
 

 

 

 

MASTER THESIS 

DESIGN OF A CONTROL 
STRATEGY FOR OBSTACLE 
CROSSING IN A LOWER 
LIMB EXOSKELETON FOR 
SCI PATIENTS 
 

L.M.E. van Opheusden 
 

 

 

FACULTY OF ENGINEERING TECHNOLOGY 
DEPARTMENT OF BIOMECHANICAL ENGINEERING 

 
EXAMINATION COMMITTEE 

Prof. Dr. ir. H. van der Kooij 
Dr. E.H.F. van Asseldonk 
Dr. A.Q.L. Keemink 
Prof. Dr. A.A. Stoorvogel 

 

DOCUMENT NUMBER 

BW - 596 

15 DECEMBER 2017 





Contents

Contents II

1. Introduction 1
1.1. Powered Exoskeletons for Spinal Cord Injury . . . . . . . . . . . . . . . . 2
1.2. Control Strategies for Obstacle Crossing . . . . . . . . . . . . . . . . . . 4
1.3. Research Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Methods 9
2.1. Numerical Methods for Trajectory Optimization . . . . . . . . . . . . . . 9
2.2. Trajectory Optimizer for a Single Step . . . . . . . . . . . . . . . . . . . 11
2.3. Simulated Real-time Control . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4. Step Sequence for Obstacle Crossing . . . . . . . . . . . . . . . . . . . . 17

3. Simulation Results 18
3.1. Trajectory Optimizer for a Single Step . . . . . . . . . . . . . . . . . . . 18
3.2. Simulated Real-time Control . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3. Step Sequence for Obstacle Crossing . . . . . . . . . . . . . . . . . . . . 24

4. Discussion 28
4.1. The Next Step: Moving towards Implementation on a Device . . . . . . . 30

Bibliography 34

A. List of Parameter Values 35

B. Derivation of the Dynamics 36
B.1. Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

II



1. Introduction

Every year, tens of thousands of people worldwide are struck by the disastrous effects
of spinal cord injury (SCI) [1]. Due to a lesion in the spinal cord, many patients suf-
fering from SCI are paraplegic, making them unable to walk. A person’s quality of life
is determined greatly by their self-sufficiency. Loss of mobility makes SCI patients very
dependent on their environment and the health care system, which in turn greatly di-
minishes their quality of life. In recent years, scientists have put great effort into curing
and treating SCI [2]. However, many SCI patients remain confined to a wheelchair after
their rehabilitation period. Recent developments in the field of robotics have given birth
to a new range of assistive devices. Through the use of powered exoskeletons, patients
with SCI can be given back the ability to walk independently.
The term ”exoskeleton” in this context is defined as a mechanical device that fits around
the human body and moves in parallel with it, as if the patient is wearing a mechanical
suit [3]. Powered exoskeletons distinguish themselves by the fact that they can, through
the use of active elements, provide a net effort to the wearer. They can be used to
augment the physical capabilities of an able-bodied person, like the BLEEX exoskeleton
(Figure 1.1a), or to provide assistance to patients with a limb pathology, like the Ekso
(Figure 1.1b).

Even though powered exoskeletons carry the promise to become invaluable assistive
tools, the current state of the art provides people suffering from SCI with limited func-
tionality. The devices are tailored to flat grounds or shallow slopes, which hinders the
wearer to move freely outside of a laboratory setting. In order to help SCI patients
regain their mobility and self-sufficiency, exoskeleton technology must be taken out of
the laboratory environment and into daily life scenarios. Our natural environment is
highly unstructured terrain, as it is filled with obstacles, such as doorsteps, curbs and
stairs. Powered exoskeletons are mechanically capable of overcoming these obstacles,
but the design of their controllers falls short in this regard. Therefore, there is a need
to improve upon currently available control strategies, to help SCI patients function in
our unpredictable and three-dimensional world. The aim of this research is to design a
control strategy that allows the wearer of an exoskeleton to step over an obstacle. This
makes it possible for exoskeleton users to traverse doorsteps and uneven terrain and will
allow the exoskeleton to help its wearer to successfully navigate daily life.
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(a) BLEEX (b) Ekso

Figure 1.1.

1.1. Powered Exoskeletons for Spinal Cord Injury

There are several exoskeletons available on the market that are designed specifically with
people suffering from the effects of SCI in mind. An extensive overview of the state of
the art can be found in one of many outstanding review articles [4–6]. In this section,
we will consider the most relevant devices and create an overview of their capabilities,
see Table 1.1.

Most exoskeletons provide powered hip and knee flexion and extension using a pre-
recorded gait pattern. Ankle actuation is usually performed passively using a spring,
but the Indego is designed to work alongside a stand-alone ankle foot orthosis (AFO).
Joint angles are controlled using a PD controller. A major drawback of many of these
devices is that the wearer requires a stabilizing tool, such as crutches or a walker. More-
over, by using a pre-recorded gait trajectory, usage of the device is constrained to known
and controlled environments.

EKSO [7, 8] Ekso Bionics created the EKSO device for SCI patients, based on the
eLEGS platform. It is hard to find information of the current state of affairs the EKSO,
since the device is being produced commercially. The eLEGS platform, however, is well
documented. The exoskeleton supports powered flexion and extension of the hip and
knee, as well as spring powered actuation of the ankle in the sagittal plane. Wearing
the EKSO enables one to perform flat ground walking, sitting to to standing (STS)
transitions and making turns.

Indego [9] The Indego was developed at the Vanderbilt University and has since been
commercialized by Parker Hannifin Corp. Because of this, there are few sources covering
the Indego, but design and control of its predecessor, the Vanderbilt exoskeleton, is
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reported extensively in literature. It consists of actuated hip and knee joints that allow
flexion and extension. The ankle joint is meant to be actuated using a stand-alone
AFO. Balance is kept using forearm crutches. The exoskeleton enables walking, STS
transitions and stair ascent and descent. A PD controller enforces pre-defined joint
angle trajectories that have been recorded from a healthy user wearing the device.

Hybrid Assistive Limb (HAL) [10] The HAL is a commercially available exoskeleton
which is marketed by Cyberdyne Inc. for subjects with incomplete SCI or impaired
motor function. It provides powered support on the sagittal plane in the hip, knee and
ankle joints. HAL supports walking and STS transitions, but requires support in the
form of a walker or a parallel bar for balance. The hip and knee are actuated using a PD
controller, according to a gait pattern that was recorded from a healthy subject. The
ankle is actuated using a spring.

ReWalk [11] ReWalk is a commercially available exoskeleton designed to assist thoracic-
level SCI patients in activities of daily life. It includes powered hip and knee flexion and
extension and a spring-assisted ankle. The joint angles are controlled to follow a prede-
fined gait pattern. The device can perform straight-walking, STS transitions and stair
walking. Using the ReWalk requires a walking aid, such as crutches or a walker.

Mina [12] Mina has only two degrees of freedom on each leg: hip flexion/extension
and knee flexion/extenstion. The ankles are connected using a rigid joint, constraining
its movement. Crutches are needed to maintain balance. The actuators in the hips
and knees are controlled using a PD controller and prerecorded patterns obtained from
healthy subjects walking in the device. Because ankle movement is constrained in the
Mina, the recorded gait is similar to walking on a slippery surface

ATLAS [13] ATLAS is an orthosis designed for a child with quadriplegia, who cannot
control her torso. The device provides active actuation of the knee and hip in the
sagittal plane. The ankle is connected to the knee and hip using a cable, which results
in a synergetic action in the ankle joint. Ambulation is performed fully autonomous
by the exoskeleton, as the wearer only provides very high-level input, such as start-
stop signals. The system works in a walking frame to ensure stability. The impedance
controller uses prerecorded and then parametrized joint trajectories as reference, and
features variable stiffness according to the gait phase. In swing, stiffness is high in order
to follow the trajectory closely and in stance, the leg is more compliant to account for
any perturbations. The trajectory parameters, such as ground clearance or step length,
can be changed real-time, so that the system can adapt to the needs of the wearer.

MINDWALKER [14, 15] MINDWALKER separates itself from the others with its 5
degrees of freedom on each leg, of which three are actuated. Besides movement in the
sagittal plane, MINDWALKER also performs active hip ad- and abduction (HAA) and
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Flat Ground STS Stairs Turning
Ekso x x x x
Indego x x x
HAL x x
ReWalk x x x
Mina x
ATLAS x
MINDWALKER x

Table 1.1.: Exoskeletons designed for SCI patients and the tasks they reportly support.

allows passive rotation of the hip. Patients need crutches or a rail to walk with MIND-
WALKER. The device is impedance controlled around prerecorded patterns obtained
from able-bodied subjects in the sagittal plane. Wang et al. present a model-predictive
controller that generates trajectories for flat ground walking for the MINDWALKER.

1.2. Control Strategies for Obstacle Crossing

In this section, we provide an overview of possible control strategies for obstacle crossing
in exoskeletons. To the best of our knowledge, none of the exoskeletons shown in the
previous sections can perform the complex task of obstacle avoidance. Therefore, we
also draw inspiration from the nearby field of the bipedal robots.

One of the most popular strategies to control bipedal walkers, especially in the early
days, was to generate a joint trajectory at low frequency, which is then tracked using
a PD controller [5, 8, 10]. Exoskeletons mainly use trajectories recorded from healthy
subjects walking in the device as reference for the PD controllers, where humanoids
generally base their trajectories on an optimization function. A big advantage of this
scheme is that it requires very little computational power. However, because the refer-
ence patterns are fixed, these controllers generally lack the robustness to perform outside
a laboratory. Moreover, using a controller like this neglects any passive dynamics of the
system and may therefore by energetically very unfavorable. Finally, for a complex sce-
nario like obstacle avoidance, a single reference trajectory does not suffice, but a large
database is necessary or a method to modulate a standard pattern must be designed.

The neuromuscular controller (NMC) presented by Thatte and Geyer is based on very
basic muscle interactions in the human body [16]. They make use of a model that in-
cludes nine lower extremity muscles, which are all modeled using a simple model that
relates muscle force to its length, velocity and activation. Then reflex loops relating
the activation of a certain muscle to the other muscles are defined. The parameter set
defining these interactions is then optimized by minimizing the error in the landing leg
angle and the joint torques. The resulting system can generate joint trajectories that
resemble human walking without needing central processing. Using this method, they
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produce simulations of a bipedal walker traversing very rough terrain. This method
requires a lot of computation time to solve the initial optimization problem. After a
parameter set is found, joint torque trajectories are generated very quickly, which makes
it very promising as a control strategy for obstacle crossing. However, the method is not
endpoint related and thus does not guarantee avoidance of the obstacle. For this reason,
NMC is not regarded suitable for our application.

The generally accepted method to control bipedal robots is using an optimization based
scheme, through which they are able to perform very complex tasks, such as obstacle
crossing [17–22]. Optimization based controllers generally use a two tiered system. At
low frequency, the environment is scanned and processed to find optimal foot placement
targets a few steps ahead, taking into account changes in step length, velocity and di-
rection. Then for each step, a trajectory generator is called that computes the most
advantageous trajectory that ends in the given end position of the swing foot. This is
done by minimizing a cost function that weighs energy expenditure over performance.
Then for every step, the solution space is scanned for the trajectory with the minimal
cost. An advantage of this method is that it finds the best possible trajectory, which
may increase performance. However, optimization is computationally speaking very ex-
pensive.
Most of the controllers shown generate motion patterns once per step and track these
using a PD controller. The advantage of this is that the computationally expensive task
of trajectory optimization can be performed at a low frequency. However, by designing
a trajectory for the entire step and tracking this, we become vulnerable to errors in the
case that the environment changes. For laboratory settings, where the environment is
relatively controlled, such a method suffices. For use outside, especially when we are
continuously gathering new intelligence about the surroundings of the walker through a
machine vision algorithm, we need to be able to adapt the trajectory during a step.
In model predictive control (MPC) the current state of a system is used with a model to
predict the future behavior of the system within a finite horizon. Using this information,
control action is determined using an optimization scheme. At every time step, the op-
timization is re-iterated to account for changes in the environment and tracking errors.
Model predictive control has been applied in both humanoid robots and exoskeletons.
An advantage of MPC is that it explicitly handles constraints in the optimization step.
Moreover,it makes explicit use of the dynamic model of the system. As a result, the
performance of the controller is directly dependent on the quality of the model. Because
the MPC continually updates its trajectory, it is very robust to changes in the environ-
ment. The main obstacle in MPC is long computation times, but the advent of faster
processors makes this less of a problem than before.
Wang et al present a MPC tailored for the LOPES exoskeleton that generates swing
leg trajectories [15]. In this paper, a strategy that needs only basic gait descriptors,
such as step length and swing duration as input is shown to be successful for normal
walking. In this research, the swing leg trajectory is designed. This may be suitable
for treadmill-based exoskeletons, but for a standalone device, we expect that a stance
leg strategy is required. Therefore, this method should be extended to incorporate both
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stance and swing legs for it to be feasible for obstacle crossing.
Work done by Kalamian et al. shows an obstacle crossing strategy for a five DOF bipedal
robot, based on a non-linear MPC. In contrast to other methods, they not only minimize
energy consumption, but maximize the average velocity of the center of mass (COM).
The internal model used for the optimization is collection of multilayered perceptron
neural networks, one for the joint angle and one for the angular velocity of each joint.
The models are trained offline using data collected from the robot. The method controls
both single and double support phases and allows the robot to cross over an obstacle
that is 40cm tall and 15cm long.
Taking all observations in this section into consideration, we conclude that model pre-
dictive control is the most promising strategy to perform obstacle crossing with an
exoskeleton.

1.3. Research Goal

The aim of this research is to design an MPC that generates a movement trajectory
that allows the wearer of an exoskeleton to step over an obstacle. Because of the high
dimensionality of the system, we look at non-linear MPC’s (NMPC). We assume that
the wearer of the fully paraplegic, so that the system of the exoskeleton and the human
behaves like a bipedal walker. The NMPC contol scheme is applied to a model of the
most common device, which is a lower limb exoskeleton with actuated hips and knees.
The bipedal walker is able to react to its surroundings by taking input in the form of a
height map of the ground in the sagittal plane. For implementation of the device, this is
the output of a machine vision algorithm, but in this research we assume that the height
map is fully known. We investigate a selection rectangular obstacles with heights and
lengths ranging up to 0.3m, which is about 30% of the leg length. The performance of
the NMPC is validated by feeding the designed torque trajectories to simulations of the
real-time behavior of the system. The results of the dynamical simulation are sent back
to the NMPC to form a feedback loop. One of the great advantages of the NMPC control
scheme is its versatility. Since it makes no use of predefined reference trajectories, we
can cover a wide range of walking scenarios with a single control scheme. This research
provides a proof of concept for the NMPC scheme as a control method for unstructured
terrain and is a first step towards implementation on a real device.

1.3.1. Model

The model used in this research is based largely on the system presented in a tutorial
written by Matthew Kelly and shown in Figure 1.2 [23].
We model the system of the human and exoskeleton as a multi-joint rigid body system.
A rigid body does not deform. As a result, the moment of inertia of the limbs around
its center of mass is constant. The human and exoskeleton are assumed to be attached
rigidly, so that the human leg and the exoskeleton can be treated as a single rigid body.
Interaction between the human and exoskeleton is taken into account in the joint torques.
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Figure 1.2.: The dynamical model as described by Matthew Kelly [23].

The head, arms and trunk (HAT) are modeled as a single rigid body.
For simplicity, only movement in the sagittal plane is taken into account. The swing and
stance legs and the trunk are assumed to meet in the same point in the sagittal plane.
The model thus consists of five rigid bodies: the lower stance leg, the upper stance leg,
the HAT, the upper swing leg and the lower swing leg. The feet are not modeled. We
consider only the single support phase of gait. The stance foot remains in the same
position on the ground and does not slip. The joints are assumed to be frictionless and
have no stiffness. Parameters, such as the position of the center of mass of the rigid
bodies and their moments of inertia, are determined using a model of the average human
body. They are gathered in a table in Appendix A.
As a result of these modeling simplifications, the model has five degrees of freedom,
which are represented by the angles between the longitudinal axes of the bodies and
the upwards direction, see Figure 1.2b. They are gathered in the state vector q =[
q1 q2 q3 q4 q5

]T
. The kinematics of the system provide the joint positions P =[

P1 P2 P3 P4 P5

]T
as a function of the state q. The input of the system is given

by the joint torques, which are written in the control vector u =
[
u1 u2 u3 u4 u5

]T
.

The ankle torque u1, see Figure 1.2a, is written here for completeness, but since the
bipedal walker can only provide hip and knee torque, u1 is constrained to remain zero.
The dynamics of rigid bodies can be described by a second order non-linear differential
equation, as is shown in Appendix B.1, and are given in their most general form as:

M(q)q̈ = F(q, q̇,u), (1.1)

where M is the inertia matrix and F contains all forces working on the system.

1.3.2. Control Task

Given the assumptions in the previous section, we define the objective and constraints
for the NMPC.

Objective The goal of the research is to design a motion trajectory that is presented to
a human. For optimal intuitive cooperation between the exoskeleton and the wearer, the

7



exoskeleton should mimic human walking. It has been hypothesized that humans have,
through evolution, specialized physiologically and anatomically for endurance running,
which is characterized by a minimal energy expenditure [24]. Therefore, we assume
that anthropomorphic motion trajectories can be generated by minimizing the cost of
transport (CoT).

C1 Dynamics: The joint and torque trajectories should match with the dynamics of
the system.

C2 Joint Constraints: The biomechanical joint constraints of the human must not be
violated. The human body is limited in its range of motion and applied velocities and
torques. Violating these constraints may lead to injury to the wearer.

C3 Balance: The bipedal walker must maintain dynamic balance, which in this context
is defined as the ability of the system to recover to a stable position. Dynamic balance
is necessary to avoid tripping, which may lead to damage to the exoskeleton and injury
to the wearer.

C4 Obstacle Crossing: The bipedal walker must not make contact with the obstacle.
Contact with the object may lead to damage to the object or exoskeleton, injury to the
wearer, or loss of balance.

C5 Velocity: The bipedal walker must maintain forward velocity.
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2. Methods

The goal of trajectory optimization is to find an optimal trajectory that performs a
certain task, while satisfying a collection of conditions. The optimal trajectory is defined
mathematically as the minimum of an objective function, which is a function of state
and control variables. The optimization problem can be written in standard form as:

min
z
J(z) subject to

f(z) = 0

g(z) ≤ 0

zlow ≤ z ≤ zupp

(2.1)

Here, z is called the decision variable, which is what the optimizer adjusts in order to
find a minimum of the objective function J(z). The decision variable usually contains
the evolution of the state and control variables over time. The optimization may be
subject to an equality constraint f(z), an inequality constraint g(z) and bounds zlow
and zupp.
Because of the high dimensionality and non-linearity of the model and control task, it
is not feasible to solve the optimization problem analytically. Therefore, we solve the
optimization problem using a numerical method. We reduce the non-linear optimization
problem to a system of a discrete number of equations called a non-linear program
(NLP), which is solved using a commercially available solver. In our case, we use the
built-in MATLAB function fmincon, where the underlying method is set to be an interior
point algorithm.

2.1. Numerical Methods for Trajectory Optimization

In this section, we create a small overview of the numerical methods available for trajec-
tory optimization. There are three general approaches to numerical solving of optimal
control problems: Dynamic Programming, indirect methods and direct methods [25].
Dynamic Programming concerns itself with finding an optimal policy. In contrast to an
optimal trajectory, an optimal policy provides the optimal control law for every point
in the state space. A big advantage of Dynamic Programming is that once the optimal
policy has been derived, it can be applied to a real system directly. Moreover, it will
always find the global optimum, because it considers the entire state space. However,
the computational cost of deriving an optimal policy scales exponentially with the di-
mension of the problem. Therefore, the method is especially relevant for low dimensional
systems. The system we are considering in this research is very high-dimensional, which
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makes Dynamic Programming unsuitable.
In an indirect method, the optimal control problem is solved by rewriting the necessary
conditions for optimality to a boundary value problem in ordinary differential equa-
tions [26]. This boundary value problem is then discretized and solved numerically. A
drawback of indirect methods is that the conditions for optimality must be known ana-
lytically in order to construct the boundary value problem. For a system of the size and
complexity that we are considering, an indirect method is therefore less suitable than a
direct method.
Direct methods make a parametrization of the control trajectory. The optimality crite-
rion and the constraint are then written in terms of these parameters, creating a finite
dimensional NLP. This can then be solved using a commercially available solver. An
advantage of direct methods compared to indirect methods is that inequality constraints
are implemented much easier [25]. Taking these considerations into account, we have
decided to solve the optimization problem using a direct method.

All direct methods are based on a parametrization of the control trajectory. However,
there are different optimization strategies that can be classified by how they treat the
state trajectory. In general, we consider two types: sequential methods and simulta-
neous methods. Single shooting is a popular sequential method and regards the state
trajectory as a function of the control trajectory, along with an initial state. In every
iteration of the NLP solver, the state trajectory can be found with the help of a sim-
ulation, using an ODE solver with the control trajectory as input. This is then tested
against any constraints, after which a new iteration starts. Thus, the control and state
trajectory are determined in sequence. In contrast, simultaneous methods keep both
the control and state trajectories in the decision variables. Their relationship, which is
determined by the dynamics of the system, is implemented in the NLP using equality
constraints. One of the most popular simultaneous methods is direct collocation.
Shooting methods are advantageous when dealing with simple systems with few con-
straints. For larger systems or non-linear constraints, the relationship between the con-
trol trajectory and the constraint violation is often hard to determine, which can make
it hard for the solver to converge. Especially a constraint which is active along the entire
state trajectory is hard to implement, because the evolution of the state variables is not
part of the decision variable, like it is using direct collocation.
By considering both the control and state trajectories as decision variables in direct
collocation, we drastically increase the size of the NLP, compared to if only the control
was taken into account. However, we also add equally many equality constraints for the
dynamics. This results in a larger NLP, but it is mostly sparse. Commercial solvers
have built-in algorithms to efficiently deal with sparse optimization problems [25].
An advantage of sequential methods is that they always result in dynamically feasible
solutions, even if the NLP solver has not reached the optimum yet. In contrast, in a col-
location method, the NLP solver first has to converge so that the dynamics constraints
are satisfied.
Both shooting methods and collocation methods a guess trajectory to start the opti-
mization process. A perk of collocation methods is that they offer the option to describe
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this guess in terms of the state trajectory. In general, there is more information on the
expected state trajectory than there is on the control trajectory.

The problem we consider in this research is relatively large, non-linear and contains
bounds on the state trajectories. Taking the considerations given above into account, we
can conclude that direct collocation is the superior solution for this problem. Moreover,
it is been proven to be feasible for use in real time in a similar engineering problem [27].
Pardo et al. present an algorithm that uses direct collocation to generate motion pat-
terns for a four-legged robot. Therefore, we decide to make use of a direct collocation
scheme to solve the optimization problem.

2.2. Trajectory Optimizer for a Single Step

2.2.1. Setting Up the Non-Linear Program

In direct collocation, the trajectory optimization problem is discretized, so that it can
be converted to an NLP. In order to do this, we define a grid of N time instances, called
the collocation points. All continuous trajectories are then represented by their values
at the collocation points:

t→ t0...tk...tN

q → q0...qk...qN
q̇ → q̇0...q̇k...q̇N
u→ u0...uk...uN

(2.2)

The non-linear continuous-time behavior of the system is approximated with polynomial
splines, which are fitted through these collocation points. At every time instance, we
have to consider five angles, five angular velocities and five torques. Therefore, the NLP
has been reduced to a set of 15N decision variables. These are collected in the vector
z, which is the argument of the objective function J(z). The optimization problem is
solved by minimizing J(z), while making sure that z adheres to the constraints.

Objective As stated, the objective of the optimizer is to minimize the CoT, which is
generally expressed as the amount of work delivered to the system per distance traveled,
or the time integral of the absolute value of the energy delivered. The NLP solver
makes use of the gradient of the objective function to find the optimum. This creates a
problem, because the gradient of the absolute value function is not defined everywhere
on the domain, which may cause problem in convergence of the NLP. Therefore, we
define the objective function as the integral of squared torques:

J =
5∑

i=1

(∫ T

0

u2i (τ)dτ

)
. (2.3)

The integral term in this function must be described in terms of the collocation points.
This is done using the trapezoidal quadrature, in which we approximate the continuous-
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time argument f(τ) of an integral with a linear function between tk and tk+1, see Figure
2.1. The integral of the function then equals the area under a straight line, which is
given by: ∫ tk+1

tk

f(τ)dτ ≈ 1

2
(tk+1 − tk)(fk + fk+1), (2.4)

where fk equals f(tk). We do this for all N − 1 segments and add them to find:∫ T

0

f(τ)dτ ≈
N−1∑
k=0

1

2
(tk+1 − tk)(fk + fk+1). (2.5)

Combining 2.5 with 2.3 results in the following expression for the objective function:

J(z) ≈
5∑

i=1

N−1∑
k=0

1

2
(tk+1 − tk)(u2i,k + u2i,k+1). (2.6)

Figure 2.1.: The trapezoidal quadrature. A continuous function f(t) shown in blue is
approximated by a linear spline between the points a and b, shown in red.
The integral from a to b of the function is then 1

2
(b−a)(f(a) + f(b)). Image

from Wikipedia

C1 Dynamics: A key feature of direct collocation is that it finds both the state and
control variables, while the dynamics are implemented as a constraint. For every pair of
neighboring collocation points tk and tk+1, the continuous-time dynamics of the system
can be described as:

xk+1 = xk +

∫ tk+1

tk

ẋ(t)dt, (2.7)

where x is the state of the system, which is in our case:

xk =

[
qk
q̇k

]
, so that ẋk =

[
q̇k
q̈k

]
(2.8)
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The angular accelerations at the collocation points are given as a function of the state
and control variables in Equation B.14, which is discretized as:

q̈k = (Mk)−1Fk, (2.9)

where Mk is the inertia matrix and Fk contains the sum of all forces working on the
system. They are defined as:

Mk = M(qk),

Fk = F(qk, q̇k,uk).
(2.10)

We again use the trapezoidal quadrature:∫ tk+1

tk

ẋ(t)dt ≈ 1

2
(tk+1 − tk)(ẋk + ẋk+1). (2.11)

The dynamics constraint is enforced by requiring that for all N − 1 pairs of neighboring
collocation points, the following is true:

xk+1 = xk +
1

2
(tk+1 − tk)(ẋk + ẋk+1), (2.12)

C2 Joint Constraints: The human body is limited in its range of motion and applied
velocities and torques. Therefore, we set bounds on the state and control variables:

qmin ≤ q ≤ qmax,

q̇min ≤ q̇ ≤ q̇max,

umin ≤ u ≤ umax,

(2.13)

where qmin = −π rad, qmax = π rad, q̇min = −10 rad/s and q̇max = 10 rad/s for every
segment and umin = −100 N and umax = 100 N for every control torque, except for u1,
which is constrained to remain zero at all times. A path constraint is added to the knee
joints, to prevent overstretching of the knees. The maximum knee angle for both the
swing and stance leg is constrained to 5 degrees.

C3 Balance: The exoskeleton must maintain dynamic balance, which in this context
is defined as the ability of the system to recover to a stable position. By this definition,
if the trajectory results in a state that is in dynamic balance, the walker is in dynamic
balance along the entire trajectory. Therefore, balance control is implemented by con-
straining the final state of the trajectory x(tF ).
We implement heel strike, the event when the swing foot strikes the ground and becomes
the new stance foot, based on impulsive collision, as is derived by Kelly [23]. Working
from a principal of conservation of angular momentum, we find a function relating the
state of the system before and after heel strike. It is important to note that in order to
determine heel strike, the time mesh must include both t0 and tF . Balance is maintained
by constraining the final state of the bipedal walker’s trajectory after heel strike to a
state for which it has been proven that a next step is feasible. This final state is found
in a database that contains periodic patterns for flat ground walking, the derivation of
which is explained in section 3.1.
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C4 Obstacle Crossing: The exoskeleton must not make contact with the obstacle.
Ground clearance is performed by an inequality constraint on the height of the endpoint
position P5,height, as well as on both knee positions:

P5,height > G5 (Swing foot)

P4,height > G4 (Swing knee)

P1,height > G1 (Stance knee)

(2.14)

The function Gi is the height of the floor at the point Pi, which is given as input to the
trajectory optimization algorithm through the height map of the environment.

C5 Velocity: The exoskeleton must maintain forward velocity. This is performed by
constraining the final endpoint position P5,length to a desired step length:

P5,length(tF ) = step lengthdes (2.15)

The final state constraint for C3 must have a distance between the feet to the step length
in order to satisfy both constraints.

2.2.2. Convergence of the Non-Linear Program

The interior point algorithm used to solve the NLP is based on the gradients of the
objective function and constraints. Therefore, the solver will only converge to the global
minimum if both the objective function and the constraint manifold are convex. A func-
tion is convex if the line segment between any two points on the graph of the function
lies above the function. Similarly, a manifold is convex if the line segment between any
two points on the manifold lies inside the manifold. If either the objective or constraints
are non-convex, the optimizer may get stuck in a local minimum.
The NLP constructed in the previous section is non-convex, because the dynamics are
defined by a highly non-linear function. Moreover, the position of the endpoint is given
by a non-convex function in the decision variables, so that the clearance constraint be-
comes non-convex. Therefore, the NLP will only converge to the global minimum if the
initial guess lies within the region of attraction. The region of attraction is the set of
initial guesses for which the gradient based method does converge to the global opti-
mum, even though the NLP is not convex. Because the dimensionality of the problem
is very high, this region is hard to determine. Methods for solving non-convex optimiza-
tion problems have been heavily researched for the past few decades [26, 28]. In this
research, we apply one such method, called sequential convex programming (SCP). The
key element of this method is that the non-convex NLP is approximated using a sim-
plified problem, by relaxing or removing non-convex constraints or approximating the
constraint manifold with a series of convex manifolds. Then, the solution to the simpli-
fied problem is used as the initial guess for the complexer problem. We implement this
method removing the clearance constraints and see that the solution actually adheres
to flat ground clearance constraint, see Figure 2.2. From this, we can conclude that this
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solution is also the optimum for the flat ground problem with clearance constraints. If
there is an obstacle, the found solution will violate the clearance constraint, so it is not
a solution to the full problem. However, we assume that the flat ground solution lies in
the region of attraction, so we use this trajectory as the initial guess for the solver.

Figure 2.2.: The endpoint trajectory for the NLP when clearance constraints are removed

2.2.3. Interpolation

The trajectory optimizer finds the optimal solution in the collocation points. To ob-
tain a continuous-time solution, the state and control variables are be interpolated. In
doing so, it is important that the interpolation scheme corresponds with the colloca-
tion scheme. We applied the trapezoidal quadrature to approximate the integral action
in the objective and the dynamics. We assumed that the argument u of the integral
in the objective function was a linear function between two collocation points. After
finding the solution for u using the direct collocation method, we interpolate between
the collocation points using a linear spline. By using the trapezoidal quadrature in the
dynamics, the NMPC assumes that the derivative of the state is linear between the col-
location points, see Equation 2.11. Therefore, the state variables must be interpolated
using a quadratic function. A more detailed description of the interpolation process can
be found in the tutorial by Kelly [23].

2.2.4. Smart Meshing

The solution of the trajectory optimizer is only guaranteed to meet the constraints at the
collocation points. The continuous-time function does not necessarily adhere to the con-
straints. It may occur, for instance, that the optimizer produces an endpoint trajectory
that does not penetrate the object at the collocation points, but tunnels through it be-
tween two points. This issue is resolves by applying smart meshing. After interpolation,
the continuous-time solution is checked against the constraints. If an interpolated spline
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segment is found to violate the constraints, a finer mesh of collocation points is applied
to that segment and the optimizer is run again. This process is performed iteratively
until the interpolated trajectory adheres to the constraints. The interpolated trajectory
will always have a larger constraint violation than the collocation points. Therefore, we
implement a buffer zone around all constraints, ie the buffer for the obstacle crossing
constraint shown in Figure 2.3.

Figure 2.3.: The collocation points must lie outside the buffer, but the interpolated
splines may penetrate it.

2.3. Simulated Real-time Control

The behavior of the NMPC is validated by sending the control torque trajectories found
by the trajectory optimizer to a simulation of the system dynamics. This simulation
is performed in MATLAB using the ODE45 function. The trajectory optimizer ap-
proximates the continuous time dynamics of the system by interpolating between the
collocation points. As a result of this approximation, the motion profile obtained by
applying the control torques to the system will deviate from the predicted trajectory.
To make sure that the real-time motion trajectory adheres to all constraints, we need
to make use of feedback control. At every discrete time step, the current state of the
system is fed back to the trajectory optimizer. The optimizer then updates the pre-
dicted control trajectory accordingly, for a discrete time period in the future, called the
prediction horizon. Standard MPC algorithms use a fixed horizon, creating a sliding
window. The algorithm presented here uses a dynamic horizon, which always stretches
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from the current time to the predicted time of heelstrike, which can be thought of as
closing window control.
When updating the predicted trajectories, the previous solution to the NLP is used as
initial guess. If the deviation from the original trajectory is small, the optimization
problem changes very little, so that we can assume that the guess lies close to the local
optimum. This way, the solver is expected to converge to it quickly, so that generating
updates to the trajectory is computationally inexpensive.

2.4. Step Sequence for Obstacle Crossing

The trajectory optimizer receives input about the obstacle through the height map of
the area. The initial state of the trajectory results directly from the trajectory of a
previous step. The only input required from the user is the step length and the step
time. In this section, we derive a strategy to make the system work fully autonomously.
First, we investigate the relationship between the optimal step time and the step length,
so that we can define a function that provides the step time for a given step length.
We do this by applying the trajectory optimizer to a flat ground scenario and finding a
periodic pattern, such as described in section 3.1. We do this for a large range of step
lengths and step times and record the corresponding CoT. For every step length, we can
then find the step time for which the CoT is minimal, and fit a function through these
points.
A typical obstacle crossing strategy entails a sequence of multiple steps. Starting from
stable flat ground walking, the bipedal walker must first make an approach step to
position the foot in front of the object. Then the front leg crosses the obstacle, followed
by the back leg. The walker has now crossed the obstacle and must make a final recovery
step to return to flat ground walking.
The only variable left to decide to design a strategy for obstacle avoidance is the step
length of every step. We use the trajectory optimizer to find the optimal step length of
all steps in the sequence. We extend the example problem to include an approach step.
Therefore, we place the object at a distance of 0.8m. The rest of the problem remains
the same.
We apply the trajectory optimizer sequences with varying step lengths of the approach
step, front leg crossing and back leg crossing. Because of the way we implemented balance
in this algorithm, the final state of the back leg crossing step is already present in flat
ground walking, so that a recovery step is not necessary. The trajectory optimizer finds
the optimal trajectory for the approach step, then performs the heel strike algorithm
and uses the resulting state as initial conditions for the front leg crossing, which then
leads to back leg crossing. We measure the cost of every step sequence. The optimal
step length sequence is when this cost is minimal. We apply this method to a variation
of objects in order to define the range of objects that the biped can cross.
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3. Simulation Results

Using the equations described in the previous section, a MATLAB program is con-
structed that takes the following parameters as input:

• Object

– H = Height of object

– L = Length of object

– D = Distance between stance foot and object

• Configuration of the bipedal Walker

– x0 = Initial state

– xF = Final state

– tF = Final time

– P5,F = Step length

• Mesh Settings

– nGrid = Number of grid points

– S = Type of Spacing of Collocation Points

3.1. Trajectory Optimizer for a Single Step

Flat Ground We assume that an anthropomorphic walking pattern is symmetric and
periodic, meaning that there is no difference between the left and the right leg motion
pattern. Moreover, every step follows the same motion profile. We generate walking
patterns for symmetric walking using the trajectory optimizer described in the previous
chapter. For periodic and symmetric walking, the final state of the trajectory after heel
strike must be equal to the initial state. Using this extra constraint and a mesh of 10
evenly spaced points, we generate a motion pattern for flat ground walking, see Figure
3.1. This figure shows a stop-action animation of the step, with frames spaced uniformly
in time. The red dashed lines represent the stance leg and the blue solid lines represent
the swing leg. The purple line reprsents the torso.
This simulation is run for a large range of step lengths and step times. This serves
a triple purpose. First, through this method we find the energetically optimal step
length and step time for the bipedal walker. Second, the final configurations found for
symmetric walking are guaranteed to be in balance, because the motion is sustaining.
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These configurations are therefore saved in a database to serve as the balance constraint
for any following simulations. Finally, the motion trajectories are saved to a database
to serve as initial guesses for the trajectory optimizer.

Figure 3.1.: A motion trajectory for flat ground walking.

Slope Walking A major advantage of the NMPC scheme is its versatility. To illustrate
this, we also generate motion trajectories for slope walking. To do this, we change the
ground trajectory to a constant slope and let the optimizer find a periodic and symmetric
pattern. Motion trajectories are shown in Figure 3.2.

3.1.1. Example Problem

We investigate the behavior of the trajectory optimizer for an example problem. We
place an object with a length and width of 25 cm in front of the bipedal walker at
a distance of 20 cm from the stance foot. The initial and final state of the walker are
constrained to the configurations shown in Figure 3.3. These configurations are the result
of previous simulations, for which it has been shown that they adhere to the balance
constraint C3. The step time is set to 1.3 s and the step length to 60 cm. This step
time was proven empirically to give the the highest possible average COM velocity. We
use a mesh with 10 collocation points, which are evenly spaced in time. The optimizer
must be fed with an initial guess for the decision variables, for which we use the solution
found for flat ground walking with the same step length.

The joint angles, angular velocities and torques corresponding to the trajectory are
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Figure 3.2.: (a) A motion trajectory for walking down a slope (b) A motion trajectory
for walking up a slope.

(a) Initial configuration (b) Final configuration

Figure 3.3.: The goal of the simulation is to find a trajectory that moves the bipedal
walker between the configuration in (a) to the configuration in (b).

(a) Segment angles (b) Segment angular velocities (c) Joint torques

Figure 3.4.: Angles, velocities and torques of the solution of the optimization probelem,
including bounds. The maximum velocity is 10 rad/s and the maximum
torque is 100 N. Both are out of bounds of the figure.
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(a) Before smart meshing (b) After smart meshing

Figure 3.5.: Endpoint trajectories before and after smart meshing.

shown in Figure 3.4. As expected, all joint constraints are satisfied in the collocation
points, see Figure 3.4.

Smart Meshing

The trajectory of the endpoint is shown in Figure 3.5a. At the collocation points, the
obstacle crossing constraint is satisfied, but the interpolated trajectory tunnels through
the object. This issue is resolved by applying smart meshing. An extra collocation
point is added in the segment that penetrates the object. This results in the updated
trajectory shown in Figure 3.5b.
Figure 3.6 shows the error in the dynamics of the interpolated trajectory for the example
problem, when a uniform mesh of five points is used, before and after smart meshing is
applied. The error in the dynamics is given as the difference between the time derivative
of the interpolated trajectory, ẋ, and the output of the dynamics function. At the
collocation points, the error is (almost) zero, because this is enforced by the dynamics
constraint in the NLP. By implementing smart meshing on the third segment, the error
in the dynamics between collocation points is decreased.

Influence of Mesh

We investigate the influence of the chosen mesh on the solution. We vary the number
of points in the mesh and record the computation time of the optimizer and the qual-
ity of the solution, which is defined by the cross-correlation with the global optimum.
Figure 3.7 shows the cross-correlation of the solution with the global optimum and the
associated cost for meshes ranging from 2 to 30 grid points when applied to the example
problem. As expected, a denser mesh results in a more accurate and efficient solution.
The time necessary to run the NMPC is directly related to the number of grid points,
see Figure 3.8. This figure is obtained by running the example problem, which produces
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(a) Error in q̇ before smart meshing (b) Error in q̈ before smart meshing

(c) Error in q̇ after smart meshing (d) Error in q̈ after smart meshing

Figure 3.6.: The error in the dynamics for the example problem when a uniform mesh
of five points is used, before and after smart meshing is applied.
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(a) (b)

Figure 3.7.: The resemblance (a) and the associated cost (b) for meshes ranging from 2
to 30 grid points when applied to the example problem.

a trajectory of 1.3 seconds, for meshes ranging from 2 to 30 grid points. The time shown
is the time necessary for the NLP solver to find the local optimum of the function. The
program can therefore easily be made faster by reducing the number of grid points, which
is relevant if the method is to be applied in a real-time situation. However, as seen in
Figure 3.7, this will also decrease the accuracy of the solution. Selection of the optimal
mesh density is therefore a matter of weighing the requirements in terms of accuracy
and computation time. Both accuracy and cost stagnate after around 10 grid points, so
this mesh is assumed to be sufficiently dense and is used in all further simulations.
The trajectory optimizer is designed for use in an NMPC, which updates the trajectory
with the control rate. This means that collocation points that are later in time get
treated much more extensively than those close to the current time. Since the execution
time depends on the number of grid points, it is beneficial to reduce this number. This
can be done by implementing a mesh of collocation points that is denser in the beginning
than in the end. We run a simulation of the example problem for two different meshes:
the blue line represent a mesh that is uniformly spaced and the red line a mesh for which
the distance between points changes quadratically. Both meshes are initialized with the
same guess. Figure 3.8 shows that the spacing of the grid points does not significantly
influence the execution time of the optimizer.

3.2. Simulated Real-time Control

Real-time control is simulated using the MATLAB built-in function ODE45. At every
discrete time step, the trajectory optimizer generates control torques for the prediction
horizon, which ranges up to heel strike. The ODE45 solver uses the predicted control
trajectory alongside the current state of the system to simulate the response of the sys-
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Figure 3.8.: The execution time of the optimizer for two different meshes as a function
of the grid size.

tem to the control torque up to the next time step. Then the state is measured and fed
back to the optimizer. This method is applied to the example problem presented in the
previous section, using a control rate of 1.3/6 seconds, which corresponds to a time step
of 0.1s. Figure 3.9 shows the endpoint trajectory in the sagittal plane at every time step.
Here, the brown line represents the floor. The yellow is the previous optimizer prediction
of the endpoint trajectory, whereas the black line shows the actual output of the system.
The current position is marked with a big black circle. The orange trajectory shows the
updated prediction corresponding to the current position.
The final motion trajectory is checked against all constraints to see if the real-time con-
troller was successful. The maximum allowed constraint violation is set equal to the size
of the constraint buffer, so that we are sure that the real-time trajectory adheres to the
real constraints of the system. Figure 3.10 shows the maximum constraint violation for
different control rates when the real-time controller is applied to the example problem.
The maximum allowed constraint violation is shown in the thin blue line. For con-
trol rates under 0.02s, the constraint violation remains below the constraint tolerance.
Therefore, we can conclude that the minimal control rate for the example problem is
0.02s or a frequency of 50Hz.

3.3. Step Sequence for Obstacle Crossing

For every step length, we plot the cost of transport, see Figure 3.12a. In this figure,
every line represents a constant step time. We connect the minima for every step length
to find the optimal step length, which is at 0.32m and 1.4 seconds. We plot the step
time corresponding to the best solution for every step length in Figure 3.12b. We find
a linear relationship between the step length and its optimal step time. This function
is then used to design a foot placement strategy for a step sequence. We solve the NLP
for a variation of step sequences. The step length of the approach step varies so that
the end position ranges from 30 to 0 cm in front of the obstacle. The length of the front
leg crossing step ranges so that the endpoint lies from 0 to 30 cm behind the obstacle.
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(a) (b)

(c) (d)

(e)

(f)

Figure 3.9.: the endpoint trajectory in the sagittal plane at every time step, when a
control rate of 0.216 seconds is applied.
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Figure 3.10.: The constraint violation of the real-time trajectory for different control
rates.

The back leg crossing step length varies from 42 to 70 cm. We find the optimal solution
where the foot is placed 22 cm in front of the obstacle, then 5 cm behind the obstacle
and then 42 cm further. Figure 3.13 shows stop action animations for this sequence.

A simulation of real-time control is performed for this optimal solution. In contrast
to the example problem presented in the previous section, the real-time controller fails
to generate a motion trajectory that adheres to the constraints for this scenario, even for
a very high control frequency. When a longer step time is enforced, the solution of the
trajectory optimizer brings the stance knee very close to full extension. Hyperextension
of the knee is not dealt with in the dynamics function, but is only inhibited by the
joint constraints of the trajectory optimizer. Even though the smart meshing algorithm
makes sure that the interpolated knee angle trajectory does not violate the constraint,
the real-time trajectory can deviate from the optimal solution in such a way that the
knee hyperextends. Moreover, the fully extended position is and unstable equilibrium,
so that the further the knee overstretches, the more force is necessary to bring it back
to a feasible position. The model predictive controller cannot correct for this, causing
the real-time simulation to fail.
The step sequence algorithm is applied to objects ranging from 5cm to 50 cm in length
and height. Figure 3.11 shows the range of objects for which the algorithm finds a
solution. Green dots represent objects for which at least one step sequence has been
found. Red crosses represent objects for which none of the combinations of step lengths
produced a feasible solution. The trajectory for a certain object is also feasible for any
smaller object, which is represented by the green rectangles. Similarly, if the optimizer
cannot find a solution for an object, it will also fail for any larger objects, which is shown
using the red squares.
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Figure 3.11.: The range of objects for which the step sequence algorithm finds a solution.

(a) (b)

Figure 3.12.: The cost of transport and optimal step time for different step lengths in a
flat ground walking scenario.

(a) Approach (b) Front leg crossing (c) Back leg crossing

Figure 3.13.: A stop action animation of the optimal sequence for the example problem
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4. Discussion

The aim of this research is to design a NMPC that generates a movement trajectory that
allows the wearer of an exoskeleton to step over an obstacle. In this thesis, we present
a control strategy based on a direct collocation scheme. The NMPC scheme has been
implemented in MATLAB. We generate motion patterns that agree with the constraints
given in Section 1.3, which are tracked and updated using a feedback loop in a simu-
lation of real-time behavior. The method successfully makes the bipedal walker step
over an obstacle, thus providing proof of concept for NMPC for obstacle avoidance. The
trajectory optimizer is used to design a strategy to make the bipedal walker navigate its
environment fully autonomously. In addition to crossing over obstacles, the versatility
of the method is illustrated by applying it to slope walking as well.
The results of our research are comparable to the work presented by Kalamian et al. [29].
We have designed a controller that can step over obstacles up to 35cm in height, where
they manage to cross over an obstacle of 40cm. Even though the methods are com-
parable, there are a few differences. First and foremost, the method presented in this
work allows the bipedal walker to traverse the obstacle while maintaining COM velocity
throughout the entire sequence. The strategy presented by Kalamian et al. requires the
walker to come to a full stop in front of the obstacle before crossing over it.
Kalamian et al. implements a balance using the zero moment point, along the entire
trajectory, where we only impose it on the final state. Path constraints are computation-
ally less efficient than equality constraints, which means that our method is potentially
faster. However, Kalamian et al. do not present any data on the control rate of their
controller. In contrast, using a neural network instead of numerically solving the dynam-
ics equation probably makes their method faster. A big advantage of using this model
compared to the neural network (NN) is that our dynamical model is easily changed in
order for the method to be applied to a different system. When the system on which
the controller is used changes, the NN has to be retrained, which is unfavorable.

Balance control Balance control was implemented using a final state that was drawn
from a database that contained trajectories for flat ground walking. This implementa-
tion of balance control is overly constrictive, because the full final state is constrained,
whereas there is a family of solutions that are in balance. A different balance protocol
was tested using the extrapolated Center of Mass (xCOM), but this did not guarantee
final configurations from which the bipedal walker was able to recover. This is because
the walker tended to use very large deviations in the torso angle to change its xCOM.
This way, the balance constraint was kept, but the walker was not able to recover to
symmetric walking from the final position. We can conclude that the xCOM constraint
on the final state is not sufficient to ensure dynamic balance. The method could be
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extended by constraining the torso angle further or by implementing an additional con-
straint that makes sure the walker remains upright. The vertical position of the COM
can be constrained to remain above a certain threshold. Another solution is to use an
altogether different balance metric, such as the angular momentum of the COM. It has
been shown that this is very stable during normal walking in humans and may therefore
be a valid option for a balance metric [30].

Velocity control The velocity of the bipedal walker is controlled by constraining the
endpoint position at the final time to a certain step length. In section 3.3, we find
that the optimal combination of step length and time for flat ground walking found by
the trajectory optimizer is 0.32 cm and 1.4 s. This is equivalent to an average COM
velocity of 0.23 ms−1. The method favors trajectories in which the walker fully extends
the stance leg and then lets the swing leg swing freely towards its end position, thus
making optimal use of the passive dynamics of the system. However, by fully extending
the stance knee, we run into trouble when implementing real-time control. Moreover,
the walking speed is very low compared to normal walking. Velocity control may be
improved by implementing a lower bound on the average COM velocity and let the
trajectory optimizer free to choose the step time. Alternatively, it can be added to the
objective function, following the work of Kalamian et al. [29].

Convex Approximation of the NLP In this research, we used sequential convex pro-
gramming to deal with the non-convexity of the optimization problem. In order to solve
the flat ground walking problem, the non-convex NLP was approximated by removing
the foot and knee clearance constraints. It was shown that the solution to the approxi-
mated program adheres to the non-convex constraint and thus is also the optimum for
the flat ground scenario. However, this problem was still not convex, because the highly
non-convex dynamics were still present in the problem. Therefore, we cannot guarantee
that the solution is the global optimum. A more accurate solution could be found by
adding a simplification step to the sequence by linearizing the dynamics at every grid
point, so that the entire problem is convex. If a very dense grid is used, the linearized
dynamics represent the actual dynamics accurately. The solution to this problem is
guaranteed to be the global optimum. It can then be used as an initial guess to the NLP
with non-linear dynamics.

Hyperextension of the Stance Knee The NMPC method is shown to produce a fea-
sible real-time control for the example problem. However, it fails when the average
velocity becomes too low and the solution brings the stance knee close to full extension.
This may be solved by implementing a tighter knee extension bound, so that the solution
from the trajectory optimizer does not get as near to full extension. Another solution
is to model a knee stop into the dynamics, that makes sure that the knee does not
overstretch. In doing this, care must be taken that the dynamics function remains con-
tinuous and smooth, because discontinuities or undefined gradients impede convergence
of the numerical solver.
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4.1. The Next Step: Moving towards Implementation
on a Device

The final goal for exoskeleton technology is to allow SCI patients to autonomously nav-
igate daily life. For this, the method must be implemented on an actual device. This
research provides a solid proof of concept for the NMPC, but there are still steps to be
taken before the method can be implemented in real-time. The minimal control rate for
the example problem was found to be 50Hz in the simulations. The example problem
lies on the edge of the range of feasible objects, so that the trajectory tends to get close
to its bounds and constraints. In the neighborhood of constraints, the necessary control
rate is higher, because then it is of paramount importance that the trajectory is followed
closely. For smaller objects, the trajectories are less constrained, so that we expect the
minimal control rate of 50Hz to be applicable to all obstacles. However, in real life, we
need to deal with perturbations, noise and other sources of uncertainty, so we expect
that the necessary control rate for real life application is higher.
For meshes of 10 grid points, which was determined to be sufficiently accurate, the tra-
jectory optimizer has a computation time of around 20s. Therefore the algorithm must
be sped up with two orders of magnitude. There are several solutions to realize this.
First a bigger database for initial guesses can be made, so that the optimizer is started
closer to the global minimum and will need fewer iterations to reach a solution. Second,
the fmincon function can be sped up considerably by feeding it analytical gradients of
both the objective and the constraint functions. These gradients are now determined
numerically, which is computationally expensive. Finally, it can be investigated if the
NLP can be simplified using linearization of the dynamics.
For the exoskeleton to work fully autonomously, it should respond to the environment.
In the current setup, we assume the height map to be known a priori, but for implemen-
tation on the device, this should be replaced with a machine vision scheme. Using for
instance a depth camera, a 3D map of the environment can be generated, to which the
bipedal walker can respond. The step sequence for obstacle avoidance solves the opti-
mization problem hundreds of times in order to find the optimal foot placement strategy.
Therefore it cannot be used in real time. The simulations can be used by finding op-
timal strategies for a range of objects and extracting a function describing the optimal
strategy with respect to the obstacle parameters. Alternatively, a lot of great work has
been done on foot placement algorithms that may be applied to the system [17,31–33].
Finally, the dynamical model and method used in this research make some assumptions
and contain simplifications. The method considers only single support phase, using an
impulsive heel strike algorithm. In order to design truly anthropomorphic motion trajec-
tories, it is necessary to extend the method to also incorporate a double support phase.
The dynamical model neglects any ankle strategy. It should be investigated to what
extent adding feet in the dynamical model increases the computational effort required
for the NMPC.
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B. Derivation of the Dynamics

B.1. Dynamics

In this seciton, we derive the equations of motion of the system. Using the Newton-Euler
method, we split up the kinematic tree at each successive joint i of the system. Euler’s
second law of motion states that the rate of change of the angular momentum about a
point is equal to the sum of the external torques about that point:∑

τ i = L̇i.
(B.1)

We define the set Ci, which contains the indices of the children of i and consists of all
bodies that are lower in the kinematic tree than joint i. The angular momentum Li

about joint i is the sum of the influences Lij of all children j of the joint, so that we can
write: ∑

τ i =
∑
j∈Ci

L̇ij.
(B.2)

We start on the right hand side of the equation. The angular momentum resulting

Figure B.1.

from the motion of body j is the sum of both the orbital momentum and the spin
momentum. The orbital momentum relates to the rotation of j around i. It is given as
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the cross product of the vector rij pointing from i to the center of mass of j and the
linear momentum pj of j, see Figure B.1. The spin momentum, which relates to the
rotation of j around its own center of mass, is the product of the angular velocity of
the body and the moment of inertia around its rotation axis. We are working with a
2D model, so that the moment of inertia is a scalar and the angular velocity is a vector,
perpendicular to the sagittal plane, with magnitude qi. The influence of the motion of
body j on joint i is given as:

Lij = rij × pj + Ijq̇j. (B.3)

In order to find the equations of motion, we need the rate of change of the angular
momentum, so we take the time derivative of Equation (B.3):

L̇ij = ṙij × pj + rij × ṗj + İjq̇j + Ijq̈j. (B.4)

The moment of inertia of a 2D rigid body is constant, so that the equation simplifies to:

L̇ij = ṙij × pj + rij × ṗj + Ijq̈j. (B.5)

In the dynamical model, the positions of joint i and the center of mass of body j are
defined by the vectors P i and Gj respectively, see Figure B.2. Then,

Figure B.2.

rij = Gj − P i,

pj = mjĠj.
(B.6)
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We express the angular momentum balance relative to joint i. Therefore, its position is
fixed in this frame and ṙij becomes:

ṙij = Ġj. (B.7)

We also determine the time derivative of the linear momentum, which is given by:

ṗj = mjG̈j. (B.8)

Filling in Equations (B.6), (B.7) and (B.8) in (B.5) results in:

L̇ij = Ġj × (mjĠj) + (Gj − P i)× (mjG̈j) + Ijq̈j. (B.9)

We see that the first term drops, so that we arrive at the following expression:

L̇ij = (Gj − P i)× (mjG̈j) + Ijq̈j (B.10)

On the left hand side of Equation (B.1), we have to account for two torques. First, we
express the control torque ui as a vector with the same direction as qi and magnitude
ui. Second, we need to account for gravity working on all children of joint i, resulting
in the total torque: ∑

τ i = ui +
∑
j∈Ci

τ ij. (B.11)

The gravitational torque τ ij for body j is found by taking the cross product of rij with
vector g, which always points downwards, and multiplying with the mass, see Figure
B.3:

Figure B.3.

τ ij = (Gj − P i)× (mjg) (B.12)

We combine this with (B.11) and (B.10) to arrive at the full expression of the angular
momentum balance for joint i:

ui +
∑
j∈Ci

(Gj − P i)× (mjg) =
∑
j∈Ci

(
(Gj − P i)× (mjG̈j) + Ijq̈j

)
(B.13)
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This expression is set up for all five degrees of freedom of the system. These equations
are then combined and solved for the joint accelerations q̈, so that the dynamics of the
system are written in their most general form as:

M(q)q̈ = F(q, q̇,u). (B.14)
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