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1 Abstract

D.J.M. Wentink, Computer Architecture for Embedded Systems, University of Twente
Abstract of Masters Thesis: Signal recovery using clash
Friday 15th December, 2017

Ion-mobility Spectrometry (IMS) devices are used for identifying small amounts of substances
in an air sample. A problem in increasing the level of detection is the effects of noise and finite
resolution. Signal recovery algorithms are used to recover the input signal of a system with a
known response, and can be used to improve the level of detection of IMS devices. A signal
recovery algorithm based on the Maximum Likelihood (ML) principle approaches the limit on
information that can be recovered from noisy data, but is computationally very complex. The
computer systems that are currently used to solve ML problems are not suited for portable
devices.

A field-programmable gate array (FPGA) is a reconfigurable chip which is potentially more en-
ergy efficient than traditional computer systems. CλaSH is a high-level programming language
for creating synthesize FPGA architectures which is well-suited for mathematical algorithms.
In order to downsize IMS systems, an energy efficient FPGA implementation of a ML-based
signal recovery is made using CλaSH.

In the background study the ML signal recovery problem is analysed mathematically, and it is
shown to be an optimization problem. The conjugate gradient algorithm can be used to solve
this problem in a fixed number of iterations. The computational complexity comes from a large
amount of matrix-vector multiplications.

A processor architecture has been designed to solve the ML signal recovery problem in a fast
and energy efficient manner. The architecture uses parallel computations, multiply accumula-
tors and a custom memory architecture to be fast at matrix-vector multiplications.

To determine energy efficiency, the FPGA implementation is compared to an implementation
using a modern graphics processing unit (GPU). The FPGA is at least a factor 8 more energy
efficient, at the cost of processing time. In the worst case, the FPGA takes 1.7 seconds of com-
putation time whereas the GPU needs 0.7.
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2 Signal recovery with clash

2 Introduction

This document describes the design and implementation of a maximum likelihood signal re-
covery algorithm using a FPGA and the programming language Clash.

Signal recovery is the problem of finding the unknown input signal of a system with a known
response, given the measured outputs of that system. Signal recovery is often used with sensor
platforms where the signal is heavily affected by noise or requires a very high accuracy.

A lot of different signal recovery algorithms exist with a varying degree of accuracy and compu-
tational complexity. The highest accuracy that can be obtained is defined by Shannon’s theo-
rem on channel capacity in the presence of noise (Kosarev, 2002). The algorithm described in
this thesis is chosen because it approaches the limit of information that can be recovered from
noisy data.

An interesting area of applications is the field of Ion Mobility Spectrometry (IMS). IMS is a tech-
nique used for rapid identification of small amounts of substances. The signals from an IMS
sensor are pulsed, very noisy and require a high accuracy, making it an ideal field for devel-
oping signal recovery algorithms. Although the algorithm is designed to be used with an IMS
sensor, it can be used for other sensors as well.

Using an FPGA to minimize and reduce energy consumption of an IMS system has been done
before (Loo et al., 2008), but not for the signal recovery part. Optimizing and accelerating signal
recovery algorithms based on maximum likelihood is an active area of research in the field of
image restoration (Lanteh Ri et al., 2001) (Holmes and Liu, 1991), but the algorithms used in
image restoration can’t be applied directly for signal recovery.

The goal of this study is to implement a computationally complex but effective algorithm which
results in a high resolving power in a way that uses less energy. In the future this maybe com-
bined with other functionality on the same FPGA, such as sampling the signal or controlling
the gate.

2.1 Problem description

In a lot of embedded systems, measurement systems are used as part of a feedback loop or in
order to provide information. If the requirements of the measurements are strict, these mea-
surement systems can be quite complex. Some of these embedded systems have a limited
power and/or size budget, for example portable devices, and therefore the complexity of the
measurement systems is a problem.

Systems measuring physical quantities are subject to measuring-noise and finite resolution,
deteriorating the accuracy of the measured results. The goal of signal recovery is to recover the
unknown input signal of a system with a known response as accurately as possible, taking into
account the measuring-noise and finite resolution in the measured results.

The response of a system is the mathematical function which defines the relation between the
input and output signals. In the ideal world, signal recovery applies the inverse of the system
response to the measured output to obtain the exact input. The problem with inverting the sys-
tem response is that it requires differentiation, which increases the effect of measuring-noise
and finite resolution. In the 80’s, most signal recovery problems were solved using the Fourier
transform (Saxena and Singh, 2005). Using the regular and inverse Fourier transformations the
need for derivation is removed, but the inverse Fourier transform limits the accuracy of mea-
sured results (Hayes, 1981) (Espy and Lim, 1983).

There are algorithms which don’t require differentiation or Fourier transforms to solve signal
recovery problems (Soussen et al., 2010). Generally speaking the choice of algorithm is a trade-
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CHAPTER 2. INTRODUCTION 3

off between the desired quality of the results and the processing power/time required for the
calculations.

There is an upper bound on the quality of the recovered signal, which is defined as the highest
resolution obtainable by the complete measurement system. This optimum for signal recovery
is defined by Shannon’s theorem on channel capacity in the presence of noise (Kosarev, 2002).

Some algorithms can achieve a resolution close to Shannon’s limit. These near optimal sig-
nal recovery algorithms bypass the need for differentiation, but instead solve an optimization
problem with many independent variables. There are several methods which can be used to
solve optimization problems but in all cases the computational complexity is very large due to
the amount of computations required to solve the optimization problem (Michalewicz, 1995).

Solving a computationally complex problem in a small amount of time requires a lot of pro-
cessing power. Processing power generally comes at the expense of energy consumption and
heat generation, which are unwanted characteristics for portable devices. Solving complex sig-
nal recovery problems in a near-optimal way is ill suited for hardware compatible with portable
devices. In order to be able to use portable devices for complex signal recovery problems, the
energy efficiency needs to be improved.

CAES D.J.M. Wentink



4 Signal recovery with clash

3 Physics background

3.1 Ion Mobility Spectrometry

Ion Mobility Spectrometry (IMS) is a fast analytical technique used to separate and detect ion-
ized molecules based on their mobility in an electric field (Eiceman and Karpas, 1995). The
first study on the motion of ions in an electric field has been done in the early 20th century
by Dr. Paul Langevin (1905). The first known instrumentation has been developed as Plasma
Chromatography in 1970 (Karasek, 1970).

Currently, the technique is mostly used for the detection of explosives, drugs and dangerous
chemicals (Zolotov, 2006). The technology is commercially exploited by various manufacturers
(among others, Morfo-Safran (FR), Smith Detection (UK), Implant Sciences (US)).

Although there are multiple different IMS techniques, such as Drift-Time IMS, Travelling Wave
IMS, High-Field Asymmetric Waveform IMS, Trapped IMS, and Open Loop IMS, the key prin-
ciple is the same (Cumeras et al., 2014). The specific form of IMS explained is Drift-Time IMS.
IMS measures the Electrical Mobility of Ions in a gas when exposed to an Uniform electrical
field, these terms will be explained below.

3.1.1 Ions

To understand ions, the concept of molecules must first be explained. A molecule is the small-
est particle of a substance which can exist on its own. A molecule consists of two or more
atoms and the arrangement of these atoms defines the properties of the substance. Exam-
ples of molecules are Water (H2O), Methane (C H4) and TNT (C7H5N3O6). The properties of
a molecule range from weight and melting point to the ability to react with other molecules.
Molecules can have properties which are highly unwanted in certain scenarios, such as being
very flammable or poisonous.

Ions are molecules with a charge. The charge is caused by an imbalance between the total
amount of protons and electrons in the ion. Ions have several interesting properties because of
this charge, the most significant being that an ion reacts to an electrical field. A ion inside an
electric field will start moving. The mobility of an ion is the proportionality factor between its
drift velocity and the strength of the electrical field the ion resides in.

The process of creating ions from molecules is called ionization. There are many methods
of ionization, but not all methods can be used for all kinds of molecules (Louis and Hill, 1990).
Depending on the substances which should be detected, one or multiple ionization techniques
are required. The algorithm described further on can be used independent on the selection of
ionization source.

Most ionization sources work better when the electrical affinity of the molecules is higher. One
reason for the popularity of IMS in the defence and security industries is that the electron affin-
ity of explosives is higher than most common substances, so they can be detected relatively
easy.

3.1.2 Uniform electric field

In order to measure the mobility, the drift time of the ion needs to be measured while the other
variables are known. The easiest way is to generate an electric field with a known field strength
and uniform field lines in a controlled environment, called a drift tube (Eiceman and Karpas,
1995).

Uniformity of the field means that the magnitude and direction of its field lines are all equal.
Inside an uniform electric field, all ions experience the same force applied regardless of posi-
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CHAPTER 3. PHYSICS BACKGROUND 5

tion, which means their acceleration and speed rely solely on their mobility. The more uniform
the electric field is inside the drift tube, the better the measurements become.

At the end of the drift tube is a collector, where the ions lose their charge. The loss of charge
results in an electrical signal which can be measured. This signal plotted against time results in
a spectrum of ions received per time unit.

3.1.3 Electrical mobility

Electrical mobility is the ratio between velocity of a charged particle and intensity of the electric
field at a given temperature. Each type of molecule has a unique mobility constant which can
be used to detect the molecule. The mobility constant depends on the shape, size and weight
of the molecule. When the intensity of the field is constant and the time can be measured, it is
possible to identify molecules based on their mobility constant.

3.1.4 Drift Time Ion Mobility Mass Spectrometry

As has been explained in the previous sections, it is possible to measure the electrical mobility
of an ionized molecule using an electric field inside a controlled environment. Drift Time IMS
(DTIMS) systems use this effect to generate a spectrum of the molecules inside a gas by "racing"
the molecules (Cumeras et al., 2014). In figure 3.1 a schematic overview of DTIMS is shown.

At the start an air sample is taken, for the best results this air sample should be of a consistent
temperature, humidity and gas mixture. The air sample then is sent to the ionization chamber.
Using an ionization method some of the molecules present in the air sample are ionized. In
DTIMS the ionized molecules are prevented from entering the drift chamber by a Gate, until a
fixed starting time. In the racing analogy the Gate would be the starting line.

At time 0, the gate opens and the ions accelerate through the drift tube towards the collector,
corresponding with the finish line in the analogy. The ions reaching the collector generate an
electric signal, which can be plotted against time. Inside a controlled environment molecules
will arrive grouped by their mobility, and the amplitude of the signal represents the amount of
molecules with the same mobility arriving at a certain time.

The resulting plot resembles the mobility of molecules present in the air sample.

Figure 3.1: Schematic representation of IMS.

The spectrum generated by IMS devices can be used to determine whether a certain wanted or
unwanted molecule is present in a carrier gas. The main advantage of IMS is that the detection
level - the lowest detectable quantity of a substance - is very low. A disadvantage of IMS is
that the voltage across the collector is very low, which means that the effect of noise can easily
corrupt the signal. It also means the resolution of the measurement system needs to be very
high.

CAES D.J.M. Wentink



6 Signal recovery with clash

3.2 Maximum Likelihood for signal recovery

The goal of signal recovery is to recover with maximum accuracy the unknown input signal of a
system, taking into account the measuring-noise and finite resolution in the measured results.
In simpler terms the output of a system is measured and then mathematics are used to estimate
the corresponding input of the system.

The output of a system consists of desired information, the response to its input, and unwanted
information generated by the system such as noise. The Maximum Likelihood principle is used
to distinguish wanted and unwanted information, so that the latter can be reduced until only
the wanted information is left. The reduction is done using Conjugate Gradient.

3.2.1 Maximum likelihood

The first important part of the algorithm is Maximum likelihood. There are less complex meth-
ods to estimate the input signal of a system, but the maximum likelihood method is chosen
because it obtains an information density close to the optimum. Maximum likelihood is the
concept of finding the set of input values which have the highest likelihood of having produced
the measured output.

The easiest way to think of likelihood is as if it is a probability, as the two are mathematically re-
lated. In statistics, the distinction between probability and likelihood is that, while probability
describes possible future outcomes from a known input, likelihood starts from a known output
and describes possible inputs.

In figure 3.2 the probability distribution for a single input sample is visualised for the system
y = x with dispersion 0.2. If the value 0.4 is inserted, the most probable outcome is 0.4, but
the value can be anything between 0.3 and 0.5. Likelihood is reasoning the opposite way, if the
value 0.4 is measured for this system, the most likely input value is 0.4.

Figure 3.2: Probability of obtaining output sample (right) from known input (left)

The mathematical side is that likelihood is a distribution of possible input values, centred
around the most likely input value according to the system response function. Small errors
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are more likely than large errors. The mathematical definition is shown in equation 3.1. For a
single sample likelihood is not a very useful concept.

Φ(k) = e−
(S(k)−S(k)i deal )2

δ2 (3.1)

Likelihood Φ(k) to obtain measured sample S(k) is defined as the difference between sample
S(k) and the ideal signal value S(k)i deal , compared to the dispersion δ. The ideal signal value,
or signal corrupted by response, is a free variable corresponding with the output of a system
without corruption by noise, which will be further explained in chapter 3.2.2. Dispersion is
the statistical standard deviation of the noise distribution function, the square of it is called
variance.

Likelihood is more useful with more samples, as shown in figure 3.3. Connecting the blue dots
gives a wrong signal, while the red signal might have been reconstructed if the errors had been
filtered out. One of the methods to remove the error is to search the most likely signal.

Figure 3.3: Probability of obtaining input signal (Red) from output samples (Blue)

The most likely signal is the signal which has the least cumulative random error. It should be
noted that maximum likelihood is not about correcting for behaviour of the system, such as
delay or dampening, but about reducing errors. Behaviour of the system should be captured in
the system response function in order for maximum likelihood to work well.

The equation for signal likelihood, or total likelihood, is the product of individual likelihoods:

Φ=∏
k
Φ(k) =∏

k
e−

(S(k)−S(k)i deal )2

δ2 (3.2)

In order to find the point where the likelihood is maximum, a transformation needs to be ap-
plied to 3.2, which is shown in equation 3.3.

Φ=∏
k

e−
(S(k)−S(k)i deal )2

δ2 = e
−∑

k

(S(k)−S(k)i deal )2

δ2
(3.3)

In equation 3.4 the ideal signal values and measured output values are written as vectors. Since
the measured values are known, the parameter is the ideal output signal Si deal

k . In order to
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8 Signal recovery with clash

solve this equation the dispersion should be known, but later it will be shown that this is not
necessary for Maximum Likelihood.

Φ(Si deal
k ) = e

−∑
k

(Sk−Si deal
k )2

δ2
(3.4)

The intuitive proof can be obtained by modifying this equation and looking at the limits. If
Sk , the measured signal, is split into the ideal signal Si deal

k and error εk , equation 3.4 becomes
equation 3.5. If the error at all measured points approaches zero, the likelihood that the input
signal matches the matching measured output signal approaches 100%. If the errors decrease,
the likelihood increases.

Φ(Si deal
k ) = lim

ε→0
e
−∑

k

(εk+S(k)i deal −S(k)i deal )2

δ2 = lim
ε→0

e
−∑

k

ε2
k
δ2 = 1 (3.5)

Since the absolute value of equation 3.4 is not important - the goal is to find the point where
the likelihood is highest - this expression can be simplified by removing the natural logarithm.
Because e−x is monotonically decreasing over the entire domain, the following property can be
used:

global maximum of e−x = global minimum of x (3.6)

The equation can also be multiplied withδ2 to remove that constant. Maximizing the likelihood
can be done by minimizing equation 3.7.

Φ(Si deal
k ) ≈∑

k

(
Sk −Si deal

k

)2 (3.7)

The outcome of equation 3.7 is that the ideal signal Si deal
k should be chosen to be equal to the

measured signal Sk . In reality this is usually not possible and the goal is to find the ideal signal
which has the least cumulative error across all samples. It can also be noted that, because the
range of this expression excludes negative numbers, equation 3.4 has range [0..1].

3.2.2 Ideal response of a linear, time-invariant system

The ideal output signal of a system is an output which is not corrupted by noise or finite resolu-
tion, it is only corrupted by the system response function. While there are maximum likelihood
based signal recovery algorithms for non-linear systems, the scope of this research is limited to
linear, time-invariant systems as this covers the majority of applications (Soliman and Srinath,
1998).

A system is linear if it adheres to the superposition principle; the response to a complex input
can be described as the sum of responses to simpler inputs. For more information about linear
systems please refer to chapter 2 of "Continuous and discrete signals and systems" by Soliman
and Srinath (1998).

A system is time-invariant when the response does not depend on the time when it is calcu-
lated, a shift of the input signal results in an equally shifted and otherwise identical output sig-
nal (Soliman and Srinath, 1998). These two properties together result in a linear, time-invariant
system, which has the property that it can be completely described by the impulse response.
The impulse response is the response of a system to the Dirac delta function, a generalized
function which is explained in chapter 1 of "Continuous and discrete signals and systems"
(Soliman and Srinath, 1998).
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CHAPTER 3. PHYSICS BACKGROUND 9

The response function of a linear and time-invariant system with impulse response H(t ), to
input signal x(t ), is shown in equation 3.8 (Soliman and Srinath, 1998). It is also known as the
convolution of the input signal and the impulse response.

y(t ) =
∫ ∞

−∞
x(τ)H(t −τ)dτ (3.8)

For Maximum Likelihood, the impulse response of the system should be a known function.

Quantizing equation 3.8 using Euler the discrete time approximation can be obtained, which is
shown in equation 3.9.

y(t ) = lim
N→∞

N∑
n=0

X (n∆t )H(t −n∆t )∆t ,∆t = t

N
(3.9)

In this approximation there is an infinite amount of samples. Since that is not possible for a
physical sensor the number of samples is finite, which reduces the accuracy of this approxima-
tion. Rewriting the equation for a finite number of samples results in:

Y (k) =
k∑

n=0
H

(
(k −n),∆t

)
X (n)∆t (3.10)

The attentive reader has already noticed that the discrete time impulse response now has two
input arguments. An impulse response is something that only works in continuous time and in
discrete time an approximation is used instead, which needs a notion of the time steps.

This equation can be written in matrix form if the response matrix R is defined.

Rnk = H ′((k −n),∆t )∆t (3.11)

Yk (Xn) =∑
n

Rnk Xn (3.12)

If the input and output signals are renamed, Si deal
k is defined, as is shown in equations 3.13

through 3.15.

Si deal
k = Yk (3.13)

In = Xn (3.14)

Si deal
k (In) =∑

n
Rnk In (3.15)

3.2.3 Optimization problem

An optimization problem is when the best solution has to be found in a set of feasible solutions
to a problem. In discrete time optimization problems the set of feasible solutions is countable
but usually very large, making an exhaustive search not feasible. In section 3.2.4 the conju-
gate gradient method will be introduced to solve certain optimization problems. Before that,
the maximum likelihood signal recovery problem has to be written in the general form of an
optimization problem. This form, a system of linear equations, is shown in equation 3.16.

A~x −~b = 0 (3.16)

Putting equations 3.7 and 3.12 together, equation 3.17 is obtained. This equation will be rewrit-
ten in the form of an optimization problem by expanding it and then defining the A matrix and
~b vector, which can be seen in equations 3.18 through 3.21.
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10 Signal recovery with clash

Φ(In) =∑
k

(
Sk −

(∑
n

Rnk In
))2

(3.17)

Φ(In) =∑
k

(
S2

k −2Sk

∑
n

(
Rnk In

)+∑
n

(
Rnk In

)∑
m

(
Rmk Im

))
(3.18)

Φ(In) =∑
k

(
S2

k

)−∑
k

(
2Sk

∑
n

(
Rnk In

))+∑
k

(∑
n

(
Rnk In

)∑
m

(
Rmk Im

))
(3.19)

Φ(In) =∑
k

(
S2

k

)−∑
n

(
2In

∑
k

(Sk Rnk )
)+∑

m

∑
n

In Im
∑
k

(
Rnk Rmk

)
(3.20)

In equation 3.21 the A matrix and~b vector are defined, to obtain a function in quadratic form.
The term

(∑
k S2

k

)
from equation 3.20 can be left out because it is a constant scalar and the

eventual goal is to minimize this function.

(3.21)

Which means the definitions of the A matrix and~b vector are:

A = RT R (3.22)

~b = R~S (3.23)

~i = In (3.24)

Rewriting the function in vector notation leads to equation 3.25

Φ(~i ) =−2~i~b +~i T~i A (3.25)

To find the input signal with maximum likelihood, this expression should be minimized. A
minimum of a multi-variable function is a point where the gradient is zero. The gradient of
a function is the vector containing all the partial derivatives of the function. By applying the
gradient, equation 3.26 is obtained.

∇Φ(~i ) = 1

2
AT~i + 1

2
A~i −~b (3.26)

For a positive-definite and symmetric A matrix, this can be reduced to equation 3.27, which has
the correct form as shown in equation 3.16.

A~i −~b = 0 (3.27)

This means that, given some constraints on the A matrix, a maximum likelihood signal recovery
problem can be reduced to a solvable system of linear equations. The equations can be solved
using conjugate gradient (Fletcher and Powell, 1963).

Positive-definite is a hard to grasp property which is excellently explained in the MIT Open-
CourseWare video lecture by Strang and Moler (2015). If the definition of the A matrix from
equation 3.22 is recalled, the A matrix is at least positive semi-definite as by the proof of Dr.
Strang. He also states that the matrix is positive-definite when the base matrix has linearly
independent columns. This can be translated to the requirement that the Response matrix
should have linearly independent columns.

D.J.M. Wentink University of Twente



CHAPTER 3. PHYSICS BACKGROUND 11

3.2.4 Projected gradient

Projected gradient algorithms are iterative algorithms mostly used to solve optimization prob-
lems.

The global minimum of a multi-variable function, where the gradient is zero, equals the so-
lution to a system of linear equations with a square and positive-definite A-matrix (Shewchuk,
1994). This quality means that if the local minimum is found the solution to the optimization
problem is also found. Since it has already been established that te A-matrix is positive-definite
and it is square by definition, a projected gradient method can be used to solve the signal re-
covery problem.

Projected gradient methods utilize the gradient of a function to find a critical point of that
function. The gradient is a vector in the direction which has the steepest slope, it is composed
of the directional derivatives of all free variables. A critical point is either a maximum, mini-
mum or saddle point. Using a symmetric A-matrix, the minimum found can only be the global
minimum, as proven by Shewchuk (1994).

The most intuitive projected gradient method is the method of steepest descent (Curry, 1944),
which attempts to find the minimum of a multi-variable function by always going in the di-
rection of steepest descent. The algorithm calculates the gradient and then takes a step in the
direction opposite to the gradient, down the steepest slope. The size of the step is determined
by a line search, which determines where the directional derivative in the direction of steepest
descent is zero. The method has not seen much use because the computational complexity is
high and it converges slowly.

The method of conjugate gradients is an improved projected gradient algorithm (Hestenes
and Stiefel, 1952). The method of conjugate gradients converges just as fast or faster than
the method of steepest descent (Gilbert and Nocedal, 1990), and has an upper bound on the
amount of computations required to converge (Fletcher and Powell, 1963). In figure 3.4 the
difference between conjugate gradient and steepest descent is visualised.

Figure 3.4: Comparison between Conjugate Gradient (Red) and Steepest Descent.
The Red line converges much faster.

The first iteration of conjugate gradient is the same as with steepest descent, the algorithm
starts by stepping in the direction of steepest descent. In the next iterations it chooses search
directions which are A-orthogonal, or conjugate, to all earlier directions. Conjugate directions
are vectors which behave similar to orthogonal vectors in the space for which they are defined.
Because of the conjugacy, each step minimizes the error in a dimension of the system, until
the global minimum is reached. Conjugate gradients, in contrast to steepest descent, does not
’travel’ in the same direction twice. The nice properties of the method of conjugate gradients
are caused by the search directions being conjugate. The name of the algorithm can be mis-
leading, as the gradients are not conjugate and most of the search directions are not gradients.
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12 Signal recovery with clash

The method of conjugate gradients can be used to solve systems of the form shown in equation
3.27. This means an A-matrix and b-vector are known at the start of the algorithm. The starting
point ~x(0) is an arbitrarily chosen vector. In later iterations, the point ~x represents the best
solution found so far.

In the first iteration conjugate gradient, just as steepest descent, takes a step in the direction
of steepest descent. This direction, the search direction ~d , is equal to the residual, ~r , which
is defined as the inverse of the gradient. All vector and matrix dimensions in the conjugate
gradient algorithm have a dimension equal to the amount of samples.

~d(0) =~r(0) =~b − A~x(0) (3.28)

After which an iteration consists of calculating equations 3.29, 3.30, 3.31, 3.32 and 3.33. These
equations will be explained below.

α(i ) =
~r T

(i )~r(i )

~d T
(i ) A~d(i )

(3.29)

~r(i+1) =~r(i ) −α(i ) A~d(i ) (3.30)

~d(i+1) =~r(i+1) +β(i+1)
~d(i ) (3.31)

β(i+1) =
~r T

(i+1)~r(i+1)

~r T
(i )~r(i )

(3.32)

~x(i+1) =~x(i ) +α(i )
~d(i ) (3.33)

The calculation of step sizeα is shown in equation 3.29. The calculation consists of dividing the
magnitude of the residual by a scaled version of the magnitude of the search direction. The step
size is a non-negative number which is used in determining the next point and next residual.

After iteration zero, the search direction is calculated using the conjugate Gram-Schmidt pro-
cess. Since in iteration zero the gradient is used, the new search directions will be conjugate
to the first gradient as well as all other earlier search directions. The conjugate Gram-Schmidt
works by creating a residual which is orthogonal to all earlier residuals, and construction the
search direction from is. Equation 3.30 shows the construction of an orthogonal residual, equa-
tion 3.31 is the definition of the new conjugate search direction and in equation 3.32, the opti-
mization parameter or Gram-Schmidt constant β is calculated.

The next point~x(i+1) can be calculated by taking a step with size α along the search direction ~d
from the last point, as is shown in equation 3.33.

These steps conclude one iteration of the theoretical conjugate gradient algorithm (Shewchuk,
1994).

3.2.5 Conjugate gradient converges

Conjugate gradient theoretically converges in just as much iterations as there are independent
variables (Gilbert and Nocedal, 1990). This useful property is caused by the conjugacy of the
directions. Since each search direction is linearly independent, n conjugate directions form a
basis of an n dimensional subspace. This means that in n iterations, each direction is traversed
exactly once.

If we recall that the A-matrix is positive definite and combine that with the energy definition of
a positive definite matrix (Johnson, 1970), which is shown in equation 3.34, it is proven that the
denominator of equation 3.29 is always a positive number. Since the magnitude of a vector, the
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nominator in the equation, is non-negative that means that α is non-negative. This means that
the conjugate gradient algorithm always takes a step towards the minimum in the direction
traversed.

xT Ax > 0 for x 6= 0 (3.34)

Since each possible direction is travelled towards the minimum, it can be concluded that con-
jugate gradient traverses to a minimum. Using a symmetric A-matrix, the minimum found can
only be the global minimum, as proven by Shewchuk (1994).

In the previous chapters it is explained that the global minimum of the optimization prob-
lem resulting from the maximum likelihood principle corresponds with the input signal which
causes the least cumulative error. Any step away from the global minimum will increase the
error and decrease the accuracy of the results.

3.2.6 Computer implementations

In mathematics, infinite precision is assumed in calculations. With infinite precision, it is guar-
anteed that after n iterations the global minimum is reached. In computer hardware this is not
the case, and the finite precision deteriorates the results.

The big problem with conjugating the search directions is that each iteration is based solely on
the previous iterations, which causes errors to accumulate. The solution is to combine conju-
gate gradient with the method of steepest descent, and every

p
n iterations reset the residual to

the inverse of the gradient. This causes the algorithm to be more precise than conjugate gradi-
ent and faster than steepest descent, but loses the guarantee to converge within n iterations.

Since the result can never get better than the maximum precision of the hardware, it also does
not make sense to continue iterating when near the minimum. When near the minimum, the
step size δ becomes very low. In computer implementations an early exit mechanism which
stops iterating once δ reaches below a certain threshold is desirable.
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4 Computer architecture background

4.1 FPGA

In the past 50 years, computer processors have been growing in size and capabilities. Proces-
sor designers have found ingenious ways to increase the frequency and instructions per clock
in order to do more calculations per second. The amount and complexity of hardware that can
fit in a chip depends on the transistor budget, which has been growing according to Moore’s
law (Mack, 2011). In the last decade however, limits on clock frequency, instructions per clock
and transistor budget have been reached (Kumar, 2015). The next way of increasing processing
power is to use parallel hardware, such as multi-core processors and graphics programming
units (GPU), which can be more time and power efficient for most computational loads. Re-
gardless of implementation, general-purpose processors are a source of inefficiency (Hameed
et al., 2010)

An alternative is to use fixed-function or reconfigurable hardware. These types of hardware can
be used to create dedicated architecture for the intended application, which can be more time
and power efficient. Field Programmable Gate Arrays (FPGA) are reconfigurable chips which
can be programmed using a Hardware Description Language (HDL). An FPGA consists of a
large amount of programmable logical blocks which can be wired together to form a digital cir-
cuit. The advantage over fixed-function hardware is that the architecture is not fixed, the FPGA
can be reconfigured to function as a different digital circuit. In addition to that most FPGA’s
currently available also contain DSP blocks, embedded processor cores and/or peripherals.

On a processor core, the amount of resources is fixed, and the software consists of a sequence
of instructions which execute sequentially. On an FPGA the resources can be configured, and
functions can either execute parallel, pipelined or sequential. Because no transistors are re-
served for instructions which are not used, an FPGA architecture usually uses less energy for
the same computations. An FPGA architecture can be considered as a trade-off between the
use of time and area.

4.2 CλaSH

FPGA’s are mostly programmed using a low-level hardware description language (HDL) such as
VHDL and Verilog. These languages differ from traditional software programming languages in
that they include an explicit notation of time. In an HDL functionality is assigned to chip area,
and memory assignments are done at a clock edge. This corresponds with how hardware works,
which means a design written with a HDL can be translated to digital circuit.

Since a design written using an HDL is intrinsically parallel and needs to be timed manually,
many software developers used to writing sequential programs struggle with HDL’s. A lot of
research is done on high-level HDL’s to design hardware more easily.

There are high-level hardware design languages, such as SystemC, which are based on tradi-
tional imperative programming languages. The problem with these high-level hardware de-
sign languages is that they are intrinsically designed for a sequential order of execution, while
the distinction between time and area is very important in designing an efficient FPGA archi-
tecture. Another drawback is that the translation from an imperative language to VHDL is not
straightforward and can lead to inefficient designs.

The emphasis on the order in which statements are being executed in programming is called
control flow, whereas FPGA’s are better suited to data flow applications. In data flow there is a
fixed set of functions and the flexibility comes from the routing of the data.
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CLaSH is a set of compilation tools and language extensions for the functional programming
language Haskell to enable hardware description using the Haskell syntax (Baaij, 2009). Clash
is developed by the Computer Architecture for Embedded Systems group at the University of
Twente. As CLaSH is based on the Haskell syntax, it is a functional programming language.
A functional programming language sacrifices describing the sequential order of execution to
describe software as a collection of functions. Both mathematics and hardware can also be
described as a collection of functions, which makes functional programming an ideal method
to program a mathematical algorithm in hardware.

4.2.1 Mathematics in Haskell/CLaSH

Haskell is a pure language, which means that calling a function has no side-effects. Every re-
sult from executing the function is captured in its return argument. Mathematical algorithms
are also pure, a function cannot affect anything besides its output value. Languages like C
are not pure, every function can change the state, for example by changing a global variable.
Pure programs and functions are sometimes called stateless. Purity is an important concept in
mathematical algorithms and proofs.

The next concept that makes Haskell nice for mathematics is the addition of higher-order func-
tions. Higher order functions can have functions as an argument or return value. A higher-
order function could, for example, scale a function with a constant. Higher order functions are
important to mathematicians, as it allows them to describe derivatives, integrals, gradients and
other functions which operate on functions.

4.2.2 CLaSH for FPGA design

CLaSH uses higher-order functions and full type inference to describe fully parametric hard-
ware structures in a very concise manner (Gerards et al., 2011). Because of this CLaSH maps
very well to parallel hardware such as an FPGA. Programs written using CLaSH transform di-
rectly into VHDL or Verilog, which can be synthesized to hardware.

For FPGA design higher order functions are also very important. Higher order functions can
be used to describe structure. In this way large parallel structures can be created using simple
keywords. Examples of higher order functions and the structure they describe are listed below.

map

x0

f

z0

x1

f

z1

x2

f

z2

x3

f

z3

x4

f

z4

f x ⇒ z zs = f̂ xs zs = map f xs

zipWith ?

x0 y0

z0

?

x1 y1

z1

?

x2 y2

z2

?

x3 y3

z3

?

x4 y4

z4

x ? y ⇒ z zs = xs ?̂ ys zs = zipWith (?) xs ys

foldl
?

x0

?

x1

?

x2

?

x3

?

x4

a w
a ? x ⇒ a′ w = a ? xs w = foldl (?) a xs

scanl ?

x0

z1

?

x1

z2

?

x2

z3

?

x3

z4

?

x4

z5

a

z0

a ? x ⇒ a′

z = a
w = a ? xs zs = scanl (?) a xs

mapAccumL f

x0

z0

f

x1

z1

f

x2

z2

f

x3

z3

f

x4

z4

a w f a x ⇒ (a′, z) ? (w,zs) = mapAccumL f a xs

Independent parallel operations can be done using map and zipWith, which execute a one
or two argument function for all elements of a list in parallel. Another higher-order function
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important for hardware design is the fold function, which represents a reducing operation such
as a summation.

Another useful property for hardware design is full type inference. Full type inference means
that the type of a functions return argument can be described as a function of the input argu-
ment type. This means that the output type can be inferred from the input type, not only for
a single function but also for a composition of functions. In hardware this property is used to
determine the bit-width of interconnects, the signs of operands and is used by the compiler to
determine whether the descriptions are physically possible. It also stops seemingly compati-
ble types such as floating point and fixed-point numbers from being mixed without manually
specifying a conversion step.

4.2.3 Matrix vector multiplication in CLaSH

An example of how CLaSH is used to generate hardware for mathematics is the implementation
of the Matrix vector multiplication. A mathematical matrix vector multiplication is shown in
equation 4.1.


a1,1 a1,2 · · · a1,n

a2,1 a2,2 · · · a2,n
...

...
. . .

...
am,1 am,2 · · · am,n




d1

d2

...

dn

=


v1

v2
...

vm

 (4.1)

The highlighted part corresponds to a single output value. The corresponding algebraic equa-
tion is included as equation 4.2.

∀i vi =
n∑
j

ai , j ∗d j (4.2)

In CLaSH this can be modelled using the following code snippet:

1 mvMult a d = map (v) a
2 where
3 v an = foldl1 (+) $ zipWith (*) an d

Where the first line specifies the input types, the "map" operation corresponds with ∀i , the
"zipWith (*)" adds the multipliers and "foldl (+)" results in a summation (

∑
). This small piece

of code corresponds to the hardware architecture shown in figure 4.1.

Figure 4.1: Multiplication of multi-dimensional arguments using ZipWith and Fold
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Although the description is very short, the resulting hardware architecture has a lot of nice
properties. The architecture is described for any amount of input arguments, whether the ma-
trix is 10 X 20 or 100000 X 2, and can be used for any numeric type.
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5 Design space exploration

For the signal recovery a combination of algorithm, platform and implementation needs to be
chosen which is energy efficient and fast.

5.1 Optimization algorithm

• Projected gradient (Steepest decent, conjugate gradient)
• Newtons method
• Simulated annealing

5.1.1 Steepest descent

Steepest descent is a simple but effective method to solve an optimization problem. The prob-
lem with steepest descent is that there is no limit to the amount of iterations required to con-
verge. Conjugate gradient is also a projected gradient algorithm, but is proven to converge to-
wards the optimal solution in a limited amount of steps. A downside of Conjugate Gradient is
that a large amount of iterations is required and these iterations are computationally complex.
Conjugate Gradient is not very robust against floating point round-off errors.

5.1.2 Newtons method

Newtons method uses Hessians instead of gradients in order to converge in fewer iterations
than Conjugate Gradient. The downside is that the iterations in Newtons method are more
complex. For problems with a large amount of samples Newtons method is faster. To program
on an FPGA Newtons method will probably require more logical cells than Conjugate gradient.

5.1.3 Simulated annealing

Simulated annealing is not guaranteed to converge to the global optimum in a fixed amount of
computations. The end result is an approximation.

5.1.4 Algorithm choice

Conjugate gradient has been chosen as optimization algorithm because it is guaranteed to find
the optimal solution in a limited amount of iterations. The iterations of Conjugate gradient are
less computationally complex than Newton’s method, which makes it easier to implement on
an FPGA. Simulated annealing is usually faster, but it is never certain if a feasible solution is
reached.

5.2 Platform

Because the algorithms are quite complex, a powerful computational platform has to be chosen
in order to run the algorithm in a reasonable amount of time for a decent amount of samples.
The requirement for a powerful platform is almost contrary to the requirement that the plat-
form should not use a lot of energy.

The definition of portable is vague, so the goal is to minimize energy consumption while still
doing the required computations per second. The platform should be able to process 2000
samples within one second.

At 2000 samples, the algorithm requires at most 2000 iterations with at least one matrix vec-
tor product per iteration. There are 45 iterations where the residual has to be calculated an-
other time. The computational complexity of a matrix vector product is 2n2 when additions
and multiplications are counted separately. The complexity of the other arithmetic operations
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combined is approximately 10n2. One execution of the algorithm can result in over 16 Giga-
computations to be done in one second.

(n +p
n +5)∗2n2 = (2000+45+5)∗20002 = 16,5∗109

• Field-programmable gate array
• ARM Processor
• Digital signal processor
• Graphics processor

5.2.1 Field-programmable gate array

A field-programmable gate array (FPGA) is an integrated circuit consisting of programmable
logic blocks which can be configured using a hardware description language (HDL). Modern
FPGA’s contain DSP blocks, memory blocks and sometimes even complete processors in addi-
tion to standard logic cells, and can be configured to do massively parallel computations.

The advantage of using a FPGA is that the architecture can be highly efficient, because it is
wired to compute the algorithm provided and do nothing else. With the amount of parallelism
available on FPGA’s the computations can also be done quickly without requiring a high clock
frequency, which would increase the power draw. FPGA’s are also very scalable, with a peak pro-
cessing performance ranging from a few million FLOPS (Floating-point operations per second)
to several trillion for the fastest FPGA’s (Vishwanath, 2016).

The disadvantage of a FPGA is that it is considered hard to program for, HDL developers are
therefore scarce and expensive. Another disadvantage is that powerful FPGA’s are very expen-
sive.

5.2.2 ARM Processor

The last decade the amount of powerful ARM processors available has increased significantly,
benefiting from rising sales of tablets, smart tv’s, smart-phones and other smart devices. Mod-
ern ARM multi-cores are able to reach multiple GFLOPS (Giga-FLOPS) while retaining a man-
ageable power envelope (Reed et al., 2015).

ARM processors have as advantage that they are easy to program, and developers are relatively
easy to find. ARM processors are mass-produced and therefore very cheap.

Although recent developments have seen processing power increased significantly in ARM pro-
cessors, they are still the slowest and least scalable option in this comparison. ARM processors
also are not very efficient, as they use a general-purpose architecture which is not optimized
for computations.

5.2.3 Digital signal processor

Digital signal processors (DSP) are general-purpose processors which have been optimized to
do calculations. When compared to ARM processors they usually have more complex arith-
metic operations, a deeper pipeline stage and a memory architecture better suited for batch
processing. The throughput of a DSP is between that of an ARM processor and a FPGA or GPU
(Texas Instruments Incorporated., 2017).

As a more specific product, DSP’s are more expensive than ARM processors. Like ARM proces-
sors, DSP’s can be programmed in C and C++ making programming easier than for a FPGA. To
effectively use the processing power of the DSP complex multi-threaded programs are required,
making them more difficult than normal processors.
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Type Max (GFLOPS) Typical (GFLOPS) GFLOPS/Watt Price
FPGA >10000 100 40 Very expensive
ARM 8 4 0.8 Cheap
DSP 200 20 10 Expensive
GPU >10000 2000 20 Cheap

Table 5.1: Platform characteristics.

5.2.4 Graphics processor

Graphic processing units (GPU) are massively parallel processors optimized to do image pro-
cessing. Using a large memory bandwidth, a lot of threads and vector arithmetic instructions
GPU’s are very fast and quite efficient (NVIDIA Corporation, 2016).

The efficiency of GPU’s decreases drastically for non-parallel workloads. Gpu computation li-
braries such as Cuda and OpenCL are difficult to grasp. Programs using GPU’s for general pur-
pose computations almost never reach the efficiency and power a GPU can reach. Dedicated
GPU’s require a separate CPU and don’t fit the power budget. The GPU’s integrated into em-
bedded processors are a lot less powerful and usually not that well supported for computations.

5.2.5 Platform choice

In table 5.1 several characteristics of the platforms have been listed.

FPGA’s have been chosen as the development platform, as they are the best solution in terms
of computational efficiency. Ease of programming, traditionally a downside of using an FPGA,
is solved by choosing a high level language, as will be explained in the next section. Scarcity of
developers as a downside of using an FPGA is not relevant in the context of education.

The University of Twente has provided a Terasic SoCKit development board with an Altera Cy-
clone 5 FPGA for testing. Since the cyclone 5 is already very old and does not meet the re-
quirements, theoretical comparisons will be made with more modern Cyclone 10 and Aria 10
FPGA’s.

5.3 Development language

The development language is of importance for the ease of programming and maintaining the
code. Programming language can also have a large effect on efficiency and speed.

• Low level hardware description language
• Haskell/CLaSH
• SystemC
• Matlab/Simulink

5.3.1 Low level hardware description language

The leading hardware description languages in the industry are VHDL (VHSIC (Very High
Speed Integrated Circuit) Hardware Description Language) and Verilog. The languages are sim-
ilar in abstraction level and capabilities, but differ in syntax (Sandstrom, 1995).

VHDL and Verilog can be used to program time-, energy- and space- efficient hardware designs,
but are very hard to program for. For programming large mathematical algorithms these low-
level hardware description languages are ill suited, since the interconnections and timing all
have to be done manually.
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5.3.2 CλaSH

CLaSH is a set of compilation tools and language extensions for the functional programming
language Haskell to enable hardware description using the Haskell syntax. Programs written
using CLaSH transform directly into VHDL or Verilog (Baaij, 2009).

The advantage of CLaSH is that its high-level descriptions generally speaking require less pro-
gramming for the same amount of hardware when compared to VHDL or Verilog. CLaSH uses
higher-order functions and full type inference to describe fully parametric hardware structures
in a very concise manner (Gerards et al., 2011).

As CLaSH is based on the Haskell syntax, it is a functional programming language. The ad-
vantage of this is that CLaSH maps very well to parallel hardware such as an FPGA. The disad-
vantage of using a functional language is that it does not map very well to a processor and is
therefore slow to simulate. The other disadvantage is that functional programmers are scarce
because of the dominance of imperative programming languages.

CLaSH is better suited for mathematical algorithms, but does not synthesize directly. CLaSH as
a higher-level alternative abstracts away the registers, interconnects and clock generation, and
creating complex designs is easy with CLaSH. ClaSH translates to VHDL or Verilog for synthesis,
but the translation is significantly more straightforward than it is with SystemC.

5.3.3 SystemC

SystemC is a C++ class library which enables high-level synthesis and system-level modelling.
SystemC can be used as hardware description language. SystemC does not synthesize directly
but, like CLaSH, translates to an intermediate HDL. The translation from SystemC to VHDL is
not straightforward and can lead to inefficient designs.

As SystemC is based on C++ it is easy to learn for most programmers. When compared with
VHDL and Verilog, SystemC uses a higher level of abstraction to simplify programming. Sys-
temC is well suited for simulation on a traditional computer. Because SystemC is intrinsically
not-parallel, complex dependency analysis is required to generate parallel code (Nayak et al.,
2001). Some inefficiency is added in translating SystemC to a synthesizable hardware descrip-
tion language and not all parts of SystemC are synthesizable.

5.3.4 MATLAB Simulink

MATLAB is a suite of applications to program, simulate or evaluate mathematical expressions
and algorithms. Simulink is a graphical environment for the creation and simulation of models
and algorithms. MATLAB contains "HDL Coder", a compiler which is able to generate VHDL or
Verilog code from MATLAB programs and Simulink models.

MATLAB is close to mathematics and easy to use. MATLAB natively supports matrix and vector
operations and a lot of the operators have parallel implementations, which makes it well suited
for FPGA’s and GPU’s (Nayak et al., 2001).

Automatic analysis of fixed point parameters is not always efficient (Banerjee et al., 2003). Ef-
ficiency of a Matlab program is very dependent on how Matlab is being used, built-in Matlab
functions often have efficient implementations, whereas hand-written code usually loses effi-
ciency in translation.

5.3.5 Algorithm choice

CLaSH has been chosen as the programming language for the project, as it is well-suited for
both mathematics and hardware description. The low level HDL’s require too much effort to
get the mathematics working. SystemC and Matlab try to abstract away from hardware, which
makes it hard to create efficient architectures.
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5.4 Architecture

Since a naive implementation of the algorithm does not fit on a modern FPGA, an architec-
ture has to be designed which reuses hardware in a smart way. For the architecture multiple
topologies are available, which can be used as a design guideline. Since matrix-vector prod-
ucts take up most of the computations, it makes sense to create an architecture which can do
matrix-vector calculations as fast as possible.

The choices are:

• Processor with vector ALU
• Multicore processor
• VLIW processor
• Streaming architecture

5.4.1 Processor with vector ALU

One type of architecture is to create a simple processor with a small instruction set and then
tailor it specifically for the algorithm. An example of such a system is the vector ALU pro-
cessor with dual blockram created by Appel and Folmer (2016), which achieves a factor 3
performance-per-joule increase.

A processor is a machine which is able to process data using a predetermined set of instruc-
tions. A program is a list of instructions which should be executed sequentially. A processor
consists of memory, an arithmetic logic unit (ALU) and a control unit.

The instruction set should be designed in such a way that the hardware is utilized to it’s fullest
potential. Several techniques can be used to improve the performance of the architecture, such
as pipelining, parallel processing and unfolding. One of the more obvious improvements is a
parallel arithmetic unit, given that most FPGA’s have many dedicated DSP blocks which should
be used in parallel.

The processor like structure closely resembles a GPU, which reduces the chances of increasing
efficiency over a GPU-based solution.

5.4.2 VLIW processor

A Very Large Instruction Word (VLIW) processor uses a complex large instruction which con-
tains a lot of instructions in parallel. A VLIW processor aims to use the available hardware more
efficiently by increasing the amount of work that can be specified by one instruction.

A processor can be split into several parts. There is a part for memory operations, control op-
erations and there are one-or-more parts for arithmetic operations. In a standard processor
each instruction uses one part of the processor to do one simple task. A VLIW instruction in-
structs multiple processor parts at the same time, for example loading the next input value
while computing the current one. This principle, called instruction level parallelism, improves
performance significantly at the cost of program complexity.

5.4.3 Stepwise ’static’ algorithm architecture

Just as the algorithm can be split into iterations, which can be split into equations, equations
can be split into steps and sub-steps. A type of architecture models these steps and substeps
into a large state-machine and steps through them statically.

Compared with the vector processor or VLIW processor, a static architecture is not that much
different. It sacrifices a great deal of accuracy in order to gain more speed. Some things are a
lot harder to model without control instructions like Branch and Jump.
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5.4.4 Streaming architecture

Instead of splitting the problem into several steps to reduce the computational complexity, it
can also be reduced by looking at individual samples. Looking at one sample instead of n sam-
ples can give a factor n reduction in computational complexity. In a streaming architecture
samples are fed into the architecture one-at-a-time, and the parallelism comes from pipelin-
ing. Pipelining is the process of adding memory elements so multiple otherwise sequential
steps are simultaneously done for several samples.

A streaming architecture requires less control logic, especially for the memory. The amount
of arithmetic operations per clock cycle can be really high once the pipeline is filled. If the
implementation is good, the clock speed can also be very high.

Not all algorithms are well suited for streaming architectures. For a streaming architecture to
work, the calculation for one samples needs to rely solely on its data and a state obtained from
previous samples. If future samples are required to process the current sample, a static archi-
tecture can’t be done. The amount of logic required to process one sample can be more than
there is available, which would require a sub-architecture in the architecture.

5.4.5 Architecture choice

A processor-like architecture with a large vector processing unit will be made. The VPU is scal-
able, flexible and it is easier to implement the ’off’ cases (each 40 iterations do the residual
calculation different). The CPU will be improved with characteristics from the other architec-
ture possibilities.

A VLIW processor would require a complex program. The normal processor architecture has
been chosen because its instruction set can resemble normal assembly.

The static algorithm is probably highly efficient and somewhat scalable if done well, but hard
to program. The instruction set from the architecture will be kept small, as to resemble the
static architecture machine more.

The streaming architecture, if possible, is a very efficient architecture. Due to different sizes
(scalar, vector, matrix) and the different complexities of the corresponding mathematical equa-
tions, a streaming architecture is very hard to implement. The matrix-vector calculations re-
quire information from future samples, which means a streaming architecture can not be done.
From the streaming architecture the idea of auto-incrementing memory addresses is taken, as
to increase the amount of arithmetic instructions done per cycle.

5.5 Memory

Feeding a parallel computation structure with data requires memory with high bandwidth and
enough storage to store all the vectors and matrices. In addition it would be nice to have a
predictable low latency memory, as it simplifies the control structure.

The amount of memory required is defined by the sample size n and the data width m with the
relation m(n2 +4n +2).

Since the multipliers on the platform chosen are 27 bits wide (Altera Corporation, 2011), the
data width will be 27 or lower. Multiplier pairing, where multiple DSP blocks are combined to
achieve a larger data width, is not being considered.

Interesting memory technologies are:

• DDR3 SDRAM
• SRAM
• BlockRam
• QSPI Flash
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The technologies are explained below.

5.5.1 DDR3 SDRAM

Double Data Rate Type Three (DDR3) SDRAM is a high-throughput and high-density memory
technology which is widely used in computers, phones and other electric devices. The SocKit
evaluation platform has 1GB of DDR3 memory available for the FPGA, which corresponds with
a sample size of over 16000 samples. The RAM can be controlled in various ways, ranging from
low-level electrical control of all the signals to ready-made IP blocks.

The advantage of DDR3 RAM is its large size and decent throughput. The complexity of the
control structure is the largest downside of using DDR3 RAM. The control structure is complex
because the latency is high and not static. The memory is organized into rows and columns,
where switching rows is slower than switching columns. The not-constant memory latency of
up to 14 memory clock cycles requires extensive planning in the software or architecture.

5.5.2 SRAM

Static RAM is a more expensive type of RAM which has a lower and more predictable latency,
while retaining the high throughput of DDR type memory. A lot of newer FPGA’s are equipped
with multiple megabytes of SRAM, but the platform chosen for this thesis does not support it. A
possible improvement in the future might be the selection of a platform which supports SRAM.

5.5.3 BlockRam

Every FPGA comes with internal memory block structures commonly referred to as BlockRam.
BlockRam is essentially on-chip SRAM with a 1 cycle latency and a very wide bus. The perfor-
mance of BlockRam is better than the other technologies and the control structure is simpler.
The downside of using BlockRam is that it has a limited size.

The FPGA used contains a little over 5MB of BlockRam, resulting in a maximum sample size of
1200.

5.5.4 QSPI Flash

QSPI Flash is a simple to use, predictable memory technology which is non-volatile.

5.5.5 Memory choice

Disregarding complexity, the best solution is a combination of DDR3 memory for storage and
BlockRam as a buffer, so that large matrices can be used and the datapath never has to wait for
memory reads. Unfortunately such a memory controller would take a significant amount of
programming effort while not being the main focus of the project. It is therefore a better choice
to use BlockRam, and leave a more advanced memory controller for future improvements.
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6 Implementation

This chapter aims to describe the various implementations made during the research, and the
research results that have been obtained from them.

6.1 Software implementation of algorithm

In order to effectively test the algorithm and determining the hardware requirements, several
software implementations have been made before attempting hardware design. The algorithm,
as described in section 3.2.1, consists of several parts. These parts are consistent in all the
software implementations and will be explained below.

• Calculation of the A matrix and b-vector
• Iteration zero
• Iterate

At the start it is assumed that the set of samples and the response function are known. From
this point the response matrix can be calculated and from it the A-matrix and b-vector.

The conjugate gradient algorithm requires an A-matrix and b-vector, which are both con-
structed from the response matrix. The first step is therefore calculating the response matrix.
The response matrix contains a calculated value of the response function for every sample at
every time unit. It is a square matrix with a size equalling the amount of samples.

The A-matrix is, by the definition in section 3.2.1, the product of the transposed response ma-
trix and the normal response matrix. This means calculating the A-matrix has a complexity of
n3, where n is the sample size. Fortunately the response of the machine does not change much
over time, so the A-matrix does not need to be calculated for each running of the algorithm.

The b vector is, by the definition in section 3.2.1, constructed from the input samples and the
response matrix. An implication of this is that all the samples must be present before the b-
vector can be calculated.

6.1.1 Haskell implementation of algorithm

As Haskell is a more abstract and powerful superset of CLaSH, it is better suited for writing
and testing a mathematical algorithm. Therefore the first versions of the algorithm have been
written in Haskell. Since the Haskell implementation runs on a CPU it is comparatively slow.

The main body of the algorithm is the iteration function, which has been included below. The
source code can be found in appendix A.

1 --Iteration function. Calculate the values for one iteration and then make a
recursive call to calculate the next iteration.

2 --The recursion ends at maxN samples or when δ get’s too low.
3 --Note: ’ denotes "next value of" or (i+1)
4 iteration (x, r, d, δ, α, β, i, maxN, minδ)
5 | i >= maxN
6 || δ!(0,0) < minδ = (x’, r’, d’, δ’, α’, β’, i’, maxN, minδ)
7 | otherwise = iteration (x’, r’, d’, δ’, α’, β’, i’, maxN, minδ)
8 where
9 x’ = x /+/ (d //* α)

10 r’ | (i ‘mod‘ 40 == 0) = b /-/ a_mn //*/ x’
11 | otherwise = r /-/ a_mn //* α //*/ d
12 d’ = r’ /+/ d //* β’
13 δ’ = transp r’ //*/ r’
14 α’ = δ’ /// (transp d’ //*/ a_mn //*/ d’)
15 β’ = δ’ /// δ

16 i’ = i+1
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The main advantages of using Haskell are immediately clear when comparing the code with
the mathematical formulas, the structure is identical to the mathematics explained in section
3.2.4.

The upper lines of code are the function definition with its arguments and the output defini-
tions corresponding to the condition in the guards. The guards check whether the end condi-
tion has been reached as to stop calculating. If the end conditions have not been reached the
function does a recursive call to calculate the next iteration using the output values calculated
in the where clause.

The where clause contains the mathematics. In the formulas, custom infix operators are used
for scalar, matrix and vector operations. The infix operators can be read without the edge
slashes as just a mathematical operator (e.g. + for addition or / for division), but the slashes
also serve a purpose. A single slash denotes an array with a single dimension such as a column
vector or a scalar, while a double slash operates on double dimensioned arrays such as row
vectors or matrices.

Testing

The algorithm has been verified using a testbench also written in Haskell. The testbench gen-
erates an input signal and adds Gaussian noise using a random number generator and a distri-
bution function.

The testbench uses a simple RC network configured as a low-pass filter. The simulated resis-
tance is 8200Ω and the capacitance 1µF . Gaussian noise with standard deviation 0.1 has been
added, corresponding to about 25% noise. For a sample size of 200 the input signal and recov-
ered signals have been plotted and are shown in figure 6.1.

Figure 6.1: Input (Blue) and recovered signals

The orange line is the signal after one iteration, it shows a small resemblance to the input signal
given in blue. After only five iterations the yellow signal is obtained, which resembles the input
well enough to use the early escape. The dark red signal is what happens after iterating far
beyond the early escape, a signal is obtained which severly corrupted by accumulated errors,
as predicted in section 3.2.6.

6.1.2 CLaSH implementation of Haskell algorithm

The Haskell algorithm is not directly compatible with the CLaSH compiler. The algorithm had
to be rewritten using the CLaSH prelude library. Using CLaSH meant several concepts, such as
lists with unknown size or recursion with unknown depth, are not possible since they cannot
be compiled.

The first part of writing CLaSH code from Haskell was defining the mathematical operators
used for Vectors instead of lists. The module "matrixMath.hs" contains definitions for matrix
vector products, dot products and vector scaling.
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The second part was converting the maximum likelihood program to use Vectors and the new
functions. The CLaSH version of the iteration function is included below. The full program can
be found in appendix B.

1 iteration :: (Vect, Vect, Vect, Number, Number, Unsigned 27, Vect)
2 -> ()
3 -> ((Vect, Vect, Vect, Number, Number, Unsigned 27, Vect), Maybe (Vect))
4 iteration (x_n, r_n, d_n, r_n2, alpha_n, n, b_m) _
5 | stop = ((x_n, r_n, d_n, r_n2, alpha_n, n, b_m), Just x_n)
6 | otherwise = ((x_n’, r_n’, d_n’, r_n2’, alpha_n’, n’, b_m), Nothing)
7 where
8 x_n’ = zipWith (+) x_n (map (* alpha_n) d_n)
9 r_n’ = zipWith (-) r_n (mvMult a_mn (map (* alpha_n) d_n))

10 d_n’ = zipWith (+) r_n’ (map (* beta_n’) d_n)
11 r_n2’ = rcMult r_n’ r_n’
12 alpha_n’ = r_n2’ / (rcMult d_n’ (mvMult a_mn d_n’))
13 beta_n’ | r_n2 == 0 = 0
14 | otherwise = r_n2’ / r_n2
15 n’ = n+1
16 stop = (n >= iterations) || (r_n2’ == 0)

As it is unknown at compilation time how many iterations are required, the iteration function
contains recursion with unknown depth. To remove the recursion from the iteration formula,
the mealy instruction is used. The mealy instruction tells the compiler a mealy machine can be
used for a specific part of the design, in this case the iteration function. A mealy machine is a
machine with an input and a state, which produces output and a next state. In the case of the
iteration it takes the current state, values like x, r andα, and produces an output and next state.
The next state is then fed back to the same mealy machine at the next clock cycle. This solves
the recursion problem, and also has other benefits which are explained in section 6.2.

Testing

The naive CLaSH implementation has been compared to the Haskell implementation and
gives similar results. Since the CLaSH simulation takes more time, comparisons are done with
smaller sample sizes. A comparison between the Haskell results and CLaSH results can be
found in figure 6.2. The differences can be attributed to fixed-point round-off versus float-
ing point round-off. These differences can be resolved using different fixed-point word sizes or
by switching to floating points.

Figure 6.2: Haskell (Blue) and CLaSH (Red) recovered signals
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Synthesizing

The architecture is synthesizable, but requires too much resources to fit inside a FPGA. The
largest design that can be fit onto the Cyclone V FPGA provided can be calculated.

Considering the off-case where the residual is re-calculated, an iteration consists of at most two
matrix-vector multiplications, two dot products, two vector scalar multiplications, two vector
additions, 1 vector subtraction and 2 scalar divisions. If each scalar arithmetic operation can
be done in one clock cycle using one DSP block this results in a complexity of 2n2+7n+2. This
means that, using the naive algorithm, an FPGA with 112 DPS blocks can do one iteration in
one cycle for a sample size of 5, from equation 6.1

2n2 +7n +2 = 112 ⇒ n =
p

929−7

4
(6.1)

6.1.3 Dividing the algorithm

The first division across time has already been done in the naive algorithm. Instead of a recur-
sive call, which is problematic for the CLaSH compiler, a mealy machine was used to divide
the algorithm in several iterations. A recursive call would have resulted in a long chain of large
complex hardware blocks, which each compute a single iteration. Using a mealy machine ar-
chitecture results in a factor n increase in clock cycles used but also a factor n decrease in hard-
ware resources. Another upside to using a mealy machine is that the early stop condition can
be modelled much more easily.

Despite the implementation of a mealy machine for the iterations, the complexity of the naive
implementation is still too much. To further split the algorithm across time, the iterations need
to be split into several calculations which are done sequentially. A process graph has been made
to calculate the complexity, find possible time domains and determine memory requirements.
The process graph is included in figure 6.3.

Figure 6.3: Algorithm process graph

From the process graph a list of sequential steps can be constructed, which is inserted below.

1 i ⇐ 0
2 r ⇐∀i bi −

∑
k Ai ,k xk

3 d ⇐ r
4 δ=∑

i r 2
i

5

6 do:
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7 q ⇐∀i
∑

k Ai ,k dk
8 α⇐ δ∑

i qi di
9 x ⇐∀i xi +αdi

10 if (i % 45) == 0
11 r ⇐∀i bi −

∑
k Ai ,k xk

12 else
13 r ⇐∀i ri −αqi
14 newδ⇐∑

i r 2
i

15 β⇐ newδ
δ

16 d ⇐∀i ri +βdi
17 δ⇐ newδ

18 i ⇐ i +1
19 while i < 2000 and δ> mi nδ

Splitting each iteration in several mathematical operations further reduces the arithmetic com-
plexity, but the FPGA area requirement of a single matrix-vector product is still too high. To
reduce the arithmetic complexity beyond n2, the matrix vector product has to be split in sev-
eral vector operations. The other operations are dot products, vector scaling, vector addition,
vector subtraction and scalar division. With the exception of the scalar division, all these oper-
ations can be executed highly parallel. In section 5.4 several architectures are explored which
can be used to further split the algorithm.

6.2 Processor design using CLaSH

The problem with designing mathematics with CLaSH is that an FPGA does not have unlim-
ited resources. The naive algorithm from section 6.1.2 does not fit on any presently available
FPGA. This is because for every multiplication, addition or other mathematical operator in the
algorithm, extra hardware elements are reserved. To create synthesizable hardware which runs
the algorithm, it has to be split across time. By using multiple clock cycles, each arithmetic unit
can be used multiple times.

To be able to process hundreds or more samples, a very large reduction in area is required.
Several architectures which promote hardware re-usage have been described in section 5.4,
after which a single-purpose vector processor architecture has been chosen.

In a processor architecture the problem is split into a program, a series of sequential operations,
and a processor, hardware which is able to execute those operations. The relation between
processor and program is defined by the instruction set, the set of possible operations.

Generally speaking processors are multi-purpose, which means the instruction set and pro-
cessor are designed to run a wide variety of programs. Since there is only one program, the in-
struction set and architecture are designed to be as efficient as possible for the pseudo-program
described in section 6.1.3.

The processor hardware is described in sections 6.2.1, 6.2.2 and 6.2.3. In section 6.2.4 the mem-
ory architecture is explained in greater detail. The source code has been included in appendix
C.

The instruction set is described in section 6.2.5. The program created using the instruction set
can be found in section 6.2.6. Appendix D contains the program.

6.2.1 Processor-like architecture

To maximize energy efficiency a single-purpose processor has been designed. The instruction
set is designed to utilize as much hardware to be as fast as possible, while minimizing unused
hardware by implementing unused instructions. The optimizations are described in section
6.2.2.

The structure of the processor is based on a Harvard Architecture, an architecture with separate
access to the instruction memory and the data memory. In a minimalistic Harvard processor
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the sections that can be distinguished are the Datapath, Control Unit, Instruction memory and
Data memory.

Figure 6.4: Harvard architecture

The Datapath consists of all the logic and registers required to process arithmetic and logic
instructions. The heart is the Arithmetic Logic Unit (ALU), which is responsible for all the com-
parisons and arithmetic operations.

In the control unit all the logic to control the datapath and memories is contained. The Control
unit contains a decoder and program counter. The decoder processes the current instruction,
while the program counter calculates which instruction should be fetched next.

The instruction memory contains the program, and the data memory contains the variables
and vectors from the algorithm. In a Harvard architecture the memories are treated as physi-
cally separated and do not share an address bus, data bus and address space. The advantage
is that instructions and data can be fetched simultaneously. The processor is designed to fetch
the next instruction each cycle regardless of what the datapath is doing. Since the program is
static, the instruction memory can be read-only.

6.2.2 Optimization: a revisit of the matrix vector multiplication

Since the largest computational load comes from matrix vector multiplications, it makes sense
to design the architecture to be good at matrix vector multiplications. In section 4.2.2 the par-
allelization of matrix-vector multiplications has already been discussed. In this section several
optimizations will be presented to make the architecture faster and more efficient when doing
matrix vector multiplications.

• Vector ALU
• Short critical path
• Multiply-accumulate
• Memory address auto-increment

Vector processing

The biggest speed improvement comes from using a vector arithmetic logic unit (ALU). Instead
of processing a single value each cycle, multiple values are processed simultaneously. This
optimization is called parallel processing (Parhi, 1995).
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Short critical path

The maximum clock speed of the final hardware design is determined by the critical path. A
path consists of al the logic elements from an input or memory element to an output or mem-
ory element. The path whose logical elements need the most time to produce a valid result
is called the critical path. The maximum clock speed is the inverse of the time before valid
data is produced of the critical path, therefore a shorter critical path increases the maximum
clock frequency. Critical path length can be reduced in several ways, for example by pipelining,
unfolding and retiming (Parhi, 1995).

As noted before, the biggest computational load comes from matrix-vector calculations. The
matrix vector multiplication from section 6.1.2 can be split in two dimensions, across the rows
or the columns. This results in the architectures shown in figure 6.5 and 6.6. It is clearly visible
that the critical path in the horizontal one is far from optimal, as the critical path contains the
entire chain of additions. The vertically parallelized architecture is therefore the better choice.
Shifting memory elements to reduce critical path length is called retiming.

Figure 6.5: "Horizontal" parallelization

If the inputs are chosen correctly, the summation part at the bottom is not required to do a
Matrix-Vector multiplication. The summation unit has been added for doing dot products.
The summation unit will be described in section 6.2.3

Another solution to decrease critical path length is pipelining. In this situation, pipelining can
be done by putting memory elements between the multiplications and additions. This opti-
mization might seem useful, but has not been done because the FPGA is actually really good at
doing multiplication and accumulation at the same time, which will be explained in the next
subsection.

Multiply-accumulate

From the architecture shown in image 6.6, it can be seen that each matrix-vector product re-
quires n2 multiplications and just as much additions. For each sample a distinct multiplier and
accumulator are required. This arithmetic structure is not uncommon, and a lot of hardware is
specifically designed for these computations.
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Figure 6.6: "Vertical" parallelization

Figure 6.7: Cyclone V DSP Block

In image 6.7 the shape of a single Cyclone V DSP block is shown (Altera Corporation, 2011).
More modern FPGA’s use similar structures (Vishwanath, 2016). It can be seen that these DSP
blocks contain a dedicated multiplier and accumulator. Since the DSP blocks are designed to
run at the same clock speed as the logic, doing both computations in the same cycle comes at
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almost no cost. Using this multiply-accumulate construction reduces the amount of clock cy-
cles required for matrix-vector products by a factor 2, without increasing energy consumption
and critical path delay by a comparable amount.

Memory address auto-increment

The last addition is a memory auto increment. In a normal simple processor, each computation
consists of several steps. Before the actual computation, the input values are loaded into regis-
ters, requiring one or more "load" instructions. After the computation instruction, the result is
stored in memory using a "store" instruction. This means for each computation, generally four
instructions are required. In the case of multiply-accumulate instructions, three instructions
are required for each multiply-accumulate since no "store" instruction is required.

One of the improvements made is the parallelization of memory instructions and computa-
tions. The data for the next computation is fetched in the computation instruction. The ad-
vantage is that after each multiply-accumulate the next one can be done immediately, giving a
factor 3 speed improvement. The downside is that this only works with alligned memory access,
meaning that the data for the next computation needs to be at the next memory address.

6.2.3 Other arithmetic operations

Apart from matrix vector multiplications the processor also has to be able to other vector op-
erations, dot products and scalar division. In order to do this, several distinguishable hardware
components have been added.

Vector ALU

The vector arithmetic logic unit described in section 6.2.2 is not only used for matrix-vector
multiplications. The Vector ALU is able to do addition, multiplication, subtraction and
multiply-accumulation. In the algorithm these are all the operations done on vectors. Vector
division is not used.

Summation unit

In the dot product a summation is used, for which a summation unit is included. The sum-
mation unit is implemented as a state machine which sums a subvector in several steps. The
width of the summation unit is determined by the size of the subsubvector. Smaller subsub-
vectors require less hardware for the summation unit, but more cycles to compute the sum of
a subvector. The summation unit runs independent of the rest of the hardware, but a special
branch instruction can be used to wait for the summation unit to finish.

In a more generic architecture at least one multiplexer would be present, but since the summa-
tion unit is only used for dot products, it can be directly connected to the accumulator registers
of the vector ALU.

The architecture of the summation unit is a "line" summation instead of a "tree" summation
because of programming complexity. The line summation is easily scalable and simple to pro-
gram. A tree summation is a better choice for larger subsubvector sizes, as it has a shorter
critical path.

Division unit

The algorithm contains two scalar divisions every iteration. Division is more complex than the
other basic arithmetic operations in hardware, so choosing a basic single-cycle divisor would
drastically reduce the maximum clock speed. Instead of doing so, a division algorithm which
spans multiple cycles has been chosen. It has been implemented as a state machine which
runs in parallel to the rest of the machine. A special case of branch can be used to wait for the
division unit to finish before the results are used.
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Scalar division is implemented using the non-restoring division algorithm. The non-restoring
division algorithm is similar to the restoring division algorithm, but uses negative residuals to
skip the restoring step (Galal and Pham, 2000). In the non-restoring division algorithm, the
quotient and remainder are calculated in n steps, where n is the bit-width of the input scalars.
The non-restoring division algorithm is explained in the lecture by Galal and Pham (2000).

In hardware the division unit consists of a bit-shifter, an adder and a few registers, which makes
it very compact.

6.2.4 Memory architecture

In section 5.5 several options for the memory storage have been considered. In implementing
the memory several decisions have been made to increase memory bandwidth and calculate
faster.

In order to access the memory more quickly, it has been split into three memory sections with
large bus widths, as can be seen in figure 6.8. The first memory contains the current point ~x,
search direction ~d and a section for intermediate values ~m. The second memory contains the
residual~r , input vector~b and a section for intermediate values ~q . The third memory contains
the A-matrix.

Figure 6.8: Memory architecture.

In section 6.2.2, the concept of memory address auto-incrementation has already been ex-
plained. The auto-incrementer has several operating modes, since it has to control 3 memory
addresses. Apart from automatically setting memory addresses, immediate values can be set
with the "Load" instruction and relative addresses can be used with the "MemIncr" instruction.
The relative addresses are very useful in loops.

Between the arithmetic units and the memory there are several multiplexers. These multiplex-
ers can be controlled using the "Mux" instruction. It has been decided to use direct connec-
tions between the memory and the vector ALU inputs, which reduces the amount of registers
required. At the ALU outputs there are registers to reduce the critical path.

The memory is dual-ported so theoretically it is possible to read and store simultaneously.
Defining instructions which store simultaneously would give a small reduction of cycles re-
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quired at the cost of energy, added complexity and possibly a longer critical path. It has been
decided that dual-port memory access will not be used, in order to keep the memory architec-
ture simple and efficient.

From the definition of the A-matrix it follows that it must be symmetric. In a symmetric matrix
the amount of storage space required can be reduced by not storing the duplicate elements
above or under the main diagonal. It was chosen not to do this to reduce complexity and
to have aligned memory access. Most types of memory, especially with larger memory sizes,
are slower at obtaining individual memory elements compared to larger sections of memory.
Aligned memory access means that the elements necessary at one time are stored at adjacent
memory locations. The memory types that have been considered for this project all require less
time and power to read aligned memory elements.

Blockram contents from file

In section 5.5 it has been decided to test with blockram. Because of the limited size of the
blockram, it has been decided to calculate the A-matrix and b-vector off-line. Removing these
preparations means the response matrix does not need to be saved in memory. In addition the
performance metrics are more realistic, since the calculation of the A-matrix is typically not
done for every measurement.

The offline calculation is done with a Matlab script, which outputs two text files containing
the b-vector and the A-matrix. The formatting is done according to the specifications in the
prelude library API.

6.2.5 Instruction set

The instruction set of the processor is loosely based on the assembly syntax. Several instruc-
tions, such as Jump and Branch, are very standard while others, such as Mux and VecCompute,
are designed specifically for this architecture. Table 6.1 contains the instruction set.

Instruction Parameters Description
VecCompute VecOp Compute a VecOp using the vector ALU
AluCompute AluOp Compute a summation or division using the scalar ALU.

Mux MuxSetting, AutoIncr
Reroute the inputs and outputs of the vector ALU.
Also selects settings for the memory auto incrementer.

Jump Address Relative jump

Branch
BranchType, Register,
CompareVal, Address

Relative jump if a condition is met. The conditions vary by branchtype.
Sometimes a comparison between Register and CompareVal is required.

Load
Read addresses, Write
Address

Selects absolute memory addresses for the three memories.
Also sets a write address.

MIncr
Read addresses, Write
Address

Selects relative memory addresses.

StoreI Store address Store the vector ALU output at the address specified.
Store Store the vector ALU output.
Nop Do nothing for one cycle.
Reset Reset the registers to zero and restart the program.

Table 6.1: Instruction set of the custom vector processing unit.

As specified in section 6.2.3, the vector ALU can do additions, subtractions, multiplications
and multiply-accumulates. The VecOp parameter instructs the vector ALU to do one of these
computations, hold a value or set its registers to zero.

The AluOp is used to start the other arithmetic units, the division unit and summation unit.
There are also AluOp codes to do nothing and to swap the two constant registers.
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6.2.6 Program

A program is a list of instructions which are executed by a processor. The program created starts
from the point where the A-matrix and b-vector are known and computes the corresponding
input signal by executing the conjugate gradient algorithm. The program is split into a prepa-
ration phase and several iterations, and it will keep iterating until finished.

Before creating the program pseudo-code has been written, which is included below. The
pseudo-code shows the general structure and order of execution.

1 :preparation
2 i ⇐ 0
3 x ⇐ r epeat1
4 q ⇐∀i

∑
k Ai ,k xk

5 r ⇐∀i bi −q
6 d ⇐ r
7 num ⇐∑

i ri ri
8 mi nDel t a ⇐ num
9

10 :iteration
11 q ⇐∀i

∑
k Ai ,k dk

12 den ⇐∑
i qi di

13 r es ⇐ num
den

14 m ⇐∀i di r es
15 x ⇐∀i xi +mi
16 cmp i (something???)
17 brne :normalR
18 q ⇐∀i

∑
k Ai ,k xk

19 r ⇐∀i bi −q
20 jmp :readyR
21 :normalR
22 q ⇐∀i qi r es
23 r ⇐∀i ri −qi
24 :readyR
25 den ⇐ num
26 num ⇐∑

i ri ri
27 r es ⇐ num

den
28 m ⇐∀i di r es
29 d ⇐∀i ri +mi
30 i ⇐ i +1
31 cmp num minDelta
32 brlt :end
33 cpm i 2000
34 brlt :iteration
35 :end

The full code is included in appendix D.

6.2.7 Testing

Unfortunately, there has not been time to create and test a physical test setup. The working of
the algorithm and determination of the amount of cycles required have been done by simulat-
ing the processor and program.

Simulation

In simulation, the algorithm does not work with fixed-point values, as there is not enough dy-
namic range. A solution is to shift the point for each computation. A different solution is to use
floating-point numbers. In simulation the algorithm runs with both fixed- and floating-point
numbers.

The response matrix used for this implementation is different from the one used in the Haskell
implementation, so the results cannot be compared. The script that generates a response ma-
trix in BlockRamFile format does not work with floating point numbers.

Using the simulator, the total amount of clock cycles required for the worst case execution can
be determined, as can be seen in chapter 6.2.8.
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Synthesis

When using fixed-point numbers, the CLaSH compiler is able to generate synthesizable code
for a sample size of 400 and a sample size of 2048. Since the Cyclone 5 and Cyclone 10 platforms
do not have enough BlockRam for the 2048 sample implementation, the architecture only syn-
thesizes for the Arria 10. The specific Arria 10 FPGA chosen is the "10AX115U4F45I3SGES". The
results have been included in table 6.2.

FPGA ALU Width DSP Slices Clock speed BlockRam usage
Arria 10 512 198 1 MHz* 22 Mb
Arria 10 128 198 50.2 MHz 18 Mb
Arria 10 100 170 50.2 MHz 18 Mb
Cyclone 10 128 D.N.S. D.N.S. D.N.F.
Cyclone V 128 D.N.S. D.N.S. D.N.F.

Table 6.2: FPGA Synthesis results

In synthesizing the code using a 512 scalars wide ALU, only 198 DSP slices are used, indicating
something went wrong. This also reflects in the maximum clock frequency, which is very low.
The RTL viewer does list 512 independent multipliers in the RTL viewer, so they are lost in
synthesis.

For the 128 wide implementation and the 100 wide implementation, the length of the response
matrix has been reduced by 20% in order to be able to synthesize. Although the Arria 10 does
have enough BlockRam cells, it is not able to address them all individually.

Instead of using 27-bit fixed numbers, IEEE 754 floating point numbers can be used to obtain
more dynamic range. On modern Altera FPGA’s, such as the Cyclone 10 and Arria 10, IEEE 754
single precision floating point DSP slices have been added (Vishwanath, 2016). The CLaSH
compiler is not able to generate code for floating point numbers.

6.2.8 Energy efficiency comparison

The goal of this research is to improve the energy efficiency for signal recovery. Currently the
platform to beat is a NVidea Geforce GTX1050 Ti Graphics Processing Unit (GPU).

The GPU has a maximum power usage of 75 Watt (NVIDIA Corporation, 2017). To test the
worst case execution time, the early escape clause has been removed, so that all iterations will
be calculated. It takes the GPU 740 milliseconds to run the algorithm with a sample size of
2048. This means about 56 Joules are required for the calculation. A Quadro M1000 has also
been tested, and requires more energy. The results are included in in table 6.4.

To get the corresponding performance numbers from FPGA’s, Altera tooling has been used. The
Timequest analyser and Powerplay analyser can be used to get the maximum clock frequency
and estimated maximum power usage respectively. The GPU is compared against the Cyclone
V, Cyclone 10 and Arria 10 FPGA platforms.

For the algorithm running on the FPGA, the exact amount of cycles required for the worst-case
execution can be determined. These results are included in table 6.3. The Altera Timequest
analyser has been used to determine the maximum clock speed for the FPGA platforms. In
table 6.3 the Maximum clock speed and corresponding worst case execution time have been
listed.

The Altera Powerplay analyser has been used to determine the maximum power draw of the
FPGA’s running the algorithm. These results are included in table 6.4. The time and power
requirements have been combined into theoretical energy requirements.
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FPGA DSP Slices Clock cycles Clock speed Worst-case execution time
Arria 10 512 17978064 1 MHz* 17978 ms
Arria 10 128 69470608 50.2 MHz 1384 ms
Arria 10 100 82935050 50.2 MHz 1653 ms
Cyclone 10 128 69470608 D.N.S.
Cyclone V 128 69470608 D.N.S.

Table 6.3: FPGA Execution times

Platform Worst-case execution time Load power usage Worst-case energy
Geforce GTX1050 Ti 740 ms 75 W 55.5 J
Quadro M1000 6900 ms 45 W 310.5 J
Arria 10 (512) 17978 ms 2707.3 mW 48.67 J
Arria 10 (128) 1384 ms 2294.64 mW 3.18 J

Table 6.4: Energy comparison

In this results it has to be taken into account that the GPU estimations are more pessimistic
than the estimates provided by the Altera tools. Nevertheless the energy efficiency advantage
of the Arria 10 FPGA with a 128 numbers wide ALU is at least a factor 8.

What further strengthens this conclusion is that the Arria 10 can be used standalone, while the
GPU needs a desktop computer in order to work.
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7 Conclusion

By studying the algorithm, it has been found that the computational complexity of maximum-
likelihood signal recovery comes from matrix-vector multiplications, which add up to a com-
plexity of O(n3). Calculating the A-matrix using a matrix product also has a high complexity,
but it is not necessary to calculate it for every measurement.

In software a naive implementation of the algorithm is made, and it is shown to effectively
recover input signals. The CLaSH implementation is synthesizable, but any implementation
with a useful amount of samples does not fit on an FPGA.

A processor architecture has been designed to provide hardware re-usage and reduce the
amount of FPGA resources required. The architecture is optimized for matrix-vector compu-
tations in order to calculate the conjugate gradient part of the algorithm very fast. In simu-
lations the arithmetic operations work as intended, but running the entire algorithm causes
fixed-point overflow errors. Using floating point numbers works in simulation, but does not
synthesize.

The processor architecture is synthesized for an Arria 10 FPGA and the relevant performance
figures are listed in chapter 6.2.8. Theoretically on a modern FPGA a factor 15 increase in energy
efficiency over the given GPU implementation is possible, for a conjugate gradient architecture
using blockram for the storage of matrices and vectors.

Using Clash for programming a conjugate gradient algorithm resulted in an architecture which
is fast and energy efficient, but did require extensive knowledge about functional program-
ming, FPGA internals and processor design. Commercial exploitation of the architecture is not
advised, as developers able to maintain, improve or change the architecture are almost impos-
sible to come by.

7.1 Future work

The architecture does not synthesize for a Cyclone FPGA because of the amount of BlockRam
cells required. An improvement would be to utilize different types of memory in order to work
with larger problems or smaller FPGA’s, for example DDR3 memory could be used. Switching
memory architecture does have consequences for the speed and energy efficiency, and new
measurements should be made.

To make the processor architecture and program suitable for commercial exploitation, it
should be easier to program with. Expecting future programmers to have a deep understand-
ing of processor architecture is not realistic. At the University of Twente research is being done
on developing mathematical algorithms with a generic architecture.

The current architecture does calculations from and to memory, where the memory is filled
at compile time. To be used with an IMS device the FPGA also needs to be able to sample
or receive input data, and output the restored signal. An option is to implement the current
design as a signal recovery co-processor and use other parts of the FPGA for sampling and
further processing.
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Appendix A: Haskell implementation

1

2 module MaxLikelihood where
3

4 import Data.Array
5 import MatrixMath
6 import ResponseFunction
7

8 --Settings
9 sampleSize = 200

10

11 --Todo: This can be done in a more efficient way with only O(n) calls to kernel
12 responseMatrix :: Int -> Array (Int, Int) Double
13 responseMatrix m = array ((0,0),(m-1, m-1)) [((i, j), response i j) | i <- [0..(m-1)]

, j <- [0..(m-1)]]
14 where response i j | j >= i = kernel j i
15 | otherwise = 0
16

17 --Now we can create the A-matrix and B-Vector used in the matrix notation of the
problem

18 --Likelihood(i_m) = -2 * i_m * b + i_m * i_n * a_mn
19 mkAMatrix :: Int -> Array (Int, Int) Double
20 mkAMatrix m = (transp (responseMatrix m)) //*/ (responseMatrix m)
21

22 mkBVector :: Int -> Array (Int, Int) Double
23 mkBVector m = (responseMatrix m) //*/ s_k
24 where
25 s_k = listArray ((0,0),(m-1, 0)) (corruptedOutputSet m)
26 --s_k = listArray ((0,0),(m-1, 0)) (outputSet m)
27

28 a_mn = mkAMatrix sampleSize --A Matrix
29 b = mkBVector sampleSize --b vector
30

31 --Conjugate gradient algorithm
32 --Source: Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient

method without the agonizing pain." (1994).
33 --Obtain value ’’ from tuple of output values:
34 obt_x (x, r, d, δ, α, β, i, maxN, minδ) = x -- Current point
35 obt_r (x, r, d, δ, α, β, i, maxN, minδ) = r -- Residual, Negative gradient
36 obt_d (x, r, d, δ, α, β, i, maxN, minδ) = d -- Search direction
37 obt_δ (x, r, d, δ, α, β, i, maxN, minδ) = δ -- Magnitude of Residual/Gradient
38 obt_α (x, r, d, δ, α, β, i, maxN, minδ) = α -- Step Length, Line search result
39 obt_β (x, r, d, δ, α, β, i, maxN, minδ) = β -- Optimization parameter
40 obt_i (x, r, d, δ, α, β, i, maxN, minδ) = i -- Iteration number
41 obt_N (x, r, d, δ, α, β, i, maxN, minδ) = maxN -- Maximum amount of iteration
42

43 --Iteration zero: Choose a starting point and go in the direction of steepest descent
.

44 -- Note: /-/, //*, //*/ and other strange symbols are infix operations for vector (/)
or matrix (//) math

45 -- So for example //*/ means "matrix multiplied with vector"
46 conjugateGradient = iteration (x0, r0, d0, δ0, α0, β0, 1, sampleSize, minδ)
47 where
48 x0 = listArray((0,0), ((sampleSize-1),0)) (repeat 0)
49 r0 = b /-/ a_mn //*/ x0
50 d0 = r0
51 δ0 = transp r0 //*/ r0
52 α0 = δ0 /// (transp d0 //*/ a_mn //*/ d0)
53 β0 = listArray((0,0), (0,0)) [0]
54 minδ = δ0!(0,0) * (noiseStdDev^2)
55

56 --Iteration function. Calculate the values for one iteration and then make a
recursive call to calculate the next iteration.

57 --The recursion ends at maxN samples or when δ get’s too low.
58 --Note: ’ denotes "next value of" or (i+1)
59 iteration (x, r, d, δ, α, β, i, maxN, minδ)
60 | i >= maxN
61 || δ!(0,0) < minδ = (x’, r’, d’, δ’, α’, β’, i’, maxN, minδ)
62 | otherwise = iteration (x’, r’, d’, δ’, α’, β’, i’, maxN, minδ)
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63 where
64 x’ = x /+/ (d //* α)
65 r’ | (i ‘mod‘ 40 == 0) = b /-/ a_mn //*/ x’
66 | otherwise = r /-/ a_mn //* α //*/ d
67 d’ = r’ /+/ d //* β’
68 δ’ = transp r’ //*/ r’
69 α’ = δ’ /// (transp d’ //*/ a_mn //*/ d’)
70 β’ = δ’ /// δ

71 i’ = i+1
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Appendix B: Naive CLaSH implementation

1

2 module MaxLikelihood where
3

4 import CLaSH.Prelude
5

6 type Number = SFixed 3 24
7 type Vect = Vec 1000 Number
8 type Matr = Vec 1000 (Vect)
9 --All matrices are square...

10

11 --Settings
12 sampleSize = d1000
13 iterations = 1000
14

15 kernel :: Integer -> Integer -> Number
16 kernel limitN k | k<= limitN = 0.2 * exp (-(fromIntegral(limitN-k)*0.2))
17 | otherwise = 0
18

19 samples = map (sin) index
20 responseMatrix = map row index
21 where row limitN = map (kernel limitN) index
22

23 index = iterate d1000 (+1) 1
24

25 a_mn = mmMult (transpose responseMatrix) responseMatrix
26

27 --Conjugate gradient algorithm
28 --Source: Shewchuk, Jonathan Richard. "An introduction to the conjugate gradient

method without the agonizing pain." (1994).
29 conjugateGradient :: Vect -> Signal () -> Signal (Maybe (Vect))
30 conjugateGradient samples = mealy iteration (x0, r0, d0, r_n2, alpha0, 0, b_m)
31 where
32 x0 = replicate sampleSize 0
33 r0 = zipWith (-) b_m (mvMult a_mn x0)
34 d0 = r0
35 r_n2 = rcMult r0 r0
36 alpha0 = r_n2 / (rcMult d0 (mvMult a_mn d0))
37 b_m = mvMult responseMatrix samples
38

39

40 iteration :: (Vect, Vect, Vect, Number, Number, Unsigned 27, Vect)
41 -> ()
42 -> ((Vect, Vect, Vect, Number, Number, Unsigned 27, Vect), Maybe (Vect))
43 iteration (x_n, r_n, d_n, r_n2, alpha_n, n, b_m) _
44 | stop = ((x_n, r_n, d_n, r_n2, alpha_n, n, b_m), Just x_n)
45 | otherwise = ((x_n’, r_n’, d_n’, r_n2’, alpha_n’, n’, b_m), Nothing)
46 where
47 x_n’ = zipWith (+) x_n (map (* alpha_n) d_n)
48 r_n’ = zipWith (-) r_n (mvMult a_mn (map (* alpha_n) d_n))
49 d_n’ = zipWith (+) r_n’ (map (* beta_n’) d_n)
50 r_n2’ = rcMult r_n’ r_n’
51 alpha_n’ = r_n2’ / (rcMult d_n’ (mvMult a_mn d_n’))
52 beta_n’ | r_n2 == 0 = 0
53 | otherwise = r_n2’ / r_n2
54 n’ = n+1
55 stop = (n >= iterations) || (r_n2’ == 0)
56 --redirect = n == (sqrt maxN)
57

58

59 --MATRIX MATH
60 rcMult :: Vect -> Vect -> Number
61 rcMult a b = foldl (+) 0 $ zipWith (*) a b
62

63 crMult :: Vect -> Vect -> Matr
64 crMult a b = map row a
65 where
66 row a_n = map (* a_n) b
67
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68 vvMult :: Vect -> Vect -> Vect
69 vvMult a b = zipWith (*) a b
70

71 mmMult :: Matr -> Matr -> Matr
72 mmMult a b = map row a
73 where
74 b’ = transpose b
75 row a_n = map (rcMult a_n) b’
76

77

78 mvMult :: Matr -> Vect -> Vect
79 mvMult a b = map (row) a
80 where
81 row a_n = foldl (+) 0 $ zipWith (*) a_n b
82

83 msMult :: Matr -> Number -> Matr
84 msMult a b = map (map (* b)) a
85

86

87 --TOP ENTITY
88 topEntity = (conjugateGradient samples)
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Appendix C: Processor architecture

1 {-# LANGUAGE RecordWildCards, TupleSections #-}
2 module VPU where
3

4 import CLaSH.Prelude
5 import Data.Maybe
6

7 $(decLiteralD 40000)
8 $(decLiteralD 1999)
9

10 type MemAddr = Signed 32
11 type VecIndex = Unsigned 6
12 type Value = Signed 32
13

14 type DivScalar = SFixed 11 17
15 type Scalar = SFixed 10 17
16 type Vect = Vec 400 Scalar
17 type SubVect = Vec 100 Scalar
18 type SubSubVect = Vec 4 Scalar
19

20 --VPU instruction set
21 data Instruction
22 = VecCompute VecOp
23 | AluCompute AluOp
24 | Mux MuxLeft MuxRight MuxOut MuxConst AutoIncr
25 | Jump Value
26 | Branch BranchOp Identifier Value Value
27 | Load MemAddr MemAddr MemAddr MemAddr
28 | MIncr Value Value Value Value
29 | StoreI MemAddr
30 | Store
31 | Nop
32 | Reset
33 deriving (Eq,Show)
34

35 --Computation OpCodes
36 data VecOp = Add | Sub | Mult | MACC | Cp | VNop
37 deriving (Eq,Show)
38

39 data AluOp = Sum | SetZero | Div | Swap | Imm
40 deriving (Eq, Show)
41

42 data BranchOp = NB | JMP | BLT | BGT | BEQ | BNE | BDIV | BSUM
43 deriving (Eq, Show)
44

45 --Mux settings
46 data MuxLeft = ML_Ram2 | ML_Ram3 | ML_Const
47 deriving (Eq, Show)
48 data MuxRight = MR_Ram1 | MR_Ram2 | MR_Const
49 deriving (Eq, Show)
50 data MuxOut = MO_Ram1 | MO_Ram2
51 deriving (Eq, Show)
52 data MuxConst = MC_NUM | MC_DEN
53 deriving (Eq, Show)
54

55 --Auto increment settings : Which memory addresses should AI
56 data AutoIncr = AI_Ram1 | AI_Ram2 | AI_Ram3 | AI_Ram12
57 deriving (Eq, Show)
58

59 emptyVec :: SubVect
60 emptyVec = replicate d100 0
61

62 --Register file
63 data Mem
64 = Mem
65 { pc :: Value
66 , ic :: Value
67 , aluRegs :: SubVect
68 , divRegs :: (Scalar, Scalar, DivScalar, Value)
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69 , sumRegs :: (Scalar, VecIndex)
70 , divNum :: Scalar
71 , divDen :: Scalar
72 , c3 :: Scalar
73 , muxL :: MuxLeft
74 , muxR :: MuxRight
75 , muxO :: MuxOut
76 , muxC :: MuxConst
77 , autoI :: AutoIncr
78 , vecCnt :: VecIndex
79 , addrR1 :: MemAddr
80 , addrR2 :: MemAddr
81 , addrR3 :: MemAddr
82 , addrR4 :: MemAddr
83 } deriving (Eq,Show)
84

85 emptyRegs = Mem 0 0 emptyVec (0, 0, 0, 0) (0,0) 0 0 0 ML_Ram3 MR_Ram2 MO_Ram2 MC_NUM
AI_Ram3 0 0 0 0 0

86

87 data Identifier = RPC | RAd1 | RAd2 | RAd3 | RAd4 | SumR | DivR
88 deriving (Eq, Show)
89

90 --Instruction machine code
91 data MachCode
92 = MachCode
93 { mcAluOp :: AluOp
94 , mcVecOp :: VecOp
95 , mcBrOp :: BranchOp
96 , mcMuxL :: Maybe MuxLeft
97 , mcMuxR :: Maybe MuxRight
98 , mcMuxO :: Maybe MuxOut
99 , mcMuxC :: Maybe MuxConst

100 , mcAutoI :: Maybe AutoIncr
101 , mcAddr1 :: Maybe MemAddr
102 , mcAddr2 :: Maybe MemAddr
103 , mcAddr3 :: Maybe MemAddr
104 , mcAddr4 :: Maybe MemAddr
105 , mcJmpVal :: Maybe Value
106 , mcCmpr :: Maybe Value
107 , mcRegId :: Maybe Identifier
108 } deriving (Eq, Show)
109

110 --The instruction for doing absolutely nothing at all
111 nullCode = MachCode
112 { mcAluOp = Imm
113 , mcVecOp = VNop
114 , mcBrOp = NB
115 , mcMuxL = Nothing
116 , mcMuxR = Nothing
117 , mcMuxO = Nothing
118 , mcMuxC = Nothing
119 , mcAutoI = Nothing
120 , mcAddr1 = Nothing
121 , mcAddr2 = Nothing
122 , mcAddr3 = Nothing
123 , mcAddr4 = Nothing
124 , mcJmpVal = Nothing
125 , mcCmpr = Nothing
126 , mcRegId = Nothing
127 }
128

129

130 --The CPU/VPU: {Decoder, Vector ALU, ALU, Program counter, Multiplexers and Registers
}

131 --Cpu :: State -> (Inputs) ->
132 -- (State, (Outputs))
133 cpu :: Mem -> (SubVect, SubVect, SubVect, Instruction) ->
134 (Mem, (Scalar, MemAddr, Maybe(MemAddr, SubVect),
135 MemAddr, Maybe(MemAddr, SubVect),
136 MemAddr, Maybe(MemAddr, SubVect), Value))
137 cpu regFile (m1, m2, m3 ,instr) = (regFile’, (output, rdAddr1, dout1, rdAddr2, dout2,

rdAddr3, dout3, ipntr))
138 where
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139 --Decode the instruction and label the registers
140 (MachCode {..}) = case instr of
141 VecCompute op -> nullCode {mcVecOp = op}
142 AluCompute op -> nullCode {mcAluOp = op}
143 Mux a b c d e -> nullCode {mcMuxL = Just a, mcMuxR = Just b, mcMuxO = Just c,

mcMuxC = Just d, mcAutoI = Just e}
144 Jump addr -> nullCode {mcJmpVal = Just addr, mcBrOp = JMP}
145 Branch a b c d -> nullCode {mcBrOp = a, mcRegId = Just b, mcCmpr = Just c,

mcJmpVal = Just d}
146 Load a b c d -> nullCode {mcAddr1 = Just a, mcAddr2 = Just b, mcAddr3 = Just

c, mcAddr4 = Just d}
147 MIncr a b c d -> nullCode
148 StoreI addr -> nullCode {mcAddr4 = Just addr}
149 Store -> nullCode
150 Nop -> nullCode
151 Reset -> nullCode
152 (Mem {..}) = regFile
153

154 --Vector ALU with output registers
155 result = vAlu mcVecOp vAluL vAluR aluRegs
156 aluRegs’ = result
157 output = head result
158 --Normal ALU (Not really an ALU, just the calculations not done by vALU)
159

160

161 c1’ | mcAluOp == Swap = divDen
162 | muxC == MC_NUM = sum
163 | otherwise = divNum
164 c2’ | mcAluOp == Swap = divNum
165 | muxC == MC_DEN = sum
166 | otherwise = divDen
167

168 sumRegs’@(sum, sumCnt) | mcAluOp == Sum = summator aluRegs (0, 2) --sum
<- sum(aluRegs)

169 | otherwise = summator aluRegs sumRegs --
continue summation

170

171 divRegs’@(dA, dB, dP, dCnt) | mcAluOp == Div = divider (divNum, divDen, 0, 27) --
dA <- c1 / c2

172 | otherwise = divider divRegs --
continue division

173

174 --Program counter w/ Jumps
175 regCmpr = selReg (fromMaybe RAd1 mcRegId) regFile
176 branchBool = case mcBrOp of
177 NB -> False
178 JMP -> True
179 BLT -> regCmpr < fromMaybe 0 mcCmpr
180 BGT -> regCmpr > fromMaybe 0 mcCmpr
181 BEQ -> regCmpr == fromMaybe 0 mcCmpr
182 BNE -> not $ regCmpr == fromMaybe 0 mcCmpr
183 BDIV -> dCnt /= 0
184 BSUM -> sumCnt /= 0
185

186 pc’ | branchBool = ipntr + (fromMaybe 1 mcJmpVal)
187 | otherwise = ipntr + 1
188

189 ipntr = pc
190

191 --Vector Multiplex registers
192 muxL’ = fromMaybe muxL mcMuxL
193 muxR’ = fromMaybe muxR mcMuxR
194 muxC’ = fromMaybe muxC mcMuxC
195 muxO’ = fromMaybe muxO mcMuxO
196 autoI’ = fromMaybe autoI mcAutoI
197

198 --Change address, autoincrement, nothing
199 (ai_1, ai_2, ai_3, vecCnt’) = case autoI of
200 AI_Ram1 -> (1, 0, 0, 0)
201 AI_Ram2 -> (0, 1, 0, 0)
202 AI_Ram12 -> (1, 1, 0, 0)
203 AI_Ram3 -> if vecCnt == 19 then (1, 1, 1, 0)
204 else (0, 0, 1, vecCnt + 1)
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205

206 addrR1’ = case instr of
207 VecCompute v -> addrR1 + ai_1
208 MIncr a b c d -> addrR1 + a
209 otherwise -> fromMaybe addrR1 mcAddr1
210 addrR2’ = case instr of
211 VecCompute v -> addrR2 + ai_2
212 --MIncr a b c d -> addrR1 + a
213 otherwise -> fromMaybe addrR2 mcAddr2
214 addrR3’ = case instr of
215 VecCompute v -> addrR3 + ai_3
216 --MIncr a b c d -> addrR1 + a
217 otherwise -> fromMaybe addrR3 mcAddr3
218 addrR4’ = case instr of
219 Store -> addrR4 + 1
220 --MIncr a b c d -> addrR1 + a
221 otherwise -> fromMaybe addrR4 mcAddr4
222

223 --Vector Multiplexers
224 vAluL | muxL == ML_Ram2 = m2
225 | muxL == ML_Ram3 = m3
226 | muxL == ML_Const = repeat dA
227 vAluR | muxR == MR_Ram1 = m1
228 | muxR == MR_Ram2 = m2
229 | muxR == MR_Const = repeat $ m1 !! vecCnt
230

231 --Output stuff
232 writeMem = case instr of
233 Store -> Just (addrR4, result)
234 otherwise -> (, result) <$> mcAddr4
235 dout1 | muxO == MO_Ram1 = writeMem
236 | otherwise = Nothing
237 dout2 | muxO == MO_Ram2 = writeMem
238 | otherwise = Nothing
239 dout3 = Nothing
240

241 rdAddr1 = bound 0 59 addrR1’
242 rdAddr2 = bound 0 59 addrR2’
243 rdAddr3 = bound 0 39999 addrR3’
244

245 -- update registers
246 regFile’ = regFile {
247 pc = pc’,
248 aluRegs = aluRegs’,
249 divRegs = divRegs’,
250 sumRegs = sumRegs’,
251 divNum = c1’,
252 divDen = c2’,
253 c3 = c3,
254 muxL = muxL’,
255 muxR = muxR’,
256 muxO = muxO’,
257 muxC = muxC’,
258 autoI = autoI’,
259 vecCnt = vecCnt’,
260 addrR1 = addrR1’,
261 addrR2 = addrR2’,
262 addrR3 = addrR3’,
263 addrR4 = addrR4’
264 }
265

266 --Arithmetic units--
267

268 --Vector Alu : takes two vectors and a state, produces one vector
269 vAlu :: VecOp -> SubVect -> SubVect -> SubVect -> SubVect
270 vAlu Add xs ys zs = zipWith (+) xs ys
271 vAlu Sub xs ys zs = zipWith (-) xs ys
272 vAlu Mult xs ys zs = zipWith (*) xs ys
273 vAlu MACC xs ys zs = zipWith (+) zs $ zipWith (*) xs ys
274 vAlu Cp xs ys zs = xs
275 vAlu VNop xs ys zs = zs
276
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277 --Summator : takes one vector, one scalar and a state as input, produces scalar and
state

278 summator :: SubVect -> (Scalar, VecIndex) -> (Scalar, VecIndex)
279 summator inp (total, cnt) | cnt == 0 = (total, cnt)
280 | otherwise = (total’, cnt’)
281 where
282 cnt’ = cnt - 1
283 toSum = splitSubVector cnt’ inp
284 total’ = foldl (+) total toSum -- todo tree summation to reduce critical path
285

286

287 --divider : takes a state as input and produces a state
288 divider :: (Scalar, Scalar, DivScalar, Value) -> (Scalar, Scalar, DivScalar, Value)
289 divider (a, b, p, cnt) | cnt == 0 = (a, b, p’, cnt)
290 | otherwise = (a’, b, p’, cnt’)
291 where
292 pa = (pack p) ++# (pack a)
293 pa_s = shift pa 1
294

295 (pb, ab) = split pa_s
296 pi = unpack pb
297 ai = unpack ab
298

299 b’ = unpack $ low ++# pack b
300 --b’ = (fromInteger . toInteger) b
301

302 p’ :: DivScalar
303 p’ | p >= 0 && (cnt == 0) = pi
304 | p >= 0 = pi - b’
305 | otherwise = pi + b’
306 a’ | p’ >= 0 = ai ‘setBit‘ 0
307 | otherwise = ai ‘clearBit‘ 0
308 cnt’ = cnt - 1
309

310

311 --Helper functions: Multiplexers, type conversion
312

313 selReg :: Identifier -> Mem -> Value
314 selReg RPC regs = pc regs
315 selReg RAd1 regs = (fromInteger . toInteger) $ addrR1 regs
316 selReg RAd2 regs = (fromInteger . toInteger) $ addrR2 regs
317 selReg RAd3 regs = (fromInteger . toInteger) $ addrR3 regs
318 selReg RAd4 regs = (fromInteger . toInteger) $ addrR4 regs
319

320 --TODO
321 splitSubVector :: (Num a, Eq a) => a -> SubVect -> SubSubVect
322 splitSubVector 24 xs = selectI d95 d1 xs
323 splitSubVector 23 xs = selectI d91 d1 xs
324 splitSubVector 22 xs = selectI d87 d1 xs
325 splitSubVector 21 xs = selectI d83 d1 xs
326 splitSubVector 20 xs = selectI d79 d1 xs
327 splitSubVector 19 xs = selectI d75 d1 xs
328 splitSubVector 18 xs = selectI d71 d1 xs
329 splitSubVector 17 xs = selectI d67 d1 xs
330 splitSubVector 16 xs = selectI d63 d1 xs
331 splitSubVector 15 xs = selectI d59 d1 xs
332 splitSubVector 14 xs = selectI d55 d1 xs
333 splitSubVector 13 xs = selectI d51 d1 xs
334 splitSubVector 12 xs = selectI d47 d1 xs
335 splitSubVector 11 xs = selectI d43 d1 xs
336 splitSubVector 10 xs = selectI d39 d1 xs
337 splitSubVector 9 xs = selectI d35 d1 xs
338 splitSubVector 8 xs = selectI d31 d1 xs
339 splitSubVector 7 xs = selectI d27 d1 xs
340 splitSubVector 6 xs = selectI d23 d1 xs
341 splitSubVector 5 xs = selectI d19 d1 xs
342 splitSubVector 4 xs = selectI d15 d1 xs
343 splitSubVector 3 xs = selectI d11 d1 xs
344 splitSubVector 2 xs = selectI d7 d1 xs
345 splitSubVector 1 xs = selectI d3 d1 xs
346 splitSubVector _ xs = selectI d0 d1 xs
347

348 bound lb ub val | val <= lb = lb
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349 | val >= ub = ub
350 | otherwise = val
351

352

353 --Processor "entity"
354 topEntity = system prog
355

356 maybeBundle :: (Maybe a, Maybe b) -> Maybe (a, b)
357 maybeBundle ((Just a), (Just b)) = Just (a, b)
358 maybeBundle _ = Nothing
359

360 system :: KnownNat n => Vec n Instruction -> Signal Scalar
361 system instrs = output
362 where
363 (output, rdAddr1, dout1, rdAddr2, dout2, rdAddr3, dout3, ipntr) = mealyB cpu regs

(ram1Out, ram2Out, ram3Out,romOut)
364 regs = emptyRegs
365 romOut = asyncRom instrs <$> ipntr
366 ram1Out = blockRam (replicate d60 emptyVec) rdAddr1 dout1
367

368 _dout2 = liftA maybeBundle $ bundle (addr2, data2)
369 addr2 = fmap (liftA fst) dout2
370 data2 = fmap (liftA pack) $ fmap (liftA snd) dout2
371

372 ram2Out :: Signal (SubVect)
373 ram2Out = unpack <$> blockRamFile d60 "fixb.txt" rdAddr2 _dout2
374

375 ram3Out :: Signal (SubVect)
376 ram3Out = unpack <$> blockRamFile d40000 "fixa.txt" rdAddr3 (signal Nothing)
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Appendix D: Processor program

1 --Program
2 prog = preparation ++ iteration
3 preparation = Reset r0d0 ++ delta0
4 iteration = mv0 ++ dot0 ++ div0 ++ scale0 ++ add0 ++ normal_r ++ sub0 ++ div1 ++ dot1

++ scale1 ++ add1 ++ eoIt
5

6 ---------------------------
7 --Subprograms--
8 --Future work:
9 --Calculate A matrix

10 --Calculate B vector
11 --Wfe
12 --Read inputs
13 --Compare minDelta
14 --r0d0 for x!= 0
15 --Recalculate r
16

17 --r0 = d0 = b - A x = b
18 r0d0 = --mv1 ++ sub0 ++
19 Mux ML_Ram2 MR_Ram1 MO_Ram1 MC_DEN AI_Ram12
20 Load 0 0 0 0
21 Nop
22 (concat $ replicate d20 (
23 VecCompute Cp
24 Store
25 Nil)) ++
26 Nil
27

28 --d0 = transp ?0 ?0
29 delta0 = dot1 -- copy to minDelta
30

31 --mv0 d A - q
32 mv0 =
33 Mux ML_Ram3 MR_Ram1 MO_Ram2 MC_DEN AI_Ram3 --Memory mux for MV0
34 Load 0 0 0 20 --{d_0, dc, A_00, q}
35 Nop --Wait for memory
36 VecCompute Mult --Multiply & Reset accumulators, auto-

increment addr
37 replicate d1999 (VecCompute MACC) ++ --Macc & addr++
38 Store --Store subvector at q & addr++
39 MIncr (-20) 0 0 0 --Reset d vector
40 Branch BLT RAd3 39999 (-2002) --Loop untill end address reached
41 Nil
42

43 --dot0 q . d
44 dot0 =
45 Mux ML_Ram2 MR_Ram1 MO_Ram1 MC_DEN AI_Ram12 --
46 Load 0 20 0 20
47 Nop
48 VecCompute Mult --Multiply & Reset accumulators, auto-

increment addr
49 replicate d19 (VecCompute MACC) ++
50 AluCompute Sum
51 --Branch BSUM RAd2 0 0 --Wait (jmp 0) untill Sum is ready
52 Nil
53

54 --div0
55 div0 =
56 Mux ML_Ram2 MR_Ram1 MO_Ram1 MC_DEN AI_Ram12
57 AluCompute Div
58 Nil
59

60 --scale0 alpha d - m
61 scale0 =
62 Mux ML_Const MR_Ram1 MO_Ram1 MC_DEN AI_Ram1
63 Load 0 0 0 20 --Load d, _, _, m
64 Nop
65 (concat $ replicate d20 (
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66 VecCompute Mult
67 Store
68 Nil)) ++
69 Nil
70

71 --add0 x + m - x’
72 add0 =
73 Mux ML_Ram2 MR_Ram1 MO_Ram1 MC_DEN AI_Ram12
74 Load 40 20 0 40 --{x, m, dc, x}
75 Nop
76 (concat $ replicate d20 (
77 VecCompute Add
78 Store
79 Nil)) ++
80 Nil
81

82 --mv1 --TODO Swap with previous for the every iteration thingy
83 odd_r =
84 Mux ML_Ram3 MR_Ram1 MO_Ram2 MC_DEN AI_Ram3
85 Load 40 20 0 20 --{x, q, A_00, q}
86 Branch NB RAd2 (10) (1) --Todo Every 40 iterations calculate

Ax instead of Am2
87 VecCompute Mult --Multiply & Reset accumulators, auto-

increment addr
88 replicate d1999 (VecCompute MACC) ++ --Macc & addr++
89 Store --Store subvector at m1 & addr++
90 MIncr (-20) (-20) 0 0 --Reset x and m2
91 Branch BLT RAd3 39999 (-2002) --Loop untill end address reached
92 Nil
93

94 normal_r =
95 Mux ML_Const MR_Ram2 MO_Ram2 MC_DEN AI_Ram3
96 Load 40 20 0 20 --{x, q, A_00, q}
97 Nop --Wait for memory
98 (concat $ replicate d20 (
99 VecCompute Mult

100 Store
101 Nil)) ++
102 Nil
103

104 --sub0 (r b) - q - r’ --todo
105 sub0 =
106 Mux ML_Ram2 MR_Ram1 MO_Ram2 MC_DEN AI_Ram12
107 Load 20 0 0 0 --{m1, r, dc, r}
108 Nop
109 (concat $ replicate d20 (
110 VecCompute Sub
111 Store
112 Nil)) ++
113 Nil
114

115 --dot1 r r - const
116 dot1 =
117 AluCompute Swap
118 Mux ML_Ram2 MR_Ram2 MO_Ram1 MC_NUM AI_Ram12 --
119 Load 0 0 0 0 --{r, r, dc, dc}
120 Nop
121 VecCompute Mult --Multiply & Reset accumulators, auto-

increment addr
122 replicate d19 (VecCompute MACC) ++
123 AluCompute Sum
124 Branch BSUM RAd2 0 0 --Wait (jmp 0) untill Sum is ready
125 Nil
126

127 --div1 beta - delta old delta
128 div1 =
129 Mux ML_Ram2 MR_Ram1 MO_Ram1 MC_DEN AI_Ram12
130 AluCompute Div
131 Branch BDIV RAd2 0 0
132 Nil
133

134 --scale1
135 scale1 = scale0
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136

137 --add1
138 add1 =
139 Mux ML_Ram2 MR_Ram1 MO_Ram1 MC_DEN AI_Ram12
140 Load 0 20 0 0 --{d, m, dc, d}
141 Nop
142 (concat $ replicate d20 (
143 VecCompute Add
144 Store
145 Nil)) ++
146 Nil
147

148 --end of iteration
149 eoIt =
150 Branch NB RAd2 (10) (1) --Todo Compare delta_n to delta_0, if

smaller goto end
151 Nil --Todo otherwise increase iteration

count and goto start
152

153 --end of program
154 eop =
155 --Signal --Signal avalon bus
156 --Wfe --If memory copy has finished
157 Reset --Reset the system
158 Nil
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