relative large overhead
restarting the algorithm over-and-over again.
To identify the point where all code is compiled by the JIT compiler, all algo-
rithms where benchmarked multiple times with increasing runtimes (varying
from a few seconds up to 5 minutes). In the results of the more complex
algorithms one can clearly see the effect of the Just-in-Time compiler. Af-
ter some time the average performance shows asymptotic behaviour, at the
asymptote one can assume (almost) al code has been compiled.

70



Figure 7.1: Simulation speed for the 5- and 20-taps FIR

The (somewhat unexpected) speed difference between the 5 taps FIR and
the 20 taps FIR in Java can probably be attributed to two facts: (1) the
switch/case structure (the FIR 5 will only have two levels in the tree while
the FIR 20 has 3 levels and (2) the FIR 5 spends 99 % in a single sequencer
instruction, which is therefore moved to the first branch in the switch-case
tree whereas the FIR 20 spends ‘only’ 12 % in its most often executed
sequencer instruction (See Section 7.2.6). For some reason it seems Java
suffers more from these than C does).

71



Figure 7.2: Simulation speed for the 64- and 1024-points FFTs

72



Figure 7.3: Simulation speed for the 1920-points FFT with input-scaling

Summarize Java versus C performance

The above results show that using C as target language provides faster simu-
lations. Neglecting the JIT startup time Table 7.1 summarizes the difference,
defined as perfc−perfjava

perfc
∗ 100%, in performance running the algorithms on

the two alternative languages.

Algorithm C Java difference
FIR 5 ∼7500 kHz ∼7200 kHz 4%
FIR 20 ∼9800 kHz ∼5700 kHz 42%
FFT 64-points ∼6700 kHz ∼3500 kHz 48%
FFT 1024-points ∼7500 kHz ∼4700 kHz 38%
FFT 1920-points ∼7500 kHz ∼4100 kHz 45%

Table 7.1: Summarized performance results C versus Java

In the Table one can see that the difference in performance never exceeds
a factor of 50%. Performance differences usually only matter when they
reach factors in the order of 10 times, because small differences can easily
be overcome by using a faster system. Now recalling the benefits of using
Java (see Section 3.3): (1) portability, (2) extendability and (3) the hidden
generation/compilation process we conclude that Java is a viable choice for
implementation of the Simulation Generator. In search for the causes in

73



speed difference between C and Java, some new, final-day changes where
introduced to the Java version of the simulation generator:

1. The two-dimensional arrays used to store memory and register vari-
ables are handled different by Java and C. In C a two dimension ar-
ray is always like a matrix, meaning all rows have the same number
of elements, thus the C compiler can assign a single block of mem-
ory. In Java an array of array-elements is created, which introduces
a extra lookup step. Also in Java, because every array (≈row) can
have a different number of elements, an extra range-check has to be
done. To overcome this all two-dimensional array were refactored
to single dimensional arrays (thus mem left[NUM PP][MEM SIZE] →
mem left[NUM PP * MEM SIZE]).

2. Despite all testing with the switch-case (see Section 4.2.3), the best
option was overlooked: create a single method for every line in the
sequencer program and add calls to these from a single switch-case in
step(). Further investigation showed the Java Virtual Machine knows
two different types of switch-case bytecode instructions, the tableswitch
creates a jumptable eliminating the problem completely. A second
benefit of this approach lies in the fact that the JIT compiler compiles
entire methods only, thus a block of code in its own method will be
compiled sooner than four blocks sharing a single method.

Preliminary tests showed these two changes already improved average sim-
ulation speed with approximately 20% on average for the FIR and FFT
algorithms. More tweaking, testing and benchmarking can probably elimi-
nate more of the performance gap between te C and the Java version.

74



7.2.4 Performance compared to ‘Simsation’ without CCU

For benchmarking ‘Simsation’, the same test system was used. The following
application versions where used for the benchmarks:
Simsat ion :

1 . 9 . 1 9 (May 31 2007 11 : 4 5 : 2 3 )
Copyright 2007 Recore Systems BV

simgen :
S imulat ion Generator for Montium TP − bu i ld 10.1541
Build Date : Wed Jun 13 15 : 20 : 55 CEST 2007

For Simsation a simple ‘.sim’ script was created to loop the different bench-
marks:
func benchmark1 (Path , Name, Cycles , I t e r a t i o n s )

r e s e t ( )

i n i t (Path , Name)
mark ( " s t a r t " )
var s t a r t t ime = time ( )
var i
for i = 0 ; i < I t e r a t i o n s ; i++ do

run ( Cycles )
r e c a l l ( " s t a r t " )

end
var r e s = time ( ) − s t a r t t ime
var t o t a l = Cycles ∗ I t e r a t i o n s
p r in t (Name ## " :  " ## to t a l ## "  c y c l e s  in  " ## re s ## "  s e c o n d s .\ n " )

end

Listing 7.3: Benchmark Loop for Simsation

All benchmarks where again performed in three-fold, each time keeping the
best result. Benchmarking the five non-streaming algorithms gave to follow-
ing results (Simulation Generator results are based on Java code generation):

Algorithm Simsation Simulation Generator speed-up
FIR 5 ∼270 kHz ∼7200 kHz 27x
FIR 20 ∼267 kHz ∼5700 kHz 21x
FFT 64-points ∼230 kHz ∼3500 kHz 15x
FFT 1024-points ∼251 kHz ∼4700 kHz 19x
FFT 1920-points ∼239 kHz ∼4100 kHz 17x

avg: 19.8x

Table 7.2: Simulation generator versus ‘Simsation’

75



7.2.5 Performance compared to ‘Simsation’ with CCU

For artificially creating benchmarks that run a significant amount of time
again a loop was used. The script for the Simsation loop is given in List-
ing 7.4.
func benchmark1 (Name, I t e r a t i o n s )

r e s e t ( )
c c u i n i t f a s t (Name)
\ sys \ i o e nab l e = true

pr in t ( " L o a d i n g  c o n f i g u r a t i o n . . . \ n " )
while \ t i l e \ in \ gpi == 0 do

run (1)
end
mark( " c o n f i g u r e d " )

var c l o ck s = 0
while (\ t i l e \out\gpo == 0)&&(\ sys \ c lock <1000000) do

run (1)
c l o ck s++

end

r e c a l l ( " c o n f i g u r e d " )

var s t a r t t ime = time ( )
var i
var j
for i = 0 ; i < I t e r a t i o n s ; i++ do

for j = 0 ; j < c l o ck s ; j++ do
run (1)

end
r e c a l l ( " c o n f i g u r e d " )

end

var r e s = time ( ) − s t a r t t ime
var t o t a l = I t e r a t i o n s ∗ c l o ck s
p r in t (Name ## " :  " ## to t a l ## "  c y c l e s  in  " ## re s ## "  s e c o n d s .\ n " )

end

Listing 7.4: Benchmark Loop for Simsation (CCU)

The script probably requires some explanation though:

• First the simulator is reset and the lane input files are read into a
buffer.

• Next the simulator is run until a valid configuration is loaded, this state
is saved (so that during benchmarking we don’t include configuration
time, only real algorithm running time).

• Next the simulation is run until we receive a change in GPO, in other
words the run-time (in cycles) for a single algorithm run is determined.

• We restore the simulator state saved previously.

• Now the benchmark loop starts:

– run the number of cycles needed for the algorithm to finish.

– restore the saved state.

– loop

• finally the result is printed to the console.

76



The result of benchmarking the Simulation Generation in combination with
the CCU are shown in Table 7.3.

Algorithm Simsation Simulation Generator speed-up
Streaming FIR ∼29 kHz ∼1208 kHz 42x
Streaming FFT ∼27 kHz ∼85 kHz1 3x
DRM offset correction ∼27 kHz ∼856 kHz 32x
DRM offset estimation ∼27 kHz ∼2695 kHz 100x
DRM Viterbi ∼27 kHz ∼2836 kHz 100x
Rotation cordic ∼26 kHz ∼72 kHz1 2.8x
Vectoring cordic ∼26 kHz ∼73 kHz1 2.8x

Table 7.3: Simulation generator versus ‘Simsation’ (streaming)

1 Because the streaming FFT and the two cordic algorithm kernels only need
a few cycles (resp. 52, 19 and 19 cycles) before completion, the overhead
of reloading the state after each iteration becomes relatively large. That is
why these benchmarks show bad results compared the longer algorithms.
This is probably also the case for the Streaming FIR and the DRM offset
correction algorithms (resp. 1026 and 794 cycles per run). To verify this
assumption, a new algorithm was written in CDL code that performs FIR
like calculations (source code can be found in Appendix E).

Algorithm Simsation Simulation Generator speed-up
Long Streaming FIR ∼28 kHz ∼2680 kHz 96x

Table 7.4: Simulation generator versus ‘Simsation’ (streaming)

This indeed shows the performance of the new simulation generator, with
CCU simulation, to be around 2600 kHz assuming the algorithm runs for a
reasonable amount of time (more than 60 seconds).

7.2.6 Improvements achieved by optimizations

The optimization steps in Section 4.7 follow two different principles. The
first principle, selective code generation, includes selective code genera-
tion for: (1) register file pointer (=read address) assignments, (2) selective
memory address restorations and most importantly (3) the selective genera-
tion of arithmetic expressions for the ALU outputs. The other principle, the
hotspot detection, doesn’t affect the amount of code generated but only
moves a block of source code to a different location for faster execution. The
first principle works for streaming and non-streaming algorithms, the second

77



only works when simulating non-streaming algorithms (see Section 4.7.4).
Benchmarks in this Chapter are done with:

1. Optimizations disabled.

2. Selective code generation optimizations enabled.

3. Selective code generation optimizations and the hotspot detection en-
abled. (only for non-streaming algorithms)

Tables 7.5 and 7.7 show some statistics for the tested algorithms/Montium
configurations. They should provide some idea of the complexity of the al-
gorithms. Tables 7.6 and 7.8 show some statistics about the optimization
results for the same algorithms. The columns in Tables 7.6 and 7.8 show
(from left to right): (1) the algorithm name, (2) the number arithmetic ex-
pression needed to do all calculations, (3) the number of expressions that
could be removed from these by the optimization process, (4) the percentage
of expressions the optimizer removed, (5) the sequencer instructions identi-
fier to be executed most often together with the number of invocations to
that sequencer instruction during the detection run and finally (6) the per-
centage the algorithm is expected to be executing that hotspot instruction.

Algorithm #lines in seq.
program

#lines of code
generated

#cycles/run

FIR 5 7 1131 1027
FIR 20 22 4910 2055
FFT 64-points 86 10892 205
FFT 1024-points 174 20594 5141
FFT 1920-points 204 22253 15035

Table 7.5: Statistics (non-streaming) algorithms

Algorithm #arith. #removed % HS : #inv. %
FIR 5 60 38 63% 3: 1023 99%
FIR 20 495 167 34% 6: 256 12%
FFT 64-points 1275 601 47% 4: 15 7%
FFT 1024-points 2550 1196 47% 4: 255 5%
FFT 1920-points 3165 1581 49% 18: 1536 10%

Table 7.6: Optimization Effects (non-streaming algorithms)

78



Algorithm #lines in
seq.

program

#lines of
code

generated

#cycles/run
(without

config)
Streaming FIR 6 1067 1025
Streaming FFT 31 4016 52
Streaming DMA 103 11792
DRM offset correction 14 1698 794
DRM offset estimation 34 3782 10956
DRM Viterbi 80 9009 6238
Rotation cordic 10 1341 19
Vectoring cordic 10 1320 19

Table 7.7: Statistics (streaming) algorithms

Algorithm #arith. #removed %
Streaming FIR 60 38 63%
Streaming FFT 420 244 58%
Streaming DMA 1815 1435 79%
DRM offset correction 135 72 53%
DRM offset estimation 435 229 52%
DRM Viterbi 1260 1011 80%
Rotation cordic 71 51 71%
Vectoring cordic 75 55 73%

Table 7.8: Optimization Effects (streaming algorithms)

Figure 7.4: Optimization Effects on Performance (non-streaming)

79



Figure 7.4 shows the effect the two optimizations have on the non-streaming
algorithms. On average one could say that both optimization steps improve
simulation speed by 15% (see Table 7.9).

Algorithm NO OPT OPT OPT+HS gain OPT gain HS
FIR 5 6140 6580 7200 7.2 % 9.4 %
FIR 20 5170 5550 5700 7.4 % 2.7 %
FFT 64-points 1811 2150 3500 18.7 % 62.8 %
FFT 1024-points 3506 4400 4700 25.5 % 6.8 %
FFT 1920-points 3420 4000 4100 17.0 % 2.5 %

avg: 15.1 % 16.9 %

Table 7.9: Optimization Effects on Performance (kHz) (non-streaming)

7.2.7 Running multiple simulations in parallel

The Montium Tile chip is designed to be part of a multi-processing System-
on-Chip processor, e.g. the Annabelle prototype chip has four Montium
Tiles in its reconfigurable part. Therefore it is useful if multiple instances
of the simulator can be run in parallel. Given the fact that modern days
general purpose processors used in simulation host systems become multi-
cored systems as well, it seems reasonable to use these multiple cores to
simulate multiple Montium instances. Some benchmarks where performed
to test the scalability of the simulator on a multi-core system (a dual core
Intel Core 2 Duo was used).

Algorithm 1 simulation 2 simulations 4 simulations
FIR 5 7200 kHz 2x ∼7100 kHz 4x ∼3500 kHz
FFT 1920-points 4100 kHz 2x ∼3800 kHz 4x ∼1900 kHz

Table 7.10: Running multiple instances in parallel

The above table shows the performance of the simulator scales nice per extra
host processor core, and divides nicely by two if two instances are run on a
single core.

80



Chapter 8

Conclusion and
Recommendations

8.1 Conclusion

The benchmarks presented in Chapter 7.2 show that a simulator was created
that can simulate the Montium Tile Processor at speeds of several millions
of simulated cycles per second. The provided results show the simulation
generation technique to be on average almost 20 times faster than the ex-
isting simulator. When the CCU is included in the simulation, to perform
streaming simulations, the difference in performance becomes even bigger.
All runtime flexibility requirements were met in the simulation generator.
Later an example was given how the flexibility could even be extended to
include flexibility in terms of datapath connectivity.
In the overall software design it was tried to keep everything flexible and
modular, extending the software with new components, user interfaces, and
functionality should rise no fundamental problems.

8.2 Recommendations for Future Work

Though the simulation generator is feature complete, including the simula-
tion of the CCU, and all initial goals set for the project where achieved some
ideas for future extensions remain available. The next pages will present
some ideas.

81



8.2.1 Simulation of a complete Annabelle SoC

Figure 8.1: Block diagram of the Annabelle chip

In Chapter 6 the implementation of a Simulator for the reconfigurable
part of the Annabelle System-on-Chip is described. The entire Annabelle
however consists of more components. An idea for future projects could be
the creation on a single simulation environment that simulates this entire
SoC. Probably the most interesting step would be to including an ARM
simulator. That way applications could be simulated that run on the ARM
and delegate computational intensive blocks/kernels to the Montium Tiles.

8.2.2 Design Parameters in CFG Files

Now the compiler and the simulator both have support for runtime con-
figurable Montium design parameters, a consistency issue arises. A binary,
compiled for a Montium instance with a sequencer size of 256 positions, will
only function correctly in the simulator if this same design parameter is given
to the simulator, otherwise the configuration parser will fail. A simple but
effective way to fix this would be to extend the CFG format with a header
containing those parameters. The compiler can add these parameters to the
CFG and the simulator can simply read them. This assures the compiler
and the simulator will use identical design parameters. Of course this line
should be ignored (or left out) during the configuration of a real chip.
Because this header is not passed to a real Montium chip, it it not neces-
sarily limited to a 16 bit value. A simple suggestion for the format of such
a header could be:

# ver CR ALU HEIGHT CR GINT HEIGHT ..... ..... DATAPATH WIDTH NUM PP

where the ‘#’ will tell the simulator that this is a parameter line, ‘ver’ indi-
cates the (VHDL) version of the Montium Tile (maybe useful in the future)
and the other parameters are the design parameters from Appendix B. The
header for the default Montium instance would become:

82



# 01.09.01 8 4 8 8 ..... ..... 4 4 16 5

Another option would be to only include parameters that differ from the de-
fault parameters, something like: # 01.09.01 14:512 could for example mean:
assign 512 to parameter 14 (where all parameters would get a unique iden-
tifier).

8.2.3 ‘Undefined’ values

In the current implementation primitive integers are used for all internal
variables like memories, registers and so on. In Java this means they all
get to be initialized to be 0. In real hardware however an uninitialized
location can have any value. These initial 0’s can possible hide some prob-
lems in developed algorithms from the developer. To detect these problems,
the simulator should be extended with the notion of uninitialized variables,
several implementations can be thought of for realizing this:

• Assign all variables with (pseudo-)random values at start-up, this will
however make the debugging process for the developer more cumber-
some, because he can not identify a produced variable value from a
randomly assigned one thus he will have difficulties keeping track of
what the simulation has really produced. So this approach is probably
not a good idea.

• Initialize all these variables to some fixed value that lies outside the
range of actually allowed values, e.g. the Java constant for the maxi-
mum value of a integer (Integer.MAX VALUE). This has the advan-
tage that all arithmetic operations on them remain valid, thus there
will be no immediate effect on simulation performance. A big dis-
advantage however is that multiplying this value with 0, or adding 1
to this value will result in a valid value that lies within the allowed
range again (Thus cannot be identified as invalid anymore). One could
design some checks for this though.

• Keep track of all assigned locations in memories and registers and give
warning messages when the simulator accesses a variable that was
never assigned. This is probably the best alternative, it will however
have some impact on the simulator speed so it is probably a good
idea to make it available as a start-up parameter for the simulation
generator, allowing the end-user to choose between speed and safety.

8.2.4 Generation of Java byte-code

The project was intended to support different target languages, and was
implemented to generate either Java or C code. The Java version needs to
compile the java code internally. This results in a dependency on the Java

83



Development Kit (JDK) to be installed on the system. An alternative for
this could be to generate Java byte-code instead of normal java code during
the generation process. The dependency would then be reduced to a Java
Runtime Environment (JRE) and as an added bonus it would remove the
time needed for compilation whenever a new configuration is loaded into the
Simulator.

8.2.5 More integration with other tools

For a DSP developer, as for every programmer, development becomes easier
and thus less time consuming if the tools he needs are quickly accessible
and are easy to familiarize with. For this, the available tools, like the com-
piler, the simulator(s) and a source editor should be integrated into a single
familiar environment. Recore Systems is already looking into this right now.

8.2.6 Create a complete test-suite

To detect errors or bugs in the simulator(s), now and after future extensions,
it is necessary to have access to a test suite that provides full coverage of
all functions available. Right now there is a basic test-bench that can be
used to perform some tests, but this test-bench does not yet provide full
coverage of all capabilities within the Montium TP. An ideal test suite would
probably be one that will work inside both the ‘Simsation’ simulator and
in the simulation generator described in this report. This might however
be difficult because that would mean that the entire test-suite has to be
written in the form of small Montium configurations (the only ‘language’
both simulators understand).

8.2.7 Create a framework to integrate the simulation gener-
ator with a Scripting environment

Something many developers would probably like to have, and would also be
useful for creating the test-suite mentioned above, is the possibility to embed
the simulator in a some sort of scriptable environment. For several scripting
languages there already are Java bindings available which should make it
possible to create some interaction framework for the simulation generator,
examples of available scripting languages are python[15] and Perl[16]. An-
other option would be to use BeanShell [14] a scripting environment specially
designed for Java that understands standard Java statements, expressions,
and method declarations.

84



Bibliography

[1] Paul M. Heysters Coarse-Grained Reconfigurable Processors - Flexi-
bility meets efficiency. Ph.D. Dissertation, University of Twente, En-
schede, The Netherlands, September 2004, ISBN 90-365-2076-2.

[2] Paul M. Heysters Montium Tile Processor Design Specification. Draft
01.07.xx, 24-Jun-05

[3] Gerard J. M. Smit, Andre B. J. Kokkeler, Pascal T. Wolkotte,
Philip K. F. Holzenspies, Marcel D. van de Burgwal, and Paul M.
Heysters The Chameleon Architecture for Streaming DSP Applica-
tions. EURASIP Journal on Embedded Systems, Volume 2007, Ar-
ticle ID 78082, 10 pages, doi:10.1155/2007/78082

[4] G.J.M. Smit, E.Schuler, J.E.Becker, J.Quevremont, and W. Brugger
Overview of the 4S project. Proceedings of the International Sym-
posium on System-on-Chip (SoC), pp. 70 - 73, Tampere, Finland,
November 2005.

[5] M.D. van de Burgwal Hydra Design Specification - multiplexer ver-
sion. Draft, version 01.09.xx, 21-Aug-2005, Last saved 22-Feb-2006

[6] P. Wolkotte Circuit switched router design specification. Draft, ver-
sion 02.04.xx, 19-April-2005

[7] Guo, Y. and Hoede, C. and Smit, G.J.M. A Column Arrangement
Algorithm for a Coarse-grained Reconfigurable Architecture. In: Pro-
ceedings of the International Conference on Engineering of Recon-
figurable Systems and Algorithms (ERSA’06), 26-29 Jun 2005, Las
Vegas, Nevada, USA. pp. 117-122. CSREA Press. ISBN 1-932415-74-
2

[8] S.G. Aly and A.M. Salem Observability-based RTL simulation using
Java. System-on-Chip for Real-Time Applications, 2004. Proceed-
ings. 4th IEEE International Workshop on, Volume , Issue , 19-21
July 2004 Page(s): 179 - 182

85



[9] S.G. Aly and A.M. Salem Modeling and simulation of digital circuits
using JAVA. Electrical, Electronic and Computer Engineering, 2004.
ICEEC apos;04. 2004 International Conference on, Volume , Issue ,
5-7 Sept. 2004 Page(s): 47 - 52

[10] Tor E. Jeremiassen Sleipnir. An instruction-level simulator genera-
tor. Computer Design, 2000. Proceedings. 2000 International Confer-
ence on, Volume , Issue , 2000 Page(s):23 - 31

[11] Nozomu Togawa, Kyosuke Kasahara, Yuichiro Miyaoka, Jinku Choi,
Masao Yanagisawa and Tatsuo Ohtsuki A Retargetable Simulator
Generator for DSP Processor Cores with Packed SIMD-type Instruc-
tions. IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences Vol.E86-A No.12 pp.3099-3109,
2003/12/01, ISSN: 0916-8508

[12] Stefan Pees, Andreas Hoffmann and Heinrich Meyr Retargetable com-
piled simulation of embedded processors using a machine description
language. ACM Transactions on Design Automation of Electronic
Systems (TODAES) archive, Volume 5 , Issue 4, pages: 815 - 834 ,
2000, ISSN:1084-4309

[13] A. Nohl, G. Braun, O. Schliebusch, R. Leupers, H. Meyr and A.
Hoffmann A universal technique for fast and flexible instruction-set
architecture simulation. Design Automation Conference, 2002. Pro-
ceedings. 39th Volume , Issue , 2002 Page(s): 22 - 27

[14] BeanShell - Lightweight Scripting for Java
http://www.beanshell.org/

[15] The Jython Project
http://www.jython.org/

[16] Inline::Java
http://aspn.activestate.com/ASPN/CodeDoc/Inline-
Java/Java.html

86



Appendix A

The Simulator API

/∗∗
∗ @return the name o f t h i s s imu l a t i o n
∗/

public St r ing getName ( ) ;

/∗∗
∗ @return the g en e r a t i on da t e / t ime o f t h i s s imu l a t i o n
∗/

public St r ing getTime ( ) ;

/∗
∗ @return the Genera l Purpose Output b i t s
∗/

public int getGPO ( ) ;

/∗
∗ @return the Genera l Purpose Inpu t b i t s
∗/

public int getGPI ( ) ;

/∗
∗ @return the Program Counter to be e x e cu t ed
∗/

public int getPC ( ) ;

/∗
∗ @return the T i l e S t a t u s B i t s
∗/

public int getSB ( ) ;

/∗
∗ @param mem the s e l e c t e d memory
∗ @param addre s s t h e s e l e c t e d addre s s
∗ @return the v a l u e in mem[ addre s s ]
∗/

public int getMem( int mem, int address ) ;

/∗
∗ @param mem the s e l e c t e d memory
∗ @param addre s s t h e s e l e c t e d addre s s
∗ @return the v a l u e in expected mem [ addre s s ]
∗/

public int getExpect ( int mem, int address ) ;

/∗
∗ @param pp the s e l e c t e d p r o c e s s i n g pa r t
∗ @param r f t h e s e l e c t e d r e g i s t e r f i l e −> 0=A . . 3=D
∗ @return the v a l u e in reg [ r f ] [ c u r r e n t p o i n t e r ]
∗/

public int getReg ( int pp , int r f ) ;

/∗
∗ @param pp the s e l e c t e d p r o c e s s i n g pa r t
∗ @param r f t h e s e l e c t e d r e g i s t e r f i l e −> 0=A . . 3=D
∗ @return the cu r r en t p o i n t e r f o r reg [ r f ]
∗/

public int getRfPtr ( int pp , int r f ) ;

/∗

87



∗ @param pp the s e l e c t e d p r o c e s s i n g pa r t
∗ @param r f t h e s e l e c t e d r e g i s t e r f i l e −> 0=A . . 3=D
∗ @param addr t h e s e l e c t e d addre s s
∗ @return the v a l u e in reg [ r f ] [ addr ]
∗/

public int getReg ( int pp , int r f , int addr ) ;

/∗
∗ @param a lu t h e s e l e c t e d ALU
∗ @return the v a l u e f o r ZA[ a l u ] ( eas t−west )
∗/

public int getZA ( int alu ) ;

/∗
∗ @param a lu t h e s e l e c t e d ALU
∗ @param re s t h e s e l e c t e d r e s u l t −> 1 or 2
∗ @return the v a l u e f o r r e s o u t ’ r e s ’ [ a l u ]
∗/

public int getResOut ( int alu , int r e s ) ;

/∗
∗ @param s e l t h e s e l e c t e d Loop Counter −> 1 . . 4
∗ @return the v a l u e f o r l c [ s e l ]
∗/

public int getLC ( int s e l ) ;

/∗
∗ @param lane th e s e l e c t e d l a n e o u t
∗ @return the v a l u e f o r l a n e o u t [ l ane ] ( t i l e −>ccu )
∗/

public int getLane ( int l ane ) ;

/∗
∗ @param lane th e s e l e c t e d l a n e i n
∗ @return the v a l u e f o r l a n e i n [ l ane ] ( ccu−> t i l e )
∗/

public int getLaneIn ( int l ane ) ;

/∗
∗ @param lane th e s e l e c t e n l a n e i n
∗ @param va l t h e v a l u e to put on the l ane
∗ @return t r u e i f succeeded
∗/

public boolean putLane ( int lane , int va l ) ;

/∗
∗ @param lane th e s e l e c t e d l a n e o u t
∗ @return the f l i t t y pe f o r t h e l a n e o u t data
∗/

public int getLaneFl i t ( int l ane ) ;

/∗
∗ @param lane th e s e l e c t e d l a n e o u t
∗ @return t r u e i f t h e r e i s data a v a i l a b l e
∗/

public boolean isDataWaiting ( int l ane ) ;

/∗
∗ @param which th e s e l e c t e d memory
∗ @return an e n t i r e memory −> 0 . . 9
∗/

public int [ ] getmem( int which ) ;

/∗
∗ Set T i l e s t a t e , f o r snapsho t r e co v e r y
∗/

public void s e tT i l e S t a t e ( T i l eS ta t e s t a t e ) ;

/∗
∗ @return the cu r r en t T i l e s t a t e
∗/

public Ti l eS ta t e g e tT i l eS t a t e ( ) ;

/∗
∗ @return a l l e r r o rou s memory l o c a t i o n s
∗/

public int [ ] [ ] v e r i f y ( ) ;

/∗
∗ r e s e t t h e i n t e r n a l T i l e s t a t e
∗/

public void i n i t ( ) ;

/∗

88



∗ wr i t e a l l memories and r e g i s t e r s
∗ t o f i l e s in / ou tpu t /
∗/

public void dump ( ) ;

/∗
∗ f a s t r e s e t , w i t h ou t r e l o a d i n g
∗/

public void c l e a r ( ) ;

/∗
∗ s e t GPI va l u e
∗/

public void setGPI ( int va l ) ;

/∗
∗ s e t a s i n g l e b i t in GPI
∗/

public void setGPIbit ( int pos ) ;

/∗
∗ c l e a r a s i n g l e b i t in GPI
∗/

public void c l rGPIb i t ( int pos ) ;

/∗
∗ o v e r r i d e an a c t i v e r e g i s t e r v a l u e
∗/

public boolean setReg ( int pp , int r f , int va l ) ;

/∗
∗ o v e r r i d e any r e g i s t e r v a l u e
∗/

public boolean
setReg ( int pp , int r f , int addr , int va l ) ;

/∗
∗ o v e r r i d e any memory va l u e
∗/

public boolean
setMem( int mem, int addr , int va l ) ;

/∗
∗ o v e r r i d e an eas t−west connec t i on
∗/

public boolean se tEast ( int pp , int va l ) ;
public boolean setWest ( int pp , int va l ) ;

/∗
∗ g e t t h e ouput o f an AGU
∗ @param mem the s e l e c t e d AGU
∗/

public int getAddr ( int mem) ;

/∗
∗ s t e p a s i n g l e c y c l e , update t h e e n t i r e
∗ i n t e r n a l s t a t e
∗/

public int s tep ( ) ;

Listing A.1: Simulation API

89





Appendix B

Montium Design Parameters

Parameters supported by both the compiler and the simulation generator:

parameter default description
CR ALU HEIGHT 8 Height of CR ALU Reg.
CR GINT HEIGHT 4 Height of CR GINT Reg.
CR LINTM HEIGHT 8 Height of CR LINTM Reg.
CR LINTR HEIGHT 8 Height of CR LINTR Reg.
CR MEML HEIGHT 16 Height of CR MEML Reg.
CR MEMR HEIGHT 16 Height of CR MEMR Reg.
CR RFAB HEIGHT 16 Height of CR RFAB Reg.
CR RFCD HEIGHT 16 Height of CR RFCD Reg.
CR SIO HEIGHT 8 Height of CR SIO Reg.
DEC ALU HEIGHT 32 Height of DEC ALU Reg.
DEC GINT HEIGHT 32 Height of DEC GINT Reg.
DEC LINT HEIGHT 32 Height of DEC LINT Reg.
DEC MEM HEIGHT 64 Height of DEC MEM Reg.
DEC REG HEIGHT 32 Height of DEC REG Reg.
IM SEQ HEIGHT 256 Height of IM SEQ Reg.
IR AGU BASEL HEIGHT 4 Height of IR AGU BASEL Reg.
IR AGU BASER HEIGHT 4 Height of IR AGU BASER Reg.
IR AGU BASE WIDTH 4 Width of IR AGU BASE Reg.
IR AGU MASKL HEIGHT 4 Height of IR AGU MASKL Reg.
IR AGU MASKR HEIGHT 4 Height of IR AGU MASKR Reg.
IR AGU OFFSL HEIGHT 16 Height of IR AGU OFFSL Reg.
IR AGU OFFSR HEIGHT 16 Height of IR AGU OFFSR Reg.
MEM ADDR WIDTH 10 Width of memory addresses.

Parameters supported at runtime by the simulation generator, but not currently supporter by the compiler:

parameter default description
NUM LOOP COUNTERS 4 The number of loop counters in the tile.
RF DEPTH 4 Depth of the register files.

Parameters the simulation generator can ‘easily’ be extended with:

parameter default description
DATAPATH WIDTH 16 The width of the datapath in bits.
NUM PP 5 The number of Processing Parts in a Tile.

91





Appendix C

Simulation Datastructure

/∗ A name f o r t h i s S imu la t i on ∗/
public St r ing program name , program path and program date ;

/∗ Constants f o r t h i s Montium TP in s t an c e ∗/
private stat ic f ina l int DATAPATH WIDTH = 16 ;
private stat ic f ina l int DATAPATH MAXINT = 32767;
private stat ic f ina l int DATAPATH MININT = −32768;
private stat ic f ina l int MEM ADDR WIDTH = 10 ;
private stat ic f ina l int MEM WIDTH WO BASE = 6 ;
private stat ic f ina l int MEM MINUS ONE = 1023;

/∗ Montium TP Var iab l e s , HEIGTH = 256 , NUM LOOP COUNTERS = 4 ∗/
private SequencerStateMachine ssm = new SequencerStateMachine (256 , 4 ) ;

/∗ Globa l I n t e r connec t s , f o r CCU communication ∗/
private int [ ] GB = { 0 ,0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0 } ;
private int [ ] l an e ou t bu f = new int [ 4 ] ;
private boolean [ ] data wa i t ing = new boolean [ 4 ] ;
private int [ ] l a n e i n bu f = new int [ 4 ] ;
private int FType = 0 ;
private boolean l a n e i n r e ady [ ] = { false , false , false , fa l se } ;

/∗ ou tpu t l a t c h e s f o r 5PPs ∗/
private int [ ] r e s ou t1 = new int [ 5 ] ;
private int [ ] r e s ou t2 = new int [ 5 ] ;

/∗ ’ e a s t ’ i n pu t s 5PPs ∗/
private int [ ] ZA = new int [ 6 ] ;

/∗ temp v a r i a b l e s f o r wsb s t o r a g e f o r 5PPs ∗/
private int [ ] wsbFU = new int [ 5 ] ;

/∗ r e g i s t e r f i l e s f o r 5PPs , 4 l o c a t i o n s deep ∗/
private int [ ] [ ] rfA = new int [ 5 ] [ 4 ] ;
private int [ ] [ ] r fB = new int [ 5 ] [ 4 ] ;
private int [ ] [ ] rfC = new int [ 5 ] [ 4 ] ;
private int [ ] [ ] rfD = new int [ 5 ] [ 4 ] ;

/∗ r e g i s t e r f i l e p o i n t e r s f o r 5PPs ∗/
private int [ ] r fA rd po i n t e r = new int [ 5 ] ;
private int [ ] r fB rd po i n t e r = new int [ 5 ] ;
private int [ ] r fC rd po i n t e r = new int [ 5 ] ;
private int [ ] r fD rd po in t e r = new int [ 5 ] ;

/∗ Loca l Memories f o r 5PPs ∗/
private int [ ] [ ] mem left = new int [5][1< <MEM ADDR WIDTH] ;
private int [ ] [ ] mem right = new int [5][1< <MEM ADDR WIDTH] ;

/∗ Memory Address R e g i s t e r s f o r 5PPs ∗/
private int [ ] memL address = new int [ 5 ] ; // cu r r en t addr e s s r e g i s t e r s
private int [ ] memR address = new int [ 5 ] ;
private int [ ] memL base = new int [ 5 ] ; // cu r r en t base r e g i s t e r s
private int [ ] memR base = new int [ 5 ] ;

Listing C.1: Basic Simulation Datastructure

93





Appendix D

FU Helper Methods

private int [ ] sbmask = { 1 ,2 ,4 ,8 ,16 } ;
private int [ ] ws = new int [ 5 ] ;

private f ina l int runtimeMux ( int a , int b , int pp){
i f ( B i tUt i l . checkBit ( g SB , pp ) ) { return b ; }
return a ;

}

private f ina l int setZeroNeg ( int value , int pp , int s t a tu s ){
i f ( value == 0) { ws [ pp ] |= 4; } // ze ro : 100
else i f ( value < 0) { ws [ pp ] |= 2; } // n e g a t i v e : 010

switch ( s t a tu s ){
case 0 : i f (ws [ pp ] >= 4) { g SB |= sbmask [ pp ] ; } ; // =0 (1−−)

break ;
case 1 : i f (ws [ pp ] < 2) { g SB |= sbmask [ pp ] ; } ; // >0 (00−)

break ;
case 2 : i f ( ( ws [ pp ] & 2) == 0) { g SB |= sbmask [ pp ] ; } ; // >=0 (−0−)

break ;
default : i f ( ( ws [ pp ] & 1) == 1) { g SB |= sbmask [ pp ] ; } ; // (−−1)

break ;
}
return value ;

}

private f ina l int f u l s l ( int a , int b){
int s h i f t = b & 15 ;
i f (b == 0) { return a ; }
int b i t s = a & DATAPATH MAXINT;
int r e s u l t = B i tUt i l . g e tB i t s ( b i t s <<s h i f t , 0 , 1 6 ) ;
int s i gn = ( r e s u l t > DATAPATH MAXINT) ? −1 : 1 ;
int f i l l = ( s i gn == −1) ?

( r e s u l t | (−1 ˆ (DATAPATH MAXINT) ) ) :
B i tUt i l . g e tB i t s ( r e su l t , 0 , 1 5 ) ;

return f i l l ;
}

private f ina l int f u l s r ( int a , int b){
return a >> (b & 15 ) ;

}

private f ina l int f u a s l ( int a , int b){
return f u l s l ( a , b ) ;

}

private f ina l int f u a s r ( int a , int b){
int s h i f t = b & 15 ;
i f ( a >= 0){ return a >> s h i f t ; }
else { return ( a >> s h i f t ) | (−1 << (DATAPATH WIDTH − b ) ) ; }

}

private f ina l int fu min ( int a , int b){
return Math . min (a , b ) ;

}

private f ina l int fu max ( int a , int b){
return Math .max(a , b ) ;

}

95



private f ina l int fu add wsb ( int a , int b , int pp){
int r e s u l t = a+b ;
i f ( ( ( a>0) && (b>0) && ( r e su l t <0)) | |

( ( a<0) && (b<0) && ( r e su l t >0)) ){
ws [ pp ] = 1 ;

}
return r e s u l t ;

}

private f ina l int fu add ( int a , int b){
return a+b ;

}

private f ina l int fu sadd wsb ( int a , int b , int pp){
int r e s u l t = Math . min ( a+b , DATAPATH MAXINT) ;
i f ( ( a+b) > r e s u l t ){ ws [ pp ] = 1 ; }
return r e s u l t ;

}

private f ina l int fu sadd ( int a , int b){
return Math . min ( a+b , DATAPATH MAXINT) ;

}

private f ina l int fu neg wsb ( int a , int b , int pp){
int r e s u l t = −a ;
i f ( ( r e s u l t & DATAPATH MAXINT) == (DATAPATH MAXINT) ){ ws [ pp ] |= 1; }
return r e s u l t ;

}

private f ina l int fu neg ( int a , int b){
return −a ;

}

Listing D.1: FU Helper Methods

96



Appendix E

Source used for
Benchmarking the CCU

// Mu l t i p l y−accumla te op e r a t i on
proc mac

rep i <− 1 2 3 4 5
alu (p . i . a1 fmul p . i . c1 ) sadd p . i . d1 −> p . i . o1

end
end

//−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

s t a r t : c l o ck
f r z
jnc gpi1 s t a r t

default
weak agu p1m1 p5m1 =0 |=0

c lock
agu p1m1=0

l l c l c 3 100
loop1 : c l o ck

l l c l c 2 1022
mov ext2 −> p1a1 p2a1 p3d1 p4c1 p5d1

loop2 : c l o ck
l l c l c 1 1022
mov ext2 −> p1c1 p2d1 p3c1 p4d1 p5a1

macloop : c l o ck
mov ext2 −> p1d1 p2c1 p3a1 p4a1 p5c1
c a l l mac
mov data p1o1 −> ext2
mov data p2o1 −> ext3
mov data p3o1 −> ext4
loop l c 1 macloop

c lock
loop l c 2 loop2

c lock
loop l c 3 loop1

c lock
s e t gpo1 // s i g n a l ’Done ’

c l ock
f r z // f r e e z e t h e PPA
c l r gpo1 // c l e a r ’Done ’

c l ock
f r z // f r e e z e t h e PPA
jmp s t a r t // jump to s t a r t o f program

// end

Listing E.1: CDL Source used for Benchmarking the CCU

97


