W ROBOTICS

MECHATRONICS

Writing reusable code for robotics

D.H. (Dennis) Ellery

MSc Report

Commiittee:
Dr.ir. J.F. Broenink
Dr.ir. D. Dresscher

Dr. M. Poel

December 2017

051RAM2017

Robotics and Mechatronics
EE-Math-CS

University of Twente

P.O. Box 217

7500 AE Enschede

The Netherlands

MIRA CTIT

UNIVERSITY OF TWENTE° BIOMEDICAL TECHNOLOGY

AND TECHNICAL MEDICINE

ii

Writing reusable code for robotics

Dennis Ellery

University of Twente

iii

Summary

In the i-Botics project about intuitive robotics, reusable software is desired to speed up and
simplify robot software design. Nowadays, software is created for a specific application, redu-
cing its reuse in multiple robotic applications. Functional source code of the implementation
can be re-used in future projects by writing in a modular way. The goal of this thesis is to write
reusable software for robotic applications that is language and platform independent.

Major topics for reusable software are: documentation, extensibility, intellectual property is-
sues, modularity, packaging, portability, standards compliance, support and verification and
testing. (Marshall et al., 2010). To quantify the level of reuse, the reuse readiness levels (RRL)
are used. Requirements for a reusable component were defined from the nine topics and their
RRL.

There are multiple characteristics of software writing that make software reusable. A selection
of characteristics is made to create a paradigm for writing reusable software. A look into three
main paradigms was taken: object-oriented programming, component-based software frame-
work (CSBF) and the separation of 5 concerns.

Existing examples of reusable software using these paradigms are middleware. Middleware is
software that connects individual components. Each component is a standalone object, which
uses the object-oriented paradigm. The middleware defines the composition, coordination
and communication. The configuration and computation is written by the user. The separa-
tion of 5 concerns in software writing allows for simple replacement of a single concern, wit-
hout needing to adjust another. This allows adding pre-written computational software into
generated middleware software.

From design paradigms, model-driven design is used to create a design in a high level model,
which is then generated as a middleware hierarchy of “empty” components, not containing any
computational and/or configurable software. After reviewing the most common CBSF middle-
ware, it turns out that a finite state machine (FSM) is used in each component. The connection
between middleware and a general component is achieved using an interface, which allows
the middleware to use a general component without having to know how it is implemented. By
writing the computational component in a reusable and general way, the computational and
configurable software can be reused in different projects. Following the structure of the FSM,
easy integration of a general component into middleware is achieved.

A demonstrator was designed, by writing a general component that achieved the requirements
set by the RRL. This component was then integrated into a generated middleware and tested.
The same component was integrated into a second middleware to determine if it was platform
independent. Both times, the component worked as expected.

It is concluded that the design approach to create pre-written components that can be inte-
grated into middleware is viable. These components can be reused in other projects, that use
different middleware, running on different hardware.

It is recommended that the designed work flow needs to be used by other users in other appli-
cations. Feedback received from the users, should be used to improved the work flow.

Robotics and Mechatronics Dennis Ellery

iv

Writing reusable code for robotics

Dennis Ellery

University of Twente

Samenvatting

Voor het i-Botics project over intuitieve robotica is het gewenst om herbruikbare code te schrij-
ven om sneller en simpeler software te schrijven. Code wordt vaak geschreven voor een spe-
cifieke applicatie, waardoor de kans op hergebruik wordt verminderd. Functionele code kan
worden hergebruikt in toekomstige projecten door te schrijven op een modulaire manier. Het
doel van deze thesis is om code te schrijven voor robotische applicaties die taal en platform
onafhankelijk zijn.

Hoofdaspecten voor herbruikbare code zijn: documentatie, uitbreidbaarheid, eigendoms over-
eenkomsten, modulariteit, verpakking, overdraagbaarheid, normen naleven, ondersteuning
en testen (Marshall et al., 2010). Om het niveau van hergebruik te kwantificeren wordt gebruik
gemaakt van de "reuse readiness levels"(RRL). Vanuit de hiervoor beschreven aspecten en hun
RRL is een pakket van eisen opgesteld.

Er zijn meerdere kenmerken in het schrijven van code die ervoor zorgen dat code herbruik-
baar is. Een selectie van deze kenmerken creéren samen een paradigma voor het schrijven van
herbruikbare code. De drie meest gebruikte programmeer paradigmas zijn bekeken: object-
georiénteerd programmeren, ‘component-based software framework’ (CSBF) en de scheiding
van 5 belangen.

Bestaande voorbeelden van herbruikbare code die gebruik maken van deze paradigmas zijn
middleware. Middleware is software die individuele componenten verbindt. Elke component
is een op zichzelf staand object die het object-georiénteerd paradigma gebruikt. De middle-
ware definieert de belangen compositie, codrdinatie en communicatie, terwijl de belangen
configuratie en computatie door de gebruiker geschreven worden. Het scheiden van de 5 be-
langen in code schrijven zorgt ervoor dat een belang aangepast kan worden zonder een ander
belang te beinvloeden. Dit maakt het mogelijk om vooraf geschreven computatie code in te
voegen bij gegenereerde middleware code.

Van de ontwerp paradigmas wordt ‘'model-driven design’ gebruikt om te kunnen ontwerpen
in een abstract model, waarvan de middleware structuur gegenereerd wordt uit “lege” compo-
nenten. Deze componenten bevatten geen computatie of configuratie code.

Na onderzoek van de meest gebruikte CBSF middleware werd duidelijk dat een 'Finite state
machine’ (FSM) gebruikt wordt in elke component. De connectie tussen middleware en een
generieke component wordt bereikt met een interface, welke ervoor zorgt dat een generieke
component gebruikt kan worden door de middleware zonder dat deze weet hoe het geimple-
menteerd is. Door het schrijven van de computatie component in een herbruikbare en ge-
nerieke wijze, kunnen de computatie en de configuratie code hergebruikt worden in andere
projecten. Eenvoudige integratie van de generieke component in de middleware wordt bereikt
door het volgen van de FSM structuur.

Een demonstratie is ontworpen, waarbij de generieke component aan het pakket van eisen van
RRL voldoet. Deze component is geAfntegreerd in gegenereerde middleware en vervolgens
getest. Dezelfde component is ook geintegreerd in een tweede middleware om te bepalen of de
component platform onafthankelijk is. In beide gevallen werkte de component zoals voorspeld
was.

Hieruit wordt geconcludeerd dat de de hiervoor beschreven benadering voor het ontwerpen
van vooraf geschreven componenten geintegreerd kan worden in middleware.

Het wordt aanbevolen dat de ontworpen manier van werken door andere gebruikers in andere
toepassingen moet worden gebruikt. Terugkoppeling van informatie van de gebruikers moet
worden gebruikt om de workflow te verbeteren.

Robotics and Mechatronics Dennis Ellery

vi

Writing reusable code for robotics

Dennis Ellery

University of Twente

vii

Contents

1 Introduction
1.1 Context oot e e e e e e e e e
1.2 Problemdescription
1.3 Goals o
1.4 Outline e

2 Analysis
2.1 Reusabilityofsoftware
2.2 Paradigms e
2.3 Paradigmmodels e
2.4 Designingusingaparadigm Lo L e
25 Middleware e
2.6 Approach e e e e e

3 Design and Implementation
3.1 Design of a computational software component
3.2 Writing source code for a computational software component
3.3 Compiling and testing software components
3.4 Intellectual Propertyissues it

3.5 Support. e

4 Evaluation
4.1 Reviewoftheimplementation,
4.2 Reviewdemos i e e e e e

4.3 DISCUSSION v ottt e e e e e e e e e e

5 Conclusions and recommendations
5.1 ConcCluSions i e e e e

5.2 Recommendations i i i i i e e
A RRL Topic area levels summary
B IPID headerfile

C Demo
C.1 Models e

C.2 Sourcecode i i it e

Bibliography

N N = =

w

13
14
15
18

19
19
19
25
26
27

28
28
30
30

32
32
33

34

35

37
37
38

41

Robotics and Mechatronics Dennis Ellery

viii Writing reusable code for robotics

Acronyms
5C Separation of 5 concerns
API Application programming interface

BCM BRICS Component Model
BRICS Best Practice in Robotics
BRIDE BRICS Integrated Development Environment

CBSD Component-Based Software Development

CBSF Component-Based Software Framework
CPC Component-Port-Connector
CSp Communicating Sequential Processes

FSM Finite State Machine

GAC Generic Architecture Component

IDE Integrated Development Environment
LUNA LUNA Universal Networking Architecture
MDD Model-Driven Design

OMG Object Management Group

oor Object-oriented programming

OROCOS Open Robot Control Software

oS Operating System

RaM Robotics and Mechatronics

RRL Reuse Readiness Level

ROS Robotic Operating System

TNO Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek

TERRA Twente Embedded Real-time Robotic Application

UML Universal Modelling Language

Dennis Ellery University of Twente

1 Introduction

1.1 Context

Robots are getting smarter and smarter, but cannot replace humans at the moment. However,
with the current technology the human mind can be combined with the robotic strength, by
letting humans control robots. The robot then becomes an extension of the human operator,
being able to perform tasks in dangerous environments.

i-Botics is an open innovation centre for research and development in interaction robot-
ics, founded by Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek
(TNO) and the University of Twente and aims at developing knowledge and technology for
value adding robotic solutions.

The two main research lines are tele-robotics and exoskeletons. This MSc project focusses on
intuitive control of a tele-operated system.

In i-Botics, it is important to create software in a modular and reusable way, such that func-
tional software of the implementation can be re-used in later projects. By standardising the
implementation of modular software from the start, more time can be invested into the actual
implementation instead of having to rewrite often recurring functionality.

1.2 Problem description

In robotics, no two robotic applications are the same, because they have been designed with
a different purpose and goal in mind. As a result, the hardware they use and the way they are
constructed are considerably different.

Due to differences in hardware, design and application, the software to control the robots dif-
fers. This results in a different software structure. With these differences it is very difficult to
write a piece of software that is able to run on multiple robots.

The ideal way of creating software for a robot would be combining existing “blocks” of software
together, resulting in a fully functioning system. When a piece of hardware changes, all that has
to be done is to interchange the “block” of software. This is a high level modular approach to
write software, known as Model-Driven Design (MDD).

Middleware is used to “glue” blocks of software together, creating a framework wherein a user
can write his own software blocks. It can be defined as: “middleware are designed to man-
age the heterogeneity of the hardware, improve software application quality, simplify software
design, and reduce development costs” (Elkady and Sobh, 2012).

Different middleware are implemented in different ways. As a result, software written in one
middleware cannot be copied to another middleware without adaptation.

To simplify software development for robotics, reuse of existing software is preferable, but in-
herently difficult. As stated before, existing software is written for a specific robot with a specific
task, making reuse of its software difficult in a different environment.

A point of interest within robotics software is the design of a software block. With different
approaches in middleware and software design, the implementation of a block is different.

Different types of block implementations, and how to write generalised implementations to
run within a block, are reviewed in this thesis.

Robotics and Mechatronics Dennis Ellery

2 Writing reusable code for robotics

1.3 Goals

To simplify the ability of writing and using reusable software in robotics, the goal is defined as:

* Write reusable software for robotic applications that is language and platform independ-
ent.

The main goal is divided into the following sub goals:

* Find out how reusable software is currently used in robotics.

¢ Identify the main problem/difficulty of creating reusable software in robotics.
¢ Identify which paradigms for reusable software exist.

* Define requirements for reusable software.

* Demonstrate that reusable software can run on different platforms.

The main result of this thesis will be a work flow to develop reusable software. This means that
writing software for robotic applications is expressed in a standardised form, that is platform
and language independent.

1.4 Outline

In chapter 2 the problem is analysed and dissected into smaller pieces. From the analysis in-
formation is obtained on how best to write a reusable piece of software. In chapter 3 the design
and implementation of the methodology to write reusable software is discussed. The resulting
software is then evaluated in chapter 4. Finally the conclusion and recommendations are given
in chapter 5.

Dennis Ellery University of Twente

2 Analysis

For many years, the idea of creating and reusing software has been a goal in the software com-
munity. This is to reduce the time needed to "reinvent" existing implementations of software
components. However, this has not been achieved yet. In this chapter, a deeper look is taken
into what makes software reusable, and what methodologies and paradigms exist for develop-
ing reusable software.

2.1 Reusability of software

One of the difficulties of writing reusable software is that it is not normally part of the require-
ments of the project. The main focus of the project is to get this particular robot/system work-
ing, not taking into account the fact that the software is going to be reused in the future.

Brugali and Scandurra (2009) state that the reasons of using reusable software can be generally
divided into two categories:

e Opportunistic — While starting a project, the team realises that there are existing com-
ponents that they can use as a starting point. With similar functionality, the source code
does not need to be written from scratch.

* Planned - A team strategically designs components so that they will be reusable in future
projects.

For a new project one can use existing source code to speed up their initial startup time. Based
on this initial source code, software for a specific application is written. If the software for a
specific application is not written in a structured, modular way, a desired change could result
in the necessity to rewrite code in multiple places.

A team that starts planning to reuse their software will have a longer startup time, because the
structure of the reusable code needs to be defined. However, the software is wider applicable
and can be reused in other projects, saving time in future projects.

When choosing to reuse software, there is a choice between:

* Internal reuse — A team reuses its own components.

» External reuse — A team may choose to use a third-party component. Using an external
component will save the cost of developing it, but time must also be invested into finding,
learning and integrating it into their project.

When using an external component, a decision on what form of reuse has to be made. The two
forms are:

* Referenced — The external software is stand alone and will change over time, because the
component is being updated as a result of use by other projects.

» Forked — The external source code is copied to a local or private location, making it
“static”. Any updates or bug fixes that the original code receives are not updated.

Fork-reuse is often discouraged because it is a form of software duplication. However, the ad-
vantage of fork-reuse is that it is isolated. The project group is then able to make their own
adaptations to the software. These changes are no longer restricted to the boundaries of the
original component.

Robotics and Mechatronics Dennis Ellery

4 Writing reusable code for robotics

2.1.1 What makes software reusable?

There are multiple characteristics of software writing that make code reusable. Within soft-
ware engineering, general practices have been formed to write reusable software. A list is given
by Anguswamy et al. (2013):

Abstraction “Abstraction means concentrating on important essentials while temporarily ig-
noring the unimportant details.”

Clarity and Understandability “The degree of clarity to which the module’s purpose, cap-
ability, constraints, interfaces, and required resources are defined. The understandability is
measured based on its self-descriptiveness: the criterion that measures how well a component
explains its functions. It is provided by standard formats, prologue comments on each mod-
ules, etc.”

Commonality and Variability Analysis “Classification, grouping of objects with behaviour
(methods and operations) and characteristics (data) as a way of achieving commonality and
variabilities.”

Composition “How to connect different software components. Some guidelines include:
identify and minimise import requirements (for helpers), identify and minimise interference
among helpers, use layering to define complex components using simple ones, implement
policy on top of mechanism.”

Documentation “Documentation for software is essential for any future use or modification
and critical for maintainability. Programmers are unlikely to reuse software that is not well doc-
umented or commented since it makes it harder to understand and maintain. Documentation
should be self-contained, adaptable and extensible.”

Encapsulation and Information Hiding “Encapsulation is a technique for minimizing inter-
dependencies among separately written modules by defining strict external interfaces. The ex-
ternal interface of a module serves as a contract between the module and its clients, and thus
between the designer of the module and other designers. A module is encapsulated if clients
are restricted by the definition of the programming language to access the module only via its
defined external interface.”

Generality “The process of abstracting the commonalities and stripping away the differences
(i.e. ignoring the details of how, when, where, and the constraints).”

Genericity “Genericity is the capacity for creating a package or an object class whose types
are not completely defined. They maybe static (if defined before compile and run time) or
dynamic (if defined during compile or run time).”

Linking of Tests to Code “Code may also be written to implement the test cases for the com-
ponent part. Programmers generally would like to test code before reusing and such a design
of linking test to code may encourage reuse.”

Modularisation “A component should be logically partitioned into subcomponents that per-
form specific functions”

One Component Uses Many Helper Components “A component created for reuse may be
built using many reusable components say from a library. When a component is built using
other components, then the whole family of components should be considered as a single com-
ponent. For example, if a component written in C uses component from a standard C library,
then the written component combined with the library should be treated as one component”

Dennis Ellery University of Twente

CHAPTER 2. ANALYSIS 5

Optimisation “In general, components built for reuse are usually slower than their equivalent
reusable components. Organizations are more likely to use code that meets the quality stand-
ards of the organization. As a rule of thumb, if the reusable component is slower by more than
25%, it will not be used. So, optimization techniques such as profiling using profilers (profilers
are language dependent) would encourage reuse of the components.”

Parametrisation “Parametrization provides a controlled way of customizing a generalised
component when it is reused by substituting in an allowed range of values for the paramet-
ers which are embedded “place holders” for the differences in the component.”

Restrictiveness “State everything about the behaviour that is expected of a correct imple-
mentation — and nothing more (“restrictiveness”). For example, consider a component that
has a functionality of performing certain operations on only the string data type. The compon-
ent could be restricted to accept only the string data type, not other types such as integers or
floating point numbers.”

«

Self-documenting Code “... internal program documentation in two forms: self document-
ing code and program comments. They argued that self-documenting code is better than code
that relies on program comments. This is because self-documenting code requires less reading.
Also, the comments may not be updated when the code is updated, but this cannot occur with
self-documenting code”

Separation of Concepts from Content “One of the original motivations of the object-oriented
approach is to promote reuse by separating the interface of an object from its implementation.
This can be achieved, for example in C++, by using abstract classes to provide the interface and
subclasses of the abstract class to provide the implementation. An abstract class is a reusable
object-oriented design for a component. It specifies the interface of a class and the tree of
subclasses that can be derived from it. Abstract classes fully specify behaviour, not implement-
ation. They cannot be instantiated, only subclassed from.”

Variability Mechanisms “A variability mechanism is a technique by which an existing content
in acomponent can be customised or modified to be reused. Such mechanisms and techniques
are popular in product line and domain engineering where variation points (points are identi-
fied in a product line where variable implementations are possible) and variants (the variable
implementations) are identified to implement the variability mechanism.”

Well-defined Interface “The interface describes the boundary of the component i.e. what
operations it offers, what parameters it takes, and what it demands from the environment.
The distinction between the interface (the specification) and the body (the implementation)
of a component plays an important part in the modularization of software, not only in object-
oriented development, but also in more traditional paradigms.”

At the moment, there is no general consensus on what the best characteristics for reusable
software are. It is often a trade-off between writing specific and generic software. Specific soft-
ware is useful when optimising for code execution time, for example with realtime systems.
The drawback is that the software cannot be easily reused. If the software is written in a more
general way, there is often more overhead code. This results in a longer execution time. It
also requires more abstraction from the programmer to implement the generic software. The
advantage is that more generic software can be easier reused.

2.1.2 Reuse Readiness Levels

Besides software being reusable, it needs to be actually used by other users in different projects.
Software that is not well documented, badly structured, too complex, or that cannot be com-

Robotics and Mechatronics Dennis Ellery

6 Writing reusable code for robotics

Table 2.1: NASA’s Reuse Readiness Levels topic areas. (Marshall et al., 2010)

Documentation Information that describes the software asset and how to use
it.

Extensibility The ability of the asset to be grown beyond its current con-
text.

Intellectual property issues The legal rights for obtaining, using, modifying and distrib-
uting the asset.

Modularity The degree of segregation and containment of an asset or
components of an asset.

Packaging The methodology and technology for assembling and encap-
sulating the components of a software asset.

Portability The independence of an asset from platform-specific tech-
nologies.

Standards Compliance The adherence of an asset to accepted technology defini-
tions.

Support The amount and type of assistance available to users of the
asset.

Verification and testing The degree to which the functionality and applicability of the

asset has been demonstrated.

piled independently will not be reused by others (Anguswamy et al., 2013). Besides the source
code, other aspects also play a role in how reusable the generic code is.

Nine topics of reusability have been identified by Marshall et al. (2010), given in table 2.1. Each
topic is subdivided into nine Reuse Readiness Levels (RRLs) as shown in table 2.2 to give a
quantitative value to each topic. In appendix A a table summary is given combining the nine
RRLs and topics.

Looking at the levels of reusability, the goal is to create a workflow such that created software is
able to reach RRL 9 in all nine topics. However, this requires reuse of the software by multiple
users in multiple systems. Due to time constraints of this thesis, this is not possible. Another
restriction due to time is the effort put into making software reusable for different Operating
Systems (OSs). As a result of these restrictions, RRLs 7 and higher are not achievable for all
topics. Within this thesis, the goal is to reach RRL 6 for all topics.

2.1.3 Combining reusable characteristics and the Reuse Readiness Levels

To get an overview on how the characteristics help create reusable software, they have been
mapped to the RRLs. One characteristic can influence multiple topics and can be mentioned
more than once. In table 2.3 the mapping is given.

The characteristics of the software are facilitating required aspects of code writing, needed to
create the functionality defined by the RRLs. The level written in the RRLs column states that
a characteristic facilitates the functions for this and all underlying RRLs. Each characteristic
is given an RRL individually, but that does not state whether two characteristics are mutually
exclusive or depend on each other.

2.1.4 Requirements

In table 2.3, it can be seen that the list of Anguswamy et al. (2013) covers modularity and ex-
tensibility up to RRL 6. Being two key points for the creation of small reusable parts, this was
expected.

Dennis Ellery University of Twente

CHAPTER 2. ANALYSIS 7

Table 2.2: Reuse Readiness Levels of reuse as given by NASA (Marshall et al., 2010)

RRL1 Limited reusability; the software is not recommended for reuse.

RRL2 Initial reusability; software reuse is not practical.

RRL 3 Basic reusability; the software might be reusable by skilled users at substantial ef-
fort, cost, and risk.

RRL4 Reuse is possible; the software might be reused by most users with some effort,
cost, and risk.

RRL5 Reuseis practical; the software could be reused by most users with reasonable cost
and risk.

RRL6 Software is reusable; the software can be reused by most users although there may
be some cost and risk.

RRL7 Software is highly reusable; the software can be reused by most users with min-
imum cost and risk.

RRL8 Demonstrated local reusability; the software has been reused by multiple users.

RRL9 Demonstrated extensive reusability; the software is being reused by many classes
of users over a wide range of systems.

Documentation is also addressed and can reach RRL 5 if a manual is written. On the lower scale
are intellectual property issues, packaging, portability, standards compliances, support and
verification and testing. For users these topics are just as important as the top three topics. The
only difference is that these topics do not always directly influence the source code. However,
these topics do make software more accessible for users that have not developed the code.
When software is well documented, usable on different platforms, has a lot of support, and is
able to be tested stand alone, it is more likely to be reused.

The list in table 2.3 shows possible characteristics to design a reusable component. However, to
achieve RRL 6, using the table given in appendix A, the following points need to be addressed:

Documentation For documentation, the source code must contain comments which explain
what each piece of code does (RRL 2). A basic readme file explains how the software is de-
signed (RRL 3). Which functions are available for an external application are documented in an
Application programming interface (API) document (RRL 4). Additionally a manual must be
written explaining how to use the software (RRL 5). A tutorial is added explaining the user how
to implement the software in an example (RRL 6).

Extensibility With parametrisation RRL 4 is reached, by being able to set configurations. All
lower levels are defined as not being easily extensible. For RRL 5, the extensibility approach
must be well defined and documented. RRL 6 can be reached by the separation of concerns
creating multiple points that are extensible.

Intellectual property issues The developers and intellectual property rights statements must
be listed in the source code, the documentation is visible during execution (RRL 5). In all lower
RRLs no consensus has been made on the intellectual property rights statements. For RRL 6 a
recommended citation must be stated.

Modularity The generic and specific functionality need to be clearly separated. For RRL 6, a
clear separation of specific and reusable software is required. This is done by encapsulating the
software and restricting it to do only a specific task. With well defined interfaces, the data and
functions are properly accessible from the outside with general interfaces, while the internal
source code can be implemented in several different ways. Lower RRLs are defined as source
code that cannot be separated into individual generic functions.

Robotics and Mechatronics Dennis Ellery

Writing reusable code for robotics

Table 2.3: RRLs of code characteristics

Topic Characteristic RRL

Documentation Clarity and Understandability
Documentation (manual)
Self documenting code

Extensibility Composition
Commonality and Variability Analysis
Parametrisation
Separation of concepts from content

DA RN O W

—

Intellectual property issues

Modularity Commonality and Variability Analysis
Encapsulation and Information Hiding
Generality
Genericity
Modularisation
One Component Uses Many Helper Components
Restrictiveness
Separation of concepts from content
Variability mechanisms
Well defined interface

Packaging One Component Use Many Helper Components
Variability mechanisms

Portability Abstraction

Standards Compliance Encapsulation and Information Hiding
Generality
Optimisation
Parametrisation
Restrictiveness

Support Linking of Test to code
Self documenting code

NINDNIAAWRWWDRAR I WWWONNNNNWWOoa O

Verification and testing Linking of Test to code

Dennis Ellery University of Twente

CHAPTER 2. ANALYSIS 9

Packaging The software should be able to auto build (RRL 3). Locations of resources are con-
figurable and all configurable information is centralised (RRL 5). An OS detection system is
available and the component can auto build for supported platforms (RRL 7).

Portability The documentation explains steps required to adapt when porting. Porting soft-
ware to a different OS should be easily done.

With abstraction, the computation can be generalised and not be dependent on the environ-
ments the software is working within. The more generalised and abstract the software, the
easier it is to port to different environments.

To achieve RRL 6, the software should be ported to most major systems. The documenta-
tion should explain any modifications required to change based on the OS. All lower RRLs
are defined as the software being more difficult to port, based on dependencies.

Standards Compliance software development follows best practices (RRL 2). Standards are
defined to be followed but not verified (RRL 4). When following standards, but verification
is incomplete, RRL 5 is achieved. If following and verification of standards is done, RRL 6 is
achieved.

Support The developers should be reachable and be willing to give support (RRL 3). Updates
and patches are given at intermittent intervals, to fix bugs and update functionality(RRL 4). A
central source of information (website) contains useful resources and answers to FAQ (RRL 6).

Verification and testing Unit testing has been implemented (RRL 2). Testing has been done
for known and unexpected input(RRL 3). Error condition have been tested and requirements
have been finalised. A simple simulation are able to run(RRL 4). The software should be tested
in a laboratory context(RRL 5). The software should be tested in a relevant context(RRL 6).

A summary of the requirements to create a reusable piece of software is given in table 2.4.

2.2 Paradigms

In the previous section an overview was presented of characteristics of reusable software. Un-
fortunately it is impossible to incorporate all of them at the same time, because they may be
contradicting. Based on experience and current practices, characteristics are put together to
create a coding paradigm. Current practices in the Robotics and Mechatronics (RaM) group
define three major paradigms in use, being Object-oriented programming (OOP), Component-
Based Software Development (CBSD) and the Separation of 5 concernss (5Cs)s. These will now
be discussed in more detail.

2.2.1 Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm based on the concept of “ob-
jects”. These objects may contain data, in the form of fields, often known as attributes; and
source code, in the form of procedures, often known as methods. The idea behind objects is
that the only way to change internal data is by use of its procedures, so external code cannot
directly manipulate data. There are different OOP languages, however the majority of them are
class-based. This means that each object is created as a class.

The main focus points of OOP are:
Encapsulation Encapsulation is used to make an object independent of other parts of the

software. This hides the internal implementation and only shows the defined interfaces to the
rest of the code.

Robotics and Mechatronics Dennis Ellery

Writing reusable code for robotics

Table 2.4: Deliverable requirements based on RRLs.

. Documentation

1.1. Code commenting
1.2. Reference manual
1.3. User manual

1.4. Tutorial

. Extensibility

2.1. Program with extensibility in mind
2.2. Documentation on extensibility
and future plans

. Intellectual property issues

3.1. Recommended citation

3.2. Intellectual property rights state-
ment, ownership and/or copyright
is written in source code and doc-
umentation, and is visualised dur-
ing execution.

. Modularity

4.1. Clear separation of specific and re-
usable components

4.2. Organisation of all components
into libraries or service registries

. Packaging

5.1. Auto build function
5.2. OS detection

5.3. Centralised reconfigurable
6. Portability

6.1. Be able to port code to major OSs
without modification

6.2. Documentation on modifications
required when porting to non-
major OS

7. Standards Compliance

7.1. Comply with specific and propriet-
ary standards (to be defined by the
user)

7.2. Verify compliance through testing.

8. Support

8.1. Give centralised support via aweb-
site

8.2. Give updates/patches at regular
intervals

9. Verification and testing

9.1. Test individual component inputs
and outputs

9.2. ‘White box’ testing

9.3. Test through simulation

9.4. Test within a fully integrated envir-
onment

Dennis Ellery

University of Twente

CHAPTER 2. ANALYSIS 11

Inheritance Inheritance is another way of building an object by using other existing objects.
In section 2.1.1 this characteristic is mentioned as “One Component Uses Many Helper Com-
ponents”.

Polymorphism Polymorphism is when there are multiple implementations of the software.
Dependent on the ’'higher’ object calling is, a different behaviour can be expected. This is a
form of “Parametrisation”.

2.2.2 Component-Based Software Development

A successor to OOP is Component-Based Software Development (CBSD). Here the software is
broken down into logical components. However, instead of combining these at source code
level, each component is built into a piece of binary software that is able to interact with other
components.

A comparison is made between OOP and CBSD in figure 2.1. On the left is a simplified model
of OOP, where at the bottom the software is constructed by combining objects to create bigger
and more specific objects. Eventually it is compiled and can be executed. On the right is the
CBSD model, where individual components are compiled into binary form and have predifined
interfaces with other executables. However, an overhead system, called middleware, is required
to “glue” the components together and facilitate the data transfer between components.

The main focus points of CBSD’s characteristics are:

* Reusable — Components are usually designed to be reused in different situations and dif-
ferent applications. However, some components may be designed for a specific task.

* Replaceable — Components may be freely substituted with other similar components.

» Not context specific — Components are designed to operate in different environments
and contexts.

» Extensible — A component can be extended from existing components to provide new
behaviour.

e Encapsulated — A component depicts the interfaces, which allows the caller to use its
functionality, and does not expose details of the internal processes or any internal vari-
ables or state.

* Independent — Components are designed to have minimal dependencies on other com-
ponents.

In the current development of robotics, a robot is designed as modular as possible. For ex-
ample, for a robot to pick up an object, it needs an arm and a tool. These two parts are designed
and controlled independently. On a higher level, these to parts are controlled by one controller.
Above this controller there is another controller that may control the base where the arm and
tool are mounted on. Each module is designed to do a specific task. The individual modules
are able to interact with each other by means of an overhead framework called a middleware.
Such a framework is called a Component-Based Software Framework (CBSF).

2.2.3 5Cs

Another paradigm towards reusable software is the Separation of 5 concerns (5C) defined
by Bruyninckx et al. (2013). A separation of concerns isolates certain aspects needed within
a component. It is then possible to change one of these concerns within a module without
having to adapt other concerns.

In figure 2.2 the decomposition of a module is given as explained by Bruyninckx et al. (2013). A
summary of the concerns is:

Robotics and Mechatronics Dennis Ellery

12 Writing reusable code for robotics

Binary

Source
code

Object-oriented Component Based

Figure 2.1: A comparison between Object-oriented programming and Component-Based Software De-
velopment

COOI‘d | nation When must components change

their behaviour?

What parameters define the
behaviour of all components?

Configuration

Computation What functionality is computed?

. . How are results of computations
Comm unication being communicated?

communications, configurations,
and coordinations interacting?
Composition

How are computations,

Figure 2.2: The 5 concerns as described in the BRICS overview Bruyninckx et al. (2013)

Computation: This is the core of the component. Here the source code is written for a specific
function.

Communication: This is the input and output for the data for the component.

Coordination: This controls how the component works within the whole system, for example
in which state it should be.

Configuration: This allows users to give values to parameters of different functions within the
component.

Composition: While the four ‘C’s’ given above will help separate concerns, the way they are
designed will be a trade-off between specific and general software.

Keeping the 5Cs in mind while writing software can help distinguish the function/goal of the
code within the component. Once the function is clear, it must be written in such a way that the
writer tries to minimise the amount it overlaps with the other concerns. If this can be achieved,
one of the first four C’s can be changed without the need to modify any of the others.

A CBSF implements the communication and coordination aspects as discussed by the 5Cs,
while facilitating a means to also send and change the configuration of a component. This
means the composition is fixed by the CBSF, leaving the user free to implement the computa-
tion of the component.

Dennis Ellery University of Twente

CHAPTER 2. ANALYSIS 13

The drawback is that often the component is written in such a way that it is highly dependent
on how the CBSF handles the individual decoupled parts of the software. This results in the
software being reusable within the same CBSF, but not outside of it.

2.3 Paradigm models

From the design paradigms, a model is created that envelopes the “ideal” component model.
Using MDD, the goal is to express the behaviour in a model that is built from smaller reusable
models. A high level system is created from smaller building blocks.

There are many models and concepts designed on the explained paradigms. More detail will
be given to two models used extensively in robotic applications within the RaM group. These
two models are the BRICS Component Model (BCM) and the Generic Architecture Component
(GAQ).

2.3.1 BRICS Component Model

The BCM has been designed in the Best Practice in Robotics (BRICS) project (Bruyninckx et al.,
2013) and is a combination between the CBSD and 5Cs paradigms. The BCM itself is a design
paradigm, in that it introduces a methodology. It is based upon the meta-modelling paradigm
design by the Object Management Group (OMG) (Object Management Group, 1999). In fig-
ure 2.3 the structure of the BCM is given. It is divided into four layers:

* M3 -The highestlevel of abstraction, containing all constraints or restriction that a model
needs to follow, without defining any domain.

* M2 -The meta-models. An abstract model is given in the form of a Component-Port-
Connector (CPC). Here the model is divided into logical components that are able to
connect with each other through ports. The CPC can be specialised to a specific software
framework. Examples are Robotic Operating System (ROS) and Open Robot Control Soft-
ware (OROCOS).

e M1 -The specific models. The big difference between M1 compared to the higher levels,
is that the user will develop the implementation in this environment.

* MO -The physical source code. For the implementation, binary code is generated that
will run on the system.

The idea is that an abstract model is built at the M3 level without taking into account any
platform or language dependencies. From this model, more platform specific models can be
defined in M2, followed by the language dependent model in M 1. Ideally this process from ab-
straction to practical software should be automated as much as possible. BRICS has started to
create this automated toolchain with de creation of BRICS Integrated Development Environ-
ment (BRIDE). BRIDE is able to generate a CPC model for ROS and OROCOS from M3 to M1.
The limitation is that at M1, only the “shell” is created, wherein the user then needs to imple-
ment the computation. With a “shell”, generated source code is meant that connects at level
M2 of figure 2.3. These shells do not hold any software or source code containing their specific
application behaviour.

Following the 5Cs, BRICS has been able to separate concerns in the following way: Composition
and Configuration is defined by the user’s CPC model. Communication and Coordination is
handled by the specific middleware and Computation is left for the user to fill in.

2.3.2 Generic Architecture Component

In previous work done by Bezemer (2013) a GAC has been designed. The goal is to provide a
template for designing component implementation. After reviewing existing CBSFs, Bezemer

Robotics and Mechatronics Dennis Ellery

14 Writing reusable code for robotics

Ecore
mata-mata-model

CPC abstract
COMpanent
meta-model

RTT and OROCS
companen
meta-models

Raobot
softwara
system
modals

Instance of

Mo

Real warld syslems

Figure 2.3: Four layers of the BCM as described by Bruyninckx et al. (2013)

(2013) concluded that both the component models and the execution framework are lacking.
The new proposed GAC template is given in figure 2.4.

The main focus of GAC is on embedded systems and therefore has been kept simple and light-
weight. A GAC component is split into three execution layers:

* Run once layer —Run once during initialisation.
» Synchronous layer —Periodic execution layer.
* Asynchronous layer -Executed when an event is received and needs processing.

The 5Cs is a major design point of the GAC added with a safety layer. Communication and
Coordination are not directly visible in figure 2.4. However, the addition of ports allow for com-
munication between different GACs. Indirectly, the composition aspect is implemented by an
architectural network of GACs. The safety layer allows monitoring incoming and outgoing sig-
nals. Should an error occur, an error event can be sent out through the Coordination block. It
also allows the receiving of a error event that has been signalled externally so that appropriate
action can be taken.

The GAC model has been implemented into a Communicating Sequential Processes (CSP) ex-
ecution framework called LUNA Universal Networking Architecture (LUNA). LUNA has been
designed to interact with the Twente Embedded Real-time Robotic Application (TERRA) tool.
This is a graphical editor that allows a MDD toolchain.

2.4 Designing using a paradigm

In the previous section design paradigms to write reusable software have been discussed. To
help work within a chosen paradigm, a toolchain can be constructed that goes from an abstract
model to the specific modular software. Using MDD, software is designed as an abstract model
that is converted into source code, as seen in figure 2.3. However, the generation of the source
code for the computational part of a component is not possible. Therefore, the goal is to cre-
ate computational software components that are designed to be inserted into the generated
software. These computational software components are designed from the bottom-up to be
reusable.

Dennis Ellery University of Twente

CHAPTER 2. ANALYSIS 15

. . Run once
Configuration
Configuration data
v . D Synchronous
D T | - - >
Computation L Asynchronous
PR b i
oo
[}
y—_
[4+] T
Ln I
¥
“--k-- - | la----- >
i v Legend
- - Coordination <! | communication types
: . Coordination
} ——— Error

i """" User defined

Figure 2.4: Design overview of the Generic Architecture Component (Bezemer, 2013)

2.4.1 Top-Down overview

The best practice for designing a robotic set-up would be by programming it in a platform and
language independent way. A possible way of writing platform and language independent is by
using models. Universal Modelling Language (UML) models designed by OMG (2015) are often
used to show the software structure. This software structure can be multi level, such as the high
level abstraction to the low level specific implementation. Ideal systems that have been design
in UML models should be able to generate the underlying models and eventually the lowest
layer of source code. These steps from high level design to more specific models down to the
actual source code generation is called a toolchain.

Currently, a toolchain that converts abstract models to specific software does not exist. There
are some partial toolchains that do certain steps of the chain, but not the entirety, the behaviour
need to be implemented by the user.

For ROS, the BRIDE tool has been developed within the BRICS project (BRICS, 2010). This is
an Integrated Development Environment (IDE) that allows the user to create a ROS generated
system from UML models. This ROS generated software is only a “shell” containing the high
level interaction between ROS “nodes”. In the UML models the nodes with their interfaces,
variables, data types and Finite State Machine (FSM)s are set, which are generated in the shell.
This means that the communication, configuration, composition and coordination is already
implemented, leaving the user free to focus on writing the computational software.

A different example of an existing toolchain is TERRA. This IDE has been developed together
with LUNA to allow the user to design a model using simple blocks. Similar to BRIDE, TERRA
only generates a “shell” topology of LUNA components. The computational software of each
component still has to be written by the user.

2.5 Middleware

To use a CBSD, an additional piece of software is needed to “glue” the components together.
This “glue” is often called “middleware”.

The role of middleware is not clearly defined and is different for each implementation. For this
thesis a middleware is defined that uses a CBSF paradigm to connect individual components.
In this section the middleware is reviewed using a top-down approach.

The BRICS (2010) project looked into different middleware and tried to compare them. In their
deliverable by Shakhimardanov et al. (2010), a comparison is made between four component

Robotics and Mechatronics Dennis Ellery

16 Writing reusable code for robotics

Event ports Configuration ports Configuration ports
N/ N \/
Data ports e e >Service req/rep Data porg e e >S i
ervice ports
t
< x. < ports < . < reqlrep
Commands

(a) Orocos Model (b) openRTM Model

Command interface

DataPublisher, > ServiceServer,

Data interface a e >Service ports DataConsumer Main loop ServiceClient
req/rep interface endpoint < endpoint

<

(d) ROS Model
(c) Player Model

Figure 2.5: Component models used in robotics software as found by Shakhimardanov et al. (2010)

based middleware and how they work. In figure 2.5 a generalised model is given for the four
CBSD middleware. In figure 2.6 the FSM is given for the LUNA framework. LUNA is interesting
due to the fact that it is a realtime middleware, while the others are not.

In figure 2.5 it is visible that a component can have several ports for data, services, events and
configuration, while the user software is encapsulated internally within the FSM. The statem-
achine controls the life cycle management, for example the creation, running and termination
of the node.

The general FSM structure for ROS, OROCOS, Player, openRTM and LUNA is the same. A gen-
eral structure for software writing would make the code usable in all five models.

A major difference between the middleware is the way data is stored and sent. The structure
of the data is middleware dependent, such that data cannot be sent from one middleware to
another.

An addition to the discussed middleware of figure 2.5 is LUNA (Bezemer, 2013). “The LUNA
framework is a hard real-time, multi-threaded, multi-platform, CSP capable and a component
based framework” (Wilterdink, 2011). This realtime software has been developed at the Univer-
sity of Twente. It has the ability to interact with a ROS network, so that certain parameters and
values can be read, set and written in a non-realtime way, while locally the control software is
running realtime loops. The design of the internal, embedded source code can be done extern-
ally and is seen by ROS as another (black box) node. On the other hand, LUNA is also a CBSF,
so any generalised software could also be added and run as a realtime node.

Of the five mentioned middleware, within RaM the most well known are ROS and LUNA. These
two middleware are evaluated using the RRLs in table 2.5, to see which topics have achieved
the desired level.

Reviewing table 2.5,it can be seen that both ROS and LUNA focus on modularity and packaging
of the components. Both are lacking Standards Compliance. The difficulty here is defining to
which standards they must comply. If no standard is clear, it is impossible to test for it. Support
for LUNA is lower than ROS due to the fact that ROS is a widely used open-source platform with
far more users than LUNA. Furthermore the RRL rating of 1 for LUNA on Intellectual property
issues is because no license of use was found.

Dennis Ellery University of Twente

CHAPTER 2. ANALYSIS 17

L

— D —— Q0 = T

WFNP = Wait for next period
italic = Polymorphic Runnable functions
---= = Thread synchronization

Figure 2.6: LUNA FSM Model (Wilterdink, 2011)

From table 2.5 it is visible that ROS and LUNA have high levels of reusability. However, this
does not state anything about the software that is encapsulated within the components that
the middleware is running.

2.5.1 Bottom-Up Approach

As discussed in the previous section, both BRIDE and TERRA generate a high-level topology
of component “shells” that need to be filled. Instead of having to redesign the behaviour of
each component, it would be more convenient if there are existing implementations of these
computational components that can be integrated.

In figure 2.7 a generic toolchain is visualised. At the top a user can express the application in
an abstract model. The abstract model is then structured in such a way that it is applicable for

Table 2.5: Using the RRLs as described in appendix A, current middleware are compared. The focus
is on what functionality the middleware adds. The level of reusability of an individual component is
discussed in section 2.5.1

Topics ROS LUNA

o]

Documentation
Extensibility

Intellectual property issues
Modularity

Packaging

Portability

Standards Compliance
Support

Verification and testing

N 0w O N © NN
ONWNN© = o

Robotics and Mechatronics Dennis Ellery

18 Writing reusable code for robotics

Abstract model

v

Abstract

‘ Middleware model ‘

v

Computational
component

Source code

v

Specific y Executable

Figure 2.7: A generic toolchain from abstract model to compiled executable.

a middleware. The middleware models are then generated and the user needs to implement
the behaviour of each component. Instead of writing the behaviour, an existing computational
component is integrated. Once the source code has been written, it is compiled and can be
executed.

The goal is to create a general template for the behaviour software within a component, in such
a way that it can be used in different middleware.

2.6 Approach

In section 2.1, it has become clear that to design a reusable component, more than just the code
needs to be taken into consideration. Using the RRLs in section 2.1.2, a set of requirements for
a reusable component is defined in section 2.1.4. The following approach to design reusable
software is suggested, based on the knowledge gained in the previous sections.

To standardise the way of implementing software components, OOP and CBSD paradigms
should be used as discussed in section 2.2. Software for a robot is designed as an abstract
model. Based on existing CBSD toolchains, a middleware structure is generated from the model
containing component shells, as discussed in section 2.4. By using middleware, the coordina-
tion, communications, composition and configuration are standardised, leaving computation
to be done by the user. This approach follows the 5Cs within the middleware. The middleware
that are used during implementation are ROS and LUNA, because of the knowledge about these
middleware within the RaM group. The computation part of a middleware shell is filled in by
integrating computational software components. A wrapper is used as an adapter to decouple
specific middleware data types form the computational software component data types.

The computational software components should meet the requirements set in section 2.1.4.
This will partially be achieved by following the OOP paradigm. The use of additional tools
is suggested to automate steps during design of the computational software component and
thus to facilitate achieving the full list of requirements. Following these ideas, the proposed
methodology is described in chapter 3.

Dennis Ellery University of Twente

19

3 Design and Implementation

In this chapter the design of the methodology to create a computational software component
is discussed.

Starting from the compiled component as a library, its structure and layout are explained, fol-
lowed by more detail on how the source code is written. Emphasis is given on documentation.
In section 3.3, the steps and tools required to compile and test the component are explained.
Sections 3.4 and 3.5 discuss more topics that are not directly linked to the source code itself,
namely intellectual property and support.

A demo component is created to show that the discussed toolchain is viable. This demo com-
ponent is a general SISO PID controller, which are often used in robotics. It receives a setpoint
and a feedback value, to calculated the next steervalue.

3.1 Design of a computational software component

For software design of the computational code, a structured way of working is desired. The
software must be extensible without breaking existing uses. To achieve this an object-oriented
approach has been chosen. This means that the computation is written as a standalone, en-
capsulated piece of software with a predefined interface for external code. To achieve this, the
software is written using a “universal” language that is used in all five described middleware
in section 2.5. The language is C++. This language was chosen since it is used by almost all
OSs and is seen as a “mature” language. Furthermore, it is still being supported and updated.
However, the way that data is transported within the middleware is dependent on their local
implementation. For the computational software to receive data, the data needs to be conver-
ted from middleware specific to generic. Computations can then be done by the generalised
software. After the computation is done, the data is converted back to a middleware specific
data type. These conversions also need to be done when setting parameters during initialisa-
tion, configuration and destruction of the node.

In C++, functions and/or classes can be created externally and included into a different file.
Due to the fact that the computation is already defined in an external class, it can be included
into the shell code. A class is a piece of encapsulated software that contains its own data vari-
ables and functions. Through a fixed interface, external code can call certain functions within
a class. The class can be created by external software, in this case the shell.

Functions can be called at the moment that the shell FSM is in a particulate state, calling the ex-
ternal functions as the shell needs them, see figure 3.1. For example, the looping computation
state of the node is then able to call the external class’s functions to do the computations.

When the compiler then creates the final executable software, it will add the ROS shell, the
wrapper and the computational class together as one executable node.

3.2 Writing source code for a computational software component
The general structure of writing source code for a software component is discussed.

To help the programmer design a component, tools can be used to automate certain aspects.
The tools mentioned here are suitable for C++, but tools with an equivalent functionality exist
for different programming languages. The main IDE used in this thesis is Visual Studio Code
(Microsoft, 2016). This IDE was chosen for its easily integratable tools and integrated terminal.
Other IDEs are also applicable, however integration of external tools cannot be assured. All
tools can be run as an external command in a terminal and are cross platform.

Robotics and Mechatronics Dennis Ellery

20 Writing reusable code for robotics

Top-Down Bottom-up

\

Computational Code

= Constructor

Configuration
Computation

topics =» Config function

Interface

=» update function
services

Coordination
Communication
Data Conversions

> Destructor

Figure 3.1: A possible approach towards generalised code, using a generated ROS shell that uses func-
tion calls from generalised code. The data is transferred through a wrapper, to convert ROS specific data
types to general data types.

3.2.1 Structure of a component directory

A standardised layout helps future users to find specific files, since their location is the same for
all components. This layout also standardises the paths written in the compiler configuration.
In figure 3.2, an overview is given of how to structure a component directory.

The main two subdirectories are the src (source) and includefolders. These hold the source and
header files of the component. This follows common C++ practices. As a result, all the header
files are collected, which are required when exporting a compiled library.

Under the doc folder, a doxyfile is stored. This contains the configuration to generate formatted
documentation in its subdirectories. More information is given in section 3.2.5.

All test related files are collected in the fest folder. In figure 3.2 two testsuites are defined. This
can be expanded into as many testsuites the user wants. More information on testing is given
in section 3.3.2.

The last listed folder is the build folder. Here the compiler is able to put any created and com-
piled files. Furthermore, the file CMakelist.txt is given in every level. This file is a part of the
compiler. More information about compiling a component is given in section 3.3.1.

Another advantage of using a standard structure, is that it is easy to use a version control sys-
tem. By using subdirectories, source code is isolated from compiled or generated code. Folders
containing generated or compiled content are in general not stored in a repository.

3.2.2 Compiled libraries

The compiled component needs to be available to be used in other applications in the form of
alibrary. This library can then be included into different applications and its functions can be
called.

A well known example in C++ is the include of stdio to use the cin and cout functions in soft-
ware, and the same approach can be used to include a compiled library into a wrapper that has
been generated by middleware.

By using this approach to separate middleware shells from the reusable computational part of
components, modularity requirement 4.1 from table 2.4 has been achieved.

Dennis Ellery University of Twente

CHAPTER 3. DESIGN AND IMPLEMENTATION 21

/Component

. /build

| /doc

/documentation
/latex
/html

doxyfile

| /include

interface.h

implementation.h

*%.h

| _/src
timplementation.cpp
**_Cpp

| /test

| testsuitel

implementationTestl.cpp

CMakelist.txt

| testsuite?2
timplementationTestZ.cpp

CMakelist.txt
| CMakelist.txt
| CMakelist.txt

Figure 3.2: Directory of a component

3.2.3 Interfaces

An interface needs to be defined to standardise the way external software can use a library.
Within the library an array of implementations can be available. However, any function or
information that needs to be exchanged with an external application has to go through the
interface. An example of an interface with several implementations is given in figure 3.3.

By keeping the interface the same, a change in implementation can be done without breaking
any external software that depends on the component. A new interface can be added, if the
current interface is not adequate. This assures that existing applications that use the original
interface do not break.

Within C++ an interface object is not defined. To implement an interface, a virtual abstract
class is used. In figure 3.4 the interface is given that is used for the demo component.

An interface can be defined as follows:

 All functions should be virtual, because an interface cannot be initiated. Only the inher-
iting class that implements the functions can be created.

¢ Because the interface itself can never be initialised, no constructor should be defined.
The appropriate constructor of the desired implementation must be called to initialise
the object.

e The destructor should be defined to ensure that if the interface is deleted, all inheriting
classes are properly destructed to prevent memory leak.

* A printConfig function should be defined in an interface. This function prints a string to
the terminal, that states an implementation’s current settings.

* A set Parameter function is defined to allow an external application to set internal para-
meters, without directly accessing the parameter. The parameter to change and the new

Robotics and Mechatronics Dennis Ellery

22 Writing reusable code for robotics

IPID

~IPID()

update()

setParameter()

printConfig()

PID Pl PD

PID() PI() PD()
~PID() ~PI() ~PD()
update() update() update()
setParameter() setParameter() setParameter()
printConfig() printConfig() printConfig()

Figure 3.3: A UML diagram of an interface that is inherited by different classes

#include <string>

1

2

3 class IPID {

4 public:

5 virtual ~IPID(){};
6 virtual void printConfig() = O0;

7 virtual int update (double setpoint, double previousValue,
8 double & steerValue) = 0;

9 virtual int setParameter (std::string parameter,

10 double wvalue) = 0;

n };

Figure 3.4: IPID interface header without documentation comments

value are given as arguments. The implementation of the software then uses these ar-
guments to set the internal parameter. The functiuon should return a warning or error
signal if setting a parameter has failed.

e All necessary input and output data that functions require will pass through its argu-
ments.

* Any errors and/or warnings that have been detected in the implementation are signalled
back through the return value of the function. A function returning a 0 value is successful.
A positive number stands for a warning. A negative value is an error. A list of warning and
error values must be documented in the API documentation.

By using the OOP approach of interfaces, it ensures that software is extensible in future use
without breaking existing code. Extensibility requirement 2.2 of table 2.4 is then achieved.

Classes A class is an implementation of the interface it inherits, as shown in figure 3.5. The
functions of the interface must be overridden, to make sure that the virtual function in the
interface is replaced by the actual implementation within the class. A class may have private

Dennis Ellery University of Twente

CHAPTER 3. DESIGN AND IMPLEMENTATION 23

1 class PID : public IPID {

2 public:

3 PID(); ///< Constructor

4 ~PID(); ///< Destructor

5 int update (double setpoint, double previousValue,

6 double & steerValue) override;

7 int setParameter (std::string parameter, double value) override;
8 void printConfig() override;

10 private:

11 double _dt; ///< loop interval time

12 double _Kpj; ///< proportional gain

13 double _Kij; ///< Integral gain

14 double _Kd; ///< derivative gain

15 double _max; ///< maximum value of manipulated variable
16 double _min; ///< minimum value of manipulated variable
17 double _pre_error; ///< Previous error value

18 double _integral; ///< Integral value

19 };

Figure 3.5: PID implementation header file

functions that it uses internally, but any connection with external applications must go through
the interface. This is done to comply with the OOP paradigm of encapsulation.

The PID class inherits the IPID class as seen in figure 3.5, line 1. All functions must be defined
the same as in the interface, see figure 3.4, where the word override is appended to show that
this function overrides the virtual function.

All internal parameters are defined in the header as private attributes. To change a parameter,
the external application can call the setParameter function. In the implementation a string has
been linked to a parameter, such that if the input string matches, the new value is set. Since the
parameters for setParameter are “open", it is up to the writer of the implementation to define
what parameters are able to be set by the external application. These parameters must be well
documented in the API documentation.

By not defining the parameters in the interface, but allowing a variable string to select the para-
meter, this function is easily extensible. A warning must occur if a non-existing parameter has
been selected. This extensible interface achieves requirement 2.1 from table 2.4.

3.2.4 Uniform source code

To make the source code clean and readable, a standard way of writing has to be defined.
Google C++ Style Guide (Google, 2017) was chosen, since it has extensive documentation on
its design choices and it is widely used.

To make sure source code follows this style, a linter tool is used. This tool will go over the source
code and inform the writer when the source code does not follow the style. The writer can also
choose to let the linter auto-format the source file when saving or closing the file. The tool used
by the writer is Cpplinter. This integrates with VSCode and formats according to the Google
C++ style.

By writing uniform source code and using a linter tool to follow the style, requirement 7.1 and
7.2 from table 2.4 on Standards Compliance have been achieved.

Robotics and Mechatronics Dennis Ellery

24 Writing reusable code for robotics

3.2.5 API Documentation

Now that writing the source code has been explained, the documentation for future users of
the component are discussed.

To help generate API documentation, the de-facto standard tool Doxygen (van Heesch, 1997) is
used. By properly commenting the source code, Doxygen can extract the information required
to generate a website or latex document that holds the minimum required API information. An
example of commented source code is given in appendix B.

As a bare minimum, all header files need to be fully documented. At the top of the file a de-
scription explaining the file’s function, the authors name and email and the copyright markings
should be described.

Every class and function needs the following commenting:

* A description containing a one line brief description, followed by a longer description. In
the longer description, the general workings of the object must be explained and how to
use the object.

e Any input or output parameters must be defined and also what their default values are.

* The return values of the class must be given and all possible error and warning codes
must be listed.

At a minimum, this documentation should be done for functions and classes that are defined
in the interface.

To generate the documentation from the source code, Doxygen reads a doxyfile, which is loc-
ated in the doc folder. In the doxyfile settings can be adjusted to create the desired documenta-
tion output. The Doxygen tool is called in the doc folder. It finds the doxyfile automatically and
starts generating the documentation for the software. The Doxygen tool is also linked to the
compiler, such that when the source code is being compiled, it also calls Doxygen to generate
the documentation. Because the documentation is isolated in the doc folder, cluttering of other
folders is prevented.

At the moment of writing this thesis, the generated documentation is either a latex document
or a HTML local page. In the future, the html documentation can automatically be uploaded to
a central website to keep documentation up to date for other users.

With Doxygen the API Documentation is generated and documentation requirements 1.1 and
1.2 from table 2.4 are achieved.

3.2.6 Manuals and tutorials
To achieve requirements 1.3 and 1.4 for documentation, a manual and tutorial are still required.
This manual contains:

* How to pull source code from GIT

* Alist of tools required to compile

* Locations to download and install these tools

* Commands needed to compile the source code
* Explanation of how the component is constructed and how to use it

The manual for the component is written as a concise readme file that is readable in GIT and is
linked with the API Documentation.

A tutorial gives a user insight on how to use a component by explaining which steps are needed
to use this component.

At the time of writing this report, no tutorial was written, due to time limitations.

Dennis Ellery University of Twente

CHAPTER 3. DESIGN AND IMPLEMENTATION 25

For a tutorial, the following step by step explanations are required:

e How to include files / libraries

e How to use interfaces

* How to initiate implementations
* How to interact with functions

With the API Documentation and the concise manual, documentation requirements 1.1, 1.2
and 1.3 of table 2.4 have been achieved. Requirement 1.4 is achieved when a tutorial is written.

3.3 Compiling and testing software components

The documented source code that is written needs to be compiled before it can be run. After
the source code has been compiled, it needs to tested. In the next section the compiler will be
explained, followed by the testing tool.

3.3.1 CMake

To compile source code a compiler is required. There are many compilers that are specialised
for a certain architecture. However, the goal is to write the software once for multiple platforms.

To do this CMake (Cedilnik et al., 2000) is used. It is a free and open-source tools designed
to build, test and package software. It allows to make compiler independent configuration
files, that then can be used by native compilers. It works by defining a configuration file called
CMakelist.txt, as visible in the directory shown in figure 3.2. The top level CMakelist defines
all necessary variables in the main project. Underlying Cmakelists can be added to the main
project as sub projects. For example, separate CMake files can be used for the main project and
testing suites.

Compiling with CMake consists of two steps. First, local build files are generated from the
CMakelist files. Then the platform’s local compilers are used to build the library. For a Unix
operating system compiling C++ files, CMake will generate Make files. The Make files are used
by GCC, the local C++ compiler, to create the final component.

The toplevel project builds a library from the source code.

For the library to be readable by a different OS, for example an ARM chip, the compiler flags of
the main project need to be adjusted. All subdirectories use the same flags, requiring the user
only to change the flags in one location.

Besides compiling the source code, CMake is also able to call external programs, such a Doxy-
gen and Google Test. Google Test is described in section 3.3.2. By including these tools into the
toolchain, the creation of a component is automated.

CMake automatically compiles and builds the final component into a library, so packaging re-
quirement 5.1 and modularity requirement 4.2 from table 2.4 are achieved. With CMake the
compiler configuration can easily be changed to build components for different hardware and
OSs. This achieves portability requirement 6.1 and packaging requirement 5.3. Portability re-
quirement 6.2 is achieved when the steps required to configure the compiler for different OSs
are documented.

3.3.2 Unit Tests

After a component is built, it needs to be tested. The most basic test is to check how it re-
sponds to predefined inputs and comparing the output values to expected values. To simplify
the process for the designer, it can be automated into the toolchain. Due to easy integration
with CMake and familiarity by the writer, Google Test (Google, 2015) was chosen. Any other
testing tools that automates unit testing is valid.

Robotics and Mechatronics Dennis Ellery

26 Writing reusable code for robotics

Google test is a C++ test framework. It allows the programmer to define input values and ex-
pected output values, but also tests if a wrong input is handled correctly. From the software the
output is checked with the expected values. If they are not the same, there is a problem in the
software and this will be signalled to the terminal.

The Google Test framework can help debug problems, however the user must write all the tests.
Multiple tests can be defined which run in sequence.

Tests need to be written for a component. Examples of possible tests are: If a set function is
given with an unknown parameter, will the function return the correct errorcode? Does the set
function with a correct parameter actually set the new value? With known input and paramet-
ers, is the output of the user defined functions as expected? These tests can be written using
Google Test to automate testing of the component.

Another advantage of Google Test is that it integrates with CMake. CMake can automatically
download the newest version of Google Test and compile itself using the compiler flags defined
in the main project. Once all components are built, the test will automatically run and return
any test failure back to the user. With this information, the user can then start debugging any
problems that have been found.

With Google Test framework, testing requirement 9.1 from table 2.4 is achieved.

3.3.3 Integration tests
To achieve the other testing requirements, additional tests need to be performed.

A higher-level test compared to unit testing is “Whitebox" testing. This is giving a known system
a known input, so the output can be predicted and the system verified. A stand alone piece of
C++ code was written to include the external PID component. The PID component received a
static setpoint from an offset starting point. A known mass component was also created for the
PID controller to interact with. The software runs 100 loops to simulate 100 time steps. The
output was recorded, plotted and manually verified to be working.

The next step is to integrate the component into a simulated environment. Here, unexpected
inputs can be generated to see how the component responds. Furthermore, timing tests can be
addressed.

The final level of testing is to connect the component to the external system in a controlled en-
vironment. Here the interaction with other components can be observed. A PID coputational
component was included into a ROS node, generated by BRIDE, and a LUNA node, generated
by TERRA. In both middleware, the component is connected to a complete setup with hardware
input and output and able to run. This shows tha the PID component is reusable in different
middleware.

With these tests, requirements 9.2, 9.3 and 9.4 from table 2.4 of Verification and testing can be
achieved.

3.4 Intellectual Property issues
The main issue for Intellectual property is the selection of the type of license. For open source

projects there are three main types of licenses:

e MIT License
* Apache License 2.0
* GNU GPLv3
However, more licenses are available than stated above. To help choose see GitHub (2017).

When a license has been chosen, it must be visible at the following location:

Dennis Ellery University of Twente

CHAPTER 3. DESIGN AND IMPLEMENTATION 27

* In the source code (every file)
¢ In the documentation
¢ On screen when the software is executed

Often at the bottom of a license there is a boilerplate or example of the copyright statement
that needs to be visible.

If an article or academic paper is the base or result of the component, a recommended citation
should be added. This can be stated in the readme file of the manual.

If all this has been done, requirements 3.1 and 3.2 from table 2.4 for Intellectual property issues
have been achieved.

3.5 Support

Another topic that has not yet been addressed is support. Support mostly focusses on how
users can get help and information about the component.

To achieve support requirement 8.1 and 8.2 from table 2.4, formal support should be available
for users. However, this is outside the scope of this thesis.

To give systematic support, an issue tracker can be used. A user can mention a problem and/or
bug. The writer or the user can fix the problem and the update can be merged into the current
version of the software. However, only RRL 4 is achieved.

Robotics and Mechatronics Dennis Ellery

28 Writing reusable code for robotics

4 Evaluation

Based on the requirements set up in section 2.1.4, the design and implementation is evaluated.
First the toolchain as a workflow is evaluated followed by the evaluation of the demos.

4.1 Review of the implementation

Intable 4.1 the requirements are written down with the outcome given in the toolchain column.
Here, a review is given of how the general implementation meets these requirements.

Documentation The documentation requirements, source code commenting and reference
manual, are achieved by the use of Doxygen. Guidelines on how to write and where to place a
manual and tutorial are also given.

Extensibility Programming with extensibility has been achieved by using interfaces. New in-
terfaces can be created for new features, while retaining existing interfaces, to prevent breaking
of external applications. Documentation on the extensibility and future plans are taken into
account. The way of designing an interface is mentioned in the manual.

Intellectual property issues In the manual an example of a citation is stated, which com-
pletes this requirement. To display an ownership/copyright statement in the running imple-
mentation, source code and manual, a license was chosen. Choosing this license is up to the
reader.

Modularity A clear separation of specific and reusable components has been achieved, by us-
ing an OOP approach to write the source code. A general interface is defined for use by other
applications, while the implementation can be changed. Any change of the implementation
will not break the external application, because all calls to the component go through an in-
terface. This results in a reusable component. The requirement on organising all components
into libraries has been achieved by using the directory structure and CMake to build individual
components.

Packaging An auto build function is achieved by using CMake to compile and create a library
of components. It is possible to automatically detect the operating system, however this has not
been implemented. Another point is that a user may want to compile for a different operating
system then is being used to build the component. This should be configurable in the main
CMakelists.txt. In this file, all build configurations can be adjusted to the users wishes. This
creates a central configuration point.

Portability The requirement of porting the component is achieved, by using a cross compiler
that is able to compile for multiple operating systems. Should any adjustments need to be
made in CMake, this can be written down in the manual.

Standards Compliance The designed components should comply to the guidelines explained
in this thesis. While most requirements are followed, there are still requirements that need to
be addressed. This is discussed in section 4.3. Furthermore, all source code must be written
to follow the Google C++ Style Guide and all files structured in a directory as predefined in
figure 3.2. To validate this, a linter program is used to format the source code. CMake will give
an error on compile time if the directory structure is not followed.

Support None of the support requirements have been achieved. This is because support is
given after a component has been designed and is in use. This is outside the scope of this
thesis. Possible steps to set up this support have been mentioned in section 3.5.

Dennis Ellery University of Twente

CHAPTER 4. EVALUATION

29

Table 4.1: Requirements status overview. v = achieved, o = partially achieved, x = not achieved

Toolchain | ROS
v v
v v
o v
X X
v v
o o)
v v
o v
v v
v v
v v
X X
v v
v v
o o
v v
0 v
X X
X X
v v
o v
0 X
X v

LUNA

IR NRNEN

«\

>

[l

ASCERNEN

Requirement

Documentation

1.1 Source code commenting
1.2 Reference manual

1.3 User manual

1.4 Tutorial

Extensibility
2.1 Program with extendibility in mind.
2.2 Documentation on extendibility and future plans

Intellectual property issues

3.1 recommended citation

3.2 intellectual property rights statement, ownership and/or
copyright is written in source code, documentation and
visualised during run.

Modularity

4.1 Clear separation of specific and reusable components

4.2 Organisation of all components into libraries or service
registries.

Packaging

5.1 Auto build function.

5.2 operating system detection.
5.3 Centralised reconfigurable.

Portability
6.1 Be able to port software to major OSs without modifica-
tion.

6.2 Documentation on modification required when porting
to non-major operating system.

Standards Compliance

7.1 Comply with specific and proprietary standards (to be
defined by the user)

7.2 Verify compliance through testing.

Support
8.1 Give centralised support via a website
8.2 Give updates/patches at regular intervals.

Verification and testing

9.1 Testindividual component in and outputs.
9.2 ‘White box’ testing

9.3 Test through simulation

9.4 Test within a full integrated environment.

Robotics and Mechatronics

Dennis Ellery

30 Writing reusable code for robotics

Verification and testing A test environment has been added to the toolchain. With this testing
tool the unit tests can be automated. However, this only tests the components in an isolated
manner. To test a component in a higher application level, the user will have to do simulations,
white box testing or a similar test. Finally the component needs to be tested in a fully integrated
environment. These tests cannot be automated within this toolchain, since they are not part of
the components’ build system.

4.2 Review demos

As mentioned before in chapter 3, a demo implementation was created. The simple SISO PID
controller was written once and compiled for two different middleware, these being ROS and
LUNA. The models designed in BRIDE and TERRA and source code of the demo can be found
in appendix C.

The component was written using the toolchain designed in chapter 3. Additionally, a simple
manual was written and a copyright license was chosen. These were added in the designated
locations of the component. Furthermore a simple 'whitebox’ test was written to test if the
software works properly over time. From the 'whitebox’ test it was manually verified that the
PID software computation works as expected.

The ROS demo was designed to take a joystick position input and move a drivable output to
that position using the PID component. A wrapper node was written that included the PID
component and was able to read the input setpoint and give it to the component. The com-
ponent then calculated the desired steervalue which was sent to the output. This resulted in
the hardware reacting as expected.

To test if the component is reusable, the same component as used in the ROS demo is also
used in the LUNA demo. The general idea is the same. However, since ROS runs on Linux,
no changes where made in the compile step. LUNA runs on a RaMStix (ARM embedded OS).
This requires the cross compiler to be set up differently. A compiling script specific for the
RaMstixs was available as a Make (not CMake) file. This was used to build the component of
the ARM embedded OS. Normally, CMake generates a Make file to compile the component.
Due to time constraints, the reverse engineering step of generating the Make file from a CMake
file was not performed. As a result, the build steps required to make the component had to be
done manually. The built component was included into the LUNA software that was generated
by TERRA. The system was able to control the position of the hardware based on the input
setpoint using the PID component.

Reviewing the requirements once again in table 4.1, the ROS and LUNA columns show if the
requirements have been achieved. As these are specific implementations, documentation has
been written to support the components. The only difference between the ROS and LUNA
demos is that the LUNA compiler’s Make file is hand written, whereas the Make file is generated
by CMake from the toolchain. Because of this difference, the manual has a section on how to
compile code for a LUNA environment to achieve requirement 6.2 of table 2.4.

4.3 Discussion

In this section, requirements that have not been achieved are discussed, their reason of failure
and how they could be fixed. Furthermore, issues found during implementation that need to
addressed are given.

The toolchain as a whole is able to aid the writer with the general design of the component,
by using the OOP approach and adding additional tools that can be integrated into one build
function. However, the most requirements that have not been achieved are requirements that
cannot be fully automated, such as writing manuals, tutorials, testing at a higher level than unit
tests and setting up a support structure for users.

Dennis Ellery University of Twente

CHAPTER 4. EVALUATION 31

For documentation, it is required that the writer steps away from the software and dedicates
time to writing. If time is limited, one of the first things to be neglected is documentation, as is
also seen in the demo implementation of this thesis. Due to time constraints, no tutorials were
written for the demo PID component.

Additional work needs to be done on integrating tools better into the toolchain. Doxygen is
able to generate the API documentation, but has to be run as an external tool. CMake is able
to integrate Doxygen into its build function to automatically generate the API documentation.
Another requirement that has to be reviewed is the operating system detection. This is a fea-
ture of CMake, but has not been used. The question arises if this is recommended. There are
circumstances where a user would like to compile the component for a different operating sys-
tem than the one used to design it. An example is a component designed and compiled on a
Linux PC, but runs on an ARM embedded chip. An alternative solution for operating system
detection is operating system selection by giving CMake a variable. The variable sets which
operating system it should compile the component for.

Peer review is required to test reusability. The component has informally been peer reviewed
by two people from the RaM group. However, two reviews are insufficient to determine if a
component is interesting for reuse. Furthermore, the point of interest is not just the reusable
component itself, but the entire workflow and toolchain. More quality control is needed to
identify limitations of this approach with reusable components and their design paradigm.

The entire toolchain is designed around C++ code, so is it language independent? The concept
of interfaces and objects are not limited to C++ and are found in other languages. All tools
used during implementation are available for different languages. So if a different language is
desired, the same concepts of component design hold, as do the requirements. Tools aiding
the writer may need to be swapped, but the function of the tool is still the same.

Robotics and Mechatronics Dennis Ellery

32 Writing reusable code for robotics

5 Conclusions and recommendations

In robotics multiple types of hardware, software and middleware are used. To overcome coding
issues for different types of robots, the main goal of this thesis is creating software in a modular
and reusable way.

5.1 Conclusions

This will be answered by first reviewing the sub goals.

Find out how reusable software is currently used in robotics Within robotics, often software
is reused by creating components that can be reused with a middleware. Examples of these
middleware are ROS and LUNA.

Identify the main problem/difficulty of creating reusable software in robotics. When writ-
ing reusable software, the main focus is on the source code, however there are more aspects to
take into account to have a good reusable component. The source code must be easily expend-
able and modular. Documentation must be available at different levels, from source code until
full tutorials. The component should be easily used on different platforms and packaged in a
standardized way, for example a library, support for bug handling and feature extensions, and
include testing possibilities.

Identify what kind paradigms of reusable software exist There are many different paradigms
on how to write reusable software. Within robotics, the main paradigm is the use of middle-
ware. The two main discussed middleware are ROS and LUNA. ROS follows the paradigm of
CBSD. LUNA follows the paradigm of GAC. Other middleware have be looked at and a similar
component structure has been identified. They all have a FSM within each component.

Define requirements for reusable software. Using the RRLs, a set of requirement has been
constructed. These requirements should help the writer write a highly reusable component.
To aid the writer a set of tools are given to help build reusable components.

Demonstrate that reusable software can run on different platforms. Using the knowledge
of how a component has to interface with a middleware, and what the requirements are for a
highly reusable component. A PID component was implemented and integrated into both a
ROS and LUNA environment.

The main goal for this thesis is:
Write reusable software for robotic applications that is language and platform independent.

By first defining what is necessary to design a highly reusable component, a set of requirements
is given. After reviewing in what way software is already being reused, namely middleware, the
new component can be added to the existing paradigm of reuse. The middleware have similar
FSM structures within each of their nodes, that could interface with a reusable component. A
well defined interface simplifies adding a reusable component to existing middleware. A single
reusable component that is able to be include into both a ROS and LUNA middleware is created
and usable.

Dennis Ellery University of Twente

CHAPTER 5. CONCLUSIONS AND RECOMMENDATIONS 33

5.2 Recommendations

In this thesis a way of working has been described on how to write reusable software. However,
it also needs to be adopted and tested by other people in other applications. Over time more
feedback will then be obtained. This can lead to updates in the way of working, resulting in a
more robust work flow.

Reviewing the implementation of the toolchain, the following points need further investiga-
tion:

* Add operating system selection into CMake.
* Integrate doxygen into CMake.
* Configure CMake to generate Make files for LUNA.

From the evaluation of the methodology as a whole, future steps are required to verify the re-
usability. These steps are:

* Write a component in a different language and run it in multiple middlewares.

* Run the demo component in a third middleware.

* Define a standard structure for manuals and tutorials.

* The proposed methodology needs to be peer reviewed and tested by people with more
knowledge on reusability.

The proposed methodology of designing computational software components is mainly based
on an OOP paradigm. However, more methods used within OOP, could be added to the pro-
posed toolchain. Examples are the use of "templates” to allow a function to accept different
types of arguments, such as integers, floats, strings etc. Another is the use of "factory builds" to
simplify the creation of computational objects with different initial parameters by using a 'fact-
ory’ object. This helps creating computational software components that are more general.

Robotics and Mechatronics Dennis Ellery

Writing reusable code for robotics

34

oL

A RRL Topic area levels summary

jndjno uoneoidde

JO @sn |nyssaooNns
ybnouy) pajepijea

pue pajsa) uoneoldde
21emyos [enjoy|

a|qeliere
poddns pauysp
oM ynm Ajunwiwod
1osn abie

spiepue)s’

paziubooal ypm
9oue||dwod spiepue)s’
payuan Apuspuadapu|

a|qeyod Aj@ye|dwod
S| 21EMYOS BY|

papwnoud aoepajul
Jasn uoije|jesu

LT
20MIas gam ybnoayy,
9|q1SS800E 10 S}09[q0
ojul pajensdeous
ejep pue suonouny |y

“yonpoud

ojul pappaquwa siadojanap
puUE ‘UOIJE}ID POPUBLUILLODDI
‘s)ybu pajouysaiun
Buiquosep sjuswslels

sdnosb

Jasn aidiinw Aq surewop
Jo oBuel e ssoioe pasn ale
UDIYm SUOISUS)X® p|ing 0}
Sa.njes) pue UoIEJUSINOOP
oyloads sepwnoud
‘soueusos adiynw ul
ISus)xe pajelisuowaq

a(gejiere st
esnai pue ‘esn ‘Buiyse}
‘uoneziwolsno ‘ubisap

Uo UolEUBWINI0J

paJanljep

AjInyssaoons pue
(sjuswaiinbai syeaw)
uoljeljsuowap pue
3883 ybnouyy ,payienb,

josse ay) padojanap
ey} uoneziueblio ayy

spiepue)s paziubooal
yym aoueljdwod!

“yonpoud
ul papnjoul Juswiajels
sjybu Apadoud |enjos)iul

surewop uoneosidde

Jo aBuel peoiq e ssosoe
sainjes) Buipusixa pue
BuiAyipow Joy yoeoidde tes|o
‘wesboid [euselxa ue uo

a|qe|iene apinb
s1adojanap/ubisap

poddns |ewuo4

Splepue)s payLsA

SI 91EMYOS BY] |

‘}s1| Jodojanag

uoneoidde aiemyog| Aq ajqejieae poddng spiepue)s payuap puUE UONE}ID PapuUBWILIdaY| Ajigisus)xe pajeljsuowaq |io/pue apinb uoisualxgy
suuope|d JX2JU0D Ie|IWIS
1X8)U0D JueAd|al a|qe|iene spJepue)s; pauoddns sjusuodwod adAj0j0.d Jonpoud e ul wea} Juswdojanap
B Ul pajepljeA pue pajsa)l|sadojanap Aq poddns| uado yym ssueldwod a|qepod a|gesnal pue oyoads| ul papnjoul juswajels sybu |leusa)xa ue Aq a|qIsuaxe a|qe|iene
uoneoidde aiemyos| psuyep/paziuebio spiepue)s payuaA| Ajybiy si aiemyos oy | puE 109)9p SO| Jo suonesuljep Jes|p| pajiwi pue s Jadojenag aq 0} pajesjsuowag apInb aoepay|
s)sixa ueld
Aunqisus)xe pajiejap pue
ybnoioyy e pue ‘Ajjiqisusixe
Jo swiod Auew sapwnoid
‘payelp usaq ‘S)x8)u09 uoneoldde
1X8JU00 jueAs|al spiepueys Aiejoudoid aney sjuswajlels sybu| jo abues peoiq o) ajesapow
B Ul pajeJjsuowsp a|qe|iere yum aoueldwoo| a|qepod puE ‘UOIJE}ID POPUBILLODDI e ssoioe A}jiqIsusixa

Moj|e o} paubisaq

slqeliene sfeuoint

}x@juod Aiojeioge|
B Ul pajepl|eA pue pajsa)
uoneoldde alemyos

Ajunwwod
Jasn [ewuojul ue
Aq papwnoid poddng

Bunsa) swos yym

2ouedwod spiepuels

a|qepod Aj@jesapowt
SI 91eM)yos ay |

SIX9)U0D JuaIaYIp
1o} 9|qeinbyuos
Alises s| ailemyos

Ayjeuonouny
oyloads pue ousuab
Jo uonebaibas |ejued

“UOI}E}ID PBPUBWILLODBI
pue ‘syybu asnai pajiwi|
‘diys1oumo uo JuswaalBy|

pajuawinoop Ajjerued jses|
1e pue pauyap yoeoidde
ANlgisus)xe {S)x8ju0o
uoneoydde jo abuels
a)esopouw e Joj Wa)sAs ay}
ojul paubisap A}jigisuaixa
21NNy 10} UOI}EISPISUOD

o|qe|leA. [enuew Josn

UonesyIpow
QIEMYOS B)EIopoLU Jo/pue

Arewwng sjana ealdy o1do] (YY) 19A3] SSaulpeay asnay — | d|qeL

(010Z ‘0€ MYdV) 0"k NOISHIA

1x3)u0o Alojeloge| a|qe|iene si pajsejun 1s00 9|qeuoseal sabueyo uonenByuod
e ul pajenysuowsp| poddns onewsysAs pue ajs|dwosul Inq e je a|gepod ‘sjuswaalbe sjybu uo ybnouyy ajqissod a|qe|iene
uoneoldde alemyos ajelsapol\ | ‘@oueldwod spiepuels| oq Aew siemyos oyl pajenjobau aney siadojanag |enuew asualsjey
ndui umouyun a|qe|iere urewop uoneoidde jeuibuo
Jo Buijpuey jo jooud soonoeld jseq S)S00 suofjonisul Aluo jana| *s1adojanap By} 0} Je|iwIs S)Xajuod
puUBe SUOI}PUOD JOLID IO} a|qe|iene pue spiepuels [eao]|juesyiubls yum ajgepod uone|eisul| waysAsqgns Jo walsAs 0} pasodoid usaq| uoineoldde ioj uana ‘}noyip Joj uonjejyuswNoop
bunse) sepnjoul Bunss| yoddns swog| yim soueldwod swos Ajuo si asemyos ay| | pajieleq Jolew je Ajue|npoN aney sjuswsalbe sjybry S| aiemyos ay) Buipuax3 |euss}xe olsegq
Urewop
uonjeodde [euibuo ayy o}
pauuopad Bunse) saoljoeld }saq a|qepod *sa101j0d [euoneziuebio| Jejiwis syxajuod uonesidde 3|qe|iere apod
}un pue pajenuuoy a|qe|iene puoAaq aoueldwod aq Aew aiemyos J18y3 yum Aldwod jeys sybu| 1oy uans ‘walsAs aiemyos 92IN0S PajUBWIWOD
uoneoldde atemyos poddns [ewiuijy splepue}s oN ayj jo sped swog Buissnosip aie siadojgre@| ay) pusixae o} YnowIp ABA| Alny 03
Buibexoed “pauluLa}ep
ou ‘Ajuo s|ge|iene; usaq aney sybu
9oueldwod a|qepod a|qenoaxs Auejnpow ou Ing ‘payuap! usaq
pawwuopad Buiyse} oN| aiqejiere poddns oN spiepue)s oN 10U SI 21EMYOS By | 10 a1eM)os ypm paubisap JoN aney siadojanap jonpoid J0 [eulajul Ou Jo S|

ST3A3T SSANIAVIY AsN3d

Marshall et al. (2010)

1C areas

Reuse readiness levels top

Figure A.1

University of Twente

Dennis Ellery

35

B IPID headerfile

1 #ifndef INCLUDE_IPID_H_
2 #define INCLUDE_IPID_H_

3

4 finclude <string>

5

6 /** @brief Reusable IPID Interface

20
21
22
23
24
25

26

37
38
39
40
41
42
43
44
45

46

51
52
53

*

L R S R R . S T i .

*
Se
*
*
*
*
*

cl

This interface class is used to have one interface for different
implenetations

- PID

- PI

- PD

@author Dennis Ellery <Dennisellery@gmail.com>
@copyright Copyright (C) 2017 Ibotics

This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

e the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
/
ass IPID {

public:

//! Destructor
virtual ~IPID(){};

/+xx @brief Calculate next setpoint based on desired setpoint and current
* state.

@param[in] setpoint Desire setpoint
@param[in] previousValue Previous value of the plant.
@param[out] steerValue Steering value of plant.

* @return Error code.

x/
virtual int update (double setpoint, double previousValue,
double &steerValue) = 0;

* ok X X

/+*+@brief set individual parameter
* @param[in] parameter string value of the parameter to be set
* (@param[in] value The desired value to set.
* @return Error Code.
*/
virtual int setParameter (std::string parameter, double value) = 0;

Robotics and Mechatronics Dennis Ellery

36

Writing reusable code for robotics

54 /**@brief Get current settings.

55 * @return A string containing all parameters and their wvalues.
56 */

57 virtual void printConfig() = 0;

58}

59

60 #endif // INCLUDE_IPID_H_

Listing B.1: IPID header file

Dennis Ellery

University of Twente

37

C Demo

A SISO PID controller was designed and integrated into two different middleware.

The middleware models are given in figure C.1. The internal code is given in C.2.1.

C.1 Models

® SEQ_MAIN

|

SEQUENTIAL

PARALLEL

% Cis % i
some_cpp ()

pwm_val

(a) TERRA model of PID controller

pid

Parameters
maxLimet
minLimet
K

I
0 o

g g dp e s

(b) BRIDE model of PID controller

Figure C.1: Models designed in middleware specific IDEs

Robotics and Mechatronics Dennis Ellery

38 Writing reusable code for robotics

C.2 Source code
C.2.1 TERRA

1/ x*
2 * Source file for the some_cpp model
3 * Generated by the TERRA CSPm2LUNA generator version 1.1.3

4 *

5 * protected region document description on begin
6 *

7 x protected region document description end

g x/

10 #include "some_cpp.h"

n // protected region additional headers on begin

12 // Each additional header should get a corresponding dependency in the Makefile
13 #include "pid.h"

u #include "IPID.h"

15 #include <strings.h>

16

17 // protected region additional headers end

18

19 namespace SomeModel { namespace some_cpp {

20

21 some_cpp: :some_cpp (int &enc_val, double &joy_val, double &pwm_val)

22 CodeBlock (), enc_val(enc_val), joy_val(joy_val), pwnm_val (pwm_val) {
23 SETNAME (this, "some_cpp");

24

25 // protected region constructor on begin

26 pwrn_val = 0.0;
27 enc_val = 0;
28 joy_val = 0.0;

29 PidInstance = new PID;

30 // protected region constructor end

31 }

32

33 some_cpp: :~some_cpp ()

34 |

35 // protected region destructor on begin
36 delete PidInstance;

37 // protected region destructor end

38 }

39

40 void some_cpp::
a1 |

a2 // protected

execute ()

region execute code on begin

3 // set values

m // dt - loop interval time

45 // max — maximum value of manipulated variable
146 // min — minimum value of manipulated variable
47 // Kp — proportional gain

48 // Ki - 1Integral gain

19 // Kd - derivative gain

50 PidInstance->setParameter ("dt", 0.01);

51 PidInstance->setParameter ("kp", 0.00003);
52 PidInstance—->setParameter ("ki", 0);

53 PidInstance->setParameter ("kd", 0);

54 PidInstance->setParameter ("max", 0.3);

55 PidInstance->setParameter ("min", -0.3);

Dennis Ellery

University of Twente

APPENDIX C. DEMO

39

PidInstance->printConfig() ;

PidInstance->update (joy_val % 10000.0, enc_val, pwm_val);

printf ("Hi there! Encoder value is:
// protected region execute code end

%d. Input joy value: %f.

// protected region additional functions on begin
// protected region additional functions end

// Close namespace (s)

b}

Output pwm is:

Listing C.1: TERRA code some_cpp.cpp

C.2.2 ROS

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

// ROS message includes
#include "ros/ros.h"

#include <std_msgs/Float64.h>
#include <std_msgs/Float64.h>
#include <std_msgs/Float64.h>

/+ protected region user include files on begin */

#include "pid.h"
#include "IPID.h"

/* protected region user include files end =/

class pid_config
{
public:
int maxLimet;
int minLimet;
int K;
int I;
int D;
bi

class pid_data
{

// autogenerated: don't touch this class

public:
//input data
std_msgs::Float64 in_setpoint;
std_msgs::Float64 in_feedback;
//output data
std_msgs::Float64 out_steervalue;
bool out_steervalue_active;

bi

class pid_impl
{

/* protected region user member variables on begin x/

IPID% controller;

Robotics and Mechatronics Dennis Ellery

40

Writing reusable code for robotics

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

double _setpoint;

double _feedback;

double _steervalue;

/+ protected region user member variables end */

public:
pid_impl ()
{
/* protected region user constructor on begin x/
controller = new PID;
/* protected region user constructor end =/

void configure (pid_config config)

{
/* protected region user configure on begin */
controller->setParameter ("max",config.maxLimet) ;
controller->setParameter ("min",config.minLimet) ;
controller—>setParameter("kp",conflg K);
controller->setParameter ("ki",config.I);
controller->setParameter ("kd",config.D);
/x protected region user configure end =/

void update (pid_data &data, pid_config config)

{
/+ protected region user update on begin x/
double _setpoint = (double)data.in_setpoint;
double _ feedback (double)data.in_feedback;

controller->update (_setpoint, _feedback, _steervalue);

data.out_steervalue = (float) _steervalue;
/* protected region user update end x/

/* protected region user additional functions on begin «*/
/+ protected region user additional functions end */
bi

Listing C.2: BRIDE code pid_common.cpp

Dennis Ellery University of Twente

41

Bibliography

Anguswamy, R., W. B. Frakes, G. M. Bellj, I.-R. Chen, G. W. Kulczycki and O. Yilmaz (2013),
Factors Affecting the Design and Use of Reusable Components, Ph.D. thesis, Virginia
Polytechnic Institute and State University.
https://vtechworks.lib.vt.edu/handle/10919/23674

Bezemer, M. (2013), Cyber-physical systems software development : way of working and tool
suite, Ph.D. thesis, University of Twente, Enschede, The Netherlands,
doi:10.3990/1.9789036518796.
http://doc.utwente.nl/87731/

BRICS (2010), BRICS - Best practice in robotics.
http://www.best-of-robotics.org/home

Brugali, D. and P. Scandurra (2009), Component-based robotic engineering (Part I) [Tutorial],
IEEE Robotics & Automation Magazine, vol. 16, no. 4, pp. 84-96, ISSN 1070-9932,
doi:10.1109/MRA.2009.934837.
http://ieeexplore.ieee.org/document/5306930/

Bruyninckx, H., M. Klotzbiicher, N. Hochgeschwender, G. Kraetzschmar, L. Gherardi and
D. Brugali (2013), The BRICS component model: a model-based development paradigm for
complex robotics software systems, Proceedings of the 28th Annual ACM Symposium on
Applied Computing, pp. 1758-1764, d0i:10.1145/2480362.2480693.
http://dl.acm.org/citation.cfm?doid=2480362.2480693

Cedilnik, A., B. Hoffman, B. King, K. Martin and A. Neundorf (2000), CMake.
https://cmake.org/

Elkady, A. and T. Sobh (2012), Robotics Middleware: A Comprehensive Literature Survey and
Attribute-Based Bibliography, Journal of Robotics, vol. 2012, pp. 1-15, ISSN 1687-9600,
doi:10.1155/2012/959013.
http://www.hindawi.com/journals/Jjr/2012/959013/

GitHub (2017), Choose an open source license.
https://choosealicense.com/

Google (2015), Google Test.
https://github.com/google/googletest

Google (2017), Google C++ Style Guide.
https://google.github.io/styleguide/cppguide.html

van Heesch, D. (1997), Doxygen.
www.doxygen.org

Marshall, J., S. Berrick and A. Bertolli (2010), Reuse Readiness Levels (RRLs), Technical report,
NASA.
https://wiki.earthdata.nasa.gov/download/attachments/49446977/
RRLs_v1.0.pdfhttps:
//wiki.earthdata.nasa.gov/pages/viewpage.action?pageld=49446977

Microsoft (2016), Visual Studio Code.
http://code.visualstudio.com

Object Management Group (1999), Object Management Group.
http://www.omg.org

OMG (2015), OMG Unified Modeling Language Version 2.5.
http://www.omg.org/spec/UML/2.5

Robotics and Mechatronics Dennis Ellery

https://vtechworks.lib.vt.edu/handle/10919/23674
http://doc.utwente.nl/87731/
http://www.best-of-robotics.org/home
http://ieeexplore.ieee.org/document/5306930/
http://dl.acm.org/citation.cfm?doid=2480362.2480693
https://cmake.org/
http://www.hindawi.com/journals/jr/2012/959013/
https://choosealicense.com/
https://github.com/google/googletest
https://google.github.io/styleguide/cppguide.html
www.doxygen.org
https://wiki.earthdata.nasa.gov/download/attachments/49446977/RRLs_v1.0.pdf https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=49446977
https://wiki.earthdata.nasa.gov/download/attachments/49446977/RRLs_v1.0.pdf https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=49446977
https://wiki.earthdata.nasa.gov/download/attachments/49446977/RRLs_v1.0.pdf https://wiki.earthdata.nasa.gov/pages/viewpage.action?pageId=49446977
http://code.visualstudio.com
http://www.omg.org
http://www.omg.org/spec/UML/2.5

42 Writing reusable code for robotics

Shakhimardanov, A., J. Paulus, N. Hochgeschwender, M. Reckhaus and G. K. Kraetzschmar
(2010), Best Practice Assessment of Software Technologies for Robotics.
http://www.best-of-robotics.org/pages/publications/BRICS_
Deliverable_D2.1.pdf

Wilterdink, R. J. W. (2011), Design of a hard real-time, multi-threaded and CSP-capable
execution framework, Technical Report 009, University of Twente, Enschede.
http://essay.utwente.nl/61066/1/MSc_R _Wilterdink.pdf

Dennis Ellery University of Twente

http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf
http://www.best-of-robotics.org/pages/publications/BRICS_Deliverable_D2.1.pdf
http://essay.utwente.nl/61066/1/MSc_R_Wilterdink.pdf

	Summary
	Samenvatting
	Contents
	Acronyms
	1 Introduction
	1.1 Context
	1.2 Problem description
	1.3 Goals
	1.4 Outline

	2 Analysis
	2.1 Reusability of software
	2.2 Paradigms
	2.3 Paradigm models
	2.4 Designing using a paradigm
	2.5 Middleware
	2.6 Approach

	3 Design and Implementation
	3.1 Design of a computational software component
	3.2 Writing source code for a computational software component
	3.3 Compiling and testing software components
	3.4 Intellectual Property issues
	3.5 Support

	4 Evaluation
	4.1 Review of the implementation
	4.2 Review demos
	4.3 Discussion

	5 Conclusions and recommendations
	5.1 Conclusions
	5.2 Recommendations

	A RRL Topic area levels summary
	B IPID headerfile
	C Demo
	C.1 Models
	C.2 Source code

	Bibliography

