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Abstract

A widely used method for sea pipelaying is the S-lay method. Simulations are run
which determine the dynamics of the pipe including contact with the seabed and
parts of the ship. To improve this process, a dynamic model is presented for the
damped pipe. Contact is enforced using the Penalty, Augmented Lagrangian and Aug-
mented Barrier methods. For these methods a Finite Element discretization and nu-
merical integration steps using the Hilber-Hughes-Taylor method are presented.
Using an implementation of the above methods, a verification has been performed
against analytical solutions. The contact methods have also been compared. For the
static (equilibrium) problem, all three contact methods work well. For the dynamic
problem, only the Penalty method works well. Damping with and without contact
has been analyzed, as well as the dynamics of the pipe on different surface shapes.
Two simplifications have been researched. To simplify the middle section of the pipe
with no contact, a transfer function can be determined which describes the behaviour
of the dynamics of the pipe without calculating a numerical solution. Finally, in some
situations the static solution can be used in order to determine the contact position
with the seabed which simplifies the solution process further.
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Chapter 1

Introduction

Allseas1 is a company that specializes in providing services for the offshore industry. One of the main tasks of
Allseas is laying and protecting pipes in seas and oceans. The employed method for laying pipes is the S-lay
method. The ship has a pipe factory on board, which produces a pipe from the stern (back-end) of the ship. The
pipe is rolled into the water, supported by the stinger, a large metal construction. From there the pipe hangs
almost vertically in the sea, until the it reaches the seabed where it connects to the already laid pipe supported by
the seabed (fig. 1.1).

In order to perform this process efficiently, safely and effectively, knowledge must be available about the be-
haviour of the ship, the sea, the pipe and their interactions before the actual laying of the pipe. A simulation
is used to anticipate different scenarios. However, the currently used simulation software has issues in terms of
performance and functionality and must be improved.

1.1 Problem statement

The aim of this research project is to construct and analyze models for the movements and dynamics of the pipe
in a manner that can be computed efficiently. The pipe may be split up into multiple parts, each of which have
different dynamics and behaviour depending on the contact with objects around the pipe, whether it is suspended
in the sea or whether it touches the seabed. In particular the areas of the pipe where there is dynamic contact
with surfaces are of interest.

A model will be created in order to model the dynamics of the pipe as well as the contact with surrounding
objects in its environment. This pipe model will be used to apply contact modelling methods on. The contact
methods will be analyzed for suitability, performance and stability.

Apart from the modelling of the actual dynamics of the pipe, it is also of interest to look into ways to simplify
the solution process. It is interesting if it is possible to reduce (a part of) the problem such that no numerical
solution of the entire pipe is required to find out information about the movements or other characteristics of
the pipe. In that case, the amount of required computing power is reduced, making the simulation processes
performing even better.

Research questions Concretely, this problem can be formulated into two research questions:

1. Which contact modelling methods are applicable to the pipelaying problem, compared by their perfor-
mance, accuracy and stability?

2. Is is possible to simplify or predict parts of the dynamics of the pipe in order to reduce calculation times?

In the following chapters these questions will be addressed.

1General website: https://allseas.com/
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1.1. PROBLEM STATEMENT

FIGURE 1.1: The S-lay method performed by an Allseas ship. The pipe is produced and released from the back-end of the ship,
supported by the stinger. It goes downwards until it reaches the already laid pipe supported by the seabed.

Scope of project It must be noted that several things which may also be of interest to this research are out
of scope for this project. During the research and in particular in the implementation of numerical methods,
there may be ways to optimize and improve the supporting numerical methods. For example wider applicable
Finite Element methods and improved numerical integration techniques. The analysis of the numerical theory
behind these methods will not be elaborated on. Similarly, this research is not aimed at developing new numerical
methods, but rather aims to apply the available methods in literature on the posed problem.

An implementation will be required in order to practically evaluate the proposed methods. The goal of the
implementation is not readiness for general use but rather the ease of implementation, extensibility and visual-
ization purposes for this research project. That means that performance or applicability to other frameworks are
not of main interest, although applicability to related research is advisable.

Finally, this project looks into parts of the pipe being laid. This means that the solutions presented in the
research are a detailed part of the entire pipe, rather than the entire solution of the pipe. In particular, some
approximations may be made which are allowed when focussing on a small piece of pipe but cannot model the
entire pipe from ship to seabed. Of course, the contact methods presented in this research must be applicable to
extended models which can represent the entire pipe.
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Chapter 2

Modelling

This chapter describes the modelling decisions which have been made in order to find solution methods for the
pipelaying problem. First the general mathematical problem description is given. It is expanded to describe the
equilibrium and to include damping. Then the contact methods are described which can be applied to model a
surface where contact is enforced.

2.1 Euler-Bernoulli equations

In order to describe the movements of a pipe, a simplification is made by using the one-dimensional model for
a deformable beam [1, 2, 3]. This model describes the deflection of the beam y(t , x) from its resting position (a
straight beam) as a function of time t and location x. It is derived as a minimization problem of the modelled
energies Jn(y) in the beam, which are given by

min
y

Jn(y) = min
y

∫ L

0

1

2
E I

 y ′′(
1+ (y ′)2

)3/2

2

+ 1

2
µ(ẏ)2 −w y dx. (2.1)

The constant E [N/m2] denotes the elastic modulus which depends on the type of material the beam is made of
and determines the amount of stress required to elastically deform the beam. The constant I [m4] is the second
moment of inertia and is determined by the distribution of weight in a cross-section of the beam. Finally µ [kg/m]
is the mass per unit length and w(t , x) [N] is the distributed load on the beam. The values of E , I and µ are
assumed constant along the beam, although w(t , x) does not have to be.

The first term in the integral of (2.1) describes the strain energy due to the curvature of the beam, while
the second term describes the kinetic energy of the beam. The third term is the work done by the distributed
load w(t , x). The derivatives in the x (spatial) and t (temporal) direction are denoted with a prime ( ′ ) and a dot (˙)
respectively. The shape of the beam is determined by minimizing Jn(y), restricted by certain boundary conditions.
The domain of x is [0,L] and and the domain of t is [0,∞).

The boundary conditions for x = 0 are given by two of the four possibilities

y(t ,0) =B1(t ) y ′(t ,0) =B2(t ) y ′′(t ,0) =B3(t ) y ′′′(t ,0) =B4(t ), (2.2)

and for x = L by two of the four possibilities

y(t ,L) =B5(t ) y ′(t ,L) =B6(t ) y ′′(t ,L) =B7(t ) y ′′′(t ,L) =B8(t ). (2.3)

The functions Bi (t ), i ∈ {1, ...,8} must only depend on time. Linear combinations of these boundary conditions are
also possible, but are not of interest in this research. Of course, each linear combination must be non-degenerate.
For example, physically it is not possible to prescribe both y(t ,0) = 0 (the position) and E I y ′′′(t ,0) = 0 (the shear
force) at the same time. Two boundary conditions are given for x = 0 and two boundary conditions are given
for x = L. This assumption can be generalized to other locations along the beam, but that is currently not of
interest.
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2.1. EULER-BERNOULLI EQUATIONS

Also two initial conditions are required, given by

y(0, x) = y0(x), ẏ(0, x) = v0(x), (2.4)

with y0(x) and v0(x) given functions on the domain x ∈ [0,L].
Not only the deflection y is of interest in a solution of the dynamics of the beam [2]. Also the derivative y ′ ≈ θ

which is the deflection angle. The curvature κ = y ′′ is closely related to the moment M (torque) in the beam,
related by E Iκ = M . Furthermore, taking the derivative of the moment, M ′ = E Iκ′ = E I y ′′′ gives the shear force
in the beam. Because of these relations, the boundary conditions of the following equations may contain the
constants E I for the higher-order derivatives.

2.1.1 Non-linearity

The expression in (2.1) is non-linear because of the term concerning the curvature of the beam. For deflections
with small angles (|y ′| ¿ 1), the length of a piece of the beam is practically constant and thus the energy in the
beam due to the curvature as given in (2.1) can be approximated by

E I

 y ′′(
1+ (y ′)2

)3/2

2

≈ E I (y ′′)2. (2.5)

This substitution makes the expression for Jn(y) linear. Then the minimization problem becomes

min
y

J (y) = min
y

∫ L

0

1

2
E I (y ′′)2 + 1

2
µ(ẏ)2 −w y dx, (2.6)

subject to the same boundary and initial conditions as (2.1).
In [1], a valuable discussion is provided on the possibilities for analyzing and solving the non-linear form.

However, the authors also note that in many applications the assumption of a small angle of deflection is valid.
For the application of a hanging pipe in the sea the assumption may not be valid because parts of the beam may
hang almost vertically (i.e. y ′ is large). This means that for this research only sections of the pipe will be analyzed
for which the linear model is valid (small angles of deflection). Other methods have to be used to consider the
solution for the deflection of the pipe. We refer to Chapter 4 for a small discussion of the Finite Element choices
for a situation with large deflections.

2.1.2 Minimization

The expression in (2.6) is minimized in order to find the deflection y(t , x). This is done using the Theorem of
Euler-Lagrange [4] which allows solving the minimization problem

min
y

∫ L

0
L

(
t , x, y, ẏ , y ′, ÿ , y ′′)dx (2.7)

by solving the equation

∂L
∂y

− ∂

∂t

∂L
∂ẏ

− ∂

∂x

∂L
∂y ′ +

∂2

∂t 2

∂L
∂ÿ

+ ∂2

∂t∂x

∂2L
∂ẏ∂y ′ +

∂2

∂x2

∂L
∂y ′′ = 0. (2.8)

The integral minimization problem in (2.6), with L the integrand of J (y), can now be solved by finding a
solution of the partial differential equation given by

E I y ′′′′+µÿ = w, (2.9)

restricted by the same boundary conditions as (2.1). This equation is called the Euler-Bernoulli equation [1]. The
distributed load w(t , x) along the beam makes the equation non-homogeneous. Often in the following sections w
will be taken equal to zero for simplification of the analysis.
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CHAPTER 2. MODELLING

2.1.3 Damping

Two different forms of damping are introduced to model the dissipation of energy during movement (structural
damping) or during contact of the pipe with a surface.

Damping of vibrations

The damping of movements and vibrations of the beam, for example caused by friction with the seawater, can
be modelled as a non-conservative external force Fd [N]. Although choosing a suitable model of friction and
damping is highly depending on the application, a simple linear model is used in this research. The model is
based on the Rayleigh’s dissipation function [5] which makes the friction proportional to the velocity of the pipe,
i.e. Fd =−cd ẏ , and thus Fd =− d

dq̇ R with R = 1/2(cd q̇2). Because R does not depend on time explicitly, the Euler-
Lagrange equations can be updated to include non-conservative external forces according to [5] to read

∂L
∂y

− ∂

∂t

∂L
∂ẏ

− ∂

∂x

∂L
∂y ′ +

∂2

∂t 2

∂L
∂ÿ

+ ∂2

∂t∂x

∂2L
∂ẏ∂y ′ +

∂2

∂x2

∂L
∂y ′′ =−∂R

∂q̇
. (2.10)

Using this form, the new partial differential equation including a damping coefficient reads

E I y ′′′′+ cd ẏ +µÿ = w, (2.11)

again subject to the same initial and boundary conditions as (2.1).
The damping of movements during contact is discussed after the introduction of the modelling framework for

contact, see Section 3.5.

2.1.4 Equilibrium

In the partial differential equations (2.9) and (2.11) the solution y(t , x) depends on both time and location. It is
interesting to analyze the static problem, which consists of excluding all time dependent terms from (2.6). This
gives a new minimization problem given by

min
y

∫ L

0

1

2
E I (y ′′)2 −w y dx, (2.12)

which is minimized by the ordinary differential equation

E I y ′′′′ = w (2.13)

with some boundary conditions. Notice that (2.13) can also be found by excluding all time dependent terms
in (2.9). In that case it is called the equilibrium of the partial differential equation.

In the following sections, often a distinction will be made between the (simpler) static problem and the dy-
namic problem. The static problem may be used to analyze certain properties of the behaviour of the solution
such as shape, penetration of the contact surface or as an approximation to the dynamic problem with certain
boundary conditions.

2.2 Three sections of beam

Using the Euler-Bernoulli equations, the pipe hanging in the sea can now be analyzed. To simplify this process,
three sections of the pipe are identified (see fig. 2.1). First of all there is the section fixed to the ship which starts
horizontally, rolls over the stinger with possibly permanent or alternating contact, and ends in a short piece of
pipe which is guaranteed not to make contact with the stinger.

The second section is connected to the first section and is suspended above water. It will penetrate into the
sea and the rest of the (mostly vertically) hanging section is submerged in the water. The bottom of the second
section of the pipe must not make contact with the seabed.

The third and final section of the pipe is connected to the bottom of the second section and makes contact
with the seabed. The end of the section is assumed to be fixed to the seabed, although in reality it will be held in
place by an indefinite length of pipe laying still on the seabed.

– 5 –



2.2. THREE SECTIONS OF BEAM

FIGURE 2.1: The S-lay method performed by an Allseas ship. The pipe is divided into three sections (indicated in red) which are
analyzed separately. The contact surface (seabed) is indicated in green.
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Chapter 3

Contact

For two of the sections of the pipe, contact must be enforced. There is a rich amount of literature available
for modelling and solving contact problems. A starting point for this section has been [6] which describes the
applicability of contact methods in the Finite Element Framework. These methods can be extended and solved
with Lagrangian Multipliers [7, 8, 9].

This means that four things must be satisfied for a valid solution of the problem as given in (2.9), namely

1. the partial differential equation;

2. the boundary conditions;

3. the initial conditions;

4. no penetration of the surface where contact is enforced.

The enforcement of contact is defined in terms of penetration of a defined surface. This may be a constraint of
the form y(t , x) ≥ 0 for all t and x. Notice that such a requirement is not a requirement on the domain variables x
and t , but rather a requirement on the entire solution. In particular even a simple translation of a solution can
make the solution invalid. That is not usual for a linear partial differential equation. In practice when consider-
ing numerical solutions it is hard, if not impossible, to meet these requirements all together, let alone find such
solutions efficiently.

In [10] a power penalty method is described for enforcing a constraint on the solution. The authors intro-
duce a penalty in order to penalize penetration of contact surfaces. This research looks into multiple methods
for enforcing contact, in order to find the best usable method for solving applicable problems. Three contact en-
forcement methods are considered, as described in [6], namely the Penalty method, the Augmented Lagrangian
method and the Augmented Barrier method. All three methods introduce a penalty functional Ξ(dN (y)) in the
energy integral as given in (2.1) in order to create the integral minimization problem

min
y

Ĵ (y) = min
y

(
J (y)+

∫ L

0
Ξ(y)dx

)
= min

y

∫ L

0

1

2
E I (y ′′)2 + 1

2
µ(ẏ)2 +Ξ(dN (y))−w y dx, (3.1)

which may be minimized to derive a partial differential equation. For each of the contact methods the form of Ξ
is given, as well as the derivative with respect to dN which will be required when the numerical integrations are
derived in Section 4.1.7. The form of dN is determined by the contact surface and subsequently the gap, discussed
in Section 3.1. Note that the penalty does not always have a physical interpretation, depending on the form
of Ξ. Also note that both Ξ and dN may be non-linear functionals, which also makes the resulting minimization
problem non-linear. Numerically, this means that equations will be solved using the Newton method.

3.1 Gap

The first requirement for modelling the contact is identifying the surface where contact is enforced. In this re-
search the surface is a one dimensional function of the spatial variable x. We use an explicit function, although it

– 7 –



3.2. PENALTY METHOD

x

Solution y(x)

Contact surface f(x)

Gap

FIGURE 3.1: The gap between the solution and the contact surface. The green area indicates a positive gap (no contact violation),
while the red area indicates a negative gap (contact violation).

is trivial to extend this assumption to an implicit function. It is also possible to extend this function to depend on
the temporal variable t , which makes the surface change over time. For practical applications, the surface with
contact will usually be higher dimensional in order to describe an object in two or three dimensional space.

In order to determine the penalty functional given in (3.1), the gap dN [m] must be determined. This is the
normal (minimal) distance between the surface and the object. In our one-dimensional problem with only up and
down movements, this comes down to the vertical distance between the surface and the value of the deflection
of the pipe (fig. 3.1). In higher-dimensional problems, the gap is a vector with a direction and a length.

To describe the shape of the contact surface, the function f (x) is used. Then the solution y is constrained
on y ≥ f (x) and the gap will become dN (y(x)) = y(x)− f (x) which is affine in y . Often in the following sections
the contact surface will consist of the line f (x) = 0 with the restriction that the solution has to satisfy y ≥ 0. This
means that the normal distance between the solution and the contact surface equals dN = y .

If the gap is positive (dN > 0), there is no contact. Otherwise (dN ≤ 0), there is contact and the penalty func-
tional will make sure that the contact is enforced as well as possible.

3.2 Penalty method

The Penalty method is the simplest method of the three considered methods. It is the only one which has a
physical interpretation, and can be seen as a spring embedded in the surface where contact is enforced. The
penalty functional Ξ is given by

Ξ(dN ) =
0 dN > 0

p
2 d 2

N dN ≤ 0
(3.2)

and its derivative with respect to dN is given by

∇dNΞ(dN ) =
0 dN > 0

pdN dN ≤ 0
. (3.3)

The parameter p > 0 is a penalty parameter. Notice that Ξ(dN ) is a quadratic functional, which makes the resulting
integral equation quadratic which may ease the solution process. However, also notice that the derivative of the
penalty functional is not differentiable, exactly around the point of interest dN = 0.

In figure fig. 3.2 the contact penalty Ξ(dN ) is displayed with its derivative for multiple values of p.

3.3 Augmented Lagrangian method

In order to improve the performance of the Penalty method, a Lagrangian method can be used. In addition to p,
it has a parameter λ(x) ≤ 0 which acts as a way to ‘remember’ contact, provide stability to numerical methods and
reduce the effect of non-linearities in the equations.

– 8 –



CHAPTER 3. CONTACT

-0.4 -0.2 0.2 0.4
dN

0.5

1.0

1.5

2.0

2.5

3.0

Contact penalties

-0.4 -0.2 0.2 0.4
dN

-10

-8

-6

-4

-2

Derivative of contact penalties

p = 10

p = 100

FIGURE 3.2: contact penalties Ξ(dN ) and the their derivatives for the Penalty method with dN ∈ [−0.5,0.5].

-0.4 -0.2 0.2 0.4
dN

1

2

3

4

5
Contact penalties

-0.4 -0.2 0.2 0.4
dN

-10

-8

-6

-4

-2

Derivative of contact penalties

p = 10, λ = 0

p = 10, λ = -2

p = 100, λ = 0

p = 100, λ = -2

FIGURE 3.3: The contact penalties Ξ(dN ) and the their derivatives for the Augmented Lagrangian method with dN ∈ [−0.5,0.5].

For the Augmented Lagrangian method the penalty functional is augmented and becomes to

Ξ(dN ) =
0 λ+pdN > 0

1
2p (λ+pdN )2 λ+pdN ≤ 0

(3.4)

and its derivative with respect to dN is given by

∇dNΞ(dN ) =
0 λ+pdN > 0

λ+pdN λ+pdN ≤ 0
. (3.5)

The contact penalty and its derivative are displayed in fig. 3.3 for some values of p and λ. See [6], section 3.4.2,
for an in-depth explanation of the reason for choosing λ in this way.

3.4 (Augmented) Barrier method

The Augmented Barrier method is introduced as a way to not only provide numerical stability, but also to increase
the penalty levels in case of large penetrations. Instead of using a quadratic functional, a logarithmic functional
is used. First a naive method is considered (Barrier method) which is then expanded and augmented to deduce
the Augmented Barrier method.

3.4.1 Barrier method

A logarithmic form is introduced by setting the penalty functional to

Ξ(dN ) =− 1

p
log(dN ) (3.6)

which has a derivative with respect to dN of the form

∇dNΞ(dN ) =− 1

pdN
. (3.7)
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FIGURE 3.4: The contact penalties Ξ(dN ) and the their derivatives for the Barrier method with dN ∈ [−0.5,0.5].

This functional has the property that it is undefined for values of dN ≤ 0. For theoretical applications the method
should work well. Around the value of dN = 0 a barrier is erected which becomes steeper as the value of p in-
creases, tending to a penalty of ∞ for dN = 0. This behaviour should model the requirement that dN ≥ 0 perfectly:
the solution never violates the contact surface. In figure 3.4 a visualization of the Barrier and the derivative with
respect to dN is shown.

However, notice that even for dN > 1 (a valid solution), the penalty term Ξ(dN ) is non-zero and even negative.
This means that the solution is pushed away from the barrier if it is close to the barrier dN = 0, but it is pushed
towards the barrier if it is far away from it. This effect is reduced for large values of p.

There are two problems with this method. Because of the penalty functional tending to very large values
around the asymptote, the conditioning of the numerical problem becomes worse as the value of p is increased.
In addition to that, during the process of solving the minimization problem it may occur that before convergence
of the solution it violates the requirement dN ≥ 0 for a short time. However, the penalty does not exist there and
the penalty functional is undefined for those values. By extending the penalty functional it will never be undefined
during the numeric solution process.

For this reason the Barrier method is both augmented and extended in order to form the Augmented Barrier
method.

3.4.2 Augmented Barrier method

The Barrier is shifted such that the asymptote moves towards negative values of dN , and a Lagrangian param-
eter λ(x) is added. Finally, the barrier functional has been extended with a quadratic functional such that the
penalty functional is defined for all values of dN . The new functional is given by

Ξ(dN ) =


λ
p log(s +pdN ) dN ≥−βs

p

λ
p

(
− p2

2(s(1−β))2 d 2
N + (p(1−2β))

s(1−β)2 dN + β(2−3β)
2(1−β)2 + log(s(1−β))

)
dN <−βs

p

(3.8)

with derivative

∇dNΞ(dN ) =
λ

1
pdN+s dN ≥−βs

p

λ
−pdN−2βs+s

(β−1)2s2 dN <−βs
p

. (3.9)

The contact penalty and its derivative are displayed in fig. 3.5 for some values of p and λ.
Notice that several parameters have been added. The parameter p > 0 is still a penalty parameter and controls

how well the contact must be enforced. Furthermore, s ∈ [1, smax] is a scaling parameter which may be used to
scale the penalty if more than one barrier is used when solving a contact problem. The value of smax may be set to
a large value such that the scaling does not reduce the effectiveness of the method (see [6] for more information).
Finally the parameter β ∈ (0,1) controls how far between dN = 0 and dN = −s/p (the logarithmic asymptote) the
functional changes to the quadratic form. The coefficients of the quadratic continuation are chosen (uniquely)
such that the entire functional Ξ is continuous and differentiable in dN .1

1In [6] there is an error in the formula for Ξ (page 44, top). In the case for dN < (−βsi )/p, the Lagrangian and penalty parameters are
missing making the functional discontinuous. In (3.8) and (3.9) these terms have been added.
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FIGURE 3.5: The contact penalties Ξ(dN ) and the their derivatives for the Augmented Barrier method with dN ∈ [−0.5,0.5].

3.5 Damping on contact

In addition to structural damping, there are also possibilities to model damping during contact. This allows
adding certain properties of materials. A common application is the seabed, where the surface is made of sand,
mud or some other soft material. In this case, energy will be lost on contact and some kinetic energy will be ab-
sorbed by the surface. Note that there are other contact situations where bounces because of contact and preser-
vation of kinetic energy are realistic. This may be the case when the pipe makes contact with a metal surface like
on the stinger of the ship. In those cases no damping on contact should be added to the model.

The contact is modelled in a similar way as the structural damping of the entire beam. It is seen as a resistance
force in the opposite direction to the contact velocity ḋN . The magnitude of the resistance force depends on a
damping parameter cc . The damping is active only close to the surface, or whenever the solution has penetrated
the surface (the gap dN is negative), which is characterized by the parameter εg . This gives a combined model for
a ‘drag force’ Fc [N] , given by

Fc (ḋN ) =
0 dN > εg

−cc ḋN dN ≤ εg
. (3.10)

The parameter εg is added to make sure that damping occurs even when the contact methods perform well, i.e.
the number of time steps spent below the contact surface (in violation of the contact requirement) is small. To
increase the places where the solution is damped, the region of contact is expanded to allow more drag, even
when no contact occurs. In particular this is needed when a contact method with a high valued penalty parameter
is used. In that case, there is almost no contact violation, which would result in almost no damping caused by
contact. By making the value of εg non-zero, a small region above the contact surface also causes the solution to
be damped.

Notice that in the expression for Fc the argument ḋN is used instead of ẏ . For a one-dimensional problem this
makes no difference, but for higher-dimensional problems the direction of the drag depends on the shape of the
surface and the direction of movement in comparison to the surface.

3.6 Updating rules

This chapter describes contact methods which have a penalty parameter p and may have a Lagrangian parame-
ter λ(x). These parameters do not have to have a fixed value but are rather updated between steps in the solution
process of a static or dynamic problem. For the dynamic problem time integration steps are taken, and each time
step the Newton method is used to solve the equations because of the non-linearity of the equations (see Chap-
ter 4). For the static problem only Newton steps are required to find a solution. The value of λ(x) is then updated
and this is repeated until a good solution is found. the following sections are a discussion on when and how the
values of p and λ are updated.

3.6.1 Updating rule of p

In all of the contact enforcement methods, a penalty parameter p is present. This parameter determines how
well the contact (or the constraint on the solution) is enforced. For each of the methods, this parameter may vary
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FIGURE 3.6: The increasing of the value of p during each time step, while letting the value converge over time to a stationary p.

in value and in particular may change during solution iterations. A distinction is made between the static and
dynamic problem.

Static problem For the static problem (no time component, equilibrium) given in (2.13), it is advisable to in-
crease the value of p during multiple iterations of the solution process [6]. The value will be initialized at some
value p0 > 0, and be increased each iteration (usually a Newton iteration, but possibly something else) with a fac-
tor ψ≥ 1. After n iterations, the value of p will be p0ψ

n−1. By increasing the value of p during the solution process,
the solution of the previous value of p is known and used to find a new solution improved contact enforcement.

A higher value of p will enforce the contact better, but the numerical stability may decrease, due to larger
differences in the order of values in the calculations. For example, for too large values of p the penalty functional
will dominate the contact requirement over the problem structure. For this reason it is a good idea to analyze
a maximum value of p per application to make sure no large numerical errors occur in any stage of the solving
process.

Dynamic problem For solving the dynamic problem, the situation is different. Assuming that the initial con-
dition y0 does not violate any surface where contact is enforced, a high value of p can be used to calculate the
solution at the next time step, for a single time iteration step (Section 4.1.7). After all, a previous solution is known
which is ‘close’ to the new solution, assuming the time step is small enough.

In addition, it does not make sense to increase the value of p during a time iteration step (see fig. 3.6). The
previous solution is known, and by decreasing the value of p a lot in order to increase it again slowly during the
time-step solution iterations will destroy the knowledge in the previous solution. Any enforced contact at the
previous time step will be reduced with a lower p and slowly restored during the increase of p during the time
integration step.

It is clear that this is not an efficient way to do a time integration step, so a constant value of p is used (ψ= 1)
for dynamic problems.

3.6.2 Updating rules of λ

In the Augmented Lagrangian and Augmented Barrier methods, a Lagrangian parameter λ(x) is present. This
parameter is updated discretely using the penalty functional Ξ and the next value of p. The value of λ is initialized
with some function λ0(x), usually a constant. The initial value does not influence the working of the contact
methods, except for the first few time steps. The allowed values of λ0 depend on the contact method.

In order to update the value of λ, two things are required. The update rule gives the new value, and the update
scheme provides the times or steps when the update rule is applied.

We can use the penalty functional and update λ− to the new value λ+ using

λ+ =∇dNΞ(dN ;λ−). (3.11)

This expression can be deduced from the Lagrangian minimization condition [6]. Additionally, a variation of the
update rule for λ has been designed for numerical stability. Instead of updating the entire value of λ, a linear
combination of the old and the updated value is used, determined by a parameter η ∈ [0,1], given by

λ+ = ηλ−+ (1−η)∇dNΞ(dN ;λ−). (3.12)
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The extreme value η = 0 gives the original update rule (3.11) and η = 1 gives a constant function λ = λ0 for each
update step.

Determining the scheme when to update the value of λ for the static problem is straightforward. Each itera-
tion of the method, the value of λ is updated once before finding the Newton method solution for that iteration.
For the dynamic problem, two schemes for updating λ have been made. Scheme 1 updates the value of λ each
Newton iteration (multiple times per time step), while Scheme 2 updates the value of λ only after each time step.
Using Scheme 1, the value of λ is updated more often, but non-final solutions within the Newton method are used
which may not be helpful for the contact method. Scheme 2 however uses old ‘information’ of the previous time
step, which may harm the performance and stability for the Newton convergence. Both schemes are compared
in Section 6.2.2.
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Chapter 4

Analysis: Finite Element Method

In this chapter the Finite Element expressions for the model of the pipe are derived. Using those expressions,
a numerical integration scheme is given which is used to integrate the dynamic problem. Finally, a reference
solution will be constructed which is used to benchmark the convergence of the numerical methods.

4.1 Finite element derivation

The Finite Element Method [11, 12] has been used for solving the minimization problem (2.6) numerically. More
specifically, [13] discusses Finite Element considerations and common assumptions for solving problems involv-
ing beams and frames. As discussed in Section 2.1, only small deflections are allowed. This allows a simpler linear
Finite Element model, but restricts the solutions to only small parts of the pipe. In order to find a representation
of the entire beam, a non-linear Finite Element model must be taken such as the co-rotational method. That
method is discussed extensively in [14] and for examples the reader is referred to [15]. For simplicity of the deriva-
tions, the linear Finite Element model is used here which suits the purposes of this research. However, note that
the following derivations can be repeated even if other Finite Element method assumptions are made.

The spatial domain [0,L] is divided into a partition of N ordered elements, not necessarily of equal length.
The partition will have N + 1 points (nodes) xk with x0 = 0 and xN = L and xk+1 > xk for k ∈ {0, ..., N − 1}. The
subdomains between consecutive points are elements, denoted by ek with k ∈ {1, ..., N } (the first element e1 con-
nects x0 and x1). The length of element ek is given by Lk = xk − xk−1. As all of the following derivations are only
in the spatial direction, the solution y(t , x) is denoted with yt (x).

For each node xk we now have two degrees of freedom: the value of yt ,k = yt (xk ) and the value of ϑt ,k = y ′
t (xk ).

This means each element ek has four degrees of freedom: two for each connecting node. For each element we
define four basis functions on that element, given by

φ1(ξk ) = 1−3ξ2
k +2ξ3

k φ2(ξk ) = Lk

(
ξk −2ξ2

k +ξ3
k

)
φ3(ξk ) = 3ξ2

k −2ξ3
k φ4(ξk ) = Lk

(
−ξ2

k +ξ3
k

)
(4.1)

where ξk is an element-local coordinate given by ξk = (
x −xk−1

)
/Lk and Lk is the length of the element. Outside

the domain of the element, the basis functions equal 0. The basis functions are Hermite Qubic Shape Functions
on [0,1]. The functions are derived in Appendix A.1. See fig. 4.1 for a visualization of a single element.

The solution y of the minimization problem (2.6) is now represented by

y(t , x) = yt (x) =
N∑

k=1
yt ,k−1φ1(ξk )+ϑt ,k−1φ2(ξk )+ yt ,kφ3(ξk )+ϑt ,kφ4(ξk ). (4.2)

This is a function of x ∈ [0,L] since the ξk are an affine linear function of x. The function has 2(N +1) parameters,
namely yt ,k and ϑt ,k for k ∈ {0, ..., N }. Notice that yt (x) is continuous and differentiable in the spatial direction x.
Note that for some node xk , the shape functions of two elements connect in a continuously differentiable way,
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FIGURE 4.1: Left: an element with its coordinates, derivative and length. Right the Finite Element basis functions with the Gauss
associated integration points ξk,1 and ξk,2 for k the element index.

such that the value of yk and ϑk are equal to yt (xk ) and y ′
t (xk ). We can also write (4.2) as

yt (x) =∑
k

N (ξk )qt ,k (4.3)

with

N (ξk ) = (
φ1(ξk ),φ2(ξk ),φ3(ξk ),φ4(ξk )

)
, qt ,k = (

yt ,k−1,ϑt ,k−1, yt ,k ,ϑt ,k
)T . (4.4)

Furthermore the qt ,k can also be written as qt ,k = Pk qt if we define

qt =
(
yt ,0,ϑt ,0, yt ,1,ϑt ,1, · · · , yt ,N ,ϑt ,N

)T . (4.5)

The Pk are permutation matrices of dimension 4× 2(N + 1) (for N elements) that position the element coeffi-
cients qt ,k into the larger qt vector. They are of the form

Pk =
(
O4×(2k−2) I4×4 O4×(2N−2k)

)
. (4.6)

4.1.1 Stiffness matrix

In order to determine the stiffness matrix K , the first term of (2.6) given by∫ L

0
E I

(
y ′′

t

)2 dx (4.7)

is integrated. Using the substitution (4.2) we find∫ L

0
E I

(
y ′′

t

)2 dx =
∫ L

0

∑
k

E I
1

L4
k

qT
t ,k N ′′(ξk )TN ′′(ξk )qt ,k dx

=qT
t

∑
k

PT
k

E I

L3
k

∫ 1

0
N ′′(ξk )TN ′′(ξk )dξk Pk

qt

=qT
t

(∑
k

PT
k Kk Pk

)
qt

=qT
t K qt . (4.8)

In (4.8) we use that

N ′′(ξk ) =
(
12ξk −6 L(6ξk −4) 6−12ξk L(6ξk −2)

)
, (4.9)
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such that we can conclude

Kk =E I

L3
k

∫ 1

0
N ′′(ξ)TN ′′(ξ)dξ

=E I

L3
k

∫ 1

0


(6−12ξ)2 (6ξ−4)(12ξ−6)Lk −36(1−2ξ)2 (6ξ−2)(12ξ−6)Lk

(6ξ−4)(12ξ−6)Lk (4−6ξ)2L2
k (6−12ξ)(6ξ−4)Lk (6ξ−4)(6ξ−2)L2

k
−36(1−2ξ)2 (6−12ξ)(6ξ−4)Lk (6−12ξ)2 (6−12ξ)(6ξ−2)Lk

(6ξ−2)(12ξ−6)Lk (6ξ−4)(6ξ−2)L2
k (6−12ξ)(6ξ−2)Lk (2−6ξ)2L2

k

dξ

= E I

L3
k


12 6Lk −12 6Lk

6Lk 4L2
k −6Lk 2L2

k
−12 −6Lk 12 −6Lk

6Lk 2L2
k −6Lk 4L2

k

 , (4.10)

and K = ∑
k PT

k Kk Pk . Notice the subscript k has been stripped of the ξk argument in the integration for more
clearness.

4.1.2 Mass matrix

Similarly to the K matrix, we can also deduce the form of the mass matrix M . In some literature the density %
and the cross-section area per unit length A may be found instead of the mass per unit length of the beam µ. The
relation µ= %A holds. This matrix is not used in calculations for the static problem (2.13).

The mass matrix is determined from the term ∫ L

0
µ

(
ẏt

)2 dx (4.11)

in (2.6). We substitute (4.2) in the form yt (x) =∑
k N (ξk )qt ,k into (4.11) and find∫ L

0
µẏ2

t dx =
∫ L

0

∑
k
µq̇T

t ,k N (ξk )TN (ξk )q̇t ,k dx

=q̇T
t

(∑
k

PT
k µLk

∫ 1

0
N (ξk )TN (ξk )dξk Pk

)
q̇t

=q̇T
t

(∑
k

PT
k Mk Pk

)
q̇t

=q̇T
t M q̇t , (4.12)

where the Mk are determined by evaluating

Mk =µLk

∫ 1

0
N (ξ)TN (ξ)dξ

=µLk

∫ 1

0


(ξ−1)4(2ξ+1)2 (ξ−1)4ξ(2ξ+1)Lk (3−2ξ)(ξ−1)2ξ2(2ξ+1) (ξ−1)3ξ2(2ξ+1)Lk

(ξ−1)4ξ(2ξ+1)Lk (ξ−1)4ξ2L2
k (3−2ξ)(ξ−1)2ξ3Lk (ξ−1)3ξ3L2

k
(3−2ξ)(ξ−1)2ξ2(2ξ+1) (3−2ξ)(ξ−1)2ξ3Lk (3−2ξ)2ξ4 (3−2ξ)(ξ−1)ξ4Lk

(ξ−1)3ξ2(2ξ+1)Lk (ξ−1)3ξ3L2
k (3−2ξ)(ξ−1)ξ4Lk (ξ−1)2ξ4L2

k

dξ

= µLk

420


156 22Lk 54 −13Lk

22Lk 4L2
k 13Lk −3L2

k
54 13Lk 156 −22Lk

−13Lk −3L2
k −22Lk 4L2

k

 . (4.13)

Notice the subscript k has been stripped of the ξk argument in the integration for more clearness.

– 17 –



4.1. FINITE ELEMENT DERIVATION

4.1.3 Damping matrix

The damping matrix can be seen as the factor by which the velocity q̇ is multiplied in order to define a dissipative
damping force. This matrix is not used in calculations for the static problem (2.13).

Using the Finite Element method, the damping matrix cannot be simply derived in the same way as the mass
and stiffness matrices, because the damping is modelled as an external dissipation of energy which does not exist
in the minimization problem. However, a common way to add damping in the Finite Element system of equa-
tions is by adding a damping matrix C = α1M +α2K (as proposed in [16]) which is called proportional damping
(or Rayleigh damping) and assumes uniform energy dissipation. The actual values of α1 and α2 depend on the
structural damping properties.

4.1.4 Finite element derivation for contact

Gauss-Legendre interpolation

A common method to evaluate the penalty term Ξ(dN ) in (3.1) is by using a simple trapezoidal integration rule.
This section explains the use of Gauss-Legendre interpolation to achieve a higher accuracy for evaluating the
contact penalty integral while using the Finite Element method.

We minimize the energy functional with the added contact penalty terms given by the problem

min
y

∫ L

0

1

2
E I

(
y ′′)2 + 1

2
µẏ2 +Ξ1(dN )+Ξ2(ḋN )dx (4.14)

which describes the beam with enforced contact. The functional Ξi , i ∈ {1,2} is some (possibly non-linear) penalty
function which penalizes contact violation or introduces damping. The derivation below is made for a general
function Ξ, which can be substituted by Ξ1 or Ξ2. Even then, the methods below can be expanded for functions
of more variables, although the calculations become less clear.

In the derivation below we make explicit use of the affine form of dN in terms of y . For higher-dimensional
problems the normal distance will be defined in a non-linear fashion, which may cause some of the derivatives
to consist a few more terms.

The basic trapezoidal rule for evaluating the integral of a given function g (x) on the interval [a,b] is given by
the approximation ∫ b

a
g (x)dx ≈ g (b)+ g (a)

2
(b −a), (4.15)

which is the length of the interval times the average function value on the interval. One of the widely used meth-
ods is Gauss-Legendre interpolation [17]. This method improves the numerical precision by choosing the points
of discretization x j and weights ς j with j ∈ {1,2}. They are chosen such that the approximation∫ 1

−1
g (x)dx ≈

m∑
j=1

ς j g (x j ) (4.16)

is exact for polynomials of order 2m−1. For m = 2 we use four linear independent polynomials of maximal degree
three, for example 1, x, x2, x3, and determine the values for x j and ς j by solving the four equations∫ 1

−1
1dx = 2 = ς1 +ς2

∫ 1

−1
x dx = 0 = ς1x1 +ς2x2∫ 1

−1
x2 dx = 2

3
= ς1x2

1 +ς2x2
2

∫ 1

−1
x2 dx = 0 = ς1x3

1 +ς2x3
2 . (4.17)

This results in ς1 = ς2 = 1 and the points x j given by x1,2 =±p1/3. Thus the integral of g is approximated as∫ 1

−1
g (x)dx ≈ ς1g (x1)+ς2g (x2) = g

(
−
p

1/3
)
+ g

(p
1/3

)
. (4.18)
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FIGURE 4.2: A comparison of the integration points and area between the trapezium and Gauss-Legendre integration approximations
for the integral of some function g (x) over the interval [−1,1].

This method of numerical integration by finding points and weights in an interval can be extended to any
number of points. For an approximation of m points, the evaluation points of g will interestingly turn out to
be the zeros of Legendre polynomials Pm . This means that the points x j can be found without the use of the
equations in (4.17). The weights ς j will still have to be solved using the integral equations in (4.17). The approxi-
mation of the integral will be exact for polynomials of order up to 2m−1. In fig. 4.2 a visual comparison between
the integration methods is given.

Finite Element integration

The Gauss-Legendre integral approximation is now applied to the Finite Element framework. The assumption
made in (4.2) is applied to the solution y . The subscript t is dropped from the following calculations for clearness
Also the affine one-dimensional structure of dN (y) = y − f (x) is used explicitly. Then Ξ-integral is approximated
as ∫ L

0
Ξ(y(x)− f (x))dx =∑

k
Lk

∫ 1

0
Ξ

(
yk−1φ1(ξk )+ϑk−1φ2(ξk )+ ykφ3(ξ)k +ϑkφ4(ξk )− f (ξk )

)
dξk

≈∑
k

Lk

2∑
j=1

ς jΞ
(

yk−1φ1(ξk, j )+ϑk−1φ2(ξk, j )+ ykφ3(ξk, j )+ϑkφ4(ξk, j )− f (ξk, j )
)

=
2∑

j=1
ς j

∑
k

LkΞ
(

yk−1φ1(ξk, j )+ϑk−1φ2(ξk, j )+ ykφ3(ξk, j )+ϑkφ4(ξk, j )− f (ξk, j )
)

. (4.19)

Notice that ς1 = ς2 = 1/2 and ξk,1 = (1−p
1/3)/2, ξk,2 = (1+p

1/3)/2 must be used, which is caused by the transformation
of Gauss-Legendre interpolation from the interval [xk−1, xk ] of element k to the [0,1] interval. Also notice that
the ξk, j are the same numerical value for each element, but correspond to different values of x (this is important
when evaluating f (ξk, j )).

We differentiate (4.19) two times with respect to q = (y0,ϑ0, y1,ϑ1, ..., yN ,ϑN )T (using N elements), which is
used in the Finite Element formulation calculated later. Deriving the integral to q yields

d
dq

(∫ L

0
Ξ(y(x)− f (x))dx

)

≈
2∑

j=1
ς j



φ1(ξ1, j ) 0 0
φ2(ξ1, j ) 0 0
φ3(ξ1, j ) φ1(ξ2, j ) 0 . . .
φ4(ξ1, j ) φ2(ξ2, j ) 0

0 φ3(ξ2, j ) φ1(ξ3, j )
0 φ4(ξ2, j ) φ2(ξ3, j )

...
. . .




L1Ξ

′ (y0φ1(ξ1, j )+ϑ0φ2(ξ1, j )+ y1φ3(ξ1, j )+ϑ1φ4(ξ1, j )− f (ξ1, j )
)

L2Ξ
′ (y1φ1(ξ2, j )+ϑ1φ2(ξ2, j )+ y2φ3(ξ2, j )+ϑ2φ4(ξ2, j )− f (ξ2, j )

)
L3Ξ

′ (y2φ1(ξ3, j )+ϑ2φ2(ξ3, j )+ y3φ3(ξ3, j )+ϑ3φ4(ξ3, j )− f (ξ3, j )
)

...



=
2∑

j=1
ς j A j V j (q). (4.20)
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4.1. FINITE ELEMENT DERIVATION

Consider the matrix and vector sizes. The matrix A j is a (2N +2)×N matrix, and the vector V j (q) has length N .
Together this gives a vector of length 2N +2. The second derivative to q of (4.19) can then be found to be

d2

dq2

(∫ L

0
Ξ(y(x)− f (x))dx

)
≈ d

dq

 2∑
j=1

ς j A j V j (q)



=
2∑

j=1
ς j A j diag


L1Ξ

′′ (y0φ1(ξ1, j )+ϑ0φ2(ξ1, j )+ y1φ3(ξ1, j )+ϑ1φ4(ξ1, j )− f (ξ1, j )
)

L2Ξ
′′ (y1φ1(ξ2, j )+ϑ1φ2(ξ2, j )+ y2φ3(ξ2, j )+ϑ2φ4(ξ2, j )− f (ξ2, j )

)
L3Ξ

′′ (y2φ1(ξ3, j )+ϑ2φ2(ξ3, j )+ y3φ3(ξ3, j )+ϑ3φ4(ξ3, j )− f (ξ3, j )
)

...



φ1(ξ1, j ) φ2(ξ1, j ) φ3(ξ1, j ) φ4(ξ1, j ) 0 0

0 0 φ1(ξ2, j ) φ2(ξ2, j ) φ3(ξ2, j ) φ4(ξ2, j ) . . .
0 0 0 0 φ1(ξ3, j ) φ2(ξ3, j )

...
. . .


=

2∑
j=1

ς j A j J j (q)AT
j , (4.21)

where the J j (q) have size N ×N , which makes the Jacobian a (2N +2)× (2N +2) matrix, as it should be.
The values of the basis functions φi , i ∈ {1, ...,4} at the interpolation points ξk,1 = (1−p

1/3)/2 and ξk,2 = (1+p
1/3)/2

are given by

φ1
(
ξk,1

)= 1

18

(
9+4

p
3
)
≈ 0.8849 φ2

(
ξk,1

)= Lk

36

(
3+p

3
)
≈ 0.1314Lk

φ3
(
ξk,1

)= 1

18

(
9−4

p
3
)
≈ 0.1151 φ4

(
ξk,1

)= Lk

36

(
−3

p
3
)
≈ 0.0352Lk

φ1
(
ξk,2

)= 1

18

(
9−4

p
3
)
≈ 0.1151 φ2

(
ξk,2

)=−Lk

36

(
−3

p
3
)
≈ 0.0352Lk

φ3
(
ξk,2

)= 1

18

(
9+4

p
3
)
≈ 0.8849 φ4

(
ξk,2

)=−Lk

36

(
3+p

3
)
≈−0.1314Lk . (4.22)

The symmetry is obvious.

4.1.5 Distributed load

The distributed load wt (x) can be approximated by a load vector Ft . The term∫ L

0
wt y dx (4.23)

in (2.6) is integrated. The substitution in (4.2) of the form yt (x) =∑
k N (ξk )qt ,k is used for (4.23). We find∫ L

0
wt y dx =

∫ L

0
wt (ξk )

∑
k

N (ξk )qt ,k dx

=
(∑

k
Lk

∫ 1

0
wt (ξk )N (ξk )dξk Pk

)
qt

=
(∑

k
FT

t ,k Pk

)
qt

=FT
t qt , (4.24)

where the Ft ,k are determined by applying the Gauss-Legendre integration rule,

FT
t ,k = Lk

∫ 1

0
wt (ξk )N (ξk )dξk = Lk

∑
j
ς j

(
wt (ξk, j )N (ξk, j )

)
. (4.25)
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M matrix

1 20 40 52

1

20

40

52

1 20 40 52
1

20

40

52

K matrix

1 20 40 52

1

20

40

52

1 20 40 52
1

20

40

52

Load vector

1

1

20

40

52

1
1

20

40

52

FIGURE 4.3: The mass (M), stiffness (K ) and load Finite Element matrices/vector for N = 25 elements. The damping matrix (C ) is a
linear combination of the two matrices. Red to yellow indicate positive values, while blue indicates negative values. White indicates a
zero value.

with ς1 = ς2 = 1/2, ξk,1 = (1−p
1/3)/2 and ξk,2 = (1+p

1/3)/2, and FT
t =∑

k FT
t ,k Pk . For a constant-valued distributed load

function wt (x) = Wt , each Ft ,k has the form FT
t ,k = Wt

(
1/2, Lk/12, 1/2, −Lk/12

)
. The second and fourth value of Ft ,k

may cancel out when the Ft ,k are summed for all elements and the Lk are equal for each element.

4.1.6 Overview

Using the derivations of Section 4.1.1 until Section 4.1.5 the integral minimization problem (2.6) is transformed
into a finite-dimensional non-linear minimization problem which can be solved using linear algebra solvers and
by making use of the Newton method.

Using each of the derivations, the minimization problem (2.6) can be transformed like

min
y

∫ L

0

1

2
E I

(
y ′′)2 + 1

2
µẏ2 −w y +Ξ(dN (y))dx

≈ min
q

1

2
q̈T

t M q̈t + 1

2
qT

t K qt −FT
t qt +

2∑
j=1

ς j
∑
k

LkΞ
(
N (ξk, j )Pk qt − f (ξk, j )

)
(4.26)

with a solution given by the equation in terms of q :

M q̈t +C q̇t +K qt +
2∑

j=1
ς j A j V j (qt ) = Ft . (4.27)

This is a non-linear equation because of the V j terms, which in turn can be solved with Newton iterations.
The iterations require the second derivative of the integral involving J j (q) as determined in (4.21). In fig. 4.3 a
visualization of the stiffness, mass and load matrices/vector is given.

For the dynamic problem equation (4.27) describes the motion of the beam. This motion changes over time
and this is solved by the integration step in Section 4.1.7. For the static problem, the terms ÿ and ẏ are not present,
which leaves a single non-linear equation which can be solved with the Newton method.

4.1.7 Numerical integration

The numerical integration of the dynamic problem is done using the Hilber-Hughes-Taylor-α (HHT-α) method
[18]1. This method has been chosen from a set of methods as found in [19] due to its implicitness and possibilities
to reduce high-frequency oscillations which may occur in the solution process. Also, this method has proven to
be effective in the research of Frans de Vries which makes it well applicable to related research.

The HHT-α method is based on the Newmark-β numerical integration method [20]. The assumptions will
be listed, and using those assumptions the update rules used in the integration steps will be determined. The

1In addition to [18], an unpublished document of Frans de Vries has also been used as reference. Contact: https://www.utwente.
nl/en/et/ms3/research-chairs/nsm/people/phdpd/FHdeVries, f.h.devries@utwente.nl.
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result will be a non-linear equation which can be solved using the Newton method. The Newton steps will also
be determined explicitly for implementation purposes.

The goal of the integration step is integrating the equation of motion (4.27) for a time difference τ step. Given
are the solution yt and ẏt at time t , and after one step of integration the result is the solution yt+τ and ẏt+τ at
time t +τ. Concretely, we wish to find yt+τ, ẏt+τ and ÿt+τ satisfying the differential equation

M ÿt+τ+C ẏt+τ+K yt+τ+
2∑

j=1
ς j A j

(
V j (yt+τ)+V j (ẏt+τ)

)
= Ft+τ (4.28)

with V j a (possibly non-linear) function, given M , C , K , ς j , A j , V j , Ft , Ft+τ, yt , ẏt and ÿt .
The Newmark-β method and the HHT-α method give the assumptions required for the integration step. The

Newmark-β method describes the relations between the deflection y , the velocity ẏ and the acceleration ÿ at
time t and t +τ, namely

yt+τ = yt +τẏt + 1

2
τ2 (

(1−2β)ÿt +2βÿt+τ
)

, (4.29)

ẏt+τ = ẏt +τ
(
(1−γ)ÿt +γÿt+τ

)
. (4.30)

Furthermore the HHT-α method solves the equation

M ÿt+τ+C ((1−α)ẏt+τ+αẏt )+K
(
(1−α)yt+τ+αyt

)
+

2∑
j=1

ς j A j

(
V j ((1−α)yt+τ+αyt )+V j ((1−α)ẏt+τ+αẏt )

)
= (1−α)Ft+τ+αFt (4.31)

instead of (4.28). Finally, the combination of the Newmark-β method and the HHT-α method assumes

α ∈
[

0,
1

3

]
, β= 1

4
(1+α)2 , γ= 1

2
+α (4.32)

to get second order unconditional stability.
With these assumptions, equations (4.29), (4.30) and (4.32) are substituted into the expression (4.31) leading

to the non-linear equation

0 = M ÿt+τ+C
(
(1−α)ẏt+τ+αẏt

)+K
(
αyt + (1−α)yt+τ

)
2∑

j=1
ς j A j

(
V j ((1−α)yt+τ+αyt )+V j ((1−α)ẏt+τ+αẏt )

)
−αFt − (1−α)Ft+τ

=: G(yt+τ) (4.33)

of only one unknown variable yt+τ, since (see (4.29), (4.30) and (4.32))

ẏt+τ = ÿtα
2τ2 + ((α−2)α−1)τẏt −2(2α+1)(yt − yt+τ)

(α+1)2τ
, (4.34)

ÿt+τ = ÿt −
2
(

ÿtτ
2 +2

(
τẏt + yt − yt+τ

))
(α+1)2τ2 . (4.35)

Finally (4.33) is solved with the Newton method because the resulting equation is non-linear. A single Newton
iteration is given by

y (k+1)
t+τ = y (k)

t+τ−
(
∇G

(
y (k)

t+τ
))−1

G
(

y (k)
t+τ

)
(4.36)

with y (0)
t+τ = yt . The expression for ∇G

(
y (k)

t+τ
)

can be found to be

(1−α)K + 2(1−α)(1+2α)

(α+1)2τ
C + 4

(α+1)2τ2 M +
2∑

j=1
ς j A j

(
(1−α)J j

(
y (k)

t+τ
)
+ 2(1−α)(2α+1)

(α+1)2τ
J j

(
ẏ (k)

t+τ
))

AT
j (4.37)
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where ẏ (k)
t+τ is calculated using (4.34) but using the value of y (k)

t+τ for yt+τ.
The parameter α can be used to control the numerical damping of the HTT-α method. This is useful in

situations where high-frequency oscillations may occur due to numerical integration, which may be the case
when integrating the dynamic beam problem for a long timespan and large time steps. See Section 6.2.2 for an
example of such a situation.

4.2 Reference solution

This section concerns a special case of Equation (2.13), using specified boundary conditions, no distributed load
but including contact. For this problem, an analytic solution can and has been determined of the equilibrium
(static problem). This analytic solution is used later in Chapter 6 for measuring the accuracy and convergence of
a numerical solution. It is therefore dubbed the reference solution and is denoted with yref(x).

In order to find the reference solution, the static beam problem (2.13) is solved with the boundary conditions,
but with a variable length L = L̂. The extra variable L̂ is introduced to satisfy the contact constraint of the solution.
Thus we can find a general solution yL̂(x) in terms of L̂, after which the value of L̂ can be adjusted such that an
extra constraint (contact) is enforced. The reference solution is then extended to form a solution for the entire
length of the beam. Concretely, we solve

E I y ′′′′
L̂

= 0 (4.38)

subject to

yL̂(0) = y0, y ′
L̂

(0) =ϑ0, yL̂(L̂) = 0, y ′
L̂

(L̂) = 0 (4.39)

with y0 > 0 and ϑ0 < 0. This problem has the explicit solution

yL̂(x) = y0 +ϑ0x +
(
− 3

L̂2
y0 − 2

L̂
ϑ0

)
x2 +

(
2

L̂3
y0 + 1

L̂2
ϑ0

)
x3. (4.40)

The extra constraint that contact is satisfied, is given by the requirement that y ′′
L̂

(L̂) = 0. This means that

there is no force on the solution at x = L̂, the point of contact. This extra condition is satisfied for L̂ = −3(y0/ϑ0).
So, concretely, if we substitute the values of y0, ϑ0 and L̂ into (4.40) and extend the domain to [0,L] we find the
reference solution yref given by

yref(x) =
yL̂(x) 0 ≤ x < L̂

0 L̂ ≤ x ≤ L
=


ϑ3

0x3

27y2
0
+ ϑ2

0x2

3y0
+ϑ0x + y0 0 ≤ x <− 3y0

ϑ0

0 − 3y0
ϑ0

≤ x ≤ L
. (4.41)

See fig. 4.4 for a visualization with y0 = 1 and ϑ0 =−1/2. Thus, the reference distance of a Finite Element solution
is given by the distance between the solution yt and the reference solution,∫ L

0

(
yt (x)− yref(x)

)2 dx ≈
N∑

k=1

2∑
j=1

ς j

(
yt (ξk, j )− yref(ξk, j )

)2
. (4.42)

where the integral is approximated with the Gauss Legendre approximation introduced in Section 4.1.4 and the ξk, j

are the integration points for element-local coordinates. Notice that better approximations can be found (for ex-
ample including the values of ϑk ), but the current expression works well enough for performing a convergence
analysis.
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L

 6 L 10

x

0.2

0.4

0.6

0.8

1.0

Reference solution yref(x)

FIGURE 4.4: Reference solution of Finite Element method with y0 = 1, ϑ0 =−1/2 and L = 10.
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Chapter 5

Analysis: Simplification of middle section

The aim of this chapter is to provide a simplification of the model presented in Chapter 2, for the section which
has no contact. Instead of simulating a solution with a numeric solver using the Finite Element method as pre-
sented in Chapter 4, the middle section of the pipe can be analyzed using system theory and approximated using
a simplified version of the transfer function of the system dynamics.

Using this simplification, simulations can be run for the part of the pipe on the stinger which requires complex
contact simulations and for the part which makes contact with the seabed, and the two sub-problems can be
‘connected’ via the transfer functions determined in this chapter. A further simplification for the contact with the
seabed can be found in the results, see Section 7.2.

5.1 Laplace domain

Instead of solving the entire partial differential equation found in (2.11), we instead analyze the equation in the
Laplace domain. This allows us to eliminate the temporal variable t by replacing it with a frequency parameter s.
By treating s as a parameter instead of a variable, the resulting equation is an ordinary differential equation which
can be solved analytically and will result in the transfer function.1

Equation (2.11) without a distributed load is given by

E I y ′′′′(t , x)+ cd ẏ(t , x)+µÿ(t , x) = 0 (5.1)

with some boundary and initial conditions. Equation (5.1) can be extended to include a more extended model
or distributed load, but the current model already gives rise to difficult equations. In case of a non-linear partial
differential equation, the following steps in this chapter become more involved and may not be possible.

All of the eight possible boundary conditions of (5.1) are identified with a function ui (t ), i ∈ {1, ...,8}, like

y(t ,0) = u1(t ), y ′(t ,0) = u2(t ), E I y ′′(t ,0) = u3(t ), E I y ′′′(t ,0) = u4(t ),

y(t ,L) = u5(t ), y ′(t ,L) = u6(t ), E I y ′′(t ,L) = u7(t ), E I y ′′′(t ,L) = u8(t ). (5.2)

Four of the ui are known and can be considered as boundary inputs for the dynamic system. The other four ui

are considered output functions and can be analyzed using the transfer function which will be determined.
The time domain is transformed to the Laplace domain, transferring y(t , x) to Y (s; x) and all ui (t ) to Ui (s)

for i ∈ {1, ...,8}. We get the Laplace domain form of (5.1) as

E I Y ′′′′(s; x)+ cd sY (s; x)+µs2Y (s; x) = 0 (5.3)

with the similarly transformed boundary input and output functions

Y (s;0) =U1(t ), Y ′(s;0) =U2(t ), E I Y ′′(s;0) =U3(t ), E I Y ′′′(s;0) =U4(t ),

Y (s;L) =U5(t ), Y ′(s;L) =U6(t ), E I Y ′′(s;L) =U7(t ), E I Y ′′′(s;L) =U8(t ). (5.4)

1It is also possible to do this in a slightly longer way by following the steps in [21]. First the entire spatial solution of the partial
differential equation can be solved (with time-dependent boundary conditions). Then a set of ordinary differential equations can be
Laplace transformed and solved in order to find a transfer function.
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Notice the temporal derivatives in (5.3) which have been associated with powers of s.
We can choose different combinations of boundary conditions in order to solve the differential equation (5.3)

and determine a transfer function for a chosen input and output function. For example, if the functions U1, U2,
U7 and U8 are assumed to be known, then the equation can be solved for Y (s; x) under these boundary conditions.
With the aid of MATHEMATICA the solution is found to have the (monstrous) form

Y (s; x) = Y1(s; x)

Z (s)
U1(s)+ Y2(s; x)

Z (s) 4
√−s(cd +µs)

U2(s)+ Y3(s; x)

Z (s)
√−E I s(cd +µs)

U7(s)+ Y4(s; x)

Z (s) 4
√
−E I

(
s(cd +µs)

)3
U8(s)

(5.5)

with

Z (s) = 2

((
eβ1 +1

)(
1+e2iβ2L

)
+4e(1+i )β2L

)
Y1(s; x) = e(−1−i )β2x

(
eβ1

(
(1− i )e iβ2(2L+x) +eβ2(x+2i L) +e(1+2i )β2x + (1+ i )e iβ2x

)
+2eβ2(x+(1+i )L) +2eβ2((1+i )L+i x)

+2eβ2((1+i )L+(2+i )x) − i eβ2(2L+(1+2i )x) +2eβ2((1+i )L+(1+2i )x) + (1− i )eβ2(x+2i L) + i eβ2(x+(2+2i )L)

+(1+ i )eβ2(2i L+(2+i )x) + (1− i )e(2+i )β2x + (1+ i )e(1+2i )β2x
)

Y2(s; x) = 4p
E I eβ2(−(x+i L))

(
−2e(1+2i )β2L +eβ1

(
(−1+ i )e iβ2L − (1+ i )e3iβ2L +eβ2(3i L+(1−i )x) +eβ2(i L+(1+i )x)

)
+2eβ2(2x+(1+2i )L) − (1− i )eβ2(3i L+(1−i )x) − (1+ i )eβ2(i L+(1+i )x) − i eβ2((2+i )L+(1+i )x) −2i eβ2((1+2i )L+(1+i )x)

+(1− i )eβ2(2x+3i L) +2i eβ2((1+2i )L+(1−i )x) + i eβ2((2+3i )L+(1−i )x) + (1+ i )eβ2(2x+i L)
)

Y3(s; x) = eβ2(−(x+i L))

(
2eβ1+2iβ2L + (1+ i )

(
e(1+3i )β2L + (−i )e(1+i )β2L + (1− i )

(
−e(1+i )β2(L+x)

)
+ (1− i )e2β2(x+i L)

−(1− i )eβ2((1+3i )L+(1−i )x) −e(1+i )β2(2L+x) − i eβ2(2x+(1+3i )L) −eβ2(2i L+(1−i )x) +e2β2x+(1+i )β2L+

i e(1+i )β2(x+(1+i )L) + i e(1+i )β2(2L−i x)
))

Y4(s; x) = eβ2(−(x+i L))
(
(1+ i )

(
−e(1+i )β2L + i e(1+3i )β2L + (1− i )e2β2(x+i L) +e(1+i )β2(2L+x) +eβ2(2x+(1+3i )L)

−eβ2(2i L+(1−i )x) − (1+ i )eβ2((1+3i )L+(1−i )x) − i e(1+i )β2(2L−i x) − i e2β2x+(1+i )β2L + i e(1+i )β2(x+(1+i )L)

+(1+ i )e(1+i )β2(L+x)
)
−2eβ1+2iβ2L

)
(5.6)

and

β1 = 2Lβ2, β4
2 =

−s(cd +µs)

E I
. (5.7)

Notice that β2 can be determined using any of the four solutions of equation (5.7) because all solutions give
the same function. While it is cumbersome to check for the expression in (5.5), the it is far easier to see in the
following example.

In case we are interested in the transfer function from U2 (the angle at x = 0) to U5 (the deflection at x = L)
denoted by HU2→U5 , we can ignore the other Ui (i.e. set U1 =U7 =U8 = 0), simplify the expression for Y (s; x) and
find

U5(s) = Y (s;L) = 1

β2

(
sin

(
Lβ2

)+ sinh
(
Lβ2

))
(
cos

(
Lβ2

)
cosh

(
Lβ2

)+1
)U2(s) (5.8)

which gives the transfer function

HU2→U5 (s) = 1

β2

(
sin

(
Lβ2

)+ sinh
(
Lβ2

))
(
cos

(
Lβ2

)
cosh

(
Lβ2

)+1
) . (5.9)
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FIGURE 5.1: Bode plot of HU2→U5 (iω) for 10−2 ≤ω≤ 2.5×102 of the undamped (cd = 0) and damped (cd = 5) dynamic system.

A Bode plot of the transfer function for this example is given in fig. 5.1 for a non-damped and a damped system.
The used parameters are E I = 104 [m4 N/m2 = Nm2], µ = 102 [kg/m], cd ∈ {0,5} [kg/ms] (respectively undamped and
damped) and L = 10 [m]. Notice how the undamped system has a non-continuous phase with jumps at the poles
of the transfer function. The damped system rather has a continuous phase and its poles have moved away from
the imaginary axes, and the plot of the transfer function on the imaginary axes has been smoothed out.

In equation (5.9), the denominator contains the eigenvalue equation of the dynamic system (see fig. A.1)
which will cause an infinite amount of poles which means that the transfer function cannot be represented by a
rational function. This is true in general for transfer functions of this dynamical system, although the eigenvalue
equation may be different for different combinations of boundary conditions. In Section 5.2 we approximate the
transfer function with a rational function which transforms the behaviour of the dynamic system into that of a
simpler system.

Of course this example is limited and the steps taken above can be repeated to find any of the transfer func-
tions in the system. Furthermore, the inputs of the system can also be changed to for example U1, U2, U5 and U6

(the deflection and angle are known for both ends of the beam), or U1, U3, U5 and U7 (the deflection and cur-
vature are known at both ends of the beam). Similar transfer functions can be determined in order to find the
frequency response of the shear force or the moment at the ends of the beam.

5.2 Approximation of transfer function

In the above section the transfer function has been determined from an input function to an output function. It
may be advisable to approximate this transfer function with a rational function (a fraction of two finite degree
polynomials). An approximation is useful because the analytic transfer function has an infinite amount of non-
trivial zeros. That may be difficult to work with if the dynamic system is part of a larger system or analysis is
required where the poles and zeros must be known.

The main assumption which is used in the following approximations of the transfer function, is that the high
frequencies no not matter in the solution. This means that the transfer function should match the one found
analytically for the lower frequencies, and less so for the higher frequencies. This may cause the poles and zeros
to move slightly, depending on the approximation method and the order of the approximation. In the case of
pipelaying, any frequencies higher than 10 Hz are not be interesting for the solution. After all, we are interested
in the behaviour of the pipe, not high-frequent vibrations in the pipe. Of course the frequency range of interest
can be adjusted depending on the problem requirements and parameters.

Three options are given here for approximating the analytic transfer function by a rational function. The first
option involves the Taylor expansion while the other two options use the Padé Approximant [22]. In this thesis we
will not go into great detail how to calculate the approximations, the reader is directed to the relevant literature.
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Taylor approximation The first approximation is done using the Taylor approximation around β2 = 0 of each
individual term in (5.9), and then substituting . We use that

sin(ξ) = lim
NA→∞

NA∑
k=0

(−1)k ξ2k+1

(2k +1)!
, sinh(ξ) = lim

NA→∞

NA∑
k=0

ξ2k+1

(2k +1)!
,

cos(ξ) = lim
NA→∞

NA∑
k=0

(−1)k ξ2k

(2k)!
, cosh(ξ) = lim

NA→∞

NA∑
k=0

ξ2k

(2k)!
. (5.10)

However, instead of taking the limit, the sum is truncated at some finite value of NA . For a Taylor approximation
of the transfer function with the highest polynomial order of 8 in s, the approximation is represented by a rational
function of order 2 (numerator) and 8 (denominator) in s given by

HU2→U5 (s) ≈ 2.7095×107L
β4

2L4 +120

β16
2 L16 +224β12

2 L12 +645120β8
2L8 −2.7095×108β4

2L4 +3.2514×109
. (5.11)

Notice that even though the sin, cos, sinh and cosh Taylor approximations contain terms that are not powers
of four, the resulting approximation only contains powers of four, making the transfer function approximation
rational in s after substitution of β2.

Term Padé approximation For the Padé approximation of the transfer function, we are looking for a rational
polynomial of β2 of the form ∑NA

k=0 akβ
k
2

1+∑MA
k=1 bkβ

k
2

, (5.12)

for some fixed values of NA and MA which approximates the required function. The substitution of β2 in terms
of s will be done afterwards.

As an example, we can take NA = MA = 4 (to get an 8 order approximation in s) and find the Padé approxima-
tions

sin(ξ) ≈−56.3636
ξ3 −9.48387ξ

ξ4 +32.7273ξ2 +534.545
, sinh(ξ) ≈ 56.3636

ξ3 +9.48387ξ

ξ4 −32.7273ξ2 +534.545
,

cos(ξ) ≈ 24.0769
ξ4 −22.0447ξ2 +48.3067

ξ4 +50.7692ξ2 +1163.08
, cosh(ξ) ≈ 24.0769

ξ4 +22.0447ξ2 +48.3067

ξ4 −50.7692ξ2 +1163.08
. (5.13)

Even though non-fourth powers occur in the approximating terms, they cancel out when combined into the trans-
fer function, resulting in a rational transfer function in s. The term Padé approximation of the transfer function is
given by

HU2→U5 (s) ≈
β4

2L5
(
8.19418β8

2L8 −1075.58β4
2L4 +1.08373×107

)
+1.33127×109L

−1.11196×108β4
2L4 +β8

2L8
(
β8

2L8 −391.102β4
2L4 +291170

)
+1.33127×109

. (5.14)

Again, notice that only powers which are a multiple of four occur in the approximation, making the approximation
rational in s.

Function Padé approximation Furthermore, it is also possible to take the expression in (5.9) and find a Padé
approximation at once for the entire expression. This will become

HU2→U5 (s) ≈ 0.00252093
β16

2 L17 +29576.5β12
2 L13 +3.39367×108β8

2L9 +9.236×1011β4
2L5 +1.10323×1014L

β16
2 L16 −16464.3β12

2 L12 +5.42916×107β8
2L8 −2.31658×1010β4

2L4 +2.78118×1011
(5.15)

a representation of only powers which are a multiple of four and hence a rational function of order 8 in s after
substitution of β2.
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FIGURE 5.2: Bode magnitude plot of the undamped system with a the three order 8 approximations of the transfer function compared
to the analytic transfer function.

In fig. 5.2 the Taylor and Padé order 8 approximations are compared with the analytic form (5.9) in a Bode
magnitude plot of the undamped example problem given in Section 5.1. The per-term Padé approximation works
better than the Taylor approximation, but the function Padé approximation gives the best order 8 approximation
for this example. There are undoubtedly better methods for approximating the transfer function, but these three
methods (Taylor and term- and function Padé approximation) give a good basis that works well for transfer func-
tions will only a few poles in the frequency range of interest.
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Chapter 6

Results

6.1 Implementation

The modelling assumptions, deductions and numerical methods have been implemented using the software pack-
age WOLFRAM MATHEMATICA. This software is useful for rapid prototyping of mathematical and numerical tech-
niques. Not only does the package contain many built-in numerical procedures, it also allows calculating and
solving symbolic equations and problems. Furthermore, the results can be visualized in many different forms
which gives more insight in the generated data and results.

Of course, the results presented in this research can be implemented more efficiently in a low-level (compiled)
programming language in order to get better performance for large calculations.

6.1.1 Verification of implementation

In order to give the results presented later in this chapter any validity, a verification of the implementation has
been performed for multiple different aspects: the solution shape for a static problem and the solution shape and
vibration frequencies for the dynamic problem.

Static problem

The static problem (2.13) has been solved with the Finite Element implementation without any contact enforced.
The boundary conditions have been taken as

y(0) = y0, y ′(0) =ϑ0 E I y ′′(L) = 0, E I y ′′′(L) = 0 (6.1)

and a distributed load w = γx3. The exact solution to this problem is

y(x) = γx2

840E I

(
84L5 −35L4x +x5

)
+θ0x + y0 (6.2)

and for the values y0 = 1m, ϑ0 = −1/2, E I = 104 [N/m2], L = 10 [m], γ = 5/100 and N = 25 elements, we get a Finite
Element numerical solution which matches the exact solution almost perfectly (see fig. 6.1).
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FIGURE 6.1: Comparison a static analytical and numerical (Finite Element) solution with distributed load.
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FIGURE 6.2: Analytical and Finite Element solution and their difference. Notice the scale of the y axis in the last plot.

Dynamic problem

For the dynamic problem, several verifications have been performed. The dynamic problem of a simple clamped
beam (cantilever beam) is considered, with no distributed load or damping. The analytical eigenvalues are com-
pared with those of the numerical solution, calculated in two different ways. Furthermore, the entire solution over
a small time domain is compared numerically.

The problem in (2.11) is solved with w = 0 and cd = 0 and homogeneous boundary conditions given by

y(t ,0) = 0, y ′(t ,0) = 0, E I y ′′(t ,L) = 0, E I y ′′′(t ,L) = 0. (6.3)

In Appendix A.2 the derivation of the analytical solution can be found. Its form is

y(t , x) =∑
n

(
Fn sin(ωn t )+Gn cos(ωn t )

)((
sin(νn x)− sinh(νn x)

)+B
(
cos(νn x)−cosh(νn x)

))
. (6.4)

with B = (sin(νn L)+ sinh(νn L))/(cos(νn L)+cosh(νn L)). For the constants E I = 104 [Nm2], µ = 10 [kg/m] and L = 10 [m] the
first numerical values of νnL given by

ν1L ≈ 1.8751 ν2L ≈ 4.69409 ν3L ≈ 7.85476 ν4L ≈ 10.9955 (6.5)

and ω2
n = (E I/µ)ν4

n which causes the first values of ωn to be

ω1 ≈ 1.11186 ω2 ≈ 6.96848 ω3 ≈ 19.5222 ω4 ≈ 38.3182. (6.6)

We impose the initial conditions y0(x) = 0 and v0(x) = (x/L)2 and then the first few numerical values of Fn can
be found to be

F1 ≈ 0.294062 F2 ≈−0.005757, F3 ≈ 0.000422398 F4 ≈−0.0000787057. (6.7)

and the constants Gn = 0 for all n. The values of Fn decay as 1/n, although it is difficult to find an analytic rep-
resentation of the values. The analytical solution, the Finite Element solution and their difference is given in
fig. 6.2. The time step τ= 0.025 [s/step], the simulated time is T = 10 [s], N = 8 elements are used and the HHT-α
parameter α = 0. The analytical and the Finite Element solution coincide well which validates the dynamics of
the numerical implementation. The quick convergence of the Finite Element solution to the analytical solution is
due to the initial condition that is close to a linear combination of the first three basis functions.

In order to validate the values of the natural frequencies of the beam, two methods have been used. The first
method is easier and is presented here. The second method is more elaborate and can be found in Appendix A.3.

The Finite Element discretization gives a linear system of equations, as found in Section 4.1.6 where the ma-
trices K and M have the boundary conditions y(0) = 0 and y ′(0) = 0 enforced. The values of α1 and α2 are taken
as zero which removes all damping. By analyzing solutions of the form q0e iωt for some non-zero vector q0. Then
derivation with respect to time can be evaluated and the resulting equations are

−M q0e iωtω2 +K q0e iωt = 0 (6.8)
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which is a generalized eigenvalues equation. It can be solved efficiently numerically and the first few numerical
results for N = 8 elements are

ω1 ≈ 1.11186 ω2 ≈ 6.96848 ω3 ≈ 19.5222 ω4 ≈ 38.3182. (6.9)

which match the analytical values in (6.6) perfectly for the the number of significant digits, although one digit after
the significant part the values differ from those in (6.6). These values also correspond to similar results found in
[23].

6.2 Contact

This section shows the characteristics and behaviour of the numerical solutions using the contact methods pre-
sented in Chapter 3. First the static problem with specific boundary conditions is considered and then the dy-
namic problem with similar boundary conditions. Several things are interesting for both situations, namely the
convergence to the required solution (the reference solution), the violation of the contact surface and the manner
of convergence (linear or quadratic). Because the Newton method is used to solve the non-linear equations, a
quadratic convergence is not guaranteed. The solving speed of an iteration is not considered because this is not
a point of interest in the current implementation.

6.2.1 Static problem

For the static problem a number of different things can be compared in the solution. We look at the number of
elements, number of Newton iterations per update of p, the update scheme for p and the Newton convergence.

To compare the static methods, the problem is taken as (2.13) with boundary conditions

y(0) = 1, y ′(0) =−1/2, E I y ′′(L) = 0 E I y ′′′(L) = 0. (6.10)

Contact is imposed at the surface y = 0 with the constraint y(x) ≥ 0 for all x in a valid solution. This means
that dN (y) = y , and dN is the identity operator. This problem has the reference solution yref(x) as its exact solution.
The used parameters for simulating the static problem are E I = 104 [Nm2], µ = 10 [kg/m] and L = 10 [m]. The
number of finite Element elements and the values of the penalty parameter are indicated per contact method.
The Newton iterations are considered converged if either the Newton step size is less than ε= 10−5 or 10 iterations
have been made (whichever happens first).

Explanation for interpretation of the plots: For each of the following paragraphs, references to plots of solu-
tions of the static problem will be made. In each of the figures the same kind of plots will be shown for each
solution. The leftmost plot contains the solutions y(x) for each problem or iteration of the solution method. A
plot of the values of λ(x) is shown, for each problem or iteration of the solution method, if applicable. Then a
(logarithmic-scaled) convergence plot is shown of the reference distance and contact violation norm. Finally, a
convergence plot is shown for each problem. For each problem or iteration of the contact method, some number
of Newton iterations are made. For each iteration, the Newton step size is shown as a •. Furthermore, for each
time step the total number of Newton iterations is indicated with a label at the last •. If this number is large or
the •’s are close together, there is bad convergence.

Penalty method Simulation results using the Penalty method with both N = 8 elements and N = 25 elements
are given in fig. 6.3. The problem (6.10) has been solved four times for each number of elements, each time with
a different value of p. There are no iterations in the Penalty method apart from the Newton method, so the value
of p is not updated throughout the solution process. Although the number of Newton iterations changes slightly,
even using N = 8 elements is more than enough to converge well to the solution with contact enforced. The linear
convergence to the reference solution is equal for both number of elements.

For each of the problems with different values of p a quadratic Newton convergence can be observed, which
is important for finding a quick solution in case of larger problems. Note that for p = 102, the solution itself is
not good because contact is not enforced well. In contrast, using p = 105 gives a solution which lies nicely on the
contact surface f (x) = 0.
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FIGURE 6.3: Four solutions of the static problem with a convergence plot and the Newton step sizes, using N = 8 and N = 25 elements.

Augmented Lagrangian method The Augmented Lagrangian method has been employed to find its performance
and look into its Newton convergence. For updating the value of p, the parameters p0 = 102 and ψ ∈ {1,4} have
been used which correspond to p = p0 = 102 (ψ= 1) and increasing values of p (ψ= 4). Five iterations of a single
problem have been solved. The results are given in fig. 6.4.

It can be observed that using ψ= 1 the solution converges to a solution, but with only some contact enforced.
If this is compared to the solution of p = 102 using the Penalty method, one can see that there is less contact
violation. Also, mostly quadratic convergence can be seen in the Newton convergence plots, although the last few
iterations make it hard to distinguish linear from quadratic convergence.

Using ψ = 4 a better solution can be seen, although the convergence to that solution is more ‘wild’. Further-
more, the contact violation is often non-existent because the solution does not violate the contact surface. Finally,
the Newton convergence takes more steps to reach a converged state per iteration, but at step k = 4 a linear con-
vergence can be seen. This behaviour sometimes takes place when using the Augmented Lagrangian method
but only for a a single step. It may be an interesting point for future analysis of the method to see under what
conditions the convergence changes from quadratic to linear.

Augmented Barrier method In fig. 6.5 the results of solving the static problem using the Augmented Barrier
method can be found.

Different values for η are compared using the Augmented Barrier method with ψ= 2.5, to see if it makes sense
to take a weighted average of the current and the new value of λ in the λ update step. For η= 1, which ignores λ
altogether, a slow convergence of the solution can be seen. For η= 1/2, an average in the usual sense of the current
and the updated value of λ, a good decrease of the contact violation is observed and a very small increase in the
quality of the solution (the reference distance). However, it takes more Newton steps to reach that solution in
comparison to the situation with η = 0. Because there is no apparent improvement numerically to use the η 6= 0
weighing parameter in the λ update step we conclude that η= 0 will be used.

Furthermore, different values of ψ are compared. Using ψ = 1, the solution converges to a fixed reference
distance, although the solution is both better than the Penalty and Augmented Lagrangian solution for p0 = 102

(and ψ= 1 in case of the Augmented Lagrangian method). However, for ψ= 2.5 the solution converges steadily to
the reference solution. In contrast we can see ψ= 4 which also converges well, but not quicker or steadier (notice
the missing contact violation at step k = 4 and the increase in Newton steps for each step). It must be noted that
choosing the specific value of ψ is dependent on the problem. Convergence must always be checked well before
fixing parameters.
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FIGURE 6.4: The solution of the static problem with the value of λ, a convergence plot and the Newton step sizes, using p0 = 102 and
ψ ∈ {1,4}.

6.2.2 Dynamic problem

The used parameters for simulations of the dynamic problem are E I = 104 [Nm2], µ = 10 [kg/m] and L = 10 [m],
τ = 0.1 [s/step], T = 6 [s] and α = 0.01. The number of Finite Elements is N = 12. The Newton iterations are
considered converged if either the Newton step size is less than ε= 10−5, or 10 iterations have been made. The 10
iterations can be seen as a large upper bound on the number of iterations that this problem should require before
converging. If more than 10 Newton iterations are required to solve a single step of the solution process, then
something is wrong with the convergence of the numeric algorithm.

Contact methods

The dynamic problem (2.11) with the same boundary conditions as given in (6.10) and initial conditions given by

y0(x) = yref(x) v0(x) = 0 (6.11)

is solved using the three contact methods. They are compared in terms of usability (how good solutions are
found), performance (are many Newton steps required per time step) and stability (does the Newton method
converge each time step).

The idea behind these boundary and initial conditions is as follows. The initial condition is the reference
solution, i.e. the analytical solution of the static problem with y(t ,0) = 1 and y ′(t ,0) =−1/2. If the contact method
were perfect, the dynamic solution would be equal to the reference solution for all t , and the solution would be
stable. However, the contact methods are not perfect so the solution will violate the contact constraint in some
places. The solutions will then show some dynamics which can be compared.

Explanation for interpretation of the plots: In the following paragraphs, figures are going to be referenced
which contain the same kind of plots for all simulations of the dynamic problem. The leftmost plot is the solu-
tion y(t , x), where x = 0 is on the left side and x = L is on the bottom. Over time, the beam’s position moves as if
a slice is taken perpendicular to the time axis. The middle plot is the value of λ, where the x and t directions are
positioned in the same manner. Finally a Newton iteration plot is given. For each time step (of length τ), some
number of Newton iterations are made. For each iteration, the Newton step size is shown as a •. Furthermore, for
each time step the total number of Newton iterations is indicated with a label at the last •. If this number is large
or the •’s are close together, there is bad convergence. It is not possible to see where λ is updated in this plot.

Penalty method For both p = 102 and p = 104 the results of the simulation are shown in fig. 6.6. For a lower
value of p there is significant penetration of the surface, where the solution ‘bounces’ up and down. Once the
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FIGURE 6.5: The solution of the static problem with the value of λ, a convergence plot and the Newton step sizes, using η ∈ {0, 1/2,1},
p0 = 102 and ψ ∈ {1,2.5,4}.
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FIGURE 6.6: Two solutions of the dynamic problem with contact enforced by the Penalty method, for p = 102 and p = 104.

value of p is increased, the ‘bouncing’ still occurs, but is reduced a lot. The solution is very close to the initial
condition yref, just like it should be. The Newton convergence is very good: for both values of p at most 3 Newton
steps are required per time step.

Augmented Lagrangian method The Augmented Lagrangian method has been tested on the dynamic problem
for both updating schemes for λ and p, and for two instances of the penalty parameter (p = 102 and p = 104).

For Scheme 1 the results can be found in fig. 6.7 During contact and during the solution process bad Newton
convergence can be observed because more than 10 Newton steps are required per time step. This makes the
solution unusable because many of the time integration steps have not converged.

For Scheme 2 the results can be found in fig. 6.8. In this situation better results can be observed. The Newton
convergence is better (although some time steps have not converged for higher values of p). It can be seen that the
solution does not seem realistic: it is ‘shot’ away from its equilibrium by the contact method which adds energy
to the solution on each contact. Considering it this way, the Lagrangian parameter works too well for enforcing
contact and energy in the system is not conserved.

Augmented Barrier method In fig. 6.9 the results for the dynamic problem with the Augmented Barrier method
can be seen for penalty parameter values p = 10−1 and p = 10, and using Scheme 2 for updating the λ and p
values. It can be seen clearly that once contact is initiated, the value of λ rises (in absolute value) quicker than
when using the Augmented Lagrangian method. Because of this value, a large ‘push’ is given to the solution which
‘shoots’ away. In comparison to the Augmented Lagrangian method, the Newton convergence is better: there are
no time integration steps where the limit of 10 Newton steps is reached. Even then, the solutions are unrealistic
and not practically usable.

Numerical damping

Using the Penalty method to enforce contact, the dynamic problem (2.11) with boundary conditions

y(t ,0) = 1+ 1

4
sin

(
3

10
t

)
, y ′(t ,0) =−1

2
, E I y ′′(t ,L) = 0, E I y ′′′(t ,L) = 0, (6.12)
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FIGURE 6.7: Augmented Lagrangian method solution for the dynamic problem using Scheme 1 for p = 102 and p = 104.
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FIGURE 6.8: Augmented Lagrangian method solution for the dynamic problem, using Scheme 2 for p = 102 and p = 104.
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FIGURE 6.9: Augmented Barrier method solution for the dynamic problem, using Scheme 2 for p = 10−1 and p = 10.

is solved for a long time (t ∈ [0,15]) with (large) time steps of τ = 0.2 [s/step]. The penalty parameter is p = 104

and N = 20 elements are used. The material constants are E I = 104 [Nm2], µ= 10 [N/m] and L = 10 [m]. The value
of α is varied, to show the increase in time integration stability for α > 0. Figure 6.10 shows the results. We can
see that a value of α = 0.05 decreases the high-frequency oscillations of the end of the beam at x = L that are
numerical errors caused by contact with the surface.

The largest time steps which can be used for a certain value of α depend on the contact surface, the problem
parameters and the convergence of the Newton method in these situations.

Comparison of contact methods

This section describes a short comparison on the different contact methods. After comparing the three meth-
ods for solving the dynamic problem, it seems that only the Penalty method gives a good solution, and both
Augmented methods seem to ‘shoot’ away the solution. This causes solutions which are not representing the
expected solution and show bad Newton convergence.

The Augmented Lagrangian and Augmented Barrier methods both shoot the solution away, equivalent to giv-
ing the beam a lot of energy in a short timespan while in contact with the surface. Before concluding that the
Augmented contact methods are no use because of this problem, a specific and easier dynamic problem is inves-
tigated which gives more information about the behaviour of the contact methods.

We analyze the behaviour of the three contact methods on the problem of a bouncing ball under influence of
gravity. The well known model for the height of the ball y(t ) [m] is given by

mÿ(t ) =−mg y(0) = y0, ẏ(0) = v0, (6.13)

with m [kg] the mass of the ball and g [m/s2] the gravitational constant. The solution is a simple parabolic trajec-
tory, with its coefficients depending on the initial conditions y0 [m] and v0 [m/s].

We enforce contact (the constraint y(t ) ≥ 0) by introducing the penalty function Ξ(dN (y)) with a penalty pa-
rameter p, depending on the used contact method (Penalty, Augmented Lagrangian or Augmented Barrier). This
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FIGURE 6.10: Solution with contact enforced by the Penalty method (p = 104) running for T = 15 seconds, with time step τ= 0.2. The
value of α is varied between 0 and 0.05.

gives the new (non-linear) form of (6.13) as

mÿ(t )+Ξ(dN (y(t ))) =−mg , y(0) = y0, ẏ(0) = v0. (6.14)

For this comparison, a normal Euler-forward (explicit) integration scheme has been implemented. The usual
tools in MATHEMATICA and MATLAB do not support solving of differential equations with an update rule (required
for the value of λ in the latter two contact methods) each time step. However, this simple implementation already
shows the sought effects.

Figure 6.11 shows the results of the implementation and simulation, using the initial values y0 = 10 [m]
and v0 = 0 [m/s]. A timespan of 5 seconds (T = 5 [s]) is simulated with high precision (τ = 0.001 [s/step] to see
the effect of once single bounce of the ball, and m = 1 [kg] and g = 10 [m/s2] are chosen. The contact methods
enforce the constraint y(t ) ≥ 0 using their penalty function Ξ(dN (y)). Note that the Penalty method does use any
value of λ, so that visualisation is not shown. The potential U (t ) and kinetic energy K (t ) are respectively given by

U (t ) = mg y(t ), K (t ) = 1

2
mẏ(t )2. (6.15)

We observe some features in the solution when comparing the three methods. All the three methods make
the ball bounce on the ground. The Augmented Lagrangian shows less violation of the solution constraint in com-
parison to the Penalty method, and the Augmented Barrier method shows less violation of the solution constraint
in comparison to the Augmented Lagrangian method, even though the values of p are equal or lower for the latter
two methods. Note that the value of p should not influence the energy levels in the system, only the precision of
the contact enforcement (which may require smaller integration time steps).

For the Penalty method, the total energy levels stay equal after a bounce (up to numerical errors due to simple
integration scheme). For the latter two methods, the energy levels show a huge increase after the bounce, where
the Augmented Barrier is much more explosive compared to the Augmented Lagrangian method. Although it is
not displayed, increasing the value of p makes all three contact methods more aggressive: there is less contact
violation.

Using these observations, a (general) conclusion about the contact methods for dynamic problems can be
formulated. The Penalty method is the only suitable method for enforcing contact for a one-dimensional object.
The latter two methods are too good: they enforce contact so well that too much energy is added to the system,
resulting in non-realistic (and undesired) behaviour which yields no usable solutions.

This conclusion is also partially representative for the dynamic beam model, because it is also single dimen-
sional, although elements are connected to each other, partially slowing down a single element and absorbing
some of its generated energy. We refer also to Section 7.2 for a recommendation on possible ways to solve these
problems.
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FIGURE 6.11: Visualizations of simulations comparing the bouncing ball using three contact methods. The solutions show the height
and velocity of the ball, the value of λ (if applicable) and the energy levels in the system (potential and kinetic).

6.3 Integration interpolation

In section Section 4.1.4 Gauss-Legendre interpolation is introduced in favour of the Trapezium rule for approxi-
mation of integrals. In this section a comparison is made between the two method of approximation.

The static problem (2.13) is solved with the boundary conditions (6.10). The used contact method is the
Augmented Barrier method with p0 = 10 and ψ = 2.5. The used parameters are E I = 104 [Nm2], µ = 10 [kg/m],
L = 10 [m] and N = 5 elements have been used. The low number of elements are chosen such that it is possible
to see the influence of the integration approximation on the precision and convergence of the solution.

In figure 6.12 the results of the comparison are given. It is clear that there is only a small difference in terms
of contact violation, although the Gauss-Legendre interpolation seems to converge more steadily towards small
errors. The Newton convergence is very similar between the two methods. The only thing which stands out is the
way the solutions look. For the trapezium interpolation there is more penetration in the middle section and the
deflection is higher in the right section of the pipe. For the Gauss-Legendre interpolation the solution is flatter as
lies on the contact surface.

This comparison has also been done for the other contact methods. The results are similar to the results
found for the Augmented Barrier method.

6.4 Damping

The two different kinds of damping are compared in this section. For each of the damping types, a different
problem is used because the goals of the damping are different. Structural damping is meant for damping the
entire solution, while damping on contact only dissipates energy on contact.

6.4.1 Structural damping

In fig. 6.13 a comparison is given between a damped and an undamped solution of the problem (2.11) without
distributed load or contact and homogeneous boundary conditions

y(t ,0) = 0, y ′(t ,0) = 0 E I y ′′(t ,L) = 0, E I y ′′′(t ,L) = 0, (6.16)
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FIGURE 6.12: A comparison of the two integration methods: Trapezium and Gauss-Legendre interpolation.
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FIGURE 6.13: A comparison of a vibrating beam with no contact with (α1 =α2 = 0) and without (α1 =α2 = 0.05) structural damping.

and initial conditions y0(x) = (x/L)2 and v0(x) = 0. The used parameters are E I = 104 [Nm2], µ = 10 [kg/m] and
L = 10 [m], and take T = 5 [s], τ = 0.1 [s/step] and α = 0. For α1 = α2 = 0 no damping occurs and the solution is a
sinusoid in the temporal direction. For the parameters α1 =α2 = 0.05 which make the C matrix (see Section 4.1.3)
non-zero, damping occurs and energy of the beam is dissipated.

6.4.2 Damping on contact

In order to test and analyze the damping on contact with the contact surface as determined in Section 3.5, the
boundary conditions are chosen as

y(t ,0) = 1, y ′(t ,0) =−1

2
+ 1

2
e−t E I y ′′(t ,L) = 0, E I y ′′′(t ,L) = 0, (6.17)

and the initial conditions as y0(x) = 1, v0(x) = 0. These boundary and initial conditions simulate the beam ‘slam-
ming’ into the ground by twisting the beam at x = 0 until the boundary conditions are conform the reference
solution yref. The expected dynamic solution is a bouncing pipe on the seabed, until the damping force during
contact will stop the pipe’s movements.
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FIGURE 6.14: Damped solution for the Penalty method with p = 104, cc = 101.5 and εg ∈ [0,0.1].

Furthermore, we use the parameters E I = 104 [Nm2], µ = 10 [kg/m] and L = 10 [m], and take T = 5 [s], τ =
0.1 [s/step] and α= 0. A good value for cc seems to be

p
p, where p is the penalty parameter of the contact method.

This observation is open for further investigation because the value of p influences the time spent below the
contact surface considerably and fine-tuning may be required to get the required results.

Only the Penalty method has been used here for damping on contact because of the reasons mentioned in
Section 6.2.2. For completeness solutions using the other two contact methods are shown in Appendix A.4. An
undamped, lightly damped and over-damped solution is shown using p = 103 and cc = 101.5 in fig. 6.14, while
varying the parameter εg in the interval [0,0.1].

The solution behaves as expected, where the solution dampens out much quicker if the value of εg is in-
creased. The solution also dampens quicker if the value of the damping parameter cc is increased (not shown in
figures). It is not sensible to determine a damping constant for these solutions in order to compare the damping
properties of the solution in the long term. After all, the solution may be damped a lot during contact but make
very little contact, or it may make a lot of contact but be damped very little during contact, resulting in the same
damping properties but very different solutions.

Finally it can be noticed that during a single time step bad Newton convergence can occur (for example about
halfway in the convergence plot for the problem with εg = 0.04 in figure fig. 6.14), although it does not seem to
affect the rest of the solution.

Other values of cc are not shown here because the solution will either be over-damped or under-damped
which does not give insightful solutions.

6.5 Shape of contact surface

This section described different shapes of contact surfaces. The seabed is usually relatively flat but can also con-
tain bumps or ridges. Furthermore, the stinger which supports the beam as it is lowered into the sea consists of
rollers which make contact with the pipe, while the rest of the beam is free.

In the previous sections the contact surface given by f (x) = 0 has been used as the contact constraint. In order
to demonstrate the applicability of the contact methods on other surfaces two problems have been solved.
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FIGURE 6.15: Problem with constraint dN (y) = y−1/10(x−L/2) ≥ 0. The constraint and static solution are shown above and the dynamic
solution with the associated contact region is shown below.

The first problem is given by (2.11) (no damping or distributed load) with

y(t ,0) = 1 y ′(t ,0) = 3

10

(
e−t −1

)
E I y ′′(t ,L) = 0 E I y ′′′(t ,L) = 0 (6.18)

and initial conditions y0(x) = 1, v0(x) = 0. The solution constraint y ≥ 1/10(x − L/2) (and dN (y) = y − 1/10(x − L/2)) is
used which can be seen as a flat but tilted surface. The usual parameters E I = 104 [Nm2], µ= 10 [kg/m], L = 10 [m],
τ = 0.1 [s], α = 0, T = 5 [s] and N = 10 elements are used. The contact is enforced using the Penalty method
with p = 104. The constraint and the result (dynamic and static solutions) are given in fig. 6.15. For the static
solution the time limit of the boundary is taken, y ′(0) = −3/10. The right side of the solution can be seen to stay
well positive, while the middle side is allowed to vibrate more violently.

The second problem is given by (2.11) (no damping or distributed load) with

y(t ,0) = 1− sin(t ) y ′(t ,0) = 0 E I y ′′(t ,L) = 0 E I y ′′′(t ,L) = 0 (6.19)

and initial conditions y0(x) = 1 and v0(x) = 0. The solution constraint is given by y ≥ 1− (x − L/2)2 (and dN (y) =
y − (−(x −L/2)2)) which can be seen as a single bump in the contact surface which the solution may not penetrate.
This is the case for a single roller on the stinger which supports the pipe. The parameters and contact method
are the same as for the first problem, and the result (dynamic and static solutions) is shown in fig. 6.16. For the
static solution the boundary has no limit so a single value is taken, y ′(0) = −1/2. The solution is ‘wobbling’ over
the point x = L/2 where contact is enforced.

6.6 Simplification for point of contact

Often the location of the pipe where contact is initiated is of specific interest. The movements of the pipe make
the point of contact move. Too large movements cause problems and may damage the pipe. In those situations
the exact dynamics and movements of the pipe are of less interest. In this section we explore a way to approximate
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FIGURE 6.16: Problem with constraint dN (y) = y − (1− (x − L/2)2) ≥ 0. The constraint and static solution are shown above and the
dynamic solution with the associated contact region is shown below.

the location of contact by using the (analytical) static solution without requiring the calculation of the dynamic
problem solution. This result is motivated by some simulation examples with dynamic boundary conditions.

In order to analyze this specific scenario where only the point of contact is requested and not the entire solu-
tion of the pipe, a simplification is proposed for the solution method. The problem where the pipe’s location and
angle is known on one side (x = 0), and free on the other side is considered (x = L). The parameters and boundary
conditions are chosen such that that the point of contact is guaranteed to be in between the start and end point
of the beam. Concretely, we solve (2.11) with no damping (cd = 0), and with the boundary conditions

y(t ,0) y ′(t ,0) E I y ′′(t ,L) = 0 E I y ′′′(t ,L) = 0 (6.20)

where y(t ,0) and y ′(t ,0) will be specified along with the initial conditions.

Point of contact We are interested in the first point of contact xC at each time t , given by the expression

xC (t ) = min
{

x ∈ [0,L]
∣∣y(t , x) ≤ 0

}
(6.21)

Notice two things. First of all xC (t ) may be undefined if there is no point of contact in the domain (the pipe
is flying loose from the ground). Hopefully this does not happen in practice, although it may definitely occur
during the process of finding a numerical solution. Furthermore, the description here is a minimization prob-
lem in terms of the solution, which requires the solution at some time t to be known. This might be solved by
approximating xC (t ) based on xC (t −τ) for some small value of τ.

Using the solution of the dynamic problem in order to calculate the point of contact is abandoned in favour
of the following approximation which does not require the dynamic problem solution.

Approximation The point xC (t ) or a good approximation thereof can be solved in a different way. We approxi-
mate the dynamic solution at point in time with the static solution using the boundary conditions at that point
in time.
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In some situations the static solution can be calculated analytically. See Section 4.2 where the reference so-
lution yref(x) is calculated as a solution of the static problem, given y(t ,0) > 0 and y ′(t ,0) < 0. For an analytical
solution to the static problem, the extra parameter is the point of contact L̂ which is solved along with the static
solution as an extra parameter. If the dynamics of the pipe do not influence the contact point a lot, the con-
tact point xC of the dynamic solution may be approximated by the contact point L̂ =−3(y(t ,0)/y ′(t ,0)) of the static
solution (in short: xC ≈ L̂).

This approximation has been tested for various (time-dependent) boundary conditions. Both the solution to
the dynamic problem and the approximation of the point of contact have been calculated. The results can be
found in fig. 6.17. The red region describes the contact region (y(t , x) ≤ 0) and has been determined numerically
from the dynamic solution. The blue line denotes the approximation xC ≈ L̂ using the method above and only
uses the analytic static solution for the given boundary conditions. For all problem instances, the parameters E I =
104 [Nm−2], µ = 10 [kg/m], N = 25 elements, T = 6 [s], τ = 0.1 [s/step], α = 0.05 (to remove high-frequency contact
oscillations) and L = 10 [m] have been used. The boundary conditions vary, from a changing position y(t ,0) to
changing angle y ′(t ,0) or a combination. To model the contact, the Penalty method has been used with p = 104

and without any damping or distributed load.

Observations Some things can be concluded from fig. 6.17. The approximation using the static solution does
not describe the left boundary of the region of contact but rather the centre. This is a good thing: because of
the contact modelling method, some penetration must occur. For a perfect contact solution, the solution would
be locally ‘lifted up’ around the location xC where contact is initiated resulting in the very small contact region
indicated by the approximation. Also the boundary of the contact region fluctuates much, more than the actual
point of contact moves over the contact surface. For this reason it is not advisable to even consider using the
actual numerical value of xC which could be determined from a numerical solution.

Furthermore, even for quite large oscillations, the approximations seems to follow the contact region well.
Only in the last problem instance (bottom right plots in fig. 6.17) where the solution is ‘dropped down’ onto
the seabed, the values of y(t ,0) and y ′(t ,0) both approach zero. This makes the contact region and the approx-
imation both less accurate. This is logical since the static contact point is given by −3(y(t ,0)/y ′(t ,0)) and if y ′(t ,0)
approaches 0 the numerical errors grow ever larger.

Finally, this approximation only works when y ′(t ,0) < 0. This means that in case of such a large deflection of
the beam such that y ′(t ,0) > 0, the approximation is not defined. However, this situation does not seem a realistic
scenario occurring with an actual pipe.
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FIGURE 6.17: Contact region determined by the dynamic solution (red region) and the approximation of the contact point (blue line)
using the analytic static solution, for multiple instances with different boundary and initial conditions. It can be seen that the centre
of the contact region is approximated well by the static solution contact approximation.
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Chapter 7

Conclusion & recommendations

In this thesis solution methods have been explored for the pipelaying problem. A mathematical model has been
made for three sections of the pipe, which allows implementing the three presented contact methods. To solve
the problems numerically, a Finite Element derivation and implementation has been made and verified against
analytical results. The three contact methods have been compared for precision, convergence and numerical
stability.

For the static problem, the equilibrium of the pipe, all three methods work well and give sufficient results.
By using the more advanced methods (Augmented Lagrangian and Augmented Barrier method), a better stability
and convergence rate can be achieved. For the dynamical problem, the movements and dynamics of the pipe,
only the Penalty method works as expected: contact is enforced and the solutions show preservation of energy in
the system. The other two contact methods solve the problem but add too much energy to the dynamical system
giving nonsensical results. Concretely, the Penalty method should be used for solving dynamical problems.

In addition to the contact methods, attempts have been made to simplify the solution process. First of all the
middle section of the pipe (without contact) can be represented via a transfer function which removes the need
to solve the entire problem. Secondly, the point of contact with the seabed can be represented by the point of
contact of a static solution which makes finding the required solutions more efficient.

7.1 Application overview

A possible way to apply the Finite Element derivations as well as the simplifications is as follows. Assuming the
ships movements are known, a full Finite Element simulation including contact can be performed of the part of
the pipe which may make contact with the stinger (section I in fig. 2.1). The right side of the pipe has known
deflection and angle boundary conditions. The left side which is suspended into the water has a force and torque
boundary condition due to the missing rest of the pipe for this section.

The approximation of the transfer function can be used for the middle section of the pipe (section II in fig. 2.1).
The deflection and angle of the upper part of the pipe can be found from the simulation of the first pipe section.
The bottom boundary conditions can be seen as a free end with some force and torque working on that end,
depending on the weight of the pipe. By transforming the numerical boundary condition data into the Laplace
domain, the deflection and angle of the lower part can be found and/or approximated with the process outlined
in Chapter 5.

Finally the section resting partially on the seabed (section III in fig. 2.1) can be approximated by the static
solution in many occasions in order to find the point of contact. Depending on the nature of the deflection and
angle found as a solution of the middle section of the pipe, the static solution may be valid or not. If it is, the
position of the pipe and the place of contact with the seabed can be calculated efficiently. In case the static
solution is not valid, the dynamic Finite Element solution must also be calculated for the part of the beam lying
on the seabed. The left side, where the end of the pipe is connected to the already laid pipe on the seabed, can
be considered as a fixed and static deflection and angle.

Special care must be taken because of the up and down movements of the ship because this moves the refer-
ence frame for the simulation and approximations. Also, in case large deflections occur the model presented in
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Section I

FEM solution

Section II

Transfer function approimation

Section III

Static solution approimation

Ship

Weight of beam

Weight of beam

Laid pipe

Deflection & angle

Force & torque

Force & torque

Deflection & angle

Deflection & angle

Deflection & angle

FIGURE 7.1: A schematic overview of the application of the Finite Element derivations and simplifications. Arrows towards a section
denote the known boundary conditions for that side of the problem. Arrows pointing outwards denote the parts of the solution for
that section that are required for the next section.

Chapter 2 is not valid and must be replaced with another Finite Element model such as the co-rotational method.
Finally, because the force and torques must be known in order to calculate solutions for the first and second
sections of the pipe, a way must be found to approximate these values.

In figure fig. 7.1 a schematic outline of the process outlined above. By using this process for solving the
pipelaying problem, only a full Finite Element simulation has to be run for the part with contact with the stinger
and the other parts can be approximated by other methods.

7.2 Further research

In this section some points of interest are listed which could be a starting point for further research.

Conservative contact methods The Augmented Barrier and Augmented Lagrangian methods work too well for
dynamic problems, making any solutions non-realistic because of the loss of energy conservation. It would be
advisable to look into contact methods (apart form the Penalty method) which preserve the energy in the system.

Two articles seem to be a promising basis for designing new contact methods which work with a Lagrangian
parameter and are also conserving energy. Armero [24] proposes a Penalty regularization method, which con-
serves energy in the dynamical system during contact and releases the energy back into the system once the
contact has ended. A more recent contribution by Ayyad [25] provides a numerical study with a discretization
scheme based on the Finite Element method and gives error estimates for the solutions.

Further simplifications Two main strategies for simplification have been presented in this thesis, namely the
approximation of the middle section of the pipe which is not under influence of contact restrictions, and approx-
imating the contact point of the dynamic solution at the seabed with a static solution in that region.

Possibly more ways can be found to calculate parts of the solution without actually simulating the entire
solution with the Finite Element method with contact enforced. It is mainly important to determine the parts
which are of interest. In case of the pipe: is the contact point important, the region where contact is made, the
curvature of the pipe or even the entire solution (the deflection of the pipe at every place and at every point in
time).
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Usability of the static solution A simplification is proposed in Section 6.6 by using the static solution instead of
simulating the entire dynamic solution in order to determine the point of contact with the seabed. However, this
simplification has only been verified under certain mild conditions. It would be good to verify quantitatively un-
der which conditions the assumption can be made that the static solution is good enough for finding the contact
point.

Even if the static solution may be used to approximate the dynamic point of contact, it may be analyzed how
susceptible even the static solution is to vibrations and fluctuations in the boundary conditions, and how much
these vibrations influence the point of contact.

Finally it must be noted that in general the static solution including contact cannot be determined analytically,
as was sometimes possible in this research. If no analytic static solution (and its point of contact) is available, a
method must be determined to approximate the point of contact well from a numeric solution.

Differently shaped contact surfaces The shape of the contact surface has been varied in order to simulate the
surface of the stinger or a sloped seabed. At the moment only a basic Finite Element implementation has been
used of the linear model for the pipe. Once the contact methods have been extended to a non-linear method such
as the co-rotational method, some things must be investigated further. Among them are the possible shapes of
the contact surface which provide good solutions, the usability of static solutions on a specific surface shape (see
previous paragraph).

Furthermore, if a non-linear model is used for the pipe and the solution domain is more than one dimen-
sional, the pipe can also ‘roll’ sideways over the seabed. Depending on the shape of the surface, this behaviour
must be analyzed to determine if it is relevant to the problem. The model involving friction during contact may
need to be extended for this scenario.

Hit on stinger A deeper analysis of contact with the stinger can be useful to determine the characteristics of
contact during large movements of the ship. The pipe will most likely hit the stinger in some specific places
depending on the movement. Depending on the findings, the location, size and nature of the Finite Elements
may be adjusted on the stinger in order to provide the best accuracy and performance while keeping the required
behaviour of the solution.
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Nomenclature

′ Derivative in spatial direction

α Parameter for HHT-α method

α1, α2 Coefficients to determine Rayleigh damping

β Parameter for Newmark-β method

˙ Derivative in spatial direction

η Weiging constant for the λ update step

γ Parameter for Newmark-β method

L̂ Point of contact for analytic static solution

λ(x) Langrangian parameter

λ0(x) Initial value for λ(x)

µ Mass per unit length [kg/m]

∇ Differential operator

∂ A partial derivative

L
(
t , x, y, ẏ , y ′, ÿ , y ′′) The Lagrangian operator

ψ Updating factor for p

τ Time integration step size

ς j Weights for Gauss-Legentre interpolation

ϑt ,k y ′
t (xk )

Ξ(dN (y)) Penalty functional for a contact method

C Damping matrix

cc Damping constant for damping on contact

cd Damping constant

dN (y) The gap [m]

E The elastic modulus [N/m2]

ek Element k for the Finite Element method
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NOMENCLATURE

Fc Drag force for damping on contact [N]

Fd Damping force [N]

I The second moment of inertia [m4]

Jn(y) The energy functional of the beam which is minimized for y

K Stiffness matrix

Lk Length of element k

M Mass matrix

N Number of elements

N (ξk ) Matrix of basis function values at ξk

p Penalty parameter

p0(x) Initial value for p

Pk Permutation matrix for element k

qk Finite Element state vector

qt ,k Coefficients at two ends of element k

s Laplace frequency parameter

t Time, temporal variable [s]

Ui (s; x) Laplace input or output function

w(t , x) The distributed load on the beam [N]

x Location, spatial variable [m]

Y (s; x) Laplace transformed y(t , x)

y(t , x) The deflection of the beam at time t at position x [m]

yt (x) y(t , x)

yt ,k yt (xk ) = y(t , xk )
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Appendix

A.1 Hermite shape functions

The Hermite shape functions are determined by solving the static problem (2.13) with boundary conditions

y(0) = y0, y ′(0) =ϑ0, y(L) = yL , y ′(L) =ϑL . (A.1)

Then the basis functions are determined as the four functions φ1, φ2, φ3 and φ4 which satisfy the values of the
boundary conditions

φ1 : y0 = 1,ϑ0 = 0, yL = 0,ϑL = 0,

φ2 : y0 = 0,ϑ0 = 1, yL = 0,ϑL = 0,

φ3 : y0 = 0,ϑ0 = 0, yL = 1,ϑL = 0,

φ4 : y0 = 0,ϑ0 = 0, yL = 0,ϑL = 1. (A.2)

A.2 Analytic solutions of dynamic Euler Bernoulli equation

The problem in (2.9) is solved with w = 0 and cd = 0 and homogeneous boundary conditions given by

y(t ,0) = 0, y ′(t ,0) = 0, (A.3)

E I y ′′(t ,L) = 0, (A.4)

E I y ′′′(t ,L) = 0 (A.5)

and initial conditions y(0, x) = y0(x) and ẏ(0, x) = v0(x). We make the ansatz (assumption) that the solution y(t , x) =
X (x)T (t ). This technique is called separation of variables. This gives a new form of (2.9) after deriving the sepa-
rated variables, namely

E I X ′′′′(x)T (t )+µX (x)T̈ (t ) = 0 (A.6)

which is satisfied if and only if

X ′′′′(x) = ν4X (x), T̈ (t ) =−ω2T (t ) (A.7)

are satisfied and ω2 = (E I/µ)ν4. This gives that

X (x) = A sin(νx)+B cos(νx)+C sinh(νx)+D cosh(νx), T (t ) = F sin(ωt )+G cos(ωt ). (A.8)

Using (A.8), the boundary conditions (A.3) impose that A =−C and B =−D , which gives the expression

y(t , x) = (
F sin(ωt )+G cos(ωt )

)(
A

(
sin(νx)− sinh(νx)

)+B
(
cos(νx)−cosh(νx)

))
. (A.9)
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FIGURE A.2: First three modes Xn (x) of the analytical solution.

After solving the equations for (A.4) the constant B is resolved to B = (sin(νL)+ sinh(νL))/(cos(νL)+cosh(νL)). Finally, to
impose the final boundary condition (A.5), the frequencies of the lengthwise terms (ν) are determined as solutions
of

cosh(νnL)cos(νnL)+1 = 0 (A.10)

with solutions νn for n ∈N+ = {1,2,3, ...}. This means that the expression for y(t , x) becomes an infinite sum, built
up of the different vibration modes in the solution. The first numerical values of νnL are

ν1L ≈ 1.8751 ν2L ≈ 4.69409 ν3L ≈ 7.85476 ν4L ≈ 10.9955. (A.11)

These values become very close to ((2n −1)/2)π for higher values of n. A comparison is given in fig. A.1. A visualiza-
tion of the first three modes Xn(x) can be found in fig. A.2.

This gives the final expression for the clamped-free-end beam problem as

y(t , x) =
∞∑

n=1
An

(
Fn sin(ωn t )+Gn cos(ωn t )

)((
sin(νn x)− sinh(νn x)

)+B
(
cos(νn x)−cosh(νn x)

))
(A.12)

with ω2
n = (E I/µ)ν4

n and where the constants AnFn and AnGn are determined by the initial conditions y0(x) and v0(x).
Because sin(ωn t ) and cos(ωn t ) are orthogonal for all n and to each other, the series can be seen as a Fourier series
and the coefficients AnFN and AnGn can be found using

AnGn =
∫ L

0 y0(x)Xn(x)dx∫ L
0 Xn(x)2 dx

, AnFn = 1

ωn

∫ L
0 v0(x)Xn(x)dx∫ L

0 Xn(x)2 dx
. (A.13)

A.3 Discrete Fourier Transform for eigenvalues

In Section 6.1.1 the frequency of the dynamic solution is compared with the analytical values for a specific prob-
lem. The eigenvalues of the dynamical system are determined by finding the eigenvalues of the corresponding
Finite Element matrices. In this section another method is used to determine the same eigenvalues of the system,
however in a different way than by using the Finite Element matrices.
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FIGURE A.4: Damped solution on contact using the Augmented Lagrangian method with p = 104, cc = 102 and εg = 0.01.

A simulation of the dynamical system has been performed of the problem given in (2.11) with (6.3) as bound-
ary conditions. The constants E I = 104 [Nm2], µ = 10 [kg/m], L = 10 [m], τ = 0.1 [s/step] and α = 0, and N = 8
elements have been used. Then the numerical solution at x = L is taken, which makes a sinusoidal movement
over time. Of this time series a discrete fourier transform is taken which from which the first eigenvalues of the
system are determined.

In fig. A.3 a discrete Fourier transform of the FEM solution at x = L can be found, which has been created
using a linear interpolation (order 1), a sample rate of 3 per second and a sample time of 100 seconds. The first
and second mode can be seen clearly. The values of the first two modes that can be observed in the FEM solution
show that it is very close to the analytical solution of the mode frequencies.

Because a time step of τ = 0.1 has been used for time integration, it is logical that solution frequencies of
higher than 10 Hz (corresponding to ω = 20π) cannot be found in the FEM solution. Furthermore, if τ is set
to 0.02, a tiny peak can be found in the discrete Fourier transform plot around ω≈ 19.2 which corresponds to ω3

in the analytical solution (not displayed in the figure).

A.4 Damping on contact

In Section 6.4.2 the results of damping on contact are shown for a simulation run with the Penalty method for
enforcing contact. The same simulation has been run using the Augmented Lagrangian and Augmented Barrier
contact methods. However the results are not useful because of the bad solutions. Still, for completeness, the
results are shown in fig. A.4 (Augmented Lagrangian) and fig. A.5 (Augmented Barrier).

– 59 –



A.4. DAMPING ON CONTACT

Augmented Barrier method, p = 100, cc = 102, ϵg = 0.05
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FIGURE A.5: Damped solution on contact using Augmented Barrier method with p = 100, cc = 102 and εg = 0.01.
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