

	
	

	
	
	
	
	
	
	
	
	
	
	

	
	

	
	 	
	

	

	

	

	

	

	

	

	

Learning Feed-Forward Control with the
Python Scikit-Learn Library

 E.A. (Elise-Ann) Schrijvers

 MSc Report

C e
Dr.ir. J.F. Broenink

Dr.ir. T.J.A. de Vries
Dr.ir. G.M. Bonnema

October 2017
	

045RAM2017
Robotics and Mechatronics

EE-Math-CS
University of Twente

P.O. Box 217
7500 AE Enschede

The Netherlands	

ii Learning Feed-Forward Control with the Python Scikit-Learn Library

Elise-Ann Schrijvers University of Twente

iii

Summary

The research of this thesis is about using a learning feed-forward controlled system in a plat-
form independent way. To achieve this, the feed-forward part of the control system is imple-
mented in Python while the general control system is within the 20-sim simulation environ-
ment. The implementation of LFFC in Python is relatively simple due to the existence of the
Scikit-learn library. This library enables the use of a B-spline network (function approximator).

Communication between both environments is achieved by setting up a network connection.
To that end, data will be serialized and packed by the Protocol Buffer library from Google and
ZeroMQ. The data can now be sent over the network in a proper and structured way.

The 1-dimensional time-indexed LFFC is implemented twice. One is completely built-up in
the environment of 20-sim and the other has its feed-forward part built-up in Python. A 1-
dimensional state-indexed LFFC in Python is considered as well. All implementations are
demonstrated by assuming an ideal linear motor model (moving mass) representing the plant
of the control system.

In the case of the two dimensional state-indexed LFFC a plant model is used that includes two
different phenomena. One phenomena was considered in the 1-dimensional case as well, i.e.
the inertia of the mass. The second phenomena is non-ideal and depends on the position of the
linear motor, described as the cogging. This type of LFFC is implemented in two different ways,
i.e. 2x a 1-dimensional BSN (parsimonious LFFC) and 1x a 2-dimensional BSN. Both imply the
use of a different trainings method. The first approach trains one BSN at a time and in such a
way that only one plant influence is dominant and will be learned. The second approach will
try to learn two plant influence at the same time by using only one BSN. A demonstration is
given of the first approach by assuming a plant model that incorporates inertia and position
dependent cogging (non-ideal linear motor model). The second approach is not demonstrated
and further research is required (even though this implementation is not preferred as it has to
deal with the curse of dimensionality).

Robotics and Mechatronics Elise-Ann Schrijvers

iv Learning Feed-Forward Control with the Python Scikit-Learn Library

Contents

Summary iii

1 Introduction 1

1.1 Context . 1

1.2 Problem Statement . 1

1.3 Thesis Outline . 2

2 Theoretical Background 3

2.1 Learning Feed-Forward Control . 3

2.2 Function Approximation with B-splines . 5

2.2.1 B-spline Basis Functions . 8

2.2.2 Computing Coefficients . 11

2.3 B-spline Network Tools . 11

2.3.1 B-spline Network with 20-sim B-spline Editor 11

2.3.2 B-spline Network with Python Scikit Learn Library 13

2.4 Illustrative Application: Linear Motor Motion System 14

2.4.1 Introduction to a Linear Motor . 14

2.4.2 Design of Linear Motor Model . 16

2.4.3 Design of Feedback Controller . 16

2.4.4 Performance Check on the Feedback System Model 17

3 Network Communication 19

3.1 Introduction . 19

3.2 Design of Network Layer . 19

3.3 Implementation of Network Layer . 20

3.3.1 ZeroMQ . 20

3.3.2 Protocol Buffer from Google . 21

3.3.3 Network Communication with 20-sim . 22

3.4 Validation of Network Layer . 23

3.4.1 ZeroMQ Test . 23

3.4.2 Data Transfer Test . 24

3.5 Conclusion . 25

4 One Dimensional LFFC 26

4.1 Time-Indexed LFFC . 26

4.1.1 Design . 26

4.1.2 Implementation . 30

Elise-Ann Schrijvers University of Twente

CONTENTS v

4.1.3 Comparison 20-sim and Python . 32

4.1.4 Conclusion . 41

4.2 State-Indexed LFFC . 42

4.2.1 Design . 42

4.2.2 Implementation . 43

4.2.3 Simulations . 50

4.2.4 Conclusion . 52

5 Two Dimensional LFFC 53

5.1 Parsimonious LFFC . 53

5.1.1 Design . 54

5.1.2 Implementation . 57

5.1.3 Simulations . 58

5.1.4 Conclusion . 61

5.2 Multidimensional BSN . 62

5.2.1 Design . 62

5.2.2 Implementation . 64

6 Conclusion 65

6.1 Conclusion . 65

6.2 Future Work . 65

A Partial Cubic Motion Profile (20-sim) 67

B More about B-splines 68

B.1 Properties of B-spline Basis Functions . 68

B.2 Properties of B-spline Curves . 68

B.2.1 Moving Control Points . 70

B.2.2 Modifying Knots . 71

C Implementation details (1D state-indexed LFFC) 72

D Implementation details (2D state-indexed LFFC) 75

Bibliography 77

Robotics and Mechatronics Elise-Ann Schrijvers

vi Learning Feed-Forward Control with the Python Scikit-Learn Library

Nomenclature

1D 1-dimensional

2D 2-Dimensional

ANOVA ANalysis Of VAriance

BSN B-Spline Network

CA Constant Acceleration

CV Constant Velocity

CY Constant Jerk

DLL Dynamic Link Library

FA Function Approximation

LC Learning Controller

LFFC Learning-Feed Forward Control

LMMS Linear Motor Motion System

NM No Movement

TP Transition Point

Elise-Ann Schrijvers University of Twente

1

1 Introduction

1.1 Context

Learning Feed-Forward Control (LFFC) has proven to be a powerful control architecture that
has much potential for control of mechatronic systems, Velthuis (2000). A LFFC system con-
sists of a model-based feedback component and a feed-forward component that has learning
abilities, i.e. it consists of a function approximator. The feedback part is a typical PD-type
controller.

Starrenburg et al. (1996) started studying LFFC and later also Velthuis (2000) using B-spline Net-
works (BSN) on repetitive motions. He performed a stability analysis on the LFFC and came up
with rules to be able to properly select design parameters for such type of motions. Besides
the LFFC for repetitive motions he also study non-repetitive motions. In this part he addressed
multi-dimensional B-spline networks and introduced parsimonious LFFC. The latter was a so-
lution to overcome the problems that go along with the curse of dimensionality. He used among
others a linear motor motion system (LMMS) as an illustrative example for his study. The study
from Velthuis (2000) is used as the base for this thesis.

1.2 Problem Statement

Simulations are commonly done in a Windows environment, for which real-time aspects are
not so important, while experiments are done in a real-time Linux environment. This assign-
ment addresses to find a solution to interact between the feed-forward part of a control system
and a general PD-controlled system in a platform independent way. Therefor a network con-
nection has to be incorporated into the control system.

The problem encounters to create and application that:

• is as straight forward as possible while at the same time the LFFC features (high perfor-
mance and high robustness) are still maintained

• overcomes the following drawbacks that appear in currently available applications:

1. the computational intensiveness of the learning process

2. impossibility to combine LFFC with real-time control

3. restricted use in the type of function approximator that can be used (BSN). A BSN
might not always result in the optimal combination with LFFC

4. testing the LFFC and painlessly transfer to a realization environment is not that
simple

The envisioned solution is:

• to use Python Scikit-learn for the learning process (function approximation (FA)), as it
provides BSN and other FA’s and it is platform independent. Unfortunately, this library is
not directly suitable for real-time applications.

• to connect to Python via a network, such that this can be done both in simulation and in
practice. But also to do learning at another computer than real-time control.

• to demonstrate LFFC in the simulation environment of 20-sim, followed by separating
the feed-forward controlled part from the simulation environment and implement it in
Python.

• to demonstrate the LFFC using 1- and 2-dimensional LFFC. To illustrate this a linear mo-
tor model is controlled

Robotics and Mechatronics Elise-Ann Schrijvers

2 Learning Feed-Forward Control with the Python Scikit-Learn Library

1.3 Thesis Outline

In Chapter 2 some background is provided about learning feed-forward control and how func-
tion approximation is performed using B-splines. An introduction is given about implement-
ing B-spline networks in the environments of 20-sim and Python. The background chapter is
concluded with describing the illustrative example used for the thesis: a linear motor motion
system.

In Chapter 3 the network communication set-up between 20-sim and Python is explained. Two
protocols are discussed that perform data packaging and the data transfer between both ends
of the communication network (Protocol Buffer from Google and ZeroMQ). The chapter is con-
cluded with tests that will verify if both protocols work individually, but also if both protocols
perform correctly when both are combined.

Chapter 4 demonstrates the use of 1-dimensional LFFCs. First a time-indexed LFFC is dis-
cussed implemented in the environments of 20-sim and Python. The second part of the chap-
ter demonstrates the use of 1-dimensional state-indexed LFFC in Python.

A 2-dimensional LFFC is discussed in Chapter 5. This chapter distinguishes between the use
of two 1-dimensional B-spline networks (parsimonious LFFC) and one 2-dimensional BSN.
The latter is only briefly discussed and is not demonstrated with simulations. More research is
required about this topic.

A conclusion and abbreviations are presented in Chapter 6.

Elise-Ann Schrijvers University of Twente

3

2 Theoretical Background

This chapter provides the reader from information in order to understand the subjects treated
in the thesis. The information starts with explaining what learning feed-forward control (LFFC)
is and why it is used. Depending on the inputs of the feed-forward part a time-indexed or state-
indexed LFFC is preferred, both types are treated.

An important part of LFFC is the function approximator, although there are many possible
types of function approximators only the B-spline network (BSN), de Kruif and de Vries (2000)
will be treated as this is the method used in the thesis.

Two different BSN implementations will be discussed, one describes the implementation using
the built-in B-spline editor from the simulation software 20-sim and the other describes the
implementation using the Scikit-learn library from Python.

In the last section an illustrative example is given. The example used is a plant that represents
a model of a linear motor motion system. The plant is controlled by a PD-type feedback con-
troller that is tuned to meet certain specifications. The LMMS is a nice example because it is of
an actuator type that is used increasingly in mechatronic systems and at the same time it suf-
fers from cogging, de Kruif and de Vries (2000), a non-linear disturbance that lends itself well
for LFFC and is not easily compensated in feedback. The model presented is used as the basis
for the models used later on in the thesis.

2.1 Learning Feed-Forward Control

In the development of high-tech products (among others electro-mechanical motion system)
the product performance is of great importance and superiority is expected. The performance
of such a system is influenced by both the mechanical design and the tuning of the controller.
The moment the systems performance must be improved most commonly it is chosen to
change the controller in stead of making structural adaptations. Controller changes are more
easily to implement as in most situations software adjustments are sufficient.

The design of a controller is based on a plant model and its performance depends on the accu-
rateness of the model used. The more accurate the plant model the better the performance of
the controller. The following problems might be encountered when modeling a plant, Harris
et al. (1993):

→ The system is too complex to understand or to represent in a simple way
→ Model evaluation is difficult (often due to non-linear effects) or to expensive
→ The plant is subjected to large environmental disturbances, which makes it hard to predict
→ The plant parameters might be time-varying

In situations the model is not available or parameter predictions are not possible, learning con-
trol can be applied. From Velthuis (2000) a definition of a learning controller is presented:

"A learning controller is a control system that comprises a function approximator of which the
input-output mapping is adapted during control, in such way that a desired behaviour of the

controlled system is obtained."

Learning feed-forward controllers can be divided into two categories, i.e. the time-indexed and
the state-indexed LFFCs. A time-indexed LFFC is characterized by having one input only and
is applied for repetitive tasks, i.e., repeated motions having a fixed path and a fixed period. The
input supplied to the BSN is the periodic motion time TP and the B-splines are divided along
the input range from [0,TP]. Since the learning controller uses only one input there is no need

Robotics and Mechatronics Elise-Ann Schrijvers

4 Learning Feed-Forward Control with the Python Scikit-Learn Library

to concern about the curse of dimensionality, O’Flaherty and Egerstedt (2015). The structure
of a time-indexed LFFC is shown in Figure 2.1.

Figure 2.1: Structure of a 1-dimensional time-indexed LFFC

The main drawback of a time-indexed LFFC is that it is for repetitive motions only. This means
that the learning controller is useful for one motion pattern only. If a different motion is wished
to be performed the learning controller needs to start its learning process all over again and it
has lost its ability to track the old motion.

To overcome this drawback a state-indexed LFFC can be used. This type of LFFC is supplied
with one or more reference signal(s), i.e. position x, velocity v and/or acceleration a, Velthuis
et al. (1998). As a result, the learning controller can now be applied for both repetitive and non-
repetitive motions. In Figure 2.2 the structure of a 1-dimensional state-indexed LFFC is given
(acceleration as input).

Figure 2.2: Structure of a 1-dimensional state-indexed LFFC (BSN input: a)

A drawback of this type of LFFC is that for large number of BSN inputs the curse of dimension-
ality starts to play a role. In order to minimize this problem parsimonious modeling techniques
can be used, according to Bossley and Harris (1997) which stated:

"The best models are obtained using the simplest possible, acceptable structure that contain the
smallest number of parameters".

Several strategies exists to obtain parsimony, Velthuis et al. (1998):

• Minimize the number of B-splines on each input domain
By selecting the number of B-splines as low as possible, the number of network weights
will be minimized, the smallest possible training set can be used and the generalizing
ability is as good as possible.

The generalizing ability defines how well the learning controller performs when trajecto-
ries are supplied that are "close to each other". A poor generalizing ability is defined the
moment several "close to each other" trajectories are supplied, but very different network
output signals are obtained.

• Split high-dimensional BSN up into lower-dimensional BSNs
By reducing the dimension of a B-spline network the number of required B-splines will

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 5

drop exponentially. (The number of B-splines and the network dimension are exponen-
tially related.)

A high-dimensional BSN can be splitted up by writing the target function in the ANalysis
Of VAriance (ANOVA) representation. Given a n-dimensional function f (.):

y = f (x1, x2, ..., xn) = f0 +
∑

i
fi (xi)+∑

i , j
fi , j (xi , x j)+ ...+ f1,2,...,n(x1, x2, ..., xn) (2.1)

in which fi (.), fi , j (.), ... the univariate, bivariate, ... additive components of f (.). As an
example the following function is assumed:

y = f (x1, x2, x3) = f1(x1)+ f1,3(x1, x3)+ f2,3(x2, x3) (2.2)

Figure 2.3 is used to demonstrate Equation 2.2. To the left the structure of a 3-
dimensional BSN is shown and to the right the structure is shown having similar abili-
ties but lower dimension. The latter uses one 1-dimensional BSN and two 2-dimensional
BSNs.

The 3-dimensional BSN requires Ntot = N1N2N3 network weights and the lower di-
mensional structure requires Ntot = N1 + N1N3 + N2N3, in which Ni the number of 1-
dimensional B-spline functions on domain i . The larger Ni the more beneficial it is to
split up a multidimensional BSN structure.

Figure 2.3: Two equal BSN structures using, 1 BSN (left) and 3 BSNs (right)

Depending on the structure of the LFFC special attention might be required for the way
the learning controller will be trained. Structures that only have a single 1-dimensional
structure do not need special attention. The moment the structure has to learn more
than one feature of the plant, proper learning becomes more challenging. In order to
train a parsimonious LFFC, Buijssen (2001) proposed to train one BSN at a time (propo-
sition 4.1). The reference motion used for the training must be chosen in such a way
that the desired output of one of the untrained BSNs is temporarily dominant. This
way only the weights of the dominant BSN are adapted during the training and the
others remain constant. To achieve this, the following step-by-step plan can be used:

1. Use a trainings motion for which one target signal of an untrained BSN is dominant
2. Train selected BSN until convergence and use other trained BSN as control signal
3. Back to step 1 if untrained BSNs exist, otherwise the training is finished

2.2 Function Approximation with B-splines

This section is started off with representing the definition of a function approximator (by
Velthuis (2000)):

"A function approximator is an input-output mapping determined by a selected function
F (.,w), of which the parameter vector w is chosen such that a function f (.) is "best"

approximated."

Robotics and Mechatronics Elise-Ann Schrijvers

6 Learning Feed-Forward Control with the Python Scikit-Learn Library

The learning controller is implemented with a function approximator. A wide variety of func-
tion approximators exists, like neural networks, neuro-fuzzy networks and look-up tables, Poly-
carpou and Ioannou (1992). For this thesis a B-spline Network is used because the current
application of LFFC (in 20-sim) and the application to be newly built (in Python) both have a
B-spline network available. This way, both implementations can be compared on performance
and easiness of use (and design). The approximation is performed by forming B-spline curves
and is used in the modus "indirect learning control". This means that the function approxima-
tor learns the model of the plant under control by adaptation of the approximator in order to
minimize the cost function of the prediction error. A B-spline network has advantages (X) and
disadvantage (×):

X No local minima
The BSN output is a linear function of the weights and the initial weights used do not
influence the final tracking accuracy.

X Local learning
The in- and output mapping of the BSN can be adapted locally as the support of a B-
spline can be compact. During a training only a small number of weights contribute to
the output. This is caused by the fact that only the weights of those B-splines are adapted.
This is beneficial for the rate of convergence of the BSN.

X Tunable precision
The B-spline distribution determines the smoothness of the in- and output mapping. To
achieve a smoother approximation (for instance if the target signal contains more high-
frequency data) either the support of the B-spline can be chosen larger or the degree of
the B-splines can be increased.

× Large number of network weights
A highly non-linear function has to be mapped by a B-spline network if the plant has
dynamics that are described by highly non-linear components. To be able to map those
non-linearities accurately a lot of computer memory is required together with large com-
putational cost, which is especially not desired in real-time control. (curse of dimension-
ality)

× Large training set
The network weights that are indexed by the networks input will only be adapted for
a specific reference motion. This means that the moment a large number of network
weights must be adapted a large number of trainings motions must be supplied to the
network. As a result, the total training time of the network will increase. (curse of dimen-
sionality)

× Poor generalizing ability
In order to accurately approximate non-linear plant behavior it might be required to se-
lect narrow B-splines. Though, in combination with trajectories that are "close to each
other" the narrow B-splines may result in different network output signals. Therefor large
training sets has to be supplied to the approximator in order to notice beneficial effects.
(curse of dimensionality)

In order to set-up a function approximator (BSN), the following design choices have to be
made:

1. Inputs of the BSN
The curse of dimensionality is a factor that is related to the number of inputs of the BSN.
For high dimensions large number of BSN network weights are incorporated, large train-

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 7

ings sets are required and its generalizing ability will be pore. And therefor high system
dimensionality should be avoided.

Depending on the motion to be performed two types of inputs can be chosen. For repeti-
tive motions the periodic motion time is commonly used and for non-repetitive motions
the reference position x and/or derivatives thereof (ẋ = v and ẍ = a) can be supplied to
the BSN.

2. B-spline distribution of the BSN(’s)
The output of the BSN is the weighted sum of the B-spline evaluations, as a result the
accuracy of the approximation depends on the number of B-splines and their locations.
The target signal has to be approximated and based on this signal a low number of "wide"
splines or a large number of "small" B-splines can used. The latter is required for strongly
fluctuating signals. See Figure 2.4 for a target signal, a B-spline distribution and the cor-
responding BSN approximation.

Figure 2.4: Target signal and the approximated signal by a B-spline network

In Figure 2.5 two target signals ares shown, one containing high frequencies and one
low frequencies. For both target signals a B-spline approximation is shown using equal
number of B-splines and in both situations uniformly distributed splines.

Figure 2.5: B-spline approximation, left) high frequency target signal and right) low frequency target
signal

By increasing the number of basis functions (decreasing the B-spline width) the learning
controller is able to approximate high frequency elements as well. In selecting a too small
B-spline width it might be possible that 1) noise and unwanted high frequency signals
will also be approximated and 2) the approximation diverges and the system becomes
unstable, Bishop H. Robert H. Bishop (2007).

Robotics and Mechatronics Elise-Ann Schrijvers

8 Learning Feed-Forward Control with the Python Scikit-Learn Library

3. Selection of learning mechanism
The learning mechanism of the approximator specifies the adaptation of the network
weights. Adaptation can take place after each sample ("on-line learning") or after com-
pletion of a motion ("off-line learning"). Both methods have their own learning rule:

Learn after a sample:
∆wi = γui (r)e (r) (2.3)

Learn after completed motion:

∆wi = γ ·
∑Ns

j=1 ui
(
r j

)
e
(
r j

)
∑Ns

i=1 ui
(
r j

) (2.4)

with, r j BSN input
ui

(
r j

)
membership of i -th B-spline, for which ui

(
r j

) ∈ [0,1]
∆wi adaptation of the weight of the i -th B-spline
γ learning rate, for which holds 0 < γ≤ 1
e
(
r j

)
network approximation error, the output of the feedback controller uF B

Ns number of input samples

4. Selection of the learning rate
After a complete motion is performed, the learned data is applied to the system the mo-
ment the next motion starts. The learning rate of the approximator is related to the num-
ber of motions that needs to be performed in order to let the learning mechanism con-
verge. A large value makes the convergence fast but may also increase the systems sensi-
tivity to noise and/or cause instability.

Although the purpose of the research is not to implement a control system with a learning feed-
forward controller with optimal performance it is important to have a look at the stability of the
feed-forward part.

The feed-forward controller is said to be stable if an arbitrarily chosen initial feed-forward sig-
nal will not cause an unbounded output of the plant. The initial feed-forward signal is deter-
mined by the initial values of the weights within the B-spline network. For a stable feedback
system the only way to observe an unbounded output is the moment the feed-forward signal
uF F becomes unbounded. This implies that at least on weight has become infinitely large. In
order to achieve a stable system the weights must be adapted with care such that their values
remain bounded.

Later on in the thesis, simulation experiments are described. Those simulations have BSN net-
work settings (number of B-splines and the learning rate) that are selected in such a way that at
first sight no instable behavior seems to occur. Though, it might be possible that by extending
the duration of a simulation or by increasing the number of runs in a multiple run simulation
experiment that instability will occur. Designing a perfect LFFC using BSN is beyond the scope
of this thesis.

2.2.1 B-spline Basis Functions

The domain of a B-spline curve is subdivided into knots and the m +1 knots together form the
knotvector U , for which holds that u0 ≤ u1 ≤ ... ≤ um . Each knot divides the interval [u0,um]
into half-open knot spans, for instance the i -th knot span on the half-open interval [ui ,ui+1).
Simple knots are knots appearing only once and knots that appear k times are knots having a
multiplicity of k. The spreading of the knots over the B-spline domain can either be uniform

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 9

(equally distributed) or non-uniform (not equally distributed). The B-spline distribution used
in the simulations all have simple knots k = 1, besides the boundary knots. The knots at the
boundary have multiplicity of p +1, in which p is the degree of the splines.

Each B-spline basis function is defined within the domain [u0,um]. The basis functions are
used as weights and shapes the approximation of the curve. The basis functions are described
by the so called Cox-de Boor recursion formula:

Ni ,0 =
{

1 i f ui ≤ u ≤ ui+1

0 other wi se
(2.5)

Ni ,p = u −ui

ui+p −ui
Ni ,p−1(u)+ ui+p+1 −u

ui+p+1 −ui+1
Ni+1,p−1(u) (2.6)

with, p the degree of the basis functions
Ni ,p (u) the i -th B-spline basis function of degree p
ui the i -th knot

The shape of the basis functions is defined by its degree and is used to set the maximum achiev-
able smoothness for the curve approximation. First order (zero degree) basis functions are de-
scribed by Equation 2.5 and have only one constant parameter. This function can be seen as a
step function, Ni ,0(u), which means that it has exactly one non-zero interval and a discontinu-
ity at ui+1, see Figure 2.6.

Figure 2.6: Non-zero parts of B-spline basis functions of degree 0 (order 1)

First degree basis functions can be described by two linear segments (triangular shape, see
Figure 2.7) and its corresponding equations can be derived from Equations 2.5 and 2.6:

Ni ,1 = u −ui

ui+1 −ui
Ni ,0(u)+ ui+2 −ui

ui+2 −ui+1
Ni+1,0(u) (2.7)

Ni ,1 =


u−ui

ui+1−ui
u ∈ [ui ,ui+1)

ui+2−u
ui+2−ui+1

u ∈ [ui+1,ui+2)

0 el sewher e

(2.8)

The basis functions of degree one have two non-zero parts, defined on the intervals [ui ,ui+1)
and [ui+1,ui+2), see Figure 2.7. Both intervals together are referred to as the support of basis
function Ni ,1(u). The functions are linear on both parts of the support interval and the location
and slope are fully determined by the distribution of the ui ’s.

Robotics and Mechatronics Elise-Ann Schrijvers

10 Learning Feed-Forward Control with the Python Scikit-Learn Library

Figure 2.7: Non-zero parts of B-spline functions of degree 1 (order 2)

Second degree basis functions (and higher) are superpositions of multiple quadratic basis func-
tions. The larger the degree the more smooth the function approximation can be. In Figure 2.8
an overview is given of the basis functions of degree 0, 1, 2 and 3 (equal to order 1, 2, 3 and 4).

Figure 2.8: B-spline basis functions of degree n = 0, 1, 2 and 3

In order to determine a basis function that has a degree larger or equal than 1 the triangular
computation scheme can be used, see Figure 2.9. In the scheme knot spans are listed in the
first column seen from the left and basis functions with increasing degree (started from zero)
are shown in the columns to the right of the knot spans.

Figure 2.9: Triangular computation scheme

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 11

To make use of the triangular scheme more clear, assume that the non-zero domain of basis
function N1,3(u) has to be determined. By trace back the scheme in the direction towards the
first column all required basis functions will be calculated, see Figure 2.10.

Figure 2.10: Triangular computation scheme, trace back for basis function N1,3(u)

An elaborate explanation of the B-splines basis functions can be found in Appendix B.1.

2.2.2 Computing Coefficients

For a given clamped B-spline curve of degree p the re-currency relation of Equation 2.8 can be
used. Though, for large degree this method can be time consuming and inefficient. As it might
occur that in a series calculation some coefficients are calculated multiple times.

Assume that u is within the half open knot span [uk ,uk+1) then at most p +1 basis functions
of degree p are non-zero

(
Nk−p (u), Nk−p+1(u), Nk−p+2,p (u), ..., Nk−p,p (u) Nk,p (u)

)
and the only

non-zero basis function is Nk,0(u). By having this basis function as the starting point for the
triangular computation scheme and from thereon work along the columns until all the required
p +1 coefficients are known, see Figure 2.11

Figure 2.11: Triangular scheme of non-zero B-spline coefficients

2.3 B-spline Network Tools

For the thesis the 20-sim (using the built-in B-spline editor) and Python (using the Scikit-learn
library) implementations of the B-spline networks are compared. In this section some infor-
mation is provided about both.

2.3.1 B-spline Network with 20-sim B-spline Editor

The software 20-sim is implemented with a built-in B-spline network editor, 20simBSN (2017),
see Figure 2.14. The B-spline network relates k inputs to a single output y on a certain domain
of the input space. The structure of the network can be seen to consists of four layers, i.e. one
input layer, two hidden layers and one output layer.

Robotics and Mechatronics Elise-Ann Schrijvers

12 Learning Feed-Forward Control with the Python Scikit-Learn Library

Both hidden layers consists of n nodes of which each node has only one input. Fed to the nodes
of the first hidden layer are N-th order basis functions F and to the nodes of the second hidden
layer a function G . Function G multiplies the input by a certain weight. The output node gives
the resulting sum of all the node outputs of the second layer.

To make this more clear, a one-dimensional B-spline network is assumed having a single input.
The structure of this network is shown in Figure 2.12.

Figure 2.12: B-spline network structure of 20-sim

For a properly spaced spline domain it is possible to approximate every one dimensional func-
tion, see Figure 2.13.

Figure 2.13: Function approximation with B-splines in 20-sim

Training of the network is done by comparing the network output y with the desired output
yd . The observed error between both is used to adapt the weights and the rate at which the
adaptation takes place is defined by the learning rate γ. A quick adaptation can be achieved
by using a high learning rate, though for an increased risk of unstable behavior. For γ = 0 the
learning is disabled and weight adaptation will not take place.

Besides the learning rate the parameters to be set in the B-spline editor (see Figure 2.14) are
the order of the B-splines, the number of splines and the lower and upper input data value.
Within the editor it is possible to select the networks learning mode (learning at each sample
or learning after leaving a spline) and the network type (continuous time or discrete time).

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 13

Figure 2.14: The B-spline editor window of 20-sim

The mode "learning at each sample" updates the network weights after each sample (accord-
ing to Equation 2.9a). For a certain input x only a few splines have Fi (x) 6= 0, which means
that at each sample only a few weights will be adapted. The mode "learning after leaving a
spline" keeps track of input x and its corresponding non-zero splines Fi (x). Samples of non-
zero splines are stored and only after the input has left the region of a non-zero spline its weight
will be adapted according to Equation 2.9b.

∆w j = γ · (yd − y)F j (x) (2.9a)

∆w j = γ ·
∑n

i=1

(
yd ,i − yi

) ·F j (xi)∑n
i=1 F j (xi)

(2.9b)

In which ∆w j represents the adaptation of weight w j , γ the learning rate, F j (x) the basis func-
tion of sample j , x the input, yd the desired output and y the network output.

The calculated weights can be saved to file after a simulation experiment has been finished
and weights can be loaded from file before the start of a simulation experiment. This makes it
possible to use each run different initial data in a multiple run simulation experiment.

2.3.2 B-spline Network with Python Scikit Learn Library

Scikit-learn provides wide functionality and specialized packages for machine learning in
Python. The use of those packages makes it possible to analyze data in a simple an efficient
way. The packages can be used in various contexts and builds upon NumPy, SciPy and Mat-
plotlib, Scikit-learn (2017).

2.3.2.1 SciPy

SciPy is open-source software for science, mathematics and engineering, Scipy Manual (2017).
It is a collection of mathematical algorithms and functions that is built on Pythons extension
Numpy. One of the sub-packages in NumPy is interpolatewhich consists of all kinds of in-
terpolation functions and methods. From the interpolation package the functionssplrep and
splev are used to implement 1-dimensional B-spline networks and the functions bisplrep
and bisplev are used for 2-dimensional networks.

The function interpolate.splrep, Splrep (2017) determines a smooth B-spline approxi-
mation of degree k on the interval xb ≤ x ≤ xe given a set of data points (x[i], y[i]) defining the

Robotics and Mechatronics Elise-Ann Schrijvers

14 Learning Feed-Forward Control with the Python Scikit-Learn Library

curve y = f (x). The function returns the 3-tuple (t,c,k) containing a knotvector, B-spline
coefficients and the degree of the spline.

Important to note is that the supplied x data must be unique and the array content must con-
tain the values in ascending order. Non-unique items should be filtered out before applying
data to this function. Furthermore, the knots t must satisfy the Schoenberg-Whitney condi-
tions, i.e. there must be a subset of data points x[j] such that:

t [j] < x[j] < t [j +k +1] f or j = 0,1, ..,n −k −2 (2.10)

with, t [j] knot at sample j
x[j] input at sample j
k degree of B-splines
n number of samples

In words, Equation 2.10 tells that in between two consecutive knots of the knotvector a data
point must exist.

The function interpolate.splev, Splev (2017) evaluates for some given input x[i] the
output value y[i]. In order to evaluate the data the 3-tuple (t,c,k) (the return from
interpolate.splrep()) and the evaluation degree must be supplied. For input values
being outside the defined interval of the knot sequence the returned output will be the extrap-
olated value by default, but it is possible to change this to return a 0, to return the boundary
value or to raise an error.

The function interpolate.bisplrep, Bis (2017b) finds the bivariate B-spline represen-
tation of a surface. Data points for x[i], y[i] and z[i] are supplied that describe the surface
z = f (x, y). By supplying the knotvectors t x and t y (optional input) together with a certain
B-spline degree the function returns a 5-tuple (tx,ty,c,kx,ky) that contains the knotvec-
tors and the degree of the x- and y-dimension and one set of computed coefficients c. Optional
parameters can be set to define the end points of the approximation interval for both x and y .

The function interpolate.bisplev, Bis (2017a) evaluates a bivariate B-spline (and its
derivatives). The only compulsory inputs are the parameters that define the domain over
which the spline has to be evaluated x, y and the 5-tuple (tx,ty,c,kx,ky) (returned from
bisplrep). The return of the function (evaluation) is the cross-product of x and y . Initially
the evaluation orders of x and y are set to zero, but those can be changed by defining d x and
d y .

2.4 Illustrative Application: Linear Motor Motion System

The illustrative example used for the thesis is a model of a linear motor motion system. This
type of motor is interesting in learning control and is widely used to perform linear motions
that require sub-millimeter accuracy (i.e. scanning, laser cutting or pick-and-place tasks), Ot-
ten et al. (1997).

2.4.1 Introduction to a Linear Motor

The configuration of a linear motor consists of a base plate covered with permanent magnets
and a translator that holds the electric coils with its iron cores. The translator undergoes the
translational motions. In Figure 2.15 the working principle of a linear motor is illustrated.

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 15

Figure 2.15: Working principle of a linear motor. The lines indicate the flux-lines of the permanent
magnets and φa , φb and φc indicate the phases of the 3-phase motor current

The motion is established by applying a three-phase current to three adjoining translator coils.
As a result, a series of attraction and rejection forces between the permanent magnets and the
coils is generated. The basic behavior of the motor can be seen as the movement of a mass. For
the thesis it is assumed that the total mass of the motor including a dummy load defined by
mL = 37 [kg].

The translator of the linear motor experiences a force ripple (disturbance) during its operation.
The force ripple can be explained by two phenomena that occur:

• Phenomena 1: Cogging force
Between the permanent magnets at the base plate and the translators iron cores a strong
magnetic interaction takes place. Disturbance forces that try to align the magnets with
the cores into a stable position of the translator cause these interactions. This force is
called the cogging force and is independent of the motor current. It depends on the rel-
ative position of the translator with the magnets and is even present the moment the
motor current is zero. A simplistic model to represent the cogging force FC [N] is:

FC (x) = 10sin(1.6 ·10−2x) (2.11)

The equation describes a sinusoidal shaped input disturbance that depends on the mo-
tor position x, has an amplitude of 10 [N] and a pitch of 0.016 [m]. In Figure 2.16 a mea-
surement of the cogging of the real motor being modeled is shown.

0 0.1 0.2 0.3 0.4 0.5

Position [m]

-15

-10

-5

0

5

10

15

F
C
 [N

]

Cogging

Figure 2.16: Input-output mapping of the position dependent cogging force, FC

• Phenomena 2: Back EMF
By commutation in the coils, i.e. the way the current is supplied to the coils, a force ripple

Robotics and Mechatronics Elise-Ann Schrijvers

16 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table 2.1: System requirements of the feedback control system (PD controller plus moving mass)

Parameter Value Unit Description
mL 37 kg Total moving mass (linear motor plus dummy load)
ẍmax 10 m/s2 Maximum acceleration of the mass
emax,tr ack 100 µm Maximum tracking error of the control system

can be generated. Back EMF is generated the moment a coil is moved through a varying
electro-magnetic field. If the current supplied to the coils is not proportional to the back
EMF, a force ripple will appear.

Using a detailed model of the structure of the motor enables the computation of the back
EMF, but in order to do so accurate data about the position and magnetic properties of
the permanent magnets is required. In most applications linear motors are used that
have large magnetic tolerances (beneficial to reduce the motor costs). For each individual
motor the model should be individually adjusted which makes implementing them more
difficult. Therefor it is decided to omit the force ripple caused by this fact.

Besides the cogging force, friction and motor inertia are commonly taken into account
in modeling a linear motor. An example of a friction force that is encountered is the
moment the translator of the motor slides along the guiding rails. The simulations per-
formed for this thesis only incorporate the inertia of the mass (together with the cogging
force). The friction will be omitted as this force is negligible when compared to the iner-
tia.

2.4.2 Design of Linear Motor Model

The model shown in Figure 2.17 is used in simulations to model the linear motor as a plant. It
includes the inertia of the mass of the linear motor and the position dependent cogging.

Figure 2.17: Plant model for the non-ideal linear motor in which the inertia of mass mL and the cogging
are included

2.4.3 Design of Feedback Controller

The feedback controller compensates for random disturbances and generates the learning sig-
nal (target) for the LFFC. Tuning a feedback controller is based on certain plant requirements,
therefor values are assumed for the maximum allowable tracking error emax,tr ack , the maxi-
mum possible acceleration ẍmax of the mass and the total mass mL to be displaced, see Table
2.1. An ideal model of a moving mass is assumed for tuning the PD controller.

The feedback controller is formed by a combination of a proportional (P) and a derivative (D)
action. The P-action produces a control action proportional to the produced error. The larger
the error the larger the controller output. The D-action produces a control action proportional
to the rate of change of the error. The more sudden the error changes the larger the control
output.

Elise-Ann Schrijvers University of Twente

CHAPTER 2. THEORETICAL BACKGROUND 17

It is chosen to represent the PD controller in serial form as this allows for better tuning in the
frequency domain. de Vries (2015) provides the information to design a serial PD controller in
transfer function form. The design consists of a combination of the selection of controller gain
KC and a filter formed by specific pole-zero placement of τz and τp .

CF B = KC · sτz +1

sτp +1
(2.12)

The design starts with defining the cross-over frequency from the maximum acceleration of the
mass ẍmass , the maximum allowable tracking error emax,tr ack and the tameness factor β (as a
rule of thumb, β= 10):

ωc =
√√√√ ẍmax ·

√
β

emax,tr ack
(2.13)

From Equation 2.13 the controller gain KC , τz and τp can be determined:

KC = mLω
2
c√

β
(2.14a)

τz =
√
β · 1

ωc
(2.14b)

τp = 1√
β ·ωc

(2.14c)

The systems cut-off frequency is found to be 562 [rad/s] and the controller transfer function is:

CF B = 3.7 ·106 · 5.622 ·10−3s +1

5.623 ·10−4s +1
(2.15)

2.4.4 Performance Check on the Feedback System Model

The performance of the designed feedback controller is checked by implementing the feedback
controlled system in the simulation software 20-sim. The model is shown in Figure 2.18.

Plant model: ideal linear motor model

yuuFBx PD
SP

MV
s

FBcontroller

ZOH

Hold

K
1

massReference Sample

∫

v

∫

x

Figure 2.18: 20-sim model to check performance of control system

A "MotionProfile" supplies the control system of a partial cubic reference signal having a max-
imum acceleration of 10 [m/s2] and a maximum displacement of xmax = 0.5 [m], the complete
set of signal parameters is shown in Table 2.2. In Appendix A a description of the partial cu-
bic signal together with its parameter definitions are shown. The feedback controller used is
discrete such that the option is enabled to control a linear motor that is outside the simula-
tion environment (a real world set-up). Though, for this thesis a simulation model of the linear
motor is used only.

Robotics and Mechatronics Elise-Ann Schrijvers

18 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table 2.2: Reference signal parameters for performance check of tuned PD-controller

Parameter Value Unit Description
r i se_t i me 0.527 s Rise time
st ar t_t i me 1.000 s Start time
stop_t i me 1.527 s Stop time
r etur n_t i me 2.000 s Return time
end_t i me 2.527 s End time
per i od 3.527 s Period of signal
jmax 189.737 m/s3 Maximum jerk
amax 10.000 m/s2 Maximum acceleration
vmax 1.581 m/s Maximum velocity
xmax 0.500 m Maximum displacement (= stroke)
CV 20 % Percentage Constant Velocity (CV)
C A 20 % Maximum Constant Acceleration (CA)

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

x
[m

]

Reference signal

Position

0 0.5 1 1.5 2 2.5 3 3.5
-2

0

2

v
[m

/s
] Velocity

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-10

0

10

a
[m

/s
2] Acceleration

Figure 2.19: Reference signal used to check the performance of the tuned PD-controller

The maximum allowable tracking error was defined to be 100 [µm] and from Figure 2.20 it can
be observed that this requirement is met.

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

-1

0

1

T
ra

ck
in

g
er

ro
r

[m
]

#10-4 Tracking error

Figure 2.20: The controlled systems tracking error obtained after tuning the PD-controller

Elise-Ann Schrijvers University of Twente

19

3 Network Communication

3.1 Introduction

A feedback control system can be extended with a feed-forward controller. The most conve-
nient way to obtain this is by just implementing both controllers on the same platform, for
instance both in the simulation environment of 20-sim. For the thesis the learning controller
(feed-forward part) will be implemented in Python. By setting up a network connection be-
tween the feed-forward controller in Python and (in this case) the feedback system plus plant
in the simulation software 20-sim both can communicate.

The network part is set-up by making use of ZeroMQ, ZeroMQ (2017) and of Protocol Buffer
from Google, ProtoBuf (2017). The combination of both enables a well structured data com-
munication structure between 20-sim and Python. In this chapter the design of the network
layer is presented and its implemented is shown. Two tests are performed to verify if the com-
munication works as expected.

3.2 Design of Network Layer

A general feedback control system that is extended with a properly set feed-forward controller
shows improved performance. Though it requires both parts to be used on the same comput-
ing platform (i.e. Linux, Microsoft Windows or macOS) and all parts needs to be operated in
the same operating environment (for instance a simulation environment). To abolish these re-
strictions a network layer is added in between the feedback part and the feed-forward part. As
a result, both parts can be implemented on different computing platforms. Communication
remains possible by setting up a network link. In Figure 3.1 a diagram is shown in which a
network layer is included within a learning feed-forward controlled system.

Figure 3.1: Learning feed-forward controlled system that includes a network layer

The feed-forward controller is implemented in Python and contains a function approximator
from the Python Scikit learn library. The input-output mapping of the system is adapted during
control in order to behave as desired. The feedback part (in this experiment) is implemented
in the simulation environment of 20-sim.

The feed-forward controller has to perform three tasks:
1. Collect data
2. Approximate behavior of the inverse plant, P−1(s)
3. Evaluate the inverse plant approximation and apply to the system

Robotics and Mechatronics Elise-Ann Schrijvers

20 Learning Feed-Forward Control with the Python Scikit-Learn Library

The tasks the feed-forward controller needs to perform do not all require network communi-
cation. Only tasks 1 and 3 have to communicate over the network, see Figure 3.2.

Figure 3.2: Tasks of the feed-forward controller, (***) indicates a task requiring network communication

In order to obtain a safe and reliable communication between both sides of the network layer,
two protocols are used: ZeroMQ and Protocol Buffer from Google. The latter packs the data
into a serialized string such that the data can be sent and received according to one and the
same format. The former sends the serialized string over the network. ZeroMQ can be seen
as a concurrency framework and is already prepared to carry messages along various trans-
port processes (inter-process, in-process, TCP and multicast). The network communication
channel is set-up by binding two IP-addresses to each other. At both sides of the network the
IP-address of the application containing the feed-forward part must be available.

3.3 Implementation of Network Layer

ZeroMQ, ZeroMQ (2017) and Protocol Buffer, ProtoBuf (2017) from Google are used together
to make it possible to transfer data from 20-sim to Python and vice versa. In this section some
more information is provided about both protocols.

3.3.1 ZeroMQ

ZeroMQ can be seen as a concurrency framework that provides sockets to carry messages
across various transports, i.e. inter-process, in-process, TCP and multi-casts. It can connect
N-to-N sockets according to several patterns such as fan-out, pub-sub and request-reply. The
latter is used to bind both applications together and a connection between client (20-sim) and
server (Python) needs to be set-up manually. This is done by providing the IP-address of the
server to the client application, which must be contained in the config file (.cfg) that will be
automatically read as soon a simulation is started.

The communication pattern starts with a request (REQ) sent by the client using zmq_send(),
the server (Python) receives the request and performs a calculation followed by sending a reply
(REP) back to the client, which is received using zmq_recv(). This way 20-sim can send
data to Python (for data storage and processing) and Python can send data (processed data)
back to 20-sim to be used in the simulation. In Figure 3.3 a diagram is shown in which the
communication between client and server is visualized.

Elise-Ann Schrijvers University of Twente

CHAPTER 3. NETWORK COMMUNICATION 21

Figure 3.3: ZeroMQ communication diagram between client and server. Three network communication
actions in the order 1) connect, 2) client request (REQ) and 3) server reply (REP)

3.3.2 Protocol Buffer from Google

Protocol Buffer from Google is used to serialize data in a structured way (creating a message)
with its property of being language and platform neutral. The structure of the data only has to
be defined once and after that the special generated source code can be used to write and read
data from the structure using variety of languages and from variety of data streams.

The data structure of the message is specified by defining a protocol buffer message of the type
.proto. The message is small and forms a logical record of information contained in a series
of name-value pairs. Each message type has one (or more) uniquely numbered fields defined
by a name and a value type. Possible value types are for instance booleans, numbers, raw bytes
and strings. The fields can be specified as optional, required and repeated fields as well.

In the control systems client-server setting, before the client actually sends out its request
(REQ) the data is packed into a message (containing a serialized string) by Protocol Buffer. The
server receives the request and unpacks the message using Protocol Buffer such that actions
can be performed on the data. The new data is packed by Protocol Buffer into a message which
is send as a reply (REP) back to the client. The client receives the reply, unpacks the data again
with Protocol Buffer. The data is ready to be used by 20-sim. The packaging structure is illus-
trated in Figure 3.4.

Figure 3.4: Diagram of the data (de-)serialization process of Protocol Buffer from Google in combination
with network communication between client and server

Robotics and Mechatronics Elise-Ann Schrijvers

22 Learning Feed-Forward Control with the Python Scikit-Learn Library

3.3.3 Network Communication with 20-sim

The feedback control system is implemented in the simulation environment of 20-sim. Since it
is not possible to directly communicate with 20-sim from an external application a DLL is used
to make this possible. A DLL is a Dynamic Link Library and is a file that contains instructions
that can be called by another program to perform a certain task (for instance tasks requested
by 20-sim). It is not possible to run a DLL file directly (like an executable file, .exe) but it
must be called by some other running code. The term ’dynamic’ refers to the fact that the data
within the file is only used the moment a program actively calls the data. As a result, the data
is not always available in memory. In order to run simulations in 20-sim that include network
communication, the program is required to perform a DLL call to a .dll (created by a build of
code written in C++) such that via that file a temporarily communication link is opened to the
Python server, and vice versa. A DLL call in 20-sim can be done as follows:

output=dll(dll_name,function_name,input) (3.1)

with, dll_name: the name of the DLL file with extension .dll
function_name: the name of the function containing the action to be performed
input: input data to be passed on the function that is called

This function returns data that is configured as output. It is possible to perform calls that
pass on single or multiple inputs and/or that receive single or multiple outputs. The diagram
in Figure 3.5 visualizes a DLL call between the 20-sim client and the Python server.

Figure 3.5: Diagram of DLL call from 20-sim to Python server

The 20-sim simulation software supplies the user with a standard structure for making a DLL
call. A Visual C++ code example is provided 20simDynamicDLL (2017) which can be used and
modified to achieve specific functionality. In considering a multiple run simulation experiment
the actions that are consecutively performed by the simulation are:

1. Initialize()
Function called by 20-sim before the simulation experiment is started, and only once in
a multiple run experiment. Initializations of data structures can be placed within this
function.

2. InitializeRun()
Function called by 20-sim before a simulation experiment starts in a multiple run exper-
iment.

Elise-Ann Schrijvers University of Twente

CHAPTER 3. NETWORK COMMUNICATION 23

3. dllFunction()
Function called during a simulation experiment in which for instance data can be cap-
tured and modified.

4. TerminateRun()
Function called by 20-sim after each finished run. For instance, clean-up of data can be
done within this function.

5. Terminate()
Function called by 20-sim after a finished (multiple run) simulation experiment.

The above structure will be used to create an efficient communication between the 20-sim
client (making a DLL call) and the Python server. This structure will ensure that actions only
take place the moment they need to.

3.4 Validation of Network Layer

The proposed network communication set-up is evaluated by performing two tests. One to see
if a server (in Python) and a client (in C++) can communicate with each other by sending each
other a string. The second test will verify if 20-sim can make a DLL call to a .dll-file that was
created by building a program written in C++. For this test a simulation in 20-sim is started and
data is send to the Python server. The server manipulates the received data and send it back to
the client.

For both tests two devices (laptops) are connected to the same network and both IP-addresses
are within the same subnet. This way it is enabled that both devices are allowed "to see" each
other and the possibility arises to set-up a connection between them. The IP-addresses of the
client and server are IPv4:192.168.0199 and IPv4:192.168.0.200. At both applica-
tions the IP-address of the server needs to be known. At the server side, the IP-address used is
referred to by using local host and at the client side a .cnf (config) file is read out in which the
IP-address of the server needs to be inserted manually.

3.4.1 ZeroMQ Test

The "ZeroMQ test" is a test to validate if it is indeed possible to let a client implemented in C++
communicate over the network to a server implemented in Python. The client will send the
string "Hello" and it is intended to receive the string "World" back from the server. The ZeroMQ
connection is based on the Request-Reply (REQ-REP) mode. To validate if it works, the server in
Python ZeroMQ_server.py is started followed by executing the client testZeroMQ.exe.
The output of the server is shown in the "IPython console" and the output of the client appears
in the command prompt window, see Table 3.1.

Table 3.1: Ipython console output and command prompt window output, after completed communica-
tion between client and server

testZeroMQ_server.py testZeroMQ.exe
Received request: b’Hello’ Reading IPaddress from file...

Connecting to hello world server ...
Sending Hello
Received World

Furthermore, the software Wireshark is used to track the network communication of both ap-
plications, see Figure 3.6. Multiple packages go from one side to the other. Row 9 and 11 contain
the string "Hello" and "World", see Table 3.2 for more detailed information about the content
of the packages.

Robotics and Mechatronics Elise-Ann Schrijvers

24 Learning Feed-Forward Control with the Python Scikit-Learn Library

Figure 3.6: Wireshark package flow for communication between client and server

Table 3.2: Part of the package content containing "Hello" and "World", data extracted using Wireshark

Source IP Destination IP Information
192.168.0.199 192.168.0.200 [PSH, ACK] Seq=65 Ack=92 Win=65536 Len=49

[TCP segment of reassembled PDU]
TCP payload (49 bytes): containing Hello

192.168.0.200 192.168.0.199 [PSH, ACK] Seq=114 Ack=144 Win=65536 Len=9
[TCP segment of reassembled PDU]
TCP payload (9 bytes): containing World

3.4.2 Data Transfer Test

The "data transfer" test is performed to see if the simulation software (20-sim) can commu-
nicate with a server in Python, by performing a DLL call. 20-sim makes a call to the function
dataTransfer, a request (from the client) is send to the server and a reply is received back
from the server.

A 20-sim simulation is started in which a reference input signal 2sin(t) is used, t ∈ [0,2π]. The
block "DLLcall" contains the function to make a DLL call (using 3.1) such that a communication
link between the Python server and the client is established. Input for the function are samples
of the reference input and the time obtained by using a sample time of 0.01 [s]. The purpose
of the experiment is that Python receives the sampled data, multiplies the references signal by
two and sends back the result to 20-sim. The simulation model used is shown in Figure 3.7.

K

callDLL

ZOH

HoldSample

Sample2

SignalMonitorSine

Time

Figure 3.7: 20-sim model used to perform the data transfer test for communication between 20-sim and
Python

The data is saved at both ends of the network link (at the 20-sim side and at the Python side)
and it is expected that the data of the out- and input of 20-sim represents the functions 2sin(t)
and 4sin(t). At the Python side it is expected that the in- and output represent the functions
2sin(t) and 4sin(t), the results are shown in Figure 3.8. From observations it can be concluded
that the correct data is send/received at both ends of the links such that the "data transfer" test
is succeeded.

Elise-Ann Schrijvers University of Twente

CHAPTER 3. NETWORK COMMUNICATION 25

0 2 4 6

Time [s]

-4

-3

-2

-1

0

1

2

3

4

V
al

ue
 []

Client

output
input

0 2 4 6

Time [s]

-4

-3

-2

-1

0

1

2

3

4

V
al

ue
 []

Server

input
output

Figure 3.8: In- and output data plotted at a) client side (20-sim) and b) server side (Python)

3.5 Conclusion

The client (C++) and server (Python) in the "ZeroMQ test" correctly communicate, the client
sends the string "Hello" to the server, the server receives it and sends "World" back to the client
(and receives it).

The "data transfer" test showed that 20-sim was able to correctly communicate to the server by
a DLL-call . To do so, a simulation was started in which an input signal (2sin(t)) was generated,
sampled and send to the server.

It can be concluded that the combination of ZeroMQ and Protocol Buffer from Google can be
used to set-up a network communication link between 20-sim and Python.

Although not demonstrated in this chapter, the server could have run on a Linux platform.
As, Python, Protocol Buffer from Google and ZeroMQ can run on the Linux operating system,
without any modifications.

Robotics and Mechatronics Elise-Ann Schrijvers

26 Learning Feed-Forward Control with the Python Scikit-Learn Library

4 One Dimensional LFFC

A feedback control system that is extended with a properly set 1-dimensional (1D) learning
feed-forward controller shows improved system performance. Depending on the input signal
supplied to the learning controller it is suited for repetitive motions or non-repetitive motions.
A time-indexed LFFC (input is a function of the periodic motion time) is used for repetitive
motions and a state-indexed LFFC (input is the reference position, velocity or acceleration) is
used for non-repetitive motions.

This chapter starts with the design of two 1-dimensional time-indexed learning feed-forward
controllers for which the environment in which they are implemented differ. For both imple-
mentations the reference signal is produced by the built-in "waveform generator" of 20-sim
and the signals shape it produces is referred to as a partial cubic motion. A general feedback
system is used in which a tuned PD-controller controls the ideal plant model representing a
moving mass.

The feed-forward part contains a learning controller that will approximate the mass of the plant
by using a B-spline Network. The difference between both time-indexed LFFCs is found within
this part. One implementation uses the built-in B-spline Network editor of 20-sim and the
other uses the Scikit-learn library from Python. The latter implementation requires the set-up
of a network connection between 20-sim and Python, for more details see Chapter 3.

Both implementations are compared by evaluating the simulation results obtained by 20-sim,
but also the user friendliness and the design freedom during those simulations is taken into
account. A time-indexed LFFC is implemented using Python only and the task of the learning
controller is to learn the inverse behaviour of the plant, i.e. its mass.

The designed time- and state-indexed LFFCs have the B-spline networks designed using pa-
rameters which seem to cause no instable behavior. Though, it might be possible that for in-
stance by extending the simulation periods and/or the number of runs (within a multiple run
session) unstable behavior will occur. Designing a perfect LFFC is beyond the scope of this
thesis.

4.1 Time-Indexed LFFC

Time-indexed learning feed-forward controllers are beneficial for linear motor motion systems
that has to perform repetitive motions. This type of motions will observe at each time instance
the same plant influences and other disturbances each time the motion repeats. Therefor, the
input supplied to the learning controller can be chosen to be a function of the periodic motion
time, Tp for which the motion is defined on the input domain t ∈ [0,Tp]. The structure of a
time-indexed LFFC is shown in Figure 4.1.

Figure 4.1: Time-indexed LFFC structure (1-dimensional)

4.1.1 Design

The 1-dimensional time-indexed LFFC is designed using a B-spline network (BSN) as its func-
tion approximator, therefor the BSN network parameters must be selected. The approximator

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 27

Table 4.1: Trainings signal parameters time-indexed LFFC

Parameter Value Unit Description
Tr i se 0.786 s Rise time
Tst ar t 1.000 s Start time
Tstop 1.786 s Stop time
Tr etur n 2.000 s Return time
Tend 2.786 s End time
Tp 3.786 s Period of signal
jmax 57.276 m/s3 Maximum jerk
amax 4.500 m/s2 Maximum acceleration
vmax 1.061 m/s Maximum velocity
xmax 0.500 m Maximum displacement (= stroke)
CV 20 % Percentage Constant Velocity (CV)
C A 20 % Percentage Constant Acceleration (CA)

has to learn the inverse behavior of the ideal plant for which a model is used that incorporates
the inertia of the mass mL only. A more detailed description of the plant model is given in
Section 2.4 and the model itself is shown in Figure 4.2.

Figure 4.2: Ideal plant model of linear motor

The parameters to be selected are the upper and lower input values, the learning rate, the num-
ber of B-splines, the distribution of the B-splines and the degree of the B-splines. Especially the
number of B-splines and the learning rate are important to select properly, because those pa-
rameters influence the stability of the learning controller. The B-spline network setting are
determined according to the following step-by-step plan:

Step 1: Input selection of the BSN
The input selection for the BSN is based on the motions to be performed by the linear mo-
tor. Since a time-indexed LFFC shows only good performance for repetitive motions input t is
selected for the learning controller, which is a function of the periodic motion time TP .

Step 2: Selection of the B-spline order
Along with the degree of the B-splines the smoothness and accuracy of the function approxi-
mation is set. The higher the degree the more complex the computation of the B-splines and
therewith the longer the process time will be. First degree (or second order) B-splines will be
used.

In using this type of basis functions a smooth enough approximation can be achieved while
limiting the computational complexity, as suggested in Velthuis (2000). First degree B-splines
are described by two linear line segments forming a triangular shape, see Section 2.2.1.

Step 3: Selection of the trainings motion
A partial cubic motion profile is used as trainings signal as described in Appendix A. The accel-
eration is limited to 4.5 [m/s2] and a maximum displacement is 0.5 [m] (forward and backward
motion). The signal is shown in Figure 4.3 and its signal parameters in Table 4.1. The motion
shows start and end periods in which no motion is performed such that unwanted behavior
can be observed in those areas.

Robotics and Mechatronics Elise-Ann Schrijvers

28 Learning Feed-Forward Control with the Python Scikit-Learn Library

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

x
[m

]

Reference signal

Position

0 0.5 1 1.5 2 2.5 3 3.5

-1

0

1

v
[m

/s
] Velocity

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

0

5

a
[m

/s
2] Acceleration

Figure 4.3: Trainings motion for the time-indexed LFFC (acceleration) and derivatives thereof

Step 4: Selection of the B-spline distribution and the number of splines
The distribution of the B-splines will be uniformly, which means that each B-spline is equally
spaced over the input domain from [0,TP]. Reason for this is that it is more easily to implement
while still sufficient simulation results can be obtained. Besides that, in 20-sim it is not possible
to define a non-uniform B-spline distribution.

In most situations an exact model of the plant is not available. In order to be able to still de-
termine the minimum B-spline width of the network the step-by-step plan given in "Algorithm
2.3", Velthuis (2000) can be used:

4.1: Find infinity norm of the inverse complementary sensitivity function
The infinity norm is defined as

∣∣−T (jω)
∣∣∞. The inverse complementary sensitivity func-

tion −T (jω) (closed system) is used to determine this norm. In Figure the diagram is
shown from which is found that:∣∣−T (jω)

∣∣∞ = 1.275[dB] (4.1)

4.2/4.3: Find the minimum frequency for which the cosine of the Phase (Step 4.1) is smaller or
equal than zero
In Figure 4.5 cos(φ) is shown in which φ represents the phase obtained from

∣∣−T (jω)
∣∣∞

(shown in Figure 4.4). The minimum frequency for which cos(φ) ≤ 0 is:

min
ω∈R|cos(φ≤0)

∣∣−T (jω)
∣∣→ω= 852.699[r ad/s] (4.2)

The smallestω1 at whichφ1 = arg(−T (jω1)) satisfiesφ1 = arccos
(
−0.0147 |−T (jω)|∞

minω∈R|cos(φ≤0)|−T (jω)|
)

is found using Step 4.1 and Step 4.2:

φ1 = arccos

(
−0.0147

∣∣−T (jω)
∣∣∞

minω∈R|cos(φ≤0)
∣∣−T (jω)

∣∣
)

=
(
−0.0147 · 1.275 [dB]

1.122 [dB]

)
= 91.074 [deg]

(4.3)

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 29

100 101 102 103 104

frequency [rad/s]

-60

-40

-20

0

20

m
ag

ni
tu

de
 [d

B
]

Magnitude

100 101 102 103 104

frequency [rad/s]

0

50

100

150

200

ph
as

e
[d

eg
re

e]

Phase

Figure 4.4: Bode diagram of the inverse complementary sensitivity function, i,e.
∣∣−T (jω)

∣∣∞ (from the
closed loop system)

100 101 102 103 104

frequency [rad/s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

co
s(
?

)

cos(?)

Figure 4.5: Plot of the cosine of the phase observed from −T (jω)

Robotics and Mechatronics Elise-Ann Schrijvers

30 Learning Feed-Forward Control with the Python Scikit-Learn Library

4.4: Find the minimum B-spline width dmi n

Using the obtained ω1 (from Step 4.2/4.3) the minimum width dmi n of the B-splines is
determined according to:

dmi n = 2π

ω1
→ dmi n = 2π

852.699
= 7.369 ·10−03 (4.4)

By dividing the motion period Tp = 3.78 [s] by dmi n the maximum number of B-splines
is obtained:

Nmax = Tp

dmi n
→ Nmax = 3.78

7.369 ·10−03 = 512 (4.5)

The number of splines must be lower than 512. In order to compare the BSN implemen-
tations of 20-sim and python two values are chosen, i.e. 400 splines and 500 splines.

In Figure 4.6 the uniform distribution of N B-splines of second order (degree zero) is shown.
The basis functions are sequentially labeled by i ∈ 1...N . The distribution shows that the first
(1) and last (N) basis function have half the width of the basis functions at the center part. This
type of learning controller is used for performed motions that are completely independent.
This means that before a new motion is started, the system is brought back to its initial states.
A typical application in which this type of "reset" is used is a pick-and-place machine.

Figure 4.6: A B-spline distribution of time-indexed LFFC

Step 5: Selection of the learning rate
The learning rate of the feed-forward controller is wished to be as large as possible such that
convergence is reached fast. Though, too high rates may result instable behavior. In Velthuis
(2000) an equation is proposed in order to determine the maximum possible learning rate:

γ≤ 2∣∣−T (jω)
∣∣∞ → γ≤ 0.948 (4.6)

For the simulations the learning rates are set to γ= 0.5 and γ= 0.9, both lower than the maxi-
mum allowable value found from Equation 4.6 to avoid unstable behavior.

4.1.2 Implementation

Two different implementations of the B-spline network of the feed-forward controller are con-
sidered. The first implementation is completely built within the simulation environment of
20-sim using the built-in B-spline Editor. The second implementation makes use of the Python
Scikit-learn library. The latter implementation operates outside the 20-sim environment and
therefor a network link is set-up between 20-sim and Python (see Chapter 3).

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 31

4.1.2.1 B-spline Network with 20-sim B-spline Editor

In this section the built-in B-spline network editor (from the software 20-sim) is used to im-
plement the B-spline network in the feed-forward part of the control system. In Figure 4.7 the
20-sim model used for this is shown. The plant model only includes the influence of the inertia
of the mass mL = 37 [kg].

Bspline network

uFF

yuFB

ideal part

Plant model: linear motor

u

a

y

v

x

a
v

t
uFF
uFB

K

dataCollection

PD
SP

MV
s

FBcontroller

ZOH

Hold

K
1

massMotionProfile Sample1

Sample2 Sample3Time

∫

v

∫

x

Figure 4.7: 20-sim model for time-indexed LFFC using 20-sim implementation with ideal plant

The built-in waveform generator of 20-sim is used to supply input x to the model, see Fig-
ure 4.3. The input for the B-spline network is t sampled each millisecond. Furthermore, the
network is supplied with the so called target signal. This signal is the output of the feedback
controller multiplied with the learning rate (γ) plus the feed-forward signal uF F pr evi ous of the
previous run (at a specific sample instance). The moment no previous data is available signal
uF F pr evi ous = 0.

Depending on the observed tracking error (difference between the system output y and the
desired output yd) and the learning rate the B-spline network will adapt its network weights.
The output of the B-spline network is the feed-forward control signal, uF F , that is fed into the
control system just before the input of the plant.

The function approximation is performed by the BSN in 20-sim and therefor the "dataCollec-
tion" block is used only to send the collected data over the network to the Python server. The
server saves the data to file in (.txt) format. The collected data is the time t [s], reference
inputs (x [m], ẋ = v [m/s], ẍ = a [m/s2]), feedback output uF B [N], feed-forward output uF F [N]
and the system output y [m].

4.1.2.2 B-spline Network with Python Scikit-Learn

The model used to implement the Python B-spline network is shown in Figure 4.8. The plant
model includes the inertia of the mass only.

ideal part

Plant model: linear motor

ux uFB

uFF

y

x

t y

va

v
a

uFB

uFF

PD
SP

MV
s

FBcontroller

K

FFcontroller

ZOH

Hold

K
1

massMotionProfile Sample1

Sample2 Sample3Time

∫

v

∫

x

Figure 4.8: 20-sim model for time-indexed LFFC implemented with a Python B-spline network

A multiple run simulation experiment in 20-sim is assumed in which at each sample time a
DLL-call is made to the python server. The server captures data, performs the function approx-

Robotics and Mechatronics Elise-Ann Schrijvers

32 Learning Feed-Forward Control with the Python Scikit-Learn Library

imation and send back the feed-forward control signal (for more detailed information about
the DLL-call see Section 3.3.3). This functionality is wrapped in the block "FFcontroller". This
block has six inputs, i.e. time t [s], reference input x [m] (and its derivatives ẋ [m/s], ẍ [m/s2]),
feedback output uF B [N] and the system output y [m]). Furthermore the block has one output:
the feed-forward output uF F [N]. All in- and outputs of the block are sampled instances at each
1 [ms].

The function approximation is based on the Python Scikit-learn library, see Section 2.3.2 and
it uses the function interpolate.splrep to determine the network coefficients (adapted
weights) and the function interpolate.splev to evaluate the output of the B-spline net-
work. After a run is completed the adapted weights c are stored to file together with the
knotvector t and the degree of the splines k to form the 3-tuple (t,c,k). The next run this
file is reloaded and used as the starting point for the function approximation.

The splrep has some requirements that must be fulfilled in order to perform a proper func-
tion approximation:

1. input data is unique (all input data has a multiplicity of one)
2. input data is sorted in ascending order
3. an input data point must be present within two consecutive knots of the knotvector

As the time-indexed LFFC uses time as its input the data is automatically unique and sorted in
ascending order. The third requirement is fulfilled as long as the sample time is smaller than
the number of knots (B-splines) used. Since the sample time is 0.001 [s] and the number of B-
splines are selected to be either 400 or 500, this requirement is met. In order to perform proper
function approximation it is not necessary to perform some kind of data preprocessing.

The process from start till end of a multiple run simulation experiment can be split-up into
five stages, according to Section 3.3.3. The most important actions performed per stage are
described in Table 4.2.

4.1.3 Comparison 20-sim and Python

In order to compare the B-spline Network implementation of 20-sim and Python, 20-sim sim-
ulations are performed such that the performances of both can be evaluated. Besides the sim-
ulations, both are compared based on the user friendliness and the freedom of the designer as
well.

4.1.3.1 Simulations

The B-spline network implementations of python and 20-sim are compared based on the re-
sults of multiple run simulation experiments that each consists of 25 runs. The partial cubic
motion pattern shown in Figure 4.3 is used.

In Python it is possible to set the degree of the output evaluation of the network while this is
not possible in 20-sim. Nevertheless, this value is set to zero as for this thesis it is just wishful
to use the general feed-forward signal (uF F) in stead of a derivative thereof. A summary of the
network settings is listed in Table 4.3.

The differences between the 20-sim and python implementation are studied by looking at the
tracking error, the learned signals (i.e. uF F vs. a) and the values the learning controllers con-
verge to.

Table 4.4 lists the absolute maximum tracking error and the absolute mean tracking error for
both the 20-sim and Python implementation. The values shown for "Run 1" describe the sit-
uation in which the learning controller hasn’t learned yet. In fact, this can be seen as using a
control system having a feedback system only. As a result, the values obtained are equal for
20-sim and Python and independent of the number of B-splines and the learning rate chosen.

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 33

Table 4.2: Simulation stages and its actions, for a multiple run simulation experiment using a time-
indexed LFFC

Stage 1: Initialize()
→ Set-up a network connection between 20-sim and Python
→ Set runNumber = 0 (run number in simulation)
→ Create folder for storage of simulation data
→ Read parameters from file parameter.txt:

lowerInput: lower value of BSN input domain
upperInput: upper value of BSN input domain
numberOfKnots: number of B-splines distributed over BSN input domain
splineDegree: degree of the B-splines
evalDegree: degree of the output evaluation
learningRate: learning rate of the BSN

→ Determine knotvector and internal knots
→ Create initial 3-tuple (t,c,k), with c all zeros
→ Save initial 3-tuple (t,c,k)

Stage 2: InitializeRun()
→ Clear arrays in which data is stored
→ Open and store tuple (t,c,k) from the previous run

(or the initialized one, if runNumber=1)

Stage 3: ProcessStep()
→ Append data arrays t ,uF B , x, v, a and y each sample i
→ Evaluate the output value uF F [i] using interpolate.splev
→ Determine target value: ut ar g et [i] = uF F [i](pr evi ousr un)+uF B [i] ·γ
→ Append data arrays: ut ar g et [i] and uF F [i] returned from interpolate.splev

Stage 4: TerminateRun()
→ Determine 3-tuple (t,c,k) for the next run, using interpolate.splrep

by passing the arrays input, target, the degree of the splines k, and internal knotvector
→ Save to file: 3-tuple (t,c,k) to be used in the next run
→ Save arrays to file: time t , feedback uF B , feed-forward uF F , reference x, v, a and output y

Stage 5: Terminate()
→ Close network connection between 20-sim and Python

Table 4.3: B-spline settings, for time-indexed LFFC (∗ Python only, ∗∗ 20-sim only)

Option setting
Input (lower) 0 [s]
Input (upper) 3.78 [s]
Learning rate 0.5 and 0.9 [-]
Spline order 2 (= degree 1) [-]
Evaluation order∗ 0 [-]
Number of splines 400 and 500 [-]
Learning mode∗∗ learn after leaving a spline
Network type∗∗ discrete

Robotics and Mechatronics Elise-Ann Schrijvers

34 Learning Feed-Forward Control with the Python Scikit-Learn Library

The number of B-splines determine the smoothness and accuracy of the approximation and
the learning rate influences the rate at which convergence will occur. For a fixed number of
B-splines (400 or 500) the absolute maximum error and the absolute mean error are equal the
moment the learning rates are chosen to be 0.5 or 0.9. This is observed for both the 20-sim and
the Python implementation.

Furthermore, the larger number of B-splines results in a more accurate approximation and in a
lower tracking error for both implementations. A small difference between 20-sim and Python
is that the absolute maximum tracking error and the absolute mean error are slightly lower for
20-sim than for Python when "Run 25" is observed using 400 and 500 B-splines.

The tracking errors of the B-spline networks using 400 and 500 splines are shown in Figure
4.10 and Figure 4.11. Together with the tracking errors the reference signals x, v and a are
plotted. From observations and from Table 4.4 it is observed that there is no difference in the
performances of the simulations the moment the number of B-splines is kept constant (400 or
500) while the learning rates vary (0.5 or 0.9). This can be explained by the fact that the learning
rates only influences the rate at which convergence occur and not influence the performance of
the system, off course for learning rates that cause no instable behaviour. Since, the simulation
results are equal for both learning rates only the results are shown for γ= 0.5.

Table 4.4: Absolute maximum error and absolute mean error for varying number of B-splines and learn-
ing rates

400 B-splines
Run 1 Run 25

Error γ Python [m] 20-sim [m] Python [m] 20-sim [m]

Abs. maximum
0.5

4.500 ·10−05 4.500 ·10−05 5.144 ·10−07 4.821 ·10−07
0.9

Abs. mean
0.5

1.122 ·10−05 1.122 ·10−05 [m] 1.967 ·10−08 1.622 ·10−08
0.9

500 B-splines
Run 1 Run 25

Error γ Python [m] 20-sim [m] Python [m] 20-sim [m]

Abs. maximum
0.5

4.500 ·10−05 4.500 ·10−05 4.218 ·10−07 3.480 ·10−07
0.9

Abs. mean
0.5

1.122 ·10−05 1.122 ·10−05 1.874 ·10−08 1.152 ·10−08
0.9

It can be seen that the tracking error is increased the moment the reference signal makes a
transition from one stage to another (for instance, from no movement (NM) to constant jerk
(CY) or from CY to constant acceleration (CA)) . In Figure 4.9 those transition points are marked
such that it is more easily to refer to them.

Remarkable to see is that the BSN of Python using 400 splines shows only at 15 transition points
an error peak (at transition point (TP) 15 no peak is observed) while the 20-sim implementation
shows at every transition point (16) error peaks. Transition point 16 is not a physical transition
point and therefor no error is observed at that point. It only indicates the transition from the
no move (NM) segment at the end of the forward motion and the NM segment at the beginning
of the backward motion. The moment the number of B-splines is increased to 500, both the
Python and 20-sim implementation show error peaks at each of the 16 real transition points.
For both numbers of B-splines the width of the error peaks is wider and the maximum absolute
error is larger for the python implementation.

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 35

Figure 4.9: Transition points (17) defined at reference acceleration signal. The 18 segments the signal
can be divided in are referred to by NM: no move, CY: constant jerk, CA: constant acceleration and CV:
constant velocity

0 0.5 1 1.5 2 2.5 3 3.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
[m

]

#10-5 Tracking error (Run 1)

Run 1

(a) python (initial error)

0 0.5 1 1.5 2 2.5 3 3.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
[m

]

#10-5 Tracking error (Run 1)

Run 1

(b) 20sim (initial error)

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

a
[m

/s
2]

-5

-4

-3

-2

-1

0

1

2

3

4

5

T
ra

ck
in

g
er

ro
r

[m
]

#10-7Tracking error (Run 25)

(c) python (converged error)

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

a
[m

/s
2]

-5

-4

-3

-2

-1

0

1

2

3

4

5

T
ra

ck
in

g
er

ro
r

[m
]

#10-7Tracking error (Run 25)

(d) 20sim (converged error)

Figure 4.10: Tracking error (initial = without applying LFFC and converged) using 400 B-splines and
γ= 0.5

Robotics and Mechatronics Elise-Ann Schrijvers

36 Learning Feed-Forward Control with the Python Scikit-Learn Library

0 0.5 1 1.5 2 2.5 3 3.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
[m

]

#10-5 Tracking error (Run 1)

Run 1

(a) python (initial error)

0 0.5 1 1.5 2 2.5 3 3.5
-5

-4

-3

-2

-1

0

1

2

3

4

5

x
[m

]

#10-5 Tracking error (Run 1)

Run 1

(b) 20sim (initial error)

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

a
[m

/s
2]

-5

-4

-3

-2

-1

0

1

2

3

4

5

T
ra

ck
in

g
er

ro
r

[m
]

#10-7Tracking error (Run 25)

(c) python (converged error)

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

a
[m

/s
2]

-5

-4

-3

-2

-1

0

1

2

3

4

5

T
ra

ck
in

g
er

ro
r

[m
]

#10-7Tracking error (Run 25)

(d) 20sim (converged error)

Figure 4.11: Tracking error (initial = without applying LFFC and converged) using 500 B-splines and
γ= 0.5

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 37

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(a) python (400 B-splines)

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(b) 20sim (400 B-splines)

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(c) python (500 B-splines)

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(d) 20sim (500 B-splines)

Figure 4.12: Feed-forward signal versus acceleration using 400/500 B-splines and γ= 0.5

In Figure 4.12 and 4.13 the feed-forward signal uF F is plotted against the reference acceleration
for both 400 and 500 B-splines and for learning rates of 0.5 and 0.9. The slope of those lines
represents the approximation by the learning controller of mass mL .

First the plots are observed for γ = 0.5. The slope of the converged BSN’s (Run 25) in the sit-
uations using 400 and 500 B-splines are similar for Python and 20-sim. This means that the
adaptation of the weights is performed at the same rate. What can be seen as well is that the
shape of the learned signal differs.

In observing the plots for γ= 0.9 similar shape difference are observed between the converged
Python and 20-sim implementations. Furthermore, it can be seen that for the larger learning
rate both learning controllers converge faster than was observed for γ= 0.5. This is caused by
the fact that a larger learning rate enables the learning controller to adapts its weights faster.

For both implementation of Python (for uF F v s.a) similar effect was observed, i.e. the learning
controller outputs different values for uF F even though the supplied acceleration is equal. This
phenomena is much smaller for the 20-sim implementation and therefor it is checked if there
might be a time-delay in the Python implementation.

The difference between the feed-forward signals of 20-sim and Python of Run 25 are plotted
against the time, see Figure 4.14. The reference acceleration is shown in the same graph. The
expectation of the appearance of a time-delay can be confirmed by the graph. A difference of
about 2 [N] is observed in the sections of constant jerk. The segments that can be described by
a constant acceleration, constant velocity or no movement do not show such a difference and
the fluctuations are observed around zero.

Robotics and Mechatronics Elise-Ann Schrijvers

38 Learning Feed-Forward Control with the Python Scikit-Learn Library

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(a) python (400 B-splines)

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(b) 20sim (400 B-splines)

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(c) python (500 B-splines)

-5 0 5
-200

-150

-100

-50

0

50

100

150

200

x
[m

]

Uff vs. acceleration (Run 25)

(d) 20sim (500 B-splines)

Figure 4.13: Feed-forward signal versus acceleration using 400/500 B-splines and γ= 0.9

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

A
cc

el
er

at
io

n
[m

/s
2]

-5

-4

-3

-2

-1

0

1

2

3

4

5

u
F

F
 [N

]

Difference 20-sim and Python (Run 25)

Figure 4.14: Difference between uF F of 20-sim and Python plotted against the time for Run 25.

In Figure 4.15 the same graph is shown for which now the data from 20-sim is shifted one sam-
ple time to the left. The differences between both implementations now shows all fluctuations
at the transition points around zero. The "hysteresis" like behavior observed in the graphs uF F

vs. a indeed were caused by a time delay.

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 39

0 0.5 1 1.5 2 2.5 3 3.5
0

0.5

x
[m

]

Reference Signal

Position

0 0.5 1 1.5 2 2.5 3 3.5
-2

0

2

v
[m

/s
] Velocity

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

0

5

a
[m

/s
2] Acceleration

Figure 4.16: Reference motion with markers indication the ranges over which the value of the approxi-
mated mass is determined, left) accelerating segment and right) decelerating segment

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

A
cc

el
er

at
io

n
[m

/s
2]

-3

-2

-1

0

1

2

3

4

u
F

F
 [N

]

Difference 20-sim and Python (Run 25) shifted

Figure 4.15: Difference between uF F of 20-sim and Python plotted against the time for Run 25, for which
20-sim is shifted one time sample to the left.

It might be possible that the implementation in 20-sim sends its data towards 20-sim the mo-
ment the B-spline editor has done its job, one sample time later than the Python implementa-
tion, further research needs to be done to verify the proposed cause.

The value the learning controllers approximate can be found by calculating ∆UF F /∆a. This
takes place at the last part of the reference motion at both the increasing (left markers) and
decreasing (right markers) part of the acceleration, see Figure 4.16. Besides that, the averaged
value over both parts is determined, see Table 4.5.

It can be seen that the moment 400 B-splines are used both Python and 20-sim approximate a
slightly lower approximation at the increasing part than at the decreasing part. The moment
500 B-splines are chosen the results are reversed, i.e. the decreasing part shows slightly lower
approximation than the increasing part. On average Python deviates -0.071 [kg] and +0.057
[kg] from mL for respectively 400 and 500 B-splines. The implementation of 20-sim shows on
average a deviation of +0.344 [kg] and -0.104 [kg] from mL using 400 and 500 B-splines. As a
result, the average deviation of Python is smaller in all cases considered.

Robotics and Mechatronics Elise-Ann Schrijvers

40 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table 4.5: Mass approximation for various number of B-splines and learning rates

400 B-splines 500 B-splines
Python 20-sim Python 20-sim

Increasing
0.5

36.866 [kg] 37.337 [kg] 37.068 [kg] 36.785 [kg]
0.9

Decreasing
0.5

36.991 [kg] 37.350 [kg] 37.046 [kg] 37.007 [kg]
0.9

Average
0.5

36.929 [kg] 37.344 [kg] 37.057 [kg] 36.896 [kg]
0.9

The rate at which the learning controllers converge can be nicely seen by plotting the mass
approximation against the run number, see Figure 4.17. Since, the number of B-splines used
does not influence the rate of convergence only the results are shown using 400 B-splines. As
expected, the approximations for γ= 0.9 reach convergence in less runs than the moment γ=
0.5. No significant difference can be observed in the rate at which convergence occurs when
comparing 20-sim and Python.

0 5 10 15 20 25

Run [-]

0

5

10

15

20

25

30

35

40

M
as

s
[k

g]

Mass Convergence
inc
dec
avg

(a) python (γ= 0.5)

0 5 10 15 20 25

Run [-]

0

5

10

15

20

25

30

35

40

M
as

s
[k

g]

Mass Convergence
inc
dec
avg

(b) 20sim (γ= 0.5)

0 5 10 15 20 25

Run [-]

0

5

10

15

20

25

30

35

40

M
as

s
[k

g]

Mass Convergence
inc
dec
avg

(c) python (γ= 0.9)

0 5 10 15 20 25

Run [-]

0

5

10

15

20

25

30

35

40

M
as

s
[k

g]

Mass Convergence
inc
dec
avg

(d) 20sim (γ= 0.9)

Figure 4.17: Rate of convergence using BSN’s using 400 B-splines and learning rates of 0.5 and 0.9

4.1.3.2 Implementability

Separating both controller parts creates more freedom in the use of applications at both sides.
It makes it possible to implement the feed-forward part in Python and to use it in combination
with a plant model in 20-sim.

As was described in Section 2.4 a linear motor model is used as the illustrative example. In
stead of the control of a 20-sim model the network communication enables the option (after

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 41

proper system adaptations) to control a real physical linear motor. One of the adaptations that
has to be done is transforming the Python implementation (part of) into something useful for
real-time. For that, it is only necessary to transform the evaluation part of the approximator.
Python itself is not developed for real-time implementations. The control of a real physical
linear motor is beyond the scope of this thesis and so is the implementation of the feed-forward
useful for real-time use.

The Python implementations gained a lot of freedom in the design of the B-spline network.
But not only for the B-spline Network, it is now even possible to use other types of function
approximators as long as they can be implemented in Python. The parameters of the BSN are
more easily to set and more of them can be changed. For instance:

→ define a non-uniform knotvector
→ define a knotvector with multiplicity of knots
→ BSN output evaluations of derivatives
→ BSN output evaluation of one point or complete array

Besides the parameter settings it is more easy to perform a multiple run simulation experiment.
Python enables to automatically save data to file after a run and to load parameters (t,c,k)
the moment a new run starts. Within 20-sim the network weights needed to be stored and
loaded by hand, which is very impractical for multiple run experiments.

Thanks to the network connection, the simulation results can be easily stored and loaded into
an evaluation program, like Matlab. This enables fast reproduction of the simulation results.

4.1.4 Conclusion

The comparison between 20-sim and Python is done based on two points of view. One point
of view evaluates the performance of the learning controllers and the other evaluates the user-
friendliness and the freedom the user has in order to perform the function approximation.

From the simulations the performances of the learning controllers is obtained. For a fixed num-
ber of B-splines (400 or 500) both implementations show almost identical convergence values.
The Python and 20-sim learning controllers can therefore be said to operate consistently and
their outcomes are independent of the learning rate.

The rate at which both learning controllers converge is similar for both learning rates (0.5 and
0.9). Although, the approximations of mL deviates little bit more for 20-sim than for Python
and the average approximation of Python is closer to mL = 37 [kg] in either case. The larger
deviation in Python is observed in the plot uF F versus a in the form of hysteresis (or in fact a
time-delay). This phenomena is lower for 20-sim than for Python. The time-delay is caused by
a delay observed between both implementations, Python is one step (1 sample instance) ahead
of the 20-sim.

In all situations considered the absolute maximum tracking error and the absolute mean error
is lower for 20-sim than for Python. From this can be concluded that the performance of 20-
sim is slightly better than Python. Although, the tracking errors of 20-sim are slightly lower, the
BSN implementations of Python and 20-sim can both be used to perform the function approx-
imation in the feed-forward part of the control system.

The comparison between 20-sim and Python based on the performance is competitive, but the
moment both are compared based on the user-friendliness and the user’s freedom Python defi-
nitely scores better. By setting up a BSN in Python the user has a lot of freedom in selecting and
defining the network parameters. The parameters are more easily to set and more parameters
can be selected.

Besides that, it is more easily to set-up an automated multiple run simulation experiment in
which data is automatically supplied and stored to file. This must be done by hand in 20-sim.

Robotics and Mechatronics Elise-Ann Schrijvers

42 Learning Feed-Forward Control with the Python Scikit-Learn Library

4.2 State-Indexed LFFC

The moment non-repetitive motions must be performed a time-indexed learning controller
will not function at its best. Each time a new motion is supplied the learning process has to start
all over again and its previously gained knowledge is lost. To overcome this problem a state-
indexed learning controller can be used. The periodic motion time (TP) is no longer used as
the input but the reference signal (and/or derivatives thereof). In this section a 1-Dimensional
state indexed LFFC is designed that has to approximate the mass mL of the plant and therefor
the reference acceleration is supplied to the learning controller. The structure of the time-
indexed LFFC is shown in Figure 4.18.

Figure 4.18: State-indexed LFFC structure (1-dimensional)

4.2.1 Design

The learning controller has to learn the inverse behavior of the plant. The same ideal plant
model is used as was used in the case of the time-indexed LFFC. The model includes the inertia
of the mass only, see Figure 4.19.

Figure 4.19: Ideal plant model used for the 1-dimensional state-indexed LFFC

The design of a state-indexed LFFC is performed along the same step-by-step plan as was used
for the time-indexed LFFC. The parameters to be selected are the upper and lower input values
(accelerations), the learning rate γ, the number of B-splines and its distribution and the degree
of the splines.

Step 1: Input selection of the BSN
In order to learn the inverse behavior of the plant (mass mL) an appropriate choice is to select
the second derivative of the reference position, i.e. the acceleration a [m/s2]. This can be traced
back by observing Newtons second law: F = ma.

Step 2: Selection of the B-spline order
Similar to the time-indexed LFFC first degree (second order) B-splines are used for the B-spline
network. This type of B-splines enables smooth enough function approximation while limiting
computational process time.

Step 3: Selection of the trainings motion
The type of trainings motion used for the state-indexed LFFC is a partial cubic motion profile
(see Appendix A). Instead of supplying the reference motion once during a simulation session
the motion is repeated five times. As a result, the learning controller is supplied with target
values that correspond to the same acceleration multiple times. By taking proper care of the
duplicates the rate at which the learning controller convergence can be increased. The refer-

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 43

0 2 4 6 8 10 12 14 16 18
0

0.5

x
[m

]

Reference signals

0 2 4 6 8 10 12 14 16 18

-1

0

1

v
[m

/s
]

0 2 4 6 8 10 12 14 16 18

t [s]

-5

0

5

a
[m

/s
2]

Figure 4.20: Reference signal used as trainings motion for the 1-dimensional state-indexed LFFC

ence motion is limited to achieve an acceleration of 4.5 [m/s2] over a range of motion of 0.5
[m]. The signal is shown in Figure 4.20 and its parameters in Table 4.6.

Step 4: Selection of the B-spline distribution and the number of splines
From Newton’s second law it is known that there exists a linear relation between the force ex-
erted on a mass and its acceleration. The number of B-splines chosen for the B-spline Network
specifies the amount of freedom of the function approximator. The larger the number of B-
splines the more freedom is gained as there are more points the approximator will fit its data
on. Learning a linear relation requires two B-splines only, though an extra B-spline is added in
zero. The third B-spline tries to force the function approximator to achieve for zero reference
acceleration a zero the feed-forward output (i.e. the force) as well. The two other B-splines are
placed at the lower an upper acceleration inputs, see Figure 4.21

Figure 4.21: B-spline distribution feed-forward controller compensating for the inertia of the mass

Step 5: Selection of the learning rate
The learning rule introduced for the time-indexed BSN can no longer be used as the motion
period for signals supplied to a state-indexed LFFC may fluctuate. A mediate learning rate of
γ= 0.5 is selected for training the state-indexed learning controller.

4.2.2 Implementation

The learning controller of the 1-dimensional state-indexed LFFC is implemented using the
Python Scikit-learn library. This controller is an extension of the general control system that
consists of a feedback controller and an ideal plant model, see Figure 4.22.

Robotics and Mechatronics Elise-Ann Schrijvers

44 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table 4.6: Trainings signal parameters state-indexed LFFC, for i ∈ [1,5] the repetition number of the
partial cubic wave

Parameter Value Unit Description
Tr i se 0.786 + i ∗TP s Rise time
Tst ar t 1.000 + i ∗TP s Start time
Tstop 1.786 + i ∗TP s Stop time
Tr etur n 2.000 + i ∗TP s Return time
Tend 2.786 + i ∗TP s End time
Tp 3.786 s Period of signal
Ttot al 18.93 s Total motion time (five partial cubic waves)
jmax 57.276 m/s3 Maximum jerk
amax 4.500 m/s2 Maximum acceleration
vmax 1.061 m/s Maximum velocity
xmax 0.500 m Maximum displacement (= stroke)
CV 20 % Percentage Constant Velocity (CV)
C A 20 % Percentage Constant Acceleration (CA)

Plant model: moving mass

x

x

v

v
a

a

y

y

uFB

uFF

u

uFB
uFF

x

PD
SP

MV
s

FBcontroller

K

FFcontroller

ZOH

Hold

K
1

massMotionProfile

Sample1

Sample2

Sample3

∫

v

∫

x

Figure 4.22: 20-sim model for state-indexed LFFC using an ideal plant

The model contains the block "FFcontroller" which is a wrapping around the feed-forward part
of the control system. This block captures data but also performs the function approximation
of the learning controller. The block has five inputs, i.e. reference position x [m], reference
velocity v = ẋ [m/s], reference acceleration a = ẍ [m/s2], feedback output uF B [N] and the
system output y [m]). The output of the block is the feed-forward signal uF F [N].

Each sample time (1 [ms]) the data is captured and sent over the network to Python. At the
Python side the data is manipulated (performing the function approximation) and its output is
send back to 20-sim, i.e. the output of feed-forward part uF F [N]. Take a look at Chapter 3 for
more information about the network connection and the communication between 20-sim and
Python.

The function approximator is implemented as a B-spline network by making use of
the Python Scikit-learn library by using the functions interpolate.splev and
interpolate.splrep. The first function evaluates the output of the learning controller
and the second returns a 3-tuple (t,c,k) containing the knotvector t, the coefficients
(network weights) c and the degree of the B-splines k.

The input data supplied to interpolate.splrep must be unique, sorted in ascending or-
der and must be matched to the knotvector. In the case of a time-indexed LFFC those require-
ments were met automatically as long as the sample time was (much) smaller than the time

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 45

difference between two consecutive knots. That those requirements are met for a state-indexed
LFFC is not necessarily the case. Therefor some data preprocessing is applied to the input data:

1. Make the input data unique
By observing the input-target mapping a[i],ut ar g et [i], in which i represents a certain
sample instance, several methods can be applied in order to make the data set unique.

The methods are explained by first assuming an input-target mapping in which the input
data has multiplicity of n. The input dataset can be described by x = [x1, x2, ..., xn] with
x1 = x2 = ... = xn and the target data by y = [y1, y2, ..., yn].

In Table 4.7 six methods are presented in order to make the input-target mapping unique:

Table 4.7: Methods considered to remove duplicated values of the input-target mapping

Method Description
Minimum Use the minimum value in y
Maximum Use the maximum value in y
First Use the first value in y
Last Use the last value in y
Mean Take the mean value of all elements in y
Random Pick a random value out of all elements in y

Based on simulation results one method is selected that will be used throughout the rest
of the simulations for the state-indexed LFFC in this thesis. Multiple run simulation
experiments are performed for which each consists of 15 runs, using 3 B-splines and a
learning rate of 0.5. The 20-sim model used for this is shown in Figure 4.22 and the refer-
ence input signal is the partial cubic motion created by the waveform generator of 20-sim
(maximum acceleration of 4.5 and a maximum range of motion (back and forth) of 0.5
[m]), see Figure 4.16.

In Figure 4.23 the tracking error of Run 15 is shown and in Figure 4.24 a zoomed-in ver-
sion at the first maxima, the first minima and the part in between the back and forward
motion.

By observing Run 15 the lowest error is observed for "maximum" and "first" at the max-
ima and at the minima the best error is shown by "minimum". In the latter case the worst
error is observed for "first" and from this can be concluded that there exists no specific
relation between the best performing methods at the maxima, "maximum" and "first"
and at the minima, "mininum" and "first" (at minima).

The "average" and "random" methods score roughly the same at the minima and max-
ima peaks. At the parts in which no movement is performed the "average" method shows
an error that is more close to zero than the "random" method, which is wishful. The
closer to zero the tracking error the better the linear motor will stay located at its non-
moving position. It is then less likely to occur that the linear motor will deviate from its
original start position after couple of runs.

Robotics and Mechatronics Elise-Ann Schrijvers

46 Learning Feed-Forward Control with the Python Scikit-Learn Library

0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

E
rr

or
 [m

]

#10-6 Tracking error (Run 15)
Min
Max
First
Last
Avg
Rnd

Figure 4.23: Tracking error using various methods in order to remove duplicates (Run 15)

1.01 1.02 1.03 1.04 1.05 1.06 1.07 1.08

Time [s]

7.6

7.8

8

8.2

8.4

8.6

8.8

E
rr

or
 [m

]

#10-7 Tracking error section: maxima (Run 15)
Min
Max
First
Last
Avg
Rnd

(a)

1.24 1.25 1.26 1.27 1.28 1.29 1.3 1.31 1.32

Time [s]

-8.8

-8.6

-8.4

-8.2

-8

-7.8

-7.6

-7.4

-7.2

E
rr

or
 [m

]

#10-7 Tracking error section: minima (Run 15)
Min
Max
First
Last
Avg
Rnd

(b)

1.84 1.86 1.88 1.9 1.92 1.94 1.96

Time [s]

-3

-2

-1

0

1

2

3

E
rr

or
 [m

]

#10-9 Tracking error section: no move (Run 15)
Min
Max
First
Last
Avg
Rnd

(c)

Figure 4.24: Tracking error zoomed-in at a) maxima, b) minima and c) non-moving part in between the
forward and backward motion. Observed for various methods in order to remove duplicates (Run 15)

In Table 4.8 the maximum absolute tracking errors and the absolute mean tracking errors
are listed for Run 15, for all six methods. The lowest errors appear using the methods
"last", "average" and "random".

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 47

Table 4.8: Maximum absolute tracking error and absolute mean tracking error using various methods
in removing duplicates out of the input-target mapping (Run 15)

Abs. mean tracking error [m] Max. abs. tracking error [m]
Minimum 1.473 ·10−07 8.743 ·10−07

Maximum 1.473 ·10−07 8.743 ·10−07

First 1.457 ·10−07 8.741 ·10−07

Last 1.435 ·10−07 8.628 ·10−07

Average 1.435 ·10−07 8.628 ·10−07

Random 1.435 ·10−07 8.628 ·10−07

Besides the tracking error the learned signal is observed and the value to which the learn-
ing controller converges. In Figure 4.25 the feed-forward signal is plotted against the ac-
celeration for Run 15 and in Figure 4.26 the approximation of the mass (slope of uF F vs.
a) per run is shown (see Table 4.9 for the values).

At first sight no significant difference are observed in using various methods in removing
duplicated input data. A closer look at the plot uF F vs. a shows that for the methods
"random" and "average" their lines pass closer through zero than the other methods.
This means that those two for a = 0 [m/s2] a feed-forward signal is produced having a
close to zero value as well.

-5 0 5
-200

-100

0

100

200

U
F

F
 [N

]

Feed-forward vs. acceleration (Run 15)
Min
Max
First
Last
Avg
Rnd

-2 -1 0 1 2

a [m/s2] #10-6

-0.01

0

0.01

U
F

F
 [N

]

Min
Max
First
Last
Avg
Rnd

Figure 4.25: Feed-forward signal against acceleration using different methods in removing duplicates
out of the input-target mapping for run 15. Top figure shows complete signal and bottom signal is a
zoomed-in version around zero.

From the mass approximation (4.26) can be concluded that again the "average" and "ran-
dom" value show best performance. Although the differences are small, the value to
which the learning controller converges by using those two methods is closest to the
mass defined in the plant model mL = 37 [kg]. Table 4.9 shows the approximated mas
per run and no significant differences can be observed. The only fact that can be seen is
that the methods "maximum" and "first" deviate little bit more than the other methods.

Robotics and Mechatronics Elise-Ann Schrijvers

48 Learning Feed-Forward Control with the Python Scikit-Learn Library

0 5 10 15
0

10

20

30

m
as

s
[k

g]

Mass Approximation
Min
Max
First
Last
Avg
Rnd

10 11 12 13 14 15

run [-]

36.94

36.96

36.98

37

37.02

m
as

s
[k

g]

Min
Max
First
Last
Avg
Rnd

Figure 4.26: Approximated mass per run for various methods in removing duplicates

Table 4.9: Mass approximations of several runs using different methods in removing duplicates out of
the input-target mapping

Mass approximation per method [kg]
Run Minimum Maximum First Last Average Random
1 0 0 0 0 0 0
2 18.539 18.548 18.542 18.539 18.539 18.539
3 27.790 27.802 27.796 27.790 27.790 27.790
4 32.406 32.419 32.415 32.406 32.406 32.406
5 34.704 34.724 34.720 34.406 34.709 34.707
...
15 37.001 37.018 37.014 37.001 37.001 37.001

To conclude, in observations from the learned signal and the approximated masses is
found that both "average" and "random" perform best. From the tracking error the "av-
erage" method is recommend even though it does not show lowest tracking errors at the
minima and maxima. It does show the closest to zero tracking error at the no movement
segments and therefor this method will be used from now on.

2. Sorted input data (ascending order)
The input-target mapping is "zipped" together before the function sorted is used to
sort both in ascending order. The additional "zipping" action is performed to make sure
that during the sorting process the indices’s of both arrays remain paired.

3. Input matched to knotvector definition
The moment a motion pattern is supplied that does not spread out its input-target data
along the whole range of the knotvector the function interpolate.splrep throws
an error. In between two consecutive knots an input-target set must be available such
that the Schoenberg-Whitney condition is satisfied.

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 49

Assume for instance the knotvector t = [−2,−1,0,1,2] and an obtained input-target set
a,ut ar g et = [−1.2,−0.9,1.6]. An error is thrown due to the lack of a data point in between
t = 0 and t = 1. To overcome this error the input-target mapping will be manipulated,
referring to this as the method "Manipulate input-target mapping". In order to explain
this method a multiple run simulation experiment is assumed.

Manipulate input-target mapping
This method adapts the input-target mapping by adding data points. Before Run 1 starts
an input-target mapping is created such that in between two consecutive knots (halfway)
a data point is created according to:
a[i] = t [i+1]−t [i]

2
ut ar g et = output of interpolate.splev

For data captured in Run 2 and further, data that is collected within a section of two
consecutive knots will overwrite the data previously there (the initially created data or
data obtained in a previous run). The same is done for data located at exactly a knot
point, the previous data will be overwritten by the current data. This is illustrated in
Figure 4.27 for Run 0 (initializing data set, assumed no previous data present such that
each added data points has zero target value), Run 1 and Run 2.

run 0

run 1

run 0+1

run 0+1

run 2

run 0+1+2

knot
inserted data point (x,0)
data point run 1
data point run 2

Figure 4.27: Manipulate input-target mapping to match to the defined knotvector

Besides the requirements from splrep some additional data processing is performed. The
value of the target data is compared to the lower input and upper input parameters set
for the B-spline network. A data point (a,ut ar g et) for which the ut ar g et < lower Input
or ut ar g et > upper Input are removed out of the data set, as those will never have a
positive influence on the function approximation. This is carried out by the function
matchInputToParameters().

Robotics and Mechatronics Elise-Ann Schrijvers

50 Learning Feed-Forward Control with the Python Scikit-Learn Library

Compared to the time-indexed Python implementation some functionality is added, such as
that the user is now able to choose what task the learning controller has to perform. For more
detail about the implementation (five stage communication structure and list of executed func-
tions per task) see Appendix C.

4.2.3 Simulations

The abilities of the Python implementation of the B-spline network for a 1-dimensional state-
indexed LFFC is performed in this section. A multiple run simulation experiment (25 runs) is
set-up using the model shown in Figure 4.22. The learning controller will start learning from
zero initial knowledge (Task = 1) and will try to learn mass mL of the plant.

The performance is checked by observing the tracking error, the learned signal and the conver-
gence of the learning controller. The reference signal used for this is the partial cubic motion
having a maximum acceleration of 4.5 [m/s2] and has a for- and backward range of motion of
0.5 [m], see Figure 4.20.

A summary of the B-spline network parameter is given in Table 4.10. In the previous section the
method chosen to remove duplicates was "average" and the method "Manipulate input data"
is used to match the input to the knotvector.

Table 4.10: B-spline parameter settings of Python implementation for state-indexed LFFC

Option setting
Input (lower) -5 [m/s2]
Input (upper) 5 [m/s2]
Learning rate 0.5 [-]
Spline order 2 (= degree 1) [-]
Evaluation order 0 [-]
Number of splines 3 [-]

The absolute maximum and mean tracking error are shown in Figure 4.28, together with the
reference signals x, v and a for Run 1 (no learning applied) and Run 25. The absolute maximum
value has dropped by a factor 50 from 4.500 · 10−05 towards 8.69 · 10−07. The absolute means
has dropped by a factor 75, see Table 4.11. All the errors occur at the transition points and in
between those sections the tracking error is within the range of ·10−09. The plots do not show
any strange behavior.

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
rr

or
 [m

]

#10-5 Tracking error (Run 1)

(a) Initial

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

a
[m

/s
2]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

T
ra

ck
in

g
er

ro
r

[m
]

#10-6Tracking error (Run 25)

(b) Converged

Figure 4.28: Tracking error using 3 B-splines and a learning rate of 0.5 for a 1-dimensional state-indexed
LFFC

Elise-Ann Schrijvers University of Twente

CHAPTER 4. ONE DIMENSIONAL LFFC 51

Table 4.11: Absolute mean and maximum error observed using a 1-dimensional state-indexed LFFC

Tracking error
Run Absolute maximum [m] Absolute mean [m]
1 4.500 ·10−05 1.121 ·10−05

25 8.695 ·10−07 1.466 ·10−07

The approximation of the mass, per run is shown in Figure 4.29. The value the learning con-
verges to is 37 [kg], see Table 4.12. The learning rate was set to 0.5 and within 10 runs the BSN
approximates a value that only deviates 0.07 [kg] from Run 25.

In the time-indexed LFFC a fluctuation was seen in the determination of the slope at the in-
creasing and decreasing part of the reference signal (see the marks, shown in Figure 4.16). No
fluctuation is observed in the case of the state-indexed LFFC.

0 5 10 15 20 25

Run [-]

0

5

10

15

20

25

30

35

40

M
as

s
[k

g]

Mass Convergence

Figure 4.29: Mass approximation per run of the 1-dimensional state-indexed learning controller using
a learning rate of 0.5

Table 4.12: Mass approximation after 25 runs by the 1-dimensional state-indexed LFFC

Mass approximation (Run 25)
Increasing

37.000 [kg]Decreasing
Average

The feed-forward vs. acceleration is shown in Figure 4.30 for Run 25, the slope represents the
approximated mass by the learning controller. As the time-indexed LFFC showed a time-delay
this cannot be observed for the state-indexed LFFC. This means that for the same acceleration
value supplied to the BSN the approximator evaluates equal output and returns the same uF F

signal.

Robotics and Mechatronics Elise-Ann Schrijvers

52 Learning Feed-Forward Control with the Python Scikit-Learn Library

-5 0 5

a [m/s2]

-200

-150

-100

-50

0

50

100

150

200

U
F

F
 [N

]
Feed-forward vs. acceleration (Run 25)

(a)

-5 0 5

a [m/s2] #10-4

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

U
F

F
 [N

]

Feed-forward vs. acceleration (Run 25)

(b)

Figure 4.30: Feed-forward signal plotted against acceleration a) complete input range and b) zoomed in
around zero ("*" marks origin)

By zooming in around zero in the plot of Run 25, it is observed that the approximation does not
pass exactly through zero. Although, its deviation is small: for a = 0 [m/s2] uF F = 0.014 [N], see
Figure 4.30b).

4.2.4 Conclusion

The state-indexed LFFC showed improved performance the moment the learning controller
was converged. Within the first 10 runs the controller can be said to converge as the difference
between Run 25 and Run 10 is only 0.07 [kg]. Compared to a control system without an LFFC
the absolute maximum tracking error has dropped by a factor 50. Furthermore is the learning
controller able to output the same uF F signal the moment an acceleration is supplied to the
BSN multiple times (this was not the case in the time-indexed LFFC).

Elise-Ann Schrijvers University of Twente

53

5 Two Dimensional LFFC

The control systems described in Chapter 4 all used ideal linear motor models. Unfortu-
nately, mechatronic motion systems in the real world are influence by more than one factor.
In this chapter a 2-dimensional (2D) state-indexed LFFC is designed and implemented using
the Python Scikit-learn library. The learning controller consists of a B-spline network as its
function approximator and its tasks is to learn the behaviour of the plant caused by the inertia
of the mass and the position dependent cogging.

The implementation of a 2-dimensional LFFC can be done by the so called parsimonious LFFC,
T.J.A.de Vries et al. (2001), de Kruif and de Vries (2000) (one-dimensional BSN) or by using
multidimensional learning controllers (two-dimensional BSN). The difference between both
is found in the way the training of the individual learning controllers takes place. The one-
dimensional method learns the influencing factors independent of each other while the two-
dimensional method tries to learn both factors at the same time.

Along with the two-dimensional method comes the curse of dimensionality, which is not bene-
ficial. The two-dimensional BSN is only treated by describing its working principle and what is
needed to implement it in Python. More research has to be done on this method and especially
in how it operates and how it performs during simulations.

5.1 Parsimonious LFFC

In this section the 2-dimensional state-indexed LFFC is designed and implemented according
to the structure shown in Figure 5.1. The feed-forward part consists of two 1-dimensional BSNs,
supplied to each BSN is one input.

Figure 5.1: Structure of a 2-dimensional state-indexed LFFC (2x 1D-BSN)

Each input is supplied to its own BSN and will returns their own output. Both outputs are added
up and fed into the control system just before the plant input:

uF F = uF F x +uF F a (5.1)

with,
uF F total feed-forward signal [N]
uF F x feed-forward signal according to position BSN [N]
uF F a feed-forward signal according to acceleration BSN [N]

The task that each BSN has to learn is derived from the plant model used, see Figure 5.2. The
phenomena included in the model are the inertia of the mass and the position dependent cog-
ging.

Robotics and Mechatronics Elise-Ann Schrijvers

54 Learning Feed-Forward Control with the Python Scikit-Learn Library

Figure 5.2: Non-ideal plant model including the inertia of the mass and cogging

5.1.1 Design

The 2-dimensional state-indexed LFFC uses two single dimensional B-spline networks. Both
networks use their own set of parameters, depending on the influence of the plant to learn. By
following the five stage step-by-step plan (used in Chapter 4 as well) the upper and lower input
values, the learning rate, the number/distribution of B-splines and the degree of the splines are
determined for both networks.

Step 1: Input selection of the BSN
Acceleration BSN: In order to learn the inertia of the mass the learning controller is supplied
with the reference acceleration (see Section 4.2.1).

Position BSN: The phenomena cogging is position dependent and therefor it is appropriate to
select the reference position as the input for this BSN.

Step 2: Selection of the B-spline order
As was used before, first degree (second order) B-splines will be used in both BSNs. This type
of B-splines enable smooth enough function approximation while having the computational
time minimized.

Step 3: Selection of the BSN trainings order and trainings motion
The largest influence is caused by the inertia of the mass and is therefor chosen to be learned
first. The trainings motions must be selected in such a way that one BSN only observes the
dominant behaviour that has to be learned by that BSN. The influence of the other BSN is min-
imized.

After the acceleration BSN has converged, this knowledge is used to let the position BSN con-
verge. The partial cubic motion is used as a trainings motion for both BSNs (using different
parameters).

Acceleration BSN: Dominant behaviour caused by the inertia can be achieved by supplying a
reference motion with large accelerations. To minimize the effect of the cogging the motion is
repeated five times, by this the effect of cogging is more likely to average out. The motion used
is shown in Figure 5.3 in which the maximum acceleration is set to 4.5 [m/s2] and the range of
the forward (and backward) motions is 0.5 [m].

Elise-Ann Schrijvers University of Twente

CHAPTER 5. TWO DIMENSIONAL LFFC 55

0 2 4 6 8 10 12 14 16 18
0

0.5

x
[m

]

Reference signals

0 2 4 6 8 10 12 14 16 18

-1

0

1

v
[m

/s
]

0 2 4 6 8 10 12 14 16 18

t [s]

-5

0

5

a
[m

/s
2]

Figure 5.3: Trainings motion used to learn the mass of the plant (acceleration BSN)

Even better performance can be achieved if the parameters of the reference motion supplied
will vary randomly. Such as the jerk time, start- and end-time of the motion and the maximum
accelerations. Though, this option is not applied to the simulations that follow.

Position BSN: To minimize the influence of the acceleration and make the influence of the
cogging dominant a motion must be selected having a low acceleration and a low velocity. The
reference motion used is shown in Figure 5.4 in which the maximum accelerations is set to 0.03
0[m/s2] and the velocity to 0.029 [m/s]. The motion is performed along the whole range onto
which the cogging is defined, i.e. from 0 to 0.5 [m].

0 5 10 15 20 25 30 35 40
0

0.5

x
[m

]

Reference signal

0 5 10 15 20 25 30 35 40

-0.02

0

0.02

v
[m

/s
]

0 5 10 15 20 25 30 35 40

t [s]

-0.04

-0.02

0

0.02

0.04

a
[m

/s
2]

Figure 5.4: Trainings motion used to learn the influence of cogging (position BSN)

To diminish the influence of the acceleration, it is recommended to let some of the parameters
vary randomly (for instance the maximum acceleration and velocity). This suggestion is not
implemented in the simulations that follow.

Robotics and Mechatronics Elise-Ann Schrijvers

56 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table 5.1: Trainings signal parameters 2-dimensional state-indexed LFFC for the acceleration (learn A)
and position (learn X) BSNs

Parameter Value learn A Value learn X Unit Description
Tr i se 0.786 19.008 s Rise time
Tst ar t 1.000 2.000 s Start time
Tstop 1.786 21.008 s Stop time
Tr etur n 2.000 24.000 s Return time
Tend 2.786 43.008 s End time
Tp 3.786 44.008 s Period of signal
Ttot al 18.93 44.008 s Total motion time
jmax 57.276 0.040 m/s3 Maximum jerk
amax 4.500 0.0304 m/s2 Maximum acceleration
vmax 1.061 0.0289 m/s Maximum velocity
xmax 0.500 0.500 m Maximum displacement (= stroke)
CV 20 82 % Percentage Constant Velocity
C A 20 1 % Percentage Constant Acceleration

In Table 5.1 an overview is given of the parameter settings for the reference motions used for
both learning controllers.

Step 4: Selection of the B-spline distribution and the number of splines
Acceleration BSN: The learning controller is able to approximate the mass by using three uni-
formly distributed B-splines defined over the input domain of the acceleration. The splines are
located at -5 (lowerInput), 0 and 5 (upperInput) [m/s2].

Position BSN: The number of B-splines required to learn the cogging is determined from the
input-output mapping of the position dependent cogging, see Figure 5.5.

0 0.1 0.2 0.3 0.4 0.5

Position [m]

-15

-10

-5

0

5

10

15

F
C
 [N

]

Cogging

Figure 5.5: Input-output mapping of the position dependent cogging

The mapping of de cogging shows 32 period and is defined along the positions input domain
from 0 to 0.5 [m]. To be able to represent the cogging accurately, it is chosen to have about 15
B-splines per period. This can be achieved by selecting 500 B-splines.

Step 5: Selection of learning rate
Mediate learning rates γ = 0.5 are used for the acceleration and the position learning con-
trollers.

Elise-Ann Schrijvers University of Twente

CHAPTER 5. TWO DIMENSIONAL LFFC 57

5.1.2 Implementation

The implementation of the 2-dimensional state-indexed LFFC still makes use of the Python
Scikit-learn library and the model used in the simulations is shown in Figure 5.6. The model
now includes the position dependent cogging as well.

Plant model: moving mass
 with cogging

x

x

v

v
a

a

y

y

uFB

uFF

u

uFB
uFF

x

cogging

PD
SP

MV
s

FBcontroller

K

FFcontroller

ZOH

Hold

K
1

massMotionProfile

Sample1

Sample2

Sample3

∫

v

∫

x

Figure 5.6: 20-sim model used for the 2-dimensional state-indexed LFFC

Within the model the block "FFcontroller" is included that performs the function approxima-
tion of the learning controllers and captures the simulation data. Inputs to the block are the
signals x, v, a,uF B and y and the output is the signal returned by the function approximator,
uF F . The system is discrete and each signal is therefor sampled each 0.001 [s]. A network con-
nection is set-up between 20-sim and Python which enables both programs to communicate
(send data back and forth), see Section 3.3.

As was the case for the 1-dimensional LFFC’s the function approximation is performed by a B-
spline network. The Python functions interpolate.splrep and interpolate.splev
are used to fulfill the function approximation (generate the 3-tuple (t,c,k)) and to evaluate
the output of the network (generate the output uF F).

The same data processing strategies are used for the acceleration learning controller as was
used for the 1D state-indexed LFFC. The input-target mapping is made unique by using the
method "average". This method finds the averaged value over the set of duplicated input-
target values. The data is sorted and the method "manipulate input-target mapping" is used to
match the input-target mapping to the user defined knotvector t . The latter makes sure that in
between two consecutive knots an input data point is present.

Furthermore, the input data is checked on values that fall outside the user defined lower and
upper input values. The input-target data points that are outside the input domain are re-
moved.

The same data processing procedure is applied to the position learning controller, plus an ad-
ditional one. As it is known that the reference position should always be positive, the input
data is checked on negative values. The input-target point that has a negative input value is
removed out of the data set.

In order to let both learning controllers learn independently, the tasks are first set to 1 and
0. The acceleration controller will only be used and start its learning process from zero initial
knowledge. After that, the tasks are set to 2 and 1 in which the acceleration controller applies its
converged knowledge only and the position controller starts learning from zero initial knowl-
edge.

The 20-sim simulation process can be described according to the five stage communication
structure from Section 3.3.3. See Appendix D for more details about the implementation plus
an overview of the tasks executed per learning controller.

Robotics and Mechatronics Elise-Ann Schrijvers

58 Learning Feed-Forward Control with the Python Scikit-Learn Library

5.1.3 Simulations

The abilities of the Python implementation of the B-spline network for a 2-dimensional state-
indexed LFFC are observed in this section. The feed-forward part consists of two 1-dimensional
BSNs. Both BSNs are brought to convergence by performing a multiple run simulation experi-
ment (25 runs) twice, using the 20-sim model shown in Figure 5.6. The performance is checked
by observing the tracking error, the learned signals and the convergences of the learning con-
trollers.

First the acceleration learning controller (LC) is brought to convergence, by setting its task to
1. During this simulation the position learning controller is disabled (task = 0). After that, a
new simulation is started in order to let the position learning controller converge. Therefor, the
task of the acceleration LC is set to 2 and the position LC to 1. The position learning controller
will start learning from zero initial knowledge, while at the same time the acceleration learning
controllers applies its converged knowledge about mass mL .

Different motion profile is supplied to each BSN (see Figure 5.3 and 5.4) and the parameters of
the network differ as well. For a summary of the parameters see Table 5.2.

Table 5.2: B-spline parameter settings of Python implementation for a 2-dimensional state-indexed
LFFC

Option setting learn A setting learn X
Input (lower) -5 [m/s2] 0 [m]
Input (upper) 5 [m/s2] 0.5 [m]
Learning rate 0.5 [-] 0.5 [-]
Spline order 2 (= degree 1) [-] 2 (= degree 1) [-]
Evaluation order 0 [-] 0 [-]
Number of splines 3 [-] 500 [-]

In Figure 5.7 the tracking errors are shown (together with the reference signals applied to the
BSN). The column to the left shows the errors that correspond to the acceleration learning con-
troller. The error that corresponds to Run 1 shows the error the moment no feed-forward is
supplied yet. The influence of the inertia of the mass and the cogging can both be distinguish.
The influence of the cogging is mainly observed at the segments that represent the constant
velocity, but the influence also seems to present at the constant acceleration part.

Elise-Ann Schrijvers University of Twente

CHAPTER 5. TWO DIMENSIONAL LFFC 59

0 0.5 1 1.5 2 2.5 3 3.5

Time [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

E
rr

or
 [m

]

#10-5 Tracking error (Run 1)

(a) learn A (Initial)

0 5 10 15 20 25 30 35 40

Time [s]

-6

-5

-4

-3

-2

-1

0

1

2

3

E
rr

or
 [m

]

#10-6 Tracking error (Run 1)

(b) apply A, learn X (Initial)

0 0.5 1 1.5 2 2.5 3 3.5

t [s]

-5

-4

-3

-2

-1

0

1

2

3

4

5

a
[m

/s
2]

-5

-4

-3

-2

-1

0

1

2

3

4

T
ra

ck
in

g
er

ro
r

[m
]

#10-6Tracking error (Run 25)

(c) learn A (Converged)

0 5 10 15 20 25 30 35 40

t [s]

0

0.1

0.2

0.3

0.4

0.5

0.6

x
[m

]

-8

-6

-4

-2

0

2

4

6

8

T
ra

ck
in

g
er

ro
r

[m
]

#10-8Tracking error (Run 25)

(d) apply A, learn X (Converged)

Figure 5.7: Tracking error of Run 1 (initial) and Run 25 (converged). Column left: converge acceleration
BSN, don’t use position BSN. Column Right: converge position BSN, apply converged acceleration BSN

After the acceleration learning controller has converged the absolute maximum error is re-
duced from 4.833 · 10−05 towards 4.600 · 10−06. The effect of the inertia can no longer be ob-
served for Run 25. The approximation towards this controller converges is 36.3 [kg] (see Table
5.3). As a result of the cogging, this value is 0.7 [kg] lower than in the case without cogging.
From run 10 on it can be said that the acceleration controller has converged, at that point the
mass approximation is 36.2 [kg]. Figure 5.8 shows the mass approximation per run.

0 5 10 15 20 25

Run [-]

0

5

10

15

20

25

30

35

40

M
as

s
[k

g]

Mass Convergence

Figure 5.8: Mass approximation per run of the 2-dimensional learning controller

Robotics and Mechatronics Elise-Ann Schrijvers

60 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table 5.3: Mass approximation after 25 runs

Mass approximation (Run 25)
learn A

Increasing
36.254 [kg]Decreasing

Average

The position learning controller is now brought to convergence, by using the knowledge from
the converged acceleration controller. The tracking error that corresponds to the learning pro-
cess of this controller is shown in the left column of Figure 5.7. In Run 1 the error is shown that
is observed after applying the knowledge of the converged acceleration LC and the not yet used
position learning controller. The influence of cogging is clearly visible, while the influence of
acceleration not.

Run 25 shows the converged position learning controller. The tracking error is reduced from
5.009·10−06 towards 7.990·10−08, which is dropped by a factor 60. The influence of cogging can
still be observed as the shape is similar to the one observed for Run 1. Increasing the number of
B-splines, might result in a lower tracking error but may also introduce some instable behavior.

An overview of the tracking error, after converging each BSN is listed in Table 5.4.

Table 5.4: Absolute mean and maximum error observed for the 2-dimensional LFFC, after convergence
of both 1D-BSN

learn A apply A learn X
Error Run 1 [m] Run 25 [m] Run 1 [m] Run 25 [m]
Abs. maximum 4.833 ·10−05 4.600 ·10−06 5.009 ·10−06 7.990 ·10−08

Abs. mean 1.191 ·10−05 7.814 ·10−07 1.551 ·10−06 2.277 ·10−08

To see if both controllers converge to what we expected the learned signal of the corresponding
BSN is plotted against its input signal. The acceleration BSN has to learn the mass of the plant
and therefor should show a straight line in which the slope represents the approximation of the
mass. The position BSN should have learned the cogging and therefor should show a signal that
is similar to the input-output mapping of the cogging. The signals learned by both controllers
are shown in Figure 5.9.

-5 0 5

a [m/s2]

-200

-150

-100

-50

0

50

100

150

200

U
F

F
 [N

]

Feed-forward vs. acceleration (Run 25)

(a) converged A

0 0.1 0.2 0.3 0.4 0.5

x [m]

-20

-15

-10

-5

0

5

10

U
F

F
 [N

]

Feed-forward vs. position (Run 25)

(b) converged X

Figure 5.9: Learned signal by the acceleration BSN (after convergence of A) and position BSN (after
convergence of X, using converged data of A)

Elise-Ann Schrijvers University of Twente

CHAPTER 5. TWO DIMENSIONAL LFFC 61

Both learned signals are according to the approximations. The slope of the figure to the left
shows the approximation for mass mL and the figure to the right shows a signal similar to the
cogging (32 periods are visible). That the converged acceleration learning controller has been
influenced by the cogging can be observed by taking a close look at the learned signal zoomed-
in around zero, see Figure 5.10.

In a completely ideal situation the line would passes exactly through the origin (0,0), such that
for a = 0 [m/s2] a zero value for uF F [N] is obtained. Actually, this is not the case. For a = 0
[m/s2] a feed-forward signals if observed of uF F = 4.580 [N]. In Chapter 4 similar result was
shown and it was obtained that the feed-forward signal for zero acceleration was 0.014 [N].

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

a [m/s2]

-4

-2

0

2

4

6

8

10

12

U
F

F
 [N

]

Feed-forward vs. acceleration (Run 25)

Figure 5.10: Feed-forward signal plotted against acceleration zoomed-in around zero, "*" marks origin
(0,0), after converged A

The position learning controller was able to reduce the tracking error and therewith to increase
the performance of the system. But, it was not able to perfectly learn the influence. When
comparing the learned version of the cogging with the original cogging (Figure 5.5) it can be
seen that the maximum amplitude is about 6 [N] too low.

5.1.4 Conclusion

The simulations showed that the 2-dimensional state-indexed LFFC, using two 1-dimensional
B-spline Networks showed good performance. By training both BSNs individually the selection
for a proper trainings signal was realized. First the acceleration learning controller was brought
to convergence by a trainings signal with large acceleration in order to make the influence of
the plant by its inertia dominant. After that, the position controller was converged by supplying
a trainings signal with low acceleration and low velocity such that the influence of the inertia
became low.

The acceleration learning controller was able to approximate mass mL by deviating 0.5 [kg].
The positing learning controller converged and improved the performance of the control sys-
tem, even though the obtained maximum amplitude of the input-output mapping of the cog-
ging deviates 6 [N] with the cogging signal defined in the plant model. The controlled system
that uses both converged learning controllers showed a drop in absolute maximum tracking
error from initially 4.833 ·10−05 [m] towards 7.990 ·10−08 [m].

The performance of the system can be improved (lowering the tracking error and converged
learning signals closer to the defined signals) by applying random inputs to both learning con-
trollers (explained in Section 5.1.1).

Robotics and Mechatronics Elise-Ann Schrijvers

62 Learning Feed-Forward Control with the Python Scikit-Learn Library

5.2 Multidimensional BSN

In the previous section a 2-dimensional LFFC was shown using two 1-dimensional B-spline
networks. In this section a preview is given of a 2-dimensional LFFC using one 2-dimensional
BSN. This section is short and treats only some aspects of the LFFC (due to a lack in time for
the thesis).

The BSN has two inputs and one output. The inputs supplied are the position x and the accel-
eration a. The structure of such an LFFC is shown in Figure 5.11.

Figure 5.11: Structure of a 2-dimensional state-indexed LFFC (1x 2D-BSN)

The influences of the plant onto the control system has to be learned by the BSN. The influences
are the inertia of mass mL and the position dependent cogging. The plant model is equal to the
one used for the 2x 1-dimensional BSN structure and is shown once again in Figure 5.12 .

Figure 5.12: Non-ideal plant model including the inertia of the mass and cogging

5.2.1 Design

The design of a 2-dimensional BSN can be done according the same step-by-step plan as was
used before. Though, some special attention needs to be paid to the curse of dimensionality.

Step 1: Input selection of the BSN
The inputs chosen are equal to the 2x 1-dimensional BSN:
Acceleration BSN: reference acceleration.

Position BSN: reference position.

Step 2: Selection of the B-spline order
First degree B-splines (second order) are used, as was used for the 2x 1-dimensional BSN.

Step 3: Selection of the BSN trainings order and trainings motion
Actually, for the 1x 2-dimensional BSN there is no specific training order as only one B-spline
network has to learn both influences of the plant. In this part of the design stage the curse
of dimensionality already starts to get involved. In order to properly train the BSN multiple
trainings signals must be presented. The knots of inputs x and a, within the knotvectors t x
and t a form together with the network coefficients c a surface: f (x, a) = c. A properly trained
BSN has observed at each possible point of the surface x[i], a[j], for which i ∈ [t x[0], t [i] and
j ∈ [t a[0], t a[j]] at least one (preferably more) time a trainings signal.

Elise-Ann Schrijvers University of Twente

CHAPTER 5. TWO DIMENSIONAL LFFC 63

It can thus be seen that it can be time consuming and perhaps challenging to come up with
trainings signals that present each spot. The total number of spots to be reached is: i ∗ j , see
Figure 5.13.

ta

tx
0 1 2 3

4

3

2

1

0

ta

tx
0 1 2 3

4

3

2

1

0

unadapted coefficient
signal 1 (s1)
signal 2 (s2)
adapted coefficient by s1
adapted coefficient by s2

Figure 5.13: 2-dimensional surface representation of f (x, a) = c for which x and a the knots of the
position and acceleration learning controller and c the corresponding coefficient (weight). Left figure:
untrained BSN and right figure: BSN trained by two signals

Step 4: Selection of the B-spline distribution and the number of splines
The B-spline distribution and the number of B-splines is kept equal to the 2x 1D-BSN:
Acceleration BSN: 3 uniformly distributed B-splines, located at -5, 0 and 5 [m/2].

Position BSN: 500 uniformly distributed B-splines along the range from 0 to 0.5 [m]

Step 5: Selection of learning rate
Mediate learning rate was used for the 2x 1D-BSN and so will be used for the 1x 2D-BSN: γ= 0.5.

An extra remark is made about the curse of dimensionality. The number of B-splines of the
inputs are selected to be t x = 500 and t a = 3 the total number of basis functions required is:

N = NA ·NX

= 3 ·500 = 1500
(5.2)

Compared to the 2x 1D-BSN, which used only 3+ 500 = 503 splines this is quite a difference.
The larger number of B-splines the more memory is required from an embedded computer.
This can be problematic in some cases, especially if the number of B-splines is required to be
even more (for instance as more complex influences needs to be represented by the BSN).

The amount of computer memory required is not the only tricky feature of a 2-dimensional
(and multi-dimensional) BSN. The generalizing ability of such a BSN is poor. This means that
the BSN is not able to produce a feed-forward signal for test signals that were quite similar (but
not exactly equal!) to the signals supplied during the training.

Assume a 2-dimensional knot space of the BSN with t x = 4 and t a = 5. The BSN is partly trained
by applying two trainings signals. The total number of coefficients to be trained are t x∗t a = 20.
But, the trainings signals only adapted 10 knots, see Figure 5.14.

Supplied to the BSN is now a test signal. As can be see is that only part of the test signal crosses
to the adapted knots during the training. This means that only at those spots ((0,0), (0,2) and
(2,3)) the BSN will output a value that has been subjected to the learning of the BSN.

Robotics and Mechatronics Elise-Ann Schrijvers

64 Learning Feed-Forward Control with the Python Scikit-Learn Library

ta

tx
0 1 2 3

4

3

2

1

0

unadapted coefficient
signal 1 (s1)
signal 2 (s2)
signal 3 (s3)
adapted coefficient by s1
adapted coefficient by s2

Figure 5.14: Poor generalization of the 1x 2D-BSN

5.2.2 Implementation

This section about the implementation of the 1x 2D-BSN is incomplete and more research has
to be done about this topic. The 20-sim model that can be used can be kept equal to the one
shown in Figure 5.6 and the same data is send over the network connection between 20-sim
and Python (x, v, a,uF B and y). The block "FFController" returns the feed-forward signal uF F .

At the Python side the function interpolate.bisplrep and interpolate.bisplev
can be used. The function approximation is performed by splrep which presents a bivariate
B-spline of a surface c = f (x, a). The function is supplied with the input arrays x, a and the
target signal ut ar g et . Knotvectors can be specified for both domains by supplying t x and t a,
furthermore the degree of the B-splines needs to be given. Returned is a 5-tuple containing the
knotvectors, the coefficients c and the degree of the B-splines for kx and ka.

The output (signal uF F) of the BSN is evaluated by bisplev. The evaluation is formed by the
cross-product between both rank-1 arrays x and a. Supplied to this function are the arrays x
and a and the the 5-tuple [tx,ta,c,kx,ka] returned from bisplrep.

Restrictions are observed for interpolate.bisplrep:
→ inputs must be rank-1 arrays
→ lengths of rank-1 arrays must be equal: len(x) = l en(a) = len(ut ar g et)
→ for the degree of the B-splines must hold: 1 ≥ kx ≤ 5 and 1 ≥ ka ≤ 5
→ a restriction is set for maximum number of data points m

(the exact number requires more in depth research)

So far, one restriction is found for interpolate.bisplev:
→ inputs arrays must be rank-1 arrays

Further research is required in order to set-up a good simulations experiment and to see how
well a 2D-BSN is applicable.

Elise-Ann Schrijvers University of Twente

65

6 Conclusion

6.1 Conclusion

In this thesis, a network layer that uses ZeroMQ protocols and Google protocol Buffers for (de-)
serialization was designed and tested. Therefor a network layer was added in between the feed-
forward part and the general feedback control system. The developed network layer enables
the implementation of an LFFC by means of the Python Scikit-learn library in both simulation
and experiments.

The comparison between a time-indexed LFFC using 20-sim and Python showed no significant
difference in function approximation performances for the function to which the learning con-
trollers converge and the rate at which convergence is observed by using equal learning rates.
The absolute maximum tracking error is lower for 20-sim than Python, although the differences
are small. A phenomena what appeared in Python only is a time delay, which causes to have
different mass approximations for equal accelerations. Further research has to be done about
the exact cause, such that this can be resolved.

Based on the control systems performance both systems operate competitively, but the mo-
ment user-friendliness and the user’s freedom in designing learning controllers are compared
Python definitely scores better. Python enables to adjust more (and more easily) the function
approximator parameters and a multiple run simulation experiment can be executed automat-
ically.

Simulation results for the 1-dimensional state-indexed LFFC (in Python) showed improved per-
formance the moment the learning controller has converged (learning the mass). Within the
first 10 runs of the multiple run simulation experiment convergence appeared and the absolute
maximum tracking error dropped by a factor 50.

The 2-dimensional parsimonious LFFC implemented in Python performed well. First the ac-
celeration BSN was trained to compensate for the inertia, the learning controller converged to
approximating a mass of 36.5 [kg]. This is only a deviation of 0.5 [kg] from mL . By using the
converged data of the acceleration BSN the position BSN was trained to compensate for the
cogging. The learning controller was able to learn the cogging with a deviation in maximum
amplitude of 6 [N]. By including this type of LFFC a drop in maximum absolute tracking error
was obtained from 4.833 ·10−05 [m] towards 7.990 ·10−08 [m].

From the simulations, it can be concluded that the BSN library from Python for 1-dimensional
BSNs is promising in its use. A conclusion cannot be drawn about the 2-dimensional BSN
library, as more research is required about the implementation of this. What can be said is that
using a multidimensional BSN is not preferred as the curse of dimensionality will play a role.

The Scikit-learn library is useful in performing the function approximator (B-spline Network)
within the learning controllers of the control systems. This type of approximation combines
fast and accurate learning with small computational cost, Brown and Harris (1994). Besides the
BSN function approximator, other function approximators present in the Scikit-learn toolbox
can be readily applied as well. Those should be considered especially for situations in which
multidimensional approximation is needed.

6.2 Future Work

Based on the conclusion and the ambiguities observed during the thesis, the following actions
can be performed in future work:

Robotics and Mechatronics Elise-Ann Schrijvers

66 Learning Feed-Forward Control with the Python Scikit-Learn Library

• Fix the bug that causes the 20-sim to crash as soon as the simulation is completed (occurs
in simulations in which Python performs the function approximation).

• Perform research about the 2-dimensional state-indexed LFFC that uses one 2D B-spline
network and verify its applicability by simulations.

• Re-develop the function approximation part of Python (the functions splrep and
bisplrep) such that it is suitable for use in real-time applications.

• Evaluate the applicability of the 1- and 2- dimensional state-indexed LFFCs when used
in a real-world set-up.

• Extend the Python implementation such that function approximators other than Python
can also be used.

Elise-Ann Schrijvers University of Twente

67

A Partial Cubic Motion Profile (20-sim)

In Figure A.1 the parameters involved in the definition of a partial cubic reference signal (for
position x, velocity v and acceleration a) are shown.

(a) (b)

Figure A.1: Partial cubic motion, user window 20-sim

Robotics and Mechatronics Elise-Ann Schrijvers

68 Learning Feed-Forward Control with the Python Scikit-Learn Library

B More about B-splines

B.1 Properties of B-spline Basis Functions

The set of basis functions, Ni ,p (u) that is described by Equations 2.5 and 2.6 have the following
properties:

• polynomial in u having degree p

• non-negative for all i , p, and u (non-negativity)

• non-zero on the half open interval [ui ,ui+p+1) (local support)

• at most p +1 degree p basis functions are non-zero in the knot span defined on the half
open interval [ui ,ui+1): Ni−p,p (u), Ni−p+1,p (u), Ni−p+2,p (u), ..., Ni ,p (u)

• for m+1 knots, basis functions of degree p and n+1 basis functions, the following equa-
tion is satisfied: m = n +p +1

• constructed from parabolas of degree p, and each parabola is connected at the knots
[ui ,ui+1) (composite curve)

• is C p−k continuous for a knot having multiplicity k

Multiple knots will have the following impact on the computation of the basis functions:

1. Knots with multiplicity k will affect k−1 basis functions. For each increase in multiplicity
a knot span will disappear, so for k = 1 → one span, k = 2 → two spans disappear, and so
on.

2. Knots with multiplicity k have at most p −k −1 non-zero basis functions. For each in-
crease in multiplicity of a knot will reduce the number of non-zero basis functions of that
knot

B.2 Properties of B-spline Curves

In defining the properties of B-spline curves it is assumed that B-spline curve C(u) is of de-
gree p, is defined by n + 1 control points and the curve domain is defined by knotvector
U = [u0,u1, ...,um]. The curve is of the clamped type which means that u0 = u1 = ... = up and
um−p ,um−p+1 = ... = um . The most important properties are described below:

• clamped C(u) is a piecewise curve and on each segment a curve of degree p exists. As a
result, it is possible to design more complex curves while using lower polynomial degrees
(when compared to Bézier curves). The lower the degree the closer a curve can follow
its control line, in general. In Figure B.1 the curve fitting is shown for B-splines having
degree 7, 5 and 3, while using the same control polyline.

Elise-Ann Schrijvers University of Twente

APPENDIX B. MORE ABOUT B-SPLINES 69

(a) (b) (c)

Figure B.1: B-spline curve and its control polyline for: a) degree 7, b) degree 5 and c) degree 3

• m = n+p+1 must be satisfied, it implies that each control point requires a basis function

• clamped C(u) passes through the control endpoints P0 and P1. The coefficient of con-
trol point P0 is the basis function N0,p (u) and is non-zero on the half open interval
[u0,up+1). Since u0 = u1 = ...up = 0 for the clamped B-spline curve the coefficients
N0,0(u), N1,0(u), ..., Np−1,0(u) = 0 and only Np,0 is non-zero such that for u = 0 → N0,p (0) =
1 and C(0) = P(0). Similar description can be given for C(1) = P(n).

• The B-spline curve is contained in the convex hull of its control polyline (convex
Hull property). For u in knot span [ui ,ui+1) only p + 1 basis functions are non-
zero, i.e. Ni ,p (u), ..., Ni−p+1,p (u), Ni−p,p (u). C(u) is the convex hull of control points
Pi−p ,Pi−p+1, ...,Pi .

For example, assume u is in knot span [u9,u10) and the non-zero basis functions are
N9,3(u), N8,3(u), N7,3(u) and N6,3(u) having corresponding control points P9,P8,P7 and
P6. In Figure B.2 it is shown that C(u) lies in the convex hull of its control points (shaded
area).

Figure B.2: Convex Hull property of B-spline curve

• A curve can be locally modified without changing its global shape, see Figure B.3 in which
control point P2 is moved (local modification scheme).

Robotics and Mechatronics Elise-Ann Schrijvers

70 Learning Feed-Forward Control with the Python Scikit-Learn Library

Figure B.3: Local modification property of B-spline curves, right figures shows the effects of moving
control point P2

• Clamped C(u) is C p−k continuous at a knot with multiplicity k. In the case C 0 the curve
passes through a control point, for C 1 the corresponding point lies on a leg. Continuities
larger than 1 are more difficult to express (or visualize) the differences.

• For a curve being in a plane, it is not possible to draw a straight line that intersects a B-
spline curve more times than that it intersects the control polyline of the curve (variation
diminishing property).

• If the degree of a B-spline is equal to n, so p = n and one less than the number of control
points, the curve is clamped p + 1 at each end, the B-spline curve reduces to a Bézier
curve: 2(p +1) = 2(n +1)

• The result of applying an affine transformation to a B-spline curve can be constructed
from the affine images of its control points (affine invariance). This way an affine trans-
formation can be applied to the B-splines control points in stead of to the curve itself.

B.2.1 Moving Control Points

The shape of a B-spline curve can be changed by moving its control points, Mtu (2017). The
change of control point Pi will only affect curve C(u) on the interval [ui ,ui+p+1). So, in moving
control point Pi to certain position Qi the curve C(u) will move in the same direction. But its
position might differ from point to point. A translation of control point Pi by v to Qi , can be
described by the sum of the original curve C(u) and a translational vector Ni ,p (u)v. This results
in the new curve D(u):

D(u) = C(u)+Ni ,p (u)v (B.1)

To illustrate the movement of a control point and its effect an example is given. In Figure B.4
(left) a B-spline curve of degree p = 4 is shown. This curve is defined by 13 control points
(n = 12) and 18 knots m = 17. The knots are simple and the curve is clamped, i.e. u0 = u1 =
u2 = u3 = u4 = 0 and u13 = u14 = u15 = u16 = u17 = 1. The remainder are 9 knots spans defining
9 segments as shown in Table B.1.

Elise-Ann Schrijvers University of Twente

APPENDIX B. MORE ABOUT B-SPLINES 71

Table B.1: Knot span interval for segments 1 till 9

span segment
[u4,u5) 1
[u5,u6) 2
[u6,u7) 3
[u7,u8) 4
[u8,u9) 5
[u9,u10) 6
[u10,u11) 7
[u11,u12) 8
[u12,u13) 9

Moving control point P6 downwards (see Figure B.4 right) results in a movement of the curve
in the same direction. The coefficient of P6 is N6,4(u) and only the non-zero interval [u6,u11) of
the curve will be affected, i.e. only segments 3, 4, 5, 6 and 7.

Figure B.4: Moving a control points and its influence on the B-spline curve

B.2.2 Modifying Knots

A B-spline curve consists of several curves segments linked together. Each segment is defined
by a knot span. By changing the position of on or more knots, the knot span of the correspond-
ing curve segment changes and therewith the shape of the curve.

In order to modify the shape of a curve by changing the position of knots and to guarantee the
curve change the way as expected, it is wise to create internal knots that have a multiplicity of
k. The moment the multiplicity of a knot increases the number of non-zero basis functions
decreases. For a knot having multiplicity k there are at most p −k +1 non-zero basis functions.
Keeping this property in mind, three situations can be drawn by changing the multiplicity of a
knot:

• Multiplicity: p −k
There are k +1 non-zero basis functions at the knot and the point lies within the convex
hull defined by the control points that correspond to those non-zero basis functions

• Multiplicity: k = p −1
There are two non-zero basis functions at the knot and the convex hull is a line segment

• Multiplicity: k = p
There is only one non-zero basis function at the knot and only one control point having
a non-zero coefficient. The curve passes through this point

Robotics and Mechatronics Elise-Ann Schrijvers

72 Learning Feed-Forward Control with the Python Scikit-Learn Library

C Implementation details (1D state-indexed LFFC)

The tasks make a distinction in the learning controllers feature to learn and/or to apply previ-
ously obtained knowledge.

Table C.1: Tasks the learning controller (LC) can perform

Option Learn Apply Description
Task = 0 × × LC will not be used
Task = 1 X × Learning starts from zero previous knowledge
Task = 2 × X LC only applies previous knowledge specified by user
Task = 3 X X Start learning from previous knowledge specified by user

The implementation of the 1-dimensional learning controller is explained using the five stage
communication structure between 20-sim and Pyhon (see Section 3.3.3). Compared to the
time-indexed LFFC at the start of the simulation the user input is requested to specify the files
containing the learning controller task and the B-spline parameter settings (both in .txt for-
mat).

Furthermore, the user is able to select a folder in which the simulation data will be stored. A
multiple run simulation experiment is assumed in order to explain the five stage communica-
tion structure, see Table C.2. Depending on the task some functions will or will not be executed,
in Table C.3 this is shown.

Elise-Ann Schrijvers University of Twente

APPENDIX C. IMPLEMENTATION DETAILS (1D STATE-INDEXED LFFC) 73

Table C.2: Simulation stages and its actions, for a multiple run simulation experiment using a time-
indexed LFFC

Stage 1: Initialize()
→ Set-up a network connection between 20-sim and Python
→ Set runNumber = 0 (run number in simulation)
→ User input: select .txt file containing the learning controllers task
→ User input: select folder in which simulation data will be stored
→ Create feedback folders for data storage
→ Create learning folder "acceleration" for data storage
→ User input: select .txt file containing the B-spline parameter settings
→ Read parameters selected parameter file:

lowerInput: lower value of BSN input domain
upperInput: upper value of BSN input domain
numberOfKnots: number of B-splines distributed over BSN input domain
splineDegree: degree of the B-splines
evalDegree: degree of the output evaluation
learningRate: learning rate of the BSN

→ Determine knotvector and internal knots
→ Select initial (t,c,k) file as starting knowledge
→ Create initial 3-tuple (t,c,k), with c all zeros
→ Save initial 3-tuple (t,c,k)

Stage 2: InitializeRun()
→ Increase value of runNumber by 1
→ Clear feedback arrays
→ Clear learning arrays
→ Load and store tuple (t,c,k) from the previous run

(or the initialized one, if runNumber=1)
→ Create initial data set, with data point in between two consecutive knots

Stage 3: ProcessStep()
→ Append feedback arrays: uF B , x, v, a and y
→ Append input array (a)
→ Evaluate the output value uF F [i] using interpolate.splev
→ Determine target value: ut ar g et [i] = uF F [i](pr evi ousr un)+uF B [i] ·γ
→ Append arrays: ut ar g et [i] and uF F [i] returned from interpolate.splev

Stage 4: TerminateRun()
→ Save to file feedback arrays: uF B , x, v, a and y
→ Match input to B-spline parameters
→ Compare current input-target data with data set of previous run
→ Filter duplicated data
→ Sort input-target mapping in ascending order
→ Save to file: input array (a) and feed-forward signal array uF F

→ Determine (t,c,k) for next run using interpolate.splrep
→ Store combined input data to be used as old data in next run
→ Save to file: 3-tuple (t,c,k) to be used in the next run

Stage 5: Terminate()
→ Close network connection between 20-sim and Python

Robotics and Mechatronics Elise-Ann Schrijvers

74 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table C.3: Functions executed per task of the learning controller (∗ Only for runNumber>1 else se-
lected tck file from user input is used)

initializeSim() Task 1 Task 2 Task 3 Task 4
Set-up Python and 20-sim network connection X X X X
Set runNumber=0 X X X X
User input: select .txt file containing task X X X X
Load tasks from file X X X X
User input: select data storage folder X X X X
Create feedback folders: x, v, a,uF B , y X X X X
Create learning folders: input a, feed-forward uF F × X X X
Create learning folder: tck × X × X
User input: select .txt file B-spline parameters × X X X
Load parameters from file × X X X
Determine knotvector from parameters × X × X
User input: select .dump file previous tck × × X X
Load tck from file × × X X
Create initial tck × X × ×
Save to file .dump initial tck × X × ×
initializeRun() Task 1 Task 2 Task 3 Task 4
Set runNumber+=1 X X X X
Clear feedback arrays: x, v, a,uF B , y X X X X
Clear learning arrays: i nput ,uF F pr ev ,uF F × X X X
Clear learning array: ut ar g et × X × ×
Load tck for runNumber-1 × X × ×∗

Create initial dataset matching to knotvector (only Run 1) × X × X
Evaluate target value corresponding to initial input data × X × X

processStep() Task 1 Task 2 Task 3 Task 4
Append feedback arrays: x, v, a,uF B , y X X X X
Append learning array: input a × X X X
Evaluate uF F of previous run, use splev × X X X
Determine target t ar g et = uF F pr ev +uF B ·γ × X × X
Append learning array: ut ar g et × X × X
Append learning array: uF F pr ev × X × X
Send to 20-sim uF F pr ev X X X X

terminateRun() Task 1 Task 2 Task 3 Task 4
Save feedback data to file: x, v, a,uF B , y X X X X
Match input to B-spline parameters × X × X
Compare/combine input data present and previous run × X × X
Filter duplicates from input-target mapping × X × X
Sort input-target mapping in ascending order × X × X
Save learning data to file: a and uF F × X × X
Determine tck for next run using splrep × X × X
Store combined input-target data as old (use next run) × X × X
Save learning data to file: tck × X × X

terminateSim() Task 1 Task 2 Task 3 Task 4
Terminate Python and 20-sim network connection X X X X

Elise-Ann Schrijvers University of Twente

75

D Implementation details (2D state-indexed LFFC)

Table D.1: Simulation stages and its actions, for a multiple run simulation experiment using a time-
indexed LFFC

Stage 1: Initialize()
→ Set-up a network connection between 20-sim and Python
→ Set runNumber = 0 (run number in simulation)
→ User input: select .txt file containing the learning controllers task
→ User input: select folder in which simulation data will be stored
→ Create feedback folders for data storage
→ Create learning folder "acceleration" for data storage
→ User input: select .txt file containing the B-spline parameter settings
→ Read parameters selected parameter file:

lowerInput: lower value of BSN input domain
upperInput: upper value of BSN input domain
numberOfKnots: number of B-splines distributed over BSN input domain
splineDegree: degree of the B-splines
evalDegree: degree of the output evaluation
learningRate: learning rate of the BSN

→ Determine knotvector and internal knots
→ Select initial (t,c,k) file as starting knowledge
→ Create initial 3-tuple (t,c,k), with c all zeros and save to file

Stage 2: InitializeRun()
→ Increase value of runNumber by 1
→ Clear feedback arrays
→ Clear learning arrays
→ Load and store tuple (t,c,k) of the previous run (or init, if runNumber=1)
→ Create initial data set, with data point in between two consecutive knots

Stage 3: ProcessStep()
→ Append feedback arrays: uF B , x, v, a and y
→ Append input array (a)
→ Evaluate the output value uF F [i] using interpolate.splev
→ Determine target value: ut ar g et [i] = uF F [i](pr evi ousr un)+uF B [i] ·γ
→ Append arrays: ut ar g et [i] and uF F [i] returned from interpolate.splev

Stage 4: TerminateRun()
→ Save to file feedback arrays: uF B , x, v, a and y
→ Match input to B-spline parameters
→ Remove input-target point with negative input values
→ Compare current input-target data with data set of previous run
→ Filter duplicated data
→ Sort input-target mapping in ascending order
→ Save to file: input array (a) and feed-forward signal array uF F

→ Determine (t,c,k) for next run using interpolate.splrep
→ Store combined input data to be used as old data in next run
→ Save to file: 3-tuple (t,c,k) to be used in the next run

Stage 5: Terminate()
→ Close network connection between 20-sim and Python

Robotics and Mechatronics Elise-Ann Schrijvers

76 Learning Feed-Forward Control with the Python Scikit-Learn Library

Table D.2: Functions executed per task of the learning controller (∗ Only for runNumber>1 else se-
lected tck file from user input is used)

initialize() Task 1 Task 2 Task 3 Task 4
Set-up Python and 20-sim network connection X X X X
Set runNumber=0 X X X X
User input: select taskLFFC.txt X X X X
Load tasks from file X X X X
User input: select data storage folder X X X X
Create folders for x, v, a,uF B , y X X X X
Create folders for i nput ,uF F × X X X
Create folders for tck × X × X
User input: select tck file to load × × X X
Load tck from file × × X X
User input: select parameter.txt × X X X
Load parameters from file × X X X
Determine knotvector from parameters × X × X
Create/store initial tck × X × ×
initializeRun() Task 1 Task 2 Task 3 Task 4
Set runNumber+=1 X X X X
Clear arrays for x, v, a,uF B , y X X X X
Clear arrays for i nput ,uF F pr ev ,uF F × X X X
Clear array t ar g et × X × ×
Load tck for runNumber-1 × X × ×∗

Create initial data set × X × X
Evaluate target (splev) corresponding to initial data set × X × X

processStep() Task 1 Task 2 Task 3 Task 4
Append arrays for x, v, a,uF B , y X X X X
Append arrays for i nput ,uF F pr ev ,uF F × X X X
Append array t ar g et × X × X
Evaluate uF F of previous run, use splev × X X X
Determine target t ar g et = uF F pr ev +uF B ·γ × X × X
Sum uF F pr ev of learning controllers X X × X
Send to 20-sim uF F pr ev X X X X

terminateRun() Task 1 Task 2 Task 3 Task 4
Save to file x, v, a,uF B , y X X X X
Math inputs of reference with BSN inputs × X × X
Remove duplicates from input data × X × X
Order input data ascending × X × X
Determine tck for next run × X × X
Save to file tck × X × X
Save to file i nput ,uF F × X X X

terminateRun() Task 1 Task 2 Task 3 Task 4
Terminate Python and 20-sim network connection X X X X

Elise-Ann Schrijvers University of Twente

77

Bibliography
(2017a), Python interpolate.bisplev.
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/
scipy.interpolate.bisplev.html

(2017b), Python interpolate.bisplrep.
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/
scipy.interpolate.bisplrep.html

20simBSN (2017), 20sim B-spline Network.
http://www.20sim.com/webhelp/toolboxes_control_toolbox_
b-spline_network_editor_introductionbsplinenetworks.php

20simDynamicDLL (2017), 20sim Dynamic DLL.
http://www.20sim.com/webhelp/language_reference_functions_
writingdynamicdlls.php

Bishop H. Robert H. Bishop (2007), Mechatronic System Control, Logic, and Data Acquisition,
Taylor Amp; Francis Inc, chapter 1, p. 700, 2nd edition, ISBN 978-0-8493-9260-3.

Bossley, K. and C. Harris (1997), Neurofuzzy Modelling Approaches in System Identification,
Ph.D. thesis, University of Southampton.

Brown, M. and C. Harris (1994), Neurofuzzy Adaptive Modelling and Control, Prentice Hall.
http://eprints.soton.ac.uk/id/eprint/250255

Buijssen, S. (2001), Learning feed-forward control applied on the H-drive, Technical report,
Technische Universiteit Eindhoven.
https://pure.tue.nl/ws/files/4239441/632766.pdf

Harris, C., C. Hoore and M. Brown (1993), Intelligent Control: Aspects of Fuzzy Logic and
Neural Nets, world scie edition.

de Kruif, B. J. and T. J. de Vries (2000), IMPROVING PRICE/PERFORMANCE RATIO OF A
LINEAR MOTOR BY MEANS OF LEARNING CONTROL, Technical report, University of
Twente, Drebbel institute of mechatronics.
http:
//www.nici.ru.nl/mmm/personal/kruif/publications/IFAC02.pdf

Mtu (2017), B-spline Curves: Moving Control Points.
http://pages.mtu.edu/\simshene/COURSES/cs3621/NOTES/spline/
B-spline/bspline-mv-ctlpt.html

O’Flaherty, R. and M. Egerstedt (2015), Low-dimensional learning for complex robots, vol. 12,
no.1, pp. 19–27, ISSN 15455955, doi:10.1109/TASE.2014.2349915.

Otten, G., T. de Vries, J. van Amerongen, A. Rankers and E. Gaal (1997), Linear motor motion
control using a learning feedforward controller, vol. 2, no.3, pp. 179–187, ISSN 10834435,
doi:10.1109/3516.622970.
http://ieeexplore.ieee.org/document/622970/

Polycarpou, M. M. and P. A. Ioannou (1992), , no.December 1892, pp. 7–12.
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=371802

ProtoBuf (2017), Protocol Buffer from Google (Proto 3).
https://developers.google.com/protocol-buffers/docs/proto3

Scikit-learn (2017), Python Scikit-learn.
http://scikit-learn.org/stable/

Scipy Manual (2017), Scipy interpolation.
https://docs.scipy.org/doc/scipy/reference/interpolate.html

Robotics and Mechatronics Elise-Ann Schrijvers

https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.bisplev.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.bisplev.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.bisplrep.html
https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.interpolate.bisplrep.html
http://www.20sim.com/webhelp/toolboxes_control_toolbox_b-spline_network_editor_introductionbsplinenetworks.php
http://www.20sim.com/webhelp/toolboxes_control_toolbox_b-spline_network_editor_introductionbsplinenetworks.php
http://www.20sim.com/webhelp/language_reference_functions_writingdynamicdlls.php
http://www.20sim.com/webhelp/language_reference_functions_writingdynamicdlls.php
http://eprints.soton.ac.uk/id/eprint/250255
https://pure.tue.nl/ws/files/4239441/632766.pdf
http://www.nici.ru.nl/mmm/personal/kruif/publications/IFAC02.pdf
http://www.nici.ru.nl/mmm/personal/kruif/publications/IFAC02.pdf
http://pages.mtu.edu/$\sim $shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-mv-ctlpt.html
http://pages.mtu.edu/$\sim $shene/COURSES/cs3621/NOTES/spline/B-spline/bspline-mv-ctlpt.html
http://ieeexplore.ieee.org/document/622970/
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=371802
https://developers.google.com/protocol-buffers/docs/proto3
http://scikit-learn.org/stable/
https://docs.scipy.org/doc/scipy/reference/interpolate.html

78 Learning Feed-Forward Control with the Python Scikit-Learn Library

Splev (2017), Python interpolate.splev.
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.splev.html#scipy.interpolate.splev

Splrep (2017), Python interpolate.splrep.
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/
scipy.interpolate.splrep.html#scipy.interpolate.splrep

Starrenburg, J., W. van Luenen, W. Oelen and J. van Amerongen (1996), No Title, Eontrol Eng.
Pract., vol. 4, pp. 1221–1230.
https://ris.utwente.nl/ws/portalfiles/portal/6645346

T.J.A.de Vries, W.J.R.Velthuis and L.J.Idema (2001), Application of parsimonious learning
feedforward control to mechatronic systems, IEE Proc. - Control Theory Appl., vol. 148.
http://imotec.nl/imotec.nl/wp-content/uploads/2013/09/
ApplParsimoniousLFFC2001IEEProcD.pdf

Velthuis, W., T. de Vries, K. Vrielink, G. Wierda and A. Borghuis (1998), Learning Control of a
Flight Simulator Stick, pp. 29–34.
https://www.ram.ewi.utwente.nl/aigaion/attachments/single/484

Velthuis, W. J. (2000), Learning Feed-Forward Control - Theory, Design and Applications, ISBN
90-36514126.
http://www.ub.utwente.nl/webdocs/el/1/t0000012.pdf

de Vries, T. (2015), Command Response of a Moving Mass.

ZeroMQ (2017), ZeroMQ.
http://zguide.zeromq.org/page:all

Elise-Ann Schrijvers University of Twente

https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.splev.html#scipy.interpolate.splev
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.splev.html#scipy.interpolate.splev
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.splrep.html#scipy.interpolate.splrep
https://docs.scipy.org/doc/scipy-0.18.1/reference/generated/scipy.interpolate.splrep.html#scipy.interpolate.splrep
https://ris.utwente.nl/ws/portalfiles/portal/6645346
http://imotec.nl/imotec.nl/wp-content/uploads/2013/09/ApplParsimoniousLFFC2001IEEProcD.pdf
http://imotec.nl/imotec.nl/wp-content/uploads/2013/09/ApplParsimoniousLFFC2001IEEProcD.pdf
https://www.ram.ewi.utwente.nl/aigaion/attachments/single/484
http://www.ub.utwente.nl/webdocs/el/1/t0000012.pdf
http://zguide.zeromq.org/page:all

	Summary
	Contents
	Nomenclature
	1 Introduction
	1.1 Context
	1.2 Problem Statement
	1.3 Thesis Outline

	2 Theoretical Background
	2.1 Learning Feed-Forward Control
	2.2 Function Approximation with B-splines
	2.2.1 B-spline Basis Functions
	2.2.2 Computing Coefficients

	2.3 B-spline Network Tools
	2.3.1 B-spline Network with 20-sim B-spline Editor
	2.3.2 B-spline Network with Python Scikit Learn Library

	2.4 Illustrative Application: Linear Motor Motion System
	2.4.1 Introduction to a Linear Motor
	2.4.2 Design of Linear Motor Model
	2.4.3 Design of Feedback Controller
	2.4.4 Performance Check on the Feedback System Model

	3 Network Communication
	3.1 Introduction
	3.2 Design of Network Layer
	3.3 Implementation of Network Layer
	3.3.1 ZeroMQ
	3.3.2 Protocol Buffer from Google
	3.3.3 Network Communication with 20-sim

	3.4 Validation of Network Layer
	3.4.1 ZeroMQ Test
	3.4.2 Data Transfer Test

	3.5 Conclusion

	4 One Dimensional LFFC
	4.1 Time-Indexed LFFC
	4.1.1 Design
	4.1.2 Implementation
	4.1.3 Comparison 20-sim and Python
	4.1.4 Conclusion

	4.2 State-Indexed LFFC
	4.2.1 Design
	4.2.2 Implementation
	4.2.3 Simulations
	4.2.4 Conclusion

	5 Two Dimensional LFFC
	5.1 Parsimonious LFFC
	5.1.1 Design
	5.1.2 Implementation
	5.1.3 Simulations
	5.1.4 Conclusion

	5.2 Multidimensional BSN
	5.2.1 Design
	5.2.2 Implementation

	6 Conclusion
	6.1 Conclusion
	6.2 Future Work

	A Partial Cubic Motion Profile (20-sim)
	B More about B-splines
	B.1 Properties of B-spline Basis Functions
	B.2 Properties of B-spline Curves
	B.2.1 Moving Control Points
	B.2.2 Modifying Knots

	C Implementation details (1D state-indexed LFFC)
	D Implementation details (2D state-indexed LFFC)
	Bibliography

