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Illustration of virtual testing in a full-scale panel test rig of IMA [8] 

Problem area 

Innovations in full scale testing of composite fuselage structures deal among others 
with the reduction of time and costs needed for full-scale structural validation, 
which is usually done on fuselage barrel level. The aim is to achieve validation 
testing on a lower level of the test pyramid, in particular on large fuselage panels 
that do include the critical and complex structural features of the aircraft fuselage. 

Description of work 

Highly advanced test rigs have been developed for such panel tests and highly 
detailed finite element models (DFEMs) of the considered structure are needed to 
determine the correct loading for such tests. The test rigs make use of many 
fixations and actuation systems (up to 50 or even more) and large numbers 
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(hundreds) of sensing signals. This study investigates the efficient load 
determination procedures for complex and full scale tests of large composite 
fuselage panels using virtual testing methods and FE models, with a focus on the 
strain correlation and loads identification method, the development of the efficient 
virtual testing modelling and analysis process and the enhancement of accurate 
strain extraction methods and element selection. 

Results and conclusions 

This report presents some results from investigations on efficient load 
determination procedures for complex and full scale tests of large composite 
fuselage panels using virtual testing methods and DFEMs. Small and large models 
(panel DFEMs in Abaqus) and several tools for strain extraction and optimisation 
have been used. Adequate loads identification results were obtained. 

Applicability 

The procedure used in this study is also applicable to metallic fuselage panels, as 
well as to other heavily loaded structures like aircraft wings. 



 

 

  

 
 
 
 
 
 
 

NLR - Netherlands Aerospace Centre 

AUTHOR(S): 

B.N.A. van der Knaap NLR 
    
    
    
    
    
    
    
    
    
    
    
    
    
    
 

Virtual testing, strain correlation for 
loads optimization of composite 
fuselage structure 
Load identification studies 

NLR-TR-2017-369 | November 2017 

CUSTOMER:  Netherlands Aerospace Centre 



 

 

 

2 

November 2017  |  NLR-TR-2017-369 

 

 

 

 

 

  

CUSTOMER Netherlands Aerospace Centre 

CONTRACT NUMBER ----- 

OWNER NLR 

DIVISION NLR Aerospace Vehicles 

DISTRIBUTION Limited 

CLASSIFICATION OF TITLE UNCLASSIFIED 

APPROVED BY : 

AUTHOR REVIEWER MANAGING DEPARTMENT 

B.N.A. van der Knaap 

 

W.J. Vankan 

 

A.A. ten Dam 

DATE 3 1 1 0 1 7 DATE 3 1 1 0 1 7 DATE       

No part of this report may be reproduced and/or disclosed, in any form or by any means without the prior 

written permission of NLR. 



 
 
 

3 

NLR-TR-2017-369  |  November 2017 

 

Summary 

In this study load identification methods will be investigated on two different finite element models, with the goal to 
enhance and understand a load determination procedure for a complex and full scale virtual test of large composited 
fuselage panels. With proper load identification methods full scale tests of a complete fuselage barrel can be 
simplified to a large fuselage panel tests. This will have major time and cost benefits in the validation of fuselage 
structures. 
The focus of the investigations was on the strain correlation of the end result and the load identification method, the 
development of the efficient virtual testing modelling and analysis process and the enhancement of accurate strain 
extraction methods and element selection. The goal of the study was to perform a correct load identification on the 
DFEM.  
The method used for the load identification is based on a linear least squares procedure that determines the linear 
combination of load factors that yields the best approximation of a set of reference strains from the barrel test.  
Before the analyses are carried out and the results are presented, first the two finite element models are presented. 
Then the method is further explained and also the error calculation which are the root means square of the relative 
error and the relative root mean square of the error. 
One of the two finite element models represents a simplified aluminium panel (SFEM), the other is a detailed model of 
the fuselage panel (DFEM). The SFEM is used for the quick calculation and to create understanding of the method. This 
is done by carrying out linear analyses and then nonlinear analyses. Then changes are made to the number of loads 
used in the analysis. With the aspects found in the results of SFEM, the choices are made for the linear and nonlinear 
analyses of the DFEM. The different aspects of the analyses that have an effect on the result of the load identification 
are the neglecting of lower strain values, the increase in loads on a model introduces more insecurity, the influence to 
the choice of the sensor position and number of sensor elements. These aspects are found back in the DFEM analyses. 
Potentially there are also numerical issues like the singularity of the unit load matrix. 
The load identification of the linearly analysed FE models can be performed with excellent results. For the nonlinear 
analyses of SFEM also yield good results, but for the nonlinear analyses of the DFEM an accurate reproduction of the 
strain field was not possible, at this moment. Aspects as sensor position and choice of magnitude of forces play an 
important role in the quality of the results. 
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Abbreviations 

ACRONYM DESCRIPTION 

NLR Netherlands Aerospace Centre 

LC Load case 

LU Unit load 

CM Control model 

RMSE Root mean square error 

RMSRE Root mean square relative error 

RRMSE Relative root mean square error 

FE Finite element  

FEM Finite element model 

DFEM Detailed FE model 

SFEM Simplified FE model 

ε Strain 

α Load factors 

CAD Computer added design 

PAX Passengers 

dof Degrees of freedom 

lin Linear 

nonlin Nonlinear 

pert Pertubation step 
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1 Introduction 

With the strong growth of global air traffic, approximately doubling every 15 years, a global demand of about 35000 
new large passenger and freighters aircraft between 2017 and 2036 [1] is expected. To accommodate this strong 
growth, Airbus as a global leader in designing, manufacturing and delivering aerospace products, has to operate at the 
forefront of the aviation industry by building innovative commercial aircraft [2]. Among the many innovations 
considered in new aircraft is the use of new structures and materials. In particular, lightweight carbon composite 
structures are introduced in higher proportions and more areas of the aircraft, like in wing and fuselage structures. For 
example the research project MAAXIMUS [4] was aimed at achieving the fast development and right-first time 
validation of a highly-optimised composite fuselage thanks to a coordinated effort between virtual structures 
development and composite technology. 
 
Fuselage structures of most aircraft are subjected to the combined loading of cabin pressure and fuselage bending. It 
is therefore highly desirable that these new constructed structures or materials are tested under those complex 
loading conditions in full-scale. Full-scale aircraft fuselages validation is carried out to critical and complex structural 
features such as circumferential or longitudinal joints, PAX door and the corresponding door surround structure or 
representative floor structures [3]. These tests are currently done at barrel level and are very expensive and time 
consuming. Reducing these test form barrel level to panel level would mean significant benefits in time and cost 
consumption in future research, see figure 1. 
 
Extensive virtual testing on finite element (FE) models can be done to capture the behaviour of full-scale tests [5], for 
example of barrel in a full-scale panel test so the panel test is fully consistent with the full-scale barrel level test. In  
 

 
Figure 1: Scale reduction visualization of the full scale test [8] 
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previous studies at NLR [3], a complete model of an aircraft fuselage door surround panel was built, here further  
referred to as the detailed FE model (DFEM). Though saving time, testing a fuselage panel rather than a full size 
fuselage barrel also bring some challenges. Pressures and forces used in barrel test that represent the in-flight strain 
field in the fuselage cannot be scaled directly to panel level, because of the loss of stiffness form the circular structure. 
In the paper of Vankan, van der Brink and Maas [3] a basic method for the load identification and strains evaluation is 
presented and a virtual correlation analysis was done for the load identification of the detail DFEM. The load 
identification is a method of determining the forces that needs to be implemented in the panel level test rig to 
simulate the strain field of a given reference strain field. In the previous research the virtual tested load identification 
the correlation between the panel strain field and the reference strain field was not very high, with the conclusion 
that further investigation is necessary, especially in the element selection of the load identification. 
 
This study investigates the efficient load determination procedures for complex and full scale tests of large composite 
fuselage panels using virtual testing methods and FE models, with a focus on the strain correlation and loads 
identification method, the development of the efficient virtual testing modelling and analysis process and the 
enhancement of accurate strain extraction methods and element selection.  
A specific goal of the study is to perform a reliable load identification on the DFEM. To reach this goal we aim to get 
full understanding over the load identification and the results, so in this research of the load identification there is 
looked at different aspects: the linear as well as the nonlinear analyses, the influence of the unit loads (LU) and force 
magnitudes and the sensors elements and sensor element positions.  
Outside of the scope will be the loads location for the load identification as they are pre-set in the model. 
 
Because of the model complexity of the DFEM, a simple aluminium panel will be investigated first to gain a better 
understanding about the effect of the loads identification. This FE model is an in-house build panel of NLR and is 
named accordingly as simplified finite element model (SFEM). The SFEM makes it quick in calculating results and 
easier for interpretation of these results. Both the FE models are outlined in the next chapter (chapter 2). In chapter 3 
the load identification method and post-processing methods used in this report are clarified, further the procedures 
and case that are that are attended to and the software that is used. Chapter 4 presents and discusses the result of 
the load identification on the SFEM procedures described in the method. This ends with a conclusion on the different 
aspects of the load identifications and the recommendations for the DFEM load identification. In chapter 5 the results 
and discussion of the DFEM’s load identifications are given. Chapter 6 will hold the conclusion for this research and 
the recommendations for follow on studies.  
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2 Considered FE models 

This chapter presented the two FE models (SFEM and DFEM) used for testing the load identification. It covers the 
composition, material, load placement and the element choice of the models. 

2.1 Simplified finite element model (SFEM) 

The SFEM is an in-house build panel of NLR and it is used because it is small and can be used for quick calculation time. 
The panel is 577mm by 1450mm and build-up from four Frame Beams, four Stiffener Beams and a Skin, given in figure 
3. The Frame Beams are vertical Z-beams and Stiffer Beams are the horizontal Z-Beams, with both the structures 
respectively presented in figure 2. Over the beams the aluminium Skin is spanned. The beams are made of Aluminium 

7075 while the Skin is Aluminium 2024, all with a 
poison ratio of 0.3. When looking form the inside as 
figure 3 the right side of the panel will be clamped in. 
All the other sides have boundary conditions on the 
edge so they cannot rotate and move in the x direction 
(see axes lower left corner of figure 3). The forces on 
the panel are: on the top and bottom side the same 
shear forces (Shear TB), on the left side a shear force 
(Shear L) and on the left side a compression force 
(Compression). The magnitude of the forces will differ 
throughout this paper. The elements used as sensor 
elements for the load identification are elements on 
Skin. These sensor elements are randomly or 
specifically chosen, depending on the parameters of 

that study. Within an element the direction of the strain can also vary in direction E11, E12 and E22. The strains in the 
different direction will be presented in single precision, this means that the strains have eight significant digits. 
 

 
Figure 3: SFEM 

Figure 2: Frame beam and stiffener beam structure 
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2.2 Detailed finite element model (DFEM) 

The DFEM is also a NLR built panel [3], which is realistic model of an aircraft fuselage panel. It exists out of highly 
complex structural features of PAX door and the corresponding door surround structure as well as representative floor 
structures. The original CAD model of the panel exists of an approximate of 1000 different parts, see figure 4. In the 

DFEM the number of parts is brought back to about 250 parts 
in which some structures are replaced by constrains, for 
example the PAX door and windows, as they do not contribute 
to the in-plane stiffness of the panel. This results in a mesh 
model of about 1100k elements, 1.1M nodes and a FE 
problem with the size of approximately 4.6M dof’s.  
The panel size is from top to bottom 4091mm and from left to 
right 5700mm. The parts are all kinds of different materials: 
carbon composites, aluminium, steel, glass-fibre composites 
and titanium. Next to different materials between parts the 
composite parts vary significantly in the thickness and lay-up, 
the thickness ranges 3mm in the more peripheral skin regions 
up to about 12mm near the PAX door. Some lay-up consisted 
of nearly 100 plies. Conclusion is that it is highly complex.The 
load and boundaries conditions of DFEM are given in figure 5 
and here further explained. The left side of the DFEM is fixed 
edge, so is clamped in every direction. On the other side 3 

nodal forces and 3 moments are introduced, which are the main bending forces of the panel. Most of the other loads 
are the representation of a constrained in the fuselage barrel. Frame spreaders are 7 individual moments that are 
loaded on both sides of the frame. Skin spreaders are 42 forces that are all the same and are seen as one independent 
unit load. The X-Beam forces and moment are divided as 4 forces and 4 moments. In total 23 forces are presented in 
figure 5. Only 22 will be looked at as the internal pressure is left outside de scope. In figure 4 the numbers 70 till 76 
given, they corrensponed with a location on the vertical axis on the DFEM. So Frame spreader 72 is location on the 
 

 
Figure 5: DFEM [3] 

Figure 4: CAD model of fuselage side panel [3] 
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same vertical axis as cross beam force 72. As the DFEM is a virtual representation of a real fuselage panel. The location 
the sensor element is also limited to about 700 different elements that hold the position of strain gauges in the real 
test. For the extraction of the strains a python file was used of the NLR. For the load identification of the DFEM 
different selection of these strains will be used. The information of the strains will be read out in double precision, this 
mean that the strains will have sixteen significant digits. 
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3 Methods 

In this chapter the methods that are used throughout the report for the load identification and post-processing are 
explained. Further information is given about the software, the procedures and the condition number. 

3.1 Load identification 

The load identification is a least square method for determining the magnitude of loads that need to be implemented 
on a panel to simulate a given reference strain field. This method uses the known strain fields (the reference strain 
field and the unit load (LU) strain fields) to calculate load factors (α). When multiplying the load of the LU's with the 
load factors the forces that need to be implemented are calculated. 
The goal is to recreate a reference strain field that comes as input data, in this study the reference strain field is 
simulated by loading a FE model with a curtain number of loads and a curtain magnitude, which are known. The case 
of creating the reference strain field with curtain loads and magnitudes will be further referred to as the ‘load case’ 
(LC). From the complete strain field of the LC a certain amount of sensor elements are being picked out. These will be 
used for the load identification. Next the unit-loads (LU) strain field are to be found. This is done by running the model 
individually for each of the forces, so for every LU there is a stain field created. In paragraph 3.1.1 is described how to 
gain the strain field information out of Abaqus. 
From all known strain fields certain strain elements are chosen (sensor elements). The sensors strain elements of the 
LC will form a vector: 𝜀𝜀𝑏𝑏. The unit load strains are some chosen strain sensor elements and collecting them in a matrix: 
𝜀𝜀𝑝𝑝, which gives the unit load matrix. The vector 𝜀𝜀𝑏𝑏 and the matrix 𝜀𝜀𝑝𝑝 are build-up as follows:  
 

 
Figure 6: Composition of vector 𝜀𝜀𝑏𝑏 and the matrix 𝜀𝜀𝑝𝑝 
 
Were n being the number of sensor elements and the numbers 1 till 23 the amount of LU’s (in this case 23 different 
LU’s). From this data the load identification can be performed with the equation described in paper of W.J. Vankan, 
W.M. van den Brink and R. Maas [3]. The equation is a least squares procedure that determines the linear 
combination of these columns and results in a set of load factors, which yields the best approximation of the 
reference strains.  

min 𝛼𝛼|𝜀𝜀𝑏𝑏 − 𝜀𝜀𝑝𝑝𝛼𝛼|2  →  𝛼𝛼 = �𝜀𝜀𝑝𝑝𝑇𝑇𝜀𝜀𝑝𝑝�
−1

 𝜀𝜀𝑝𝑝𝑇𝑇𝜀𝜀𝑏𝑏   (1) 
In this equation εb is a vector with the known strain data in sensor points, εp is a matrix of the UL strain data in the 
sensor points, which results in the load factors, α. This load factor is the ratio between the magnitudes of the load 
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used in the LU and the magnitude of load that should be used to create the LC. This means there are as many load 
factors as there are LU’s. 
Calculating the magnitude of the loads for the input of the ‘Control model’ (CM) is thus simply α times the forces of 
the UL. The strain field of the CM is determined and compared with the LC in the post-process. 

 Software 3.1.1

In this paragraph is described how the strain fields of LC, LU, and the CM are gathered for both FEM. For both FEM 
applies that they are built in Abaqus. Python is supporting Abaqus with scripts which makes it straightforward to 
change loads and reading out the final strain results. The strain field results of the chosen sensor elements are 
uploaded to Excel files. For the load identification of the SFEM Python is applied, but for the DFEM the load 
identification runs in Matlab, which is mainly for convenience. With the information of the load factors, the load for 
the CM model is calculated, with this another Abaqus model for the CM strain field is ran. Matlab is furthermore used 
for post-processing the results of the two models into figures and the calculations of the error. Considering linear and 
nonlinear analyses in Abaqus multiple options arise, for example a nonlinear LC strain field is to be reproduced with a 
linear LU’s case. This is introduced in the Abaqus software as ‘steps’. In the next section the different options that are 
used in Abaqus are discussed and why they are functional. 

3.2 Procedures and cases 

For the analyses of the LC, LU’s and CM different step options of Abaqus are used. The various steps that are used in 
this paper are: Static Linear Perturbation step (pert), General Static Linear step (lin) and the General Static Nonlinear 
step (nonlin). 
A combination of the step for the load case, the step for the unit loads and the step for the control is from now on 
referred as a procedure. All different procedures handled in the study, with their designated number, are given in 
table 2. As the SFEM is quick in calculating all the different options of the procedures are being evaluated. Starting 
with an all linear analyses of Abaqus and comparing them. Afterward the different options are used to solve the 
nonlinear LC and the possibilities of recreating those with linear and nonlinear LU and CM. The conclusion of the SFEM 
analysis is that the interesting procedures for the DFEM are procedure 1 and 4, but procedure 2 is also evaluated 
because of the advantages if it could be functional. 
The word ‘case’ is used to indicate a load identification given a procedure. The variables in a case can be the number 
of loads in LC, the amount of LU, the amount of sensor elements and sensor element locations for the load 
identification.  
 
Table 2: Procedures 

Procedure Load Case (LC) Unit Loads (LU) Control model (CM) 

0 Static, Linear Perturbation Static, Linear Perturbation Static, Linear Perturbation 

1 General, Static Linear Static, Linear Perturbation Static, Linear Perturbation 

2 General, Static Nonlinear Static, Linear Perturbation Static, Linear Perturbation 

3 General, Static Nonlinear Static, Linear Perturbation General, Static Nonlinear 

4 General, Static Nonlinear General, Static Nonlinear General, Static Nonlinear 

5 General, Static Nonlinear General, Static Nonlinear Static, Linear Perturbation 
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3.3 Post-processing 

The post processing of the information from the load case and the control model is done with Matlab. There are two 
variables that are checked throughout the study: the load factor and the residuals. Both are explained below. 
 
The load factor can be checked when the forces that created the LC are also known. Normally this is not the case and 
is this the result that should be provided by the load identification. The intended load factors are calculated by 
dividing the load magnitude of LC by magnitude of LU’s loads.  

𝐹𝐹𝐿𝐿𝐿𝐿,𝑖𝑖

𝐹𝐹𝐿𝐿𝐿𝐿,𝑖𝑖
=  𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

With this information is checked how much the calculated load factors deviate from the intendent ratio.  
𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −  𝛼𝛼𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝛼𝛼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
=  𝛽𝛽 

The closer β is to zero, the better the resemblance between the LC load magnitude and the calculated load 
magnitude. If the magnitude of the LC loads can exactly be reproduced, the strain field of CM is per definition a good 
representation of the LC strain field. In the linear cases, it means that a high number of β results in a poor 
reproduction of the strains field, but in the nonlinear case this has not to be the issue. 
 
The difference between the strain field of the LC and strain field of the CM will be called the residuals and should be as 
small as possible. Different statistical evaluations will be used to say something about the residuals. These are the 
Root Mean Squared Relative Error (RMSRE) and the Relative Root Mean Square Error (RRMSE). Both statistical 
evaluations originate from the Root Mean Squared Error [6].  

 RMSE = �1
𝑖𝑖

 ∑  (𝜀𝜀𝑖𝑖𝐿𝐿𝐿𝐿 −  𝜀𝜀𝑖𝑖𝐿𝐿𝑀𝑀)2𝑖𝑖
𝑖𝑖=1   (2) 

With 𝜀𝜀𝑖𝑖𝐿𝐿𝐿𝐿  is the LC strain in element i, 𝜀𝜀𝑖𝑖𝐿𝐿𝑀𝑀 the CM strain in same element i and n the number of elements used. For 
the RMSE yield that the lower the value, the better the calculated CM in terms of its absolute deviation. Because of 
the quadratic behaviour of the RMSE it is sensitive for outliers. A few large errors can result in a large RMSE. If a RMSE 
value is low enough, is dependent on the values in the LC strains. Another way to make the comparison with the LC 
are the RMSRE and the RRMSE, both are relative to the LC strains.  
The RMSRE is the RMS of the relative error. This result can be polluted with low strains in 𝜀𝜀𝑖𝑖𝐿𝐿𝐿𝐿  as this results in high 
values for the RMSRE.  

 RMSRE = �1
𝑖𝑖

 ∑  (𝜀𝜀𝑖𝑖
𝐿𝐿𝐿𝐿− 𝜀𝜀𝑖𝑖

𝐿𝐿𝐶𝐶

𝜀𝜀𝑖𝑖
𝐿𝐿𝐿𝐿 )2𝑖𝑖

𝑖𝑖=1   (3) 

With 𝜀𝜀𝑖𝑖𝐿𝐿𝐿𝐿  is the LC strain in element i, 𝜀𝜀𝑖𝑖𝐿𝐿𝑀𝑀 the CM strain in same element i and n the number of elements used. The 
results of the RMSRE are considered optimal when they are smaller than 0.01, which means the error is one percent 
of the LC strains. They can be considered fair if the value is <0.1 and bad if they are >0.1. 
The RRMSE uses the RMSE and divides it by the mean of the LC strains. 

 RRMSE = 
�1𝑛𝑛  ∑  (𝜀𝜀𝑖𝑖

𝐿𝐿𝐿𝐿− 𝜀𝜀𝑖𝑖
𝐿𝐿𝐶𝐶)2𝑛𝑛

𝑖𝑖=1

𝜀𝜀�𝑖𝑖
𝐿𝐿𝐿𝐿 ∗ 100% (4) 

With 𝜀𝜀𝑖𝑖𝐿𝐿𝐿𝐿  is the LC strain in element i, 𝜀𝜀𝑖𝑖𝐿𝐿𝑀𝑀 the CM strain in same element I, 𝜀𝜀�̅�𝑖𝐿𝐿𝐿𝐿  is the mean of all the LC strains in i and 
n the number of elements used. The RRMSE give an indication of the accuracy of the reproduced model. It is excellent 
if the value is <10%, good if it is between 10% and the 20%, fair if it is between 20% and 30% and poor if the RRMSE 
>30%. 
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3.4 Condition number 

The condition number is a value that says something about the singularity of a matrix. When solving a matrix equation 
in the form of 𝐴𝐴𝐴𝐴 = 𝑏𝑏, the condition number of the matrix A can be used to gauge the stability of a function. A large 
condition number of this matrix means that small changes in x result in significant changes in b, unreliable results and 
the matrix A will be ill conditioned. If the condition number is significantly small it means that small changes and 
something bigger changes of x result in small changes in alpha and even bigger change in x result in small changes of 
b.  
The logarithm of the condition number is an estimation of the number of significant digits that are lost in the solution. 
This number is the worst-case scenario for the loss of precision. So, if a condition number is called small depends on 
the precision of input values in relation to the logarithm of the condition number.  
Roughly it means that a matrix is ill conditioned, when the logarithm of the condition number is higher than the 
precision of the input values.  
The condition number can be calculated by dividing the largest with smallest singular values, which are results of the 
value decomposition of the matrix A [7].  
In the load identification the equation to solve is equation 1. Rewriting this equation results in a equation of the form 
of: 

𝐸𝐸𝜀𝜀𝑏𝑏 = 𝛼𝛼     ,𝑤𝑤𝑤𝑤𝑤𝑤ℎ     𝐸𝐸 =  �𝜀𝜀𝑝𝑝𝑇𝑇𝜀𝜀𝑝𝑝�
−1

 𝜀𝜀𝑝𝑝𝑇𝑇 
The condition number of matrix E can be used to give information about the robustness of the equation. It turns out 
that the condition number of matrix E is equal to the condition number of 𝜀𝜀𝑝𝑝. This condition number will be used to 

check if the answers of the load factors alpha are valid. This is done by checking if there are enough significant digits in 
the input values of 𝜀𝜀𝑝𝑝. 
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4 Simplified Finite Element Model (SFEM) 

In this chapter the results of the load identification out on the simplified finite element model will be presented and 
discussed, starting with the linear procedure working our way up to the nonlinear procedures, then looking at other 
variables of the load identification. At the end of the chapter there is a small conclusion that is sums up the findings 
and makes important choices for the study on the DFEM model. The details of the SFEM are already described in 
chapter 2.1 of this paper. The different procedures that will be treated are clarified in chapter 3 section 3. 

4.1 Linear perturbation step versus General linear step 

In this section the first two procedures 0 and 1 are compared. These two deviate from each other in the LC step. 
Procedure 0 has a static perturbation step and procedure 1 a general linear step. Since the static perturbation step 
and the general linear step are both calculated with linear superposition method. The difference arises when another 
step follows the previous. When a perturbation step is used as first step the following step uses no information form 

the results of the perturbation step, so the input values of the 
second step are the same as those of the perturbation step. 
After a general linear step the next step uses the output of 
the general linear step as input for the next step [9]. This 
visualized in figure 7. Concluding the static perturbation step 
and the general linear step should yield the same result, as 
there is only one step in the SP model. 
This is simply checked by running procedure 0 and procedure 
1 and comparing the strains field data of both procedures. In 

table 3 the strains of both the LC’s can be found for the elements 350-1 and 1000-1. These yield exactly the same 
result, as expected. The choice was made to use the linear perturbation step for all the linear calculations in further 
linear calculations. 

4.2 Static perturbation step (procedure 0) 

The first load identification is procedure 0 which entails a linear LC, LU’s and CM. The results of this load identification 
are presented and discussed in this section. With linear super position behaviour of the linear perturbation step, it is 
expected that the residuals are being zero and the load factor can be calculated exactly. There are three sensors used 
to solve three equations this gives three load factors, so for a linear system this would be exactly solvable. Carrying 
out the load identification described in chapter 3, leads to the rest of the result found in table 3. Worth noticing is that 
the load factors are not exactly the ratio between the LC magnitude and the LU magnitude. Consequently there is also 
a different in the strains between the LC and the CM. Also worth noticing is that using different element as input for 
the load identification, the load factors yield different results, this means that the load identification is sensor element 
depended. When looking at the strain residuals (difference between strains of LC and strains of CM) more closely, the 
RMSE residuals for case 0-1 are 2.29e-7. The average of the strains in the LC is 3.17e-3, so on average there is roughly 
a factor 10.000 between the residuals in the strains and the LC strains, which is again a good result. To visualize this, a 
correlation plot can be found in figure 8 between the strains of the LC and the strains of the CM. Because there is no 

Figure 7: Linear Perturbation -versus General Step 
 



 
 
 

17 

NLR-TR-2017-369  |  November 2017 

 

Table 3: Procedure 0 and 1, loads and strain information 

Procedure-Case 0-0 1-0 0-1 

LC Magnitude [150,300,-200] [150,300,-200] [150,300,-200] 

LU Magnitude [100 100 100] [100 100 100] [100 100 100] 

# Sensor Points 3 3 3 

Sensor Element 350-1 350-1 1000-1 

Load Factor UL1 1.49901 1.49901 1.50038 

Load Factor UL2 3.00005 3.00005 2.99993 

Load Factor UL3 -1.99907 -1.99907 -2.00002 

Stains LC 

350-1 -1.892E-04 -1.892E-04 -1.892E-04 

350-1 6.803E-04 6.803E-04 6.803E-04 

350-1 -7.591E-03 -7.591E-03 -7.591E-03 

1000-1 2.641E-04 2.641E-04 2.641E-04 

1000-1 -9.726E-04 -9.726E-04 -9.726E-04 

1000-1 -8.480E-03 -8.480E-03 -8.480E-03 

Strains CM 

350-1 -1.897E-04 -1.897E-04 -1.891E-04 

350-1 6.822E-04 6.822E-04 6.799E-04 

350-1 -7.591E-03 -7.591E-03 -7.591E-03 

1000-1 2.640E-04 2.640E-04 2.642E-04 

1000-1 -9.721E-04 -9.721E-04 -9.728E-04 

1000-1 -8.481E-03 -8.481E-03 -8.479E-03 

 
 

 
Figure 8: Correlation between the LC and CM strains 
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Table 4: Procedure 0 with LC and LU's magnitude [100,100,100] 

Procedure 0 1076-1 [E11] 1076-1 [E12] 1076-1 [E22] 

Strains - LU0 5.5979E-05 -6.5386E-04 1.7773E-04 

Strains - LU1 -3.0087E-04 3.5922E-03 -2.5820E-03 

Strains - LU2 -3.0001E-04 3.5998E-03 -4.4081E-04 

Sum LU -5.4491E-04 6.5382E-03 -2.8451E-03 

Strains - LC -5.4491E-04 6.5382E-03 -2.8451E-03 

Error 2.1828E-11 -5.8208E-11 -1.4552E-11 

     

Strains - CM -5.5147E-04 6.6161E-03 -2.8767E-03 

Residuals (LC-CM) 6.5626E-06 -7.7907E-05 3.1667E-05 

 
visible deviation from the centreline, it can be said that despite of the error in the load factors the CM is pretty good 
representation of LC. Although this is a good result there is expected that the error goes to complete zero. With this in 
mind some studies are done to find out where this error is coming from.  
 
In the first investigation the linear super position behaviour of the SP model is verified. If the SP model is linear is 
should yield that the strain results of UL0 + UL1 + UL2 with magnitude 100, are the same as the LC strains with 
magnitude [100,100,100] 

𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠{UL0(100) +  UL1(100) +  UL2(100)} = 𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠𝑤𝑤𝑠𝑠𝑠𝑠{𝐿𝐿C(100,100,100)} 
The study was carried out and the strains of sensor point 1076-1 were put in table 4. As the table shows the strains 
are almost identical only there is an error of 1e-11. This can be explained by the way the data is obtained, the strains 
of Abaqus are read out as single precision values. This means that they have eight significant digits. As the first value is 
in the order of 1e-4 the last significant digit is in het order of 1e-11. For the model it means that an error in the order 
of 1e-11 is an inaccuracy of the retrieved strains. The conclusion is that every error of 1e-10 or less is per definition 
excellent. Also there can be concluded that the SFEM is linear and there are no nonlinear effects within the model. 
Now solving the same problem with a CM, calculating the load factors for this case results in: [0.9616280, 1.00857651, 
1.00610995], which is pretty bad. The residuals of element 1076-1 are consequently not very good, which can also be 
found in table 4 and are in the order of 1e-5. Somehow in calculation of the load factors a big error is introduced.  
To check if the error in the load factors is due to the small differences between load case strain and the unit loads 
strain, the difference between the LU’s strains and the LC strains is made twice as big and then the load identification 
redone. This results in the load factors of: [0.96162808, 1.00857651, 1.00610995], which is pretty must the same 
answer. 
Concluding the LU’s are a good representation of the LC, and somewhere in the calculation of alpha an error is 
introduced.  
 
So secondly the calculation of the load factors is further investigated, as there is now expected that the error 
originates form that calculation. From comparison of the previous cases can be concluded that the accuracy of the 
results was dependence on the chosen sensor points. So the inaccuracy of the calculation can be due to a near 
singularity in the matrix εp. The quantity of the singularity in the matrix can be determined with the condition number 
of the matrix, see section 3.4. To test this, procedure 0 was used with LC(150, 300, -200) and all the LU’s(100). 
Different sensor elements were used to set up the εp matrix. Of these matrixes the condition number and the 
logarithm of the condition number are determined, as well as the solution of residuals. Some of the results are 
presented in table 5, in the order of smallest condition number to biggest. It is clearly seen that the condition of the  
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Table 5: Condition numbers and residuals of different cases 

 
matrix is of influence on the residuals of the calculation, when the condition number is low the residuals get better. It  
seems that the loss of significant digits has a big contribution on the error of the strain field of the SFEM. 
 
The assumption is made that more sensor elements will reduce the error in the residuals. In the last investigation the 
number of sensor points that are needed to get the linear perturbation step residuals to zero is tested. For this case 
multiple the sensor points that are chosen that have a bad condition number more than 100, so this does not 
influence the results. Then the sensor points will be increased by one every calculation. This process is visualized in 
figure 9, where the residuals of the load factors and the root means square of the residuals of the strains are 
presented. It turns out you need 6 sensor points to get the residuals of this test to zero. Also the condition number 
improves with every sensor point added. 
The poor conditioned matrix is clearly the biggest contributor to the residuals. So in further calculation this has to be 
minded.  
  

Case Sensor 
points 

Elements 
used 

Residuals in 
Senor Element 
E11 

E12 E22 Condition 
number of εp 

LOG 

0 3 2-1 0.00E+00 0.00E+00 0.00E+00 3.92 0.57 

18 3 900-1 0.00E+00 0.00E+00 0.00E+00 5.35 0.73 

11 3 550-1 0.00E+00 0.00E+00 0.00E+00 11.29 1.05 

1 3 50-1 1.51E-09 1.69E-09 0.00E+00 20.33 1.31 

21 3 1050-1 2.80E-09 -3.11E-09 2.28E-08 32.64 1.51 

17 3 850-1 -1.73E-08 -9.31E-09 7.45E-08 63.82 1.80 

13 3 650-1 -5.50E-09 1.16E-08 -1.75E-07 94.44 1.98 

20 3 1000-1 -9.02E-09 1.96E-09 -3.58E-08 116.80 2.07 

19 3 950-1 8.09E-09 1.54E-08 4.00E-08 264.41 2.42 

8 3 400-1 -8.24E-08 6.03E-08 -1.40E-05 351.65 2.55 

22 3 1100-1 -2.43E-07 -3.35E-07 -4.28E-08 583.21 2.77 

5 3 250-1 1.68E-05 9.74E-06 -4.94E-05 1530.62 3.18 

23 3 1150-1 -7.57E-08 -6.22E-07 7.19E-07 1994.26 3.30 
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Figure 9: Load identification results of procedure 0 
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4.3 General nonlinear procedures (procedure 2, 3, 4  
and 5) 

In this section there is investigated what is the best nonlinear approach. This is done because the data in the DFEM 
will be of nonlinear nature. The following procedures will be carried out, with all nonlinear LC, but in each step 
different input data has a nonlinear behaviour. 

• Procedure 2: LC – Nonlinear, LU – Linear, CM - Linear 
• Procedure 3: LC – Nonlinear, LU – Linear, CM - Nonlinear 
• Procedure 4: LC – Nonlinear, LU – Nonlinear, CM - Nonlinear 
• Procedure 5: LC – Nonlinear, LU – Nonlinear, CM - Linear 

 
Due to the nonlinearity in the LC the results can only be approximated and cannot be reached exactly. This means that 
there will always be strain residuals. Knowing this we will try to minimize this strain residual and the results of RMSRE 
and RRMSE will be use to give an indication of a good or bad solution. There will be a variable amount of sensor points 
used to minimize the strain residuals and find an optimum. The amount of sensor points lies between three and 300, 
because three is the minimum to get an answer in the load identification and more the a hundred different strain 
gauges in a very big test is unrealistic, with every strain gauges measuring in three directions, so 300 sensor points.  
the magnitude of the LC the forces were set on [15, 30, -20]. This is broad down regarding to the linear analyse in 
section 4.2, because of the unsuccessful nonlinear analyses that would otherwise occur in Abaqus. This results in a 
deformation of about 3mm, which is not much on a panel of 1.5 metre. The LU’s were set on a magnitude of 10. 
Worth mentioning is that it was directly noticeable that nonlinear analyses take more time to calculated. 

 Procedure 2 4.3.1

In procedure 2 there is looked how good a nonlinear LC can be approximated by a linear LU and CM. The conclusion is 
that this is not really possible. Looking at figure 11, the load factors and the RRMSE that are being calculated give a 
reasonable match. The RMSRE on the other hand are way off. Looking at the strain data, LC has a couple of very low  
 

 
Figure 10: Correlation plot of procedure 2, with the strain values lower than 1e-6 left out 
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Figure 11: Load identification results of procedure 2 

 
strain values in the order of 1e-7, while most of the strain values are betweon the orders of 1e-3 and 1e-5. If there is 
an error in those element, while using the RMSRE this result is big error values, this in combination with the fact that 
low strain values in LC not really contribute to the strain field, results in that LC strain elements that are under the 
absolut valure of 1e-6 are necelgted. This means 24 element get canceled from the total of 1156 elements, which is 
exeptable. This will be used in all the procedures of this section. That this improves the results can be concluded when 
looking at figure 12. They are still not good, but are more exeptable. To illustrated the difference between the 
correlation of the linear en no linear procedure figure 10 is compared with figure 8. In figure 10 the errors in the 
correlation are clearly noticeable. 
Noticeable in figure 12 is that the residuals are converging to a certain ratio after the second case of increasing sensor 
elements. This result cannot be called good as the total RMSRE is 0.3 and it has to be 0.1 or lower to be fair. In figure 
10 you can find the correlation plot of case with 15 sensors between the strains of LC and the strains of CM. Here you 
can clearly see that the results deviate from the centre line. In the case with 3 sensors the representation of the load 
factors is bad, so three sensor point are clearly not enough to approximated the nonlinear LC. This was expected. The 
relative error load factors are getting more accurate over time only is also sort of constant from the case with 15 
sensor elements, this is not found in the RMSRE was it only improves in the first step. So the problem can be lying in 
the control model. As the CM is currently linear calculated, it could be that the linear control model of the SFEM is not 
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a good representation of the nonlinear LC. So the next step will be to use a nonlinear CM to improve the result strain 
values. 
 

 
Figure 12: Load identification results of procedure 2, with the strain values lower than 1e-6 left out 
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 Procedure 3:  4.3.2

To improve the strain field results of the CM, the values are calculated nonlinear. Figure 13 demonstrates a major 
improvement of the RMSRE. It is most of the time under the 0.1 so fair and at some point reaches the 0.01 ratio. With 
a little more improvement it should be possible to create a reliable reproduction. The load factors are in the same 
range as in procedure 2, which is obvious as the same linear LU’s are used. Striking again is that more sensors not 
necessary concluded in more reliable load factors, but is somewhat constant when using more than six sensor 
elements. Using nonlinear LU’s should yield improvement for the load factors, which in turn should yield further 
improvement on the strain residuals. 

Figure 13: Load identification results of procedure 3 
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 Procedure 4  4.3.3

Procedure 4 is the best reproducing of the nonlinear LC so far. The results can be found in figure 14. It is clearly seen 
that the error ratio of the load factors is much better and this applies also for the residuals ratio. But again the amount 
of sensors after 12 sensors does not increase the error results much. Remarkable is that for the case with 36 sensors 
there is an increase in the load factor error. A reason for the inaccuracy could be that two points close to each other 
with relative high differences in strains are used. Calculating the same 36 sensor element case with different sensor 
elements results in error ratio of the load factors: [-0.00863, -0.00201, -0.00319]. This is indeed in line with the error 
ratios of the other cases. So the peak can be due to the choice of elements. It is not due to the singularity of the 
matrix as the condition of the matrix is good, as in lower than 10.  
 

 
Figure 14: Load identification results of procedure 4 
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 Procedure 5  4.3.4

To complete the available procedures, procedure 5 also ran. The assumption is made that the load factor should 
improve in comparison with procedure 2, but as in procedure 2 the strains are hold back by the linear CM. Looking at 
the end results it is almost the same as the results of procedure 2 as the residuals are constant within a ratio of max 
0.5, see figure 15. When looking at the load factors a major improvement is noticeable in comparison with procedure 
2. The assumption that was made is right. The conclusion can be made that nonlinear LU will represent the load 
factors of a nonlinear LC better than linear LU, but the strain residuals stay almost the same. So this error is due to the 
linear calculation of the CM. 
 

 
Figure 15: Load identification results of procedure 5 

 
 
  



 
 
 

27 

NLR-TR-2017-369  |  November 2017 

 

4.4 Linear and nonlinear procedures, with more than 3 
loads.  

The DFEM has 22 forces independent forces on the model. Here is investigated what happens if the amount of loads is 
increased, and so also the amount of LU. First the procedure 0 is used for the linear analyse and then procedure 4 is 
used to say something about the nonlinear analyse, as this is the most accurate nonlinear procedure.  

 Procedure 0 4.4.1

To calculate the SFEM with four loads, at least four sensors are necessary, with five loads at least five sensors and so 
on. To make the best comparison the same elements will be used for all loads calculations. Element 1-1 gives the first 
3 sensor elements and from element 550 -1 a sensor point will be added if the amount of loads is increased. These 
elements are chosen because they had good results in element analyse in section 4.2. The extra loads will be placed 
on the loaded side of the panel. The side is divided in 1, 2, 3 or 4 parts to match the forces. 
The results of the multi loads analyses are presented in table 6. It shows that the results for the load factors are good, 
but there can also be seen that more loads bring more insecurity in the model, higher relative error. Also the condition 
of the matrix is increasing, but this those not mean the residuals are worse. For case 0-F6 the condition number is 
1161 and the log10(1161) = 3.06, which means that for single input in the worst case scenario five significant digits can 
be trusted. This is still acceptable, but certainly be watch out with higher amount of loads. Next up is the nonlinear 
multi forces procedures. 
 

Table 6: Procedure 0 with variable amount of LC loads and LU’s Loads 

Procedure -forces  0-F3 0-F4 0-F5 0-F6 

Forces  3 4 5 6 

Sensor points  3 4 5 6 

Sensor elements  1-1 1-1, 550-1  1-1, 550-1  1-1, 550-1  

      

Matrix condition  8 197 247 1161 

      

Alpha 𝛼𝛼1 = 1.5 1.5000006 1.49993896 1.5000854 1.4999769 

 𝛼𝛼4 = 2.5  2.50000286 2.4999855 2.5000601 

 𝛼𝛼5 = 0.5   0.5000357 0.4998617 

 𝛼𝛼6 = 2    2.0000045 

 𝛼𝛼2 = 3 2.9999998 3.00000191 2.9999991 2.9999981 

 𝛼𝛼3 = −2 -1.9999999 -2 -1.9999907 -2.0000002 

      

RMSRE E11T 0.00E+00 1.50E-04 6.82E-05 2.10E-04 

 E11B 0.00E+00 3.33E-04 9.33E-05 1.88E-04 

 E12T 0.00E+00 5.86E-04 5.88E-05 8.06E-04 

 E12B 0.00E+00 9.21E-05 1.11E-04 3.51E-04 

 E22T 0.00E+00 5.43E-07 2.86E-06 2.57E-06 

 E22B 0.00E+00 4.67E-07 1.92E-06 2.75E-06 
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 Procedure 4 4.4.2

Figure 16, 17 and 18 present the results of 4, 5 and 6 loads on the procedure 4. From the 3 figures all are going to the 
a RMSRE level that is acceptable, though it takes some more sensor points. Also the condition number of cases are 
respectively in the order of 1e+16, 1e+2 and 1e+48. This means that the data from the cases with 4 and 6 forces could 
be complete rubbish and can only be trusted if it can be verified. As we can verify the strains for the CM and can said 
that they are not bad, there can be said that the load factors are reasonable. So this has no major effect on the results. 
Again can be concluded that adding more loads to the LC and LU results in more insecurities of the results. 
 

 
Figure: 16: Load identification results of procedure 4 with 4 loads 
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Figure: 17: Load identification results of procedure 4 with 5 loads 
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Figure: 18: Load identification results of procedure 4 with 6 loads 
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4.5 Effect of LU magnitude choices 

Because the magnitude of LU can be chosen freely, the effect of this choice has to be determined. Better LU matrixes 
results in a positive influence on the strains of CM. All the measurement are done with procedure 4, so for nonlinear 
LC, LU and CM. The table 7 below presents the different LU magnitudes that are used. It turns out that it has no 
benefit to try to estimate the forces on the model. It even increases the results for the strain residual. Load force 
estimations in the same order will prove advantageous for the results. Further there is not must difference between 
the results. 
 

Table 7: Results of procedure 4 with different LU’s 

Procedure - Case 4-0.LU1 4-0.LU2 4-0.LU3 4-0.LU4 4-0.LU5 4-0.LU6 

Magnitude of LU 

LUF1 1 14.99 15.0617427 0.1 10 5 

LUF2 1 29.99 29.8906459 0.1 10 5 

LUF3 1 -19.9 -20.035081 0.1 10 5 

Load factors expected 

A1 15 1.00067 0.98809 150 1.5 3 

A2 30 1.00033 0.99841 300 3 6 

A3 -20 1.0050 -1.00978 -200 -2 -4 

Load factors 

A1 15.06174 1.01201892 1.00790656 150.762283 1.49026453 2.99896932 

A2 29.89065 1.00209594 1.00525737 298.856201 2.99589896 5.98329639 

A3 -20.0351 0.9909566 0.98858029 -200.36250 -2.0027091 -4.0061197 

       

CMF1 15.06174 15.1701636 15.1808 15.0762283 14.9026453 14.9948466 

CMF2 29.89065 30.0528572 30.0478 29.8856201 29.9589896 29.9164819 

CMF3 -20.0351 -19.720036 -19.8063 -20.036250 -20.027091 -20.030598 

Deviation from LC Forces. 

CMF1 – LCF1 0.061743 0.17016361 0.18082935 0.07622833 -0.0973547 -0.0051534 

CMF2 – LCF2 -0.10935 0.05285724 0.04779216 -0.1143798 -0.0410104 -0.0835180 

CMF3 – LCF3 -0.03508 0.27996366 0.19371296 -0.0362503 -0.0270915 -0.0305986 

Matrix condition 4.089272 7.19413904 7.14154576 4.09019495 4.07740564 4.08461455 

Average Residual 3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04 3.17E-04 

RMSE total 2.94E-06 4.38E-06 4.34E-06 3.07E-06 1.37E-06 2.29E-06 

RMSE:       

E11T 1.32E-06 1.92E-06 1.90E-06 1.18E-06 5.49E-07 8.90E-07 

E11B 9.80E-07 2.09E-06 2.08E-06 1.27E-06 6.05E-07 9.63E-07 

E12T 3.10E-06 2.99E-06 2.92E-06 3.15E-06 1.24E-06 2.33E-06 

E12B 3.07E-06 2.82E-06 2.75E-06 3.09E-06 1.19E-06 2.28E-06 

E22T 4.21E-06 6.67E-06 6.62E-06 4.14E-06 1.92E-06 3.10E-06 

E22B 3.59E-06 6.78E-06 6.73E-06 4.10E-06 1.97E-06 3.11E-06 
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4.6 Conclusion of chapter 4 

The reproduction of a linear LC is good with the used method, though the residuals were not going exactly to zero. 
The biggest error contributor was the condition number of the 𝜀𝜀𝑝𝑝 matrix. This number should be low, as it can cause 

errors in the calculation of the load factors. To improve the condition number and the solution of the load 
identification extra sensor element can be added. In the nonlinear calculation it appeared that low strain values of LC 
should be neglected as they significantly increase the error of the model and are not very relevant for the recreation 
of the strain field as they are small. Procedure 4 was by far the best to reproduce the strain field of the nonlinear LC. 
This procedure result is a good representation of the strain field of the nonlinear LC. Also there was found that 
increasing the number of load creates more insecurity for the solution, but still result in fair till good results. The 
choice of magnitude of the LU’s seems not to influence the result of the load identification. 
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5 Detailed Finite Element Model (DFEM) 

To further research the behaviour of the load identification on a FE model, the DFEM will be investigated. To begin the 
behaviour of the linear perturbation step is tested (procedure 0) and secondly to perform a nonlinear identification 
procedure 4 is used as this was the most accurate in the SFEM. Other information won in the previous chapter will of 
course be considered. So will be looked at the time to run a DFEM and concluded that it is also worth looking into 
procedure 2 for the nonlinear LC. This is because it is significantly faster to run. 
The strain data that is used has a ‘double data’ precision, this means it has an accuracy of the order 1e-16. With this 
high order of accuracy there is less chance that during the solving of the load identification problems arise.  
In this chapter two different LC will be approached, which are named LC.1 and LC.2. LC.2 has a five times higher 
magnitude of the loads as the loads of the LC.1. With three different sets of LU’s, this will give in total six configuration 
on with load identification can be performed. The RMSRE and the RRMSE will be used to evaluate the CM and to 
conclude on the solutions. 

5.1 Procedure 0 

Starting with the linear perturbation step with loads that were given by NLR of perform a bending on the model, the 
load factors that are trying to achieve in the different cases can be found in table 8. As previously mentioned this 
linear perturbation step load identification should result in an exact calculation of these load factors. For the linear 
analyses the LU.3 will be left out of the calculation. 
 

Table 8: Load factors to achieve 

 LC1   LC2   
Loads LU1 LU2 LU3 LU1 LU2 LU3 
Fx 5 0,2 0,2 25 1 1 
Fy -2 0,2 0,1 -10 1 0,5 
Fz -3 0,2 0,1 -12,5 1 0,5 
Mx 4 0,2 0,2 20 1 1 
My 7 0,4 0,4 35 2 2 
Mz 2 0,2 0,2 10 1 1 
Frame spreader moment 1 0,2 0,2 5 1 1 
Skin spreader force 1,5 0,2 0,2 7,5 1 1 
forces on cross-beams 70, 71, 75, 76 1 0,2 0,1 5 1 0,5 
forces on cross-beams 72 10 0,2 0,1 50 1 0,5 
forces on cross-beams 73 5 0,2 0,1 25 1 0,5 
forces on cross-beams 74 5 0,2 0,1 25 1 0,5 
moments on cross-beams 70, 71, 75, 76 1 0,2 0,2 5 1 1 
moments on cross-beams 72 0,2 0,2 0,1 1 1 0,5 
moments on cross-beams 73 0,2 0,2 0,2 1 1 1 
moments on cross-beams 74 0,2 0,2 0,2 1 1 1 
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In the conclusion of the SFEM analysis was stated that the low values of strains in LC give a relative high error while 
they are not very interesting for the result as they are low strains so have little impact on the total strain field. For this 
reason the low values are left out, a strains is considered low when it is lower than the 0.1 times mean of all the LC 
strains. For the strains of LC.1 this means that the average strain is 1.838e-04, with a range of the absolute values 
from 6e-7 till 1.8e-3, but al values outside the range of -1.838e-5 and 1.838e-5 will be neglected. 
 
Cases with 22 sensors 
The analysis on the DFEM is started with a case of 22 sensors, the same amount as the LU’s. The first results indicate 
that the answer of the load identification is highly sensor location depended. To show this there are two cases 
performed. In the first case a load identification with 22 selected sensors with close proximity to each other is 
performed. In the second case a load identification with sensors that are spread throughout the DFEM is performed. 
Both results of the cases can be found in table 9.  
 

Table 9: Load identification results procedure 0 DFEM 

Procedure 0 [s22] - close 0  [s22] - spread 

Condition number 2.99E+07 3.590e+03 

RMS-re selected sensors 2.640e-20 5.937e-11 

RMS-re all sensors 1.465 2.927e-05 

 
Though for the case of close sensor element most of the load factors are somewhere in the area they should be, but a 
couple are way off. This result in high precision recreation of the selected sensor, but the recreation of the complete 
strain field is rather poor. For the spread selected sensors the load factors are better, which is reflected in the results 
of the strain fields. The strains field of the selected sensors is less accurate than the previous case, but the overall 
strains field is a better representation of the LC. 
 
Cases with more sensors 
From the SFEM there is known that using more sensors increases the accuracy of the solution. Appling this to the 
DFEM linear model results in figure 21. Looking at figure 21 it can clearly be seen that adding sensors will increase the 
accuracy further. 
To look at the influence of the spread in the sensors there are three cases set up. In the cases the sensor that are used 
are lying on different parts of not closer together than 0, 10, 100 or 500 millimetre. The RRMSE of the results can be 
found in the figure 19. Two things are noticeable the first one is that using all the sensors results in the smallest error. 
The second one is that there is a significant loss of sensor point when using the restriction on the distance. So there 
are a lot of sensor elements that are close together. 
In introduction of this paper was said that a big test contains about 100 senor elements. Limiting the amount of sensor 
elements to 100 sensor elements, gives figure 20. In this case the distance between the elements has a positive effect 
on the error. Though this is one case, the result is highly dependent on the randomly chosen elements. There were 
case where the 0 distance gave the best results, but there are significantly more case where the 100 millimetre sensor 
distance gives the best result.  
Concluding the sensor choice use always as many sensor point as available, in this case to increase the change of a 
good solution and decrease the amount of senor element to about 150. The choice is made to use the 100 millimetre 
distance between sensor elements in the further calculations.  
 
Now that some variables are established, we go back to the linear load identification over multiple sensors presented 
in figure 21. The frame spreaders are the worst in reproducing there load factor, especially frame spreader moment 
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on 70, 71, 75 and 76. When increasing the amount of sensor element the relative error of the load factor is 
significantly improving as is the RMSRE and the RRMSE. The end result is that all of the cases in this analysis result in 
excellent representation of the LC-1 strain field, but the last case gives the best result. 
 
The other LC and LU’s are investigated and the results can be found in figure 21 till 24. It can be seen that the 
calculation of LC.1 are better represented by LU.1 and LC.2 better by LU.2. The results of LC.1 with LU.2 and LC.2 with 
LU.1 also give a good solution of the problem.  
 

 
Figure 19: RRMSE results of procedure 0 with different sensors distances 
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Figure 20: RRMSE results of procedure 0 with different sensors distances and a maximum of 100 sensors 
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Figure 21: Load identification results of procedure 0 – LC.1 LU.1 
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Figure 22: Load identification results of procedure 0 – LC.1 LU.2 
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Figure 23: Load identification results of procedure 0 – LC.2 LU.1 
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Figure 24: Load identification results of procedure 0 – LC.2 LU.2 

5.2 Procedure 2 

If a nonlinear strain field can be identified with linear LU, we would benefit of the fast and low cost calculation of 
linear modelling. Although the SFEM study shows this in not promising, it is tested. The magnitudes of load of 
nonlinear LC.1 are used, with the LU.1 loads.  
The conclusion of this load identification analysis is that it is pretty bad, see figure 25. The load factors relative error is 
nowhere near zero. The RMSRE is also terrible. The RRMSE did give values but the best error is around 200%. This 
means that following section 3.3 (very value higher than 30 is poor) this is a poor representation. So it is not possible 
to calculate the nonlinear DFEM LC with the linear LU’s. 
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Figure 25: Load identification results of procedure 2 – LC.1 LU.1 

5.3 Procedure 4 

The calculation of the nonlinear LU the frame spreaders did not wanted the get calculated individually, so they are 
taken as one LU. This leaves 16 individual LU’s. In figure 26 till 31 the load identification over multiple sensor elements 
of all the six load identifications configuration the properties are given in the introduction of this chapter. In all six 
configurations the case with the most sensors (the last case) gives the best relative error of the load factor. 
To get the results for the nonlinear CM the model has to be run though Abaqus, because of the time consuming 
process of this, as some calculation took more than 12 hours, one specific CM models was chosen for every 
configuration. The RMSRE and the RRMSE of residuals can be found in table 9. From this result can be concluded that 
only LC2-LU1 is acceptable in the RRMSE, but for none of the configuration the RMSRE gives fair results. So there is no 
good representation of the nonlinear DFEM LC. 
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Table 9: Load identification results of the six configurations 

Case RMSRE RRMSE 
LC.1-LU.1 2,1914 932 
LC.1-LU.2 2,4514 860 
LC.1-LU.3 2,1836 864 
LC.2-LU.1 0,2675 7 
LC.2-LU.2 0,5755 270 
LC.2-LU.3 0,6327 182 

 
Despite of a poor solution the different configuration can be compared to each other. For the LC.2 there are clearly 
better result than for the LC.1 configuration. A possible explanation for this is the use of higher magnitude of loads, it 
causes more nonlinear behaviour of the DFEM. So maybe the deformation of 1 mm in the LC.1 is not causing 
significate strains. There can be concluded that the set of LU is despite of earlier found in section 4.5 of influence on 
the results of the nonlinear solution. 
Further noticeable is the relation between the load factors and the RMSRE. The better the representation of the load 
factors the better the RMSRE. This does not have to be the case in the nonlinear load identification but is seem it is in 
this case.  
 

 
Figure 26: Load identification results of procedure 4 – LC.1 LU.1 
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Figure 27: Load identification results of procedure 4 – LC.1 LU.2 



 
 
 

44 

November 2017  |  NLR-TR-2017-369 

 

 
Figure 28: Load identification results of procedure 4 – LC.1 LU.3 



 
 
 

45 

NLR-TR-2017-369  |  November 2017 

 

 
Figure 29: Load identification results of procedure 4 – LC.2 LU.1 
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Figure 30: Load identification results of procedure 4 – LC.2 LU.2 
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Figure 31: Load identification results of procedure 4 – LC.2 LU.3 
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6 Conclusion and recommendations 

This paper presents the method for a load identification through a linear least squares method that determines the 
linear combination of these columns and results in a set of load factors. These load factors yields  the best 
approximation of the reference strains. An efficient load determination procedure was created for complex and full 
scale virtual tests of large composite fuselage panels. The load identification was performed on two finite element 
models of fuselage panels. The first model was a simplified panel finite element model (SFEM) and the second one a 
highly detailed finite element model (DFEM), both created by the NLR.  
The focus of the analyses laid on the strain correlation and loads identification method, the development of the 
efficient virtual testing modelling and analysis process and the enhancement of accurate strain extraction methods 
and element selection. The goal of the study was to perform a corroborate load identification on the DFEM.  
 
The load identification of the linear analysed FE models can be performed with excellent results and thus will the 
reproduction of the strains field also be excellent. For the nonlinear strain field analyses the best results were 
achieved when the unit loads and control model were nonlinear evaluated. The two FE models deviated as the strain 
field reproductions of the SFEM were possible and rather good, but the strain field reproduction of the DFEM was not 
expectable. The error between the reference strain field and the reproduced one were too large. 
 
There were a couple of aspects which influenced the result positive or negative. The first problem that arose was the 
singularity of the matrix 𝜀𝜀𝑝𝑝. A high singularity in the matrix will result in poor quality of the load factors. To evaluate 

the singularity of the matrix the condition number can be used. Secondly, the number of significant digits in the input 
strains have a negative effect on the output if there are not enough digits. An effect that has a significant  influence on 
the results is the number of sensor element used, more sensors improve the results. Also the neglecting of low strains 
values improved the result. This is possible due to the low impact these values have on the total strains field. Also, 
there was discovered that increasing the number of load creates more insecurities for the solution, but still result in 
fair till good results. Finally, the results are highly influenced by the choice of sensor position. If choosing the same 
number of sensor elements on a model spread out over the model it has a major benefit for the overall strain field 
reproduction as the result are improved significantly. There is demonstrated that the choice of magnitude is of 
influence, only there is no prove in which way 
 
In the end the goal of reproducing a nonlinear strain field of the DFEM is not fully accomplished. Further research can 
be performed on the element selection. The specific placement of the sensors has major influences and advised is to 
look into ways to optimize the number of sensor element versus a good result. 
The choice of magnitude of the unit loads should also be further investigated, as it can be of significance.  
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