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Preface

This report describes the thirteen weeks I have conducted research at the University of Michigan under
the chair of Prof. Steven L. Ceccio. This research internship was performed in partial fulfillment of
the degree Mechanical Engineering at the University of Twente.

An internship is the perfect opportunity to explore a work environment in a different country and
broaden knowledge about cultures and opinions. I am very grateful for the support of prof. Harry
W.M. Hoeijmakers and prof. Steven L. Ceccio in arranging this experience.

During this internship I had the pleasure to work with Juliana Wu, Anubhav Bhatt and in par-
ticular with Dr. Harish Ganesh on the subject cavitation. They were always prepared to share their
expertise, experimental data and results which led to a very productive use of the limited time I had.

Furthermore, I would like to thank everyone who has contributed to this wonderful experience. In
particular the people in rooms AL2010 and AL2016, who immediately included me into their group.
The fierce discussions, jokes and small talk made an amazing environment to work in.
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Abstract

Young and Holl (1966) studied the effect of cavitation on the wake behind a symmetric wedge. They
discovered that the shedding frequency from the far wake, the von Karman vortex street, nondimen-
sionalized as the Strouhal number(St) is constant at high cavitation numbers (σ), but increases, peaks
and then decreases again when the cavitation number decreases. The same has been confirmed by
Belahadji et al. (1995), who also discovered that the spacing of the vortices, height over distance,
changes for cavitation numbers. The physical mechanisms responsible for the observations have yet
to be determined.

To understand this behavior several experiments are conducted in a water tunnel. Here, the
cavitation number is varied by reducing the pressure in the tunnel and the flow in the wake is visualized
using high-speed videos and X-ray densitometry. By my recommendation, experiments were also done
with an injection of milk to achieve better visualization of the vortices, especially at higher cavitation
numbers.

From these images the vortex spacing, velocity of the vortices and the Strouhal number are ob-
tained. For high cavitation numbers (σ > 2.5) this has been done using a MATLAB script to detect
the vortices, finding the centers and calculating the values. Unfortunately, for smaller cavitation
numbers air bubbles caused too much noise to use this automated script and thus the vortices needed
to be counted by hand using MATLAB ginput command. The results for the vortex spacing ratio
(vertical/horizontal spacing) against the cavitation number have a similar behavior as the Strouhal
number.

To better understand the properties of a cavitating wake, from both Strouhal number and spacing
perspective, the properties of the von Karman vortex street were examined by Saffman and Schatzman
(1981) using an inviscid model for the vortex street which modeled the dependence of the vortex
spacing with the drag coefficient for a given vorticity ratio between the far wake and shear layer. The
insight from their analysis is used to understand the effect of cavitation in altering the vortex spacing
and Strouhal number.

Since the drag on the object was not measured, the cavitation numbers from the experimental
results are used to calculate the corresponding drag coefficients. The drag coefficients are calculated
using the Riabouchinsky model including a correction for the wall effects.

With the help of estimated drag and measured vortex spacing, the experimental results are com-
pared with the theoretical analysis of Saffman and Schatzman (1981). With the assumption of a
constant vorticity and velocity in the shear layer for different cavitation numbers it is possible to
draw conclusions about the vorticity. Until the Strouhal peak (σ = 2.05) the vorticity of the vortices
decreases and after the peak the vorticity will stay approximately constant. This indicates that the
presence of cavitation will influence the wake dynamics behind a wedge. The amount of influence
needs to be investigated in further research.
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Chapter 1

Introduction

Cavitation occurs when a liquid is subjected to a rapid pressure drop. The liquid is abruptly converted
into vapor when the pressure drops below the vapor pressure creating cavities in the flow. When these
cavities are subjected to higher pressures they will implode and can generate intense shock waves.
This creates problems like significant damage to moving parts, noise and decrease of performance and
thus an engineering interest is triggered to fully understand this phenomenon.

Placed in a fluid stream, bluff objects will experience a separated flow extending to their wake.
The detachment of the boundary layer on both upper and lower surfaces forms two shear layers
that depending on the Reynolds number, will shed into alternating vortices also know as the von
Kármán vortex street. It is of high importance to predict the properties of vortex shedding in the
street accurately. When the vortex shedding frequency lies close to a resonance frequency of a nearby
mechanical system large deflections and fatigue cracks are likely to occur leading to premature failure.

The vortex street wake structure behind a bluff object for low Reynolds numbers is well known
and has been studied by Roshko (1955), Gerrard (1978) and Strykowski and Sreenivasan (1990).
However, the effect of cavitating flows has only been studied by a few. Young and Holl (1966) have
discovered that the vortex shedding frequency, and thus Strouhal number, at low cavitation numbers
increases until a certain point and then decreases again with a decreasing cavitation number. Similarly,
Belahadji et al. (1995) showed that the Strouhal number and the distance between the two rows of
primary vortices is influenced by the cavitation. Young and Holl (1966) and Belahadji et al. (1995)
discovered and confirmed the existence of a peak in Strouhal number for a decreasing cavitation
number. However, the physical mechanisms behind this behavior are yet unknown and is the primary
motivation for this research.

Saffman and Schatzman (1982) created an inviscid model for the von Kármán vortex street wake
related to the wake behind a bluff body. This model studied the dependence of the vortex spacing
with the drag coefficient for a given vorticity ratio. This model is used to connect the effect of a
changing cavitation number to the vorticity of the vortices in the fully developed vortices.

First chapter 2 will give some background information for this research topic. Chapter 3 gives an
overview of the experimental setup used for the experiments and the methods used to gather data
from these experiments. Because Saffman and Schatzman’s model uses the drag coefficient, different
models were investigated in chapter 4 to determine the drag coefficient for the experiments. The
results of the experiments and the comparison with Saffman and Schatzman’s model are given in
chapter 5. Lastly the results will be discussed in chapter 6 and possibilities for future work are given.
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Chapter 2

Background information

To truly understand the behavior of the vortex street in cavitating flows it is necessary to first un-
derstand what cavitation is and how the vortex street originates. Furthermore, the inviscid model of
Saffman and Schatzman (1982) is discussed since this model will be used to compare to the experi-
mental results.

2.1 Cavitation

When the local pressure drops below the vapor pressure a liquid will evaporate. This process can
be compared to boiling water but instead of a constant pressure and an increasing temperature, the
pressure is reduced and the temperature is constant. This process of forming vapor cavities is called
cavitation. When these low pressure vapor cavities are subjected to higher pressures elsewhere in
the flow, the cavities implode and can generate intense shock waves. This research will focus on
hydrodynamic cavitation which describes the cavitation process in a flowing liquid.

The potential of a flow to cavitate can be described by the free stream cavitation number σ and
can be calculated with equation 2.1. It gives a relationship between the free stream pressure, p∞, the
vapor pressure, pv, the density of the liquid, ρ and the free stream velocity, U∞. When a flow has a
low cavitation number it only takes a small pressure fluctuation for cavitation to occur. A flow with
a larger cavitation number will need a much bigger pressure drop for this to happen. It is thus much
more likely that cavitation is going to occur in a flow with a low cavitation number than in a flow
with a high cavitation number.

σ =
p∞ − pv
1
2ρU

2
∞

(2.1)

Behind a bluff object a low pressure region is produced by the separated shear flows. Whenever
this pressure is low enough, the region will be filled with vapor forming a cavity. This is called partial
cavitation, figure 2.1a. The shape and size of this cavity is determined by the geometric parameters
of the object and the free stream cavitation number. As the cavitation number is decreased the
finite-length cavity grows in length and ultimately grows into a super cavity, figure 2.1c.

2.2 Vortex shedding

Re-entrance of the flow into the cavity leads to the shedding of vapor clouds. In an ideal steady flow
the stagnation point will lie in the middle of the after wake on the wake axis of figure 2.2. However,
in reality, due to the unsteady separation of the flow around a blunt object this stagnation point is
highly unstable and will move up and down the wake axis.

The re-entrant jet from stagnation point s, figure 2.2, locks in a part of the vapor liquid mixture
inside the cavity and then sheds this vapor cloud from the cavity. During the actual shedding the
stagnation point s moves with the re-entrant jet to the other side of the wake axis. This alternates
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(a) σ = 1.40

(b) σ = 0.91

(c) σ = 0.78

Figure 2.1: Partial and super cavity in the wake of a 45◦ wedge with U∞ = 9.4 [m/s]. (Pictures from Ahn
et al. (2012))

between a re-entrant jet from the upper and lower flow creating a train of alternating vortices also
known as a von Kármán street.

Figure 2.2: Shedding mechanism behind a wedge (from Nakagawa (1989)).

2.3 Strouhal number

An important dimensionless number describing vortex shedding is the Strouhal number, St. The
Strouhal number represents the ratio of the inertial forces to the unsteadiness of the flow and is given
in equation 2.2 with the frequency of vortex shedding f , characteristic length L (in these experiments
the wedge height) and flow velocity U∞.

St =
fL

U∞
(2.2)
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Young and Holl (1966) discovered a relationship between the Strouhal number and the cavitation
number, figure 2.3. The Strouhal number is constant for high cavitation numbers. However with a
decreasing cavitation number the Strouhal number increases, has a peak and then decreases again.
Similar behavior is seen for different angles of a wedge.

Figure 2.3: Strouhal number versus normalized cavitation number (from Young and Holl (1966)).

Belahadji et al. (1995) confirmed the existence of this Strouhal peak as can be seen in figure 2.4a.
In figure 2.4b they also showed the effect of cavitation on the physical properties of the Kármán vortex
street. Here it can be seen that the vertical vortex spacing B over the horizontal vortex spacing A
decreases with decreasing cavitation number similar to the Strouhal graph after the peak. The goal of
this research is to further investigate the physical interpretation of this Strouhal dependent behavior.

(a) Strouhal number versus cavitation number (b) Vortex spacing versus cavitation number

Figure 2.4: Strouhal and vortex spacing of a 25◦ wedge (from Belahadji et al. (1995))

2.4 Saffman and Schatzman’s model

Saffman and Schatzman (1982) created a inviscid model that relates properties of the vortex street
with properties of the flow. This is done by deriving three expressions for the momentum, energy
and vorticity flux for an inviscid uniform vortex street of finite-area vortices placed in an uniform
stream of velocity U0. Even though a purely inviscid model is not completely adequate for accurate
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predictions for the real case, the goal of the model is to investigate the characteristics of the inviscid
flow and see to what extent the properties real flow can be compared.

A graphical representation of an inviscid uniform vortex street of a finite-area vortices
∑

is given
in figure 2.5. In this figure the following quantities are indicated: the wavelength l, the spacing of the
vortex streets h, the wedge height b, the vortex area A, the vortex strength Γ and direction of the
velocities.

Figure 2.5: Sketch of the flow in an fixed region
∑

indicating the quantities.

The three non-dimensionalized equations used for the model are:

κÛ2
0

2

(
CD
β

)
= κ

(
Û0 − Ûs

)
+ D̂′ (2.3)

(1− ε)κÛ
2
0

2

(
CD
β

)
= T̂ − κÛs (2.4)

Û0 − Ûs =
1

2
δÛ2

0 (2.5)

The three functions Ûs, D̂
′ and T̂ represent respectively the propagation velocity, part of the momen-

tum and the energy of the wake of the uniform vorticity. They are functions of κ and α and are given
in appendix A. The description of these variables together with the parameters of equations 2.3, 2.4
and 2.5 are given in table 2.1.

Equation 2.5 can be used to eliminate Û0, Û0 = 1±
√

1−2δÛs

δ , and together with known functions

Ûs(κ, α), D̂′(κ, α) and T̂ (κ, α) can be plugged into equation 2.3 and 2.4. This results into two equations
for κ and α with parameters CD/β, ε and δ which can be solved with MATLAB using a nonlinear
least-squares solver (lsqnonlin) for given values of the parameters.

After the equations are solved for the two variables κ and α, two other quantities namely the
Strouhal number S, equation 2.6, and the dimensionless vortex strength Γ̂, equation 2.7, can be
determined.
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κ The ratio of the vortex spacing and wavelength (κ = h/l)
α The ratio of the vortex area and the wavelength squared (α = A/l2)
β The ratio of the vortex spacing and the wedge height (β = h/b)
CD The drag coefficient
ε The fraction of the work done by the body on the fluid that is lost by

dissipation in the near wake (’the mechanical efficiency’)
δ The fraction of vorticity in shear layers that ends up in the fully developed (δ = ωv/ωs · (Us/U∞)2)

vortices times the square of the ratio of the velocity at the edge of the shear layer
to the velocity of the free stream

Table 2.1: Variables and parameters of equations 2.3, 2.4 and 2.5.

Sβ = κ
Û0 − Ûs
Û0

(2.6)

Γ̂

β
=

1

κÛ0

(2.7)

The quantities κ, α, Sβ and Γ̂/β are given for different values of δ and ε = 0(the ideal case)
in appendix B with the original figures from Saffman and Schatzman (1982) for comparison. These
figures show that the MATLAB program is validated in comparison with the results of Saffman and
Schatzman (1982). For this research the figures for κ versus the CD/β are most used and are given
in figure 2.6.
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(a) Large root Û0.
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(b) Small root Û0.

Figure 2.6: Spacing ratio of the vortex street as function of the drag coefficient for various values of δ and
ε = 0.

The influence of ε is determined by solving the equations for δ = 0.8, 1.0 & 1.2 and ε = 0, 0.3, 0.6 & 0.9.
The quantities κ, α, Sβ and Γ̂/β for these values are given in appendix C. From this can be concluded
that ε mostly influences the vortex area α and that the other values are almost independent of ε.

Since the experimental results will only contain the spacing ratio of the vortex street κ and the
Strouhal number S, the influence of ε can be neglected. Thus the ideal case with ε = 0 will be used
to evaluate the experiments.
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Chapter 3

Experiments

To investigate the physical mechanisms behind the Strouhal peak several experiments were conducted
in the water tunnel with different wedges. In a second series of experiments milk was added at the base
of the wedge to improve the visualization of the vortices. This provided a significant improvement,
particularly at high cavitation numbers.

3.1 Experimental setup

The experiments were conducted in the 9 inch water tunnel at the University of Michigan. The tunnel
has a 6:1 contraction leading into the test section with a diameter of 22 cm. Then the test section
transitions into a square cross section of 21 x 21 cm, which is further reduced to a 7.6 x 7.6 cm cross
section test section. The flow velocity in the test section can be varied from 0 to 18 m/s and the static
pressure from near vacuum to 100 kPa. For these experiments an approximately constant velocity of
6 m/s has been maintained while varying pressures between 25 and 85 kPa.

Wedges varying an angle of 15 or 30 degrees and a base height of 1.90 or 0.85 cm were used. During
this internship experiments were done with the 30 degree small wedge and 15 degree big wedge while
injecting milk. Then data were extracted from the high speed images. Experiments without milk
were done several months before, however data was extracted from the high speed images during this
internship.

Figure 3.1: Schematic overview test section with (a) cross section of 7.6 cm, (b) wedge base height of 1.90
or 0.85 cm, (c) injection port, (d) pressure transducer and (e) hydrophone.

A schematic overview of the test section is given in figure 3.1. At the base of the wedge, point c in
figure 3.1, an injection port is placed from which a liquid can be added to the flow. The static pressure
is measured with an Omega PX20-030A5V absolute pressure transducer at the entrance of the scaled
test section, point d in figure 3.1. The pressure difference between point d and upstream before the
reduction was measured with an Omega PX409030DWU10V differential pressure transducer. These
measurements together with the area ratios can be used to determine the velocity in point d. On top
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of the test section, point e in figure 3.1, a Brüel & Kjær hydrophone type 8103 is placed to record
the vortex shedding. The hydrophone is placed in a layer of water on top of the test section, but
separated from the test section by a plastic wall.

(a) Side view (wedge left) (b) Top view (wedge right)

Figure 3.2: Side and top view of the test section taken with the Phantom v730 high-speed cameras.
(cavitation number σ = 1.83)

The test section is illuminated by two Arrilux lamps and is captured simultaneously from the top
and side views by two Phantom v730 high-speed video cameras. The frame rate of the video recordings
was 1000 frames per second(fps) for the plain experiments and 500 fps for the milk experiments. The
top view camera was fitted with a multiple focal length lens of range 35-55 mm and the side view
camera with a 90 mm focal length lens. The cameras were triggered using a TTL signal generated by
a Stanford DG-535 delay generator which was triggered manually. They were then synchronized using
the Phantom Cine Control software and exported as ’.avi’ files with 1 fps. A graphical representation
of the side and top view is given in figure 3.2.

3.2 Data collection

Using the high-speed images the vortex spacing and velocity can be measured. Figure 3.3 shows an
example frame for vortex location, the horizontal spacing A and vertical spacing B.

Collection of the data has been done with two different MATLAB scripts. Both scripts calibrate
the wedge height in pixels with the height in SI units and crop the image to only include the after
wake. They differ in collecting the location of the vortices manually or automatically, but besides the
difference in input the scripts work in a similar matter.

Manual tracking is very straight forward. The figure opens in MATLAB and the vortex locations
are found by clicking on the middle of the vortex with the cursor. The MATLAB function ginput saves
these values to a vector. This method is very labour intensive and vulnerable to imprecise selection
of the vortex centers.

In the automatic tracking script the cropped image is turned into a binary image with a threshold
found by trail-and-error. The MATLAB function regionprops is then used to find all white areas and
centroids. The vortices are detected with a reasonable assumption of the area of the vortices and
the corresponding centroids are saved in a vector. This method is very time efficient and thus can
generate much more data points than the manual tracking script can. Also the precision of the data
is increased since the script will find the exact centroid of the detected vortex.

The automatic tracking script was developed to collect larger and more accurate data sets thus
making it ideal to use throughout the whole experiment. However, due to the visual noise of cavitation
at low cavitation numbers it is not possible to use this script for cavitation numbers lower that 2.5.
This means that for σ < 2.5 the manual tracking script has to be used.

After gathering the locations of the vortices in the first frame they are sorted on their horizontal
location. In all the following frames the vortex location is matched with the vortex location of the

10



Figure 3.3: Vortex spacing.

previous frame or added as a newly created vortex to create a matrix of vortices and their path. This
matrix is then used to calculate the vortex spacing and velocities.
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Chapter 4

Drag coefficient

The drag coefficient of the experimental data is needed to interpreter the results with the inviscid model
of Saffman and Schatzman (1981). Since the drag on the object was not measured, the cavitation
numbers from the experimental results are used to calculate the corresponding drag coefficients. Three
cavity-flow models were investigated to determine the appropriate drag coefficient. After this, a wall
correction was implemented to correct for the assumed unbounded flow of the cavity-flow models.

4.1 Cavity-flow models

The cavity-flow models have been examined by Wu et al. (1971). Their work contains the theoretical
models as well as experiments done to determine the accuracy of each.

4.1.1 Open wake model

Figure 4.1: Open wake model. Retouched image from Wu et al. (1971).

The open wake model, figure 4.1, assumes that all the flow coming into the tunnel is pushed to
the sides and thus U < V . Since in reality the cavity behind the object is not infinite, the predicted
drag coefficient will likely overestimate the true drag coefficient.

13



4.1.2 Riabouchinsky model

Figure 4.2: Riabouchinsky model. Retouched image from Wu et al. (1971).

The Riabouchinksy model, figure 4.2, considers a finite cavity mirrored to the blunt object over
the dotted line. This model has an advantage of providing a point of maximum velocity and minimum
pressure to determine the drag coefficient. From experiments done by Wu et al. (1971) it is concluded
that the Riabouchinsky model provides a better estimation of drag than the open wake model.

4.1.3 Re-entrant jet model

Figure 4.3: Re-entrant jet model. Retouched image from Wu et al. (1971).

The Re-entrant jet model, figure 4.3, assumes that part of the flow will flow back to the bluff
object adding a swirling effect to the flow. Of all the mentioned models, this seems the most accurate
at first glance, but it is also the most difficult to solve.

14



Gilbarg (1960) states that even though the Riabouchinsky model and the re-entrant jet model
are of great conceptual difference the models give almost identical results in the drag coefficient of
wedges. Therefore the Riabouchinsky model has been chosen to determine drag coefficients for the
experiments.

4.2 Wall correction

The Riabouchinsky model uses the assumption of an unbounded flow. In reality the flow is bounded
to the edges of the water tunnel which effects the maximum velocity on the wall and the minimum
pressure. The model should be corrected for the wall effects.

The results of the Riabouchinsky model and the correction as described in Wu et al. (1971) are
shown in figure 4.4. These results are used in chapter 5 to interpret the results from the experiments.
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Figure 4.4: Riabouchinsky model for the different wedge angles with wall correction for the different wedge
heights.
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Chapter 5

Results

The behavior of the Strouhal number has been tested and confirmed in earlier experiments done at
the University of Michigan. The wake dynamics, in particular the vortex street velocity and spacing,
were investigated and compared to the inviscid model of Saffman and Schatzman (1981). During these
experiments, two of the three parameters of the Strouhal number, U∞ and L, were kept constant.
The vortex shedding frequency is therefor the only parameter that varies throughout the cavitation
numbers. Increasing vortex shedding frequencies are in direct connection with an increasing vortex
street velocity or/and spacing.

5.1 Velocity and spacing

Figure 5.1a shows an approximately constant velocity throughout the cavitation numbers. This would
suggest that the distance between the vortices should be affected. The spacing ratio of the vortex
street behind a wedge is given in figure 5.1b. From this can be seen that the behavior of the spacing
ratio is similar to the behavior of the Strouhal number. The cavitation numbers of the peak values
correspond with each other(σ ≈ 2).
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(a) Velocity of the vortex street.
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(b) Spacing ratio of the vortex street.

Figure 5.1: Vortex velocity and spacing ratio as function of the cavitation number.

Results for the horizontal and vertical spacing of the vortex street are given in figure 5.2a and 5.2b.
It can be seen that both figures have a completely opposite behavior, but in line with the behavior of
the Strouhal number. However one might expect a higher increase in horizontal spacing due to the
significant frequency drop, figure 5.2a, when decreasing σ after the Strouhal peak (σ ≈ 2).
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(a) Horizontal spacing A of the vortex street.
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Figure 5.2: Horizontal (A) and vertical spacing (B) of the vortex street as function of the cavitation number.

5.2 Experiments combined with the inviscid model

Experimental data combined with the corresponding drag coefficients can be used with the inviscid
model of Saffman and Schatzman (1981). From figure 5.3 can be seen that the data points are scattered
over different lines of δ. This alone does not provide a lot of information. However adding a legend
of the different cavitation numbers, figure 5.4, gives much more insights in the behavior of the after
wake.
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Figure 5.3: Experimental data combined with the inviscid model of Saffman and Schatzman (1981).

Figure 5.4 shows that with a decreasing cavitation number, δ decreases until the Strouhal peak
(σ = 2.05), after which δ stays approximately the same number. The other wedges show a similar
behavior.

During the experiments the velocity of the free stream stayed constant and when assuming that the

18



velocity and vorticity in the shear layer isn’t effected by lowering the pressure these are also constant.
This means that δ would directly be coupled to the vorticity in the fully developed vortices.

With this in mind, figure 5.4 shows that with a decreasing cavitation number the vorticity in the
vortices decreases until the Strouhal peak. After the peak the vorticity will stay constant.
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Figure 5.4: Experimental data of the 15 degree big wedge on the inviscid model of Saffman and Schatzman
(1981) with indication of cavitation number.
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Chapter 6

Conclusion and Discussion

6.1 Conclusion

From the results it can be seen that the vortex spacing is directly connected to the Strouhal number.
Combining this with the theoretical drag coefficient and the inviscid model it can be concluded that
the vorticity of the vortex is influenced by the cavitation number. First, for a decreasing cavitation
number, the vorticity decreases until the Strouhal peak and then stays constant for smaller cavitation
numbers. This indicates that the presence of cavitation in the flow influences the wake dynamics
behind the wedge.

6.2 Discussion

The physical behavior of the Strouhal number is not yet unraveled, however this research has discovered
some interesting aspects that motivate further investigation for a full understanding.

Significant work went into extracting vortex street data from the high speed images. A script was
written to save time and collect more data points, however this script was not able to gather all data
points from the experiments with a low cavitation numbers. The noise of air bubbles between vortices
created too much overlap between vortices so that they could not be seen as separate objects. Due
to the time frame of this internship a manual solution was necessary. For future research more time
should be put into creating a more robust script to gather a larger volume of more accurate data.

In future research it is recommended to measure the pressure drag over the wedge instead of using
theoretical models. When this is done the comparison with the inviscid model would fully be from an
experimental point of view, where now it is a combination of experiment and theory.

Currently, effort is directed toward understanding the different mechanisms by which cavitation
can cause the observed wake dynamics by redistributing vorticity. One hypothesis is that the shock
wave created by the cavitation is causing the behavior of the vortices to change. To test this hypothesis
experiments can be done by adding extra gas in the after wake of the wedge suppressing the formation
of shock waves. The results of that research can then be compared with the results of this research
and conclusions can be made about the influence of cavitation and shock waves on the vortex street
properties.
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Appendix A

Equations Saffman and Schatzman (1982)

The three expressions for the momentum, energy and vorticity flux in an inviscid uniform vortex street
of finite-area vortices placed in an uniform stream of velocity U0 are given as:

κÛ2
0

2

(
CD
β

)
= κ

(
Û0 − Ûs

)
+ D̂′ (A.1)

(1− ε)κÛ
2
0

2

(
CD
β

)
= T̂ − κÛs (A.2)

Û0 − Ûs =
1

2
δÛ2

0 (A.3)

With non-dimensionalized parameters:

κ =
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l
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Γ
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2
0 b
, β =
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Equation (A.3) can be rewritten so that Û0 can be expressed as δ and Ûs:

Û0 =
1±

√
1− 2δÛs
δ

(A.4)

From this can be seen that the model can be solved for two different values of Û0 namely the large

root

(
Û0 = 1+

√
1−2δÛs

δ

)
and the small root

(
Û0 = 1−

√
1−2δÛs

δ

)
.

The three functions Ûs, D̂
′ and T̂ in equation (A.1) and equation (A.2) were calculated numerically

by Saffman and Schatzman (1981) and Schatzman (1981) and were given as a curve fit in Saffman
and Schatzman (1982):
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2
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With parameters:

a1 = π2

(
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Appendix B

Model comparison with Saffman and Schatzman (1982)
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(a) Large root Û0. (b) Large root Û0 by Saffman and Schatzman (1982).

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

 = 0.6
 = 0.7
 = 0.8
 = 0.9
 = 1.0
 = 1.1
 = 1.2
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Figure B.1: Spacing ratio κ(=B/A) of the vortex street as function of the drag coefficient for various values
of δ and ε = 0.
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Figure B.2: Vortex area α as function of the drag coefficient for various values of δ and ε = 0.
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Figure B.3: Strouhal number as function of the drag coefficient for various values of δ and ε = 0.
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(a) Large root Û0. (b) Large root Û0 by Saffman and Schatzman (1982).
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Figure B.4: Vortex strength as function of the drag coefficient for various values of δ and ε = 0.
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Appendix C

Influence of the energy dissipation factor ε on the

inviscid model
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0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

0.2

0.4

0.6

0.8

1

 = 0.8,  = 0
 = 0.8,  = 0.3
 = 0.8,  = 0.6
 = 0.8,  = 0.9
 = 1.0,  = 0
 = 1.0,  = 0.3
 = 1.0,  = 0.6
 = 1.0,  = 0.9
 = 1.2,  = 0
 = 1.2,  = 0.3
 = 1.2,  = 0.6
 = 1.2,  = 0.9

(b) Small root Û0.

Figure C.1: Spacing ratio κ(=B/A) of the vortex street as function of the drag coefficient for δ = 0.8, 1.0&1.2
and ε = 0, 0.3, 0.6&0.9.
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Figure C.2: Vortex area as function of the drag coefficient for δ = 0.8, 1.0&1.2 and ε = 0, 0.3, 0.6&0.9.
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Figure C.3: Strouhal number as function of the drag coefficient for δ = 0.8, 1.0&1.2 and ε = 0, 0.3, 0.6&0.9.
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Figure C.4: Vortex strength as function of the drag coefficient for δ = 0.8, 1.0&1.2 and ε = 0, 0.3, 0.6&0.9.
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