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Abstract

We combine Tuned Risk Aversion and Conic Finance into a discrete-time option
pricing model. The model values bid and ask prices by distorted expectations
with non-static risk aversion under a weaker form of consistency. With static
risk aversion imposed by strong dynamic consistency, spreads will explode due to
the unnecessary build-up of conservatism. With Tuned Risk Aversion we intro-
duce an alternative that is able to produce prices that reflect market quotations
while remaining consistent. We show that we are able to capture the complete
probability adjustment of implied volatility by distortion, which we believe to
be more intuitive. The bridging of Tuned Risk Aversion with Conic Finance
provides a very promising outlook into finding a realistic uniform framework for
pricing derivatives.

Keywords Tuned Risk Aversion · Conic Finance · Two price valuations · Option
pricing · Weak time consistency · Implied distortion · Implied volatility
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Chapter 1

Research design

We follow the research design proposed by Verschuren et al. (2010). First, we
conceptualize our framework in terms of Research Context (Section 1.1), Re-
search Objective (Section 1.2) and Research Questions (Section 1.3). In the
second part of this chapter (Section 1.4) we propose our technical design in
order to carry out our study in terms of planning and methodology.

1.1 Problem context

“The purely economic man is indeed close to being a social moron. Economic
theory has been much preoccupied with this rational fool.” Thaler (2015).

Long since the introduction of Risk-Neutral Pricing by Merton, Black and Sc-
holes in 1973 (Black and Scholes, 1973) & (Merton, 1973), it is well-recognized
by practitioners and academics that theoretical prices deviate from prices ob-
served in the market. Because of, for instance: non-deterministic volatility (Hes-
ton, 1993), non-lognormally distributed stock-prices (Jackwerth and Rubinstein,
1996) and a required (non-existing) frictionless market (Derman and Taleb, 2005)
& (Leland, 1985). But the most important deviation is the fact that when we
look at real markets, derivatives always have two prices instead of one.

With Conic Finance, Madan and Schoutens (2010) present a theory that is more
in line with how real markets behave by recognizing that prices depend on the
direction of trade, opposed to traditional one price frameworks. In a two price
framework the difference between prices reflects the cost of holding unhedgeable
risk due to market incompleteness and consistent application of risk aversion.
In order to price financial contracts, we need to formulate which risk we believe
is acceptable to hold. Risk aversion is modeled as a distortion of probabilty
distributions on the risk-neutral measure. Although the framework presents a
significant breakthrough, the theory still requires some weaker assumptions.

Because Conic Finance is relatively new (Madan and Schoutens, 2010), research
on valuation methods within this framework is very limited. Current applica-
tions are built upon two assumptions: (I) strong dynamic consistency such that
positions with identical risk adjusted values in every state at a future date must
have the same value today, and (II) the reflection principle where buying a con-
tingent claim equals selling its negative.

(I) Strong dynamically consistent valuations require risk aversion to be a con-
stant equal for every step of a valuation. Roorda, Joosten and Schumacher show
in several recent articles that strong dynamic consistency potentially leads to
the accumulation of conservatism in risk assessment, and theoretical choice pref-
erences that are not in line with observed choice preferences like the Allais and
Ellsberg paradoxes (Roorda and Schumacher, 2016) & (Roorda and Joosten,
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2017). In order to overcome these limitations they introduce a framework called
Tuned Risk Aversion (TRA) that operates under a weaker form of consistency
called sequential consistency. Under sequential consistency risk aversion is not
necessarily a constant, but can be distributed over time. We develop a model
that bridges the theory of Conic Finance with TRA and test whether there exists
empirical proof that markets price under sequential consistency.

(II) Conic Finance assumes that bid and ask prices are connected by the as-
sumption that buying a random cash flow equals selling its negative. Under
strong dynamic consistency this equals that bid prices today only depend on to-
morrows’ conditional bid prices. We try to investigate whether this relationship
is reflected in market quotations. Perhaps different relationships are possible,
for instance dependency on the risk-neutral price.

Besides these weaker assumptions and unexplored territory of modeling best
practices, the empirical evidence whether Conic Finance pricing models are able
to produce prices close to market quotations is limited. Most of the current
literature is based on simulation experiments, for instance Madan and Schoutens
(2017) and Bielecki et al. (2013). With this thesis we seek to contribute to two
theories which we believe to be a good step forward into pushing the field of
mathematical finance towards more realistic and intuitive models.

1.2 Research objectives

This thesis is an explorative journey to empirically test dynamically and sequen-
tially consistent Conic Finance models in their ability to produce prices close to
market quotations. Research steps can be summarized in the following way:

� Summarize the current work done in Conic Finance and time consistency
for multi-period valuation models.

� Develop a Conic Finance option pricing model that is able to produce bid
and ask prices and extend it with the application of Tuned Risk Aversion.

� Calibrate the model against market data and see whether we are able to
produce prices that are close to market quotations.

� Investigate implied distortion patterns to see if there exists a relationship
between the amount of distortion needed to produce a quoted bid price and
option charachteristics like moneyness and time to maturity that we can
capture with the additional flexibility provided by Tuned Risk Aversion.

� Propose ideas and research recommendations based on our results. Be-
cause of the explorative character of our study, we expect interesting in-
sights that could help further research in both Tuned Risk Aversion and
Conic Finance.

During these five steps we try to achieve the following four research objectives:

1. Develop a pricing model that is able to price under both strong and se-
quential consistency.

2. Test whether the model is able to produce prices close to market quota-
tions.

3. Investigate if there is empirical proof for the reflection principle.

4. See if there exists a functional relationship between distortion and option
characteristics which we can capture by the additional flexibility provided
by Tuned Risk Aversion.

2



1.3 Research questions

In order to achieve our research goals we formulated the following main research
question:

Does there exist empirical evidence that markets price with Tuned
Risk Aversion?

We broke down the main research question into sub-questions in order to answer
the main research question incrementally (Remler and van Ryzin, 2015).

1. From classical derivative valuation towards a two price frame-
work

1. What are the fundamental building blocks in valuation theory?

2. How do we adjust these building blocks into a two price model?

3. How do we define Tuned Risk Avesion in a valuation context?

4. How do we define consistency in multi-period frameworks?

The first question provides an overview on the recent work done on two price
frameworks and explains how it is related to traditional pricing models. We
define several types of consistency and the role of acceptancy of risk.

2. From theory to a pricing model

1. How do we model option prices in Conic Finance?

2. How do we apply Tuned Risk Aversion within Conic Finance?

3. Which assumptions do we need to make in our numerical implemen-
tation?

4. How does our model behave with a stylized case?

This question transforms theory into a practical pricing model. We explain
the modeling choices made and define the most important building blocks upon
which our model is based. At the end we demonstrate how the model behaves
in a stylized valuation case.

3. Model calibration and parameter sensitivity

1. Which parameters do we need to calibrate?

2. How can we calibrate these parameters against market quotations?

3. What are the theoretical consequences of the modeling assumptions
and calibration sequence?

We calibrate our model against market quotations. In order to do so we have to
make modeling choices which potentially have an impact on the generality and
validity of our findings.

4. Testing model performance

1. What are methods to measure performance of pricing models?

2. Are Conic Finance models, both under sequential- and strong dy-
namic consistency, able to produce prices close to market quotations?

3. Can we find empirical evidence that bid and ask prices are connected
through the reflection principle?

4. Do we find empirical proof that markets price under Tuned Risk Aver-
sion when we look at implied distortion patterns?

We work towards the answering of our central research question. We are going to
assess whether there exists empirical evidence that markets price under Tuned
Risk Aversion. We also test if we can find empirical proof for the reflection
principle.
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1.4 Thesis outline and methodology

We use a combination of research methods to fulfill our research objective. In
order to grasp the theoretical aspects and foundations of our thesis subject, we
start with a literature research and use this freshly gained knowledge to develop
an option pricing model both under strong dynamic and sequential consistency.
We test the workings of our model on a stylized case and we conduct a quan-
titative case study on S&P 500 option data to provide an answer to our main
research question.

We present our thesis
outline and methodol-
ogy used per chapter in
Figure 1.1. In Chapter
2 we present our liter-
ature study. In order
to test our assump-
tions in practice, we
develop a model which
we present in Chapter
3. Subsequently, we
calibrate and test this
model against market
data in Chapter 4 and
compare the model
with existing pricing
methods in Chapter 5.
Finally, we present our
conclusions and pro-
pose recommendations
and ideas for further
research in Chapter 6.

Figure 1.1: Research methods overview
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Chapter 2

From Classical Derivative
Valuation Towards a Two
Price Framework

For our literature review we used the framework proposed by Webster and Wat-
son (2002). First we start with developing key constructs related to our research
questions and use these to find relevant articles. Then we go backwards by re-
viewing the citations used by the articles identified. Finally we go forward by
identifying articles that cite the key articles found in the first two steps. We
start this chapter by presenting our conclusions.

2.1 Conclusions and foundations for model de-
velopment

Conic Finance is a paradigm shift from a theoretical one price risk-neutral world
towards a more realistic one. However, the framework is still subject to sev-
eral assumptions that we believe to be less convincing. Below we present our
conclusions.

1. Recent developments in mathematical finance try to improve
risk-neutral pricing frameworks while holding on to the law of
one price. It has long been accepted that the Black, Scholes & Merton
(BSM) framework is not fit for finding prices in line with observed prices
in the market. Recent developments within the risk-neutral pricing frame-
work focus on building models that adjust one or more of the assumptions
within the BSM framework, for instance Heston-models (allow for non-
deterministic volatility) or Lévy-models (allow for jumps). The problem is
that even with these models we only find one unique ‘correct’ price while
we observe two prices (bid and ask) in the market.

2. Conic Finance abandons the law of one price by recognizing
that risk cannot be eliminated completely and therefore investors
need to determine the acceptability of risk. When we think of the
market as being the counterparty in all trades, one way to model bid and
ask prices is by taking them as infimum and supremum expectations over a
set of probability measures. Usually bid and ask prices are then connected
by the equality that buying is the same as selling its negative.

3. Studies that present empirical results on both Conic Finance
models and Tuned Risk Aversion are very limited. Most Conic
Finance studies show evidence based on simulated options prices based
on calibrated probability distributions. For instance there is no academic
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literature at all that investigates whether there is a distortion relation-
ship between long- and short-term options (which is indirectly assumed
by strong dynamic consistency. At the same time, empirical studies that
apply Tuned Risk Aversion in a valuation or risk measure context are
non-existent sofar.

4. Acceptability of risk is operationalized by distortion of a prob-
ability measure by concave or convex functions which is similar
to the foundations of Behavioral Finance. For bid prices the mar-
ket determines its price to buy a future non-negative contingent claim and
therefore it shifts its perspective to the area of gains. The market therefore
applies a concave distortion function and distorts its upward probabilities
or payoffs downwards. The use of convexity and concavity is broadly in line
with the general idea of Kahneman and Tversky on Cumulative Prospect
Theory, however there is no effect of wealth accumulation, and distortion
is strictly concave while usually S-shaped in behavioral finance. Our per-
ception is that the existence of two prices is nothing else than consistent
risk aversion applied in both selling and buying.

5. Both traditional and Conic Finance frameworks all require dy-
namic consistency. For Conic Finance this leads to static risk aversion
and potentially the unnecessary build-up of conservatism, and therefore
valuations not in line with real market behavior. An alternative approach
is to require a weaker form of consistency which allows for a more flexible
distribution of risk aversion, but still provides unique updates of valua-
tions.

2.2 Fundamental building blocks in traditional
discrete-time derivative pricing

Traditional asset pricing theory is built around two cornerstones called the First
and Second Fundamental Theorem of Asset Pricing (FTAP) (Föllmer et al.,
2004):

1. No-Arbitrage: A finite time financial market is arbitrage-free if there ex-
ists at least one equivalent probability measure1 Q on a discrete probability
space (Ω,F ,P) such that every discounted price process is a martingale.

2. Complete Markets: A market is arbitrage-free and complete if this
equivalent probability measure Q is unique. Within this market every
derivative can be replicated by the underlying security and the money
market account.

These two theorems form the basis of the no-arbitrage pricing framework devel-
oped by Merton (1973), Black and Scholes (1973), Harrison and Kreps (1979)
and Ross (1978) in which the price of a derivative equals the discounted expected
value of its future payoff under the unique equivalent martingale measure.

2.2.1 Traditional pricing models

Within this thesis we focus on the pricing of derivatives within discrete-time
tree option pricing frameworks. Therefore we will spend little time on providing
an extensive overview of other option pricing models and focus solely on the
introduction of tree models. The interested reader is referred to Madan and
Schoutens (2016) for an extensive overview of option pricing methods within a
two price framework and to Eberlein et al. (2014) & Madan et al. (2013) for
continuous-time option pricing with Variance-Gamma and Sato models.

1Also refered to as the risk-neutral measure in literature.
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2.2.2 Binomial tree model

The binomial tree model has been introduced by Cox et al. (1979) (CRR model)
as a no-arbitrage pricing framework to price derivatives in a discrete-time setting
and converges to the BSM when we take the limit of the stepsize to zero (Föllmer
et al., 2004). The model is arbitrage-free and complete under the following
conditions (Föllmer et al., 2004);

1. u < e−r∆t = B(∆t)−1 < d under exponential discounting.

2. There exists a unique equivalent martingale measure Q under which the
probability of an upwards movement2 equals p∗ = B−d

u−d .

We follow Duffie (2001) and Shreve (1996) in further explanation of derivative
valuation within the CRR-model. Due to market completeness we can replicate
a derivative X by a self-financing strategy which we will call ϕ. The no-arbitrage
price φ(t) of X, and the value of the self-financing replicating strategy coincide
and are given by the martingale property expressed in the following equation:

φ(T )

B(t)
=
φϕ(t)

B(t)
= EQ

[
X(T )

B(T )
|Ft
]
. (2.1)

We can price the derivative by computing the expectation under the risk-neutral
measure Q or we exploit backward recursive characteristics by pricing the repli-
cating portfolio. Backward recursion exploits that the discounted value of an
European derivative is a martingale. The value of a derivative at maturity
equals the contingent claim at maturity (2.2) and for intermediate time-steps
(2.3)

φ(T )

B(T )
=
X(T )

B(T )
, (2.2)

φ(t)

B(t)
= EQ

[
φ(t+ 1)

B(t+ 1)
|Ft
]
. (2.3)

The change in the value of the undiscounted and discounted replicating portfo-
lio equals the price of the derivative where the replicating portfolio consists of
the risky underlying security and the risk-free asset. The exact equations that
provide the recursivity scheme can be found in Appendix 7.1.

2.2.3 Extension of the CRR-framework

The CRR-model depends on several key assumptions;

1. The purchase price of the risky security equals the selling price of the risky
security, i.e. market is frictionless (Shreve, 1996).

2. At any time-step the underlying can only take two possible values in the
next period, i.e. underlying cannot keep the same value as the step before.
(Shreve, 1996).

3. Logarithmic spacing between nodes, i.e. volatility is constant over the
complete times-span (Derman et al., 1996).

Trinomial trees provide an alternative to binomial trees. The extra parameter
(mid-node) makes it possible for the price process to remain at the same price
for one period (Derman et al., 1996). Schwartz (1977) showed that a trinomial
tree approach is equivalent to the explicit finite difference method. The modeling
parameters of the trinomial tree can be found in Appendix 7.2 and have originally
been presented in Boyle (1986). Another type of models is the class of implied
trees. When we plot implied volatilities for traded options, we observe that

2u = eσ
√

∆t & d = 1
u

.
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volatility is not constant and vary with both strike and expiration creating an
implied volatility surface (Derman et al., 1996). Implied tree theory was first
proposed by Dupire (1994) and extends the CRR/BSM framework in a way that
it is consistent with the shape of the smile. Consistency is achieved by extracting
an implied evolution for the stock price from market prices of traded options on
the underlying security with varying volatility over different time-steps (Derman
et al., 1996). An interesting additional feature of implied trees is that once we
have a tree that fits the smile, we are able to extract the risk-neutral distribution
of future stock prices as implied by the market.

2.3 A two price framework

Traditional valuation models rely, amongst several other weaker assumptions, on
the requirement of a frictionless market indicating where buying and selling can
be done against the same price (Haug and Taleb, 2011). These theories price by
eliminating all risk such that there exist no preference over the required return,
and derivatives can be perfectly replicated which leads to the law of one price.
Nevertheless, actual markets show two prices (even in the most liquid markets
like ATM S&P 500 options); a price for buying (ask) and a price for selling (bid).
A lot has been written about the meaning and decomposition of spreads, but
the purpose of this thesis is not to replicate this discussion so we will refer to
Madan and Schoutens (2010) for an exentisive overview on this topic. In this
thesis we build on the standpoint of Madan and Cherny:

‘The differences between bid and ask prices can be quite large and may have little
connection to processing, inventory, transaction cost or information considera-
tions. The differences instead reflect the very real and substantial cost of holding
unhedgeable risk’ (Madan and Schoutens, 2010).

The psychological difference that people face when selling or buying is also in-
troduced by Miller and Shapira (2004) and is broadly in line with the work on
Cumulative Prospect Theory (CPT) by Tversky and Kahneman (1992) as we
explain later on and can also be seen as a protection mechanism in line with
the work of Nassim Taleb on antifragility (Taleb, 2013) where the market seeks
convexity in buying and concavity in selling.

Our viewpoint is that having two prices for the same financial product is not
irrational, but quite logical or even ‘rational’. It is being consistent in applying
risk aversion when buying and selling a future contingent claim. Consider being
in the position of selling a lottery where the person on the buy-side has the
possibility either to win 500 or 0 euros by equal probability. When we are risk
averse, we only sell this lottery against3 250+ε. The other way around, when
someone offers this particular lottery, we only want to buy it for 250-ε, because
now again we apply risk aversion.

Conic Finance provides a framework to determine such buying and selling prices.
The determination of pricing is always done from the perspective of ‘the market’
that acts as a counterparty in all trades (Madan, 2010). Fundamental in the the-
ory of Conic Finance is the principle of coherent risk measures and acceptability
indices. The concept of one-period static coherent risk measures can be traced
back to the early work of Artzner et al. (1999). Because the primary focus of
this thesis will be on valuation, we will rely on the work of Jobert and Rogers
(2008) into defining dynamic valuation measures.4

3The expected value plus a small amount.
4A valuation measure is simply the negative of risk measure explained by Jobert and Rogers

(2008) & Artzner et al. (2007) & Artzner et al. (1999).
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2.3.1 Axiomatic introduction of one-period acceptability
measures

Let Ω be a finite state set where X(Ω) represents the outcome generated when the
state of nature ω ∈ Ω materializes. An acceptability measure is a non-negative
number that maps X(Ω) to R. We define φ(X) as the degree of acceptability
associated to a position X. An acceptability measure is called coherent if it
statisfies the following four axioms:

A1 Concavity φ
(
λX + (1− λ)Y

)
≥ λφ(X) + (1− λ)φ(Y ) , (0 ≤ λ ≤ 1),

A2 Positive homogeneity φ(λX) = λφ(X) , λ ≥ 0,

A3 Monotonicity X ≤ Y =⇒ φ(X) ≤ φ(Y ),

A4 Translation invariance φ(X +m) = φ(X) +m , m ∈ R.

The risk adjusted value of a position is then defined by computing EQ[X] under
each test probability measure Q ∈M. Then we take the minimum of all expec-
tations which corresponds to the following valuation operator (Artzner et al.,
2007).

φ(X) = inf
Q∈M

EQ
[
X
]
. (2.4)

Recent, a lot of work has been done in extending static one-period frameworks
into dynamic ones. In a dynamic framework measurements are done throughout
time and adapt to the flow of new information (Bielecki et al., 2017). The
majority of these contributions work in an axomiatic framework that requires
strong dynamic consistency (sdc). Examples are Riedel (2004), Bielecki et al.
(2014) and Artzner et al. (2007). In Chapter 2.4 we define different types of
consistency and introduce the concept of Tuned Risk Aversion (TRA) under a
weaker form of consistency.

2.3.2 Pricing based on acceptability

Consider a set of random payoffs X of a derivative paid out at maturity T. The
set of random variables X are defined on (Ω,F , P ). If X is a set of non-negative
random variables that can be obtained against zero-initial cost, it should by
definition always be acceptable at all levels, because it is in fact an arbitrage op-
portunity (Cherny and Madan, 2009); an investor obtains a potentially positive
cash flow against zero cost wich should be a no-brainer! However investors are
also willing, and able, to do non-arbitrage trades. Therefore we need to define
the fundamental concept of acceptable risk defined by Artzner et al. (1999) &
Cherny and Madan (2009) in order to determine when a non-arbitrage trade
is acceptable. Like we stated earlier, in traditional theory (under deterministic
discounting) the price of a derivative equals:

φ(X) = EQ
[
X(T )

B(T )
|F
]

= B(T )−1EQ
[
X(T )|F

]
. (2.5)

Then the market is respectively willing to buy/sell at initial zero cost5 the fol-
lowing trade (Madan and Schoutens, 2016):

Zbuying = X −B(T )b, for b ≤ φ(X), (2.6)

Zselling = B(T )a−X, for a ≥ φ(X). (2.7)

It is very important to understand that these bid and ask prices are determined
from the market’ perspective. A bid price is the price the market is willing to pay

5If a set future payoffs (X) has a non-zero initial cost we introduce ‘b’ as price to paid. The
difference ’Z’ is having zero-initial cost.
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to obtain a potential future payoff X. Based on the above equations, a potential
candidate for acceptable risk is the set zero-cost cash flows defined as:

A1
t =

{
Z | φt(Z) = Bt(T )−1EQt

[
Z | Ft

]
≥ 0
}
. (2.8)

However, market prices for buying and selling are not the risk-neutral ones, but
depend on the direction of trade. Therefore we need to consider convex proper
subsets of the set of risk of non-negative risk-neutral value that still contain the
non-negative random variables as models for the set of potentially acceptable
zero-cost cash flows by the market (Madan and Schoutens, 2016). This subset
A2 is modeled as a convex cone and defined by Artzner et al. (1999) & Cherny
and Madan (2009) under a convex set of probability measures6 M.

Z ∈ A2 , B(T )−1EQ
[
Z
]
≥ 0 , ∀ Q ∈M. (2.9)

When the market then respectively accepts to buy (bid) or to sell (ask) against
price ‘b’ and ‘a’ we get:

B(T )−1EQ
[
X − bB(T )−1

]
= B(T )−1EQ

[
X
]
− b ≥ 0, (2.10)

B(T )−1EQ
[
aB(T )−1 −X

]
= a−B(T )−1EQ

[
X
]
≥ 0. (2.11)

Or in terms of acceptability for Q ∈M:

X − bB(T )−1 ∈ A2, (2.12)

aB(T )−1 −X ∈ A2. (2.13)

An index of acceptability assigns a level of acceptability to a number X ∈ R
by α(X) with X being acceptable if α(X) ≥ γ where γ represents a fixed ac-
ceptability level. Acceptability indices and families of probability measures are
related by the relationship that if α is an index of acceptability, and γ ≥ 0 is
a level of acceptability, there exist a set of M measures such that a random
variable X ∈ R is acceptable at level γ if and only if it has posive expectation
under Q ∈Mγ (Cherny and Madan, 2009). By employing a fixed acceptability
index α with a fixed level of acceptability γ we are able to price the residual risk
of X. When the market sells X it wants a in return. Therefore the residual cash
flow a−X must have an acceptability set by index α above fixed level γ. This
minimal price equals the ask price of X (Madan and Schoutens, 2010).

bid(X) = B(T )−1 sup
Q∈M

EQ
[
X
]

= inf
{
b : α(X − b) ≥ γ

}
, (2.14)

ask(X) = B(T )−1 inf
Q∈M

EQ
[
X
]

= sup
{
a : α(a−X) ≥ γ

}
, (2.15)

ask(X) = −bid(−X) i.e. Reflection principle. (2.16)

2.3.3 Operationalizing acceptability

When we assume law invariance, the only information we need in order to test
acceptability at level γ for a cash flow X, is the distribution function FX (Madan
and Schoutens, 2010). Cherny and Madan (2009) proposed the use of distortion
functions in order to operationalize the index of acceptability. We denote the
distortion function by Ψγ (·). The distortion function is increasing and concave
on the unit interval

[
0,1
]

and zero at zero, and unity at unity for γ ≥ 0. See
Figure 2.1 for an example of a probability distortion function under different
levels of γ.

6The higher the acceptability hurdle, the larger the supporting set M and the smaller the
cone of acceptability (Cherny and Madan, 2009). The widest set is the set of one measure. In
this case we have for acceptability the complete half-space.
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Figure 2.1: Distortion by MINMAXVAR distortion function for different γ.

When we apply a distortion function on a cumulative distribution function (cdf)
it ‘distorts’ values dependent on γ, the higher γ the more distorted it will be.
Due to the concave character, lower quantiles are being reweighted upwards
where higher quantiles are reweighted downwards which leads to lower expecta-
tions7. The acceptability index α(X) is then the largest γ such that the distorted
expectation of X remains positive (Madan and Schoutens, 2010):

α(X) = sup
{
γ ≥ 0 ,

∫ ∞
−∞

xdΨγ
(
FX(x)

)
≥ 0
}
. (2.17)

Now we can define acceptability via distortion functions in the following way:
for a random variable X, the family of measures Qγ distorts the cumulative dis-
tribution function of X by γ. The value α(X) is the maximal level of distortion
such that the distorted expectation defined in Equation 2.17 remains positive.
For an overview of possible distortion functions we refer to Cherny and Madan
(2009) & Madan and Schoutens (2016).

Under the assumption of law-invariance and comonotone additivity (Kusuoka,
2001), bid and ask prices follow directly from distorted expectations that we will
use to operationalize indices of acceptability:

rn(X) = B(T )−1

∫ ∞
−∞

xdFX(x), (2.18)

bid(X) = B(T )−1

∫ ∞
−∞

xdΨγ(FX(x)), (2.19)

ask(X) = −B(T )−1

∫ ∞
−∞

xdΨγ(F−X(x)). (2.20)

Due to the concavity of the distortion function, domination of ask prices over
bid prices is automatically sustained (Madan, 2010). Now we are gong to apply

these definitions on a plain vanilla call option with payout
(
S −K

)+
. We price

the option against its distorted expectation in case we cannot form a perfect
replication strategy. The ask and bid prices of options then become:

askγ(C) =

∫ ∞
K

Ψγ(1− FS(x))dx, (2.21)

bidγ(C) =

∫ ∞
K

(1−Ψγ(FS(x)))dx. (2.22)

This application of distortion functions is in line with the general idea of CPT,
where in the area of gains people are risk averse (concave) while in the area of
losses people are risk seeking (convex) (Tversky and Kahneman, 1992). For the
‘market’ acting as a counterparty in all trades, buying a potential future payoff
against a bid pricef means the market acts in the area of gains when it needs to
assess the possibilities of a future payoff. Therefore the market will adjust the

7γ = 0 gives the standard expectation which is in our case the standard risk-neutral one.
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probability of an upward movement downwards and the probability of a down-
ward movement upwards. When the market is selling a future obligation it acts
in the area of losses (convex). There it adjusts the upward movement upwards
and reduces the probability of a downward movement.

Figure 2.2 presents the distorted cdf of the above one-step binomial tree of an
ATM call option where Si represents the level of the underlying, and fi the payoff
in state i. We see that when the market offers its price (bid) for which it accepts
to buy this option, it adjusts the probability of the lowest outcome upwards
Ψ(1− p) = 0.6629 versus the base probability (1− p) = 0.5072, and lowers the
upward probability to 1− ψ(1− p) = 0.3371 versus the base p = 0.4928.

Figure 2.2: Distortion of probabilities for a call option bid price (Madan et al.,
2016).

The bridging of CPT and option valuation is actually not something new and
already introduced in the following papers: (Versluis and Lehnert, 2010) and
(Nardon and Pianca, 2014).

Delta hedging in a two-price framework

Hedging in Conic Finance is completely different than it is in traditional risk-
neutral frameworks. In Conic Finance one seeks to design hedges that maximize
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the concave bid prices for positions held, or minimize the convex ask prices for
positions promised for one-step ahead risk (Madan and Schoutens, 2016). The
concept of hedging applies to add positions that enhance current market values
where risk-neutral finance seek to zero out risk to price derivatives in a risk-
neutral setting (Madan et al., 2016). As a result derivatives get five different
prices in Conic Finance framework; unhedged (bid/ask), hedged (bid/ask) and
the risk-neutral one.

Lets consider a tree setting with a portfolio π consisting of a long position in
the derivative, in our case an option C, and a ∆ short position (negative) in the
underlying S. The idea of hedging in Conic Finance is to find the optimal ∆∗

where the bid price is maximized or the ask price is minimized (Madan et al.,
2016).

When the stock price moves up/down the portfolio value becomes respectively:

πup = Cu + ∆Su, (2.23)

πdown = Cd + ∆Sd. (2.24)

Where the bid and the ask price become:

askγ = B(T )−1

(
Ψγ(p)πup + (1−Ψγ(p))πdown

)
. (2.25)

bidγ = B(T )−1

(
(1−Ψγ(1− p))πup + Ψγ(1− p)πdown

)
. (2.26)

2.4 Consistency and Tuned Risk Aversion

When we extend one-period frameworks into multi-period frameworks an impor-
tant role is played by time consistency. In a dynamic set-up, measurements are
done throughout time and adapt to the flow of available information, where the
assessment of value should be updated in a consistent way over time (Bielecki
et al., 2017). Consistency is important, because we seek preferences that are
consistent when we evaluate investment opportunities. We follow the work of
Roorda and Schumacher (2013) and Roorda and Schumacher (2016) in order to
define consistency and corresponding update rules. For the interested reader we
will refer to a very recent and extensive literature study on time consistency by
Bielecki et al. (2017).

We will define two types of consistency in a dynamic valuation context:

1. Strong dynamic consistency.

2. Sequential consistency.

2.4.1 Consistency

Strong dynamic consistency
Strong dynamic consistency (sdc) is imposed by the strictly monotonicity axiom
of preference relations and is closely related to the law of iterated expectations
and the Bellman principle (for American-stye options) and enables backward
recursive solving (Artzner et al., 2007). It requires that evaluations under a given
acceptability measure should not change when the payoffs following a given event
in the future are replaced by their evaluations conditional on that same event.
It basically means that two positions with identical conditional values in every
state at some future date must have the same value today (Roorda and Joosten,
2015) that leads to non-linear valuations that only depend on conditional values.
In most of the recent work on multi-period dynamically consistent valuations,
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the requirement of sdc is imposed upon the developed frameworks, examples are
Artzner et al. (2007) and Bielecki et al. (2014). At the same time, several studies
showed the shortcomings and restrictiveness of sdc (Roorda and Schumacher,
2007) and for an extensive and recent overview we refer to Machina and Viscusi
(2014). We define sdc as:

φt(X) = φs
(
φt(X)

)
, s ≤ t. (2.27)

or equivalently

φt(X) = φt(Y ) =⇒ φs(X) = φs(Y ), (2.28)

φt(X) ≤ φt(Y ) =⇒ φs(X) ≤ φs(Y ). (2.29)

Under dynamic consistency, valuations are updated per time-step according to a
Bayesian updating scheme.8 In Conic Finance the bid price at an intermediate
date is valued by:

φs(X) = inf
Q∈M

EQ
[
φt(X) | Ft

]
t ≥ s. (2.30)

Roorda and Schumacher (2007) showed in a rather easy way that sdc automat-
ically imposes sequential consistency.

Sequential consistency
Sequential consistency is introduced by Roorda and Schumacher (2007) and re-
quires that a position cannot be evaluated positively if all conditional evaluations
at later stages are negative. It is called sequential to express that values at a
given position in a sequence of time instants should not change sign predictably.
It combines the notions of ‘weak acceptance’ and ‘weak rejection consistency’
into one that can be defined as:

φt(X) = 0 =⇒ φs(X) = 0 , s ≤ t. (2.31)

That is basically the combination of the following two conditions that apply
directly to respectively acceptance and rejection consistency:

φt(X) ≥ 0 =⇒ φs(X) ≥ 0, (2.32)

φt(X) ≤ 0 =⇒ φs(X) ≤ 0. (2.33)

(2.34)

As defined by Roorda and Schumacher (2013), an update is sequentially consis-
tent when

φt(X) = 0 =⇒ φs(X) = 0, (2.35)

inf φt(X) ≤ φs(X) ≤ supφt(X). (2.36)

Example
In order to clarify the difference between sequential and sdc we present an ex-
ample inspired by example 3.8 presented in Roorda and Schumacher (2013).
Consider two nonrecombinding two-step binomial trees with probability 99% for
moving to an upward node during all time-steps. X has payoff profile (0, 0,

0, -10) and Y = (0, 0, -10, -10). We take φ̂0 and φ̂1 as single-step worst-case
operators between time intervals [0,1] and [1,2].

8Updates according to Bayes rule.
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We define two valuation operators φ in the following way (Roorda and Schu-
macher, 2013):

sequential φ1 = φ̂1 , φ0(X) = min
[
E0(φ̂1(X)), φ̂0(E1(X))

]
, (2.37)

sdc φ1 = φ̂1 , φ̂0(X) = φ̂0

(
φ̂1(X)

)
. (2.38)

Figure 2.3: Valuation under strong dynamic and sequential consistency.

Intuitively we would always favor X over Y if we would be offered the choice.
However, when we assess the risk of the bets under sdc, both bets carry the same
risk φ̂0(X) = φ̂0(Y ) = −10 which appears to be very conservative for X. We
can see in Figure 2.3 that the obvious difference in risk is better captured under
sequential consistency: φ0(X) = −0.1 > φ0(Y ) = −10 with φ̂1(X) = φ̂1(Y ) =
−10.

2.4.2 Risk aversion in option pricing

Dynamic risk aversion

A valuation measure φt is risk averse in the valuation of a future payoff X,
at time t, with respect to some measure Q, when φt(X) ≤ EQt [X] holds. The
difference between EQt (X)−φt(X) is called the risk margin (Föllmer et al., 2004).

A dynamic valuation φt exhibits consistent risk aversion with respect to a mea-
sure Q under the assumption that the supermartingale property9 holds; ∀t φs ≤
EQs φt (Detlefsen and Scandolo, 2005), which is in line with the consistent risk
aversion argument made in Roorda and Schumacher (2007) that requires that
average risk premiums at given level of information could not exceed the risk
premium that is required without the new information. Risk premiums should
therefore on average decrease by the obtaining of new information.

In all current Conic Finance applications, risk aversion is parameterized by γ as
a rectangular set requiring it to be fixed for every time-step. This rectangularity
of γ is imposed by the strong dynamic consistency requirement. We, however,

9Threshold function θmint (Q) = 0.
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believe that imposing sdc could be too restrictive and unrealistic in practice.

For instance, Roorda, Joosten and Schumacher showed in several recent articles
that requiring sdc comes at a price. Roorda and Schumacher (2007) show that it
could lead to the accumulation of conservatism and therefore to overly conserva-
tive measures of risk that could potentially also result in valuations of derivatives
that are too conservative, like we showed in Figure 2.3. At the same time, sdc
leads to normative choice preferences that are not in line with descriptive ex-
perimental choice preferences showed by Roorda and Joosten (2015). In order
to overcome these shortcomings they introduced a concept called TRA where
we are allowed to use more flexible distributions of risk and therefore allow non-
rectangular tuning-sets under sequential consistency. We also suspect that the
additional flexibility of TRA enables us to build functional relationships between
distortion and option characteristics like time to maturity and moneyness.

2.4.3 Introduction of Tuned Risk Aversion

In TRA the outcomes of valuation functions are compared under patterns of
risk aversion with a risk aversion parameter for each single period. The crux,
explained in Roorda and Schumacher (2016), is that single-period dynamic con-
sistency does not dictate long-term features of the valuation. Because opposed
to sdc, it is not a requirement to keep the level of risk aversion the same dur-
ing every time-step. The key is that valuations become set-recursive where risk
aversion is stored in an auxiliary vector. The method of storing additional pa-
rameters in option valuation is similar to the forward shooting grid method used
for the pricing of path-dependent options like lookback options. The maximum
value conditioned on time is stored and updated in an auxiliary vector. This
method is defined in Bormetti et al. (2004) and Barraquand and Pudet (1996).
We still value recursively, but risk aversion is not longer a constant over all time-
steps.

We define Ψγ
t as the one-step conditional valuation corresponding to MINMAX(γ)

for γ ∈ N . When we set γ = 0, we price under the original non-distorted mea-
sure, usually the risk-neutral one i.e., Ψ0

t (X) = EQt [X]. Under sdc, γ is equal
during every time-step (rectangular tuning-set) and the backward-recursive val-
uation becomes:

φ(X) =
{

Ψγ
t

(
..
(
Ψγ
T−1(X)

)
...
)
|

t∑
i=((T−1)−t)

γi = nγ
}
. (2.39)

Under sdc multi-step valuations are just the sum of single-step valuations in
terms of risk-aversion. In order to be truly sdc the risk aversion budget needs to
increase linearly with an increase in time. For instance when we value options
by equal step-size (20 steps every week) risk aversion budgets under sdc become:

20∑
i=1

γi ≤ n ∗ γ one-week, (2.40)

40∑
i=1

γi ≤ 2 ∗ n ∗ γ two-week, (2.41)

T∗20∑
i=1

γi ≤ T ∗ n ∗ γ T-week. (2.42)

Under sdc it is highly unlikely that the one-week option γ equals the T-week
option γ, because this will make spreads (risk-neutral versus bid price) blow up
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due to the increase in γ.10 In Figure 2.4 we plotted the spread development of
an ATM call option with different time to maturities, constant step-size (0.35
days) and a constant γ = 0.15. Due to the blow-up behavior we will never be
able to find a functional relationship between γ and time to maturity, while at
the same time remaining strong dynamically consistent.

Figure 2.4: Spread (risk-neutral price - bid price) for different times to maturity
under constant γ = 0.15 and budget equation 2.39.

Under TRA we can distribute γ over periods of time. The restrictions on how
to do this are defined by tuning-sets. A possible tuning-set is to limit the total
amount of γ we can distribute over the complete time interval while at the same
time cap the amount of γ we can apply during single-steps. In order to produce
bid prices we distribute risk aversion such that we minimize the conditional
expected outcome as follows:

φ(X) = inf
{

Ψγt
t

(
..
(
Ψ
γT−1

T−1 (X)
)
...
)
|

t∑
i=((T−1)−t)

γi ≤ Γ, γi ≤ Γstep
}
. (2.43)

The major advantage of TRA over sdc is that we can model different budget
dependencies and therefore have a way to solve the blow up behavior we face
under sdc. Therefore TRA provides a promising framework in order to build a
uniform valuation framework in Conic Finance. Below we provide an example
that shows the difference between sdc and TRA. Lets assume we are offered to
buy a derivative with the following payoff profile (50, 50, 0, 0, 0) and equal prob-
ability of moving up and down. In Figure 2.5 we show the difference between
TRA and sdc in producing a bid price for this derivative.

Under sdc risk aversion is set equal during every time-step γ = 0.2 where under
TRA we can distribute the γ = 0.2 over the different time-steps. In order to
come up with a price, we need to determine the residual risk we feel comfortable
to hold (X − bid) by setting a price which makes α(X − bid) ≥ γ. Because we
are buying, we act in the area of gains and therefore we decrease the probability
of an upward movement by applying risk aversion there where it has the most
impact, because in Conic Finance a bid price is the infimum of a set of expected
values under a set of probability measures.

10Spreads for longer-term options are bigger due to the higher level of uncertainty, but they
do not grow linearly with time.
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Figure 2.5: TRA versus sdc for γ = 0.2. Distribution of budgets shows the
budget of risk aversion left to allocate during every step.

Because applying risk aversion has no effect on zero-outcomes, the algorithm
distributes risk aversion in the top nodes of the tree where we face the possibility
of earning 50 and therefore lowering the probability to end up in that state. We
see that after the first backward-recursive step we are left with only γ = 0.1.
All other budget is already spent in previous state. For ask prices we see an
opposite distribution where risk aversion is applied low in the tree, because we
face the risk of losing 50 and we want set a price that reflects this residual risk
that we hold α(ask −X) ≥ γ.
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Chapter 3

From Theory to Practice

In this chapter we describe the workings of our model based on the theory
presented in the previous chapter. We start by explaining the building blocks
and assumptions followed by its dynamics and sensitivities. The exact numerical
description of the model can be found in Appendix 7.3. All versions of the
algorithm are modeled in Matlab.

3.1 Outline Model and building blocks

Within a two price framework bid and ask prices represent respectively the
infimum and supremum of distorted expectations over the set of supporting
measures (Madan and Schoutens, 2010). In line with the work of Madan et al.
(2016), we start with the risk-neutral measure as base probability distribution.
We model acceptability1 with (concave) distribution functions for bid prices pro-
posed by Cherny and Madan (2009), and bid and ask prices become expectations
under convave distortion (Kusuoka, 2001):

bid =

n∑
i=1

Ψγ(pi)fi. (3.1)

Alternatively we may use an entropic risk-measure (Föllmer et al., 2004):

bid = − 1

γ
log
( n∑
i=1

pie
−γfi

)
. (3.2)

Within this thesis we follow the first method, because we want to test the dif-
ference between the earlier work done in Conic Finance compared to our new
approach.

3.1.1 Methods of distortion

In our model we use the proposed distortion functions presented by Cherny and
Madan (2009). In Table 3.1 we present an overview of possible concave distortion
functions which are graphically presented in Figure 3.1.

Table 3.1: Overview distortion functions | γ ≥ 0

Distortion Ψ(p)
MINVAR 1− (1− p)1+γ

MAXVAR p
1

1+γ

MAXMINVAR (1− (1− p)1+γ)
1

1+γ

MINMAXVAR 1−
(
1− p

1
1+γ
)1+γ

1Under the assumptions of Comonotone additivity and law invariance.
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Figure 3.1: Graphical representation of [3 0] payoff under distortion for several
levels of gamma.

3.1.2 Tuning-sets

By imposing a weaker form of consistency we allow backward recursion with
flexible risk aversion for every time-step. Because this approach is completely
new, there are no suggestions on the shape tuning-sets should or could have
whatsoever. Within this thesis we test two different sequential consistent tuning-
sets as alternatives for strong dynamic consistency. We define γt as the amount of
risk aversion we apply during a time-step.2 Tuning-sets are calibrated against γ
where γ caps γt that can be applied during a single period of time (Equation 3.3,
3.5 and 3.7), and determines the amount of risk aversion that can be applied
over all time-steps together (Equation 3.4, 3.6 and 3.8). See Figure 3.2 for a
graphical representation of risk distribution under all three scenarios.

δ = 1 (sdc) γt ≤ γ, (3.3)

N∗T∑
0

γt ≤ N ∗ T ∗ γ, (3.4)

δ =
1

2
(TRA1) γt ≤ γ, (3.5)

N∗T∑
0

γt ≤
√
N ∗ T ∗ γ, (3.6)

δ = 0 (TRA2) γt ≤ γ, (3.7)

N∗T∑
0

γt ≤ γ. (3.8)

Under strong dynamic consistency (δ = 1 sdc) we are allowed to apply γ (or
lower) during every time-step where the sum of risk aversion applied during all
time-steps needs to be below the total budget of risk aversion which is simply the
total number of steps multiplied by γ. One can easily understand that this leads
to applying γ (the maximum allowed amount) every time-step when we model
bid prices as the infimum of a conditional expectation. Under TRA-1 (δ = 0.5)
single-step risk aversion is still capped at γ, but the multistep budget constraint
is more restrictive, see Equation 3.6. This limits the amount of risk aversion
that can be applied and prevents the blow-up of spreads when we extend time.
TRA-2 (δ = 0) is even more restrictive where the total amount of γ that can
be distributed is equal to the single-step maximum γ, but we are still free to
distribute this small amount of γ over all time-steps or apply it all at once as in
(δ = 0).

2N equals the total number steps during a single time-period (a week), and n equals the
total number of steps during the complete time period (N*T).
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Figure 3.2: Illustration of strong dynamic consistency and Tuned Risk Aversion.

We can see that the single-step maximum is the same under all three tuning-sets,
but budget functions are different. This again is the difference between TRA and
strong dynamic consistency; single-period dynamic consistency does not dictate
long-term features of valuations. The tuning-sets under TRA (δ ∈ {0, 0.5}) are
more restrictive in the total amount of risk aversion that can be applied over
time-periods. Therefore by equal γ for all three tuning-sets, we face the following
price ranking where δ = 1 provides the lowest bid price (b) and δ = 0 the highest:

bδ=0 < bδ=0.5 < bδ=1. (3.9)

3.2 Binomial and trinomial modeling

Most of the recent work in Mathematical Finance aims at improving the BSM
framework while still working under the law of one price. A good example is the
work on Heston models where volatility is no longer deterministic (or constant),
but modeled as a correlated stochastic process. We start with simple intuitive
binomial and trinomial tree models where we seek empirical fitting with the ad-
ditional flexibility provided by TRA. The most important reason is that trees
can be solved backwardly and they are perfectly suited to distribute risk over
different time-step positions.

The binomial tree is simple and intuitive, but quite rigid while it allows underly-
ings only to jump up or down. Binomial trees converge to the BSM model when
increments are taken infinitesimal. It is therefore a discrete approximiation of
geometric Brownian motion. While the binomial tree framework is a complete-
market model, the trinomial tree framework is an incomplete market model
(Madan et al., 2016) and therefore no unique equivalent martingale measure
exist. Every time-step the underlying can move up, down or to a middle state
which creates an extra flexibility parameter to fit risk-neutral transition prob-
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abilities (Derman et al., 1996). Trinomial trees converge faster than binomial
trees to the risk-neutral valuation EQ

[
S
]

= SerT which increases computational
speed (Rubinstein, 2000).

3.3 Value enhancement by hedging

Conic hedging aimes at value enhancement of bid and ask prices offered by the
market for derivatives in stead of eliminating exposure completely. Within Conic
Finance hedging aimes at maximizing the bid price of a future contingent claim
as a functional of the risk held Madan et al. (2016) while at the same time mini-
mizing the ask price as a functional of the risk promised. Madan et al. (2016) and
Madan and Schoutens (2016) show that under the assumption of a frictionless
hedging instrument and no short-selling restrictions, delta hedging does narrow
bid and ask spreads, but there is no evidence for pricing improvement.

We hedge by adding a position in the future contract on the underlying. We
therefore not only price the derivative but a package. By borrowing the price
and paying it the next step with interest, we ensure initial zero-cost while the
hedge position is self-financing (Madan et al., 2016). The main idea is to seek a
∆∗ position where the bid price is maximized or the ask price is minimized. The
delta position in the future has close to zero contribution to the mid-package
payoff due to the minor movement of the underlying in this case.

3.4 Stylized example

Below we present the results of our model under a stylized case which is an
extension of the example used in Madan et al. (2016). We value a plain vanilla
ATM two-month call option with the following parameters:

Table 3.2: Modeling parameters

σ = 0.2 rf = 0.01 n = 4 N = 2 ∆t = 0.0417 T = 2 S0 = 100

We set γ = 0.2. Under strong dynamic consistency (sdc) we therefore apply
γt = γ during every time-step. Under TRA the total budget depends on the
tuning-set.

TRA-1 = γt ≤ 0.2, (3.10)

4∑
0

γt ≤
√

4 ∗ 0.2, (3.11)

TRA-2 = γt ≤ 0.2, (3.12)

4∑
0

γt ≤ 0.2. (3.13)

Based on Table 3.3 and Figure 3.3, we can draw some conclusions. All tuning-
sets are very sensitive to changes in γ and bid prices show a convex decreasing
profile when we increase γ. As expected sdc has the strongest dependency on
γ. We also found that by applying hedging in trinomial trees, bid prices become
very close to risk-neutral valuations when we decrease step-size, see Figure 3.4.
This introduces a problem when we move from discrete to continuous pricing
models and complicates pricing of options with significant spreads.
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Table 3.3: Results valuation of stylized example γ = 0.2.

Figure 3.3: Sensitivity of tuning-sets to γ (20 steps).

Figure 3.4: Sensitivity of pricing under hedging to step-size.
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Chapter 4

Model Calibration and
Results

In this chapter we calibrate our model against market quotations. We start
with a broad description of our dataset after which we explain the calibration
methods we used. We show whether Conic Finance models in general are able
to produce prices close to market quotations, and we test whether there exists
emperical evidence for the reflection principle. Subsequently we look at implied
distortion patterns to see if there exists evidence that markets apply Tuned Risk
Aversion in pricing options and investigate whether we can improve our original
model. Below we present our different calibration steps:

Step 1 Calibrate implied volatility σI of each individual option against
quoted mid prices by trying different σ’ as input parameter for our algo-
rithm. We calibrate both the binomial and trinomial case under γ = 0
which results in the same price for all three tuning-sets. This way our
valuation algorithm produces the exact mid price when we use {σI , γ = 0}
as input parameters.

Step 2 Calibrate implied distortion γ against bid prices where we use
the calibrated σI of each individual option found in Step 1. Within this
step we try different γ’ to match a quoted bid price such that γI provides
the model bid price that is closest to the quoted bid price. Each γ is
calibrated under all three tuning-sets, such that we have three unique γI
for each specific option.

Step 3 Use each calibrated γI -bid as input variable to produce ask prices
such that we are able to test for existence of the reflection principle. Due
to our modeling setup (first calibrating against mid prices) we indirectly
assume that ask prices are not only dependent on bid prices, but also
on the mid price which has no theoretical foundation, but is a modeling
consequence.

Step 4 Plot patterns of γI against moneyness and time to maturity to see
whether TRA provides a way to model functional relationships between
distortion and option characteristics. A functional relationship between
time and distortion would enable us to price a large set of options by
simply calibrating distortion against a smaller set of options, for instance
one-week maturity options. Another potential interesting relationship is
the one between implied volatility and distortion. Coming up with mod-
els that are capable of producing volatilities that match the exact implied
volatility surface appears to be very complicated. More important, it is
intuitively very odd that options with the exact same underlying apply dif-
ferent volatilities to that same underlying. Perhaps it is just a way to work
with an imperfect model that became the general standard in the financial
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industry. Distortion potentially provides the key to solve this problem by
keeping volatility a constant and adjust probability distributions solely by
distortion.

Our modeling setup is based on five important simplifying assumptions:

1. Discrete approximation of lognormal distribution for the underlying.

2. Relatively small number of steps during every period of time (20 per week).

3. Discretization of γ by a linearly spaced vector of 20-steps.

4. Constant risk-free rate for all maturities of 1% which equals the annual
risk-free rate in the US (USA Department of Treasury, 2017).

5. Algorithm keeps track on complete sum of used γ budget used and avail-
able, but not of intermediate sub-budgets. For instance we know the γ-
budget used between [T-5,T], but not on sub-interval [T-5, T-2] which
potentially leads to inconsistent budget allocations.

4.1 Dataset and calibration parameters

The SPX is one of the most liquid financial instruments and its traded in a al-
most frictionless way (spread less than 1%). We use a dataset of historical option
prices on the SPX obtained via CBOE Options Exchange (2017). The dataset
contains historical end-of-day option chains between June 2017 - October 2017.
Index levels of the S&P 500 are obtained via Yahoo Finance (2017). Because of
the explorative character of this study, and the computational heaviness of the
model, our test-case only contained 219 options (October 2017).

Figure 4.1: Overview dataset CBOE Options Exchange (2017). Historical level
S&P 500 (a), historical distribution of daily returns S&P 500 (b), and plot on
implied volatility of call options on the S&P 500 (c).

We need to calibrate both volatility (σ) and distortion (γ) in order to test our
model performance. Volatility determines the tree parameters; probability dis-
tribution for underlying {pu, pm, pd} and the change in the level of the underlying
{Su, Sm, Sd}, where distortion (γ) adjusts the base probability distribution.
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4.2 Calibration methodology

4.2.1 Volatility

We calibrated volatility against mid quotes in order to ensure that the risk-
neutral case (γ = 0) delivers the mid price which is necessary for our distortion
approach. By first calibrating against mid prices we follow the work of Madan
et al. (2016). Our approach differs in the fact that we calibrate σ for a lognor-
mal distribution (underlying assumption for trees) where Madan et al. (2016)
calibrate a fmidvariance gamma process. Alternatively we could calibrate σ by
econometric models like ARCH and GARCH to forecast volatility based on his-
torical return data (Cumby et al., 1993) and (Noh et al., 1994). The problem
with this approach is that we will never be able to fit prices due to the existence
of the implied volatility surface, because GARCH produces single unique vari-
ance forecasts, see Appendix 7.4 for GARCH parameters. In Figure 4.2.c. we
show the difference between the GARCH forecasted variance and our calibrated
implied variance.

Figure 4.2: Historical daily returns (a), historical and forecasted day σ2 (b)
and bandwith calibrated implied variance from our model versus GARCH(1,1)
forecast (c).

A second alternative is to use the markets’ forecast of volatility by using the
implied volatility calculated from quoted market prices. Research on the fore-
cast quality of implied volatility is however quite mixed (Fleming, 1998) and
this would result in multiple mid quotes outside the bid-ask spread. A third
alternative is to model volatility as a stochastic process (Heston, 1993). This
approach is however quite contradictive in our case, because by using a tree
model we indirectly assume volatility to be deterministic. We used the Nelder-
Mead calibration scheme presented in Olsson and Nelson (1975) and Kienitz
and Wetterau (2013). This method is widely applied for non-linear optimization
problems. The advantage is that the method is based on simplex optimization
rather than derivatives of an objective function. This is necessary due to the
fact that we don’t price by a closed form formula, but by a recursive algorithm.

4.2.2 Distortion

Recently several articles have appeared on the calibration of distortion parame-
ters. Madan and Schoutens (2010) and Madan et al. (2016) start by calibrating
a risk-neutral variance-gamma distribution by historical stock returns and then
calibrate γ by bid and ask prices of options on that same underlying index where
each option type in terms of maturity and moneyness is calibrated individually.
The difference with our setting is that they work in continuous time and cali-
brate closed forms for bid and ask prices, see Madan and Schoutens (2010) for
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proof of Equations 4.1 and 4.21:

bγ(C) =

∫ ∞
K

(
1−Ψγ(FS(x))

)
dx, (4.1)

aγ(C) =

∫ ∞
K

Ψγ
(
1− FS(x)

)
dx. (4.2)

An alternative approach is proposed by Bannör and Scherer (2014). An extra
feature of this method is the ability to obtain the shape of a market-implied
distortion function. They use a piecewise linear approximation of a distortion
function by using market quotes of option prices. Then the bid ask price calibra-
tion problem corresponds to minimizing the dinstance between model bid-ask
prices and quoted market prices. The differences between the results obtained
by the two methods are minor according to Bannör and Scherer (2014).

We combine both methods of Bannör and Scherer (2014) & Madan and Schoutens
(2017) and execute them with a Nelder-Mead simplex calibration scheme. First
we calibrate volatility against the mid quote (γ = 0 case) in order to make sure
our bid-ask spread entails the mid quote. Subsequently we calibrate γ for each
individual option against bid prices where we use the implied volatility calibrated
in the step before as volatility input parameter in our algorithm. The difference
with the approach used by Madan and Schoutens (2010) is that we work with a
lognormally distributed underlying imposed by the tree-framework, instead of a
variance gamma distribution. Then we calibrate our distortion budget against
bid quotations and test the reflection principle by applying the same amount of
distortion for producing ask prices. We look for evidence of TRA by plotting
calibrated implied distortion profiles against moneyness and time to maturity.

4.3 Empirical results

We measure the goodness of fit by the Average Absolute Error (EEA) (Kienitz
and Wetterau, 2013) of the model price compared to the quoted market price
and the EEA as percentage of the absolute spread2, see Equation 4.3 and 4.4.

AAE =
1

N

N∑
i=1

|Pmarketi − Pmodeli (x)|, (4.3)

AAE as % of spread =
1

N

N∑
i=1

( |Pmarketbidi − Pmodelbidi (x)|
|Pmarketbidi − Pmarketmidi |

) . (4.4)

where x = (x1..xn)T represents the vector with option parameters belonging to
option i. We calibrate σ against mid prices and we calibrate γ against bid prices.
We test for the reflection principle by using the implied calibrated distortion
found through bid prices to produce the corresponding ask price. Within this
chapter we left out the results after hedging, because hedging made the algorithm
inflexible for small step-sizes and pricing performance decreases when spreads
become significant.

1FS represent the distribution of the underlying S.
2Spread is defined as the difference between the bid and ask price.
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4.3.1 Implied volatility

In Figure 4.3 we show the calibrated implied volatility skew which corresponds
to implied volatility skews we would expect to find for call options (Hull, 2012).

Figure 4.3: Calibrated Implied volatility.

The option prices produced by volatility calibration are very close to mid quotes
with marginal fitting error, which shows that our models are able to produce
prices that are close to quoted mid prices of SPX options. Calibrated implied
volatilities for the trinomial tree setting show a smoother pattern than the bin-
iomial setting, due to the fact the we used a relative small number of modeling
steps during every time period and trinomial trees converge faster to stable pric-
ing profiles. When we decrease step-size we will see that implied volatilites under
trinomial and binomial become roughly the same.

4.3.2 Implied distortion

Conic Finance models are able to produce bid prices that empirically fit market
prices when the right amount of distortion is applied, both under strong and
sequential consistency, see Table 7.2 in Appendix 7.6. The difference between
TRA and sdc is that a wider set of distortion budget dependencies is allowed
and therefore risk aversion is not necessary a constant over all time-steps. This
enables us to model different relationships between γ and time to maturity and
prevent spreads from blowing up as under sdc.

Moneyness

When we look at moneyness versus implied volatility in Figure 4.4, we observe
patterns similar to the implied volatility skew. The implied volatility exists, be-
cause traders consider that the lognormal distribution understates probabilities
of extreme events (Hull, 2012), which we can consider as a type of risk aversion
that we can potentially capture with distortion, see Chapter 4.4.

Figure 4.4: Calibrated implied distortion (γ) versus moneyness (Trinomial).
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TRA-2 and sdc show similar profiles, because for one-week options TRA-2 is
just a scaled version of sdc where the single-step γ of sdc is the maximum risk
aversion that can be distributed over all time-steps for TRA-2. TRA-1 shows a
different more stable pattern, because the limit is a squaroot sum of all γ’s.

Time to maturity

In Figure 4.5 we plotted the calibrated implied distortion (γI) for options with
equal moneyness, but different time to maturities.

Figure 4.5: Calibrated implied distortion (γI) versus time to maturity (trino-
mial).

Implied distortion γI under sdc shows a sharply decreasing profile in order to
match longer-term quoted bid prices. If we kept γI constant we would end
up with bid prices significantly below the quoted bid price due to the blow up
behavior described in Chapter 2.4.3. Under TRA we observe flatter profiles
for γI . This seems promising in order to find a uniform functional relationship
between time and distortion such that we prevent spreads from blowing up. For
further research purposes it would be interesting to test a wider set of budget
equations and time dependencies.

4.3.3 Reflection principle

One fundamental modeling choice in current Conic Finance frameworks is the
reflection principle, which assumes that bid and ask prices are connected by the
equality that buying is the same as selling its negative:

bid(X) = −ask(−X). (4.5)

We test if there exists empirical proof for this assumption by applying each
individual calibrated amount of bid price distortion (γI) to produce its cor-
responding ask price and compare this ask price with the ask price quotation
provided by the market. An important assumption within our modeling setup
is that our bid price depends on the mid price (because we first calibrated the
mid price σ) and therefore ask prices not only depend on bid prices imposed by
the reflection principle, but also on the mid price as a modeling consequence.
In Appendix 7.6 we present the performance of our model in fitting ask prices.
It shows that the reflection principle holds for close-to ATM options, but fitting
performance decreases significantly for OTM options, see Figure 4.6. A possible
explanation is that spreads are not necessarily symmetric around mid quotes in
Conic Finance (Madan and Schoutens, 2017). This is indeed not the case when
we look at implied spreads as % of the model ask price versus moneyness. In
Figure 4.6 we see a similar increase of spreads compared to the increase in fitting
error for different moneyness.
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Figure 4.6: Bid-ask spread as % of ask price (orange) versus fitting error ask
price (blue) for different moneyness. TRA-1, 2-10-2017 for a one-week option
valued by a trinomial tree.

We found no statistical evidence3 that models under TRA produce better ask
prices (under calibrated bid distortion) than the sdc one, nor a difference between
binomial and trinomial models.

4.4 Constant implied volatility setup

Based on our findings on the implied distortion (γI) versus implied volatility
(σI), we want to test another modeling setup in which we keep implied volatility
constant and try to fit the complete adjustment of the probability distribution
with our γI parameter. In order to do so we undertake the following steps:

Step 1 We take one volatility level that we thereafter use for all strikes
and maturities which is the implied volatility of the farthest ITM option,
see Figure 4.7. We could also take the σ of the farthest OTM options, as
long as we ensure that all other mid prices modeled with this specific σI
are above their bid price which is a necessity for our algorithm.

Step 2 Calibrate γ for each individual option with the one unique σI that
we found in Step 1.

Step 3 Test if we could fit the total adjustment on the probability distri-
bution with γ and investigate if our ask price fitting performance increases.

Figure 4.7: Implied volatility of farthest ITM option illustrated by black circle.

4.4.1 Results

We plotted the results of two different options on two separate days in Figure
4.8. It shows that we are able to capture the complete adjustment of the under-
lying probability distribution necessary to fit bid prices by only changing γ and
keeping σ constant. We believe implied distortion to be a much more intuitive
adjustment parameter, because it represents risk aversion which is likely to be
different for options with different moneyness, where it theoretically impossible
that one underlying has multiple volatilities.

32-sample t-test at 99% significance level.
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Figure 4.8: Implied distortion (γI) after constant volatility calibration. Left
y-axis is SDC, right y-axis is TRA.

Again we see that TRA-2 (square-root budget) shows the most stable pattern
where TRA-1 and sdc show more divergent profiles with significant changes
in distortion around ATM strikes. Within this setup ask pricing performance
decreases dramatically, because of two reasons:

• Implied distortion levels increase around ATM strikes in order to adjust
the relatively high mid price into a bid price. But because the mid price
is already relatively close to the quoted ask prices at these points, the
amount of distortion calibrated against bid prices is far too high to adjust
that same mid price into an ask price and therefore ask prices explode
compared to quoted ones, see Figure 4.9.

• For options with low implied volatilities, especially around ATM strikes,
mid prices lay sometimes above ask prices. This happens because we used
a relatively high implied volatility (the one for the farthest ITM option)
that delivers a disproportionate high mid price for options with low implied
volatilities.

Figure 4.9: Fitting error ask price in % of spread versus moneyness (sdc).
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4.5 Alternative use of Reflection Principle

In the previous section we showed that we are able to capture the complete
adjustment of the probability measure by changing γ instead of σ, however the
reflection principle makes it impossible to produce ask prices with the calibrated
bid γ. In order to solve this problem we introduce an alternative use of the
reflection principle.

Conic Finance is built upon the assumption that bid and ask prices exist due to
the existence of unhedgeable risk. In order to assess this risk, we apply constant
risk aversion both for selling and buying. However, in Conic Finance the amount
of risk aversion is the same for bid and ask by the reflection principle. We believe
there is room to deviate from this principle. The level of risk aversion is not
necessary the same for buying and selling. It is widely accepted in normative
Behavioral Finance theories that the perception of losing (negative contingent
claim/selling) is different than for winning (positive contingent claim/buying).
We therefore propose that bid and ask prices could have their own level of risk
aversion (γ). We introduce a different setup where we price with a forecasted
underlying volatility (again the same for all strikes) provided by GARCH(1,1).
We already know that this volatility will produce mid prices that are too low
for ITM options, but too high for ATM options. The price point γ = 0 is the
point where the forecasted volatility provides the exact (or closest to) bid-price.
We fit prices around this point by applying the reflection principle for the points
where we are not able price with normal valuation operators; φγ(X) (bid) or
φγ(−X) (ask). For instance on the points in the red-marked area in Figure 4.10
we cannot price with φγ(X) and therefore we price with φγ(−X). We define the
points priced by the reflection principle in the following way:

bid φ−γ(X) = φγ(−X), (4.6)

ask φ−γ(X) = φγ(X). (4.7)

Figure 4.10: Bid and ask price operators with constant forecasted volatility. The
graph shows which valuation operator is used in different areas of the quoted
implied volatility.
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4.5.1 Results

Figure 4.11 shows the results of the bid and ask price γ after calibration where
we applied the reflection principle, not to find the complementary ask price,
but to find the bid/ask prices that we can’t price with their standard valuation
operator. We see that we are able to price both bid and ask prices with a
forecasted σ and capture the complete adjustment of the probability measure
by γ. We observe that as we expected, bid and ask prices don’t have the same
amount of risk aversion. We also see that the spread between the γ‘s for bid
and ask widens when we move away from the ATM strikes. Probably because
valuation uncertainty increases for OTM and ITM options. Again we observe
the most stable pattern under TRA-1.

Figure 4.11: Graphical representation of γ for bid and ask prices under new
setup. γ’s-ask are multiplied by -1 for illustrative purposes.
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Chapter 5

Conclusion

This chapter provides an answer to the sub-research questions posed in our re-
search design. The answering of our main research question accompanied with
main insights gained during this research project follows logically.

From classical derivative valuation towards a two price framework

Traditional valuation models are built on the fundamental theories of asset pric-
ing in which the pricing of financial products is based on the law of one price.
However, when we look at real financial markets we observe two prices, one for
selling and one for buying. We believe this to be logical when people apply risk
aversion consistently in both selling and buying. Conic Finance provides a frame-
work that aims at producing these two prices such that bid-ask spreads reflect
the cost of unhedgeable risk. Financial contracts are then priced in terms of a
marketed cone which is operationalized by acceptability indices under the mod-
eling assumption that buying equals selling the negative (reflection principle),
and strong dynamic consistency. Strong dynamic consistency potentially leads
to the build-up of conservatism and introduces complications when we want to
build functional relationships between time to maturity and risk aversion. Tuned
Risk Aversion provides a framework that still provides unique updates of prices
in multi-period valuations, but is more flexible and able to produce results more
in line with experimental choice behavior. The extra flexibility of Tuned Risk
Aversion also provides the possibility to build other more feasible functional re-
lationships between risk aversion and time to maturity.

From theory to a pricing model

Bid and ask prices are respectively the infimum and supremum of distorted ex-
pectations in Conic Finance, where distortion depends on the degree of risk
aversion. We developed a model that is able to price plain vanilla options both
in a binomial and trinomial tree setting. The pricing algorithm has two possi-
ble tuning-sets under Tuned Risk Aversion with different time and risk aversion
dependencies. Strong dynamic consistency has been modeled by keeping the
amount of distortion constant during every time-step. The model has been
tested on a stylized case where we showed the difference between tuning-sets
under Tuned Risk Aversion and strong dynamic consistency in pricing a two-
month call option.

Model calibration and pricing performance

We calibrated our model against a dataset of call options on the S&P 500 (SPX)
in October-2017 by the following steps:

Step 1 Calibrate implied volatility (σI) of each individual option against
quoted mid-prices by testing different σ’ as input parameter for our algo-
rithm. Calibration executed through a Nelder-Mead simplex calibration
scheme.
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Step 2 Calibrate implied distortion (γ) against bid prices where we use
the calibrated σI of each individual option found in Step 1 also through
a Nelder-Mead simplex calibration scheme.

Step 3 Use each calibrated γI -bid as input-variable to produce ask prices
such that we are able to test for existence of the reflection principle.

Step 4 Plot patterns of γI against moneyness and time to maturity to see
if TRA provides a way to model functional relationships between distortion
and option characteristics and to see if markets price with TRA.

Our model is able to produce bid prices close to market prices, both under
strong dynamic consistency and TRA. By applying the calibrated amount of
bid-distortion, we were able to match ask prices around ATM strikes, but fit-
ting performance decreased for OTM options. This can be explained by the fact
that in Conic Finance bid-ask spreads are not necessarily symmetric around mid
prices, which we indirectly assumed in our calibration setup.

We looked at patterns of implied distortion and found profiles similar to the
implied volatility skew. We tested two alternative modeling setups where we
kept volatility constant and captured the complete probability distribution ad-
justment, normally provided by changing σ of the underlying, by solely applying
distortion γ. Within this modeling setup we were able to fit all bid and ask
prices of different strikes in a model with a single volatility for the underlying.
Also implied distortion patterns under TRA showed a significantly flatter pro-
file compared to sdc and therefore TRA provides a way to model a functional
relationship between time to maturity and distortion, while at the same remain
consistent and prevent spreads from blowing up. TRA provides a very promis-
ing framework into finding a uniform model for derivative pricing that is able to
price with a single volatility for the underlying and a feasible way to relate risk
aversion and time to maturity.

5.1 Main insights

1. Spreads under strong dynamic consistency blow up if we increase time
to maturity and therefore it is impossible to model a truly consistent re-
lationship between time to maturity and distortion that matches market
prices.

2. Conic Finance models are able to produce bid and ask prices close to
market quotations, both under sequential and strong dynamic consistency
by applying the right amount of distortion.

3. Implied distortion patterns show that with TRA, we are able to solve
the blow up behavior that we face under sdc which provides promising
results for finding a functional relationship between distortion and time to
maturity.

4. The probability adjustment (implied volatility skew), normally provided
by different volatilities for the underlying, can be completely captured by
distortion γ. We are able to price all strikes of an option chain by a single
forecasted volatility.

5. Market quotations for ATM options provide evidence for the reflection
principle as modeling relationship between bid and ask prices. However,
we believe that for OTM and ITM options, bid and ask prices could have
different levels of risk aversion.
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Chapter 6

Further Research and
Model Improvement

Empirical studies on both Conic Finance and Tuned Risk Aversion are scarce and
theoretical ones that try to combine these two theories even non-existent. To our
knowledge this study is the first attempt to bridge Tuned Risk Aversion and the
field of derivative pricing, especially Conic Finance. We can say that the study
was an explorative journey and therefore many new ideas and improvements
came to our minds during the process. This final chapter captures all these
recommendations and ideas for further research.

1. Flexibility Allow for a wider range of tuning-sets and distortion functions.
Because of the explorative character of this study we restricted ourselves to
two types of tuning-sets and one distortion function MINMAX (the most
conservative one). The model can be extended by trying different distor-
tion functions, for instance: MAXMIN, MAXVAR and MINVAR (Cherny
and Madan, 2009). We can also model different tuning-sets where we cal-
ibrate both δ and γ (Equation 6.1) or use different single-step restrictions
for risk aversion (Equation 6.2):

N∗T∑
0

γt ≤ (N ∗ T )δ ∗ γ | γt ≤ γ, (6.1)

N∗T∑
0

γt ≤ (N ∗ T )δ ∗ γ | γt ≤
√
γ. (6.2)

2. Connection with Behavorial Finance An extension would be to incor-
porate S-shaped distortion instead of strictly concave which is more in line
with general theories in Behavioral Finance. By applying this type of dis-
tortion functions we need to be careful if no-arbitrage conditions still hold
(Madan et al., 2016). Another potential extra research dimension would
be to incorporate the accumulation of wealth within the TRA framework.
We would expect utility of ‘extra gains’ for highly ITM options to be less
than the gains obtained by for instance ATM options. In other words, the
accumulation of wealth plays a role in the risk aversion of investors. Con-
sider a binomial pricing framework as a compound choice lottery where
in every time-step an investor has the hypothetical choice of holding his
position, or to close/sell it. The choice to hold his position means that he
continues the ‘gamble’ at least one more period of time. When we are high
in the tree the investor gained a lot, so his reference point changes and
utility of gains diminishes in line with Cumulative Prospect Theory (Tver-
sky and Kahneman, 1992). Therefore risk aversion should differ when we
are somewhere high in the tree compared to when we are somewhere low.
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Especially for derivatives with intermediate payoffs like swaps this would
be an interesting point for further research.

Figure 6.1: Indicative risk aversion in normal and implied binomial tree.

3. Functional relationship distortion Use the insights from implied dis-
tortions patterns under TRA to find a functional relationship between time
(tuning-set) and moneyness. Especially the relationship between distortion
and implied volatility looks very promising which could be the key to de-
velop a model that is able to price options with different strikes, but the
same underlying volatility. A first and easy attempt could be to look at
the development of historical implied distortion levels to see if this changes
over time and whether it is forecastable.

4. Hedging improvement The hedging strategy in this thesis is the one
proposed by Madan et al. (2016), but whether this approach is optimal
remains questionable, especially in the presence of transaction cost for
the underlying. Therefore we propose to improve the model with more
advanced hedging strategies for trinomial trees presented in: Schulmerich
and Trautmann (2003), Huang and Guo (2013) and Föllmer and Leukert
(2000).

5. Validity Develop a model that does not require ‘knowing’ the exact mid
quote parameterization. Even by using a single σ, like we tested in Chapter
4.4 and 4.5, we still use the mid price as starting point for distortion.
Modeling the implied volatility surface is a constantly developing field.
Especially the article Carr and Wu (2016) looks very promising and is very
close to approaches used by practitioners (Vega-Vanna-Volga method).

6. Generality Test the model on more complicated derivatives like struc-
tured products. A first attempt has already been made by Madan and
Schoutens (2012). Also the dataset we used was very limited both in type
of options, maturity (less than two months) and dates (only one). In order
to increase generality we need to test the model on larger datasets.
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6.1 Model Improvement

1. Finite difference Extend the model towards a finite-difference model
where the underlying is modeled on a grid. This way we would be able
to price options with other underlying processes like: variance-gamma or
Lèvy, but are still able to distribute risk aversion every time-step. The
application of Conic Finance in grid methods is further explained in Madan
and Schoutens (2016).

2. Time dependency Within our model we searched for time dependencies
in terms of week-maturities and calibrated γ budgets at weeks. We would
suggest to decrease this to day-dependency which potentially increases
precision and allow us to calibrate against a wider set of options. This
modeling-setup is already possible in our current algorithm.

3. Detailed consistency Improve the algorithm such that also intermedi-
ate budgets are stored, see introduction Chapter 4 for explanation of this
modeling assumption. This way we can ensure that we are completely
consistent over all time-steps.

4. Calibration (I) Test whether there is a significant improvement when
volatility is calibrated against the volume weighted-average mid quote in-
stead of the standard mid quote.

5. Calibration (II) Only use OTM options of put and calls and apply the
put-call parity to price ITM options, because they are more competitively
priced (Aı̈t-Sahalia et al., 2001).

6. Precision (I) Increase granularity of possible γ values the model can
assign every time-step. This can lead to better pricing performance and
better implied distortion patterns due to the fact that risk aversion can be
applied more precisely.

7. Precision (II) We took the risk-free rate as constant for all maturities
and used γ as calibration parameter to fit the lognormal distribution such
that our model produced the exact mid-price. It would be better to use the
exact risk-free term-structure, for instance the EONIA in Europe (ECB,
2014). For equity derivatives it is not necessary to model stochastic interest
rates, because the main driver of value is the equity underlying opposed
to, for instance, interest rate derivatives (Brigo and Mercurio, 2006).

8. Model Performance The current model is programmed in Matlab which
is a relatively slow programming language compared to C++ or Python.
Especially for calibration purposes performance can be increased by recod-
ing it to a faster programming language.
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Chapter 7

Appendix

7.1 Binomial tree set-up

Backward recursion is determined by the following four equations:

φ̃(T ) = X(T ) (7.1)

φ̃(t) = EQ
[
φ̃(t+ 1)|Ft

]
(7.2)

ϕ2(t) =

CovQ
[
φ̃(t+ 1),∆S̃(t)|Ft

]
VarQ

[
∆S̃(t)|Ft

] (7.3)

ϕ1(t) = φ̃(t)− ϕtS̃(t) (7.4)

We now observe that ϕ2(t) is the regression coefficient of the value of the deriva-
tive and the underlying, also called delta. For an option in the binomial frame-
work, Equation 7.3 reduces to the following simplified well-known expression of
delta:

ϕ2(t) =
φ(t+ 1, S(t)u)− φ(t+ 1, S(t)d)

S(t)u− S(t)d
(7.5)

In our implementation we followed the setup presented by Cox et al. (1979)

Su = Seσ
√

(∆t) (7.6)

Sd = Se−σ
√

(∆t) (7.7)

pu =
er∆t − Sd
Su − Sd

(7.8)

pd = 1− pu (7.9)
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7.2 Trinomial tree set-up

Presented in Boyle (1986)

Su = Seσ
√

(2∆t) (7.10)

Sd = Se−σ
√

(2∆t) (7.11)

Sm = S (7.12)

pu = (
er∆t

1
2 − e−σ

√
∆t 12

eσ∆t 12 − e−σ
√

∆t 12

)2 (7.13)

pm = 2/3 (7.14)

pd == (
eσ
√

∆t 12 − e−r∆t 12

eσ∆t 12 − e−σ
√

∆t 12

)2 (7.15)

(7.16)

7.3 Description Algorithm

7.3.1 Procedure

SDC
Under SDC the valuation model applies the same amount of gamma during
every time-step. The starting point is the risk-neutral probability distribution
with equal distortion in terms of gamma during every step. The option is valued
backward recursively just like we do in normal traditional one price tree frame-
works.

TRA
Every time-step the model calculates the intermediate value of an option by
calculating all the possible valuations under all possible gamma budget applica-
tions. Then the model evaluates the possible values and takes the worst value,
because bid prices are the infimum of expected values. For ask prices we choose
the highest price (supremum). When we found the worst intermediate value (in
case of bid), we store the corresponding gamma budget and store the prices for
all possible gamma budgets used. The next time step we evaluate the optimal
gamma budget used in the previous step against all possible gamma budgets
used in the current step to see whether the old gamma budget allocation is
still optimal. In case two gamma budget applications lead to the same pricing,
the algorithm choses the lowest gamma application in the current step (which
means the highest in te previous step). Values that are produced by gamma
budget allocations that violate the budget equations are automatically ignored
by the algorithm.

7.4 GARCH

The GARCH(1,1) model is an extension of the ARCH(1) model where the fore-
cast is based on a long run average variance rate and recent observations of
returns. The model is mean reverting and therefore more in line with general
behavior of volatility compared to methods like exponentially weighted moving
average models. GARCH(1,1) is based on the following equation:

σ2
t = ω + α1ε

2
t−1 + β1σ

2
t−1 (7.17)

µt =
St
St−1

− 1 (7.18)

We estimated ω, ε and β via the maximum likelihood method which chooses
values that maximize the likelihood of data occuring (Nelson, 1991).
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7.4.1 GARCH parameters used for constant volatility fore-
caste in Chapter 4.5

Table 7.1: Garch(1,1) parameters

7.5 Nelder-Mead calibration method

The Nelder-Mead is a direct search method that aims at minimizing a given
problem of an objective funtion. The method does not rely on derivatives of
the objective function which is in our case impossible, because pricing is done
through an algorithm. The method starts from a simplex S0 and tries iteratively
to find the optimal solution (minimization problem), where each iteration step
is indexed by k identifies a vertex vkmin determined by:

vkmin = arg minx∈{vk0 ..vkn}f(x) (7.19)

f(x) = abs(bid− price.m) (7.20)

f(x) = abs(wmad− price.m) (7.21)

‘wmad’ equals the mid quote against which the volatility parameter is calibrated
(Chapter 4.2.1) and ‘bid’ equals the bid price against which the distortion pa-
rameter is calibrated. Price.m stands for the pricing algorithm. vkmin represents
the vertex where the function takes the minimum. In Matlab the search method
is already precoded by fminsearch. The functions stops when the maximum ab-
solute difference between two tries is less compared to a pre-set tolerance and
the maximum distance of any of the vertex subjects compared to the best vertex
is small enough (Kienitz and Wetterau, 2013).
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7.6 Model performance standard setup

Table 7.2: Pricing performance model under standard setup

Binomial Trinomial

Bid price fit SDC TRA-1 TRA-2 SDC TRA-1 TRA-2

AAE (*100)

Max 0.11 0.08 0.07 0.08 0.26 0.15
Min 0.00 0.00 0.00 0.00 0.00 0.00
Average 0.00 0.00 0.00 0.00 0.02 0.01
Median 0.00 0.00 0.00 0.00 0.00 0.00

% AAE of spread

Max 1.10% 0.22% 0.03% 0.38% 0.26% 0.04%
Min 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
Average 0.02% 0.01% 0.01% 0.03% 0.03% 0.01%
Median 0.01% 0.01% 0.00% 0.01% 0.01% 0.01%

Reflection principle SDC TRA-1 TRA-2 SDC TRA-1 TRA-2

AAE

Max 0.10 0.09 0.10 0.11 0.27 0.11
Min 0.00 0.00 0.00 0.00 0.00 0.00
Average 0.01 0.01 0.01 0.01 0.01 0.01
Median 0.00 0.00 0.00 0.00 0.00 0.00

% AAE of spread

Max 41.41% 36.94% 39.80% 43.10% 40.84% 42.11%
Min 0.05% 0.01% 0.02% 0.07% 0.07% 0.08%
Average 4.79% 4.30% 4.33% 4.86% 5.84% 4.80%
Median 1.53% 1.45% 1.48% 1.55% 1.70% 1.54%
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