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Abstract 

One nonlinear effect in transceiver systems is the phase modulation at the output due to amplitude 

modulation at the input (AM/PM conversion). These changes in phase are undesired and limit the 

performance of RF systems. For the development of new technologies like advanced radar, 

suppression of AM/PM conversion effects will be vital. This research has focussed on characterizing 

these effects in a simplified model to gain insight that can be used to synthesize better transceiver 

systems.  

To this end, a first-order low-pass RC-circuit with a nonlinear capacitor has been presented as a 

simplified equivalent circuit to heterojunction bipolar transistors (HBTs) for the modelling of AM/PM 

conversion effects in transceiver systems. Two different analyses have been performed to characterize 

the AM/PM conversion effects in this simplified RC-circuit after which the impact of circuit parameters 

on the effects has been identified. To deepen insight, several simplifications and assumptions have 

been introduced in both analyses; their impact on the model accuracy has been considered. 

First, a frequency domain analysis has been conducted to characterize the nonlinear phase component 

of the fundamental frequency that depends on the input amplitude. This model is only valid for 

modelling weak nonlinearities due to the omission of the influence of higher harmonics, but has shown 

to be a good approximation to AM/PM conversion in HBTs for relatively small input amplitude values. 

A second method does include these higher harmonics; this time domain based analysis of the 

deviation in zero-crossing timings was found to hold for slightly stronger nonlinearities in HBTs.  

Theoretical analysis in both the frequency and time domain indicated that the AM/PM conversion 

effects in the first-order low-pass RC-filter could be reduced by reducing either the value of the 

resistor, the value of the third-order nonlinear capacitance constant or the input frequency. 

Simulations have verified these claims, but have also shown that the cut-off frequency plays a major 

role in the accuracy of the theoretical approximations.  
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1 Introduction 
Front-ends in RF systems handle high-frequency signals; they impose strict requirements on the 

circuitry of the band-pass filter, low-noise amplifier, local oscillator and mixer that generally comprise 

such signal chains. Linearity imposes a major limit on the performance of RF circuits and therefore 

plays a significant role in RF system development. Recent developments in mobile communications 

technology have strengthened the need for proper modelling of nonlinear effects, as intermodulation 

effects and crosstalk become increasingly more important in the synthetization of better RF front-

ends [1].  Another nonlinear effect is the phase deviation as a result of the unwanted amplitude 

modulation of the input signal (AM/PM conversion).  

The origin of AM/PM conversion effects can be found in active devices like the transistor. 

Nonlinearities in transistors have been the subject of many research papers which have led to the 

acquisition of mathematical models, simulations and experimental results [2], [3]. Due to the 

improved performance of heterojunction bipolar transistors (HBTs) in RF applications over traditional 

BJTs, research focus has partly shifted to these  devices [4]. 

Recent research on AM/PM conversion effects in HBTs has been directed to effect optimization [5], 

the development of physical models of both AM/AM and AM/PM effects [6] and experimental 

verification of simulation results [7]. A mathematical analysis on the influence of circuit and device 

properties on AM/PM conversion to benefit the design of RF systems is still lacking. The aim of this 

research will therefore be to understand and characterize AM/PM conversion effects in HBTs by 

presenting (simplified) mathematic models, verifying these models with simulations and using the 

results to synthesize better transceiver systems (transceivers are systems that share part of the above-

mentioned circuitry for both transmission and reception).  

2 Report Structure 
The structure of this report entails a clear path to the conclusions drawn on the above-mentioned aim 

of the research. First, the problem statement is introduced. This section contains several supporting 

questions that will be answered in this report. After the problem statement, the theory needed to 

understand the concepts at hand, has been presented. This has been done by including a general 

mathematical characterization of nonlinear systems and a discussion on the tools needed to evaluate 

AM/PM conversion effects in such systems. The basic theory is succeeded by an analysis of RF systems 

in which the emphasis has been laid on the origin of AM/PM conversion effects. Several simplifications 

will be presented that increase insight in the behaviour of the nonlinearities by reducing some of the 

complexity required in accurately modelling AM/PM conversion effects. The validity of the 

assumptions that have been used to construct these simplifications will be assessed.  

In addition, the effects of AM/PM conversion on the zero-crossings of HBTs have been characterized 

with a simplified model. Characterizing AM/PM conversion in the time domain through such an 

analysis on zero-crossings enables looking into the effects of higher harmonics on the output 

waveform; the influence of the higher harmonics on the time domain wave form cannot be evaluated 

conveniently when one analyses the phase of the first harmonic in the frequency domain. This 

limitation on this specific frequency domain analysis makes it more complicated to use it for the 

evaluation of systems that cannot be approximated by linear behaviour (e.g. strong nonlinear 

systems). The ability of the time domain analysis to conveniently capture the influence of higher 

harmonics makes that it is the preferred method for the analysis on zero-crossings in strong nonlinear 

systems. Therefore, a time domain model to characterize the translation of AM/PM conversion into 

zero-crossing shifting will be presented and the interchangeability with the frequency domain through 

the Fourier transform will be addressed. Simulations have been performed to validate this 
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mathematical model. Results from both mathematical expressions and simulations yielded several 

conclusions that will be presented and discussed.  

3 Problem Statement 
As stated in the introduction, the aim of this research will be to characterize AM/PM conversion effects 

in HBTs, verify the mathematical model with simulations and use the results to synthesize better 

transceiver systems.  

Rephrasing leads to the main research question:  

How can mathematical models and simulations on AM/PM conversion effects 

be used to synthesize better transceiver systems?  

Supporting questions have been formulated to increase insight in the components the answer to the 

main question is expected to contain, see below. 

1. How can AM/PM conversion be mathematically characterized?  

2. Noting that a model of a Heterojunction Bipolar Transistor (HBT) will be used to represent the 

transceiver system, which properties characterize the performance of such a transistor?  

3. How can the relation between the properties of HBTs and AM/PM conversion effects be 

characterized?  

4. Noting the answer to question 3, how can AM/PM conversion effects in transceiver systems 

be mathematically characterized?  

5. How can AM/PM conversion effects in HBTs be simulated in a simple enough, yet accurate, 

model?  

6. How can this model be used to verify mathematical models on the relation between AM/PM 

conversion effects and HBT characteristics? 

7. How do the conclusions extracted from the mathematical model and simulations for HBTs 

extend to transceiver systems in general?  

Note that the supporting questions have been numbered, not bulleted, as they represent the structure 

of the approach to the answer to the main research question. The Theory section in this report will 

contain the mathematical analysis required to answer the above questions. The Method section will 

cover the verification of these mathematical results with simulations. 

4 Theory 
This section contains the theory needed to answer the research question in the Problem statement 

section. 

Before an analysis into the transfer of amplitude modulation at the input into phase modulation at 

the output can be performed, it is necessary to classify the type of systems in which AM/PM 

conversion can occur. The analysis that will be required to accurately and correctly characterize 

AM/PM conversion depends on the type of system it will be applied to. In the case that approximations 

are applied (that can for instance cover the need for a reduction in complexity), its limitations must 

be known and they, too, depend on the system the approximation is applied to. The first three sections 

of this chapter will therefore contain both an explanation on the types of systems that can exhibit 

AM/PM conversion and the analysis techniques that can be applied to model them.  

The remainder of this chapter describes what elements contribute to the manifestation of AM/PM 

conversion in transceivers and how these elements and their relation to AM/PM conversion can be 

modelled in a simple, yet accurate enough, model.  
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4.1 Characterizing systems and their relation to AM/PM conversion 
The conversion of Amplitude Modulation at the input of a system into Phase Modulation at the output 

(AM/PM Conversion) is a nonlinear effect. The reason for this becomes apparent when one looks at 

the characterization of linear systems. In a generic linear system, if the outputs in response to inputs 

𝑥1(𝑡) and 𝑥2(𝑡) are expressed as 

𝑦1(𝑡) = 𝑓[𝑥1(𝑡)] 

𝑦2(𝑡) = 𝑓[𝑥2(𝑡)] 

then, 

𝑎𝑦1(𝑡) + 𝑏𝑦2(𝑡) = 𝑓[𝑎𝑥1(𝑡) + 𝑏𝑥2(𝑡)]. 

Since modulation of the input amplitude can never yield a modulation of phase at the output if this 

output is expressed as the linear combination of responses to individual inputs, only a nonlinear 

system could potentially generate AM/PM conversion. This means that linear circuit analysis tools 

cannot be used to exactly model these effects. This does not mean, however, that linear circuit 

analysis cannot be used at all, as it can be an effective way to simplify complex nonlinear circuits. Next 

to that, several researchers have looked into extending linear analysis methods to nonlinear versions. 

An example is the extension of the phasor method to model harmonic distortion in weakly nonlinear 

circuits [8]. The next section will discuss nonlinear systems and their relation to AM/PM conversion 

effects.  

4.2 Nonlinear systems 
As previously mentioned, nonlinear systems are all systems that do not exhibit linear behaviour. They 

can be divided into two categories: static or dynamic nonlinear systems. An example of a dynamic 

nonlinear system is a system that contains one or more storage elements. On the other hand, 

‘memoryless’ or ‘static’ systems generate outputs that do not depend on past values of the inputs. 

A general mathematical description of such a static system can be given by  

𝑦(𝑡) = 𝛼0 + 𝛼1𝑥(𝑡) + 𝛼2𝑥2(𝑡) + 𝛼3𝑥3(𝑡) + ⋯ 

Note that in the case of weakly nonlinear circuits, this expression is truncated to a certain order, 

meaning that such a system can be properly approximated by the terms up to that order. For transistor 

distortion (that is often small [2]), the expressions in this Thesis will be assumed to correctly model 

the effects when the terms up to and including the third-order are included. Hence, the expression 

will be truncated after the third-order degree. If this expression would be excited by a carrier wave 

with a certain amplitude as described by 𝑥(𝑡) = 𝐴 cos(𝜔𝑡), the output of a weakly nonlinear system 

truncated after the third-order term would be equal to  

𝑦(𝑡) ≈ 𝛼0 +
𝛼2𝐴2

2
+ (𝛼1𝐴 +

3𝛼3𝐴3

4
) 𝑐𝑜𝑠(𝜔𝑡) +

𝛼2𝐴2

2
𝑐𝑜𝑠(2𝜔𝑡) +

𝛼3𝐴3

4
𝑐𝑜𝑠(3𝜔𝑡) 

Several conclusions can be extracted from the above expression:  

- Memoryless nonlinear systems do not exhibit AM/PM conversion, since the harmonics do not 

contain a phase-term that could possibly depend on the amplitude of the input.  

- Effects of the third harmonic map onto the carrier wave frequency.  

- The second harmonic yields a term at DC.  
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In addition, note that odd-symmetric circuits, like fully differential circuits, have a special property 

that directly impacts the above result; even harmonics are cancelled out by the odd-symmetric nature 

of the circuit.   

All other nonlinear systems are called ‘dynamic’ and are capable of storing information which can 

impact the behaviour of the system. A general mathematical description of a dynamic nonlinear 

system is given by  

𝑦(𝑡) ≈ 𝛼0 + 𝛼1𝑥(𝑡 − 𝜏1) + 𝛼2𝑥2(𝑡 − 𝜏2) + 𝛼3𝑥3(𝑡 − 𝜏3) + ⋯ 

Again, if this system is excited by the same sinusoid and assumed to be weakly nonlinear, one finds 

𝑦(𝑡) ≈ 𝛼0 +
𝛼2𝐴2

2
+ 𝛼1𝐴 cos(𝜔(𝑡 − 𝜏1)) +

3𝛼3𝐴3

4
cos(𝜔(𝑡 − 𝜏3)) +

𝛼2𝐴2

2
cos(2𝜔(𝑡 − 𝜏2))

+
𝛼3𝐴3

4
cos(3𝜔(𝑡 − 𝜏3)) 

As was the case with static nonlinear systems, the following holds for dynamic nonlinear systems: 

- Effects of the third harmonic map onto the carrier wave frequency. 

- The second harmonic yields a term at DC.  

However, in contrast to static systems, one finds that the system’s timing constants 𝜏1, 𝜏2 and 𝜏3 

determine the phase of the output. These timing constants depend on the configuration of the system 

and can therefore also depend on the input amplitude. In other words, it is possible that AM/PM 

conversion effects manifest themselves in dynamic nonlinear circuits.  

4.3 Analysing dynamic nonlinear systems 
Since only dynamic nonlinear circuits can exhibit AM/PM conversion, it is necessary to use analytical 

methods that can cover such systems. It was already mentioned in the introduction that linear circuit 

analysis methods can be used as a basis to approximate nonlinear systems if their nonlinearities are 

small. The main advantage of using this method is the reduction in complexity that can be achieved 

(linear circuit analysis methods are often simpler than nonlinear versions due to for instance the 

possibility to use the technique of superposition or to use phasor analysis). The main disadvantage is 

the reduction in accuracy of the results that linearizing nonlinear effects leads to.  

To increase this accuracy, methods can be used that specifically consider the dynamic nonlinear nature 

of circuits, but a disadvantage in general for such methods is that they can be much more complicated 

and require more computations to obtain results. One method to calculate the steady-state response 

of dynamic nonlinear systems is called ‘harmonic balance’; it uses Kirchhoff’s Current Law written in 

the frequency domain.  

An alternative to the ‘harmonic balance’ method is the ‘Volterra series’ approach. This method is also 

based on a recursive set of steps that compute the response of the circuit without the need to solve 

nonlinear equations. As did the ‘harmonic balance’ method, the ‘Volterra series’ method has some 

disadvantages [2]. 

First, if the rate of convergence of a circuit is not rapid, the cumbersome higher-degree terms cannot 

be neglected (usually the system is then in a strong nonlinear regime). As a result, this method cannot 

conveniently represent gross nonlinearities, as computer programs will be required to perform the 

mathematical analysis (often limiting insight). Second, the results of this multidimensional transform 

cannot be easily transformed to the time domain and finally, the technique is not useful for 

determining the stability of a nonlinear differential equation.   
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When it comes to modelling transistor distortion however, the use of the ‘Volterra series’ offers 

distinct advantages. The method can be used to represent frequency dependent systems, such as 

amplifiers containing transistors. In addition, the nonlinearities that are of interest to the modelling 

of AM/PM conversion effects exhibit small changes such that the lower-degree terms are sufficient 

for an accurate model: the transistors are assumed to be working in the weakly nonlinear region. The 

main advantage of using this method is that the Volterra kernels contain the phase modulation of the 

system with respect to certain signals at the input. Hence, the ‘Volterra series’ method is capable of 

modelling AM/PM conversion effects. Many literature sources have covered the use of the Volterra 

series, see for instance [9, p. 81]. 

The complex nature of nonlinear effects in general, and therefore also of AM/PM conversion, requires 

deeper understanding than is often needed for the analysis of linear effects. Therefore, to increase 

the understanding of AM/PM conversion, simplifications will be made that increase insight. This is the 

main reason why the analysis in the following sections will be based on linear circuit analysis methods 

in which nonlinear expressions will be substituted. If needed and beneficiary for the results of this 

Thesis, the accuracy of the results can be increased by performing a Volterra series analysis.   

4.4 The origin of nonlinear effects in transceiver systems 
To be able to model the AM/PM conversion effects in transceiver systems, one must first know why 

they occur and by which nonlinearities they are caused. Therefore, nonlinearities in transceivers will 

now be looked into. A general representation of a transceiver can be found in Figure 1.  

 

Figure 1: Schematic representation of a transceiver [9].  

Every block of the transceiver in Figure 1 contains nonlinear elements. However, most of these 

nonlinear elements can be properly approximated by linear behaviour. The active nature of the 

circuitry comprising transceivers is directly related to nonlinearities that cannot be completely 

linearized. Due to the amplifying properties of certain transistor configurations, these nonlinear 

effects tend to become dominant. This is why the focus of this research will be set to the transistor, 

or more specifically, to the heterojunction bipolar transistor as these devices are used in higher-

frequency and/or higher power RF-circuits.  

4.5 Modelling nonlinearities in HBTs 

Maas et al. [4] have published a model for the heterojunction bipolar transistor. They use the method 

of nonlinear currents based on the Volterra series to model nonlinear effects that are present in 

systems containing HBTs, due to intermodulation. The linearized and simplified equivalent circuit 

(without parasitics) of the HBT has been depicted in Figure 2.  
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Figure 2: Simplified, linearized equivalent circuit of the HBT [4]. The main nonlinearities have been indicated with a red 
circle.  

In addition, the authors [4] present a complete nonlinear equivalent circuit of the HBT including 

parasitics, this can be found in Figure 3. This model differs from the one in Figure 2 as also relatively 

small properties contributing to the device’s nonlinearity have now been modelled with circuit 

elements.   

  

Figure 3: Complete nonlinear equivalent circuit of the HBT [4]. The main nonlinearities have been indicated with a red circle. 

The main nonlinearities in HBTs are the depletion region, modelled as an ideal junction diode, the 

capacitive junction and the nonlinear current source 𝐼𝐶(𝐼𝐸) [4, p. 446], see the red circles in Figures 2 

and 3. 

Although the model has been used in the paper to model intermodulation distortion in HBTs, it can 

be applied to aid the modelling of the AM/PM conversion effects as these are caused by the same 

nonlinearities. However, before the relation between AM/PM conversion and the above presented 

nonlinearities can be analysed, it is important to verify the model; an incomplete or incorrect model 

might fail to properly identify the nonlinearities that cause AM/PM conversion and/or fail to enable 

the derivation of the mathematics needed to evaluate the influence of HBT nonlinearities on AM/PM 

conversion. To this end, an analysis aimed at verifying the scientific basis of the model has been 

applied to ‘Intermodulation Distortion in Heterojunction Bipolar Transistors’ [4], please refer to 

Appendix 10.1.  

The conclusion of this analysis is that the model has been sufficiently justified with a verification of 

model predictions through measurement results. However, the information that is necessary to 
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reproduce the findings is not complete, this makes verification by others difficult. Considering that the 

measurement results mainly cover intermodulation distortion and not AM/PM conversion, the 

verification of these results is of little importance to this thesis. In addition, in the case that the model 

is incomplete, the nonlinearities that the model is then missing are small as the main nonlinearities 

have already been modelled (depletion region and nonlinear current source). These two arguments 

will be considered to sufficiently justify the use of this model to model AM/PM conversion effects in 

HBTs.  

Consider the model in Figure 3 again; it contains nine components that together model the behaviour 

of an HBT. To be able to better understand how AM/PM conversion works, several assumptions will 

be made that considerably simplify the circuit: 

1. The parasitic capacitances 𝐶𝑏𝑐 and 𝐶𝑐𝑒 are assumed to be neglectable.  

2. The parasitic resistors 𝑅𝑏1, 𝑅𝑏2 and 𝑅𝑒𝑒 are assumed to be neglectable. 

3. Capacitance 𝐶𝑏𝑒 will be modelled to contain both the nonlinear effects of its own capacitance 

and the nonlinear effects of the diode placed in parallel.  

The nonlinear current source of the HBT is one of the dominant nonlinearities. This poses a problem 

to the mathematical evaluation of the HBT’s behaviour as it means that the nonlinearity of the base-

emitter junction will be amplified by a nonlinear function. As a result, evaluating the nonlinearities 

individually will be difficult. Therefore, to simplify the analysis into AM/PM conversion, the 

nonlinearity of the base-emitter junction will be looked into separately by assuming that the 

amplification is sufficiently linear and that the influence of the collector current on the signal at the 

base is neglectable.   

Note that in the above proposed case where the amplification of the voltage across the base and 

emitter can be considered sufficiently linear, the current source included in the model is not needed 

for the characterization of the AM/PM conversion effects as it would only linearly amplify the signal. 

Extending this reasoning, one can state that if resistor 𝑅𝑐 is linear, the voltage drop across it will be 

directly (and linearly) proportional to the voltage across the base-emitter through 𝑉𝑐 ≈ 𝐼𝑐𝑅𝑐 ≈

𝛼𝑉𝑏𝑒𝑅𝑐. Considering that the small signal output of the transistor is then also linearly related to the 

voltage drop across 𝑅𝑐, the relation between input amplitude modulation and output phase 

modulation will be reduced to the relation between input AM and the phase modulation at the base 

of the HBT. This relation will therefore be the main focus of this research.  

Although the dominant nonlinearities will be part of the simplification, question remains if the 

omission of 7 of the 9 components and the merger of the diode and capacitor into one nonlinear 

capacitance simplifies the circuit too much. The discussion section will contain an analysis on the 

impact of these simplifications on the results.   

After taking into account all assumptions mentioned above, the source impedance and base-emitter 

capacitance will form a first-order low-pass RC-circuit of which the nonlinear capacitor is the main 

source of nonlinearities. Hence, the next section will cover its effects on AM/PM conversion.  
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4.6 AM/PM conversion in a nonlinear capacitor 
A nonlinear capacitor is both a dynamic and a nonlinear system, therefore it can cause 

AM/PM conversion. To see how, consider the following capacitor expressions that apply to 

Figure 4: 

𝐶𝐿 = 𝐶1 

𝐶𝑁𝐿2 = 𝐶1 + 𝐶2 ∙ 𝑉𝑐 

𝐶𝑁𝐿3 = 𝐶1 + 𝐶2 ∙ 𝑉𝑐 + 𝐶3 ∙ 𝑉𝑐
2 

 where  𝐶1 is the linear capacitance constant, in Farad 

  𝐶2 is the second-order capacitance constant, in Farad 

  𝐶3 is the third-order capacitance constant, in Farad 

  𝑉𝑐 is the voltage across the capacitor, in Volts.  

Figure 5 contains a plot of the capacitance curves described above.  

 

Figure 5: Plot of the capacitance expressions over 𝑉𝑐 . 𝐶1, 𝐶2 and 𝐶3 have been set to 100 pF, 1 pF and 1 pF respectively.  

If one would apply two different sinusoidal waves across the capacitor, as depicted in Figure 6, the 

nonlinear capacitance values will change over time, see Figure 7.  

 

Figure 6: Plot of the relation between voltage and time of two sinusoids with different amplitudes.  

 

Figure 4: Nonlinear 
capacitor.  
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Figure 7: Plots showing the capacitance variation over time for the capacitance values 𝐶𝐿, 𝐶𝑁𝐿2 and 𝐶𝑁𝐿3 for the two 
voltage functions defined in Figure 6.  

Figure 7 shows that the linear capacitance expression has no dependence on amplitude, see the 

dotted line in both plots. However, the nonlinear expressions (represented by the solid and dashed 

lines) do depend on the amplitude of the signal applied across them. For both the 2nd-order and 3rd-

order dependence, the Root Mean Square (RMS, or quadratic mean) value is different and amplitude 

dependent. This can be seen in Figure 7 by comparing the RMS value of the dashed and solid lines in 

both plots for 2nd- and 3rd-order respectively.  

Applying an amplitude-modulated signal across a nonlinear capacitor would generate a directly 

related variation of the capacitance. The capacitance value determines the behaviour of the system 

and has an impact on the way the system transfers the input signal to the output: in this case, the 

transfer function will change with a change in input amplitude due to its dependence on the nonlinear 

capacitor. This effect is the foundation of the manifestation of AM/PM conversion effects in circuits 

containing nonlinear capacitors or similar components that manifest nonlinear dynamic behaviour. 

Note that in the case of a regular sinusoid at the input without any modulation in amplitude, no 

AM/PM conversion will take place, as there would be no change in quadratic mean of the capacitance.  

The above presented theory shows that the capacitance constants can exert influence on AM/PM 

conversion effects in transceiver systems. Now that it is clear that the nonlinear capacitances in 

transistors are a cause for AM/PM conversion, one can take a step back and consider how these 

conclusions apply to the simplified model of the HBT: the first-order low-pass RC-circuit. This 

information can subsequently be used to present solutions that can be applied to improve this 

unwanted behaviour.  

4.7 AM/PM conversion in a first-order low-pass RC-section 
Consider the first-order low-pass RC-circuit depicted below as an equivalent circuit to the HBT, in 

Figure 8.  
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Figure 8: First-order low-pass RC-filter.  

The capacitor is weakly nonlinear and its capacitance will be described by the same terms as in Section 

4.6: 

𝐶(𝑉𝐶) = 𝐶1 + 𝐶2 ∙ 𝑉𝑐 + 𝐶3 ∙ 𝑉𝑐
2 = 𝐶1 + 𝐶2 ∙ 𝑉𝑜𝑢𝑡 + 𝐶3 ∙ 𝑉𝑜𝑢𝑡

2  

 in which 𝑉𝑐 is the voltage across the capacitor which is equal to 𝑉𝑜𝑢𝑡, in this particular case. 

To calculate the phase of the output at the fundamental frequency, this capacitance value can be 

inserted in the differential equation of this circuit: 

𝑅(𝐶1 + 𝐶2 ∙ 𝑉𝑜𝑢𝑡 + 𝐶3 ∙ 𝑉𝑜𝑢𝑡
2 ) ∙

𝑑𝑉𝑜𝑢𝑡

𝑑𝑡
+ 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 

 in which 𝑉𝑜𝑢𝑡 is the output voltage of the circuit and 𝑉𝑖𝑛 is the voltage applied at the input.  

The solution of this equation can be approximated through applying the Volterra series, discussed in 

the Section 4.3.  

However, the elaborative nature of the higher order kernels makes it hard to evaluate the nonlinear 

output of the circuit by hand. Next to that, extracting information on the phase from Volterra series 

is complex. Therefore, to increase insight in circuit behaviour, linear circuit analysis tools will be 

applied as proposed in Section 4.3. Approximation the circuit behaviour through linear circuit analysis 

will be considered justified due to the small nonlinear capacitance constants 𝐶2 and 𝐶3 in relation to 

the linear coefficient 𝐶1 (thus assuming a weakly nonlinear regime). The validity of this assumption 

will be covered in the discussion section of this report. Appendix 10.2 contains the mathematics 

required to obtain the following approximation of the amplitude dependent phase, related to Figure 

8: 

𝜙(𝐴) = −
𝑅𝐶3𝜔𝑖𝑛𝐴2

2
 

in which  𝑅 is the value of the resistor, in Ohms 

𝐶3 is the value of the third-order capacitance constant, in Farad 

𝜔𝑖𝑛 is the value of the frequency applied to the input, in rad/s 

𝐴 is the peak-amplitude of the input signal, in V. 

Note that next to the above-mentioned assumption that the capacitance can be approximated with 

linear circuit analysis methods by considering the average of its capacitance value with a periodic 

variation (assuming the periodic variation of the envelope of the input signal) over time, two other 

assumptions have been made:  

- The input frequency is assumed to be well below the cut-off frequency of the circuit 

(𝑅𝐶𝜔 ≪ 1).  

+ 

- 

𝑖𝑖𝑛 
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- The system is fully differential, meaning that the even harmonics are suppressed.  

The approximated relation between input amplitude and the phase shift shows that there are several 

parameters that exert influence on the magnitude of this phase shift: 

- The time constant of the third-order nonlinearity within the RC-circuit (𝑅𝐶3). 

- The fundamental frequency of the input (𝜔𝑖𝑛). 

- The peak/rms amplitude of the input signal (𝐴).  

The first two can be altered to minimize the effects of the third parameter, the actual dependence of 

the phase on input amplitude. According to the approximation, decreasing the time constant of the 

third-order nonlinearity in the RC-circuit under a fixed input frequency whilst conserving proper 

biasing of the HBT would decrease the magnitude of AM/PM conversion effects.  

However, the bias mode used and also the level at which the HBT is biased determine the magnitude 

and DC voltage that will appear across the base-emitter capacitance. This has an impact on the 

nonlinearity that the capacitor exhibits within the circuit and hence reduces the analogy between the 

low-pass filter and the small signal equivalent of the HBT. Linear approximations cannot be used to 

model strong nonlinear behaviour and one would expect that with an increase in the strength of the 

nonlinear behaviour, the accuracy of the approximation will reduce.  

The simple first-order low-pass RC-filter should be adjusted to analyse if adjustments can be made 

such that a better approximation of the behaviour of the HBT can be obtained (that is capable of 

modelling stronger nonlinearities). Appendix 10.3 contains the mathematical analysis similar to the 

one in Appendix 10.2, with two additional circuit configurations: Figure 9 includes the internal base 

resistance and Figure 10 includes the diode in Figure 3, as a linear resistor (the nonlinearities of the 

diode are still included in the nonlinear expression for the capacitance of the base-emitter junction).  

 

Figure 9: RRC-circuit resembling the simplified internal base-emitter structure of an HBT including the source resistance of the 
signal applied to the base.  

 

Figure 10: First-order low-pass RC-filter with additional resistor in parallel to the capacitor. 

4.8 Zero-crossings in relation to AM/PM conversion 
So far, models based on frequency analysis were mentioned. However, time domain can also be used 

to describe dynamic nonlinear system and therefore also the RC-circuit treated thus far. The theory 



16 
 

discussed before increased understanding of the phenomenon that amplitude modulation at the input 

of RF-circuits can transfer into phase modulation at the output of such circuits (refer to plots 5, 6 and 

7 in section 4.6).  

Although the approximations indicate that the magnitude of the effects can be decreased by 

minimalizing the third-order timing constant of RC-circuit configurations within transistor circuits and 

by reducing the input frequency, they can never be fully suppressed without losing proper circuit 

performance. Suppression of AM/PM conversion effects effectively boils down to a trade-off between 

signal amplitude and suppressing the influence of nonlinearities that cause AM/PM conversion. 

Maintaining proper circuit operation is paramount to the development of better transceivers and 

therefore the reduction of AM/PM conversion effects is limited and an analysis of larger signal swings 

is required. 

As the input amplitude of the signal applied to the base of the transistor is increased, the nonlinearity 

of the device will increase. An increase in amplitude will lead to violation of the bias point as the signal 

swing is too large to approximate the 𝑉𝐵𝐸 − 𝐼𝑐 curve with a linear approximation. Therefore, 

increasing the input amplitude too much will push the transistor out of the weakly nonlinear regime 

and as a result, the frequency domain analysis that has been used up to now is not suitable anymore 

to analyse AM/PM conversion. Characterizing the phase shift in terms of zero-crossings allows 

inclusion of higher harmonics on the output signal as the signal is evaluated at certain time instants 

(thus allowing analysis of all frequencies that comprise the signal at that time instant). This relation 

between zero-crossings (time-domain) and AM/PM conversion is expected to hold for stronger 

nonlinear behaviour. The next sections will cover this relation.  

4.8.1 Relation between phase and zero-crossing values 
In general, the relation between the phase and zero-crossings of any cosine can be characterized by 

the following. Consider a general representation of a cosine:  

𝑉(𝑡) = 𝐴 cos(𝜔𝑡 + 𝜙) 

The zero-crossings can be found by equating this signal to zero:  

𝑉(𝑡) = 0 → cos(𝜔𝑡 + 𝜙) = 0 

𝜔𝑡 + 𝜙 =
𝜋

2
+ 𝜋 ∙ 𝑘 

𝑡(𝑘) =
1

𝜔
(

𝜋

2
+ 𝜋 ∙ 𝑘 − 𝜙) 

The value of the k-th zero-crossing depends on the phase of the signal itself, but how does it depend 

on the system? The relation between frequency domain descriptions of systems and the phase in the 

time domain can be characterized as follows. Take a system in the frequency domain:  

𝑌(𝜔) = 𝐻(𝜔)𝑋(𝜔) 

Now transform this into a time domain expression [10]:  

𝑦(𝑡) = |𝐻(𝜔)𝑋(𝜔)| cos(𝜔𝑡 + arg(𝐻(𝜔)𝑋(𝜔))) = |𝐻(𝜔)𝑋(𝜔)| cos(𝜔𝑡 + 𝜙 + arg(𝐻(𝜔)) 

One can see that the argument of the transfer function directly translates into a contribution to the 

phase of the output; this effect will be very important in the following derivation of the relation 

between AM/PM conversion and zero-crossings. Before proceeding, one should note in addition that, 

depending on the expression of 𝑋(𝜔) or 𝐻(𝜔), |𝐻(𝜔)𝑋(𝜔)| can also have an impact on the phase of 

the output.  



17 
 

4.8.2 Approximating the relation between zero-crossings and AM/PM conversion 
Based on the same assumptions that were deemed to justify the use of linear circuit analysis tools to 

model AM/PM conversion effects, the relation between zero-crossings and AM/PM conversion will be 

mathematically characterized. For this, please consider the first-order low-pass RC-filter in Figure 8 

along with its assumptions explained in Section 4.7 once more. An amplitude modulated signal will be 

applied to it that adheres to the following equation:  

𝑉𝑖𝑛(𝑡) = 𝐴 cos(𝜔𝑡) = 𝐴𝑐(1 + 𝑚 cos(𝜔𝑚𝑡)) cos(𝜔𝑡) 

Appendix 10.4.1 contains the derivation of the following expression: 

𝑡𝑍𝐶(𝑘) =
1

𝜔𝑖𝑛
(

𝜋

2
+ 𝜋 ∙ 𝑘

+ arctan (𝜔𝑖𝑛𝑅 (𝐶1 + 𝐶2𝐴𝑐(1 + 𝑚 cos 𝜔𝑚𝑡) cos 𝜔𝑖𝑛𝑡

+ 𝐶3(𝐴𝑐(1 + 𝑚 cos 𝜔𝑚𝑡))
2

cos2 𝜔𝑖𝑛𝑡)))  

in which  - 𝑡𝑍𝐶   is the value of the kth zero-crossing in seconds 

- 𝜔𝑖𝑛  is the value of the carrier frequency in rad/s 

- 𝑅   is the value of the resistor in Ohm 

- 𝐶1, 𝐶2 and 𝐶3  are the 1st-, 2nd-  and 3rd-order capacitance constants in F  

- 𝑚   is the modulation factor 

- 𝐴𝑐   is the peak-amplitude of the carrier wave in Volts 

- 𝜔𝑚   is the frequency of the modulator signal in rad/s. 

This expression for the zero-crossings can be related to the frequency domain approximation that has 

been derived and presented in Section 4.7. Considering the limitation of the method that was used to 

obtain that approximation, the expression obtained through the time domain method can be 

transferred into a similar approximation as the one in Section 4.7 by considering only the fundamental 

frequency of the carrier. If one achieves this by filtering out all other frequencies, one can rewrite the 

above expression for 𝑡𝑍𝐶(𝑘) to the following (note that the amplitude modulation used in this section 

has been left out to show the analogy): 

𝑡𝑍𝐶 (𝑓)(𝑘) =
1

𝜔𝑖𝑛
(

𝜋

2
+ 𝜋 ∙ 𝑘 + 𝜔𝑖𝑛𝑅𝐶1 +

𝑅𝐶3𝜔𝑖𝑛𝐴2

2
)  

To increase the accuracy of the model that will be used to analyse the effects of AM/PM conversion, 

the influence of higher harmonics will now also be included. Hence, the expression for 𝑡𝑍𝐶(𝑘) will be 

solved for t. Note that the expression still contains the time itself which makes evaluating it difficult. 

To this end, numerical solvers in Mathematica will be used for the evaluation.  

The result has been visualized using Mathematica as well. Consider Figure 11 a-d below, refer to 

Appendix 10.4.2 for the code. For visualisation purposes, the frequency of the modulation will only be 

10 times smaller than the carrier for these plots, it will be a 1000 times smaller in the actual 

simulations.  
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Figure 11a: Carrier wave. Figure 11b: Signal that will be applied as envelope modulation.  

 

 

Figure 11c: Amplitude modulated signal. Figure 11d: Conversion of AM to changes in timing of the zero-crossings  
with respect to the linear circuit (with constant phase).  

Figure 11d visualizes the relation between zero-crossings and the modulated phase due to amplitude 

modulation at the input. Note that the phase of the output can be split into two terms: the insertion 

phase (or phase of the linear circuit) and the nonlinear phase. The plot of Figure 11d contains only the 

nonlinear component; the insertion phase has been subtracted such that the direct relation between 

AM and PM can be evaluated. It is clear that the sinusoidal behaviour of the input amplitude is being 

converted to sinusoidal deviations in the zero-crossings at the output. The results presented in Figure 

11d will be compared to simulations to verify if they properly resemble the behaviour of first-order 

low-pass RC-filters with a nonlinear capacitor.  

4.9 Summary of the theoretical analysis 
Conversion of amplitude modulation at the input of a system into phase modulation at the output 

(AM/PM conversion) has been covered. The effects have been determined to originate from dynamic 

nonlinear systems within RF circuitry of which the most basic element is the nonlinear capacitor. The 

fundamental processes that cause AM/PM conversion have been characterized in their relation to 

several circuits. The first-order low-pass RC-filter section is the most important of these circuits as it 

has been assumed to be a proper representation of the base-emitter structure of the heterojunction 

bipolar transistors that comprise RF circuitry.  

AM/PM conversion effects in first-order low-pass RC-filter circuits have been characterized through 

both time and frequency domain representations. Characterization has been done through a linear 

approximation of nonlinear behaviour; the assumptions used to this end have been explicitly stated 

and are primarily considered justified due to the weakly nonlinear nature of the transistor mode used. 
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If the validity of these assumption can be verified through simulations to be conducted (see the 

Method section), the main benefit of this simplification will be the relative simplicity with which the 

complex nonlinear AM/PM conversion mechanisms in HBTs can be understood. Next to that, the 

simulations will aim to verify the accuracy of the frequency based analysis and the question whether 

it will be suited to analyse the effects of stronger nonlinearities on AM/PM conversion. The time 

domain analysis will be simulated to verify if it is better suited for modelling stronger nonlinearities 

through including the impact of higher harmonics on the output.  

Both the frequency domain analysis and the time domain analysis approximations indicate that 

AM/PM conversion effects can be minimalized by reducing the third-order timing constant (𝑅𝐶3) and 

the input frequency in first-order low-pass RC-filter sections. These claims will now be verified through 

conducting several simulations. An explanation on the way the simulations will be conducted can be 

found in the Method section, the results are in the Results section.   

5 Method 
This section will elaborate on the methods that will be used to verify the conclusions extracted from 

the theory section. Paramount to this verification is the validation of the assumptions used, therefore, 

the assumptions and approximations made will be summarized first.  

5.1 Model assumptions 

Consider the approximations that were made: 

- Transistor distortion was assumed to be properly modelled by weakly nonlinear circuit 

expressions.  

- All other components of the blocks comprising transceiver systems were deemed sufficiently 

linear.  

- Regarding the equivalent circuit of the heterojunction bipolar transistor: 

o The model presented by Maas et al. in [4] was assumed sufficiently accurate.  

o The parasitics presented in this model were considered neglectable.  

o The collector current amplification was considered to be linear.  

o The nonlinearities of the device’s depletion region and junction capacitance were 

both included in the model of the base-emitter capacitance.  

- Regarding the linear approximation of nonlinear effects in first-order low-pass RC-filters:  

o The nonlinear expression for the capacitance was assumed to be properly defined by 

a time-varying capacitance value 𝐶(𝑡) which could be used in linear circuit analysis as 

𝐶2 and 𝐶3 were considered sufficiently small in relation to 𝐶1. 

o The input frequency was assumed to be well below the cut-off frequency of the 

circuit (𝑅𝐶𝜔 ≪ 1).  

o Even harmonics were assumed to be suppressed in fully differential circuits.  

Verification of the first two assumptions is beyond the scope of this research due to their strong 

dependence on the choices of the circuit designer; there is a large freedom in configurations, 

component values and used signal routes. The output of this research will be focussed on developing 

conclusions that can aid this very design process, but the implementation is left to the circuit designer.  

5.2 Approximating weakly nonlinear behaviour in HBTs with RC-circuits 
The use of the first-order low-pass RC-circuit with nonlinear capacitor as a representation of the HBT 

will be verified with simulations. For the RC-circuit, a VerilogA model has been made that describes 

the nonlinearity of the capacitor through the function 𝐶 = 𝐶1 + 𝐶2𝑉𝑐 + 𝐶3𝑉𝐶
2, see Figure 12. To extract 
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the change in phase due to AM/PM conversion, the linear equivalent of the first-order low-pass RC-

filter has also been included in the simulations.  

 

Figure 12: VerilogA model of a nonlinear first-order low-pass RC-filter in parallel with a linear one, in Cadence.  

The simulations extracted from the circuit in Figure 12 will be verified with a very accurate model of 

the HBT from the QUBIC library in Cadence, hereafter to be called QUBIC model. This HBT has been 

very accurately approximated in this QUBIC model, which is a big advantage when evaluating the 

mathematical model that should closely resemble nonlinear effects (which are in general much 

smaller than the linear effects). A downside of using the QUBIC model is the fact that it is not possible 

to evaluate the behavioural resemblance of the internal nodes of the equivalent circuit in Figure 3, as 

the transistor can only be measured in its entirety.  

In contrast to the simple RC-circuit in Figure 12, the QUBIC HBT model needs biasing for it to properly 

function. Biasing the transistor can be done in multiple ways. One can set the base-emitter voltage to 

an appropriate level or force an emitter current. The latter is a way of indirectly setting 𝑉𝐵𝐸 through 

the relations 𝑉𝐵𝐸 =
𝑘𝑇

𝑞
ln (

𝐼𝑐

𝐼𝑐0
) and 𝐼𝐸 =

𝛼𝑓𝑒+1

𝛼𝑓𝑒
𝐼𝐶. To aid the proper biasing of the transistor, a tool will 

be used that conveniently presents useful information on transistor biasing called ProMOST. Since this 

research primarily considers the internal properties of the transistor on AM/PM conversion, the 

external circuit is of little importance. Therefore, the biasing will be realized by placing a series DC 

voltage source across the base-emitter of the capacitor (which can easily be done in theory, but is 

much more complicated in real circuits). The operating point will be set to 𝑉𝐵𝐸 = 0.90 𝑉, such that 

the collector current is set close to 10 mA (this is deemed a proper value for the use of the HBT as a 

common emitter amplifier), see Figure 13 for the corresponding operating point extracted from 

ProMOST and Figure 14 for its implementation, including operating point, in Cadence.  

 

Figure 13: Information on the operating point of the HBT visualized in ProMOST.  
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Figure 14: HBT in testbench with bias settings as presented in Figure 13 applied. Rb, Rc and Re have been set to 50, 50 and 0 
Ohms respectively.  

Important simulations to perform are the above-mentioned DC operating point and transient 

simulations that enable the evaluation of signal shapes in the time domain. However, most important 

is the AM/PM conversion that manifests itself within the HBT. If the mathematical model is able to 

properly model these effects, it can be used to investigate the effects of altering the source impedance 

and the internal device properties.  

As AM/PM conversion effects manifest themselves in nonlinear circuits, simulations that are based on 

a linearized operating point will not suffice. A suitable simulation method is the periodic steady state 

analysis (PSS). With a periodic analysis, the circuit is driven with one or more periodic waveforms and 

the steady-state response is computed. This point is subsequently used for small-signal simulations.  

This is the reason why the phase of the output will be simulated with a PSS analysis implemented 

through the shooting method. 

In Figure 12, the amplitude dependent phase can be simulated by subtracting the phase of the 

equivalent linear circuit (insertion phase) from the nonlinear circuit, which has been placed in parallel. 

This is not possible for the HBT, as the exact linear equivalent parameters of the circuit are not known. 

Hence, one has to find other ways of visualizing the AM/PM conversion.  

Horst and Cressler have presented a measurement set-up used to visualize AM/PM conversion [7]. 

They state that measuring the phase at the output under a sweep of the input power will manifest the 

effects if they are present as ‘an ideal device with no AM/PM conversion would show a flat phase 

response across input powers’ [7, p. 2]. This statement has also been verified in more recent research, 

see for instance [11, p. 42]. Thus, the amplitude dependent phase will be visualized by performing an 

input power sweep under which the deviation of the phase at the output with respect to its insertion 

phase value will be determined. 

Then, to extract the actual AM/PM conversion values, one has to look at the change in phase with 

respect to the change in amplitude. To do so, the derivative of the phase-amplitude expression will be 

derived and plotted. Since the expressions derived in the ‘Theory’ section consider the phase and not 

its change, this plot is of relatively little importance and only gives a minor increase in insight.  

Default component values of the RC-circuit in Figure 12 will be established as follows:  

- 𝑅𝑠 = 50 Ω 

- 𝐶1 = 318 𝑓𝐹, 𝐶2 = 16 𝑓𝐹, 𝐶3 = 16 𝑓𝐹 

- 𝜔𝑐𝑢𝑡−𝑜𝑓𝑓 =
1

𝑅𝐶0
= 20𝜋

𝐺𝑟𝑎𝑑

𝑠
=> 𝑓𝐶𝑢𝑡−𝑜𝑓𝑓 = 10 𝐺𝐻𝑧 
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- 𝑓𝑖𝑛 = 10 𝐺𝐻𝑧 

Note that 𝐶1 is not expected to exert any influence on the AM/PM conversion effects of the RC-

network, only on the insertion phase. Since the insertion phase will be subtracted from the output 

phase for visualizing the amplitude dependent phase shift, the exact value of 𝐶1 is expected to be of 

little importance. 𝐶2 and 𝐶3 are harder to estimate, their values have been set to be 20 times smaller 

than 𝐶1, but question is whether that is a proper representation of the nonlinearities of both the 

junction capacitance and the depletion region. Therefore, their values will be varied in the simulations.  

After the analysis on the ability of the RC-network to be used as an accurate model to analyse the 

AM/PM conversion in weakly nonlinear systems, an analysis will be performed on the effects 

extending this circuit has on the accuracy of the model. The proposed extensions of Section 4.7 where 

an extra resistor will be added first to model the internal base resistance and second to model the 

diode, will be evaluated.  

A value has to be determined for both extra resistors. Since transistors have a low-Ohmic input, the 

value of the internal base resistance of the HBT is expected to be small. Several researches have looked 

into the relation of this internal base resistance to other device properties of the HBT, see for instance 

[12], and show that the value is indeed small. Therefore, the value of the extra resistor after the base 

will be swept from 0 to 50 Ohms. 

The value of the resistor representing the diode can be chosen in a very large range.  Large values will 

show similar results to the RC-network (they are closer to the infinite resistance of the open circuit 

present there). Smaller values will result in no AM/PM conversion as the nonlinear capacitor will 

effectively be bypassed with a short-circuit. It will therefore be swept in a relatively wide range; from 

0 to 100 𝑘Ω. 

The relation between AM/PM conversion and zero-crossings will be made explicit in simulation results 

by considering the time domain waveforms of the base of the HBT and the capacitor node in the RC-

circuit. The data that comprises the waveforms will be exported to another program capable of 

applying functions to large sets of data, like Excel or MATLAB, so that the timestamps at which the 

voltage is equal to zero can be extracted. Then, to evaluate the impact of the circuit on the zero-

crossings, the difference between the timestamps at the evaluated node and the input should be 

calculated.  

5.2.1 Simulations to perform 
The following simulations will be performed to verify the use of a first-order low-pass RC-filter as an 

equivalent for an HBT circuit to model AM/PM conversion effects: 

- Biasing of the HBT will be simulated:  

o DC-operating point 

o Transient simulation for 1 nanosecond of a sinusoid with amplitude of 100 mV 

applied across the base-emitter and the signal at the collector to check visually 

for any distortion due to improper biasing.  

- Transient simulation at the base of the transistor and at the node between R and C in the 

RC-section for an input amplitude of 100 mV (limited by bias). This simulation will be 

compared to the signal applied at the input. 

- A PSS simulation on the phase at the base of the HBT for an input amplitude sweep from 

100 𝜇𝑉𝑝 to 100 𝑚𝑉𝑝 from which the insertion phase is to be subtracted.  

- The derivative of the above plot to show the AM/PM conversion.  
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- The following simulations on the RC-circuit (and on its extensions as presented in Figure 

9 and 10 in Section 4.7 if they prove to be a better representation):  

o Multiple PSS simulations on the phase at the node between R and C in the RC-

section (or at the base of the circuits in Figures 9 and 10) for an input amplitude 

sweep from 100 𝜇𝑉𝑝 to 100 𝑚𝑉𝑝 from which the phase of the linear circuit is to be 

subtracted:  

▪ Under a sweep of the values for 𝐶2 and 𝐶3 from 1 fF to the value of 𝐶1 

(318 fF), to establish if values can be found that accurately represent the 

nonlinear depletion region and junction capacitance in a simple model. 

▪ Under a sweep of the value for 𝐶1 from 1 fF to 5 pF to check the claim that 

𝐶1 has no influence on AM/PM conversion, the ratio between 𝐶1 and 

𝐶2/𝐶3 will be kept constant at 1/20.  

o The derivative of the above plots to show the AM/PM conversion.  

- Transient simulations will be performed, data will be collected from three differential 

nodes: the input, the base of the HBT and the nonlinear output of the RC-circuit. The 

transient simulation will be run for 1 𝜇second. The data will be exported to perform data 

analysis in MATLAB such that the zero-crossing timings can be extracted, refer to 

Appendix 10.4.3 for the code 

5.3 Verifying the use of linear circuit analysis to model nonlinear AM/PM conversion 

in first-order low-pass RC-sections 
The RC-section in Section 5.2 will be altered and then used to conduct simulations for this section. The 

approximation has been derived with the assumption that it would be applied to differential circuits 

(resulting in suppression of even harmonics). Therefore, the single-ended RC-section from Figure 8 

will be made differential, see Figure 15. Simulations performed on this differential circuit will be 

compared to purely theoretical curves representing the results from the approximation that has been 

presented in Section 4.7.  

 

Figure 15: Differential version of the circuit in Figure 8.  

Focus will be set to the parameters that together comprise this theoretical approximation: 𝜔𝑖𝑛, 𝑅 and 

𝐶3. The influence of 𝑅 and the capacitance constants of the first-order low-pass RC-filter depicted in 

Figure 8 will be looked into by sweeping the input amplitude and the before-mentioned constants. 

Emphasis will be set to the ratio between the nonlinear capacitance constants and the linear one and 

the influence of the cut-off frequency as these were explicit assumptions. To be able to properly 
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characterize the influence of the first order capacitance constant on the AM/PM conversion effects, it 

will therefore be varied in two different methods: 

1. 𝐶1 will be varied without varying 𝑅𝑠. This means that the cut-off frequency of the RC-circuit 

will change. This effect on the cut-off frequency will be included in the discussion of the 

results.  

2. 𝐶1 will be varied and the cut-off frequency will be kept constant. This means that 𝑅𝑠 will also 

change.  

The default circuit component values will be identical to those in Section 5.2.  

The relation between AM/PM conversion and zero-crossings will be made explicit in simulation results 

by considering the time domain waveforms of the output nodes in Figure 15. These results will be 

compared to the theoretical results discussed in Section 4.8.2. 

5.3.1 Simulations to perform 
The following simulations will be performed to verify the linear approximation to nonlinear AM/PM 

conversion effects in RC-sections:  

- To verify that even harmonics are indeed suppressed in differential circuits, 𝐶3 will be set 

to zero and the input amplitude will be swept from 5 𝑚𝑉𝑝 to 100 𝑚𝑉𝑝. A PSS simulation 

will be performed to visualize the nonlinear component of the phase.  

- A PSS simulation will be performed in which 𝐶2 will be set to zero and the input amplitude 

will be swept from 5 𝑚𝑉𝑝 to 100 𝑚𝑉𝑝. The curve of the approximation presented in Section 

4.7 will be included to enable comparison. 

- Multiple PSS simulations will be performed in which 𝐶2 will be set to zero and the input 

amplitude will be swept from 5 𝑚𝑉𝑝 to 100 𝑚𝑉𝑝 under the following sweeps:  

o A sweep of 𝑅𝑠 from 0 to 500 Ω.  

o A sweep of 𝐶1 from 1 fF to 5 pF, the ratio between 𝐶1 and 𝐶3 will be kept constant.  

o A sweep of 𝐶1 from 1 fF to 5 pF, the value of 𝐶3 will be kept constant. 

o A sweep of 𝐶1 from 1 fF to 5 pF in which the cut-off frequency will remain fixed 

(so 𝑅𝑠 will be adjusted to maintain a constant 𝑅𝑆𝐶1 product). 

o A sweep in value of 𝐶3 with respect to 𝐶1, this will be done by defining 𝐶3 =
𝐶1

𝑥
 

and sweeping x from 1 to 50.  

- Transient simulations will be performed, data will be collected from three differential 

nodes: the input, the nonlinear output and the linear output. The transient simulation will 

be run for 1 𝜇second. The data will be exported to perform data analysis in MATLAB such 

that the zero-crossing timings can be extracted, refer to Appendix 10.4.3 for the code.  
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Figure 16: The nonlinear phase component at the base of the HBT under an amplitude 
sweep showing the dependence of the phase on the amplitude applied at the input. 

6 Results 
This section contains the results of the simulations performed with Cadence, as 

proposed in the Method section that have been performed to verify the theory. If 

intermediate results gave rise to the need for more simulations due to phenomena 

that had not been anticipated, these have been included here as well. Simulations 

that are of minor importance to the conclusions of this thesis have been collected in 

Appendix 10.5, they will be referred to when needed.  

6.1 Approximating weakly nonlinear behaviour in HBTs with RC-

circuits 
The Heterojunction Bipolar Transistor has been biased as proposed in the Method 

section, see Figure 14. In contrast to the statement in the Method that an input 

amplitude up to 100 𝑚𝑉𝑝 would still be sufficiently linear, this value has been re-

established at 50 𝑚𝑉𝑝, due to the already stronger nonlinear behaviour beyond an 

input amplitude of 50 𝑚𝑉𝑝. The default linear capacitance parameter 𝐶1 has been 

established at 123 fF, this value represents the HBT better. Please refer to Appendix 

10.5.1 and Appendix 10.5.2 for a discussion on both decisions. Note that the phase 

at the base of the HBT will be evaluated and not at the collector, an explanation for 

this has been given in Section 4.5. 

The next step is looking into the ability of the RC-network to model the effects of 

AM to PM conversion in HBTs operating in a weakly nonlinear mode. To do so, a plot 

of the AM/PM conversion in the HBT will be simulated. To this end, consider Figure 

16 showing the nonlinear phase component (total phase minus the insertion phase) 

of the signal at the base under an input amplitude sweep. The sweep has been run 

from 0 to 100 𝑚𝑉𝑝 input amplitude to check if the claims that the HBT is already 

operating in a strong nonlinear regime at an input amplitude of 100 𝑚𝑉𝑝 were 

justified.  

Figure 16 shows that for higher input amplitudes the HBT starts manifesting stronger 

nonlinear behaviour. The squared dependence of the phase on the input amplitude 
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Figure 18: PSS simulation of the AM/PM conversion at the base of the HBT, 
run from 5 mV to 100 mV.  

 

Figure 17: The nonlinear phase component at the base of the HBT, under an 
input amplitude sweep with increased accuracy settings.  

as presented in Section 4.7 (𝜙(𝐴) = −
𝑅𝑠𝐶3𝜔𝑖𝑛𝐴2

2
) can no longer be considered to 

hold when the input amplitude surpasses 50 𝑚𝑉𝑝 (also note that due to the way of 

plotting, the phase change is positive instead of negative with increasing amplitude). 

The actual AM/PM conversion can be derived from the nonlinear phase component 

by taking the derivative with respect to the input amplitude (
𝑑𝜙(𝐴)

𝑑𝐴
= −𝑅𝑠𝐶3𝜔𝑖𝑛𝐴).  

To improve the simulations at lower input amplitude values, accuracy of the 

simulations will be increased; consider the plots of both the nonlinear phase 

component (Figure 17) and the actual AM/PM conversion (Figure 18) for these 

revised accuracy settings. For additional discussion on this topic, please refer to 

Appendix 10.5.3.  

Figure 18 already indicates that the relation between amplitude modulation at the 

input and phase modulation at the base of the HBT cannot be approximated by a 

linear curve when it is pushed into stronger nonlinear regimes. To visualize what 

happens when one uses a weakly nonlinear approximation, Figures 19 and 20 have 

been plotted.   

Figures 19 and 20 show that the lower range of the input amplitude sweep (from 0 

to ~50 𝑚𝑉𝑝) can be reasonably approximated with a simplified RC-network when the 

right values have been chosen for the nonlinear capacitance constant 𝐶3 (the term 

that maps onto the harmonic), 𝐶2 has been set to zero. However, for input amplitude 

values surpassing 50 𝑚𝑉𝑝, the approximation is not accurate and shows a clear 

mismatch (refer to Figures 19 and 20).  

For the component values used in these simulations, a value of 84 fF for 𝐶3 will yield 

a proper representation of the nonlinear phase component of the HBT for input 

amplitudes up to 50 𝑚𝑉𝑝. Since the AM/PM conversion is directly related to the 

nonlinear phase component through the derivative, it can also be properly modelled 

with the RC-circuit up to an input amplitude of 50 𝑚𝑉𝑝.  
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Figure 19: Nonlinear phase component of the RC-circuit under an input amplitude sweep for various values of 
the third-order nonlinear capacitance constant 𝐶3. The red line indicates the nonlinear phase component of 
the HBT evaluated at the base.   

Figure 20: AM/PM conversion of the RC-circuit for various values of the third-order nonlinear capacitance 
constant 𝐶3. The red line indicates the AM/PM conversion of the HBT evaluated at the base.   
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Figure 21: Nonlinear phase component of the RRC-circuit under an input 
amplitude sweep for various values of 𝐶3. Red line for the values at the base 
of the HBT.  

Figure 22: Nonlinear phase component of the RRC-circuit under an input 
amplitude sweep for various values of 𝑅𝑏𝑖. Red line for the values at the base 
of the HBT.  

To see if the simple first-order low-pass RC-circuit can be extended to improve this 

‘approximation limit’ of 50 𝑚𝑉𝑝, let us consider similar simulations as in Figures 19 

and 20 performed on the proposed extensions from Section 4.7 in Figures 21 and 

22.  

Figure 21 shows the same simulation settings as Figure 19, but the internal base 

resistance 𝑅𝑏𝑖 has been set to 50 Ω. One can clearly notice that the curves have been 

attenuated by the new configuration and that the internal resistance only decreases 

the cut-off frequency of the circuit and hence reduces the magnitude of the signal 

that appears across the capacitor. Now consider the effect of this same internal 

resistance under a value sweep from 0 to 50 Ω when the value of 𝐶3 is kept constant, 

see Figure 22.  

Figure 22 shows that for larger values of 𝑅𝑏𝑖, the nonlinear phase component 

reduces in magnitude and therefore also the AM/PM conversion reduces in 

magnitude. The quadratic dependence of the nonlinear phase component on the 

input amplitude does not change (so this curve cannot match the stronger 

nonlinearities for input amplitudes beyond 50 𝑚𝑉𝑝 either). Extending the first-order 

low-pass RC-filter with the internal base resistance does not yield a better model to 

approximate the AM/PM conversion in HBTs. 

Next, the effects of modelling the depletion region with an additional resistor placed 

in parallel with the nonlinear capacitance have been evaluated. Figure 23 shows the 

AM/PM conversion for a sweep of the values for 𝑅𝑏𝑒. 

Figure 23 shows that a sweep of the value for 𝑅𝑏𝑒 from 0 to 100 𝑘Ω leads to a 

transition in value of the AM/PM conversion from being equal to zero to being equal 

to the general first-order low-pass RC-filter. Including a linear version of 𝑅𝑏𝑒 will 

therefore only further attenuate the AM/PM conversion which will not lead to better 

approximations.  

Figures 21, 22 and 23 show that the extensions proposed in Section 4.7 do not yield 

any better results for approximating the AM/PM conversion in the weakly nonlinear 
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Figure 23: AM/PM conversion in the R(C//R)-circuit under a 
sweep of 𝑅𝑏𝑒. The red line gives the AM/PM conversion at 
the base of the HBT.  

Figure 24: Nonlinear phase component of the RC-circuit under an input amplitude 
sweep for various values of 𝐶2 and 𝐶3 (𝐶2 = 𝐶3). The red line indicates the nonlinear 
phase component at the base of the HBT. 

Figure 25: AM/PM conversion of the RC-circuit for various values of 𝐶2 and 𝐶3 (𝐶2 =
𝐶3). The red line indicates the AM/PM conversion at the base of the HBT. 

 

regime of the HBT. The Figures show that the additional resistors only further 

attenuate the nonlinear phase component, something that can also be achieved by 

reducing the third-order capacitance constant in the original first-order low-pass RC-

filter. Thus, since the extensions do not offer anything that cannot be achieved by 

the simpler first-order low-pass RC-filter, this circuit will be used to analyse the 

approximations.  

Now, one can look into the approximation of the simple RC-circuit below the 

‘approximation limit’, can it be made any more accurate than shown in Figure 19 

and 20? For this, consider Figures 24 and 25 for a sweep on the value of 𝐶2 in 

combination with 𝐶3 (Figures 19 and 20 were based on a sweep of only 𝐶3).  

Figures 24 and 25 show that for values of 𝐶2 and 𝐶3 that approach the value of 𝐶1, 

the effects of both terms start cancelling and the AM/PM conversion magnitude no 

longer increases. To verify this claim, an additional simulation has been performed 

in which only 𝐶2 has been swept, see Figure 26 on page 30.  
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Figure 26: Nonlinear phase component of the RC-circuit under an input 
amplitude sweep for various values of 𝐶2 when 𝐶3 has been set to zero. 
Red line shows the nonlinear phase component at the base of the HBT.  

Figure 26 shows that the contribution of the second-order nonlinear term to the 

nonlinear component of the phase under an input amplitude sweep is of opposed 

sign. For increasing values of 𝐶2 and 𝐶3, the increase of 𝐶2 is stronger than that of 

𝐶3, resulting in cancellation of both terms, explaining the results in Figures 24 and 

25.  

Note that most high-performance RF circuits are differential and that contributions 

caused by even harmonics in such odd-symmetric circuits are cancelled out. 

Mismatches and nonidealities in differential circuits will cause some influence of 

even harmonics to remain, but these will be small compared to the contributions of 

the other terms, this statement will be revisited in Section 6.2.  

Figure 27 shows a sweep of value of 𝐶1. To be able to evaluate it without evaluating 

the relative impact of the nonlinear constants, 𝐶2 and 𝐶3 have been kept constant 

at a value of 
𝐶1

20
.  

One can notice the decline in the magnitude of the nonlinear phase component for 

increasing values of 𝐶1, in contrast to the statement in the method section that 𝐶1 

was not expected to exert any influence. Since 𝐶1 is a linear constant, it can only 

indirectly cause this change in magnitude of the nonlinear phase component.  

Increasing 𝐶1 leads to a reduction of the influence of the nonlinear constants; the 

cut-off frequency of the circuit changes and, as a result, the magnitude of the signal 

across the terminal of the capacitor will be attenuated beyond a certain threshold. 

In this case where the input frequency is 10 GHz and 𝑅𝑠 = 50 Ω, this value is equal 

to 
1

2𝜋∙50∙1010 = 318 𝑓𝐹.  

The results presented up to now have been based on the fundamental frequency; 

the plotting techniques used have only evaluated the phase at this single frequency. 

To verify the resemblance between the behaviour of the HBT and the RC-circuit in 

the time-domain, the zero-crossings have been evaluated. Time domain waveforms 

have been evaluated using Cadence to find their zero-crossing values. These values 

Figure 27: Nonlinear phase component of the RC-circuit under an input 
amplitude sweep for various values of 𝐶1. Red line shows the nonlinear 
phase component at the base of the HBT. 
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Figure 28: Deviation in zero-crossings for the HBT and the RC-circuit. 
Capacitance values of the RC-circuit have been established as follows: 
𝐶1 = 123 𝑓𝐹, 𝐶2 = 84 𝑓𝐹 and 𝐶3 = 84 𝑓𝐹. Input amplitude is 50 𝑚𝑉𝑝. 

Figure 29: Deviation in zero-crossings for the HBT and the RC-circuit. 
Capacitance values of the RC-circuit have been established as follows: 
𝐶1 = 123 𝑓𝐹, 𝐶2 = 360 𝑓𝐹 and 𝐶3 = 360 𝑓𝐹. Input amplitude is 100 
𝑚𝑉𝑝. 

have been visualized using a MATLAB-script, please refer to Appendix 10.4.3 for the 

code.  

As an initial guess, the values that properly modelled the HBT in the weakly nonlinear 

regime in the frequency domain evaluation of the phase of the fundamental, have 

been used in this evaluation of the zero-crossings in the time domain. However, the 

effects of 𝐶2 should now also be taken into account, since individual parameters of 

the HBT cannot be controlled. 28 shows the deviation in zero-crossings for these 

capacitance values (𝐶1 = 123 𝑓𝐹, 𝐶2 = 84 𝑓𝐹 and 𝐶3 = 84 𝑓𝐹) and an input 

amplitude value of 50 mV.  The contribution of 𝐶2 causes the deviation of every 

alternating zero-crossing to change sign due to the sinusoidal dependence of the 

deviation in zero-crossings on the input amplitude (the contribution of 𝐶3 is being 

squared as a result of which it does not change sign). Making the circuit differential 

will eliminate this contribution, resulting in the fact that the deviation in zero-

crossings will follow only one side of the envelope that modulated the signal (this 

will be treated at the end of Section 6.2).  

Figure 28 shows that the RC-circuit exhibits weaker nonlinearity than the HBT (the 

magnitude of the peaks of the deviation in zero-crossings is smaller). Since the used 

value for 𝐶3 of 84 fF was a proper approximation in the frequency domain when 

evaluating the fundamental frequency, this means that the contribution of higher 

harmonics is significant and that the used value of 𝐶3 is too low to properly include 

them in the time domain waveform.  

An increase of 𝐶2 and 𝐶3 to 360 fF yields a much better approximation. Appendix 

10.5.3 contains several plots conducted with these capacitance values for different 

input amplitudes. To check if the time-domain analysis of the zero-crossings can be 

used for a larger input amplitude than the frequency domain analysis, the quality of 

the approximation has been evaluated at several amplitudes. The plots in Appendix 

10.5.3 show that the time domain analysis of the zero-crossings can be used up to a 

rough 100 𝑚𝑉𝑝 as opposed to the 50 𝑚𝑉𝑝 of the frequency domain analysis. At 100 

𝑚𝑉𝑝 input amplitude, and for values that are larger than that, the deviation in zero-
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crossings becomes larger in the HBT than those in the RC-circuit, see Figure 29.  This 

trend continues for increasing input amplitude.  

The Figures presented in this section of the results have shown that a first-order low-

pass RC-section can effectively approximate AM/PM conversion of the fundamental 

frequency in an HBT operating in the weakly nonlinear regime, but that this 

approximation is limited to a certain value of the input amplitude (for this case 

roughly 50 𝑚𝑉𝑝). When the input amplitude becomes too large, the stronger 

nonlinear behaviour of the HBT cannot be effectively modelled with a frequency 

domain analysis of the AM/PM conversion evaluated at the fundamental frequency 

in the RC-circuit.  

The results on the time domain evaluation of the zero-crossings have shown that the 

inclusion of higher harmonics enables a larger input amplitude range to be covered 

by the simplified RC-circuit model of the HBT. Through evaluation of the AM/PM 

conversion effects by considering the related dependence of this phenomenon on 

the deviation in zero-crossings, the RC-circuit was found to properly model the HBT 

up to an input amplitude of 100 𝑚𝑉𝑝 for these particular circuit values.  

The next section will contain an analysis on what gives rise to the AM/PM conversion 

effects in this RC-circuit. The parameters that exert influence on the AM/PM 

conversion effects will be identified and their relation will be characterized such that 

the results can be used to synthesize better transceiver systems.  
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Figure 20: Nonlinear phase component of the RC-circuit (𝐶3 = 84 𝑓𝐹). The value of the 
simulated curve can be read on the left y-axis, the value of the calculated curve on the 
right y-axis.  

Figure 31: Nonlinear phase component of the RC-circuit (𝐶3 = 𝐶1/20 𝑓𝐹). The value of the 
simulated curve can be read on the left y-axis, the value of the calculated curve on the 
right y-axis. 

6.2 Characterizing AM/PM conversion in first-order low-pass RC-

sections 
The previous section has shown that the simple first-order low-pass RC-filter can be 

used to describe the AM/PM conversion effects in HBTs operating in a weakly 

nonlinear mode. To verify the mathematical characterization of the AM/PM 

conversion in first-order low-pass RC-sections (as presented in Section 4.7) the 

results of the simulations from the Method section will be discussed here.  

As mentioned in the Method, the RC-circuit will be made differential. Simulations 

have been conducted to verify that the influence of 𝐶2 will be suppressed in 

differential circuits. This turned out not to be the case due to issues with the solver 

in Cadence. Please refer to Appendix 10.6 for an analysis on this problem. For the 

remainder of the results, 𝐶2 has been set to zero.  

A simulation has been conducted with the capacitor values that were found to be a 

proper match to the QUBIC model of the HBT as discussed in Section 6.1: 𝐶1 =

123 𝑓𝐹, 𝐶2 = 0 𝐹 (differential circuit), 𝐶3 = 84 𝑓𝐹, 𝑅𝑠 = 50 Ω, 𝑓𝑖𝑛 = 10 𝐺𝐻𝑧. The 

approximation has been included in the same plot to enable proper comparison, see 

Figure 30.  

Figure 30 shows that the shape of the approximation properly resembles the 

behaviour simulated with the VerilogA model, clearly showing the quadratic 

amplitude dependence in both curves. However, the phase magnitudes are not 

equal: they differ with a factor of about 16: the magnitude of the approximation is 

lower than the magnitude of the simulation. The nonlinearities are stronger than 

anticipated; to check if the approximation that 𝐶3 should be small in comparison to 

𝐶1 has been violated (84 fF with respect to 123 fF might be too large), 𝐶3 will now 

be set to 
𝐶1

20
, see Figure 31.  

Figure 31 shows similar results as Figure 30; again, the shape of the curve of the 

approximation is a good match to the simulation, but the phase magnitudes differ 
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Figure 32: AM/PM conversion of the RC-circuit (𝐶3 = 𝐶1/20 fF), plot 
shows both the simulated results and the calculated results. The y-axis is 
in 10 ∙ 𝛥𝜙/𝛥𝐴.  

Figure 33: Nonlinear phase component of the RC-circuit (𝐶3 = 84 𝑓𝐹) after 
correction to the calculated curve has been applied. The value of the 
simulated curve can be read on the left y-axis, the value of the calculated 
curve on the right y-axis. 

with roughly the same factor of 16. This has a major impact on the quality of the 

approximation of the AM/PM conversion effects, see Figure 32.  

The reason for the mismatch in magnitude should be found in the way the 

approximation and the assumptions that were made in that process have been 

derived. The assumption that the circuit should operate far below the cut-off 

frequency has not been violated (𝑓𝑐 =
1

2𝜋𝑅𝐶1
= 25,9 𝐺𝐻𝑧, 2.5x higher than the input 

of 10 𝐺𝐻𝑧). The second assumption regarded the relative impact of the 

nonlinearities on the linear operation of the circuit (𝐶3 should be small in comparison 

to 𝐶1). Figures 30, 31 and 32 show that the nonlinearities of the RC-network have 

been linearized too strongly in the approximation. Even for the case in which 𝐶3 is 

20 times smaller than 𝐶1, the approximation does not hold properly.  

For the remainder of the simulations, the factor of 16 will be added to the calculated 

curves through increasing 𝐶3. The exact reason for the difference in magnitude will 

not be looked into due to the limited time available. It is more important that the 

approximation can be adjusted in such a way that it is capable of modelling the 

behaviour of the RC-circuit, than that all the values have been accounted for, but the 

approximation fails to properly match the simulations. Refer to Figure 33 for the 

calculated and simulated nonlinear phase components after this proposed 

correction.  

To verify if the approximation can be used to describe the impact of the circuit 

properties on the AM/PM conversion effects (albeit the quantitative match has been 

‘forced’ by including a manual factor), the various parameters will be swept as 

proposed in the Method section. The approximation indicates that an increase in 

either 𝑅𝑠, 𝐶3 or 𝜔𝑖𝑛 should increase the magnitude of the AM/PM conversion 

effects, these claims will now be verified.  

Figure 34 shows the nonlinear phase component for various values of 𝑅𝑠 (𝐶3 has 

been set back to the best matching value of 84 fF). To better visualize the impact of 

𝑅𝑠, each of these curves will be evaluated at 𝐴𝑖 = 50 𝑚𝑉𝑝, the corresponding values 
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Figure 34: Simulated nonlinear phase component of the RC-circuit under a 
sweep of 𝑅𝑠. 

Figure 35: Value of the nonlinear phase component of the RC-circuit 
evaluated at 𝐴𝑖 = 50 𝑚𝑉𝑝 under a sweep of 𝑅𝑠. The calculated 

approximation has been included.  

of the nonlinear phase will then be plotted against 𝑅𝑠, see Figure 35. This plotting 

technique will also be used to evaluate the other parameters. The approximation 

has also been included in this plot for comparison purposes.  

According to the approximation from Section 4.7, the dependence of the nonlinear 

phase on the amplitude should become stronger for larger values of 𝑅𝑠. It is clear 

that the nonlinear phase component (and thus indirectly the AM/PM conversion 

effects) cannot be effectively approximated with this approximation for the entire 

sweep range. A probable cause for this is that one of the two assumptions was 

violated and hence the approximation can no longer be deemed valid. The 

assumption that the input frequency would be far below the cut-off frequency 

appears to hold for lower values of 𝑅𝑠, but not for higher values. Take for instance 

the lower bound of the parameter sweep performed in Figure 35: 

1 Ω ∙ 123 𝑓𝐹 ∙ 20𝜋 ∙ 109
𝑟𝑎𝑑

𝑠
≈ 0.0077 𝑟𝑎𝑑 

This value is indeed much lower than 1 and hence, the approximation that the 

AM/PM conversion effects will linearly increase with an increase in 𝑅𝑠 holds. 

However, already at 𝑅𝑠 = 129 Ω will 𝑅𝐶(𝑡)𝜔𝑖𝑛 be equal to 1, from which can be 

concluded that the approximation is not valid. This can be seen in Figure 35, as the 

effect of AM/PM conversion effects decreases for increasing 𝑅𝑠 if 𝑅𝑠 is larger than 

80 Ω (at the cut-off frequency, the signal has already been attenuated with a factor 

2, therefore this value is lower than the mentioned 129 Ω). 

Why does an increase in R then give a decrease in AM/PM conversion effects? A 

plausible explanation is the fact that beyond 129 Ω, the cut-off frequency is smaller 

than the input frequency. A result of this is that the input signal will be attenuated 

by the low-pass nature of the circuit. A smaller signal will appear across the capacitor 

terminals and hence the impact of the capacitor’s nonlinearities will be smaller. To 

illustrate this, the value of the cut-off frequency for several instances in the sweep 

of 𝑅𝑠 will be compared to the nonlinear phase component, see Table 1.  
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Figure 36: Nonlinear phase component of the RC-circuit for various 
values of 𝑅𝑠 when the cut-off frequency has been kept constant.  

Figure 37: Nonlinear phase component of the RC-circuit evaluated at 50 
mV under a sweep of the value of 𝐶1. 

Table 1: Table containing the link between a value of 𝑅𝑠 and its corresponding nonlinear phase 
component, cut-off frequency and third-order timing constant.  

𝑅𝑠 [Ω] Nonlinear phase 
component for 
𝐴𝑖 = 50 𝑚𝑉𝑝 

[mdeg] 

Cut-off frequency 
[GHz] 

𝑅𝑠𝐶3 [fs] 

1 0.570 1294 84 

5 2.87 259 420 

10 5.60 129 840 

50 21.5 25.9 4.20 ∙ 103  
100 22.1 12.9 8.40 ∙ 103  
500 1.12 2.59 4.20 ∙ 104  

 

Table 1 shows that for a cut-off frequency that is lower than the input frequency, 

the nonlinear phase component starts decreasing under increasing 𝑅𝑠. In the case 

that the cut-off frequency is kept constant, the value of 𝑅𝑠  has no impact on the 

magnitude of the AM/PM conversion effects (consider that 𝑅𝐶3 then stays constant 

in the approximation), see Figure 36.  

A sweep of the first-order capacitance constant as shown in Figure 37 shows similar 

behaviour as in Figure 35. The explanation on Figure 35 can be extended to Figure 

37 as also the first-order capacitance constant determines the cut-off frequency.  

Figure 38 shows the nonlinear phase component at an input amplitude of 50 mV, 

when the value of 𝐶3 is fixed.  

One can notice a steady decline in the nonlinear phase component as 𝐶1 increases, 

this is due to the fact that the ratio between 𝐶1 and 𝐶3 becomes larger and hence 

the relative impact of the third-order nonlinearity constant on the total capacitance 

becomes smaller. It is a clear indication that only the third-order constant gives rise 

to AM/PM conversion effects. The impact changing 𝐶1 has on AM/PM conversion is 

governed by the changes in ratio between 𝐶1 and 𝐶3, and the fact that the cut-off 



37 
 

Figure 38: Nonlinear phase component of the RC-circuit evaluated at 50 
mV under a sweep of 𝐶1 when 𝐶3 has been kept constant.  

Figure 39: Nonlinear phase component of the RC-circuit evaluated at 50 mV 
under a sweep of the ratio between 𝐶3 and 𝐶1. The x-axis shows the value 
of r in the expression 𝐶3 = 𝐶1/𝑟. 

frequency of the circuit changes. To illustrate this point, consider Figure 39 in which 

the ratio between 𝐶1 and 𝐶3 has been swept. 𝐶3 has been defined as 
𝐶1

𝑟
, in which 

case r has been varied from 1 to 50. 

Figure 39 shows that a small value for 𝑟, and thus a value for 𝐶3 that is close to 𝐶1, 

yields a much larger magnitude for the nonlinear phase component of the RC-circuit 

than a large value for this ratio yields.  

Next to the constants of the capacitor and the source resistance, the input frequency 

is also expected to exert influence on the AM/PM conversion magnitude. According 

to the approximation from Section 4.7, an increase in input frequency should result 

in an increase in the AM/PM conversion (derivative of the nonlinear phase 

component with respect to amplitude). Figure 40 on page 38 shows the nonlinear 

phase component under an input amplitude sweep for several values of the input 

frequency.  

One can derive from the Figure that the cut-off frequency again plays a major role. 

For the component values used to conduct the simulations, the cut-off frequency is 

equal to 𝑓𝑐 =
1

2𝜋𝑅𝑠𝐶1
= 25,9 𝐺𝐻𝑧. Up to a value of 20 GHz, the increase in frequency 

at the input leads to an increase in the nonlinear phase component at the output of 

the RC-circuit, as the approximation also indicated. Beyond this value of 20 GHz, the 

input frequency is close to or higher than the cut-off frequency of the circuit. This 

means that the low-pass nature of the circuit will attenuate the magnitude of the 

signal that will appear across the terminals of the capacitor and hence also the 

impact of the nonlinearities on the circuit behaviour.  

The simulations presented in the Figures of this section show that if the input 

frequency is below the cut-off frequency of the circuit, the AM/PM conversion in the 

first-order low-pass RC-filter can be reduced by minimalizing either the values of 

𝜔𝑖𝑛, 𝑅𝑠 or the value of 𝐶1. If the input frequency is close to the cut-off frequency or 

beyond it, the AM/PM conversion effects can be reduced by further lowering the 

cut-off frequency by increasing 𝑅𝑠 or 𝐶1, or by increasing the input frequency 𝜔𝑖𝑛. 
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Figure 30: Nonlinear phase component of the RC-circuit for various 
values of the input frequency 𝑓𝑖𝑛. The legend shows the value of each 
curve in Hz.  

Figure 41: AM/PM conversion magnitude from the input to the base of the HBT for 
various values of 𝑅𝑏. The legend shows the values for 𝑅𝑏 in 𝛺. The y-axis is in 𝛥𝜙/𝛥𝑉. 

Note, however, that lowering the cut-off frequency will also negatively affect the 

signal at the base and that the process of reducing AM/PM conversion will then 

become a trade-off between the influence of nonlinearities and the magnitude of 

the transferred signal.  

On a lower level, the AM/PM conversion effects can be reduced if the impact of the 

nonlinear capacitance constant can be reduced. If the internal properties of the 

circuit can be altered in such a way that the nonlinearities can be reduced, the 

AM/PM conversion effects will also reduce.  

Section 6.1 has shown that the AM/PM conversion in an HBT operating in a weakly 

nonlinear regime can be approximated with the first-order low-pass RC-filter if the 

correct values for the constants have been chosen. This section has shown what 

parameters influence the magnitude of the AM/PM conversion effects in first-order 

low-pass RC-filters and how these parameters can be altered to reduce the effects. 

However, one has to be careful with extending the conclusions from this Section by 

applying them to the HBT as the RC-circuit is a great simplification of the internal 

behaviour of the HBT. By altering circuit properties of the HBT, the approximations 

on the nonlinearities of the model of the HBT (discussed in Section 4.5) that were 

summarized in Section 5.1, might be violated.  

Consider for instance a sweep of the source resistance in the differential version of 

the HBT circuit in Figure 14. Simulations in this Section have shown that for the RC-

circuit this would mean that as long as the input frequency is smaller than the cut-

off frequency, an increase in 𝑅𝑠 will lead to an increase in AM/PM conversion effects. 

As soon as the input frequency is higher than the cut-off frequency, an increase in 

𝑅𝑠 will lead to a decrease in AM/PM conversion effects. The results of this sweep for 

the AM/PM conversion at the base of the HBT have been depicted in Figure 41.  

Figure 41 indeed shows that under an increase of 𝑅𝑏 (the equivalent of 𝑅𝑠 in the RC-

circuit) the AM/PM conversion effects first increase and then decrease. However, 

the turn-over point occurs at a much lower value (~20 Ω) than the RC-circuit 
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Figure 42: Deviation in zero-crossing values at the output of the RC-circuit for 
the simulated values (purple line) and the calculated values (black line).  

simulations indicate. It is a clear indication that the conclusions drawn in this section 

on the RC-circuit cannot simply be extended to the HBT.  

Further research should be conducted to verify to what extend the conclusions 

drawn on the simulations performed on the RC-circuit extend to the circuit 

containing the HBT, and transceiver systems in general.  

Zero-crossings 

In addition to the frequency based analysis that has been conducted to characterize 

AM/PM conversion in first-order low-pass RC-filters, a time-domain based analysis 

has been conducted. The theoretical approximation of the zero-crossings as 

presented in Section 4.8.2 has been plotted using Mathematica. This plot has been 

exported to MATLAB in which it has been compared to the zero-crossings of the 

time-domain simulations conducted on the RC-circuit, see Figure 42.  

Figure 42 shows that the approximation contains a linear signal, which does not 

entirely approximate the nonlinearly distorted simulations. Also, the magnitude of 

both signals varies slightly which is due to the fact that 𝐶3 is still relatively large with 

respect to 𝐶1.  
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7 Conclusion 
To synthesize better transceiver systems, the effects of nonlinearities have to be reduced. AM/PM 

conversion is one of these nonlinearities that leads to unwanted deviations of the phase in transceiver 

systems. Therefore, modelling of these effects is important for the development of better 

transceivers, but AM/PM conversion effects are nonlinear and only arise in dynamic nonlinear 

systems, requiring complex modelling techniques. The conducted research has focussed on 

characterizing these effects in transceiver systems containing HBTs through simplified models and 

analyses based on linearized circuit analysis methods to increase insight in AM/PM conversion effects. 

A first-order low-pass RC-circuit with a nonlinear capacitor has been presented as a simplified 

equivalent circuit to the HBT for modelling of AM/PM conversion effects. Both a frequency domain 

analysis and time domain analysis have been executed to characterize the AM/PM conversion effects 

in this simplified RC-circuit after which the impact of circuit parameters on the effects has been 

identified. To deepen insight, several simplifications and assumptions have been introduced in both 

analyses; their impact on the model accuracy has been considered.  

A frequency domain analysis has been conducted to characterize the nonlinear phase component of 

the fundamental frequency that depends on the input amplitude. Limiting this analysis to the 

fundamental only, restricts the use of the model to linear and weakly nonlinear systems. Simulations 

have shown that the frequency domain analysis performed on the RC-circuit can accurately model the 

AM/PM conversion of an HBT, but that this model is only valid for small input amplitude values in 

which the HBT can be considered to operate in the weakly nonlinear regime. For the values used in 

the simulations of this report, this ‘approximation limit’ was established at an input amplitude value 

for the small signal of 50 𝑚𝑉𝑝.  

For larger input amplitude values, the time domain analysis is better suited as it includes the impact 

of higher harmonics on the time domain waveform. Through evaluating the deviation in zero-crossings 

due to the modulation of amplitude at the input, the AM/PM conversion in the HBT has indirectly 

been modelled with the same first-order low-pass RC-filter with nonlinear capacitor.  The inclusion of 

higher harmonics has considerably improved the range of the input amplitude for which the model is 

a proper representation of the behaviour of the HBT when it comes to AM/PM conversion through 

the evaluation of zero-crossings in the time domain. In this analysis, the ‘approximation limit’ has been 

established at an input amplitude for the small signal of 100 𝑚𝑉𝑝.  

Theoretical analysis in both the frequency and time domain indicated that the AM/PM conversion 

effects in the first-order low-pass RC-filter could be reduced by reducing either the value of the resistor 

(𝑅𝑠), the value of the third-order nonlinear capacitance constant (𝐶3) or the input frequency (𝜔𝑖𝑛). 

Simulations have verified these claims, but have also shown that the cut-off frequency plays a major 

role in the accuracy of the theoretical approximations and that the impact of 𝑅𝑠, 𝐶3 and 𝜔𝑖𝑛 on the 

magnitude of the AM/PM conversion effects reverses when 𝜔𝑖𝑛 is larger than the cut-off frequency.  

Additional simulations have been conducted that have shown that the conclusions extracted from the 

simulations on the first-order low-pass RC-filter cannot be directly mapped onto the HBT. Further 

research will be required to precisely characterize the relation between these conclusions and the 

behaviour of the HBT.  
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8 Discussion 
This report has covered the answer to the research question, this section will reflect on the steps that 

have been taken to arrive at this answer.  

A model has been presented that is a simplification of the behaviour of a complex heterojunction 

bipolar transistor (HBT). This model aims at simplifying the complex nature of the nonlinearities that 

cause AM/PM conversion and does that by making several assumptions. The benefit of applying such 

assumptions is that the insight in AM/PM conversion is increased as the simplified model greatly 

reduces the influences involved. The downside is, however, that the use of assumptions limits the 

applicability of the results and one should be critical: where do the results apply?  

The simulations have been conducted in two separate steps. First, the ability of the simplified RC-

circuit to resemble the behaviour of the HBT has been characterized. Second, the influence of the 

parameters in this RC-circuit on the AM/PM conversion effects have been identified and simulated. 

From the first step has been concluded that the RC-circuit is capable of modelling AM/PM conversion 

effects in the HBT when this device operates in a weakly nonlinear mode. However, the simulations 

conducted to verify this have been based on a select number of circuit configurations. It has not been 

checked with simulations if the impact of for instance the source resistance on the HBT on the one 

hand and on the RC-circuit on the other, are similar. The curves in Figure 41 already showed that the 

resistor impacts both circuits differently (although it is showing some similar behaviour: in both cases 

an increase in resistance value led to an increase in AM/PM conversion for low values and to a 

decrease for high values, but the point that defined the difference between ‘low’ and ‘high’ values 

was different). More research is needed to characterize the relation between the conclusions based 

on the RC-circuit and the behaviour of the HBT, though based on several simulations, like the one in 

Figure 41, one should already conclude that the applicability of the results is limited due to the fact 

that the analysis has been based on linear circuit analysis methods.  

One should therefore use the presented simplified model as a tool in gaining more insight in the way 

that AM/PM conversion exhibits itself in transceiver systems and recognize that this comes at the cost 

of model accuracy. If the goal is to correctly model AM/PM conversion effects in HBTs, also for 

stronger nonlinearities, it would be better to resort to methods that are capable of accurately 

modelling nonlinear effects in dynamic nonlinear systems as discussed in Section 4.3. 

Previous findings have been used in this research to model AM/PM conversion effects in transceiver 

systems. Maas et al. [4] have presented an equivalent circuit for the HBT. The nonlinearities (and their 

relative impact) these authors have presented in their model were a proper basis from which the 

simplified model has been derived. For the characterization of the AM/PM conversion in this simplified 

RC-circuit, the linearized approximation from Razavi [9] has proven to be a good starting point; 

especially qualitative conclusions from this thesis have verified previous research presented in his 

book RF Microelectronics [9]. 

However, discussion is required for several results that were not in line with the above-mentioned 

theory. The magnitude of most approximations did not match the simulations performed on the RC-

circuit. Discrepancies were for several cases large (up to a difference of a factor 16) in which cases the 

approximation proved to be only good in a qualitative regard. In the results presented in this thesis, 

these differences between approximations and simulations have been accounted for by manually 

adding a compensation factor. Better would be to look into the origin of the differences such that they 

can be accounted for, but the limited time available required that this was postponed for future 

researchers.  
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Taking into account the discussion presented in this section, I would like to stress that one should see 

this thesis as a beginner’s guide into AM/PM conversion in transceiver systems. Focus has been set to 

creating insight in the origin of AM/PM conversion effects in HBTs specifically and to characterizing 

these effects and the parameters that impact them. For accurate models of AM/PM conversion in 

transceiver systems one is advised to resort to research of others.  

8.1 Recommendations for further research 

The research conducted in this thesis can be further improved. Consider the recommendations for 

further research below:  

- The applicability of the results obtained on the first-order low-pass RC-circuit with 

nonlinear capacitor regarding the reduction of AM/PM conversion effects on circuit 

containing HBTs should be looked into.  

- The influence of the biasing point and/or biasing circuit on the capability of the RC-circuit 

to model the behaviour of the HBT should be assessed.  

- The applicability of the results on the HBT should be extended to transceiver systems in 

general.  

- An accurate model of AM/PM conversion in HBTs should be compiled and assessed using 

methods suited for the analysis of dynamic nonlinear systems. 

- The resemblance between the deviation in zero-crossings for the HBT and the RC-circuit 

should be evaluated based on an FFT plot that shows the frequency components and their 

magnitudes, enabling much better comparison.  
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10 Appendices 

10.1 B&K-Analysis of ‘Intermodulation in Heterojunction Bipolar Transistors’ by Maas 

et al. [4] 
1. What is the object or phenomenon (X) for which the ‘model for X’ is produced in the paper? 

The paper discusses a model on the small-signal intermodulation distortion in heterojunction bipolar 

transistors. Since intermodulation distortion can only be present as a result of nonlinearities within a 

circuit, the paper discusses these nonlinearities in the context of heterojunction bipolar transistors. In 

HBTs, nonlinearities can mostly be found in the base-emitter capacitance, hence, this capacitance is 

characterized and an expression for the exact manifestation of nonlinearities is presented.  

2. What is the function or intended ‘purpose’ of the model constructed in the paper?  

The model will show what nonlinearities are present in HBTs through an equivalent circuit in which 

these nonlinearities have been included. This information can be used to characterize the effects of 

AM/AM conversion (intermodulation distortion) by performing simulations or calculations on this 

equivalent circuit.  

Thus, the function of the model in the paper is to calculate and predict how AM/AM conversion effects 

manifest themselves in heterojunction bipolar transistors.  

3. What are the measurable quantities in the model?  

The model contains a few components, namely resistors and capacitors, of which the coefficients for 

the resistance or capacitance are measurable quantities. Next to that, as it concerns an electrical 

circuit, the current through and voltage across each component can be measured and calculated, so 

all of those are also measurable quantities. Then there is one more variable that is hidden in the exact 

expression for the capacitances and resistances described above, because both will depend on the 

temperature in which the circuit is operating. 

The model can be used to predict AM/AM conversion, which is mostly characterized by the second- 

or third-order intercept point, but this is not an actual measurable quantity of the model itself and can 

only be indirectly simulated or calculated.  

4. What is the knowledge (theoretical/experimental) used in the construction of the model?  

The framework of the model has been based on the Volterra-series approximation. As it concerns a 

dynamic nonlinear system, finding an exact expression for the circuit transfer is not feasible, which is 

why it is common practice to approximate this transfer through the Volterra-series.  

The authors use the nonlinear current source approach to apply the Volterra-series. This means that 

they will construct a circuit which will have linear circuit elements, but in which for each nonlinear 

element a current source has been placed in parallel with its linear equivalent. This current source will 

have the magnitude of the nonlinear component of the element expression. One can easily follow this 

approach in the paper by examining the figures. Figure 1 shows the linear equivalent I mentioned 

above and Figure 2 shows the inclusion of the nonlinear current components of the nonlinear circuit 

elements.  

Results are subsequently acquired through mathematical reasoning. Known relations between charge, 

voltage and capacitance in capacitors are used as well as relations for the dependence on the emitter 

current on the base-emitter voltage. Knowledge on derivatives is also applied. Through the application 
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of this knowledge, the authors obtain expressions that can be used to calculate the second-order and 

third-order intercept points which I already briefly mentioned in question 3.  

5. What are the assumptions used in the construction of the model? 

The authors make several assumptions in the construction of the model: 

- The source and load impedances of the transistor are assumed to be real.  

- The dominant nonlinearities in the transistor are assumed to be the base-emitter junction 

capacitance and the nonlinear current gain, other nonlinearities will not be modelled.  

- The transistor is assumed to be properly biased. 

- The authors assume that the base-emitter capacitance is dominated by diffusion 

capacitance.  

- It is assumed that 𝟐𝑹𝒃𝒄𝟏𝝎𝟏 ≫ 𝟏. 

- Finally, the relation between collector and emitter current is assumed to be linear and 

instantaneous and hence can be described by 𝑰𝑪 = 𝜶𝑰𝒆, while in reality a more accurate 

expression would be:  

𝑰𝒄 = 𝜶𝟏𝑰𝒆(𝒕 − 𝒕𝒅) + 𝜶𝟐𝑰𝒆
𝟐(𝒕 − 𝒕𝒅) + 𝜶𝟑𝑰𝒆

𝟑(𝒕 − 𝒕𝒅) 

6. How is the model justified? 

The authors describe how the model has been simulated using C/NL (a program to evaluate Volterra-

based models), from which calculations on the second-order (IP2) and third-order (IP3) intercept point 

have been extracted. These points have also been measured, and measured + calculated results have 

been plotted in Figure 4. An elaborate discussion on this plot can be found in the text. The authors 

explain which phenomena and/or assumptions give rise to the differences between the calculations 

and the measurements.  

They state that a major factor in the differences is the difficulty of controlling the load and source 

impedance during the measurements. As calculations were done with a value of 50 Ω for both, any 

differences for these values in the measurements will cause defects in the results. Unfortunately, 

there is little discussion on what other effects might have influenced the difference between 

calculations and measurements, because I find it unlikely that the above described effect is the only 

factor.  

Considering these experimental results in a much broader view, the above criticism probably follows 

from the fact that there is no explanation on how the measurement results were acquired. There is 

only a very brief statement on the transistor used, but not on other elements of the testing set-up. 

This makes it hard to reproduce the results and verify the research, which is important to consider 

when evaluating the justification of the model.  

Next to that, the analysis that has been presented assumed real load and source impedances where 

they are generally complex. The authors trivialize this point by stating that the model shows that 

certain phenomena cancel each other anyway.  

All in all, there is a justification of the model through measurements results, but the authors fail to 

provide the necessary information to be able to reproduce the results. In addition, one could say that 

the way the authors account for the differences between model and measurements testifies that the 

results have not been fully accounted for.  
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10.2 Derivation of the Approximation to the AM/PM Conversion Effects in Nonlinear 

RC-Networks 
To be able to give an estimate or expression of the AM/PM conversion effects, one must first 

determine the circuit behaviour. This can be done by determining the differential equation of the 

system, calculating its solution and determining the phase of this solution.  

Determining the differential equation 

A differential equation will be determined for the circuit depicted in the Figure 10.2.1 below.  

 

Figure 10.2.1: First-order low-pass RC-filter. 

Recognizing that 𝑍𝐶 =
1

𝑗𝜔𝐶
 and trough considering the circuit as an impedance divider one finds: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ∙
1

𝑅𝐶𝑗𝜔 + 1
 

Hence, considering a multiplication by 𝑗𝜔 is equal to differentiation in the time domain:  

𝑅𝐶 ∙
𝑑𝑉𝑜𝑢𝑡(𝑡)

𝑑𝑡
+ 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 

Solving the differential equation 

The solution to the differential equation presented above consists of two parts: a homogeneous 

solution and a particular solution. The input has been taken to be 𝑉𝑖𝑛 = 𝐴 cos 𝜔𝑡. Both solutions can 

be found through solving the following two equations: 

𝑅𝐶 ∙
𝑑𝑉𝑜ℎ(𝑡)

𝑑𝑡
+ 𝑉𝑜ℎ(𝑡) = 0 

𝑅𝐶 ∙
𝑑𝑉𝑜𝑝(𝑡)

𝑑𝑡
+ 𝑉𝑜𝑝(𝑡) = 𝐴 cos 𝜔𝑡 

For 𝑉𝑜ℎ(𝑡), 𝛼2𝑒𝑟𝑡 can be substituted as a trial solution. Through differentiation and elimination, one 

ends up with:  

𝑅𝐶𝑟𝛼2𝑒𝑟𝑡 + 𝛼2𝑒𝑟𝑡 = 0 

Hence,  

𝑟 = −
1

𝑅𝐶
 

Thus, the homogeneous solution is in this case equal to: 

𝑉𝑜ℎ(𝑡) = 𝛼2 ∙ 𝑒−
1

𝑅𝐶
𝑡 
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The trial solution for the particular solution will be 𝛼1 cos(𝜔𝑡 + 𝜙) and can also be substituted in the 

differential equation, one finds:  

−𝛼1𝜔 cos(𝜙) sin(𝜔𝑡) − 𝛼1𝜔 sin(𝜙) cos(𝜔𝑡) +
1

𝑅𝐶
[𝛼1 cos(𝜙) cos(𝜔𝑡) − 𝛼1 sin(𝜙) sin(𝜔𝑡)]

=
𝐴

𝑅𝐶
cos(𝜔𝑡) 

Collecting respectively the terms cos(𝜔𝑡) and sin(𝜔𝑡), one finds:  

−𝛼1𝜔 sin(𝜙) +
1

𝑅𝐶
𝛼1 cos(𝜙) =

𝐴

𝑅𝐶
 

−𝛼1𝜔 cos(𝜙) −
1

𝑅𝐶
𝛼1 sin(𝜙) = 0 

Solving this for 𝛼1 and 𝜙 yields:  

𝛼1 =
𝐴

cos(𝜙) − 𝜔𝑅𝐶 sin(𝜙)
 

𝜙 = arctan(−𝜔𝑅𝐶) 

Thus,  

𝑉𝑜𝑝(𝑡) =
𝐴

cos(𝜙) − 𝜔𝑅𝐶 sin(𝜙)
cos(𝜔𝑡 + arctan(−𝜔𝑅𝐶)) 

AM/PM Conversion  

When one looks at the AM/PM conversion effects only the steady state situation is of importance. 

Note that for 𝑡 → ∞ the homogeneous solution will equal zero. Considering that the capacitance will 

be described by the following nonlinear expression:  

C = C1 + C2 ∙ VC + C3 ∙ VC
2, 

 one can approximate the AM/PM conversion by writing the capacitance as C(t). 

Assuming that the input frequency is below the cut-off frequency of the circuit (RC(t)ω1 ≪ 1 rad), 

and hence that the voltage across the capacitor is roughly equal to the input, one can rewrite the 

phase of the output voltage as:  

ϕ = −R(C1 + C2 ∙ Vo(t) + C3 ∙ Vo(t)2)ω = −R(C1 + C2 ∙ A cos(ωt) + C3 ∙ A2 cos(ωt)2)ω 

Denoting that cos(ωt)2 can be rewritten as 
1

2
+

1

2
cos(2ωt), one can approximate the AM/PM 

conversion. Although the second-order capacitance constant also seems to yield phase modulation 

due to amplitude modulation at the input, even harmonics are suppressed in differential circuits and 

hence these effects do not manifest themselves in RF-circuits (as they are highly likely to be 

differential). The approximation can be written as follows: 

ϕ(A) = −
RC3ωA2

2
 

 in which  - 𝜙(𝐴) is the amplitude dependent phase shift 

    - 𝑅 is the value of the resistor in the RC-network in Ω 

   - 𝐶3 is the third-order nonlinearity constant of the capacitance in 𝐹 
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   - 𝜔 is the input frequency in 
𝑟𝑎𝑑

𝑠
 

   - 𝐴 is the peak-amplitude of the input signal 

 

10.3 Derivation of the Approximation to the AM/PM Conversion Effects in Extended 

Nonlinear RC-Networks 

10.3.1 Derivation of AM/PM conversion effects in the extension of the first-order low-

pass RC-filter with an extra resistor in parallel with the capacitor 
To be able to give an estimate or expression of the AM/PM conversion effects, one must first 

determine the circuit behaviour. This can be done by determining the differential equation of the 

system, calculating its solution and determining the phase of this solution.  

Determining the differential equation 

A differential equation will be determined for the circuit depicted in Figure 10.3.1.1.  

 

Figure 10.3.1.1: First-order low-pass RC-filter with additional resistor in parallel with the capacitor. 

Recognizing that 𝑍𝐶𝑏𝑒
=

1

𝑗𝜔𝐶𝑏𝑒
 and 𝑍𝑅𝑏𝑒

= 𝑅𝑏𝑒, one can make a single expression for the equivalent 

impedance of these elements:  

𝑅𝑏𝑒//𝐶𝑏𝑒 =

𝑅𝑏𝑒
𝑗𝜔𝐶𝑏𝑒

𝑅𝑏𝑒 +
1

𝑗𝜔𝐶𝑏𝑒

=
𝑅𝑏𝑒

𝑅𝑏𝑒𝐶𝑏𝑒𝑗𝜔 + 1
 

Trough considering the circuit as an impedance divider one finds: 

𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 ∙
𝑅𝑏𝑒

𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒𝑗𝜔 + 𝑅𝑏 + 𝑅𝑏𝑒
= 𝑉𝑖𝑛 ∙

1

1 +
𝑅𝑏
𝑅𝑏𝑒

+ 𝑅𝑏𝐶𝑏𝑒𝑗𝜔
 

Hence, considering a multiplication by 𝑗𝜔 is equal to differentiation in the time domain:  

𝑅𝑏𝐶𝑏𝑒 ∙
𝑑𝑉𝑜𝑢𝑡(𝑡)

𝑑𝑡
+ (

𝑅𝑏

𝑅𝑏𝑒
+ 1) 𝑉𝑜𝑢𝑡 = 𝑉𝑖𝑛 

Solving the differential equation 

The solution to the differential equation presented above consists of two parts: a homogeneous 

solution and a particular solution. The input has been taken to be 𝑉𝑖𝑛 = 𝐴 cos 𝜔𝑡. Both solutions can 

be found through solving the following two equations: 



49 
 

𝑅𝑏𝐶𝑏𝑒 ∙
𝑑𝑉𝑜ℎ(𝑡)

𝑑𝑡
+ (

𝑅𝑏

𝑅𝑏𝑒
+ 1) 𝑉𝑜ℎ(𝑡) = 0 

𝑅𝑏𝐶𝑏𝑒 ∙
𝑑𝑉𝑜𝑝(𝑡)

𝑑𝑡
+ (

𝑅𝑏

𝑅𝑏𝑒
+ 1) 𝑉𝑜𝑝(𝑡) = 𝐴 cos 𝜔𝑡 

For 𝑉𝑜ℎ(𝑡), 𝛼2𝑒𝑟𝑡 can be substituted as a trial solution. Through differentiation and elimination, one 

ends up with:  

𝑅𝑏𝐶𝑏𝑒𝑟𝛼2𝑒𝑟𝑡 + (
𝑅𝑏

𝑅𝑏𝑒
+ 1) 𝛼2𝑒𝑟𝑡 = 0 

Hence,  

𝑟 = − (
𝑅𝑏

𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒
+

1

𝑅𝑏𝐶𝑏𝑒
) = −

𝑅𝑏 + 𝑅𝑏𝑒

𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒
 

Thus, the homogeneous solution is in this case equal to: 

𝑉𝑜ℎ(𝑡) = 𝛼2 ∙ 𝑒
−

𝑅𝑏+𝑅𝑏𝑒
𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒

𝑡
 

The trial solution for the particular solution will be 𝛼1 cos(𝜔𝑡 + 𝜙) and can also be substituted in the 

differential equation, one finds:  

−𝛼1𝜔 cos(𝜙) sin(𝜔𝑡) − 𝛼1𝜔 sin(𝜙) cos(𝜔𝑡)

+
(𝑅𝑏 + 𝑅𝑏𝑒)

𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒

[𝛼1 cos(𝜙) cos(𝜔𝑡) − 𝛼1 sin(𝜙) sin(𝜔𝑡)] =
𝐴

𝑅𝑏𝐶𝑏𝑒
cos(𝜔𝑡) 

Collecting respectively the terms cos(𝜔𝑡) and sin(𝜔𝑡), one finds:  

−𝛼1𝜔 sin(𝜙) +
𝑅𝑏 + 𝑅𝑏𝑒

𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒
𝛼1 cos(𝜙) =

𝐴

𝑅𝑏𝐶𝑏𝑒
 

−𝛼1𝜔 cos(𝜙) −
𝑅𝑏 + 𝑅𝑏𝑒

𝑅𝑏𝑅𝑏𝑒𝐶𝑏𝑒
𝛼1 sin(𝜙) = 0 

Solving this for 𝛼1 and 𝜙 yields:  

𝛼1 =
𝐴

𝑅𝑏 + 𝑅𝑏𝑒
𝑅𝑏𝑒

cos(𝜙) − 𝜔𝑅𝑏𝐶𝑏𝑒 sin(𝜙)
 

𝜙 = arctan (−
𝜔𝑅𝑏𝑅𝑏𝑒𝐶

𝑅𝑏 + 𝑅𝑏𝑒
)  

Thus,  

𝑉𝑜𝑝(𝑡) =
𝐴

𝑅𝑏 + 𝑅𝑏𝑒
𝑅𝑏𝑒

cos(𝜙) − 𝜔𝑅𝑏𝐶𝑏𝑒 sin(𝜙)
cos (𝜔𝑡 + arctan (−

𝜔𝑅𝑏𝑅𝑏𝑒𝐶

𝑅𝑏 + 𝑅𝑏𝑒
)) 

AM/PM Conversion  

When one looks at the AM/PM conversion effects only the steady state situation is of importance. 

Note that for 𝑡 → ∞ the homogeneous solution will equal zero. Considering that the capacitance will 

be described by the following nonlinear expression:  
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Cbe = C1 + C2 ∙ VC + C3 ∙ VC
2, 

 one can approximate the AM/PM conversion by writing the capacitance as C(t). 

Assuming that the input frequency is below the cut-off frequency of the circuit (RC(t)ω1 ≪ 1 rad), 

and hence that the voltage across the capacitor is roughly equal to the input, one can rewrite the 

phase of the output voltage as:  

ϕ = −
RbRbe

Rb + Rbe

(C1 + C2 ∙ Vo(t) + C3 ∙ Vo(t)2)ω

= −
RbRbe

Rb + Rbe

(C1 + C2 ∙ A cos(ωt) + C3 ∙ A2 cos(ωt)2)ω 

Denoting that cos(ωt)2 can be rewritten as 
1

2
+

1

2
cos(2ωt), one can approximate the AM/PM 

conversion with the following expression:  

ϕ(A) = −
RbRbeC3ωA2

2(Rb + Rbe)
 

 in which  - 𝜙(𝐴) is the amplitude dependent phase shift 

    - 𝑅𝑏 is the value of the resistor in the original RC-network in Ω 

   - 𝑅𝑏𝑒 is value of the additional resistor in parallel with the capacitor in Ω 

   - 𝐶3 is the third-order nonlinearity constant of the capacitance in 𝐹 

   - 𝜔 is the input frequency in 
𝑟𝑎𝑑

𝑠
 

   - 𝐴 is the peak-amplitude of the input signal 

Based on the approximation above, a hypothesis can be formulated. If 𝑅𝑏 and 𝐶3 remain fixed, 

increasing 𝑅𝑏𝑒 to infinity should lead to a similar effect as in the simple RC-filter. Consider: 

lim
𝑅𝑏𝑒→∞

𝜙(𝐴) = −
𝑅𝑏𝐶3𝜔𝐴2

2
 

On the other hand, if 𝑅𝑏𝑒 is decreased to zero, one would short the capacitor and its corresponding 

nonlinear behaviour; the phase conversion will be zero:  

lim
𝑅𝑏𝑒→0

𝜙(𝐴) = 0 

Combining these limits, one would expect that an increase in 𝑅𝑏𝑒 would lead to AM/PM conversion 

effects that transition from being zero to equalling the behaviour of a first-order low-pass RC-filter. 

10.3.2 Derivation of AM/PM conversion effects in the extension of the first-order low-

pass RC-filter with the source impedance  

Consider the circuit in Figure 10.3.2.1. 
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Figure 10.3.2.1: RRC-circuit resembling the simplified internal base-emitter structure of an HBT including the source resistance 
of the signal applied to the base.  

The AM/PM conversion effects at the base can be approximated by applying linear phasor analysis 

and inserting the nonlinear capacitance expression in a later stage.  

For the transfer function one finds:  

𝑉𝑜(𝑡) = 𝑉𝑖(𝑡) ∙
𝑅𝑏 +

1
𝑗𝜔𝐶𝑏𝑒

𝑅𝑠 + 𝑅𝑏 +
1

𝑗𝜔𝐶𝑏𝑒

 

𝐻(𝑗𝜔) =
𝑅𝑏𝐶𝑏𝑒𝑗𝜔 + 1

(𝑅𝑠 + 𝑅𝑏)𝐶𝑏𝑒𝑗𝜔 + 1
 

To determine the steady state response, transform back to the time-domain:  

𝑉𝑜(𝑡) = 𝑅𝑒{𝑌𝑒𝑗𝜔𝑡} = |𝐻(𝑗𝜔)|𝐴 cos(𝜔𝑡 + 𝜙 + arg(𝐻(𝑗𝜔))) 

|𝐻(𝑗𝜔)| =
√(𝑅𝑏𝐶𝑏𝑒𝜔)2  + 1

√((𝑅𝑠 + 𝑅𝑏)𝐶𝑏𝑒𝜔)
2

+ 1

 

arg(𝐻(𝑗𝜔)) = arctan (
𝜔𝑅𝑏𝐶𝑏𝑒

1
) − arctan (

(𝑅𝑠 + 𝑅𝑏)𝐶𝑏𝑒𝜔

1
) 

For the output, this yields:  

𝑉𝑜(𝑡) =
𝐴√(𝑅𝑏𝐶𝑏𝑒𝜔)2 + 1 

√((𝑅𝑏 + 𝑅𝑠)𝐶𝑏𝑒𝜔)
2

+ 1

cos[𝜔𝑡 + arctan(𝜔𝑅𝑏𝐶𝑏𝑒) − arctan((𝑅𝑠 + 𝑅𝑏)𝐶𝑏𝑒𝜔)]

=
𝐴√(𝑅𝑏𝐶𝑏𝑒𝜔)2 + 1 

√((𝑅𝑏 + 𝑅𝑠)𝐶𝑏𝑒𝜔)
2

+ 1

cos (𝜔𝑡 + arctan [
−𝑅𝑠𝐶𝑏𝑒𝜔

1 + 𝑅𝑏(𝑅𝑠 + 𝑅𝑏)𝐶𝑏𝑒
2 𝜔2

]) 

This appears to be correct, consider: 

lim
𝑅𝑏→0

(𝑉𝑜(𝑡)) =
𝐴

√𝑅𝑠
2𝐶𝑏𝑒

2 𝜔2 + 1

cos(𝜔𝑡 + arctan(−𝑅𝑠𝐶𝑏𝑒𝜔)) 

The above expression is the same as the one that has been derived for the first-order low-pass RC-

filter. 
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Extracting the phase from the expression for the output voltage can be done in the same way as in 

Appendix 10.3.1, through substitution of 𝐶𝑏𝑒 by the nonlinear expression. Deriving this expression is 

difficult due to the elaborate nature of the terms, so the results will be calculated with the use of 

computer programs like MATLAB and Mathematica.  

10.4 Zero-Crossings and AM/PM Conversion 

10.4.1 Derivation of the Approximation of the Relation Between Zero-Crossings and 

AM/PM Conversion Effects 
Consider the following expression from Appendix 10.2:  

𝑉𝑜(𝑡) =
𝐴

cos(𝜙) − 𝜔𝑅𝐶 sin(𝜙)
cos(𝜔𝑡 + arctan(−𝜔𝑅𝐶)) 

To find the zero-crossings, equate it to zero:  

𝑉𝑜(𝑡) =
𝐴

cos(𝜙) − 𝜔𝑅𝐶 sin(𝜙)
cos(𝜔𝑡 + arctan(−𝜔𝑅𝐶)) = 0 

cos[𝜔𝑡 + arctan(−𝜔𝑅𝐶)] = 0 

𝜔𝑡 + arctan(−𝜔𝑅𝐶) =
π

2
+ 𝜋 ∙ 𝑘 

𝜔𝑡 = (
𝜋

2
+ 𝜋 ∙ 𝑘) + arctan(𝜔𝑅𝐶) 

𝑡 =
1

𝜔
(

𝜋

2
+ 𝜋 ∙ 𝑘 + arctan(𝜔𝑅𝐶)) 

Now substitute 𝐶(𝑡) = 𝐶1 + 𝐶2𝑉𝐶 + 𝐶3𝑉𝐶
2, 𝑉𝐶 = 𝐴𝑐 cos 𝜔𝑡 and 𝐴𝑐 = 𝐴𝑚(1 + 𝑚 cos 𝜔𝑚𝑡): 

𝑡 =
1

𝜔
(

𝜋

2
+ 𝜋 ∙ 𝑘

+ arctan (𝜔𝑅 (𝐶1 + 𝐶2𝐴𝑚(1 + 𝑚 cos 𝜔𝑚𝑡) cos 𝜔𝑡

+ 𝐶3(𝐴𝑚(1 + 𝑚 cos 𝜔𝑚𝑡))
2

cos2 𝜔𝑡)))  

in which  - 𝑡𝑍𝐶   is the value of the kth zero-crossing in seconds 

- 𝜔  is the value of the carrier frequency in rad/s 

- 𝑅   is the value of the resistor in Ohm 

- 𝐶1, 𝐶2, 𝐶3  are the 1st, 2nd and 3rd-order  capacitance constants in Farad  

- 𝑚   is the modulation factor 

- 𝐴   is the peak-amplitude of the carrier wave in Volts 

- 𝜔𝑚   is the frequency of the modulator signal in rad/s. 

10.4.2 Mathematica code 
Rs = 50; 
C1 = 123*10^(-15); 
C2 = 0*10^ (-15); 
C3 = 84*10^(-15); 
ω = 2*π*10^10;   (* Carrier frequency *) 
Am =  0.1;                          (* Carrier amplitude *) 
ωm = ω/10;          (* Modulation frequency *) 
m = 0.5;                         (* Modulation factor *) 
tsim = 0.5*10^(-8); 

 datalinear = {𝑡}/. (NSolve[Cos[𝜔 ∗ 𝑡 + ArcTan[−𝜔 ∗ Rs ∗ (C1)]] == 0&&0 ≤ 𝑡 ≤ tsim, 𝑡, Reals]); 
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data={t} /. (NSolve[Cos[ω*t+ArcTan[-
ω*Rs*(C1+C2*Am*(1+m*Cos[ωm*t])*Cos[ω*t]+C3*(Am*(1+m*Cos[ωm*t])*Cos[ω*t])*(Am*(1+m*Cos[ωm*t])
*Cos[ω*t]))]]==0&&0<= t<= tsim, t,Reals]); 
 
xvalues = Range[Length[datalinear]]; 
datatoplot=TemporalData[{datalinear-data},{xvalues}]; 

ListPlot[datatoplot,Joined-> True,AxesLabel->{"# Zero-crossing","t [s]"}] 
Export["out2.mat",{datalinear-data} ] 

10.4.3 MATLAB code 
Thanks to Inês for providing the code.  

%% Reads a file from a table with 4 columns: 
% |time| zerocrossings_Vin| time |zerocrossings_Vo| 

  
close all; 
clear; clc; 

  
str_leg = {}; 
filename1 = 'ZeroCross HBT base 10'; 
filename2 = 'ZeroCross RC 10'; %includes parasitics in the supply lines, no 

input matching 

  
zerocrossing_table_ol = csvread(['/',filename1,'.csv'],1);   
str_leg{length(str_leg)+1} = filename1; 
zerocrossing_table_cl_10 = csvread(['/',filename2,'.csv'],1); 
str_leg{length(str_leg)+1} = filename2; 

  
str_leg = strrep(str_leg,'_',' '); 

  
Y=zerocrossing_table_ol; 
S_10=zerocrossing_table_cl_10; 

  
% S and Y 
row=1; 
time_ol = Y(Y(:,row)>0, row); 
time_cl_10 = S_10(S_10(:,row)>0, row); 

  
row=2; 
zc_vo_ol=Y(Y(:,row)>0, row); 
row=4; 
zc_vi_ol=Y(Y(:,row)>0, row); 

  
row=2; 
zc_vo_cl_10=S_10(S_10(:,row)>0, row); 
row=4; 
zc_vi_cl_10=S_10(S_10(:,row)>0, row); 

  
% steadystate in samples 
steadystate=1800; %number of samples to skip 
time_ol=time_ol(steadystate+1:end); 
time_cl_10=time_cl_10(steadystate+1:end); 

  
zc_vi_ol=zc_vi_ol(steadystate+1:end); 
zc_vo_ol=zc_vo_ol(steadystate+1:end); 

  
zc_vi_cl_10=zc_vi_cl_10(steadystate+1:end); 
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zc_vo_cl_10=zc_vo_cl_10(steadystate+1:end); 

  
%select min length of all vectors 
all_len = [length(time_ol),length(time_cl_10),... 
                length(zc_vi_ol),length(zc_vo_ol),... 
                length(zc_vi_cl_10),length(zc_vo_cl_10)]; 
correctlen = min(all_len); 

  
%select latest zero crossings 
time_ol = time_ol(length(time_ol)-correctlen+1:end); 
time_cl_10=time_cl_10(length(time_cl_10)-correctlen+1:end); 

  
zc_vi_ol = zc_vi_ol(length(zc_vi_ol)-correctlen+1:end); 
zc_vo_ol = zc_vo_ol(length(zc_vo_ol)-correctlen+1:end); 

  
zc_vi_cl_10=zc_vi_cl_10(length(zc_vi_cl_10)-correctlen+1:end); 
zc_vo_cl_10=zc_vo_cl_10(length(zc_vo_cl_10)-correctlen+1:end); 

  
open_loop=zc_vi_ol-zc_vo_ol; 
closed_loop_10=zc_vi_cl_10-zc_vo_cl_10; 

  

  
figure 
hold on 
mathematica = importdata('out2.mat'); 
plot(mathematica-mean(mathematica),'k','LineWidth', 3) 
plot(closed_loop_10-mean(closed_loop_10),'m','LineWidth',3) 
plot(open_loop-mean(open_loop),'k','LineWidth', 3) 
hold off 
grid on 
set(gca,'FontSize',14) 
title('AMPM @ output RC-circuit') 
legend('Simulated RC','Simulated HBT' ) 
xlabel('samples') 
ylabel('time(s)') 

  

10.5 Additional simulation results 

10.5.1 On the decision to change the input amplitude sweep 
Figure 10.5.1.1 shows the collector voltage of the testbench circuit and the corresponding input. 

 

Figure 10.5.1.1: Transient simulation results of the input and collector voltage of the HBT inserted in the testbench circuit in 
Figure 14.  
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Visual inspection already shows that the transfer is not merely an amplification (𝑉𝑚𝑎𝑥 of the output is 

roughly 360 mV, while 𝑉𝑚𝑖𝑛 is roughly -440 mV, as a result the average value of the output changes to 

a non-zero value). Figure 10.5.1.1 indicates that the applied amplitude is too large for a linear 

approximation of the variation around the bias point. The RC-network can only be verified as a good 

model for a weakly nonlinear phenomenon in the HBT if it is operating as weakly nonlinear. Therefore, 

the amplitude has been reduced to 50 𝑚𝑉𝑝 to reduce the strength of the nonlinearities and the 

simulation in Figure 10.5.1.1 has been repeated, see Figure 10.5.1.2.  

 

Figure 10.5.1.2: Transient simulation of the input applied to the HBT and the collector voltage of the circuit in Figure 14 for 
an input amplitude of 50 𝑚𝑉𝑝.  

Figure 10.5.1.2 indeed seems to show that the signal at the collector has not been distorted by strong 

nonlinear behaviour and that a variation of 50 𝑚𝑉𝑝 around the bias point of 900 mV can be 

approximated with linear behaviour; the average of the collector signal is still zero as opposed to the 

result in Figure 10.5.1.1. 

10.5.2 On the decision to change the linear capacitance constant 
The voltage across the capacitor of the RC-network should show similar behaviour as it is modelling 

the base of the HBT. Figure 10.5.1.3 shows these curves and the signal originating from the source.   

 

Figure 10.5.1.3: transient of figure 10.5.1.2 but now including the signal at the capacitor in the RC circuit.  

Figure 10.5.1.3 is a clear indication that the linear phase shift of both circuits is different; the RC-curve 

is leading the curve of the signal at the base of the HBT. Apparently, the value of the linear capacitance 
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coefficient of the RC-network has been chosen too large. As a second attempt at approaching the 

correct value, the value as indicated by ProMOST will be used: 123 fF. Note that one has to be careful 

with basing parameters on data that will also be used to verify these same parameters, however, I 

deem it sufficiently justified due to the fact that these are fixed device parameters that can either be 

measured or chosen in the manufacturing of the device. Figure 10.5.1.4 shows the phase shift for the 

new value of 𝐶1 = 123 𝑓𝐹. 

 

Figure 10.5.1.4: Transient of Figure 10.5.1.3 with the capacitance value indicated by ProMOST. 

Considering that the nonlinear contributions to the phase are small compared to the linear 

component, Figure 10.5.1.4 now indeed shows that the signals at the ‘base’ of both the HBT and the 

RC-network overlap close to the zero-crossings indicating that the linear capacitance has now been 

properly estimated.  

10.5.3 Showing various amplitude values in the verification of time domain zero-

crossing modelling in the RC-circuit 
The Figures 10.5.3.1 up to and including 10.5.3.4 below show the deviation in zero-crossing timing for 

both the simulated RC-circuit as the HBT circuit.  

  
Figure 10.5.3.1: Deviation in zero-crossing timings 
simulated for both the HBT and RC-circuit. Input amplitude 
is equal to 10 𝑚𝑉𝑝.  

Figure 10.5.3.2: Deviation in zero-crossing timings 
simulated for both the HBT and RC-circuit. Input amplitude 
is equal to 50 𝑚𝑉𝑝. 
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Figure 10.5.3.3: Deviation in zero-crossing timings 
simulated for both the HBT and RC-circuit. Input amplitude 
is equal to 100 𝑚𝑉𝑝. 

Figure 10.5.3.4: Deviation in zero-crossing timings 
simulated for both the HBT and RC-circuit. Input amplitude 
is equal to 150 𝑚𝑉𝑝. 

 

10.6 Impact of the second-order capacitance constant on the AM/PM conversion 

effects in a first-order low-pass RC-filter 
Figure 10.6.1 shows a sweep of the ratio between 𝐶2 and 𝐶1. Figure 10.6.2 shows a sweep in ratio 

between 𝐶3 and 𝐶1 and the influence various values of 𝐶2 has on this relation.  

 

Figure 10.6.1: Sweep in ratio between 𝐶1 and 𝐶2. The x-axis represents the values of the ratio x in the equation 𝐶2 = 𝐶1/𝑥. 
The value of 𝐶3 for each curve can be found in the legend.  
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Figure 10.6.2: Sweep in ratio between 𝐶1 and 𝐶3. The x-axis represents the values of the ratio x in the equation 𝐶3 = 𝐶1/𝑥. 
The value of 𝐶2 for each curve can be found in the legend. 

One can deduct from Figure 10.6.1 that only a relatively large value of 𝐶2 with respect to 𝐶1 has an 

influence on the AM/PM conversion effects. If 𝐶2 is roughly 6 times smaller than 𝐶1, its impact on the 

magnitude of the effects can already be neglected. Figure 10.6.1 shows a clear dependence on the 

value of the AM/PM conversion for an input amplitude value of 1 Volt on the value of 𝐶3, which is in 

line with the results obtained on 𝐶3.  

Figure 10.6.2 shows that values of 𝐶2 that are relatively large compared to 𝐶1 will have a considerable 

influence on the impact of 𝐶3 on the AM/PM conversion effects. Why do Figures 10.6.1 and 10.6.2 

indicate that 𝐶2 will have an influence (when it is relatively large), when the approximation states that 

this should not be the case? A plausible explanation is the fact that the simulations were performed 

on a single circuit, not a differential one. Even harmonics will be suppressed in a differential circuit.  

To verify the above claim, the influence of 𝐶2 has also been simulated in a differential circuit, see 

Figure 15 in Section 5.3. The default values for the circuit however still yielded amplitude modulated 

phase modulation, see Figure 10.6.3a. Figure 10.6.3b shows the magnitude of the AM/PM conversion 

for this case.  

 

Figure 10.6.3 (a) and (b): 4a shows the phase shift for an amplitude sweep when 𝐶3 has been set to zero and the other 
parameters to their default values. (b) shows the derivative of (a), showing the actual AM/PM conversion magnitude.  
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Why is there still AM/PM conversion present? The answer can be found in the simulation solver. It 

turns out that there are inaccuracies present in the zero-crossings of the time-domain simulations, 

yielding variations in phase shift. Plotting various amplitude values in the time-domain does not 

immediately show any discrepancies, see Figure 10.6.4. However, when one zooms in on the zero-

crossings there is a clear shift in DC level and timing instant at which corresponding curves cross, see 

Figure 10.6.5. 

Figure 10.6.5 clearly shows that the DC values of corresponding curves is shifting and that also the 

zero crossings are no longer located at one single timing instant. This will result in a phase shift that is 

related to the amplitude of the input signal and hence appear as AM to PM conversion.  

 

Figure 10.6.4: Time-domain voltage waveforms of the nonlinear outputs of the differential circuit with the settings of Figure 
10.6.3.  

 

Figure 10.6.5: Plot of Figure 10.6.4 zoomed in upon a zero-crossing.  

The effect shown in Figure 10.6.5 becomes more apparent in Figure 10.6.6 where more amplitude 

values have been plotted. If there would have not been any errors in phase, Figure 10.6.6 would have 

shown a single time on the x-axis at which all waves would have crossed.  
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Figure 10.6.6: Time-domain voltage waveforms of the nonlinear outputs of the differential circuit with the settings of Figure 
10.6.3 zoomed in upon a zero-crossing. 

One could look into ways to prevent these effects. A possible solution could be decreasing the error 

tolerance of the simulations. However, the effects are small and one could wonder if it would be worth 

the extra processing power and time consumption to suppress the effects. 


