Implementation and optimization of facial recognition with the Intel
Realsense SR300

YVvO DELAERE
Electrical Engineering, SCS group, University of Twente
y.delaere @student.utwente.nl
Supervisor: Dr. Ir. L.J. Spreeuwers

Abstract—This article describes the continuation and
improvement of a method for using facial recognition together
with the Intel Realsense SR300 camera[l]. The previous work
described that reliable facial recognition can be obtained
within the correct environment and the correct settings at a
range from 25- up to 40 centimeter.

An application framework is described and built to create a
user friendly environment for the facial recognition and makes
the previous method more accessible to the public. With some
modifications, it can be used with any 3D image acquisition
device.

Furthermore, improvements are suggested and implemented
to improve the quality and range of the facial recognition. An
attempt has been made to make a reliable facial recognition
system at between the user and camera of 60 centimeter. A
small sample size of 6 persons has been used to examine the
quality. Although all persons are recognized correctly, the
expectation is that with a larger sample size false validations
will occur, due to poor registered images as a result of
shortcoming of the camera.

I. INTRODUCTION

Biometrics are a hot topic and are used in a large variety

of applications. Fingerprint sensors are now the standard for
smart phones but the focus has been moved towards 3D
facial recognition with the new iPhone X being the first one
to implement this.The RealSense SR300 is a small relative
cheap 3D image acquisition device which can, and has been
embedded into e.g. laptops and displays. Therefore, it makes
sense to research if the camera can be used in a reliable facial
recognition application.
This projects exists of two parts. The first part consists
of integrating facial recognition software together with the
Realsense camera by building a application framework. The
second part discusses the different camera settings and their
effects and focuses on implementing improvements to in-
crease the quality and range of the facial recognition. The
performance of the described improvements are evaluated
and discussed by experimenting with facial recognition at
larger distances than evaluated before.

II. THEORY AND RELATED RESEARCH

This project is a continuation on the work done by Nahuel
Manterola [1]. In this research, the Intel Realsense SR300
camera is used to capture 3D images of subjects which are

registered and verified using the FFVF Facial Recognition
software [2] [3].

A. Facial Recognition

The facial recognition method used in this project has
been developed by Luuk Spreeuwers. It takes a 3D point
cloud containing a face as input and registers this face onto
a intrinsic coordinate system which is based on the vertical
symmetry plane through the nose, the tip of the nose and
the slope of the bridge of the nose. Two variations of this
registration process are used, which are both used in the
recognition.The front facing registered faces are stored in a
range image containing 75x87 floating point depth values.
Feature extraction is done using 30 fused region PCA-LDA
likelihood classifiers per registration method. Verification is
done by comparing probe images to gallery images, and
are collected by a scoring algorithm referred to as fixed
far vote fusion (FFVF). The resulting scores vary between
0 and 60, where a higher score implies more similarities
between the gallery and the probe. Fine registration is applied
on the probe images by making 35 small variations on the
registration parameters and taking the highest score for every
gallery image. The meaning of gallery and probe in this
context is that the gallery consists out of known reference
images while a probe image is registered and compared to
all gallery items without storing its features.

III. APPLICATION FRAMEWORK

In the work represented by Manterola, the 3D image
acquisition was uncoupled from the recognition algorithm
and running on a different operating system. This part of the
project focuses on combining the acquisition and recognition
of the 3D images into one complete system.The framework
is written in Qt using the Qt Creator IDE [5]. Qt is a cross-
platform SDK for software development. It enables the user
to produce relative easy an GUI based application. Qt is,
as is the facial recognition software, written in C++. The
realized framework enables the user to add a face to the
gallery and to score a probe image against all gallery items.
Features to change settings to the camera using slider bars
are implemented as well. A screen capture of the developed
application is shown in figure 1. The framework has been
designed to work with the SR300 camera but can easily be
adjusted to work with any 3D image acquisition device which
returns depth information for every pixel.


mailto:y.delaere@student.utwente.nl

Laser Power

Accuracy
Filter Option
Confidence Threshold

Motion Range TradeOFF

AutoRange options

i L‘ i

Depth at cursor position[m]  0.59

Clean DB Read

Start Stop Exit Register Match

v/ Remove background SettingNumber g

Fig. 1: GUI of the developed application framework

A. Camera Access

To access the camera data and settings, the open source
Intel RealSense Cross Platform API called librealsense
is used [6]. It provides a set of classes and functions to
access the camera stream settings and data. It supports the
Realsense F200, SR300, R200, LR200 and ZR300 cameras.
It must be noted that a new development version of the API
called Intel RealSense SDK 2.0 is released which supports
the SR300 and the to be released D400 series camera, but
due to the development phase of the API it was chosen to
use the stable native one.[7]

Listing 1 and 2 respectively show the pseudo-code illus-
trating the initialization and the updating of the frames to
the GUI. The GUI is updated using a timer to prevent the
function from blocking the rest of the program. The first step
of the updateFrame function is to wait for new data. If
new data is available, the device object is queried to return
a pointer to the new frame. The frame is passed through
a function which reads out the depth value of the cursor
position to give the user an indication of how far the subject
is away from the camera. When the "Remove Background”
box is ticked, the depth data which is bigger or smaller than
the depth of the cursor position +/ — 15¢m is removed.
The 16-bit depth data of this frame is stored in a object of
QImage and mapped onto a 8-bit gray scale. The image is
then displayed to the user by writing a pixmap to an object
of QLabel.

Listing 1: Initialization of the camera

void Init(){

timer = new QTimer(this);

connect (timer , SIGNAL(timeout()),
this , SLOT(updateFrame ()));

//Get pointer to device

dev = ctx.get_device ()

dev—>enable_stream ()

scale = dev—>get_depth_scale ();

dev—>start ();

timer—>start ();

}

Listing 2: Updating the frames to GUI

void updateFrame (){

dev—>wait_for_frames ();

uintl6_t * depth_image = dev—>get_frame_data ();

z_.minmax = get_cursorDepth(depth_image);

removeBackground (z_minmax );

QImage depthIMG (mapTo8bit(depth_image), width,
height , width, Grayscale8);

ui—>QLabel—>setPixmap (QPixmap :: fromImage (depthIMG );

}

B. Registration and matching

The registration and matching procedure of the program
differ only slightly from each other. When one of the
procedures starts, the program collects n frames, which can
be configured by the user. From the n frames, an extra frame
is generated which is a smart averaged version of the other
frames. This procedure is discussed further the optimizations
section. The generated frames are then transferred to a
new thread, where the frames are converted to point clouds
using a deprojection fucnction provided by the librealsense
library. This deprojection function converts the pixel values
to real world coordinates using the intrinsic parameters of
the camera. The point clouds are than exported to .WRL
files, which can be used for further processing and debugging
purposes. The produced .wrl files are read by the facial
recognition software which maps the point clouds onto a
intrinsic coordinate system and returns a range image with
the registered face. When the “Register” button was pushed,
features of the range image are extracted and stored in the
database. On the other hand, when the “Match” button is
pushed, the range image is used as a probe image and scored
against the gallery images which are stored in the database.
As a last step, the scores are presented to the user.

IV. CAMERA SETTINGS

The SR300 has different parameters which can be ad-
justed. The most relevant settings are described here.

A. Laser Power

The laser power settings can in theory be set between 0
and 16. However, the laser power can only be set to fully on
or of by the user. Different preset settings however enable
the “auto” function of the laser. In this auto mode, the laser
power depends on the infrared data captured by the SR300.
In most cases, the laser will project full power. Only in the
case of very close range scans the laser power decreases in
order to avoid overexposure as described in [1].

B. Motion versus range trade-off

This setting determines the exposure time for the IR
camera and therefore heavily influences the FPS and the
range in which data is available on the other hand. This
setting can be set by the user between 0 and 220. However,
just like the laser power setting, it can also be regulated by
the camera based on infrared data.



C. Filter option

The most important setting of the camera, especially for
facial recognition is the filter option. With this setting, a
trade-off between smoothing and noise can be made. The
filtering is done by the onboard imaging ASIC. The possible
filter settings are shown in figure 2. At larger distances, the
camera has a lot of distortion. To compensate this, a filter has
to be applied to the images. The risk of this approach is that
the face can become too generic and the uniqueness of the
face will be lost. The image shows a skinned and rendered
illustration of the the effect of smoothing. In the previous
work, the “FILTER_SCANNING”, filter option (F' = 3) was
used. In the experiment and result section, the effect of the
filters will be discussed in more detail.

PROPERTY DESCRIPTION RANGE'") | VALUE
FILTER_SKELETOM High fidelity pixels only. up to 4m o
FILTER_RAW Raw image with no processing. up to 4m 1
FILTER_RAW_GRADIENT Raw image with gradient filter applied. up to 4m 2
FILTER_SCANNING Very low smoothing, close range scans. up to 2m 3
FILTER_LOW_SMOOTH Low smoothing, high sharpness. up to 2m 4
FILTER_MED_SMOOTH Moderate smoothing and sharpness. up to 2m 3
FILTER_MOTION High smoothing, object motion. up to 4m [
FILTER_BLOB High smoothing, long range blob. up to 4m 7
(1) Specifies filter range and not optimized camera range. For depth camera settings which

enable objects to be seen further than the optimized camera range, the applicable filter
range may apply.

Fig. 2: Available filter options of the SR300 [4]

D. Preset

Different presets are available for the camera. An overview
of the presets can be found in [4]. The preset midrange
is chosen since it controls the exposure time and laser
power automatically within the desired range. Auto range
specific parameters exists, but the librealsense API has not
been designed in such a way that these parameters can
be modified. All the results which are presented after this
section, are done with setting the camera to the preset
“Midrange”. The only parameter that is adjusted after this
setting is the Filter Option.

V. OPTIMIZATIONS

Several options are studies to increase the quality of
the range images. These can be distinguished between pre-
registration optimizations and after registration optimization.

A. Pre-registration optimization

These are optimization which are done before the point
cloud is fed to the recognition software. Since the frame-
rate of the SR300 can be set up to 60 FPS, it is possible
to combine several frames without suffering too much of
possible movement of the subject. The following two pre-
registration optimizations are applied: combination of multi-
ple point clouds and averaging of multiple point clouds.

1) Combination: The simplest optimization adds the data
of the specified n frames into one point cloud, resulting
in more data per sample. Due to noise, small variations
in depth information occur and some points at the face
may not be available at all frames. By combining multiple

point clouds into one, the effect of noise is reduced in the
registration process and less holes while occur since more
data is available as can be seen in figure 3.

Fig. 3: Range image without hole filling. Left: Combined,
Right: Raw

2) Averaging: This optimizations focuses on combining
multiple frames into one averaged frame. The first frame
which is captured is used as a reference frame to the other
captured frames, while the other NV — 1 frames are used to
validate and average the data of the reference frame. The
absolute deviation between the depth values at every pixel
of the first frame and the rest of the frames is calculated.
Pseudocode of this procedure is shown in the listing below. If
the deviation is less than the allowed deviation D ,jj0ued, the
depth value of the 4;; frame is added to the reference frame
and a pixel specific counter is incremented to tell that a value
is added to the specific pixel. After the iteration is done, the
stored depth values are divided by the pixel specific counter
value. Pixels which only contain the value of the first frame
are considered unreliable, and therefore set to 0. This implies
that no depth value is known for this pixel value. Dgjjowed
is configured to be 1 millimeter. In the remaining of this
project, this optimization is referred to as PointCloudMean
(PCM).

Listing 3: Pseudocode for Point Cloud Mean

//Increment counter and add depth value
//frame if the deviation is within the
for (int i=0; i<(nframes); i++){
for (int j=0; j<(wxh); j++){

depthFrame = getFrame ();
if (firstFrame)
avgFrame = getFrame ();
else if (depthFrame[j] > 0){
dev = abs(avgFrame[j] — depthFrame[]j]);
if (dev < tolerance){
countArray[j] += 1;
avgFrame[j] += depthFramel[j];

to reference—
tolerance

}
}

//Average if at least two frames are available ,
//otherwise set the pixel value to 0.
for (int j=0; j<totalPixels; j++){
if (countArray[j] > 0){
avgFrame[j] /= (countArray[j] + 1);



}

else
avgFrame[j] = O0;

B. After registration optimization

The facial recognition software registers faces onto a
intrinsic coordinate system defined by facial characteristics.
This results in a frontal view of the face independent of the
orientation of the face when the 3D data is captured. By av-
eraging several range images into one averaged range image,
the effect of noise can be reduced. This approach is more
robust against motion than the pre-registration optimizations,
since the averaging is done on images of the face with a fixed
orientation. The effect of after registration averaging (ARA)
with N = 10 is shown in figure 4. The faces are captured
at a distance D = 0,35 from the camera. As a result of the
reduction of noise and the access to more data, the range
image with ARA optimization clearly has more details than
the image without any optimization referred to as "Raw”.

Fig. 4: Range images of a registered face with D = 0, 35,
N =10 and F' = 5. Left: After-registration averaging, Right:
Raw

VI. EXPERIMENTS AND RESULTS
A. Filter setting

Since a part of this project is about increasing the range
in which recognition is possible, different filter settings are
considered at a distance D = 0.6 meter from the camera.
For every filter setting, 10 different sets of data with N = 10
are taken. 5 datasets are used as gallery while the other 5
are used as a probe. For every optimization, this leads to a
5x5 matrix. The average values of these matrices are shown
in table I. From table I, it can be concluded that for filter

TABLE I: Recognition scores versus filter options

Raw  Combined PCM  ARA
F=3 392 624 5 5.36
F=4 196 7.68 5 8.68
F=5 748 16.76 8.12 18.4

setting F' = 5 the highest scores are achieved. The question if
this smoothing filter compromises the uniqueness of the face
is discussed in the next section. Another observation from

table I is that every individual optimization has a positive
contribution to the scoring results, with the effect of the ARA
optimization being the biggest.

B. Facial Recognition

To evaluate the performance of the facial recognition at
a distance D = 0.6 meter, two captures are taken of M
different persons. The persons are asked to make a slight
adjustment in their pose between the two captures. The first
set of captures is handled as the reference gallery pictures,
the second as a probe. Scoring the gallery against the probe
results in a MxM matrix. The scores at the diagonal of this
matrix should be significant higher than the other values,
indicating that the persons at the diagonal are the same
subject. Table II shows the results for the ARA optimization
for M = 6 and F' = 5. For every row, the highest value
marked indicating the matched gallery for every probe.

TABLE II: ARA scoring table

G=1 G=2 G=3 G=4 G=5 G=6
P=1 57 4 4 5 0 0
P=2 0 57 2 0 0 2
P=3 3 0 10 1 1 2
P=4 0 0 2 47 1 2
P=5 1 0 0 0 4 1
P=6 2 1 0 0 0 9

The performance is evaluated by comparing for every row
the diagonal D;, max off-diagonal O,,,,, and the margin
M; = D; — Oz, . The average of these parameters is shown
in table III for D = 0.6 meter and F' = 5 to compare the
performance of every optimization. Different filter options
were tried in the same experiment and subjects but resulted
in much worse results.

TABLE III: Performance evaluation of the different optimiza-
tions

Raw Combined PCM ARA
D 14.5 21.33 17.5 30.67
Omaz 367 8.00 1.67 2.5
M 10.83  13.33 1583  28.17

The standard way to decide if two subject x,y are the
same in the facial recognition software is by comparing the
obtained score V' to a threshold T:

D(same subj|x,y — {1, V(sam.e subj|x,y) > T,
0 otherwise
Where the threshold T, is tuned for a specific False Accept
Rate (FAR). Table II is not suitable for determining a thresh-
old due to the small sample size M = 6 and the fluctuation
of the FFVF scores together with the significant off-diagonal
scores. Therefore, the gallery ID with the highest FFVF score
is considered to be the ID of the probe.



C. Pixel Depth deviation and consistency

During the performed experiments, it was observed that
the registration of the faces was not consistent at a distance
D = 0.6 meter. A possible reason for this is the pixel depth
deviation around sharp edges around the face e.g around the
nose. To test this hypothesis, the pixel deviation is evaluated
around the nose of a face. M frames are captures of a
static situation. The Average Absolute Deviation (AAD) is
calculated for every pixel. Pixels with depth value p, , =0
are not used for calculating the average value to prevent
outliers in the result. Figure 5 shows the results for M = 5
and F = 5.

Fig. 5: Left: Averaged frame Right: pixel specific AAD of
the same frame [mm)]

From figure 5 it is visible that the pixel deviation is the
largest around the sharp edges of the nose and the eyes.
This pixel deviation has a negative effect on the registration
quality. Around the sharp edges the majority of the captured
frames have no depth data available which result in holes in
the registered range image. These holes are filled after the
registration, but do affect the fitting in the nose which results
in variation of the registration.

VII. DISCUSSION

The obtained results presented in the previous section
show the results of the implemented improvements aimed to
improve the quality of the range images used for recognition.

The results indicate that every individual improvement
has a positive contribution to the recognition score. Table
IIT show that a acceptable average margin can be achieved
using the ARA optimization. The sample size of the data
used to obtain these scores is too small to give relevant
numbers to the verification rate (VR). The results however
do indicate that even at a small sample size M = 6 already a
lot of off-diagonal scores are noted. It is expected that when
the sample size M is increased, these value will become
even more significant which can lead to false recognitions.
The reason for the high amount of off-diagonal scores, is
that at a distance D = 0.6 meter a lot of smoothing has
to be applied by using filter F' = 5 to get a range image
which is suitable for the facial recognition software. This
results in more correlation between different subjects. Based
on the obtained results, the implemented facial recognition
is considered not to be reliable at a distance D = 0.6 and
filter F' = 5.

Combining the individual implemented optimization
into one hybrid optimization may improve the scores but
time did not allow to test this. However, the results of the
AAD measurement show that the data of the SR300 is
not reliable and detailed enough to make a high quality
range image for the facial recognition software at a distance
D = 0.6 meter. It is suggested that a different 3D image
capturing device should be used for facial recognition at
larger distances. At distances up to 40cm, reliable facial
recognition is possible using the SR300 camera [1].

VIII. CONCLUSION AND RECOMMENDATIONS

This project discussed the development of a framework
which enables a user to modify settings of the camera, store
point clouds as gallery images and record probe images to
score them against the stored gallery. The recognized gallery
ID is displayed to the user as a result. This application
framework can be used as a tool for demo-purposes and
further experiments

The second part of this project was focused on improving
the quality of the registered range images. First, different
camera settings and their effects were discussed. It was
highlighted that the filter option is very important to make a
trade off between smoothness and noise, especially at large
distances. To get the best results at larger distances, filter
option F' = 5 should be used

Three optimizations are discussed and implemented.
All individual optimizations have a positive contribution
to the recognition score, as well as the uniqueness.
After registration averaging (ARA) had the best result.
It is suggested that the presented optimization should be
combined into one hybrid optimization, to improve the
quality even more.

The results of the experiments indicate that at larger
distances, the system does not provide reliable facial
recognition results due to the low quality of the registered
range images. A possible explanation for the low quality
of the images is that at larger distances, the pixel deviation
around the sharp edges of the face is too big, and sometimes
no pixel information is available at all, which result in
inconsistent registered range images.

The bottom line is that the RealSense SR300 is not
suitable for facial recognition at large distances of 60
centimeter. With the release of the D400 camera series,
it would be interesting to see the performance of these
camera’s within the same framework.

REFERENCES

[1] Nahuel Manterola. ”Creating 3D images for facial recognition using the
RealSense SR300”, url not availble.

[2] Luuk Spreeuwers. “Fast and Accurate 3D Face Recognition”. In:
International Journal of Computer Vision 93.3 (2011), pp. 389—414.
ISSN: 1573-1405. URL: http://www.mouser.com/pdfdocs/
intel_realsense_camera_sr300.pdf


http://www.mouser.com/pdfdocs/intel_realsense_camera_sr300.pdf
http://www.mouser.com/pdfdocs/intel_realsense_camera_sr300.pdf

[3]

[4]

(51
(6]
(71

Luuk Spreeuwers. “Breaking the 99% barrier: optimization of 3D face
recognition”. In: IET biometrics 4.3 (2015), pp. 169-178. URL: http:
//doc.utwente.nl/95850/.

Intel® RealSense™ Camera SR300 Product Datasheet , url:
http://www.mouser.com/pdfdocs/intel_realsense_
camera_sr300.pdf

Qt — Cross-platform software development for embedded & desktop ,
url: https://www.gqt.io/

Intel® RealSense™ Cross Platform API, url: https://github.
com/IntelRealSense/librealsense/tree/legacy
Intel® RealSense™ SDK 2.0 https://github.com/
IntelRealSense/librealsense/tree/master


http://doc.utwente.nl/95850/.
http://doc.utwente.nl/95850/.
http://www.mouser.com/pdfdocs/intel_realsense_camera_sr300.pdf
http://www.mouser.com/pdfdocs/intel_realsense_camera_sr300.pdf
https://www.qt.io/
https://github.com/IntelRealSense/librealsense/tree/legacy
https://github.com/IntelRealSense/librealsense/tree/legacy
https://github.com/IntelRealSense/librealsense/tree/master
https://github.com/IntelRealSense/librealsense/tree/master

	Introduction
	Theory and Related Research
	Facial Recognition

	Application framework
	Camera Access
	Registration and matching

	Camera settings
	Laser Power
	Motion versus range trade-off
	Filter option
	Preset

	Optimizations
	Pre-registration optimization
	Combination
	Averaging

	After registration optimization

	Experiments and results
	Filter setting
	Facial Recognition
	Pixel Depth deviation and consistency

	Discussion
	Conclusion and Recommendations
	References

