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Abstract

Brain-computer Interfaces are a growing field of Human-computer Interaction
that is gaining importance with sensors becoming cheaper and more accessi-
ble. This paves the way to these devices being used in daily life. A possible
field of application is affective computing, in which the computer attempts to be
environmentally aware of the human aspects of the user, such as emotions and
the social context. This project explores the ability for BCI (in this case EEG
hyperscanning) to be used to detect the social context, by attempting to find
neural correlations for social relationships between two users in a joint-attention
setting. The experiment consists of two users who can belong to either of two
dyad classes (”strangers” or ”lovers”) getting exposed to a series of visual stim-
uli while their brain-activity is being recorded (EEG recording using 2 BioSemi
Active2). The metric that is investigated primarily is the Inter-brain weighted
phase lag index (WPLI) as defined by [Vinck et al., 2011]. The results of this
experiment, based on a user test with 6 dyads, show a weak significant differ-
ence (.8 CI) between the dyad groups in the alpha and theta frequency range.
The conclusions drawn are that there are clear indications for the WPLI being
a usable metric for detection of social relationships, however the joint-attention
task used in this experiment is a rather passive form of interaction, while other
experiments with more active tasks seemed to cause stronger differences in the
signals. This might hint at the effect primarily stemming from active interaction.
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Figure 1: artist impression of Parathletes competing in a Cybathlon using Brain-
computer interfaces goo.gl/nWyD1N

1 Introduction

Brain-Computer Interfaces (BCI) are a growing field in Human-Computer interaction
and are widely researched as a potential new method of user-interaction with com-
puters. They are widely regarded as a potential additional interface to extend the
possibilities of mouse, keyboard and touchscreen, adding another dimension that
does not rely on first translating thoughts to motor output that then manipulates a
Human-device Interface whose input is then translated to digital data. This path of
translating through different domains could potentially be shortened by having di-
rect brain-computer interaction. One of the primary applications for BCI, outside
of the medical field, is gaming. Controlling a game-character by brain activity po-
tentially increases immersion into the game world and thus gives the user a more
intense perception of the game. [Friedman, 2017] showed that users perceive an
embodiment of their game-character when controlling a VR based game using a
BCI [Gu et al., 2016]. Opposing these explicit forms of interaction using BCI, there
is also a trend of researching the more implicit forms of interaction through a BCI,
the so-called passive BCI, which are based around sensing the users mental state
without the user attempting to modulate his input to control a system. These passive
BCI can for example detect the users mood, emotions, relaxation, concentration lev-
els or mental workload in order to match the system to the users state of mind, for
example in affective computing, adaptive automation, or to improve the workings of
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systems that primarily work with explicit interaction (such as [Dal Seno et al., 2010]
P3 speller, which incorporates passive detection of error potentials in order to im-
prove the classification).

The paradigm of controlling a computer or other technical device directly, using
a brain computer interface is, however, just one aspect of the field. In affective com-
puting the computer already attempts to detect the users mood or emotional state
(possibly based on BCI data, but also other measures1), the next step for comput-
ers to sense its surroundings is to also being able to detect and react to the social
relation between the people in the room. Among others, [Schilbach et al., 2013b]
proposed that neuroscience needs to be extended towards a ”second person neu-
roscience” in order to close that gap. The technique to do so is called hyperscanning
and describes the use of multiple BCI devices monitoring one brain each and then
investigating the interaction (and social relation) by studying how the activities in
both brains correlate.

This paper provides an overview of the current state-of-the-art in BCI (Section 2)
with a focus on EEG based emotion detection (Section 2.3.1) and on the investiga-
tion of social relations using EEG hyperscanning (Section 2.4). It ends in a proposi-
tion for Future Research (Section 3) and proposes a Methodology for such research
(Section 4). As the focus of this paper lies on emotion detection and hyperscanning,
the level of detail, especially with regards to the technical implementation is higher
in these section than the rest of the paper.

2 Brain-Computer Interfaces

Brain-computer interfaces are communications systems in which messages or com-
mands from an individual are sent to the external world without making use of the
brain’s normal pathways of peripheral nerves and muscles [Wolpaw et al., 2002].
Primarily (consumer-grade) BCI’s are based upon non-invasive Electroencephalog-
raphy (EEG) measuring the electromagnetic field generated by neurons firing inside
the brain. In such an EEG-based BCI the messages that a subject sends are en-
coded in the EEG activity (i.e. the electromagnetic field generated by the brain).
Other technologies include invasive methods like Electrocorticography (ECoG) that
measures similar signals as EEG but from within the skull, or methods that require
advanced hardware such as Magnetoencephalography (MEG), functional magnetic
resonance imaging (fMRI) or near-infrared spectroscopy (NIRS). In this project, the
focus is on EEG based BCI rather than any of the other commonly used technolo-

1continue reading on this topic here: blog.neuroelectrics.com/

8-reasons-why-affective-computing-should-be-multimodal-and-include-eeg/
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gies. For BCI and Games a lot of different interaction paradigms have been used
over the recent years, they roughly divide into motor-imagery, bio-/neurofeedback
and (visually) evoked potentials [Marshall et al., 2013].

2.1 Motor Imagery

Motor imagery, also sometimes referred to as imaginary movement, describes the
method of reading activation signals in the motor cortex related to (imagined) muscle
activity. From the spatial information of the signal one can correlate the source in
the motor cortex and can interpret the related muscle group. Motor imagery allows
relatively fine control, but requires extensive training, unless used with ECoG or
fMRI, rather than EEG.

In a series of experiments, a team investigated motor imagery as control paradigm.
Participants were able to control a humanoid robot at a remote location (in a pilot
study [Cohen et al., 2012]) or a 3D avatar [Cohen et al., 2014] using motor imagery,
detected by use of a region of interest based approach inside an fMRI scanner.
The participants were immersed into a virtual reality while they were inside an fMRI
scanner and could control their ingame character from a third person perspective
by imagining left/right hand movement to turn the character to either side and feet
movement to move forward. Given different tasks, such as free movement, following
a lead and simple navigation to face a specific object in the room. Participants could
quickly adopt to different time-to-feedback’s (TTF), this measure was introduced in
this paper because of the low scanning speed of fMRI scanners (in this case a scan
was made every 2s), such that feedback at time t represents the intention of the
subject at time t-d. Participants perceived there performance to be best at TTF=4s,
while objective measures show higher performance at 6 or 8 seconds. This TTF ap-
proach was developed after previous research indicated that participants receiving
continuous feedback tend to perform worse than those who got intermittent feed-
back.

A different approach for the use of motor imagery as a game controller was
made by [Coyle et al., 2017] with the CircleTime controller. This controller presents
a spinning circle , that has three control options to choose from. The controller
spins continuously and is stopped by the user imagining hand movement. This con-
trol paradigm was successfully tested in two different games with both able bodied
and users with a physical impairment and is proposed by the authors as a possible
standard controller used for all different kinds of interactions, which would lower the
threshold for game developers to create games for BCI as well as improving usability
for players, as skills acquired in one game would translate to other BCI games.
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Figure 2: example plots of P3 event-related potentials recorded using EEG

2.2 Event-related potentials

Event-related potentials (ERP) are responses by the brain reacting on external stim-
uli, these can be sensory, cognitive or motor events[Cecotti and Ries, 2017]. There
are different forms of ERP’s, some based on detecting a periodic stimulus in the
region of the brain that processes it, these are called steady state evoked poten-
tials (e.g. SSVEP, see section 2.2.2), while others detect a potential representing a
cognitive response, such as P3, N4 or Mismatch Negativity [Petten et al., 2005].

2.2.1 P3

P3 (often also referred to as P300) is a recognition signal, the user recognizes a
keyword or an image of an object or a person, timing and amplitude tend to differ de-
pending on the relation between the subject and the recognized stimulus. The name
P300 refers to it being a Positive potential at around 300ms after the stimulus pre-
sentation, but is also commonly shortened to P3 as it is also the third response wave
after stimulus onset. It was first detected in 1965 by [Sutton et al., 1965]. Nowadays,
there are two separate forms of P3 responses known, the P3a, also called novelty
P3, which represents a response to a novel stimulus, such as in the 3 stimulus
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Figure 3: Example of a P3 speller application, by VU Amsterdam. The system can
be seen working at https://youtu.be/wKDimrzvwYA

oddball paradigm, and the P3b, which is a response to recognizing a task-relevant
stimulus. Brain activity models suggest that the stimulus information is maintained
in the ”working memory” of the frontal lobe and is monitored by anterior cingulate
structures. The P3a could then be generated by the activation patterns in the an-
terior cingulate and related structures, whenever the focal attention is disrupted by
stimulation with a distractor or the target stimulus. The attention-driven neural ac-
tivity signal could then be transmitted towards the tempo-parietal region, where the
engagement of memory related activities generate a P3b in the tempoparietal corti-
cal structures [Polich, 2007].

A common application of P3 based BCI-systems are the so called P3-spellers,
these are systems that show users a matrix of the alphabet and highlight it row
for row, if the intended letter is in the highlighted row, the system detects a P3 re-
sponse and then highlights each letter individually until another P3 response is de-
tected for the intended letter (see figure 3 or https://youtu.be/wKDimrzvwYA 2).
This kind of system allows people with severe motor disabilities up to the point
of patients with locked-in syndrome to still communicate with the outside world.
However these spellers are very slow (in the range of 3-5 selections/letters per
minute[Brunner et al., 2010]for latin letters, studies with the Chinese alphabet achieve
approximately 1 letter in 60-120s[Minett et al., 2012]) and therefore are really only a
viable option if there is no other, faster way of communication possible.

With the rise of advanced machine learning and data analytics techniques the
detection of P3 responses moves away from requiring many repetitions of the stimuli
and then evening out over them towards being able to detect the potential after a
single trial. [Cecotti and Ries, 2017] present a way of temporal and spatial filters

2A tutorial on how to use this speller is available at http://www.nbtwiki.net/doku.php?id=

courses:brain-computer_interfaces
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(PCA and ICA filters) and a linear classifier to reliably detect a P3 after a single
trial. This was achieved by using the xDAWN based spatial filter, which is based
on using QR factorizations and singular value decomposition to estimate the evoked
subspace [Rivet et al., 2009] and a linear classifier that is trained including artificially
shifted samples. In their tests this achieved single trial accuracies of up to ∼ 94%.

2.2.2 Steady State Visually Evoked Potentials

The concept of Steady State Visually Evoked Potentials (SSVEP) is fairly straight-
forward, the user is presented with different areas in his field of view that blink at
different frequencies and by focusing on one over the others, the user selects a cer-
tain option. Which field was selected can be detected by measuring the frequency
spectrum of the signals in the occipital lobe (the area of the brain primarily responsi-
ble for vision). The selected frequency should have the highest signal strength. This
paradigm is commonly used in spellers (like P3) and finds application in rudimentary
game controllers (up/down/left/right) by sticking blinking LED’s on either side of the
screen or presenting blinking area’s on the screen. The performance of SSVEP is
limited by the fact that it takes a sample of several second to detect a signal and the
fact that the usable frequency range is limited by the capabilities of the human vision
(effectively ∼5-20Hz) and the difficulty of distinguishing different frequencies if they
are too close to each other, as well as the additional challenge, that users respond
differently to certain frequencies and each system needs to be ”fitted” to the user.
The performance of such a speller system can be improved by using probability
models, such as Bayes or Markov models, predicting the most likely series of let-
ters. Users can therefore select the most probable letter quicker than less probable
letters (the probability of a letter is based on common letter combinations and letter
orders in the English language) and therefore increasing the average input speed
(which is generally still in the range of ¡10 letters per minute[Hwang et al., 2012]
[Higger et al., 2016]3.

2.3 Passive BCI

A passive BCI is one that derives its outputs from arbitrary brain activity arising with-
out the purpose of voluntary control, for enriching a humanmachine interaction with
implicit information on the actual user state [Zander and Kothe, 2011].While many
forms of BCI interaction rely on the user actively manipulating his brain activity in
order to control a system, e.g. focusing on a stimulus for SSVEP or actually cre-

3An example of the workings of the speller seen in figure 4 can be found on https://youtu.be/

JNFYSeIIOrw
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Figure 4: Example of an SSVEP speller application, [Higger et al., 2016]

ating brain activity with motor imagery, there is another form of implementing a
BCI into a system without requiring the user to use explicit control, but that pas-
sively detects information about the users mental state which then can be used for
implicit interaction [George and Lecuyer, 2010]. Aspects of the mental state that
are commonly monitored using passive BCI techniques are the users task engage-
ment, the mood and emotion, error recognition, relaxedness and mental workload
[George and Lecuyer, 2010]. This also includes detection of Error Potentials, which
can be used to improve the performance of active BCI applications such as P3
spellers, by providing fast feedback for misclassification [Dal Seno et al., 2010].

2.3.1 Emotion detection

One of the fields of passive BCI is the detection of emotions through a BCI. Doing
this has applications in several fields, for example affective computing, but also as a
feedback loop for BCI games. This way, a game could use detecting the users emo-
tions in order to improve the immersive game experience and create a personalized
game experience to make the user experience the intended emotions, or attempt to
keep the user in a constant flow state by adjusting the difficulty of the game to keep
the players attention and frustration levels in balance.

The team of [Reuderink et al., 2012] describe a hemispheric system based upon
the three-dimensional extension of the Russell circumplex of affect, which posts a
3-dimensional space with the axes pleasure, arousal and dominance, often referred
to as the PAD-model. From a literature review the researchers mapped the 3 di-
mensional affect space to activities in different frequency bands over different hemi-
spheres of the brain. Activity in the right-hemisphere is related to emotion recogni-
tion (right hemisphere theory), while regions in the left and right frontal cortices are
associated with positive and negative emotional states (valence theory, based on
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Figure 5: Correlates for valence, arousal and dominance in the frequency domain,
[Reuderink et al., 2012]

[Silberman and Weingartner, 1986, Tucker, 1981]). Alternative to the valence theory,
the approach/withdrawal theory, originally described by [Davidson, 1992], is being
presented. According to this theory, different hemispheres are activated in different
ways depending on the motivational direction of the emotional state. Activity in the
left frontal hemisphere is associated with approach, while activity in the right hemi-
sphere is associated with withdrawal. The correlates for the third dimension of the
emotional space, Dominance, has so far been less researched and cannot yet be
conclusively linked to certain areas or frequency bands. [Heraz and Frasson, 2007]
has found negative correlations with the alpha, beta, delta and theta band, which al-
lowed for a classification accuracy of the dominance dimension of 0.75 (kappa statis-
tic). Between both theories there is overlap, due to the fact that most approaching
emotions are associated with positive feelings, while emotions of withdrawal tend to
be associated with negative feelings.

This lead to the hypotheses that are described in figure 5. These hypotheses
have than been tested in a game setting through the ”Affective Pacman Game”
[Reuderink et al., 2009], in which different emotions were evoked in a natural way,
such as frustration through neglecting (part of the) user input.

In order to filter out common and known attributes and noise, the raw signal was
filtered so that signals below 0.2Hz and the powerline noise on 50 Hz were filtered
out, then the leftover signal was correlated against the data from the EOG sensors,
that measured movement of facial muscles, such as eye blinking, according to the
technique described by [Schloegl et al., 2007], that works as follows: A measured
signal Y(t,ch) consists of the actual EEG signal S(t,ch) + 3 dimensions of EOG
activity with their respective weight vectors,

Y (t, ch) = S(t, ch) + [EOG1(t), EOG2(t), EOG3(t)][b1(ch), b2(ch), b3(ch)]T

which can be rewritten in matrix form to span over all channels, as

YTxM = STxM +NTxnbnxM
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with T being the timepoints, M the number of channels and n the components of the
noise signal (U). In order to obtain the original signal, the formula can be rewritten as
S = Y −U ∗b, which requires the knowledge of the noise source U and the respective
weighting factors b, thus the EOG noise source has to be recorded separately. In
order to obtain the weighing factors b, it is assumed that S and U are uncorrelated,
which leads to,

UTS = UT ∗ Y UTU ∗ b

which, because of UTS = 0, results in

b = UTU−1UTY = C−1
NNCNY

with CNN being the auto-covariance matrix of the EOG channels and CNY being
the cross-covariance between the EEG and EOG channels. Therefore the EEG
signal can be corrected for EOG noise by using

S = Y Ub

In order to obtain definitive and sufficiently large EOG recording, the participants
were asked to perform several tasks with their eyes before the actual experiment
started, which have been recorded for reference. The participants had to first roll
their eyes clock-and counter-clockwise several times using their entire field of vision
without moving their head and then blink rapidly for a short time. Another recom-
mendation by [Schloegl et al., 2007] is the implementation of a saturation detection
on the AD converter and the amplifier and mark all values that caused saturation
to be saved as NaN (not a number), according to the IEEE 754 standard. When
attempting to detect emotions based on asymmetry measures, the naive analysis of
asymmetries between the left and right hemispheres has a number of pitfalls as the
correlation between the corresponding electrodes on both sides are high (which was
demonstrated by showing how, when knowing one of the signals, one can predict
the other using relatively simple regression models)[Allen et al., 2004].

In order to have sufficient baseline data for later signal analysis, researchers reg-
ularly use the rule of thumb of recording exactly 8 minutes of the patient in a resting
state. [Allen et al., 2004] reasons that, depending on the number of variables being
observed, it is possible to deal with a smaller set of baseline data. Furthermore
he states that, for recording the resting state baseline it is more advantageous to
measure more, shorter blocks, rather than fewer longer blocks, based on calculat-
ing Cronbach’s alpha over them. It is further recommended to report measures of
internal consistency along the results.

[Allen et al., 2004] divides EEG asymmetry into three different effects that need
to be distinguished in order to make claims about the origin and the meaning of
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the observation. The stable trait asymmetry appears to be characteristically for a
subject and is stable and present over multiple sessions, while occasionally specific
asymmetries are different over multiple sessions, but consistent within each session.
A possible explanation of these effects is the subjects mood on the day of the ex-
periment and it can be canceled out by averaging over multiple sessions. The state
specific asymmetry is what is for most experiments the intended measure, namely
the difference in asymmetry between experimental conditions.

Another important aspect of analyzing EEG data is the choice of an adequate ref-
erence, the influence of which appears to actually be more significant than the influ-
ence of the exact amount of collected resting data and other artifacts[Smith et al., 2017].
The team did an empirical analysis of the differences in readings caused by the ref-
erence scheme and concluded, that, for most measurements, the Cz electrode ref-
erence is disadvantageous as it tends to overlay activities at all other sites with the
activity at Cz location and thus masking other effects. The linked mastoids reference
scheme allows for relatively clear observation of the medio region, while masking ac-
tivities on the outer hemispheres and the commonly used average reference is lim-
ited by the equal spreading of electrodes across the head and should not be used in
cases where electrodes are montaged asymmetrically or too small amounts of elec-
trodes are used. The recommended referencing scheme especially for asymmetry
measures is the current source density (CSD) schematic. CSD is a mathematical
transformation (second order spatial derivative; Laplacian) providing a representa-
tion of the direction, location and intensity of current generators. CSD maps rep-
resent the magnitude of the current flow entering (sinks) and leaving (sources) the
scalp. The CSD analysis is a reference-free technique that provides topographies
with more sharply localized peaks than those of the scalp potential, while eliminating
volume-conducted contributions from distant regions [Kayser and Tenke, 2006].

For noise removal it has proven effective to use an Independent Component
Analysis (ICA) on the obtained data and then attempt to identify which compo-
nents are noise and which contain the actual signal. This is done by analyzing
the characteristics of the signal, e.g. unphysiologically large signals are likely to
stem from muscle activity, such as eye movements. ICA proves to be effective, even
though it relies on assumptions and prerequisites that are not fully met. It is as-
sumed that the propagation delay between electrodes is negligible, which can be
relatively safely assumed to be the case, as the temporal resolution of the EEG
measurement is much lower than the propagation time. Further, it is assumed that
the signal sources are stationary in terms of topography, which does not seem to
be true [Onton et al., 2006]. The time courses of the sources are assumed to be
independent, though there are covariations between eye blinks and P300 (surprised
blinking in response to a stimuli) and alpha bursts (closing the eyes increases alpha
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Figure 6: Electrode placement for emotion detection, image courtesy of [Li et. al.,
2009]

activity in the occipital lobe). Lastly, ICA assumes a smaller or equal number of
sources and sensors, which is not determinable from the current understanding of
the brain, though [Artoni et al., 2014] concluded that in a typical EEG recording they
could identify as few as 15 reliable sources [Smith et al., 2017].

A different approach for emotion detection was developed by [Li et al., 2009],
who developed a system that is based upon features developed by [Takahashi, 2005]
and [Picard et al., 2001]. While [Takahashi, 2005] and [Picard et al., 2001] relied on
using multiple channels of biosignals, such as skin conductance, electromyography
and heart rate sensors, [Li et al., 2009] proposed a system that only required EEG,
rather than other measures, but still extracted similar features from the raw data.
This paper is mainly a demonstration of the fact that data from a minimalistic setup
with only 6 electrodes with simple feature extraction can already be used for emo-
tion classification, though be it with slightly lower accuracy than other more complex
methods.

The team recorded EEG on four dry electrodes located on position F4, T3, T4
and P4 according to the international 10-20 standard. The reference electrode was
placed on Fp2 and the ground was located at the left ear lobe (A1) . In the following
X̄ is defined as the normalized signal (zero mean, unit variance) of signal X:

X̄(t) =
Xn − µX
σX

This system is based upon extracting the following 6 features from the original signal:
the mean of the raw signal X:

µX =
1

T

T∑
t=1

X(t)
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the standard deviation of the raw signal X,

σX =

√√√√ 1

T

T∑
t=1

(X(t)− µX)2

the means of the absolute values of the first differences of the raw signal X

δX =
1

T − 1

T−1∑
t=1

|X(t+ 1)−X(t)|

the means of the absolute values of the first differences of the normalized signal X̄

δ̄X =
1

T − 1

T−1∑
t=1

|X̄(t+ 1)− X̄(t)| = δX
σX

the means of the absolute values of the second differences of the raw signal X

γX =
1

T − 2

T−2∑
t=1

|X(t+ 2)−X(t)|

the means of the absolute values of the second differences of the normalized signal
X̄

γ̄X =
1

T − 2

T−2∑
t=1

|X̄(t+ 2)− X̄(t)| = γX
σX

where t,T are the sampling number and the total number of samples, respectively.
This way 6 features are extracted per channel, providing a total of 24 features (in
this case). The team then used a relevance-vector machine for classification and
compared that with other classification algorithms available in WEKA4. From their
analysis the team concludes that for all channels the most important features are
δX and γX . The team managed to achieve an accuracy of 97.8% to distinguish
between the states Happy, Sad and Relaxed using all 24 features and still achieved
about 94% accuracy when just selecting the 8 most informative features (δX and γX
on all 4 channels), which resulted in a 4.5 times faster training time. It could therefore
be considered to drop the additional features when the resources for computation
are constrained.

A rather different approach was taken by [Lee and Hsieh, 2014] who attempted
emotion classification based on functional connectivity patterns, thus exploring the
data for intrabrain synchronization, correlation and coherence between dyads of
electrodes. The team did so by first extracting three new features from the 64

4Weka is an open-source machine learning and data mining application available at http://www.
cs.waikato.ac.nz/ml/weka/
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channel EEG data, a correlation factor between each possible pair of electrodes
at frequency f

r(f) =
CAB(f)√

CAA(f)CBB(f)

with CAB is the cross-covariance between signal A and B and CAA and CBB are the
auto covariances of signal A and B respectively. The correlation factor r(f) can there-
fore take a value between -1 and 1 where a higher r(f) corresponds with a stronger
relationship between the electrodes. The phase synchronization index between two
nonlinear oscillation systems is defined as

ϕn,m = |nϕ1(t)−mϕ2(t)| < α

where ϕ1 and ϕ2 are the phases of the two oscillation systems and α is a constant. In
order to use this, the instantaneous phase of each signal first needs to be computed
using

ϕt = arctan
xH(t)

x(t)

where xH(t) is the Hilbert transform of x(t). After obtaining the instantaneous phases
of two signals the phase difference can be obtained by setting m=n=1. For two
signals consisting of L samples, phase synchronization index (PSI) is defined as

PSI =

∣∣∣∣∣ 1L
L∑
t=0

eiϕ(t)

∣∣∣∣∣ , i =
√
−1

The PSI is sensitive to phase change and has a range from 0-1 where 1 is only
achieved in case of a strict phase-lock and 0 represents a uniform phase distribu-
tion. In the experiment participants watched emotional movie scenes taken from the
Standard Chinese Emotional Film Clips Database and were asked to indicate via
button press if this movie scene caused an emotion change for them. The partic-
ipants emotions were measured using a self assessment mannequin test in order
to label the obtained emotion. The resulting feature space was then reduced to
features for which ANOVA returned p ≥ 0.05. The resulting featureset was then
analysed using a Quadratic Discriminant Analysis (QDA) classifier. Based upon
[Brodersen et al., 2010] the point was raised that averaging accuracies often leads
to unclear results and that a balanced accuracy should be used. This balanced
accuracy is calculated using

1

2
(
TP

P
+
TN

N
)

Where P = TP + FN and N = TN + FP (abbreviations see footnote5).
5Abbreviations: TP:true positive; FP:false positive; TN:true negative; FN: false negative; P: posi-

tive; N: negative
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(a) medial orbitofrontal cortex,
ventromedial prefrontal
cortex

(b) insula (c) striatum

Figure 7: Locations of the neural correlates for the chameleon/social mirroring ef-
fect

2.4 Hyperscanning - Inter-brain connectivity

Hyperscanning is a technique in which brain data from more than one subject are
being collected (through the same methods/machines as other BCI paradigms) but
instead of the users mental state being interpreted as standalone data, it is being
connected to the mental state of a second subject that is in social interaction with
the first subject [Montague et al., 2002].

In order to investigate social interaction, one cannot see the brain as a single
standalone object but has to view it in context of other brains that it is interacting
with. By analyzing the correlations of interbrain phase-locking and synchronizations,
one can learn about the interaction between both users [Schilbach et al., 2013a,
Schilbach et al., 2006].

In order to estimate the relation between two subjects, psychology has already
been investigating, among others, the chameleon effect, which implies that subjects
that like each other, and/or that are in a relation with one another, seem to have a
tendency of copying each others movements, but also use similar movements and
gestures subconsciously, an effect known as the chameleon effect or social mirroring
[Bramoull, 2007, Chartrand and Bargh, 1999, Kendon, 1970].

[Kuehn et al., 2011, Kuehn et al., 2010] investigated the neural correlates of this
effect and came to the conclusion that the effect seems to originate in the medial
orbitofrontal cortex (mOFC), ventromedial prefrontal cortex (vmPFC), the striatum,
and the insula (see fig.:7).

[Dumas et al., 2011, Dumas et al., 2010] executed EEG hyperscanning experi-
ments with dyads in a social interaction under three different conditions. In the first
condition, both participants were asked to follow the movements and gestures on a
video taken from the Library of 20 Intransitive Hand Movements (LIHM). Then par-
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ticipants took turns in following/ leading each other. The data obtained was then
re-referenced to the common average reference (CAR) and split up into the differ-
ent frequency bands theta (4-7Hz), alpha-mu(8-12Hz), beta (13-30Hz) and gamma
(31-48Hz) using discrete Hilbert methods. The interbrain analysis was then exe-
cuted for each corresponding electrode pair (j and k) on the separate caps using the
phase-locking value according to the following relation:

PLVj,k =
1

N

∣∣∣∣∣
N∑
t=1

ei(φj(t)−φk(t))

∣∣∣∣∣
with φ being the phase and || the complex modulus, thus PLV equates 1 if both
signals are perfectly locked across the entire observation window and 0 if they are
completely unsynchronized. To investigate the relations between electrodes further,
the authors distinguish three different forms of neighboring electrodes, which is cou-
pled up for further analysis:

• two side-by-side electrodes on the cap of subject 1 connected to two side-by-
side electrodes on subject 2

• one electrode on the cap of subject 1 connected with 2 side-by-side electrodes
on the cap of subject 2

• one electrode on the cap of subject 2 connected with 2 side-by.side electrodes
on the cap of subject 1

Based on these groupings of pairs of electrodes, the clusters were further analyzed.
As cluster statistic, the sum of all t-values of all members of a ”neighbourhood”
was used and comparison procedures by bootstrapping the cluster statistics were
performed on them.

The statistics were corrected through spatial and spectral dimensions by using
the maximum t-value for each permutation. Increased synchronizations were found
in different frequency spectrums, in the alpha-mu band, the subjects showed syn-
chronizations between the right centro-parietal regions in both subjects. In the beta
band, there was synchronization visible between the leaders central region with the
followers right parieto-occipital regions and in the gamma band the leaders centro-
parietal region appeared to have synchronized with the followers parieto-occipital
region (see fig.:8 ).

[Szymanski et al., 2017] have investigated a neural correlate for social facilitation
by studying inter-brain phase synchronization in a cooperative task. The authors
propose joint attention situations as an experiment set-up paradigm that best en-
ables a separation of experimental conditions as it does not require motor output
for the task at hand. The participants were asked to find certain ”target objects”
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Figure 8: Intersubject neural synchronizations during interactional synchrony. cou-
pling PLV for all participants between electrodes of the model and the
imitator. On the left of the figures the participants are models, on the right
the participants are imitators. A. Alpha-Mu band cluster between right
centro-parietal regions. B. Beta band cluster between central and right
parieto-occipital regions. C. Gamma band cluster between centroparietal
and parieto-occipital regions. [Dumas et al., 2010]
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from pictures of shelfs that also contained numerous ”distractor” objects, either on
their own in an individual condition or together with a partner in a social condition.
For every image one of the participants has to respond by typing in the number
0,1 or 2 depending on how many target objects the participants spotted. The role
of responding participant is switched halfway through the experiment. The partici-
pants were free to interact with one another in any form of their choosing, but were
asked to minimize the amount of movement in order to prevent too large artifacts in
the measurement. The data was preprocessed through an off-the-shelf ICA imple-
mented in the Brain Vision Analyzer 2. The cleaned signal was then approximated
using complex Morlet wavelets in the range from 2-20Hz in 2Hz steps and then two
synchronization measures, the inter-brain phase coherence (IPC) and the phase-
locking index (PLI) were calculated. PLI reflects the invariance of phases at a single
electrode across N trials in the time-frequency domain, where ϕnk(t, f) is the phase
of the n-th trial at time t and frequency f of an electrode k.

PLIk(t, f) =

∣∣∣∣∣ 1

N

N∑
n

ejϕ
n
k (t,f)

∣∣∣∣∣ , j =
√
−1

The IPC represents the degree of constancy in phase difference across N trials
between two electrodes measured from one or two brains simultaneously.

IPCkl(t, f) =

∣∣∣∣∣ 1

N

N∑
n

ej∆ϕ
n
kl(t,f)

∣∣∣∣∣ , j =
√
−1

with the phase difference between electrodes k and l at trial n, time t and frequency
f being equal to

∆ϕnkl(t, f) = mod(ϕnk(t, f)− ϕnl (t, f), 2π)

and the phase ϕ being calculated as

ϕn1 (fn, t) = arg {yn1 (fn, t)}

and
ϕn2 (fn, t) = arg {yn2 (fn, t)}

which stems from a Gabor expansion of the data in each epoch into a complex time-
frequency signal y(fn, t). The coefficients span a m×n matrix where m is frequency
(.33Hz resolution) and n is time (1ms resolution)[Lindenberger et al., 2009].

Grand averaging across pairs shows increased PLI and IPC in the frontal regions
for lower frequencies in the social condition. It is concluded that dyads who have
high IPC during individual attention tasks, but do not align their cognitive processes
beyond a certain level during teamwork benefit the most from working in a team
[Szymanski et al., 2017].
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[Saenger et al., 2012] has presented an experiment in which the interaction be-
tween 2 guitar players are being investigated. The team reproduced an earlier exper-
iment of their research group [Lindenberger et al., 2009], which showed increased
synchronization between guitar players especially in the onset period. While in the
original research both guitar players played the same piece in unison, in the new ex-
periment the guitarists played different voices of the same song, thus excluding the
possibility that the synchronization only stems from playing the same song but ap-
pears to stem from a deeper underlying neural cause. Like the previously presented
paper, this research uses PLI and IPC to investigate the hyperscanning correlations.
The data shows an increase in phase synchronization, as was in the early onset
phase of the duet, during which the tempo and other aspects of the music are being
coordinated between leader and follower. This increased synchronization happens
mostly in the frontal and central electrode sites. The team used methods from graph
theory to investigate the intra- and inter-brain phase coherence in greater detail (in-
vestigating node strengths, small-world properties and community structures). They
found a difference in node strengths between the follower and leader role, which
might be attributable to the different cognitive states between following and leading,
according to the researchers, which could be attributed to effects similar to those
observed by [Dumas et al., 2010], where different regions of the brains of follower
and leader would synchronize.

[Pan et al., 2017] have investigated the neural correlates of social relations in an
fNIRS- hyperscanning study in which male-female dyads in three different categories
(strangers, friends, lovers), were asked to play a cooperative game with/against each
other. In order to obtain data about their brain activity, both subjects are connected to
a 3x5 matrix of fNIRS probes, the middle of said matrix was placed on top of the C4
location according to the international 10-20 scheme, measuring activity in the right
fronto-parietal region. The signal was then processed using a principal component
analysis (PCA) using Gaussian spatial filtering. The frequency range observed in
this study was fNIRS typically low, between 0.08Hz and 0.31Hz. For each pair of
corresponding channels (same probe location on both subjects), an interpersonal
brain synchronization factor is being calculated as the mean coherence in two task
blocks minus the coherence in the rest period between these blocks, according to
the following formula:

IBS =
1

2
(IBSblock1 + IBSblock2)− IBSrest2

These values were then converted to z-statistics and tested in a one-sample t-test.
If a channel turned out significant from the IBS, a one-way ANOVA was calcu-
lated on that IBS. The synchronizational direction was investigated using a Granger
causality analysis (GCA) using a vector autoregressive model that measures the
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causal relationship between time series in the brain data. The pairwise conditional
Granger-causality of both participant directions was calculated and examined using
one-sample t-tests. There was a significant IBS detected on one of the channels
that was located in the approximate area of the right superior frontal cortex for lover
dyads, that was not observable for friend and stranger dyads.

[Bilek et al., 2015] also investigated a joint-attention interaction between 2 sub-
jects using an fMRI based hyperscanning approach. Subjects had to communicate
through pointing into the direction of a target shape by manipulation of their gaze,
while their partner attempted to interpret that communication. Analysis of the data
showed an increase in synchronized activity in the right tempoparietal junction.

3 Research Goal

Previous research shows that humans in social situations seem to have a tendency
of synchronizing brainwaves when they feel closer to their interaction partner. There
appears to be a significant difference in synchronization (right superior frontal cor-
tex) between lovers and strangers who are engaged in a cooperative action co-
ordination game [Pan et al., 2017] and there are also indications that hyperscan-
ning techniques such as IPC and PLI can be used to predict team-performance
[Szymanski et al., 2017]. As a single subjects emotion is expressed in modulation of
the mental state and is visible in the Intra brain synchronization [Lee and Hsieh, 2014]
it is hypothesized that simultaneous stimulation of multiple subjects reveals a con-
nectivity pattern (phase-lag index [PLI]) from which predictions can be made about
the subjects social relationship. The proposed research then sets out to answer the
following research questions:

• Are there significant correlations (based on phase-lag index) measurable be-
tween subjects in a joint-attention task setting?

• Are there significant differences in phase-lag index measurable between dif-
ferent types of participant dyads (strangers/lovers)?

• To what extent can these correlations (if found) be used to automatically dis-
tinguish different types of dyads?

4 Methodology

In order to test the hypothesis on the research question, it is proposed to conduct an
experimental hyperscanning study, in which participating dyads are being exposed
to emotional stimuli in a joint-attention setting.
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As there is evidence that synchronizations within the dyads are larger when the
subjects engage in the stimulus activity more frequently [Saenger et al., 2012], a
task was chosen that couples engage in on a regular basis and that allows for pre-
cise and targeted elicitation of emotion. As adult couples seem to spend about a
third of their time together with watching TV6, movie sequences as stimulus were
considered such activity. During the experiment the participants sit next to each
other facing a common screen, while the experiment leader can monitor everything
from 2 separate screens that are not visible from the participants perspective (see
figure 9 for more information).

Figure 9: Experiment Setup, top-down perspective

4.1 Stimuli

The emotion eliciting stimuli are movies picked from the ”FilmStim” database7, set
up by [Schaefer et al., 2010]. This database contains 64 scenes taken from French
and English movies, of which the emotional content has been validated.

The chosen movie sequences are spread across the evoked emotions such that
for each block of stimuli a similar distribution of positive and negative emotions is
achieved. Additionally, there is a segment with neutral emotional content and each
block starts with a 60s and ends with a 30s relaxation/breathing exercise period
as baseline/reference. In each block there are one amusing, one neutral and two

6https://www.theguardian.com/lifeandstyle/2007/jun/09/familyandrelationships quot-
ing the UK Office for National Statistics

7 http://nemo.psp.ucl.ac.be/FilmStim/
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negative sequences (fear, anger or sadness), which are chosen by availability in the
database and the length of the sequence (between 15s and 5 min), as well as the
emotional content. In order to confirm which emotion was actually evoked, as well
as making the participants more aware of their emotions, each subject is asked to fill
in a self-assessment manikin (SAM) [Bradley and Lang, 1994] in between stimuli.

4.2 Participant selection

Participation in this research is open to all healthy adults. The subjects are divided
in two different kinds of dyads, the first one, ”couples”, are dyads who are living
in a comitted relationship with each other, the other category are strangers, thus,
participants who do not know each other so far. The participants in this research
are mainly University students taken in a convenience sample from the environment
surrounding University of Twente DesignLab.

4.3 Data Acquisition

The EEG data in this experiment is acquired using two separate BioSemi Active2
EEG devices, connected and synchronized via the fibre-optic based daisy-chaining
capability to one computer running ActiView. This allows for both EEG’s to run on
a synchronized clock as well as that both datastreams get saved in the same file.
Other means of synchronization therefore become obsolete. The BioSemi EEG’s
both run on 2 kHz (2048 1/s) sampling frequency, which is predefined for the daisy
chaining mode. A second computers takes over the stimulus presentation, which
is programmed using ”OpenSesame”8. The stimulus software sends markers at
the start of the video to the EEG recording software ActiView9 by using a button
that sends keystroke signals to both computers at the same time, thus starting the
stimulus presentation, as well as, sending a marker to ActiView.

Both EEG are connected to the participants using the 32+2 channel BioSemi
headcap. The exact layout of the electrode locations on this cap can be found in
figure: 10. The use of additional ECG/EOG channels was considered, but weighing
off the advantage this brings on top of noise reduction using ICA (section 4.4.2)
against the obstruction/unpleasantness for the participants during the experiment,
this was not considered to be worth the discomfort.

8OpenSesame is a Psychology and Neuroscience software suite specialized on stimulus presen-
tation and available under a CC BY 3.0 license: http://osdoc.cogsci.nl/

9ActiView is an open source signal acquisition software for BioSemi EEGs programmed in Lab-
View and is available at https://www.biosemi.com/download_actiview.htm
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Figure 10: Electrode placement on the subject’s head using the BioSemi 32+2
(DMS + DRL) headcap

4.4 Data Analysis

For the signal analysis a data-driven approach is used to analyze the results. The
initial signal correction such as removing powerline and low frequency noise is done
using ”EEGLab”10. The further analysis is done in Python 11 using (among others)
the MNE library12.

4.4.1 Reference Scheme

Choosing the reference scheme for an EEG recording is crucial, as choosing the
wrong scheme for the case could lead to obscuration of relevant information in the
signal. [Smith et al., 2017] showed that for emotion detection in EEG the current
source density (CSD) reference scheme is recommended, as it has the lowest im-
pact on the spatial distribution of activity levels.

4.4.2 Independent Component Analysis

In order to identify and remove noise artifacts from the measured signals, an Inde-
pendent Component Analysis is used.

10A MATLAB (https://www.mathworks.com/products/matlab.html) plugin, available at: https:
//sccn.ucsd.edu/eeglab/

11using the PyData stack (https://pydata.org/downloads.html), including Anaconda (https:
//www.continuum.io/downloads) and jupyter notebook (http://jupyter.org/)

12A library aimed at MEG/EEG data analysis, available at http://mne-tools.github.io/

mne-python-intro
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4.4.3 Frequency filters

As the experiment aims at finding indications for phase shifts and synchronizations
across the frequency bands, the phase lag indexes for each connection are calcu-
lated for a number of fine grained frequencies and then averaged across the main
frequency bands (see table 1).

4.4.4 Epoching and Baselining

As the experiment contains different phases during which a stimulus is either present
or not present and because for many measures it is necessary to compare the reac-
tions to a specific stimulus, the continuous EEG recording is split up into so-called
Epochs using markers sent by the presentation computer. Each marker is followed
by exactly 15s of no-stimulus time, followed by the presentation of a stimulus. Addi-
tionally every stimuli-block contains a 60s (in the beginning) and a 30s (in the end)
breathing exercise phase during which no stimulus is present. An Epoch can there-
fore be either one of two categories,

1. 15s of no-stimulus, followed by 0:16-4:30min of stimulus time

2. no-stimulus, either 30s or 60s long

4.4.5 Synchronization measures

After splitting the data into separate frequency ranges using narrow bandpass fil-
ters, the primary feature Interbrain phase coherence for the same and neighbouring
electrode locations on both helmets will be calculated using the ”weighted phase
lag index” as described by [Vinck et al., 2011] 13 As some fMRI studies suggest,
synchronizations can be causally linked between different brain regions, the mea-
sures are calculated between all possible electrode site locations (that includes both
inter and intrabrain connectivity) to gain the maximum amount of knowledge from
the data [Dumas et al., 2010]. Additionally, research on intrabrain synchronization
showed, that multiple distinct regions of the brain seem to be involved with the emo-
tional state [Lee and Hsieh, 2014].

13implemented in MNE http://martinos.org/mne/dev/generated/mne.connectivity.

spectral_connectivity.html
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4.4.6 Significance testing

The difference between the two conditions (strangers/couples) is investigated using
a non-parametric permutation cluster test14 that was developed and implemented by
[Maris and Oostenveld, 2007].

4.5 Experiment planning

The experiment consists of one session of approximately 2 hours per dyad. The
session is split in several periods. The experiment conducted in this research has
been approved by the University of Twente, Faculty of EEMCS Ethical committee.

4.5.1 Information and intake

In this first information and intake period, participants receive information about the
research they are participating in (see Appendix B, for the provided information) and
get the chance to ask questions they have about the research. The participants are
also explicitly informed that the video stimuli that are being presented contain scenes
that may be shocking for some people and that they are free to stop the experiment
at any given time if the scenes are too much for them. Afterwards they are asked to
fill in a short demographic questionnaire15. Once participants have completed these
steps the preparation phase for the actual experiment starts.

4.5.2 EEG preparation

In this phase the EEG measurement is prepared, that means, one after another, par-
ticipant’s head sizes are measured and the appropriate size of cap is selected and
put on the participant’s head. Afterwards the electrodes are connected to their re-
spective locations as shown in figure 10 and the connectivity controlled in ActiView.
Before the next phase of the experiment is entered, participants get the chance
to stretch their legs and, if necessary, visit the bathroom before the measurement
starts.

4.5.3 Stimulus presentation phase

In this phase of the experiment the participants watch the stimuli that were described
earlier. There are three blocks of stimuli, each block starts with a 60s breathing
exercise and afterwards four video clips, of which two induce negative emotions

14more information about the exact test can be found here: http://martinos.org/mne/stable/

generated/mne.stats.permutation_cluster_test.html
15available at: https://goo.gl/forms/mOKx9feYvyyXgDQg2
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Figure 11: Self Assessment Manikin (SAM) test for (top to bottom) Pleasure,
Arousal and Dominance

(sadness/anger), one induces a positive emotion (Happy/Funny) and one has no
measurable emotional content. After every video clip the presentation stops shortly
to allow for the participants to fill in a short SAM test (see fig.: 11) and the experiment
leader presses a button to confirm completion of that when it’s done and the presen-
tation continues with a 15s quiet period during which only a centering cross is visible
on the screen. In this phase the experiment leader closely monitors the participants
reaction to the stimuli and will stop the experiment in the case of a participant getting
clearly shocked, or when a participant indicates being unable to handle the stimu-
lus. During the 15s no-stimulus phase, a centering cross is presented on screen,
during the breathing exercise the cross is replaced by the sentence ”Please focus
on breathing in and out calm and steady”.

4.5.4 Final phase

In this final period of the experiment all measurements have already been com-
pleted. The participants get disconnected from the EEG devices and get the chance
to clean themselves, after which they are offered the chance to ask more questions
about the experiment and the research behind it.

5 Results

In order to investigate the research question by experiment, an exploratory research
was executed in which participants EEG activity was measured synchronously in
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Figure 12: Educational background of the participants

a joint-attention setting (more detail in sect.: 4 ). The results consist of 2 different
measures, with the analyzed EEG recordings on the one side and the outcomes of
the SAM questionnaires, that were filled in by the participants in between stimuli,
on the other. The main metric on the EEG recordings is the weighter phase lag
index (WPLI)(as was described in section 4.4), the results of which are described in
section 5.2, followed by a short explanation of how the significance of the results is
tested. After that follows a part over outcomes of the SAM questionnaire in section
5.3.

5.1 Participants

In this exploratory experiment 6 dyads participated, of these 6 dyads 5 were male
female constellations while one was female female. The 6 dyads were evenly split
over the condition couples and strangers. The 12 participants were within the age
range between 21 and 29 years old (mean=24) and all had a background in higher
education (either current students or recent graduates, see figure 12 for more detail).
In two of the dyads one of the participants was left-handed, all other participants
were right-handed.

5.2 WPLI

In order to find connectivity (/synchronization) patterns between subjects the ”weighted
phase lag index” (WPLI) [Vinck et al., 2011] (using Fast Fourier Transformation (FFT)
with a Hanning window) is calculated for all (32*32) possible connections both av-
eraged across the whole frequency range as well as separated per frequency band
(see table 1). Weighted PLI is a metric that calculates the synchronity of two sig-
nals for a given frequency and within a time window. The signal is transformed into
the time-frequency domain using Fast Fourier Transformations (FFT) and then split
into time windows using a shifting Hanning-window. This returns a value between 0
and 1 for the amount of synchronization between the 2 signals, where 0 means that
two signals do not have a common phase and 1 means that both signals are fully
synchronous.
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(a) stimulus condition (b) rest condition

Figure 13: WPLI plotted between electrodes. On the left side plots from 3 different
couple dyads and on the right side 3 stranger dyads, averaged over the
range of 1-49 Hz under Stimulus condition (a) and under rest condition
(b)

5.2.1 Alpha range

In the alpha frequency band (8-13Hz) the connectivity plots show a pattern that is
distinguishable by the naked eye between the groups. There generally tends to be
a cluster of strong connections between the participants within the dyad, connecting
the parieto-occipital regions for both participants with one another (see figure: 14).
When testing the differences with a permutation test16 [Maris and Oostenveld, 2007]
the null-hypothesis could be rejected under rest condition for 2 clusters (.8 CI).

16more information about the exact test can be found here: http://martinos.org/mne/stable/

generated/mne.stats.permutation_cluster_test.html

33

http://martinos.org/mne/stable/generated/mne.stats.permutation_cluster_test.html
http://martinos.org/mne/stable/generated/mne.stats.permutation_cluster_test.html


Table 1: Division of frequency bands
Band Frequency
Delta 1-4 Hz
Theta 4-8 Hz
Alpha 8-13 Hz
Beta 13-30 Hz
Gamma 30-49 Hz

(a) rest, couples (b) rest, strangers (c) Stimulated, Couples (d) Stimulated, Strangers

Figure 14: WPLI in the alpha range plotted between electrodes. On the left side
plots averaged over the couple dyads (under rest condition (a) and Stim-
ulus condition (c)) and on the right side over the stranger dyads(rest
condition (b) and stimulus condition (d))

5.2.2 Beta range

In the beta range (13-30Hz), similar trends as were observed in the alpha band,
seem to be present under rest condition during visual analysis (see figure: 15 ),
however, when testing these in the permutation test, they were insignificant (p ' .28).

5.2.3 Gamma range

In the gamma range (30-49Hz) there seems to be a connectivity present between
the right parieto occipital region with the fronto parietal region on the other member
of the couple (see figure: 16). This connection is however only present in one
direction and does not show up as significant in the permutation test.

5.2.4 Delta range

In the delta range (1-4Hz), the connection between the right parietal regions are
visible for both couples and strangers under rest condition (see figure: 17). This
connectivity pattern is therefore not suitable to distinguish the conditions. Under

34



(a) rest, couples (b) rest, strangers (c) Stimulated, Couples (d) Stimulated, Strangers

Figure 15: WPLI in the beta range plotted between electrodes. On the left side plots
averaged over the couple dyads (under rest condition (a) and Stimulus
condition (c)) and on the right side over the stranger dyads(rest condition
(b) and stimulus condition (d))

(a) rest, couples (b) rest, strangers (c) Stimulated, Couples (d) Stimulated, Strangers

Figure 16: WPLI in the gamma range plotted between electrodes. On the left side
plots averaged over the couple dyads (under rest condition (a) and Stim-
ulus condition (c)) and on the right side over the stranger dyads(rest
condition (b) and stimulus condition (d))

stimulus condition there is some connectivity between the central parietal lobe with
the anterior frontal lobe for couples, while for strangers there is a connection be-
tween the left central and the left temporal lobe. This difference is not significant
though.

5.2.5 Theta range

In the theta range (4-8Hz) there seems to be a strong connectivity for couples under
rest condition between the occipital/parieto-occipital regions that does not seem to
be present for strangers (see figure: 18). This difference also comes back significant
on the permutation test (.8 CI).
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(a) rest, couples (b) rest, strangers (c) Stimulated, Couples (d) Stimulated, Strangers

Figure 17: WPLI in the delta range plotted between electrodes. On the left side
plots averaged over the couple dyads (under rest condition (a) and Stim-
ulus condition (c)) and on the right side over the stranger dyads(rest
condition (b) and stimulus condition (d))

(a) rest, couples (b) rest, strangers (c) Stimulated, Couples (d) Stimulated, Strangers

Figure 18: WPLI in the Theta range plotted between electrodes. On the left side
plots averaged over the couple dyads (under rest condition (a) and Stim-
ulus condition (c)) and on the right side over the stranger dyads(rest
condition (b) and stimulus condition (d))

5.3 SAM questionnaire

As a test metric to see how similar the couples actually react to the stimuli, each
stimulus was tested with a SAM test after the video, by comparing similarities within
the dyads between the variables.

From visual inspection it already becomes obvious that there does not seem
to be a noticeable difference between the reactions of couples with the reactions
of strangers (see figure: 19 and 20). In order to compare the results of the SAM
test with the intended reaction of each stimulus, the scores of each participant were
translated from the PAD domain to the PANAS scale (Positive Affect - negative affect
scale, as developed by [Watson and Tellegen, 1985], which is an almost identical
scale, other than it being rotated 45 degrees) in which the stimuli were encoded and
then calculating the dot product between the two vectors. The spread between lover
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(a) pleasure (b) arousal (c) dominance

Figure 19: Pleasure (a), Arousal (b) and Dominance(c) results of the SAM test, left
graphs show stranger condition, right graph shows couples

and stranger dyads is very similar (as can be seen in figure: 21).

6 Discussion

Coming back to the original Research question that this project set out to answer,
which was, whether there are differences observable from EEG signals between
couples and strangers in this joint attention setting and the follow-up question whether
it is then possible to train a classifier on distinguishing this automatically. It can be
concluded that there seem to be neural correlates for social relationships, which are
indicated by the null hypothesis getting rejected for some connections both within the
alpha range as well as the theta range. However, from the number of participants
and especially the number of similar epochs within this experiment, the correlates
found in this exploratory research are not yet strong enough to train a reliable clas-
sifier on the available data.

A possible explanation for the fact that the differences were found more promi-
nently in the non-stimulus periods might be explainable by the fact that there are
more epochs available during which no stimulation took place and that these epochs
are more similar to each other (same length, exactly same (non) stimulus, whereas
the video of the stimulus phase was different each time.

Another factor that could influence the outcome is the fact that the stimuli are
currently biased slightly towards negative emotions (anger/sadness), with some
comedic sequences sprinkled in, yet, due to availability, no representatives of other
positive emotions, that might be more prown to deliver measures for the emotional
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Figure 20: detail responses to each stimulus between couples and strangers in-
cluding std. dev (grey shadow)

Figure 21: Whisker plot of the commonality between the supposed affect of the
stimulus and the actual reaction of the participant
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connection of the participants, such as love/romance scenes or hopeful ”happy end”
settings.

The differences during the non stimulation phase hint at actual existing differ-
ences, it should be investigated whether synchronizations increase in settings with
more active social interaction, for example by having blocks of different forms of in-
teractions in the same experiment and then investigating the differences between
these.

When comparing the results of this research with those of other experiments, a
distinguishing factor seems to be that in most cases active cooperation was required
from the participants rather than passive consumption, this could be an indication
that these synchronizations take place within the areas responsible for active social
cooperation rather than the one’s aimed at passive observation.

7 Conclusion & Recommendations

This project explored the possibility of detecting/predicting the social relation, in this
experiment this is simplified to the labels strangers and couples, based on EEG
hyperscanning recordings in a joint attention setting. Overall, differences were found
in non-stimulus situations in the Alpha and Theta range.

7.1 Reflection and Recommendations

During the data analysis phase of this project, several valuable lessons about ex-
periment design were learned that could lead to stronger results when done differ-
ently. The low number of epochs in this experiment and especially the sparseness
of epochs in which the same emotional response was being evoked lead to the con-
nectivity calculation not being able to correlate as effectively as it otherwise may
have. This was not helped by the fact that epochs all had different lengths. Both
of these issues stem from the decision to take movie snippets from a standardized
library in which the availability of movie sequences was rather limited and that movie
scenes develops in different speeds, thus comparing the reaction to different kinds
of stimuli which could introduce to additional coherence errors.

It might be advisable to first get a better grip on the underlying neural cause by
performing experiments with different kinds of stimuli, allowing for a higher epoch
density as well as a stable epoch length that is the same across all conditions.
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A Experiment setup

A.1 Materials

• 3 screens, 1 needs to be at least 24” (presentation), the others can be smaller

• 2 computers, one laptop to play the videos, one desktop pc to control both
BioSemi

• 2 BioSemi EEG’S + headcaps

• 1 BioSemi Fibre to USB converter box

• 2 fibre optic channel cables, one to connect the EEGs to each other, one to
connect to the PC

• electrolyte gel

• towels
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• toothbrush

• shampoo

• consent forms

• pens

• general questionnaire, opened on laptop

• SAM tests on paper (24 tests per experiment)

A.2 Protocol

1. greet both participants

2. offer coffee, tea, etc. for waiting/setup time

3. explain experiment, offer consent form

4. reinforce that stimuli contain shocking sequences

5. give participant time to read/sign/ask questions

6. preliminary tests, questionnaires

7. check: bathroom break?

8. measure head, choose cap

9. place cap on head of participant

10. connect all electrodes using electrolyte gel

11. test signal quality in ActiView, reapply gel/reconnect electrodes where neces-
sary

12. eye tasks for noise correction, blink/roll eyes, play around with mimic for facial
responses

13. instruct participants to try and not move during blocks and blink as little as
possible during stimuli, try and keep it in between stimuli

14. inform participants that after every stimulus, the presentation stops for a mo-
ment so they can fill in SAM test shortly

15. instruct participants to be aware of their emotions and to try and feel with the
movie
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16. start EEG recording in ActiView

17. start stimulus presentation in OpenSesame

18. follow stimulus presentation step-by-step

19. after end of presentation:

20. remove cap from each participant

21. offer participants cookies

22. if necessary: lead participants the way to a place they can wash their hair,
hand out towels

23. thank participants for their effort, offer to keep them informed about the out-
comes of the research

24. file results of the SAM sheets under the participant number (no date, no name)

25. file consent forms separately from SAM sheets, making sure the participant
number isn’t mentioned on the consent form

26. save .bdf file under experiment number (naming scheme: [experiment num-
ber][device number] e.g. participant 12 -¿ experiment 1, device 2)

27. transfer .bdf file via USB stick to protected folder on experiment leader’s laptop

A.3 Stimuli

For more information about the stimuli used, refer to table 2 or the spreadsheet in
the additional information.
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Informed Consent form for Participation in a Research Study 
University of Twente 

 
EEG hyperscanning based analysis of neural correlates for social 

relationships 
 

 
Description of the research and your participation 
You are invited to participate in a research study conducted by Dominik Lenz. The 
purpose of this research is investigating the neural basis for social relations and how 
they differ between couples and strangers. 
For this purpose your brain activity will be measured by means of 
Electroencephalography (EEG) throughout the experiment. The preparations for this 
measurement take up approximately 1 hour before the actual experiment can start. 
Your participation will involve preparations for the EEG measurement, 40 minutes of 
stimuli, a short questionnaire and cleaning up afterwards. Your total time investment will 
be around 2-2.5 hours.  
 
Risks and discomforts 
There are no known risks associated with this research, however, the circumstances of 
EEG measurements may cause some discomfort, as conductive electrolyte gel has to be 
used on the hair to improve signal quality. A possibility to wash the hair after the 
experiment will be available.  
The video stimuli used in this experiment contain scenes that for some users can be 
shocking or upsetting.  
 
Potential benefits 
There are no known benefits to you that would result from your participation in this 
research.  
 
Protection of confidentiality 
We will do everything we can to protect your privacy. All data is saved only in 
anonymous form. Your identity will not be revealed in any publication resulting from this 
study.  
  
Voluntary participation 
Your participation in this research study is voluntary. You may choose not to participate 
and you may withdraw your consent to participate at any time. You will not be penalized 
in any way should you decide not to participate or to withdraw from this study. 
 
Contact information 
If you have any questions or concerns about this study or if any problems arise, please 
contact Dominik Lenz at d.lenz@student.utwente.nl or the supervising researcher dr. 
Mannes Poel, m.poel@utwente.nl. 

B Participant Information
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For queries, complaints or comments about the research you can also reach the Faculty 
of EEMCS Ethical committee through Jorien van Loon, Secretary Ethical Committee 
EWI, j.vanloon@utwente.nl  
 
 
 

Please check the boxes (x) 

 
1. I have read the explanation and I understand that I can ask questions at any 
time during the experiment. 

 

 
2. I understand that I can quit at any time, without having to give a reason, and that 
my data then will not be part of the dataset. 

 

3. I give permission for my data to be used for academic purposes and I am aware 
that it is anonymous.  

 

 
 
 
_____________________ __________ 
Participant’s signature Date  
 
_____________________ __________ 
Researcher’s signature Date  
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C Workflow .BDF to Python

As it proved more difficult than necessary/expected to use the measurement data
(and here specifically the event-information) in the data analysis the necessary steps
for the transformation are quickly outlined here. Please note that this work flow is
the result of trial and error based hacking and as such does at no point claim to be
a recommended best practice, but provides a manageable workaround

1. first the .bdf file (BioSemi Data format) is loaded into EDF Viewer17 and the
Events exported as .csv

2. the .csv file is then edited in Notepad++18 to include ”derived” events e.g. al-
ways 15s after the stimulus onset event the rest time before the stimulus ends,
this event marker is however not sent by the stimulus software directly due
to a lack of administrator privileges on the experiment computer -Hint: event
names should only be integers, else the MNE library will regularly produce
errors, even though EEGLAB handles it without any issue

3. the .bdf is then imported into EEGLAB and combined with the edited event file
(text annotation loader)

4. while in EEGLAB, the ICA tool provided in EEGLab is used already and the
result saved as a .set file

5. the .set file can then be loaded into MNE using the function:

raw= mne. i o . read raw eeglab ( ” f i lename ” )
events= mne. f i n d e v e n t s ( raw )

6. now you’re free to use the data in Python

17available open source under: https://www.teuniz.net/edfbrowser/
18available under GPL license: https://notepad-plus-plus.org
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