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Summary
The effect of cardiopulmonary resuscitation on ventricular fibrillation waveform

measures: a new tool to optimize in-field identification of an acute coronary occlusion
during cardiac arrest

by Jeanne van der Waal

Since the ventricular fibrillation (VF) waveform has been shown to decrease over time, it has
been regarded as marker of arrest duration and has been investigated to predict defibrilla-
tion success. However, exact prediction of arrest duration is complicated by other factors
also influencing the VF waveform. The VF waveform has been shown to increase with unin-
terrupted chest compressions, and decrease with pauses in chest compressions. Animal and
human studies have also shown that myocardial infarction (MI) affects VF, and animal stud-
ies suggest that the change in VF waveform in response to cardiopulmonary resuscitation
(CPR) may be altered in the presence of an acute coronary occlusion (ACO). This study in-
vestigated the change in VF waveform characteristics in relation to CPR quality, whether this
is altered in the presence of an ACO, and whether this information can help in identifying
these patients during out-of-hospital cardiac arrest (OHCA).

For the change in VF characteristics in response to CPR, we compared this change between
patients with and without adequate CPR (defined as chest compression fraction (CCF) ≥
or < 0.6) between the first and second defibrillation. In a sub analysis we investigated this
change in characteristics in a sub population of patients with and without ACO. In patients
with CCF≥0.6 (n=90), an increase in all VF amplitude characteristics was detected, while
this did not occur in patients with CCF<0.6 (n=48). Furthermore, this numeric increase was
significantly higher in patients with CCF≥0.6 compared to patients with CCF<0.6. The sub
analysis showed a difference in change in VF amplitude characteristics between CCF≥0.6
and CCF<0.6 in patients without ACO (n=22), whereas this difference was not found in
patients with ACO (n=38).

Next the VF waveform parameters were investigated to determine their ability to predict
the presence of an ACO. In patients with an underlying ACO (n=62), the VF amplitude
characteristics were significantly lower when compared to patients without an underlying
ACO (n=40), showing a limited discriminative ability with an AUC of 0.66. Combining the
VF waveform parameter with the change in that parameter in response to CPR using binary
logistic regression led to an improved discriminative ability, with an AUC of 0.75.

These findings suggest that the VF waveform parameters and their change in response to
CPR can be used to provide additional information to ensure correct and early triage of pa-
tients to the cardiac catheterization laboratory. Further studies are needed to determine if the
combination of waveform parameters and their change in response to CPR can predict the
presence of an ACO in a prospective fashion, and whether this results in improved survival
after OHCA.
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1 Introduction

Ventricular fibrillation (VF) is the first observed cardiac rhythm in about 20-50% of out-of-
hospital cardiac arrests (OHCAs) [1, 2]. Survival after OHCA is poor, although VF as first
observed rhythm has a better outcome in terms of survival to hospital discharge (15-40%)
when compared to non-shockable rhythms (2-8%) [2–5]. Still, VF will gradually deterio-
rate into asystole with passage of time and this will consequently decrease chance of sur-
vival [6, 7]. Defibrillation is considered the only therapy to establish return of spontaneous
circulation (ROSC) in patients with ventricular fibrillation [8]. Therefore, the guidelines for
cardiopulmonary resuscitation (CPR) recommend immediate defibrillation as soon as a de-
fibrillator is made available [9]. However, if the myocardial metabolic state is compromised,
success rates of defibrillation are poorer [8, 10]. Additionally, defibrillation can also have the
adverse effect of producing asystole [11].

In absence of an automated external defibrillator (AED) or in between defibrillations, chest
compressions and ventilations can be administered to keep oxygenated blood flowing to the
brain and other vital organs. Studies have shown that CPR does not only slow the deteri-
oration of myocardial cells, but also increases the chances of survival [9, 12, 13]. Therefore,
it has been suggested that for VF of longer duration, withholding defibrillation in order to
apply CPR might increase myocardial readiness for defibrillation and increase chances of
successful defibrillation [14, 15]. This was shown in two studies where patients with ambu-
lance response time of more than four to five minutes showed increased rates of ROSC and
survival if 1.5 or 3 minutes of CPR was administered by ambulance personnel before de-
fibrillation [16, 17]. Unfortunately, the onset time of VF is (especially in the out-of-hospital
setting) rarely known, making it difficult to determine the priority of CPR intervention based
on the duration of the untreated cardiac arrest. In this light, the VF waveform on the electro-
cardiogram (ECG) has been investigated for its ability to reflect myocardial metabolic state.

However, the application of VF waveform to guide initial therapy may be complicated by the
largely unknown effect of factors influencing the VF waveform. The VF waveform deterio-
rates after an episode without CPR [18, 19], accompanied by a decrease in survival chances.
Since VF characteristics are associated with shock success and long-term outcome [20–23],
and CPR improves the chance of ROSC [13, 16, 17], VF characteristics are also likely to be
affected by CPR. In addition, VF characteristics have shown to be influenced by the presence
of myocardial ischemia. Animal studies have indicated that VF characteristics were lower
in the presence of an induced myocardial infarction (MI) [24–26]. Similarly, in human stud-
ies lower VF characteristics were found in patients with acute MI as underlying aetiology
of VF [27], as well as in patients with a previous MI where VF was induced during ICD-
testing [28, 29]. One animal study also shows that the reaction of the VF waveform on CPR
may be altered in the presence of acute coronary occlusion [30].

In light of the above, VF waveform may give an indication of the effectiveness of CPR, and
thus might also provide an indication for myocardial readiness for defibrillation. In addi-
tion, the presence of ischemia may also alter the VF waveform and its reaction on CPR, yet
the etiology of the OHCA is often unknown. In this context, we investigated the response
of VF waveform characteristics to CPR, and whether this is altered in the presence of my-
ocardial ischemia. In addition, we investigated whether (a combination of) VF waveform
characteristics are able to discriminate between patients with and without coronary occlu-
sion as underlying cause of OHCA.
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2 Background

2.1 Anatomy and physiology of the heart

The heart is a pump, allowing blood to flow through the body. The right side of the heart
contributes to the pulmonary circulation, and the left side of the heart contributes to the
systemic circulation. The flow through the heart is schematically illustrated in Figure 2.1.
In the pulmonary circulation, deoxygenated blood enters the right atrium and continues to
flow to the right ventricle. The right ventricle pumps the blood towards the lungs via the
pulmonary arteries. In the lungs exchange of oxygen and carbon dioxide occurs, after which
oxygen enriched blood is transported from the lungs to the left atrium via the pulmonary
veins. In the systemic circulation, the oxygenated blood travels from the left atrium to the
left ventricle. Through forceful contraction of the left ventricle, the blood is pumped into the
aorta, via which the blood is distributed towards the organs and tissues. After supplying
the tissue with oxygen the blood is returned to the right atrium via the superior and inferior
vena cava [31, 32].

A cardiac cycle, defined as all cardiac events from the beginning of one heartbeat to the
beginning of the next, consists of two phases: the diastole and the systole. In the diastole
the ventricles are relaxed, allowing blood to flow from the atria to the ventricles. By the end

FIGURE 2.1: Blood flow through the heart. The right atrium receives blood
via the superior vena cava and inferior vena cava and the right ventricle
pumps blood via the pulmonary artery to the lungs. The left atrium re-
ceives blood from the lungs and the left ventricle pumps blood into the aorta,
for distribution to the organs. Backflow of blood from the ventricles to the
atria is prevented by the atrioventricular valves (i.e. the tricuspid and mi-
tral valve), and backflow from the pulmonary artery and aorta is prevented
by the semilunar valves (i.e. the pulmonary and aortic valve). Reproduced

from [33].
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of the diastole, the atria contract to pump the remaining volume of blood to the ventricles.
During relaxation of the ventricles, backflow of blood from the pulmonary artery and aorta
is prevented by the pulmonary valve and aortic valve respectively (see Figure 2.1). After the
diastole, the systole starts by isovolumetric contraction, i.e. contraction without a change
in volume, of both ventricles simultaneously. When the pressure in the ventricle exceeds
the pressure in the associated outflow tract, the aortic and pulmonary valve are forced to
open and bood starts flowing out. During contraction of the ventricles, backflow of blood
from the ventricles to the atria is prevented by the atrioventricular valves, with the tricuspid
valve between the right atrium and ventricle and the mitral valve between the left atrium
and ventricle (see Figure 2.1). After the blood is ejected in the pulmonary artery and aorta,
the diastole starts with isovolumetric relaxation until the pressure in the ventricles drops
below the atrial pressure, after which the ventricles are filled with blood again and the cycle
repeats [31, 32].

To be able to provide the oxygen-rich blood to the body tissues, the heart itself also needs a
steady oxygen supply. This is provided through the coronary arteries, originating from the
root of the aorta (Figure 2.2). The left coronary artery (LCA) bifurcates into the left anterior
descending artery (LAD) and the ramus circumflex artery (RCx). The LAD descends into
the anterior inter-ventricular groove, where its branches mainly supply the anterior wall of
the left ventricle, the inter-ventricular septum and parts of the conduction system. The RCx
travels in the left atrioventricular groove, where it supplies most of the left atrium and the
posterolateral wall of the left ventricle. The right coronary artery (RCA) runs through the
right atrioventricular groove, and distributes blood to the right atrium, the right ventricle,
and parts of the conduction system of the heart. The inferior wall of the heart is provided
with blood by the posterior descending artery (PDA), which originates either from the RCA
(in 85% of people) or from the RCx (in 15% of people) [32, 34].

FIGURE 2.2: Anterior view of the heart showing the main coronary arter-
ies. The left main coronary artery bifurcates into the left anterior descend-
ing artery, descending into the anterior interventricular groove, and the ra-
mus circumflex artery, running in the left atrioventricular groove. The right
coronary artery runs through the right atrioventricular groove towards the
posterior region of the heart. SVC = Superior vena cava, Ao = Aorta, PA =

Pulmonary artery, IVC = Inferior vena cava. Adapted from [32].

2.2 Electrical activity in the heart

The contraction of the myocardium is controlled by the cardiac conduction system. It con-
sists of cardiac muscle cells and conducting fibers that are specialized for initiating impulses
and conducting them rapidly through the heart. There are two types of cells found in the
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FIGURE 2.3: Electrical conduction system of the heart. The impulse originates
from the sinoatrial node, travels through the atria toward the atrioventricular
node. After a short delay it is conducted trough the bundle of His to the Purk-
inje fibers, resulting in depolarization of the ventricles. Adapted from [39].

heart: pacemaker cells that have the ability to generate electrical impulses and cardiomy-
ocytes which can only conduct an impulse. Normally, the electrical impulse originates from
a group of pacemaker cells that is located in the high right atrium near the superior vena
cava, called the sinoatrial (SA) node (Figure 2.3) [35]. The impulse propagates through
neighbouring cells in the atria and stimulates the myocardium of the atria for contraction.
When it reaches the atrioventricular (AV) groove, a fibrous structure which is electrically in-
ert disables conduction directly from the atria to the ventricles. Therefore, conduction from
the atria to the ventricles is only possible through the AV node, located close to the tricus-
pid valve in the interatrial septum. The AV node has specific electrophysiologic properties,
which slows the conduction velocity. This results in a delay in conduction between the atria
and ventricles, allowing sufficient emptying of the atria. When leaving the AV node, the
impulse enters the bundle of His, which penetrates the fibrous tissue to allow conduction
toward the ventricles. The His bundle branches into the right and left bundle branches, and
the rapidly conducting Purkinje fibers reaching to the more distal and lateral parts of the
ventricular myocardium ensure an almost simultaneous depolarization of the ventricles [32,
35–38].

The generation of the electrical impulse can be explained by the electrical potential across
the cell membrane of the cardiomyocytes. The inside of the cell has a negative electrical
charge compared to the outside of the cell, resulting from a different concentration of ions
present. The resting transmembrane potential of a cardiac cell is around -90 mV. Changes in
cell membrane permeability (i.e. opening of specific ion gates) allows ion to travel across the
cell membrane, which gives rise to the action potential (AP). The cardiac AP of a myocyte
can be divided into several phases involving the sodium, potassium and calcium ion cur-
rents (see Figure 2.4). The first phase in generating the action potential is the opening of the
rapid sodium channels (phase 0). This causes a rush of sodium ions into the cell, leading to
a positively directed change in the transmembrane potential. This is called the depolariza-
tion of the cell. The voltage spike causes the sodium channels in the neighbouring cells to
open, leading to a propagation of the action potential. Once a cell is depolarized, it cannot
be depolarized again until the ionic fluxes are reversed. This is called repolarization. The
repolarization starts at phase 1 with an outward current of potassium and the inactivation of
the sodium channels. In phase 2 the outward current of potassium still occurs, but a plateau
arises due to the slow inflow of calcium ions. The end of phase 2 is initiated by inactivation
of the calcium channels. This results to the persistent outflow of potassium exceeding the
calcium inflow, bringing the transmembrane potential back towards the resting potential of
-90 mV. This happens in phase 3. Phase 4 is the resting phase, where the sodium and calcium
channels are closed and the potential is maintained at -90 mV due to a constant outward leak
of potassium [32, 35, 36].
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2.2.1 The electrocardiogram

The cardiac action potential represents the electrical activity of a single cardiac cell, which
cannot be measured from the outside. To find information about the electrical properties
of the heart, a surface electrocardiogram (ECG) can be measured. Tissues surrounding the
heart are able to conduct electrical currents, allowing these currents to be detected at the
body surface by an array of electrodes. This ECG represents the sum of electrical activity in
the heart, which is measured as voltage changes from a baseline voltage. A normal rhythm
consists of a P wave, a QRS complex and a T wave, as seen in Figure 2.5. The P wave
represents the depolarization wave spreading through the atria. The conduction delay in
the AV node as discussed earlier leads to a brief isoelectric (i.e. zero voltage) period. The
fast ventricular depolarization results in the QRS complex, only lasting about 0.06 to 0.1
seconds. The isoelectric ST segment is the period at which the entire ventricle is depolarized.
It roughly corresponds to the plateau phase of the ventricular action potential as seen in
Figure 2.4. The T wave represents repolarization of the ventricles (phase 3 of the action
potential) [32, 35].

The height and direction of the different deflections of the ECG is dependent on the record-
ing direction. The ECG is measured as a potential difference between a positive and a nega-
tive electrode. A wave of depolarization travelling toward a positive electrode will result in
a positive deflection in the ECG trace. A wave of depolarization or repolarization oriented
perpendicular to an electrode axis produces no net deflection (i.e. equally positive and neg-
ative voltages). Therefore, the ECG is conventionally measured in 12 directions, i.e. leads,
using 10 electrodes. Four electrodes are placed on each arm and leg and six electrodes are
placed at defined locations on the chest. The electrodes on the left arm, right arm and left leg
together compose the triangle of Einthoven, and form the three bipolar limb leads I, II and III
(see Figure 2.6). With the same three electrodes, augmented limb leads (aVR, aVL, aVF) are
measured by using a single positive electrode referenced against a combination of the other
two electrodes. These limb leads record the ECG in the frontal plane. The same three elec-
trodes are used as a combined negative electrode to the positive precordial electrodes. The
resulting precordial leads (V1-V6) record electrical activity in the horizontal plane, perpen-
dicular to the frontal plane in which the limb leads record. A visualization of the different
recording directions is given on the right side of Figure 2.6 [32, 35–37].

An ECG gives diagnostic information about a possible underlying condition of the heart. It
can be used to determine the heart rate and rhythm, and therefore also detects if the rhythm
does not follow the usual conduction pathway as described above. Furthermore, the shape

FIGURE 2.4: The five phases of an action potential in a (non-pacemaker) my-
ocardial cell. Reproduced from [40].
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FIGURE 2.5: Electrocardiogram of a normal cardiac cycle. P-wave: atrial de-
polarization, QRS-complex: ventricular depolarization, T-wave: ventricular
repolarization.The PR interval is the time from the onset of atrial depolariza-
tion to the time from the onset of ventricular depolarization. The ST segment
represents the isoelectric period when the entire ventricle is depolarized. Re-

produced from [32].

of the P wave can give information about the size of the atria, whereas the height of the
R wave (in the precordial leads) can give an indication for left ventricular wall thickening.
Events of ischemia of the heart can be detected on the ECG by looking for elevated or de-
pressed ST segments, inverted T waves or deep Q waves [35, 37].

FIGURE 2.6: Left: Triangle of Einthoven. Right: Recording directions of the
12 leads of the electrocardiogram.

2.3 Myocardial infarction

Myocardial infarction (MI) is a major cause of death and disability worldwide. It is defined
as a clinical event caused by myocardial ischemia in which there is evidence of myocardial
injury or necrosis [41]. Cell death is reached when ischemia exceeds a critical threshold,
as a result of decreased delivery of oxygen via the coronary arteries, increased myocardial
metabolic demand or a combination of both.

Decreased delivery of oxygen is most commonly caused by severe atherosclerosis, a condi-
tion in which plaque (made up of fat, cholesterol, calcium and other substances) builds up in
the inner layer of the arteries (intima). When a plaque occupies more than 75% of the coro-
nary lumen, increased metabolic demand can easily cause myocardial ischemia [42]. Also,
the intima separates the blood in the arteries from potentially thrombogenic components of
the medial arterial layer. The presence of plaque stretches this layer, increasing the chance of
a rupture. This disruption allows blood to come in contract with the thrombogenic compo-
nents, leading to intraluminal thrombus formation. This thrombus superimposed over the
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disrupted plaque can cause an (almost) complete occlusion of the coronary artery [43–45].
However, occlusion of a coronary artery can also occur due to a blood clot without under-
lying plaque (although less frequently). Conditions associated with increased myocardial
metabolic demand include physical activity, severe hypertension, hypertrophic cardiomy-
opathy and severe aortic valve stenosis [31, 32].

Acute MI can have different manifestations in individual patients. The most characteristic
symptoms are chest pain described as a pressure sensation or squeezing of the thorax, radia-
tion of chest pain into jaw, shoulder, arm and/or back, shortness of breath, nausea, syncope
or near syncope and (excessive) sweating [41, 42].

MIs can be subcategorized on the basis of diagnostic clinical information, meaning symp-
toms, myocardial biomarkers, ECG findings and imaging techniques. Two types of acute
MIs are commonly distinguished by a classification scheme based on ECG findings: (1) MI
with ST-segment elevation in at least two contiguous leads (STEMI) and (2) MI without ST-
segment elevation (non-STEMI) [41]. In case of a STEMI, the ECG leads with ST elevation
give an indication of the localization of the MI [35].

Treatment of MI consist of three main options: (1) With percutaneous coronary intervention
(PCI) a catheter is used to place a stent over the obstructed lumen to reinstate blood flow,
(2) coronary artery bypass grafting (CABG) provides an alternative route for the blood via a
bypass vein or artery, thereby circumventing the obstructed coronary artery and (3) conser-
vative treatment with pharmacological therapy. In STEMI, one of the first two treatments is
essential to restore coronary blood flow. Non-STEMI on the other hand can sometimes ini-
tially also be treated conservatively, while planning a PCI or CABG in the non-acute setting
[42, 46].

Ischemia is a common cause of premature ventricular contractions (PVC’s), which in turn
can trigger ventricular arrhythmias. This mechanism and different kinds of arrhythmias are
discussed in the next section.

2.4 Ventricular arrhythmias

Abnormal rhythms (arrhythmias) can be caused by abnormal formation of an action po-
tential. They are generally divided into two categories based on the origin of the action
potential: Supraventricular and ventricular arrhythmia. Supraventricular arrhythmias initi-
ate in the area above the ventricles (i.e. atria or AV-node), whereas ventricular arrhythmias
initiate in the ventricles. In ventricular arrhythmias, depolarization does not follow the nor-
mal conduction pathways, which in combination with an increased heartbeat (tachycardia)
results in inefficient filling and contraction of the heart. This in turn causes a decrease in
cardiac output, therefore insufficient oxygen supply to the body tissues, eventually leading
to death. Two important/well-known ventricular arrhythmias are ventricular tachycardia
(VT) and ventricular fibrillation (VF) (Figure 2.7).

Ventricular tachycardia

VT is defined as a regular tachycardia of >120 bpm solely originating in ventricular tissue,
therefore exhibiting dissociation between atrial and ventricular electrical activity [47]. There
are several mechanisms of initiation for a VT. Sometimes a cell (or group of cells) in the ven-
tricle can act as a pacemaker cell and fire at the ‘wrong’ time. The effect of such an impulse
depends on the surrounding tissue properties. When the surrounding tissue is homoge-
neous, the depolarization wave radiates out, which causes a premature ventricular contrac-
tion (PVC). This is relatively benign, though can be triggered by more structurally abnormal
or ischemic hearts. In heterogeneous tissue, neighbouring cells have different properties, i.e.
conduction velocity and refractory time. The depolarization wave will not be distributed
evenly over the surrounding tissue, but can start to curve. It can even curve so much that it
circles back to the start and initiate another depolarization. This can lead to even more de-
polarization circles and result in a functional re-entry [48]. Another mechanism of re-entry



8 Chapter 2. Background

FIGURE 2.7: ECG examples of a normal sinus rhythm and the abnormal
rhythms ventricular tachycardia and ventricular fibrillation. Reproduced

from [32]

is an anatomical re-entry. This is the case when depolarization waves circle around (non-
conducting) scar tissue and initiates re-entry. These mechanism are illustrated in Figure 2.8.
As a result of the fast ventricular rhythm, the ventricles are continuously in motion and
therefore do not pump efficiently. This can cause symptoms such as palpitations, dyspnea
and dizziness, but could lead to sudden cardiac death [47]. Therefore it requires immediate
attention to convert to sinus rhythm. A VT can eventually evolve into VF [48].

Ventricular fibrillation

VF has been defined as turbulent cardiac electrical activity with varying frequency and am-
plitude, indicating a large amount of irregularity in the depolarization waves causing the
ventricular excitation [50]. During VF, there is no efficient contraction of the ventricles, re-
sulting in an inadequate cardiac output [32].

Despite a lot of investigation, the exact mechanism of VF remains unknown. The two princi-
pal proposed mechanisms are mother rotors and multiple wavelets. The mother rotors the-
ory hypothesizes that VF is maintained by a single, stable re-entrant circuit, i.e. the mother
rotor, which gives rise to variable daughter wavelets that spread through the remainder of
the ventricular myocardium [50–52]. The multiple wavelet theory also indicates initiation
of VF by a re-entrant circuit, but it hypothesizes that this circuit breaks into other wavelet
circuits. These ‘wandering wavelets’ follow constantly changing pathways and are easily
terminated. However, these wavelets create new re-entry circuits, allowing the fibrillation

FIGURE 2.8: Examples of initiation mechanisms of ventricular tachycardia:
(a) Premature ventricular contraction (PVC); (b) functional re-entry due to
heterogeneity of the myocardial cells; (c) anatomical re-entry due to scar tis-

sue. Reproduced from [49].
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to be sustained [50, 51, 53]. Both theories remain under investigation, and studies have pro-
vided evidence for (a combination of) both mechanisms [54–56].

Since VF results in a cardiac output decreasing to zero, it requires immediate attention to
convert to a normal (perfusing) rhythm. VF is the most commonly identified rhythm in out-
of-hospital cardiac arrest (OHCA) [3], and can be caused by several diseases. Here, we will
focus on underlying cardiovascular diseases. The most common cause of VF, and therefore
also the most common cardiovascular cause, is coronary artery disease [57]. This can be
due to either acute MI (75%) or scarring from a previous MI (25%) [58]. (Acute) MI causes
increased extracellular potassium concentration, and this causes a disruption of the normal
repolarization. This causes heterogeneity in conductive properties and therefore could give
rise to an arrhythmia [59]. Other (less common) cardiovascular causes are cardiomyopathy,
ion-channel abnormalities or congenital heart disease.

2.5 Out-of-hospital cardiac arrest therapy

A cardiac arrest is defined as sudden cessation of cardiac mechanical activity, leading to the
absence of signs of circulation (pulse) [60]. Several initial cardiac rhythms can occur during
this cardiac arrest, which can be divided in shockable and non-shockable rhythms. Shock-
able rhythms include pulseless ventricular tachycardia (PVT) and ventricular fibrillation
(VF), whereas non-shockable rhythms are pulseless electrical activity (PEA) and asystole.
Early recognition and immediate cardiopulmonary resuscitation (CPR) are important deter-
minants of survival. Therefore, the first steps of the American Heart Association guidelines
for OHCAs are recognition of the arrest, calling for help and initiating chest compressions
and ventilations. In the shockable rhythms, defibrillation of the heart can be achieved with
application of an electrical shock. The goal of an electrical defibrillation is to depolarize all
myocardial cells at the same time. This could result in the extinction of the propagating
wavefronts that preserve VF, so that a natural pacemaker cell (e.g. SA or AV node) can take
over again [61]. This defibrillation can be performed by lay rescuers when an automated
external defibrillator (AED) is available. When a team of professionally trained emergency
medical service providers take over responsibility, intravenous access can be acquired to ad-
minister drugs, and the patient can be transported to an emergency department and/or car-
diac catheterization lab. OHCA with VF as initially observed rhythm has a survival rate of
19-22% [2, 3], but early initiation of CPR combined with defibrillation can double or quadru-
ple chances of survival [62].

2.6 Ventricular fibrillation waveform analysis

Although the importance of early electric defibrillation for treatment of VF has been well
established, the efficacy of defibrillation for prolonged VF is considered questionable as the
probability of defibrillation success declines with increasing arrest duration [6, 63]. In the
last decade researchers hypothesized that CPR before defibrillation would improve defibril-
lation success and outcome for prolonged OHCA patients with a shockable rhythm. This
theory is explained by a model of the pathophysiology of VF by Weisfeldt and Becker [14].
They hypothesize that VF consists of three phases, which require time-specific interventions.
The first phase is the electrical phase (0-4 min), in which the myocardial cells should be de-
fibrillated as soon as possible. The second phase is the circulatory phase (4-10 min), in which
the outcome may improve by performing a period of CPR before defibrillation. The third
phase is the metabolic phase, in which irreversible damage of the myocardial cells occurs due
to depletion of energy substrate [14]. This model is supported by findings of Cobb et al. and
Wik et al., who demonstrated that performing CPR before defibrillation when onset of VF
is more than 4 or 5 minutes respectively improves the likelihood of return of spontaneous
circulation (ROSC) and survival [16, 17]. Unfortunately, this time-based approach is com-
plicated by the fact that the exact duration of the arrest is unknown in most out-of-hospital
resuscitations.
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Over time studies have focused on several methods to find non-invasive markers of myocar-
dial metabolic state that allow prediction of whether or not a shock would achieve ROSC
[22, 63–65]. Measurement of the VF waveform from the ECG offers a non-invasive, real-time
analysis of the myocardial cells, with a deteriorating VF waveform over time indicating a
worse prognosis [6, 66, 67]. There is evidence that this decrease is related to a depletion of
myocardial energy phosphates during untreated VF [68], therefore the VF waveform gives
an indication of the metabolic state of the myocardium. A frequently investigated parameter
is amplitude spectrum area (AMSA), which comprises information on both the amplitude
and the frequency of the VF waveform. This is considered a promising outcome predictor,
with studies showing that a high AMSA correlates with defibrillation success and long-term
outcome [21, 23, 64, 69]. Additionally, the change in AMSA throughout the first three shock
sequences was associated with the likelihood of survival [70, 71]. Because of these relation-
ships, VF waveform analysis has been proposed to guide the priority of interventions and
to predict the best timing for defibrillation delivery, thereby reducing the number of failed
defibrillation attempts and CPR interruptions.

To investigate this new approach, in 2013 a randomized controlled trial was conducted using
a VF waveform analysis based algorithm to guide initial treatment of OHCA patients. Un-
fortunately, this study did not find improved survival rates [72]. A possible explanation for
this is that recent studies showed that altered VF waveforms are also influenced by the un-
derlying aetiology of the arrhythmia, especially by the presence of myocardial ischemia [25,
27, 28, 73]. Therefore, low VF waveform characteristics may not only be caused by longer
arrest duration, indicating a smaller chance of defibrillation success, but could also be an
expression of myocardial ischemia in a patients with a short arrest duration, with possibly a
better chance of successful defibrillation.

Calculation of VF waveform parameters

During resuscitation the two paddles of a defibrillator record the ECG signal as well as the
transthoracic impedance (TTI) data. As often with physiological signals, the raw ECG can
be noisy, containing low-frequency baseline drift and high-frequency noise. This can be
removed by pre-processing the signal using a bandpass filter, which removes frequencies
below and above the lower and higher cut-off frequency (i.e. 2 and 48 Hz in VF analysis).
To cancel out the phase shift that is introduced by filtering, the filter is applied once forward
and once backward. Furthermore, the ECG also contains artefacts induced by chest compres-
sions. Due to variations in the rate (i.e. frequency) of chest compressions, complete removal
of these artefacts by filtering is difficult. Therefore, only chest compression free segments
of the ECG can be used for VF analysis. The presence of chest compressions is identified
with the TTI data, which shows peaks for each chest compression. To assure inter- and
intra-patient comparability, a VF period of equal length needs to be selected. After selecting
and pre-processing the VF segments, several parameters can be calculated. The parameters
investigated in this study are described below.

First parameters are calculated from the ECG segment in the time domain. The mean abso-
lute amplitude (MAA) represents the mean absolute deviation (i.e. amplitude) of the mean
of the waveform, and the median slope (MdS) is the median steepness of the waveform [25].
The variance of the slope (VS) gives an indication about the diversity of the slope in the seg-
ment. Then, the VF segment is transformed to the frequency domain using the Fast Fourier
Transform (FFT). From this signal the amplitude spectrum area (AMSA) is computed as the
summed product of individual frequencies and their corresponding amplitudes [19, 22, 64,
74]. From the Fourier transform of the original VF signal, the power spectral density (PSD)
is estimated as PSDk = 2

N ·fs · |FFTk|
2, in which N is the number of samples, k is the spe-

cific sample and fs is the sampling frequency. This power spectrum gives information about
the frequency components composing the original VF signal, with the area under the curve
representing the total power of the signal. The dominant frequency (DF) is the frequency
with the highest power, whereas the median frequency (MdF) is the frequency at which the
power spectrum is divided into two regions with equal power [29, 65, 75]. The frequency
ratio (FR) is calculated as the summed power in the high-frequency band (8-24 Hz) divided



2.6. Ventricular fibrillation waveform analysis 11

TABLE 2.1: Mathematical description of VF waveform characteristics

Parameter Mathematical definition Units

Mean absolute amplitude MAA = 1
N

∑N−1
i=0 |xi| mV

Median Slope MdS = median(|x1 − x0| , . . . , |xN−1 − xN−2|) · fs mV/s
Variance of Slope V S = var(|x1 − x0| , . . . , |xN−1 − xN−2|) · fs mV2/s
Amplitude spectrum area AMSA = 2

N

∑
4≤fk≤48

|x̂k| · fk mV·Hz

Power spectrum area PSA = fs
N

∑
4≤fk≤48

PSDk · fk mV2·Hz

Dominant frequency DF = argmaxfk PSDk Hz
Median frequency MdF = fm with m minimal sample number at which

the trapezoidal integral approximation
(∑m

k=0 PSDk

)
−

(PSD0 + PSDm) /2 is closest to 50% of the total trapezoidal(∑N−1
k=0 PSDk

)
− (PSD0 + PSDN−1) /2

Hz

Frequency ratio FR =
∑

8≤fk≤24

PSDk /
∑

3≤fk≤5

PSDk

xi(i = 0, 1, 2, . . . , N − 1) are the samples of the ECG segment x(t) in time domain with sampling
rate fs. Amplitude |x̂k| indicates the amplitude of Fourier transform of xi at frequency fk, and PSDk

indicates the power of the PSD at frequency fk. The frequency fk is equal to k
N
fs.

∑
4≤fk≤48

indicates

the sum over the indices k for which the frequency fk is between 4 and 48 Hz.

by the summed power in the low-frequency band (3-5 Hz) [76]. These frequency parame-
ters give information about the power distribution of the VF signal. The power spectrum
area (PSA) describes the area under the curve from the power frequency spectrum, as the
summed product of individual frequencies and corresponding powers [65]. In this study,
the AMSA and PSA were calculated between the frequency of 4 and 48 Hz. The mathemati-
cal descriptions of these characteristics can be seen in Table 2.1.

Unfortunately, the amplitude and frequency measures also have disadvantages. Amplitude
measures are very sensitive for recording conditions, e.g. skin resistance, size and position
of electrodes. Fourier analysis is most suitable for a stationary signal, which means that
statistical properties such as mean and standard deviation remain the same throughout the
period of recording. However, it is indicated that VF is a non-stationary, complex process,
suggesting that it is generated by multiple interacting systems within the heart [77]. There-
fore, a method which could simultaneously describe local and temporal spectral information
from a signal might be more appropriate for the analysis of transient, aperiodic and other
non-stationary signal features. This can be done with a scaling analysis approach. In this
study, two different techniques for scaling analysis were used.

The first method is detrended fluctuation analysis (DFA). This method gives information
about the complexity of the VF waveform morphology [78, 79]. Computation of detrended
fluctuation analysis is as follows [80]: First the global constant trend of the original time
series is eliminated by subtracting the mean of the signal. This signal is subsequently in-
tegrated by taking the cumulative sum of the signal (Figure 2.9a). The resulting signal is
divided into equal boxes of length n, for various values of n. In each box the local linear
trend is calculated and subtracted from the integrated time series. Of this detrended sig-
nal the root mean square (RMS) is calculated representing the fluctuation in that box size
(Figure 2.9b). This is repeated for several box sizes n (different scales) (Figure 2.9c). A rela-
tionship between F(n), the fluctuation as a function of box size, and the box size n (i.e. the
number of samples in a box) is plotted on logarithmic axes. The DFA scaling exponent α is
the slope of the trend line of this function estimated using linear regression (see Figure 2.10).

This α can be estimated in different time ranges of interest, providing information about
organisation within a time scale. In this study, two different slopes are determined: 1) the
slope on small time scales, i.e. 0.032 to 0.4 seconds (DFAα1) and 2) the slope on larger time
scales, i.e. 0.4 to 3.0 seconds (DFAα2). A more detailed description of the calculation of DFA,
its application on different signals and the interpretation of the scaling exponent α is given
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FIGURE 2.9: Step-wise explanation of Detrended Fluctuation Analysis. In panel A, the mean
is subtracted from an example VF signal sampled at 125 Hz with a duration of 3 seconds
(left and middle plot). The right plot shows the resulting integrated signal. In panel B, the
local trends of the integrated signal from panel A are calculated (blue lines) and subtracted
(bottom plot) for box size≈0.2 s (20 samples). In panel C this is shown for box size=0.8 s (100
samples). In the bottom plots of B and C, the root-mean-square of the detrended signal is

presented as the red line.

in Appendix A. A short summary: The α1 approaches the value of 2 for smooth functions on
small box sizes, and will be lower if the signal is more noisy or is more complex on a smaller
level. The α2 will approach zero for a harmonic oscillating smooth signal (i.e. sine wave),
but a more complex or varying oscillating signal the α2 will be larger than zero.

The second method using a signal analysis approach is wavelet analysis. Wavelet analysis
uses a continuous wavelet transform (CWT), in which a signal x(t) is modelled using all
possible translated and dilated versions of a mother wavelet ψa,b (where a and b are the
dilational (or scale) and translational (or position) parameters). It is given by:

CWTx(a, b) =
1√
a

∫ ∞
−∞

x(t)ψ∗(
t− b
a

)dt

The mother wavelet used in this study is the Symlet wavelet. Initial analysis showed that this
wavelet yielded better results compared to other wavelets (Gaussian and Morlet). Applying
this CWT to a signal leads to a set of wavelet decomposition coefficients, representing the
distribution of energy over the time and scales. An example of such an energy distribution
can be seen in Figure 2.11. The energy distribution over the range of scales varies depending
upon the signal composition (i.e. morphology) of the VF waveform. In other words, the
analyzing wavelet captured different amounts of signal energy at each scale a, depending on
the signal characteristics. The waveform parameter scale distribution width (SDW) is based
on this principle. The signal energy is summed along the time-axis to represent the entire
segment, resulting in a 2D-signal as shown in Figure 2.12. The SDW is then calculated as the
width of the energy distribution at half the height of its peak. It is hypothesized that a VF
waveform that is very regular, the distribution will be a sharp and tall peak indicating that
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FIGURE 2.10: DFA on the example VF signal of Figure 2.9. In this example, the α1 is 1.58
and α2 is 0.08 (red lines).

very few scales were required to model most of the signal energy [81]. This could serve as an
indicator of the morphology and complexity of the VF signal, which might give information
about the status of the myocardium.

FIGURE 2.11: The energy per scale a per translation b (time), plotted against
the scales and time.
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FIGURE 2.12: Calculation of Scale Distribution Width. The width of the en-
ergy signal is defined at half the height of the peak energy (red line).
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3 The effect cardiopulmonary
resuscitation on ventricular
fibrillation waveform measures:
The role of CPR quality and
underlying acute coronary
occlusions

3.1 Introduction

The initially recorded rhythm in 20-40% of out-of-hospital cardiac arrests (OHCAs) is ven-
tricular fibrillation (VF), with better survival rates than other presenting rhythms [1–4, 82].
However, the chance of survival decreases with longer duration of VF. Since the electrocar-
diographic VF waveform also decreases over time, it is thought to reflect the myocardial
metabolic state [6, 7, 75]. Therefore, the VF waveform has been investigated for some time
now, and found to be associated with defibrillation success and long-term outcome [20, 22,
23, 83].

More recently, it has been shown that not only the absolute value of the VF waveform, but
also the change in these parameters is associated with outcome. An increase in VF character-
istics during the course of resuscitation is associated with a better chance of survival [71, 84,
85]. However, the determinants of these changes in VF characteristics are largely unknown.
Earlier data have shown that uninterrupted chest compressions increase VF parameters [15]
and pauses in chest compressions decrease these measures [18, 19]. The ratio of uninter-
rupted chest compressions and pauses might therefore be a determinant of in- or decrease
in VF parameters. A measure for this ratio is the amount of time in which compressions are
given divided by the total time, i.e. chest compression fraction (CCF). A CCF of higher than
0.6 has been associated with higher survival rates [13], and has therefore also been adopted
as a recommendation in the guidelines for cardiopulmonary resuscitation (CPR) [9].

In addition, evidence from an animal study suggests that in animals with an acute coronary
occlusion (ACO) VF parameters did not increase as much in response to CPR as in animals
without an ACO [30]. This is of particular importance since ACO is the most common cause
of VF OHCA [57, 86]. In humans it has been shown that ischemic heart disease indeed affects
the appearance of the VF waveform [27, 29], but the influence of ischemia on the change in
VF waveform in relation to CPR quality has never been investigated.

An altered response of VF waveform characteristics to CPR in patients with ACO could po-
tentially provide a method to identify these patients in an early phase. However, to be able
to investigate this, first the increase in VF parameters needs to be confirmed in the common
human OHCA setting, where periods of uninterrupted chest compressions are alternated
with pauses for e.g. intubation attempts and shock application. Therefore, we aim to inves-
tigate the association between CPR quality and change in VF characteristics. This is done
by comparing the change in VF characteristics between two groups based on whether or not
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the guideline-prescribed CCF of 0.6 has been achieved. As a sub-analysis, we investigated if
there is a difference in the reaction on CPR between patients with and without an ACO.

3.2 Methods

3.2.1 Patient population

All consecutive out-of-hospital cardiac arrest patients who where resuscitated by the emer-
gency medical services (EMS) in the region of Nijmegen (Gelderland-Zuid, the Netherlands)
between November 2005 and January 2011 are identified. For the present study inclusion cri-
teria are: available paddle ECG tracings, VF as first observed cardiac rhythm and at least two
shocks applied by EMS. Exclusion criteria are: age < 18 years, traumatic arrest (including
hanging and drowning), AED shocks before EMS arrival and prematurely stopped resusci-
tations (due to ‘do not resuscitate order’ or terminal illness). Given the observational design
of the study, written informed consent is not necessary to obtain according to the Dutch Act
on Medical Research involving Human Subjects.

Gelderland-Zuid has a population of about 540,000 residents and covers 1,040 square kilo-
meters, including urban, suburban and rural areas. The EMS system in Gelderland-Zuid
is a one-tier system that is activated by calling 112. Paramedics will give instructions to
the caller to initiate basic life support (BLS), and at least one, but usually two ambulances
are dispatched to the location of the emergency. A mechanical chest compression device
(Autopulse) was part of the standard EMS-equipment, but not routinely used. During the
study period, CPR was performed according to the guidelines of the European Resuscitation
Council of 2005. EMS staff were not instructed to withhold chest compressions in order to
acquire artefact-free ECG recordings.

3.2.2 Data collection

Demographic, clinical and arrest characteristics were defined according to the Utstein style
definitions [60] and collected using EMS and hospital records. During resuscitation, ECG
tracings and transthoracic impedance (TTI) data were recorded with the two paddles of
the LIFEPAK Biphasic Defibrillator (Physio-Control, Redmond, WA, USA) at a sample fre-
quency of 125 Hz and 61 Hz respectively. A MATLAB (version 2014b, Mathworks, Natick,
MA, USA) programmed Graphical User Interface was used for the annotation of chest com-
pressions in the tracings.

3.2.3 VF waveform characteristics

Analysis of the VF waveform was performed using MATLAB. The ECG recordings were pro-
cessed by twice applying fourth-order Butterworth bandpass filter with cut-off frequencies
of 2 and 48 Hz for elimination of non-physiological low and high frequency noise. Three-
second chest compression free segments of pre-shock VF (i.e. the chest compression free
segment of the ECG tracing closest before the shock) before the first and second shock were
selected for further analysis.

From the selected ECG signal in the time domain, the mean absolute amplitude (MAA) was
computed as the mean absolute deviation (i.e. amplitude) from the mean of the waveform
and the median slope (MdS) was computed as the median value of all amplitude differences,
describing the median steepness of the waveform [25, 65]. The variance of the slope (VS)
gives an indication about the diversity of the slope in the segment, and is computed as
the variance of all amplitude differences. The VF segment was then transformed to the
frequency domain using the Fast Fourier Transform (FFT). From this signal the amplitude
spectrum area (AMSA) is computed as the summed product of individual frequencies and
their corresponding amplitudes [19, 64, 65, 69]. From the signal’s power spectrum (estimated
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by squaring the Fourier transform of the original VF signal) we calculated the dominant
frequency, which is the frequency where the power spectrum attains its maximum [22, 75]
and the median frequency, the frequency at which the power spectrum is divided into two
regions with equal power [29, 75]. Furthermore, we calculated the power spectrum area
(PSA) as the summed product of individual frequencies and corresponding powers [65]. A
detailed description and mathematical formulation of these characteristics was presented in
Chapter 2.

In addition, two parameters were determined using a scaling analysis approach. The first
is detrended fluctuation analysis (DFA), which is used to describe the underlying structure
of non-stationary data [78]. DFA is calculated to give information about the complexity of
the VF waveform morphology [78, 79]. The method of DFA and an extensive investigation
on applying this method to different kinds of signals is presented in Appendix A. The other
scaling analysis approach is wavelet analysis, based on continuous wavelet transform. The
scale distribution width (SDW) is the width of the distribution of wavelet energy among
scales, and gives a measure for the degree of organization of the signal [87, 88]. A more
extensive explanation of the use of wavelet analysis to calculate SDW can be found in Chap-
ter 2.

The reaction of the waveform parameters on CPR was determined as the change in the pa-
rameter between the first and second shock, calculated as ∆WFP = WFP2 - WFP1. The WFP1

is the investigated waveform parameter before the first shock and WFP2 before the second
shock. Since some patients received resuscitation according to an old protocol, where up to
three stacked shocks were given [89], these delta characteristics were only taken into account
if the period between the two segments was more than 30 seconds.

3.2.4 CPR quality

Chest compressions were identified as spikes in the transthoracic impedance (TTI) data.
These were automatically detected through an algorithm, but manually checked on accu-
racy. Based on the literature, chest compressions separated by not more than 1.5 seconds
were considered consecutive [90–92], resulting in a lower limit of chest compression rate of
40 beats per minute. The effective chest compression time (CCtime) was defined as the total
time of the period in which compressions are given. The chest compression fraction (CCF) is
the proportion of time in which compressions are given [13, 93]. This is calculated with the
following equation:

CCF =
CCtime

Total time
.

In our study, the CCF is calculated between the two VF segments, and the total time is
defined as the beginning of the first VF segment to the end of the second VF segment. There-
fore, due to the chest compression free periods of rhythm analysis before shock and shock
delivery, the CCF can by definition never be 1 in this study.

3.2.5 Patient classification

The patients were divided into two groups: patients that received CPR with a chest compres-
sion fraction greater than or equal to 0.6 between the VF segments (CCF≥0.6) and patients
that received CPR with a chest compression fraction lower than 0.6 (CCF<0.6). The chest
compression fraction is calculated as the amount of time in which compressions are given
divided by the total time between the segments [13, 93], and the cut-off value of 0.6 is based
on the recommendation in the 2010 CPR Guidelines [9].

For the secondary analysis, the presence or absence of a localised myocardial infarction re-
lated to an ACO as underlying cause of VF was determined on a case-by-case basis. For
each patient, records of symptoms, cardiac biomarkers, 12-leads ECG in the emergency de-
partment (ED), echocardiography, coronary angiography (CAG) and autopsy reports were
investigated. Categorization was based on the criteria of the third universal definition of
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FIGURE 3.1: Flowchart of patient inclusion. OHCA = Out-of-hospital cardiac arrest, VF
= Ventricular fibrillation, AED = Automated external defibrillator, ICD = Implantable car-
dioverter defibrillator, ECG = Electrocardiogram, ROOR = Return of Organized rhythm,

CPR = Cardiopulmonary resuscitation, CCF = Chest compression fraction.

myocardial infarction (MI) and criteria for ACO (i.e. ACO on CAG or autopsy and/or ST-
segment elevation in accordance with an acute localized MI) [41]. Subjects without sufficient
clinical information were excluded. Patients that met both the universal definition of MI as
well as the criteria for ACO were categorised in the ACO group. Patients that did not meet
the universal definition of MI and/or the criteria for ACO, were categorised in the non-ACO
group. An extensive description of study group categorisation regarding ACO can be found
in Appendix B.

3.2.6 Outcome measures

The primary outcome measures were the changes in the VF waveform parameters between
the first and second shock, as described above. These characteristics were compared between
the two main study groups (CCF≥0.6 vs. CCF<0.6). Secondly, as a sub-analysis, analyses
were stratified according to ACO status.

3.2.7 Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics software (version 22, IBM Corp.,
Armon, NY, USA). Categorical data were expressed as frequencies (percentages) and contin-
uous data as medians (interquartile ranges). In case of missing data, proportions were calcu-
lated using the available data as denominator. For comparison of baseline variables between
the groups, the Chi-square test was used for categorical data and the Mann-Whitney U test
was used for continuous data. The difference of the VF waveform characteristics between
the two segments within each group was compared using a Wilcoxon signed rank test. The
changes in VF waveform characteristics (∆WFP) were compared between the groups using
a Mann-Whitney U test. In the sub-analysis, pairwise comparisons were performed using
the Mann-Whitney U test to check for differences between the groups. A p-value of <0.05
was considered statistically significant for all tests.



3.3. Results 19

TABLE 3.1: Baseline characteristics of OHCA-patients with CCF≥0.6 and CCF<0.6

Variable All (n=138) CCF≥0.6 (n=90) CCF<0.6 (n=48) p-value

Age (n=138) 63 (53.75 - 73) 63 (54 – 72.25) 62 (51.25 - 73) 0.684
Male gender (n=138) 107 (77.5) 73 (81.1) 34 (70.8) 0.168
Public location arrest (n=102) 43 (42.2) 29 (46.0) 14 (35.9) 0.314
Witnessed arrest (n=99) 79 (79.8) 48 (78.7) 31 (81.6) 0.728
- Bystander witnessed 75 (75.8) 45 (73.8) 30 (78.9) 0.559
- EMS witnessed 5 (5.1) 4 (6.6) 1 (2.6) 0.646
Bystander CPR (n=98) 54 (55.1) 34 (50.8) 23 (62.2) 0.302
Autopulse used (n=135) 54 (40.0) 43 (48.9) 11 (23.4) 0.004
Response time (n=121) 8 (6 - 10) 8 (6 - 11) 7.5 (5 - 10) 0.229
Shocks delivered by EMS (n=129) 4 (3 - 7) 5 (3 - 7.25) 4 (3 - 7) 0.413
Amiodarone (n=122) 95 (77.9) 63 (79.7) 32 (74.4) 0.498
Epinephrine (n=124) 115 (92.7) 78 (96.3) 37 (86.0) 0.063
Atropine (n=123) 52 (42.3) 37 (46.3) 15 (34.9) 0.224
First shock success (n=135) 40 (29.6) 19 (21.8) 21 (43.8) 0.008

Values are given in numbers (%) or medians (interquartile ranges). P-values are calculated for com-
parisons between patients with CCF≥0.6 and CCF<0.6. OHCA = Out-of-hospital cardiac arrest,
CCF = Chest compression fraction, EMS = Emergency medical services, CPR = Cardiopulmonary re-

suscitation.

3.3 Results

3.3.1 Study population

In the study period of November 2005 and January 2011, 138 patients were included. Main
reasons for exclusion were AED shocks before EMS arrival (6%), no available or analyzable
ECG tracing (27%) and less than two shocks applied (19%). Details regarding in- and exclu-
sion can be found in Figure 3.1.

Of these included patients, median age was 63 years (54-74) and 78% was male. 80% of
patients had a witnessed arrest, either by bystanders (76%) or EMS (5%). Bystander CPR
was delivered in 55% of the patients. The median EMS response time was 8 minutes (6-10)
and median number of shocks delivered by the EMS was 4 (3-7). Baseline characteristics
did not differ between the two groups, except for use of Autopulse and first shock success.
In the CCF≥0.6 group, more patients received chest compression with the Autopulse than
in the CCF<0.6 group (49% vs. 23% respectively, p=0.005). First shock success occurred
more often in the CCF<0.6 group than in the CCF≥0.6 group (44% vs. 22%, p=0.010). The
baseline characteristics for all patients and comparisons between the groups are presented
in Table 3.1.

3.3.2 VF waveform characteristics

In all amplitude characteristics, a significant increase between the two VF segments was
found in the CCF≥0.6 group, while no difference was found in the CCF<0.6 group (Ta-
ble 3.2). The delta amplitude characteristics ∆AMSA, ∆MAA and ∆PSA were significantly
higher in patients that received CPR with CCF≥0.6 compared to patients that received CPR
with CCF<0.6, while ∆VS showed a trend towards higher values in the CCF≥0.6 group
(p=0.06).

In the frequency characteristics, a significant increase between the two VF segments was
found for MdF in the CCF≥0.6 group, while DF and FR showed a significant increase in the
CCF<0.6 group. The delta frequency characteristics showed no differences between the two
groups.
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TABLE 3.2: Change in VF waveform parameters of OHCA-patients after a period with CCF≥0.6 and
CCF<0.6

WFP CCF group VF1 VF2 p1 ∆ WFP p2

Amplitude characteristics
AMSA CCF≥0.6 7.94 (5.70 – 10.43) 9.46 (6.64 – 13.39) <0.001 1.29 (-0.73 – 4.00) 0.029

CCF<0.6 8.78 (5.40 – 13.66) 9.51 (5.37 – 13.37) 0.720 0.07 (-1.02 – 1.23)
MAA CCF≥0.6 0.09 (0.07 – 0.12) 0.10 (0.07 – 0.13) 0.002 0.01 (-0.01 – 0.04) 0.038

CCF<0.6 0.11 (0.08 – 0.15) 0.12 (0.07 – 0.15) 0.814 0.00 (-0.03 – 0.02)
MdS CCF≥0.6 2.72 (1.94 – 3.98) 3.27 (2.26 – 4.83) <0.001 0.65 (-0.40 – 1.36) 0.110

CCF<0.6 3.14 (2.04 – 4.91) 3.59 (2.05 – 5.19) 0.272 0.07 (-0.54 – 0.84)
PSA CCF≥0.6 0.05 (0.02 – 0.10) 0.08 (0.03 – 0.14) <0.001 0.02 (-0.01 – 0.07) 0.029

CCF<0.6 0.06 (0.03 – 0.16) 0.07 (0.02 – 0.19) 0.704 0.00 (-0.02 – 0.03)
VS CCF≥0.6 0.05 (0.03 – 0.12) 0.08 (0.04 – 0.16) <0.001 0.02 (-0.02 – 0.07) 0.057

CCF<0.6 0.08 (0.03 – 0.17) 0.09 (0.03 – 0.17) 0.806 0.00 (-0.02 – 0.03)
Frequency characteristics

DF CCF≥0.6 3.66 (2.99 – 5.40) 4.99 (3.32 – 5.98) 0.068 0.33 (-1.00 – 1.66) 0.987
CCF<0.6 3.99 (3.41 – 5.32) 4.32 (3.32 – 5.98) 0.042 0.33 (-0.33 – 1.00)

MdF CCF≥0.6 4.65 (3.66 – 5.65) 4.99 (3.99 – 5.98) 0.032 0.33 (-0.66 – 1.08) 0.531
CCF<0.6 4.32 (3.99 – 5.32) 4.65 (3.32 – 5.98) 0.280 0.00 (-0.58 – 1.00)

FR CCF≥0.6 0.32 (0.16 – 0.62) 0.40 (0.17 – 0.91) 0.439 0.03 (-0.22 – 0.28) 0.270
CCF<0.6 0.22 (0.11 – 0.45) 0.27 (0.13 – 0.70) 0.040 0.07 (-0.13 – 0.53)

Scaling analysis characteristics
DFAα1 CCF≥0.6 1.41 (1.26 – 1.51) 1.35 (1.22 – 1.47) 0.009 -0.05 (-0.14 – 0.06) 0.236

CCF<0.6 1.42 (1.28 – 1.50) 1.39 (1.21 – 1.54) 0.573 -0.01 (-0.13 – 0.10)
DFAα2 CCF≥0.6 0.08 (0.05 – 0.10) 0.07 (0.04 – 0.10) 0.203 -0.01 (-0.03 – 0.02) 0.855

CCF<0.6 0.06 (0.04 – 0.09) 0.05 (0.04 – 0.07) 0.255 -0.01 (-0.03 – 0.02)
SDW CCF≥0.6 24.6 (19.4 – 29.7) 20.0 (15.5 – 28.8) 0.032 -2.04 (-9.25 – 6.47) 0.270

CCF<0.6 21.9 (18.3 – 25.9) 20.5 (15.1 – 25.3) 0.367 -1.11 (-6.28 – 4.17)

Values are given in medians (interquartile ranges). VF = Ventricular fibrillation, OHCA = Out-of-
hospital cardiac arrest, CCF = Chest compression fraction, WFP = Waveform parameter. 90 patients
were included in the CCF≥0.6 group, versus 48 in the CCF<0.6 group. p1 is the difference between
the related samples within the groups and p2 is the difference in the delta characteristics between the
groups. AMSA = Amplitude spectrum area, MAA = Mean absolute amplitude, MdS = Median slope,
PSA = Power spectrum area, VS = Variance of slope, DF = Dominant frequency, MdF = Median fre-
quency, FR = frequency ratio, DFA = Detrended fluctuation analysis, SDW = Scale distribution width.

In the scaling analysis characteristics, DFAα1 and SDW showed a significant decrease in the
CCF≥0.6 group, while no differences in scaling analysis characteristics were found in the
CCF<0.6 group. The delta scaling analysis characteristics showed no differences between
the two groups.

Sub analysis: ∆WFP after CPR in patients with ACO

Of the 138 patients included in this study, 60 patients (43%) were included for sub-analysis
(CCF≥0.6: 19 ACO and 14 non-ACO; CCF<0.6: 19 ACO and 8 non-ACO). For details re-
garding in- and exclusion, see Appendix C. Pairwise comparisons showed significant differ-
ences in all amplitude characteristics in the non-ACO group between CPR with CCF≥0.6 and
CCF<0.6, while no differences were seen in the ACO group between CPR with CCF≥0.6 and
CCF<0.6. Pairwise comparison within the CCF≥0.6 group showed significant differences
between the ACO and non-ACO group for ∆MAA and ∆MdS. These results are presented
in Figure 3.2.
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FIGURE 3.2: Differences in the change in VF amplitude parameters for CCF≥0.6 and CCF<0.6,
divided in subgroups of patients with and without acute coronary occlusion (ACO). p-values are
presented for significant differences (p<0.05). VF = Ventricular fibrillation, CCF = Chest compres-

sion fraction.

3.4 Discussion

This is the first human study investigating the reaction of VF waveform characteristics to
CPR considering the common situation where chest compressions need to be interrupted for
rhythm analysis, shock delivery or application of ventilations. In patients where these inter-
ruptions were kept to a minimum, resulting in a CCF of 0.6 or higher, an increase in all ampli-
tude characteristics and a decrease in most scaling analysis characteristics was detected. For
the amplitude characteristics MAA, PSA and AMSA, this numeric increase was significantly
higher in patients with CCF≥0.6 compared to patients with CCF<0.6. Secondary analysis
also revealed a difference in the response of VF characteristics to CPR between patients with
and without an ACO, with a larger increase in VF characteristics in patients without ACO
compared to patients with ACO after adequate CPR (i.e. CCF ≥0.6). These findings con-
firm the increase of waveform parameters with CPR, once again emphasizing the need for
high-quality chest compressions with minimal interruptions. Furthermore, the difference in
response of VF characteristics to CPR between patients with and without myocardial sub-
strate may offer a method for early distinction of acute coronary occlusion.



22 Chapter 3. Influence of CPR on VF waveform measures

3.4.1 Response of VF waveform characteristics to CPR

Animal studies

Several studies investigating the use of VF waveform analysis to guide therapy also describe
the reaction of the waveform parameter to CPR, with many studies relying on the controlla-
bility of the cardiac arrest setting attainable in animal studies. Our results are consistent with
results from swine and rat studies by Marn-Parnat et al., Achleitner et al. and Kolarova et al.,
showing an increasing amplitude and AMSA (or AMSA correspondent) with increased CPR
duration [74, 94, 95]. Marn-Pernat et al. also reported more successful defibrillation with
increasing AMSA, while Kolarova et al. only reported increased shock success after 6 min-
utes of CPR. In the guidelines for cardiopulmonary resuscitation, a CPR time of 2 minutes
between shocks is advised [9], therefore only a few patients included in our study received
CPR of more than 6 minutes between the two shocks. In the study by Achleitner, VF fre-
quency characteristics were even more increased after CPR than amplitude characteristics
[95], similarly to two studies by Berg et al. [96, 97]. This is in contrast with the results from
our studies, suggesting a bigger increase in amplitude characteristics. However, we did find
an increase in VF median frequency in the CCF≥0.6 group, corresponding to the findings by
Achleitner and Berg.

A study by Li et al. in swine found that the increase in AMSA was also related to the depth of
chest compressions, with AMSA increasing with adequate compression depth but remain-
ing equal with shallow compressions [98]. Unfortunately, TTI data cannot provide reliable
information on the compression depth [99], therefore the adequacy of this depth could not
be taken into account in our study.

Human studies

Since in human studies the setting during out-of-hospital cardiac arrest cannot be controlled,
the change of the VF waveform in response to CPR is less documented in humans. A study
by Eftestøl et al. investigated the effect of varying durations of CPR sequences on VF wave-
form parameters. In their study, uninterrupted CPR increased the centroid frequency (cor-
responding to median frequency) and AMSA after a sequence of 0-1 minute, then staying
at the same level. Only AMSA showed further increase after CPR sequence of more than 3
minutes [15]. Our results correspond with these findings, showing an increase in AMSA and
MdF even when CPR sequences are interrupted, as long as these interruptions are kept to
a minimum (CCF≥0.6). In addition, that the increase in AMSA (and other amplitude char-
acteristics) was higher in patients with CCF≥0.6 compared to patients with CCF<0.6 adds
more strength to the findings of Eftestøl.

A study of Box et al. compared reaction of VF waveform on CPR for two different types of
CPR, i.e manual and mechanical CPR. They found an increase in the mean of cardioversion
outcome predictor (COP), which is a parameter based on wavelet transform signal process-
ing, for both types of CPR. However, the increase in COP was only significant for the auto-
mated CPR. The authors speculate this to be the result of possibly more hands-off time in the
manual CPR group for longer CPR periods. Unfortunately, (difference in) chest compression
fractions were not calculated [100]. In our study, we found a decrease in the wavelet anal-
ysis marker SDW (smaller SDW means more regular/organized VF, see Chapter 2) in the
CCF≥0.6 groups, while this decrease is not seen in the CCF<0.6 group. In our study pop-
ulation, mechanical CPR was also administered with the Autopulse, which occurred more
in the CCF≥0.6 group. However, this was only given in 49% of the patients in this group,
and therefore it can be assumed that mechanical CPR cannot be solely responsible for the
increase in VF waveform characteristics in this group.
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3.4.2 Differences in the response of VF waveform characteristics to CPR
in the presence of ACO

The effect of CPR on VF waveform parameters in the presence of myocardial ischemia is even
less widely investigated. A swine study of Ristagno et al. showed that when the left anterior
descending coronary artery (LAD) contained an occlusion of approximately 75%, AMSA
was significantly lower after 2 minutes of CPR compared to an ischemia model without an
occluded LAD [30], while AMSA values before initiation of CPR were similar. In a more
recent study, Indik et al. compared change in AMSA and slope after CPR between swine
with a coronary occlusion, a previous MI and control swine. They found that both AMSA
and slope were significantly higher after 2 minutes of CPR in the control and previous MI
swine than in the swine with acute coronary occlusion, while the initial values of waveform
characteristics were similar between the groups [101].

In these animal studies, the cardiac arrest setting was controlled and therefore, adequate
CPR was administered. In our study, we investigated the difference between patients with
CCF≥0.6 and CCF<0.6, and found that the increase in waveform parameter was larger in
the CCF≥0.6 group when looking at non-ACO patients, but this difference did not occur in
ACO patients. Additionally, in the patients with CCF≥0.6 there was a significantly larger
increase in amplitude and median slope in non-ACO patients compared to ACO patients.
This agrees with the results from Indik et al., showing an increase in waveform characteris-
tics in swine with ACO after CPR, but an even larger increase in waveform characteristics in
swine without ischemic injury [101].

There is also one human study by Hidano et al. that investigated if the VF waveform char-
acteristics after CPR differed according to the aetiology of the arrest. Contrastingly to our
results, they did not find a difference between patients with STEMI, non-STEMI and pa-
tients without ischemic cause of VF [102]. This may be caused by a difference in study
groups. With stratification of patients based on the presence of ST-elevation on the ECG,
patients with coronary artery disease without a total occlusion might also be stratified in the
ischemia groups, while in our study those are stratified in the non-ACO group. Therefore,
the difference between the result of our study and the study by Hidano et al. might be due
to different responses of VF waveform characteristics to CPR for subtotal and total occlusion
of the coronary artery.

Interestingly, in our study the ∆AMSA was not significantly different between ACO and
non-ACO patients in the CCF≥0.6 group, while in many studies the AMSA is a good pre-
dictor of shock success [20–23, 83] and it is lowered in the presence of myocardial ischemia
[25–27, 29]. One explanation for this could be that the frequency content is less affected by
CPR, leading to no significant in- or decrease in frequency characteristics in any of the sub-
groups (results not shown). Furthermore, since VF waveform characteristics also have been
shown to differ according to the localisation of the infarction [29], the effect of CPR on the
VF waveform characteristics may be dependent on the localisation of the coronary occlusion.
Unfortunately, subdividing the ACO group according to localisation would result in groups
too small for comparison (11 inferior, 6 anterior and 2 posterior coronary occlusions).
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3.4.3 Initial value of VF waveform parameter

In this study, a difference was found in the amount of first shock success, with more shock
success occurring in the CCF<0.6 group. Since waveform parameters are associated with
defibrillation outcome, one might expect higher values of the initial waveform parameter in
this group. Upon further analysis, the parameters MAA and SDW showed a significant dif-
ference in WFP1 between the groups. A lower value for MAA in the CCF≥0.6 group might
lead to the parameter increasing ‘more easily’ than in the CCF<0.6 group, where higher
values are noted for WFP1. A sub analysis dividing the waveform parameters in groups
of low and high WFP1 values (i.e. higher or lower than the median of all patients) found
that for AMSA, MdS, PSA and VS a significant increase with CCF≥0.6 occurred for low and
high values of WFP1, while this difference did not occur for either low or high values in the
CCF<0.6 group. For MAA, the low values of WFP1 showed a significant increase (p<0.01) in
the CCF≥0.6 group, while high values of WFP1 did not result in an increase. However, low
values of WFP1 in the CCF<0.6 group did not lead to an increase, therefore it is expected that
with comparable WFP1 values the increase with CCF≥0.6 will still occur.

Furthermore, the higher WFP1 in the CCF<0.6 group could be the result of a perfusing
rhythm in between the two shocks in this groups. When the circulation is restored, the ap-
plication of chest compressions is not indicated. This will lead to a lower CCF in the patients
where shock success with perfusing rhythm occurred. Since a perfusing rhythm restores
blood flow to the myocardium, its metabolic state is expected to improve. Therefore, when
the rhythm returns to VF, the VF waveform parameters may be improved without the appli-
cation of CPR. That still no overall increase is detected in the CCF<0.6 group suggests that
either the perfusing rhythms did not occur often, or the decrease in parameters during VF
without CPR dominates the overall change. In further research, groups should be selected
based on the same distribution of the initial waveform parameter, and in-field assessment of
perfusing rhythm should be collected to discriminate between (un)justified pauses in chest
compressions.

3.4.4 Implications

Firstly, the results support the suggestion that the VF waveform is favourably affected by
CPR, correspondingly to findings of animal studies, as well as the results from the human
study by Eftestøl et al. Moreover, this study shows that this also applies in the common situ-
ation during OHCA, where chest compressions need to be interrupted for rhythm analysis,
shock delivery or application of ventilations. That this increase in VF waveform character-
istics was only found in patients where CCF was 0.6 or higher once more emphasizes the
importance of good quality CPR, i.e. with a minimum duration of CPR interruptions. Ad-
ditionally, the change in VF waveform characteristics can provide a method to monitor the
quality of CPR. Furthermore, more evidence that CPR favourably affects the VF waveform
in combination with findings that higher VF waveform parameters are associated with more
defibrillation success supports the possible benefit of VF waveform guided initial therapy,
i.e. using the VF waveform to decide whether defibrillation should be delayed to apply CPR
to increase the chance of defibrillation success.

Secondly, this is the first human study investigating the response of VF waveform character-
istics to CPR in the presence of an acute coronary occlusion. This is of particular importance
since myocardial ischemia is a common etiology of cardiac arrest, but identification of this
cause during the resuscitation is very difficult. An altered response of VF waveform charac-
teristics to CPR in the presence of an ACO may provide a tool to identify patients who are
having an ACO as underlying cause of the OHCA early in the resuscitation. The waveform
evolution therefore may give additional information to ensure correct and early triage of pa-
tients to the cardiac catheterization laboratory, potentially leading to an increase in survival
after OHCA.
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3.4.5 Limitations

The most important limitation is the relatively small number of patients included in this
study. To be able to analyze more data, we could have included the change in waveform
characteristics between all the shocks in patients with more than 2 shocks. However, since
it is suggested that the change in waveform characteristics is dependent on the duration
of untreated VF [103], it may also be dependent on the length and quality of the preced-
ing resuscitation. Therefore, we chose to only investigate the change between the first and
second defibrillation attempt, to (as much as possible) eliminate these possible influences.
Furthermore, since the analyses in the subgroup are performed on an even more limited
sample-size, these should be considered only hypothesis generating.

Another limitation in this study is the difference in initial values of the waveform parameters
(WFP1) between the groups. The height of this initial value may influence the amount of
in- or decrease that the waveform parameter can show. We performed additional analysis
by subdividing patients with low and high initial values within the groups (as discussed
above), and by investigating the relative change in VF characteristics (WFP2/WFP1), which
gave similar results as the absolute differences. Therefore, we expect that similar results
will be found when groups have comparable WFP1 values, but this should be confirmed in
future studies.

Lastly, even though the analysis of ECG data can tell us whether the rhythm during the
cardiac arrest is organized or non-organized, this cannot tell us if this rhythm resulted in
a sufficient cardiac output. However, given that the return of a spontaneous circulation
does not occur immediately after defibrillation [11], short periods of organized rhythm will
(most likely) not have led to perfusion. In this study, 15% of the patients had more than 2
minutes of organized rhythm between the first two defibrillations, and when these patients
are excluded the results remain the same. Additionally, analysis of only patients without
organized rhythm in between the first two defibrillations (84/138) also revealed an increase
in VF amplitude characteristics for patients with CCF≥0.6, while this increase did not occur
in patients with CCF<0.6. This suggests that return of spontaneous circulation may not have
a large impact in this study. However, in further studies information about the presence or
absence of a perfusing rhythm should be collected, so that the chest compression fraction
can be calculated over the time that chest compressions are indicated.

3.5 Conclusion

In OHCA-patients with VF, VF waveform amplitude characteristics were significantly in-
creased when CCF was 0.6 or higher, while no increase was seen when CCF was lower than
0.6. These differences were also seen in a sub analysis in patients without ACO, while these
differences were not found in patients with ACO. Further studies are warranted to confirm
these findings in larger (preferably prospective) studies and to determine if changes in VF
waveform characteristics can help in developing a decision tool for early treatment strat-
egy, and/or may help in the early identification of patients with an underlying ACO during
OHCA.
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4 Differentiating between patients
with and without acute coronary
occlusion in out-of-hospital cardiac
arrests based on ventricular
fibrillation waveform measures

4.1 Introduction

A leading cause of death in Europe and the United States is out-of-hospital cardiac arrest
(OHCA), with ventricular fibrillation (VF) the first observed cardiac rhythm in about 40% [1,
2, 5]. The only therapy to establish the return of spontaneous circulation (ROSC) from VF is
electrical defibrillation [8]. Nevertheless, success rates are poor if the myocardial metabolic
state is compromised, which also increases the likelihood of inducing asystole after defibril-
lation [10]. A method of interest to give information about arrest duration and myocardial
metabolic state is VF waveform analysis [75, 79]. In several studies, different amplitude and
frequency characteristics of the VF waveform have been shown to correlate with defibrilla-
tion success and long-term outcome [20–23].

However, several animal and human studies indicate that VF characteristics are also influ-
enced by the presence of myocardial infarction (MI) [24–27, 29]. In addition, animal studies
suggest that the change in VF waveform characteristics in reaction to CPR may also be al-
tered in the presence of acute coronary occlusion (ACO) [30, 101]. Our human study on
difference in change in VF waveform parameters as response to CPR between patients with
and without ACO (Chapter 3) also indicates that VF amplitude characteristics increase in
patients with and without ACO, but this increase is significantly higher in patients without
ACO.

These VF waveform differences between patients with and without ischemic aetiology may
provide a method to discriminate between these patients in the field. Since ACO is a com-
mon and reversible cause of OHCA [57, 86], early identification of these patients during
resuscitation could be beneficial.

While the described studies found differences in individual VF characteristics between the
groups, they did not investigate the capability of using these differences to actually discrim-
inate an ACO in the field. Therefore, this study aims to determine the ability of the individ-
ual waveform parameters to discriminate between patients with and without ACO during
OHCA. Furthermore, this study aims to determine the ability of the waveform parameters
combined with their change in response to CPR to discriminate between these patients.
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4.2 Methods

4.2.1 Patient population

All consecutive out-of-hospital cardiac arrest patients who where resuscitated by the emer-
gency medical services (EMS) in the region of Nijmegen (Gelderland-Zuid, the Netherlands)
between November 2005 and January 2011 are identified. For the present study inclusion
criteria are: available paddle ECG tracings, VF as first observed cardiac rhythm and trans-
portation to the Radboud University Medical Center. Exclusion criteria are: age < 18 years,
traumatic arrest (including hanging and drowning), AED shocks before EMS arrival and
prematurely stopped resuscitations (due to ‘do not resuscitate order’ or terminal illness).
Given the observational design of the study, written informed consent is not necessary to
obtain according to the Dutch Act on Medical Research involving Human Subjects.

Gelderland-Zuid has a population of about 540,000 residents and covers 1,040 square kilo-
meters, including urban, suburban and rural areas. The EMS system in Gelderland-Zuid
is a one-tier system that is activated by calling 112. Paramedics will give instructions to
the caller to initiate basic life support (BLS), and at least one, but usually two ambulances
are dispatched to the location of the emergency. A mechanical chest compression device
(Autopulse) was part of the standard EMS-equipment, but not routinely used. During the
study period, CPR was performed according to the guidelines of the European Resuscitation
Council of 2005. EMS staff were not instructed to withhold chest compressions in order to
acquire artefact-free ECG recordings.

4.2.2 Data collection

Demographic, clinical and arrest characteristics were defined according to the Utstein style
definitions [60] and collected using EMS and hospital records. During resuscitation, ECG
tracings and transthoracic impedance (TTI) data were recorded with the two paddles of
the LIFEPAK Biphasic Defibrillator (Physio-Control, Redmond, WA, USA) at a sample fre-
quency of 125 Hz and 61 Hz respectively. A MATLAB (version 2014b, Mathworks, Natick,
MA, USA) programmed Graphical User Interface was used for the annotation of chest com-
pressions in the tracings, in order to identify chest compression free periods.

4.2.3 VF waveform characteristics

Analysis of the VF waveform was performed using MATLAB. The ECG recordings were pro-
cessed by twice applying a fourth-order Butterworth bandpass filter with cut-off frequencies
of 2 and 48 Hz for elimination of non-physiological low and high frequency noise. Three-
second chest compression free segments of pre-shock VF (i.e. the chest compression free
segment of the ECG tracing closest before the shock) before the first and second shock were
selected for further analysis.

From the selected ECG signal in the time domain, the mean absolute amplitude (MAA) was
computed as the mean absolute deviation (i.e. amplitude) from the mean of the waveform
and the median slope (MdS) was computed as the median value of all amplitude differences,
describing the median steepness of the waveform [25, 65]. The variance of the slope (VS)
gives an indication about the diversity of the slope in the segment, and is computed as
the variance of all amplitude differences. The VF segment was then transformed to the
frequency domain using the Fast Fourier Transform (FFT). From this signal the amplitude
spectrum area (AMSA) is computed as the summed product of individual frequencies and
their corresponding amplitudes [19, 64, 65, 69]. From the signal’s power spectrum (estimated
by squaring the Fourier transform of the original VF signal) we calculated the dominant
frequency, which is the frequency where the power spectrum attains its maximum [22, 75]
and the median frequency, the frequency at which the power spectrum is divided into two
regions with equal power [29, 75]. Furthermore, we calculated the power spectrum area
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(PSA) as the summed product of individual frequencies and corresponding powers [65]. A
detailed description and mathematical formulation of these characteristics was presented in
Chapter 2.

In addition, two parameters were determined using a scaling analysis approach. The first
is detrended fluctuation analysis (DFA), which is used to describe the underlying structure
of non-stationary data [78]. DFA is calculated to give information about the complexity of
the VF waveform morphology [78, 79]. The method of DFA and an extensive investigation
on applying this method to different kinds of signals is presented in Appendix A. The other
scaling analysis approach is wavelet analysis, based on continuous wavelet transform. The
scale distribution width (SDW) is the width of the distribution of wavelet energy among
scales, and gives a measure for the degree of organization of the signal [87, 88]. A more
extensive explanation of the use of wavelet analysis to calculate SDW was given in Chapter 2.

The reaction of the waveform parameters on CPR was determined as the change in the pa-
rameter between the first and second shock, calculated as ∆WFP = WFP2 - WFP1. The WFP1

is the investigated waveform parameter before the first shock and WFP2 before the second
shock. Since some patients received resuscitation according to an old protocol, where up to
three stacked shocks were given [89], these delta characteristics were only taken into account
if the period between the two segments was more than 30 seconds.

4.2.4 Study groups

The presence or absence of a localised myocardial infarction related to an ACO as underlying
cause of VF was determined on a case-by-case basis. For each patient, records of symptoms,
cardiac biomarkers, 12-leads ECG in the emergency department (ED), echocardiography,
coronary angiography (CAG) and autopsy reports were investigated. Categorization was
based on the criteria of the third universal definition of myocardial infarction and criteria
for ACO (i.e. ACO on CAG or autopsy and/or ST-segment elevation in accordance with
an acute localized MI) [41]. Subjects without sufficient clinical information were excluded.
Patients that met both the universal definition of MI as well as the criteria for ACO were cat-
egorised in the ACO group. Patients that did not meet the universal definition of MI and/or
the criteria for ACO, were categorised in the non-ACO group. An extensive description of
study group categorisation regarding ACO can be found in Appendix B.

4.2.5 Statistical analysis

Statistical analysis was performed using IBM SPSS Statistics software (version 22, IBM Corp.,
Armon, NY, USA). Baseline characteristics, waveform parameters and change in waveform
parameters were compared between the two study groups. Categorical data were expressed
as frequencies (percentages) and continuous data as medians (interquartile ranges). In case
of missing data, proportions were calculated using the available data as denominator. The
difference between groups was determined with the Chi-square test for categorical data and
the Mann-Whitney U test for continuous data. A p-value of <0.05 was considered statisti-
cally significant for all tests.

Receiver operating characteristic (ROC) curve analysis was used to determine the evaluate
the discriminative ability. The area under the curve (AUC) gives an overall measure of the
discriminative ability of the waveform parameter, and is displayed with 95% confidence
interval (CI).

Combination of parameters in a prediction model

The combination of multiple parameters into one is done with binary logistic regression,
which estimates

PACO =
1

1 + e−(β0+β1·X1+β2·X2+···+βn·Xn)
,
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FIGURE 4.1: Flowchart of patient inclusion. OHCA = Out-of-hospital cardiac arrest, VF = Ventricu-
lar fibrillation, AED = Automated external defibrillator, ICD = Implantable cardioverter defibrillator,

ECG = Electrocardiogram, ACO = Acute coronary occlusion.

where β0 is the regression constant, β1 to βn are the regression coefficients and X1 to Xn are
the variables entered in the regression model. This method gives a predicted probability, i.e.
the probability that the patient belongs to the ACO-group.

First, the single waveform parameters that were significantly different between the ACO
and non-ACO group were investigated for their individual discriminative ability. Since
there was a high level of multicollinearity between the waveform parameters, combination
of two different waveform parameters calculated from the same segment of VF was not at-
tempted. Secondly, the waveform parameter is combined with the change in that parameter
in response to CPR. In order to do so, the application of adequate CPR (measured as a cat-
egorical variable determining whether the chest compression fraction (CCF) is greater than
or equal to 0.6) also has to be entered in the regression model as interaction term. There-
fore, the model then consists of four variables: WFP1, ∆WFP, CCF and ∆WFP*CCF. Since
this model can only be applied to those patients for which a ∆WFP could be determined
(i.e. patients receiving more than one shock), the discriminative ability of this model is only
determined for those patients. Lastly, it will be determined whether clinical characteristics
can further improve the model. Univariate logistic regression analysis was carried out to
identify clinical variables associated with the presence of an ACO. Factors that were found
to be significant (p<0.1) in this univariate analysis were separately included in a multivariate
logistic regression model with the single waveform parameters. If the inclusion of the clin-
ical characteristic led to a higher AUC than for the single waveform parameter, the clinical
characteristic was combined with the WFP1, ∆WFP, CCF and ∆WFP*CCF into a new model.

4.3 Results

4.3.1 Study population

In the study period of November 2005 and January 2011, 102 patients were included. Main
reasons for exclusion were AED shocks before EMS arrival (8%), no available or analyzable
ECG tracing (37%) and insufficient clinical information to determine the underlying etiology
(14%). Details regarding in- and exclusion can be found in Figure 4.1.
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Of these included patients, median age was 61.5 years (51 – 71) and 72% was male. 87% of
patients had a witnessed arrest, either by bystanders (85%) or EMS (2%). Bystander CPR
was delivered in 67% of the patients. The median EMS response time was 8 minutes (6-10)
and median number of shocks delivered by the EMS was 3 (1-6). In total, 79% of the patients
had ROSC at ED arrival, and 48% survived until hospital discharge.

TABLE 4.1: Baseline characteristics of OHCA patients with or without an underlying ACO

Variable All (n=102) ACO (n=62) Non-ACO (n=40) p-value

Age 61.5 (51 – 71.3) 60.5 (49 – 71.3) 62 (53.5 – 71.8) 0.641
Male gender 73 (71.6) 47 (75.8) 26 (65) 0.237

Pre-hospital
Previous MI (n=92) 25 (27.2) 12 (22.2) 13 (34.2) 0.203
Public location arrest 44 (43.1) 27 (43.5) 17 (42.5) 0.917
Witnessed arrest: (n=99) 86 (86.9) 53 (88.3) 33 (84.6) 0.593
- Bystander witnessed 84 (84.8) 51 (85.0) 33 (84.6) 0.958
- EMS witnessed 2 (2.0) 2 (3.3) 0 (0) 0.518
Bystander CPR (n=99) 66 (66.7) 41 (68.3) 25 (64.1) 0.669
Autopulse used (n=99) 31 (63.3) 17 (56.7) 14 (73.7) 0.428
Response time (min) (n=92) 8 (6 – 10) 8 (6 – 10.8) 7 (5 – 9) 0.038
Shocks delivered by EMS 3 (1 – 6) 3 (1 – 6) 2.5 (1 – 4) 0.272
Amiodarone (n=98) 64 (65.3) 43 (71.7) 21 (55.3) 0.096
Epinephrine (n=99) 79 (79.8) 49 (81.7) 30 (76.9) 0.566
Atropine (n=98) 24 (24.5) 17 (28.3) 7 (18.4) 0.266

In-hospital
12-leads ECG 97 (95.1) 59 (95.2) 38 (95) 1.00
Coronary angiography 74 (72.5) 50 ( 80.6) 24 (60) 0.023
- Immediate CAG 63 (61.8) 48 (77.4) 15 (37.5) <0.001
- Delayed CAG 11 (10.8) 2 (3.2) 9 (22.5) 0.006
PCI 54 (52.9) 44 (71) 10 (25) <0.001
CABG 2 (2) 1 (1.6) 1 (2.5) 1.00
Troponin I max (n=98) 19.5 (1.1 – 94.2) 41.7 (3.7 – 100) 3.4 (0.6 – 27.6) <0.001
Autopsy 14 (13.7) 10 ( 16.1) 4 (10) 0.557

Clinical outcomes
First shock success (n=101) 50 (49.5) 26 (42.6) 24 (60) 0.090
ROSC at arrival ED 81 (79.4) 45 (72.6) 36 (90) 0.034
Survival 24 hrs (n=101) 77 (76.2) 43 (70.5) 34 (85) 0.094
Survival at discharge 49 (48.0) 28 (45.2) 21 (52.5) 0.469
Values are given in numbers (%) or medians (interquartile ranges). Age is given in years, response
time in minutes and troponin I in µg/L (measured with the (no longer available) Immulite 2000, DPC
cardiac troponin I immunoassay). OHCA = Out-of-hospital cardiac arrest, ACO = Acute coronary
occlusion, MI = Myocardial infarction, EMS = Emergency medical services, ECG = Electrocardiogram,
CPR = Cardiopulmonary resuscitation, PCI = Percutaneous coronary intervention, CABG = Coronary

artery bypass grafting, ROSC = Return of spontaneous circulation, ED = Emergency department.

A total of 61% of the included patients had an underlying ACO. EMS response time was
significantly longer in the ACO group compared to the non-ACO group. Furthermore, max-
imum troponin I was significantly higher and more patients underwent CAG and percuta-
neous coronary intervention (PCI) in the ACO group. In the ACO group a significantly lower
proportion had ROSC at ED arrival and there was a trend towards less 24-hour survival, but
the survival to discharge did not differ significantly between the ACO and non-ACO study
groups. The baseline characteristics for all patients and comparisons between the groups are
presented in Table 4.1.
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TABLE 4.2: VF waveform characteristics before the first defibrillation of OHCA-patients with or with-
out an underlying ACO

Waveform parameters ACO (n=62) Non-ACO (n=40) p-value

Amplitude characteristics
Amplitude spectrum area (AMSA) 7.86 (5.28– 11.14) 12.95 (6.60 – 15.61) 0.009
Mean absolute amplitude (MAA) 0.10 (0.06 – 0.13) 0.13 (0.08 – 0.16) 0.040
Median slope (MdS) 2.87 (1.83 – 4.41) 4.40 (2.40 – 5.67) 0.013
Power spectrum area (PSA) 0.05 (0.02 – 0.14) 0.15 (0.04 – 0.22) 0.009
Variance of slope (VS) 0.05 (0.03 – 0.13) 0.15 (0.04 – 0.22) 0.008

Frequency characteristics
Dominant frequency (DF) 4.16 (2.99 – 5.73) 4.65 (3.66 – 6.98) 0.118
Median frequency (MdF) 4.32 (3.66 – 5.40) 4.99 (3.99 – 6.32) 0.058
Frequency ratio (FR) 0.22 (0.12 – 0.60) 0.38 (0.15 – 0.68) 0.220

Scaling analysis characteristics
Detrended Fluctuation Analysis (DFA) α1 1.41 (1.31 – 1.52) 1.34 (1.23 – 1.46) 0.033
Detrended Fluctuation Analysis (DFA) α2 0.01 (0.05 – 0.09) 0.08 (0.05 – 0.11) 0.225
Scale distribution width (SDW) 23.3 (18.1 – 29.0) 22.4 (17.3 – 27.3) 0.317
Values are given in medians (interquartile ranges). VF = Ventricular fibrillation, OHCA = Out-of-

hospital cardiac arrest, ACO = Acute coronary occlusion.

4.3.2 VF waveform characteristics

All calculated VF amplitude characteristics (i.e. AMSA, MAA, MDS, PSA and VS) were
significantly lower in patients in the ACO group than in patients in the non-ACO group
(Table 4.2). Of the frequency characteristics, none showed a significant difference between
patients in the ACO and non-ACO group, although MDF showed a trend towards lower
values in the ACO-group (p=0.058). In the scaling analysis characteristics, DFAα1 values
were significantly higher in the ACO-group compared to the non-ACO group.

In Chapter 3, we found that the increase in amplitude waveform characteristics between the
first and the second shock in patients without ACO was significantly higher for CCF≥0.6
than for CCF<0.6, but this difference did not occur in patients with underlying ACO. There-
fore, even though the changes were not different between patients with and without ACO
(Appendix D), combination of the single waveform parameter with the change in that pa-
rameter interacted with the CCF is expected to increase the discriminative ability of the
model. From our study population of 102 patients, the change between the first and the
second shock could be determined in 60 patients (38 ACO; 22 non-ACO).

4.3.3 Discriminating ACO and non-ACO

Firstly, the waveform characteristics that significantly differed between the study groups
are individually investigated for their ability to discriminate between ACO and non-ACO
patients. The areas under the curve of the ROC curves of the waveform characteristics with
corresponding 95% confidence interval are given in the left side of Table 4.3. All waveform
parameters show a similar limited discriminative ability, with AMSA and VS showing the
best discriminative ability with an AUC of 0.66. With a cut-off value for AMSA of 10.00
mVHz, this resulted in a sensitivity of 67.7% with a sensitivity of 65%.

Secondly, logistic regression was used to combine the single waveform parameters with
the change in that parameter in response to CPR. This was applied to the 60 patients from
which the change in waveform parameter between the first and second shock could be de-
termined. The areas under the curve of the ROC curves of the waveform characteristics
with corresponding 95% confidence interval are given in the right side of Table 4.3. From
these models, the model with MdS+∆MdS performed the best with an AUC of 0.75, and
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MAA+∆MAA performed second best with an AUC of 0.72. The other combined models
did not show improvement compared to the single waveform parameter model, or even a
decreased discriminative ability for VS+∆VS and DFAα1+∆DFAα1.

Lastly, we combined the best performing models with clinical patients characteristics. After
univariate analysis, first shock success and administration of amiodarone and EMS response
time were associated with ACO status (p<0.1). Separately combining these characteristics
with the waveform parameters did not lead to an increase in AUC for administration of
amiodarone and first shock success, but combination of WFP1 with EMS response time did
lead to a (slight) increase in AUC (see Table 4.4). Combining the EMS response time with
the WFP1, ∆WFP, CCF and ∆WFP*CCF into a new model leads to an even further increase
in AUC, with the highest AUC of 0.79 for the model with MAA and the model with MdS
(see Table 4.5).

4.4 Discussion

This is the first human study describing the discriminative ability of the VF waveform char-
acteristics during OHCA to discriminate between patients with and without an underlying
ACO. We found the VF amplitude characteristics before the first defibrillation to be lower in
OHCA patients with than without ACO, with a limited discriminative ability (AUC=0.66).
Combining the VF waveform parameter before the first shock with the change in that param-
eter in response to CPR led to an improved discriminative ability (AUC=0.75). Combination
of this model with the response time led to a small further improvement (AUC=0.79). These
findings indicate that the VF waveform might offer a method to discriminate between pa-
tients with and without an underlying ACO. This may be used as additional information to
ensure correct and early triage of patients to the cardiac catheterization laboratory. Further
research is needed to confirm these results in a larger cohort.

4.4.1 Previous studies

Several animal and human studies have investigated differences in VF waveform character-
istics in the presence of cardiac ischemia. Animal studies mainly found lowered frequency
characteristics in animals with previous and acute coronary occlusion [25, 73], while animal
studies investigating amplitude characteristics sometimes do and sometimes do not describe
differences between animals with and without ACO [25, 26, 101, 104].

Results from human studies regarding cardiac ischemia and VF waveform characteristics
also describe some discrepancies. One study found lower VF amplitude characteristics in
patients with MI compared to patients without MI [27], another study found lower AMSA

TABLE 4.3: AUCs with corresponding 95% confidence intervals of the single waveform parameters
and of the combined models.

Individual waveform parameters AUC [95% CI]
(n=102)

Combined mod-
els

AUC [95% CI]
(n=60)

Amplitude spectrum area (AMSA) 0.66 [0.54; 0.77] AMSA+∆AMSA 0.69 [0.55; 0.82]
Mean absolute amplitude (MAA) 0.62 [0.51; 0.74] MAA+∆MAA 0.72 [0.59; 0.86]
Median slope (MdS) 0.65 [0.53; 0.76] MdS+∆MdS 0.75 [0.61; 0.88]
Power spectrum area (PSA) 0.65 [0.54; 0.77] PSA+∆PSA 0.67 [0.53; 0.81]
Variance of slope (VS) 0.66 [0.54; 0.77] VS+∆VS 0.64 [0.50; 0.79]
Detrended Fluctuation Analysis (DFA) α1 0.63 [0.52; 0.74] DFAα1+∆DFAα1 0.60 [0.45; 0.75]

The combined models consist of the waveform parameter before the first shock, the change in that
parameter between first and second shock, the chest compression fraction (categorical ≥ or < 0.6) and
an interaction term of ∆WFP*CCF. CCF = Chest compression fraction, AUC = Area under the curve,

CI = Confidence interval.
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values in patients with a STEMI vs. patients without MI [105], while a third study found no
differences in VF waveform characteristics between STEMI, non-STEMI and non-ischemic
patients [102]. In our study, differences in frequency characteristics between the ACO and
non-ACO group were not found, while the amplitude characteristics did show these differ-
ences, with lower characteristics in patient with ACO compared to patients without ACO.

It is difficult to provide a clear explanation for the discrepancies between the previously
reported studies and our study, but one contributing factor may be a difference in the def-
inition of study groups. In the investigations categorising MI or STEMI, the presence of
global arrest- and CPR-induced ischemia and subsequent cardiac biomarker release might
have led to categorisation of patients with type II MI (MI secondary to ischemia due to either
increased oxygen demand or decreased supply) instead of localised type I MI. Another con-
tributing factor may be a difference in study population, as in one study, survival to hospital
discharge was very high (73%). Furthermore, the same study had a significant difference
in the number of EMS witnessed cases between STEMI and non-ischemic patients (11% vs.
1%, respectively) [102]. Since EMS witnessed OHCA typically results in VF of short dura-
tion with corresponding higher VF characteristics, differences between study groups may
be masked. Accordingly, the study applying a correction for response time revealed a lower
AMSA in patients with MI [105].

In addition to these differences in VF waveform parameters, animal studies suggested that
the change in these parameters in response to CPR may be altered in the presence of an
ACO. A swine study of Ristagno et al. showed that when the left anterior descending coro-
nary artery (LAD) was completely occluded, no increase in VF characteristics after CPR was
seen, while an increase did occur with an unoccluded LAD [30]. A study of Indik et al. on
swine with AMI shows lower VF characteristics after 2 minutes of CPR in swine with ACO
than in swine with VF without ACO [101]. In our human study on difference in change in VF
waveform parameters as response to CPR between patients with and without ACO (Chap-
ter 3), we found that VF amplitude characteristics differed significantly between CCF≥0.6
and CCF<0.6 in patients without ACO, while this difference did not occur in patients with
ACO.

Although the above described studies provide an insight in the differences in VF waveform
characteristics between patients with and without ACO, studies describing the actual dis-
criminative ability of these characteristics are scarce. As mentioned in one of the human
studies, this may be due to the inability of these characteristics to provide a well defined
cut-off value for clinical use. This is due to a relatively large overlap in waveform parameter
values. The highest AUC of 0.66 in our study confirms this statement.

One animal study describing the discriminative ability of the VF waveform in relation to
ACO found comparable values for AMSA and slope in the VF segment before the first de-
fibrillation, but before the second defibrillation a significant difference was found between
swine with ACO and control swine [101]. After the first defibrillation, 2 minutes of un-
interrupted CPR at a metronome-guided rate of 100/min was administered, therefore the

TABLE 4.4: AUCs of single waveform parameters combined with clinical characteristics

WFP1 +
Amiodarone

AUC [95%CI]
n=98

WFP1 + SS AUC [95%CI]
n=101

WFP1 + EMS
response time

AUC [95%CI]
n=92

AMSA 0.64 [0.53; 0.75] AMSA 0.65 [0.54; 0.76] AMSA 0.69 [0.58; 0.81]
MAA 0.62 [0.50; 0.73] MAA 0.63 [0.51; 0.74] MAA 0.66 [0.54; 0.77]
MdS 0.63 [0.52; 0.75] MdS 0.64 [0.53; 0.76] MdS 0.68 [0.57; 0.79]
PSA 0.62 [0.51; 0.74] PSA 0.64 [0.53; 0.76] PSA 0.67 [0.56; 0.78]
VS 0.62 [0.51; 0.74] VS 0.64 [0.53; 0.76] VS 0.68 [0.57; 0.79]
DFAα1 0.64 [0.53; 0.75] DFAα1 0.63 [0.52; 0.74] DFAα1 0.69 [0.59; 0.80]

AUC = Area under the curve, WFP = Waveform parameter, CI = Confidence interval, SS = Shock suc-
cess, EMS = Emergency medical services, AMSA = Amplitude spectrum area, MAA = Mean absolute
amplitude, MdS = Median slope, PSA = Power spectrum area, VS = Variance of slope, DFA = De-

trended Fluctuation Analysis.
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TABLE 4.5: AUCs with 95% CI of combined models (i.e.
WFP+∆WFP+CCF+∆WFP*CCF) with EMS response time

Waveform parameter AUC [95%CI] n=55

Amplitude spectrum area (AMSA) 0.76 [0.64; 0.89]
Mean absolute amplitude (MAA) 0.79 [0.66; 0.93]
Median slope (MdS) 0.79 [0.67; 0.91]
Power spectrum area (PSA) 0.75 [0.62; 0.89]
Variance of slope (VS) 0.73 [0.58; 0.87]
Detrended Fluctuation Analysis (DFA) α1 0.73 [0.60; 0.87]

AUC = Area under the curve, CI = Confidence interval, WFP = Wave-
form parameter, CCF = Chest compression fraction, EMS = Emer-

gency medical services.

parameters before the second shock indirectly include the change in waveform parameters
in response to CPR. From these values before the second shock, they found that AMSA and
slope were predictive of ACO with AUCs of 0.85 and 0.75 respectively [101]. In the predic-
tive models including the change in waveform parameters, we found the best discriminative
ability to be for the model combining MdS with ∆Mds, CCF and CCF*∆MdS, with an AUC
of 0.75. This is lower than the best discriminative ability described in the animal study,
however the experimental setting of animal studies provides for controlled conditions of the
resuscitation. In all the swine in their study, CPR of good quality was achieved, while in
our study we had to take the CCF into account with regard to the change in VF waveform
parameters. Furthermore, induction of ACO in the animal study was all done according to
the same protocol, by placement of a plug in the mid LAD artery, causing an occlusion in
the arteries that supply the anterior wall. A previous study investigating the VF waveform
characteristics with regards to localisation of a previous MI found that VF amplitude char-
acteristics were lowest in the ECG leads adjacent to the region of previous infarction [29].
Since in our study localisation of ACO was not controlled, this could also contribute to the
difference in discriminative ability between our study and the animal study.

Given this difference in VF amplitude characteristics according to ACO localisation, we in-
vestigated the influence of ACO localisation in a sub analysis. Since the recording direction
during OHCA roughly corresponds to lead II in the 12 leads ECG (the area adjacent to the
inferior wall), inferior coronary occlusions may show even lower VF characteristics than
anterior or posterior coronary occlusions. Therefore, in the sub analysis patients with an in-
ferior ACO were classified in one group, whereas patients with anterior and posterior ACO
and patients without ACO were classified in the other group. The single waveform param-
eters and the combination with change in waveform parameters resulted in AUCs of 0.67
and 0.74, respectively, to identify an inferior ACO, similar to AUCs discriminating between
ACO and non-ACO. Therefore, we conclude that the predictive model combining waveform
parameters with their change performs equally well for different localisations of the ACO.
A more extensive description of this sub analysis can be found in Appendix E.

4.4.2 Response time

In this study, response time differed between the two study groups and was therefore in-
cluded as an explanatory variable. This led to a slight improvement of the discriminative
ability when compared to the model of waveform parameters combined with their change
in response to CPR without response time included (AUC=0.79 vs. AUC=0.75). However,
response time only gives an indication of the actual arrest duration, and is often unknown.
Given that VF waveform parameters are investigated as a proxy for arrest duration, inclu-
sion of response time in the prediction model might not have clinical implication. Nonethe-
less, we tried to identify all variables that might offer an increase in discriminative ability
for scientific purposes, to offer a theoretical discriminative ability.
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4.4.3 Implications

Acute coronary occlusion is an important etiology for cardiac arrest [57]. Patients with VF
based on an underlying coronary occlusion are advised to be taken to the catheterization
laboratory as soon as possible [106], therefore early recognition of an underlying ACO is of
significant importance. Even percutaneous coronary intervention (PCI) during mechanical
CPR may be considered as a treatment option in patients with shock resistant VF. Consid-
ering that this is costly and resource consuming [107], identification of patients expected to
benefit from this treatment (i.e. patients with ACO) is of great importance.

In this study, we have shown that in patients requiring more than 1 shock, providing the
possibility to analyze the change in VF waveform parameters in response to CPR, analysis
of the VF waveform may provide a method to identify patients with ACO early in the re-
suscitation. Furthermore, given that patients with acute MI resuscitated from cardiac arrest
caused by ventricular fibrillation do not always show ST-segment elevation on a postresusci-
tation ECG [57, 108], VF waveform parameters might also provide additional information to
discriminate between patients with and without ACO after the restoration of a normal, per-
fusing rhythm is acquired. Thus, the VF waveform may be used to ensure correct and early
triage of patients to the cardiac catheterization laboratory, both in the field during resusci-
tation as early in the emergency department, potentially leading to an increase in survival
after OHCA.

4.4.4 Limitations

The most important limitation is the patient selection in this retrospective study. Patients
were excluded if insufficient information was available for group classification, and there-
fore only patients that are admitted to the hospital are included in this study. As a result,
included patients have relatively favourable arrest characteristics.

Another limitation is the relatively small number of patients included in this study. Al-
though 102 patients were selected with VF waveform parameters before the first shock, from
only 60 patients the change in VF waveform parameters in response to CPR could be deter-
mined. Therefore the prediction model is based and tested on the same patients. For better
testing of the discriminative ability of a logistic regression model, it would be better to di-
vide the patients in a training set for developing of the model parameters, and a testing set to
determine the discriminative ability of the model. However, dividing a group of 60 patients
into a training and testing set would lead to an even smaller number of patients on which
the model is be based.

4.5 Conclusion

Individual VF waveform characteristics offered a modest ability to discriminate between pa-
tients with and without ACO, with an AUC of 0.66. Combining this with the change in VF
waveform characteristics in response to CPR led to a more clinically relevant discrimina-
tive ability, with an AUC of 0.75. Therefore, analysing VF waveform parameters and their
change in response to CPR might provide a method to ensure distinction of these patients
even before a perfusing rhythm is acquired, possibly leading to earlier revascularization.
Further studies are needed to determine if the combination of waveform parameters and
their change in response to CPR can predict the presence of an ACO in a prospective fash-
ion, and whether this leads to improved survival after OHCA.
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5 Discussion

This study first aimed to investigate the change in VF waveform measures in relation to
CPR quality, and the difference in this between patients with and without underlying ACO.
Secondly, this study aimed to assess the predictive ability of single waveform measures, and
of the waveform measures combined with their change in response to CPR. Both study aims
have (to our knowledge) never been described before in human OHCA based on VF.

Chapter 3 outlines the first study aim, by investigating the difference in change in VF wave-
form characteristics between patients with and without adequate CPR (i.e. chest compres-
sion fraction ≥ or < 0.6). This way the common situation during OHCA is investigated,
where chest compressions need to be interrupted for rhythm analysis, intubation attempts
or shock delivery. In patients with adequate CPR, an increase in all amplitude characteris-
tics (AMSA, MAA, MdS, PSA and VS) was detected, while a decrease in most scaling analy-
sis characteristics was detected (DFAα1 and SDW). For the amplitude characteristics MAA,
PSA and AMSA, this numeric increase was significantly higher in patients with CCF≥0.6
compared to patients with CCF<0.6. Secondary analysis also revealed a difference in the
response of VF characteristics to CPR between patients with and without an ACO, with a
larger increase in VF amplitude characteristics in patients without ACO compared to pa-
tients with ACO after adequate CPR. These findings support the suggestion that the VF
waveform is favourably affected by CPR, and show that this also applies in common sit-
uation with interruptions of chest compressions, as long as these interruptions are kept to
a minimum. Furthermore, the difference in response of VF characteristics to CPR between
patients with and without myocardial substrate may offer a method for early distinction of
acute coronary occlusion. This is further investigated in Chapter 4.

In Chapter 4, we investigated the discriminative ability of the VF waveform to discriminate
between patients with and without an underlying ACO during OHCA. The VF waveform
characteristics were lower in OHCA patients with than without ACO, showing a limited
discriminative ability with an AUC of 0.66. Combining the VF waveform parameter before
the first shock with the change in that parameter in response to CPR led to an improved
discriminative ability (AUC = 0.75). These findings suggests that the VF waveform may
provide additional information to identify patients with underlying ACO, to ensure correct
and early triage of these patients to the cardiac catheterization laboratory. Further studies
are warranted to confirm these results in a larger population, and prospective studies are
needed to determine if this will lead to an increase in survival after OHCA.

Furthermore, this is the first study investigating the difference in VF waveform between
patients with and without ACO using scaling analysis characteristics. These characteristics
have been used before to predict shock success or monitor CPR quality, but have never been
investigated in relation to underlying heart disease. Even though DFAα1 shows a difference
between patients with and without ACO, performance of this parameter in differentiating
these patients is not better when compared to other (more conventional) parameters.
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6 Conclusion

This study showed that VF waveform amplitude characteristics were significantly increased
when CCF was 0.6 or higher, while no increase was seen when CCF was lower than 0.6.
These differences were also seen in a sub analysis in patients without ACO, while these
differences were not found in patients with ACO. Including the change in VF waveform
characteristics in response to CPR led to an improved predictive ability of the presence of
an underlying ACO compared to using a single value of the VF waveform parameter. These
findings suggest that electrocardiographic measures during VF OHCA in combination with
CPR quality can provide a tool for early identification of patients with underlying ACO.
Further studies are needed to determine if the combination of waveform parameters and
their change in response to CPR can predict the presence of an ACO in a prospective fashion,
and whether this results in an improved survival after OHCA.
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A Detrended Fluctuation analysis

A.1 Introduction

Time series analysis comprises methods for analysing time series in order to extract mean-
ingful statistics and other characteristics of the data. Descriptions of the time series can
help in obtaining an understanding of the underlying forces and structure that produced
the observed signal [109]. One often-used method is describing the frequency-content of the
signal. This is done by Fourier transforming the signal, to display periodic-like behaviour
in the time-domain as a peak in the frequency-domain. The squared absolute value of the
Fourier transform represents the power spectrum of the signal [110].

One of the main issues in applying Fourier analysis is that this method is established for
stationary signals. Stationarity means that the signal is roughly similar in different time
windows, i.e. the mean, variance, power and standard deviation do not change over time
[109]. Applying Fourier transformation on a signal that is non-stationary can lead to varying
results, because the resulting power spectrum is dependent of the sampling frequency and
the chosen length of the signal segment wished to be analyzed [111, 112].

This problem with stationarity was also noted by Peng et al. [80]. They were dealing with
applying analysis on cardiac interbeat intervals, which is often highly nonstationary. They
questioned whether this nonstationarity arises from changes in environmental conditions
or from a complex nonlinear dynamical system. Only the fluctuations arising from the dy-
namics of the complex, multiple-component system should show long-range correlations.
They introduced a modified root mean square analysis of an integrated signal - detrended
fluctuation analysis - to detect the presence of these long-range correlation [80].

Computation of detrended fluctuation analysis is as follows: First the global trend of the
original time series is eliminated by subtracting the mean of the signal. This signal is in-
tegrated by taking the cumulative sum of the signal (Figure A.1a). The resulting signal is
divided into equal boxes of length n, for various values of n. In each box the local linear
trend is calculated and subtracted from the integrated time series. Of this detrended signal
the root mean square (RMS) is calculated representing the fluctuation in that box size (Figure
A.1b). This is repeated for several box sizes n (different scales) (Figure A.1c). A relationship
between F(n), the fluctuation as a function of box size, and the box size n (i.e. the number of
samples in a box which is the size of the window of observation) is plotted on logarithmic
axes. The DFA scaling exponent α is the slope of the trend line of this function estimated
using linear regression (see Figure A.2).

A.2 Example of DFA on mathematical signals

A.2.1 Linear function

First, we take a linear function, say y = 2x, which is symmetrically around zero (see Figure
A.3a). This function has an equal number or negative and positive samples, therefore the
mean is zero. The integral of a discrete signal can be determined by taking the cumulative
sum of the signal, which for a linear function gives us a parabola (see Figure A.3b). The
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FIGURE A.1: Step-wise explanation of Detrended Fluctuation Analysis. In panel A, the mean
is subtracted from an example signal sampled at 125 Hz with a duration of 4 seconds (left
and middle plot). The right plot shows the resulting integrated signal. In panel B, the local
trends of the integrated signal from panel A are calculated (blue lines) and subtracted (bot-
tom figure) for box size≈0.2 s (20 samples). In panel C this is shown for box size=0.8 s (100
samples). In the bottom plots of B and C, the root-mean-square of the detrended signal is

presented as the red line.

FIGURE A.2: DFA on the example signal of Figure A.1.
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FIGURE A.3: The linear function y = 2x (A) - with in red the mean of the signal - and its
integral y = x2 −B (B).

mathematical integral of this function is given in Equation (A.1):∫
2x dx = x2 −B, (A.1)

with the constant B determining the horizontal translation of the parabola.

The next step of DFA is dividing the signal into boxes of equal length and subsequently cal-
culating and subtracting the local linear trend. An example of a segment of signal divided in
box length A is given in Figure A.4a. This segment contains the same amplitude-properties
when it is moved along the x-axis to center around zero, so the beginning and end points
of the signal can be stated as −A2 and A

2 (see Figure A.4b). The linear trend in this segment
can be seen in Figure A.4c, and the remaining signal after subtracting this trend is shown in
Figure A.4d. The translation of the signal will change the function y to a function shaped
like y− (ax+b). Subtracting the linear trend will result in removal of the ax term. Therefore,
detrending a segment of a parabola will result in a new parabola.

This parabola can be described with the formula:

yA = x2 −BA, (A.2)

with constantBA and therefore yA dependent on the box lengthA. Note: in discrete samples,
this is only true for box sizes that contain more than 3 samples.

The value for BA represents the horizontal displacement of the graph, and it’s value can be
expressed as a function of A by solving Equation (A.3):∫ A

2

−A
2

x2 −BA dx = 0. (A.3)
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Calculating this integral and solving it over the interval
[
−A2 ,

A
2

]
gives:[

1

3
x3 −BAx+ C

]A
2
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2

= 0

1
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(
A

2
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2
+ C

)
= 0

2

24
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1

12
A3

BA =
1

12
A2. (A.4)

The last step of DFA is calculating the root-mean-square for each box length A. The general
formula to calculate root mean square is:

RMS =

√√√√ 1

n

n∑
n=1

x2n. (A.5)

The summation of all samples on a segment
(∑n

n=1 x
2
n

)
can be calculated by taking the

integral over the length of this segment
[
−A2 ,

A
2

]
, and the formula for the specific segment

FIGURE A.4: Example of detrending a segment of y = x2 − B for box length A. (A) A
segment of the integrated signal y = x2 −B with box size A. (B) The segment of (A) moved
along the x-axis. (C) The segment of (A) with its local linear trend in blue. (D) The segment

of (A) with its linear trend subtracted.
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given in Equation (A.4) can be substituted to form the following equation for RMS:

RMS(A) =

√√√√ 1

A

∫ A
2

−A
2

(x2 −BA)
2
dx. (A.6)

This can be simplified by calculating a value for the integral over
(
x2 −BA

)2, with the sub-
stitution of BA for the value found in Equation (A.4). The solution of the integral in terms of
box length A is given by:

∫ A
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Substituting the integral with this value in the formula for RMS as a function of box size A
given in Equation (A.6) leads to:

RMS(A) =

√
1

A

1

180
A5

=

√
1

180
A4

=

√
1

180
A2

=
1

6
√

5
A2. (A.8)

This equation shows that the root mean square increases quadratically with increasing box
size A. Plotting this on a double logarithmic scale would result in a linear graph that in-
creases with a slope of exactly 2.

An example of detrended fluctuation analysis calculated on a discrete signal with the func-
tion y = 2x in MATLAB is shown in Figure A.5. The calculated slope is 2.02, which deviates
slightly from the theorized value of exactly 2. This difference is caused by the effect of dis-
cretization of the signal. Therefore it may be concluded that a linear signal will have a slope
of 2 in detrended fluctuation analysis. This has been shown for y = 2x, but with logical rea-
soning one can conclude that this is true for all for all linear functions. Take for instance the
function y = 200x, a linear function that is much steeper than the function from Figure A.3a.
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FIGURE A.5: DFA of the linear signal y = 2x.

However, in the detrending step of DFA, the calculated trend will also be 100 times as steep,
and subtracting this will lead to the same detrended signal.

A.2.2 Quadratic function

As a next step we want to show a function that is still a smooth function but is somewhat
more complex, therefore we chose the quadratic function y = x2. This is the same parabola
as the integrated version of y = 2x.Mathematically we expect the integral of this function
to look like the function 1

3x
3. However, before integrating we subtract the signal mean. The

mean being a constant, this introduces another factor in the original function that needs to
be integrated, which can be seen in the following equation:∫

x2 −M dx =
1

3
x3 −Mx− C. (A.9)

The extra factor Mx is a linear factor, and therefore will disappear in linear detrending.
Thus, introducing a constant factor does not change the slope of the DFA curve. Since Peng
et al. introduced DFA to investigate relationships in cardiac interbeat intervals [80], we
expect that subtracting the mean is a step implemented for near-oscillatory data. Without
subtracting the mean, integrating the signal would lead to a signal that has an increasing
trend. However, since this does not influence the slope of the DFA curve because of linear
detrending, this step seems unnecessary. Therefore in this example we ignore this step and
integrate the signal without subtracting the mean, which can be seen in Figure A.6 and the
mathematical representation in the following equation:∫

x2 dx =
1

3
x3 − C. (A.10)

Similar to with the integral of the linear function, we can look at the detrended segment
for different box sizes. For a box size that is small, the line will look smooth and sub-
traction of the linear trend will result in a detrended signal that is similar to a parabola,
see Figure A.7a and A.7b. However, for a box size that is larger, the segment will contain
some sort of different curve. This affects the local linear trend that is calculated and as a
result, the detrended signal will not be an exact parabola like in the other segments, see Fig-
ure A.7c and A.7d. This causes the RMS of the detrended signal to not increase quadratically
as shown in Section A.2.1. This can be seen in Figure A.8, where the increase in RMS for the
last two box sizes starts to deviate from the slope of 2.

Theoretically, when the box size is made infinitely small, every signal will display linear
behaviour, therefore the slope over these boxsizes will be exactly two. However, in most
physiological measurements the minimal boxsize is limited by the sample frequency of the
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FIGURE A.6: Quadratic function y = x2 (A) and its integral Y = 1
3
x3 − C (B).

FIGURE A.7: Detrending of different segments of y = 1
3
x3. (A) Segment of the integrated

quadratic signal and its linear trend for small box size (i.e., the signal is divided into 5 seg-
ments). (B) Detrended segment for small box size. (C) Segment of the integrated quadratic
signal and its linear trend for large box size (i.e., the signal is divided into 2 segments). (D)

Detrended segment for large box size.
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FIGURE A.8: DFA of y = x2.

recording device. A linear trend can only be calculated over a signal of more than two sam-
ples, therefore the lower limit for box size was set at 4 samples. This means that the smallest
box size possible in seconds is 4 divided by the sample frequency. For a very disorganized
or high-frequent signal, this may be not small enough to represent the parabola pattern and
will therefore not exhibit the scaling exponent of 2 for the (relatively) small box sizes.

A.2.3 Sinusoidal signal

We saw that DFA gave a slope of (theoretically) exactly 2 for a linear signal, but that the slope
deviates slightly when the function becomes less linear.

A different kind of function is a repetitive waveform, e.g. a sine function. Subtracting the
mean from this signal would result in a function oscillating around zero. In this example,
the calculation and subtraction of the local trend is most deviant from the linear signal. See
Figure A.9. For very small box sizes, the subtraction of local trends will lead to parabolic seg-
ments, and therefore the root-mean-square will increase exponentially with box size. How-
ever, this will not be true when the box size increases to a size where it captures more of
the signal than just the linear increasing or decreasing part. Moreover, when the box sizes
equals one period of the sine wave, the direction of the signal is as much negative as pos-
itive, therefore the local trend is a flat line (see Figure A.9a). The root mean square of the
detrended signal is therefore equal to the root-mean-square of the sine function itself. The
same is true if the box size is a multiple of one period of the sine wave, e.g. as in Figure A.9b.
A different situation occurs when the box size is not equal to (a multiple of) one period of the
sine wave. Dependent on which segment of signal looked at, it will contain more positive
or more negative numbers, and therefore the local trend will not be zero. This can be seen
in Figure A.9c. The detrended signal for the box size shown in Figure A.9c can be seen in
Figure A.9d. This will lead to a RMS that is smaller than the RMS of the signal itself. If the
box size becomes bigger, the amount of extra positive or negative numbers becomes smaller
in proportion to the rest of the segment, therefore the local trend is less affected. This leads
to the local trend approaching zero, and the RMS approximating the RMS of the original
signal. Applying this logic, the RMS will slightly increase with increasing box size, until the
maximum of the RMS of the original signal. An exception occurs when one box size exactly
equals one period of the sine wave, in which case the RMS will be highest and will remain
equally high or lower for a bigger box size. Therefore, after a certain tipping point, i.e. when
box size becomes larger than one period of the sine wave, the slope of the RMS as a func-
tion of box size will decrease and approximate zero. The deviation from zero is (in discrete
signals) dependent on the frequency and the total length of the signal. An example of a sine
wave of the same frequency but for a different signal length can be seen in Figure A.10a.

Another factor influencing the shape of the DFA curve of a sine wave is the frequency. As
mentioned previously, once the box size is larger than one period of sine, the RMS of the
detrended signal will stop increasing with box size. Since one period of a sine wave (T )
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FIGURE A.9: Detrending of the sine function for different box lengths. (A) Sine with local
trend for one period of the wave. (B) Sine with local trend for two periods of the wave.
(C) Sine with local trend for a segment longer than one period of the wave. (D) Sine wave

detrended for a box length that is not exactly one period of the sine wave.

is dependent on the frequency (T = 1
f ), the box size after which the increase of RMS will

stagnate is smaller for a sine wave of a higher frequency. An example of this can be seen in
Figure A.10b.

Because of the different shape of the DFA curve for sinusoidal signals, when describing such
a signal it would be best to report two slope coefficients, i.e. α1 for the slope of the smaller
box sizes and α2 for the slope of the larger box sizes (larger than one period of the sine wave).

A.3 Example of DFA on white noise

In a white noise signal xt there is no correlation between subsequent samples. The odds of
one sample being higher than the previous one is just as big as the odds of it being lower,
without correlation to the previous samples. Integrating this signal, i.e. taking the cumula-
tive sum (Yt = x1 + · · · + xt), results in a signal that in mathematics is known as a random
walk (see Figure A.11b).

In all signals, the variance at a certain time t can be found by taking the variance of the
summation of all point until that time t:

var(Yt) = var(x1 + x2 + · · ·+ xt).

When there is no correlation between subsequent samples, as is the case in a random walk,
the variance at time t can be calculated by summing the variance of each individual point:

var(Yt) = var(x1) + var(x2) + · · ·+ var(xt) =
t∑
i=1

varxi. (A.11)
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FIGURE A.10: (A) DFA of sine waves of different signal lengths, with in red the longer signal.
(B) DFA of sine waves of different frequencies, with in red the signal with a higher frequency.

Since the number of variances added to calculate the variance at time t is dependent on t,
Equation (A.11) can also be written as:

var(Yt) = t
t∑
i=1

varxi. (A.12)

The variance can be estimated (when x1, x2, . . . , xN are known) as:

var(x) =
1

N

N∑
i=1

(xi − x̄)2, (A.13)

with x̄ the mean of x. Since we subtract the mean in DFA, we can derive that the equation
for RMS (Equation (A.5)) equals the square root of the variance (i.e. standard deviation).
Therefore it seems prudent to assume that the RMS is expected to increase in time with

√
t.

An increase with a square root factor is equal to an exponential factor of 0.5, which will result
in a slope of 0.5 on a double logarithmic scale. This is shown in Figure A.11c.

A.4 How to interpret α

When investigating DFA exponents for physiological measurements, one should consider
the type of signal that is measured. If no clear relation is expected and the measured signal
is not expected to be oscillatory, the slope of the DFA curve (α) will give information about
the smoothness of the signal (i.e. if α approximates 2, the signal is a smooth function and
if α approximates 0.5 the signal may be a random distribution of values). If the signal is
expected to be oscillating, one should consider reporting separate slopes for the smaller and
larger box sizes, i.e. α1 for the smaller and α2 for the larger box sizes.
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FIGURE A.11: Integration and Detrended Fluctuation Analysis of white noise. (A) Example
of white noise, sampled at 20 Hz for 20 seconds. (B) Integration of the same white noise sig-
nal. (C) Detrended Fluctuation Analysis of white noise, which shows an α of approximately

0.5.

The first DFA exponent, α1, gives information about the signal for the smaller box sizes.
When this signal is a relatively smooth function, it will resemble a parabola and therefore
the α1 will be almost two. If the signal is more noisy or is more complex on a smaller level,
the α1 will be lower than two. The second DFA exponent, α2, gives information about the
signal for the larger box sizes, i.e. when the box size becomes larger than one period of the
oscillating signal. If the signal is more complex, e.g. changing amplitude per period, the
α2 will not decrease so much towards zero, and will be higher than for more homogeneous
signals.

A.5 Use of DFA in VF analysis

Several studies show that changes in VF waveform parameters give information about the
myocardial state and survival [15, 68, 96, 98], suggesting that it is a dynamical system [77].
Therefore the VF signal measured during the resuscitation period will most likely be a non-
stationary signal. Therefore the stationarity-assumption of Fourier transformation is not
met. Therefore the application of DFA on VF signals might give more information.

How unorganized ventricular fibrillation may seem, there is still some organization in the
signal; some sort of oscillation. Therefore, we expect the DFA-slope to decrease after a certain
box size, similar to the sine signal. However, even if the box size covers exactly one period
of this oscillation, since VF is so unorganized the next period will be different in length, am-
plitude or other factors. Therefore, the RMS will still increase with box length and the slope
will not totally decrease to zero. It is expected that for VF signals with more organization,
the slope will decrease more towards zero than for signals that are more unorganized.

As an example two VF signals are shown in Figure A.12, one of which has a (relatively)
high AMSA (21.6 mVHz) and the other a (relatively) low AMSA (4.5 mVHz). Since VF is an
oscillatory signal, the DFA curves of Figure A.12c indeed show a decrease of the slope after a
certain box size. Therefore α1 is determined for smaller box sizes (4 - 47 samples, i.e. 0.032 -
0.4 seconds) and α2 is determined for larger box sizes (47-376 samples, i.e. 0.4 - 3.0 seconds).
In the DFA analysis of Figure A.12c, it can be seen that the curves have a different height,
a different slope in the first part of the graph (α1 is 1.18 and 1.47) but a similar slope in the
second part of the graph (α2 is 0.069 and 0.084).

A possible explanation for the large difference in AMSA and not-so-large difference in DFA
slopes between the two signals is that the AMSA is very dependent on the signal amplitude,
since it is a combination measure of amplitude and frequency. In DFA the slope of the curve
is investigated, therefore this measure is not so much dependent on the amplitude of the
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FIGURE A.12: (A) VF with high AMSA (21.6 mVHz), (B) VF with low AMSA (4.5 mVHz),
with both time in seconds on the x-axis and voltage in millivolts on the y-axis, C) DFA of both
signals, the squares indicating the DFA of the high AMSA VF and the triangles indicating
the DFA of the low AMSA VF. The high AMSA VF has a α1 of 1.18 and a α2 of 0.069, the low

AMSA VF has a α1 of 1.47 and a α2 of 0.083

FIGURE A.13: (A) VF with low AMSA (4.4 mVHz), but relatively organized, (B) VF with
low AMSA (4.1 mVHz) but relatively unorganized (C) DFA of both signals, the squares
indicating the DFA of the VF in the left figure and the triangles indicating the DFA of the VF
in the middle figure. The VF of (A) has a α1 of 1.63 and a α2 of 0.073, the VF of (B) has a α1

of 1.41 and a α2 of 0.137.

signal. The DFA most likely gives more information about the morphology of the signal.
When visually inspecting the two VF signals it indeed appears that the two signals do not
differ much in organization.

In another example, we look at two VF segments that have a similar value in AMSA, but
different signal morphology. This is shown in Figure A.13.The VF signal of Figure A.13a
appears visually more organized, or less complex, than the VF signal of Figure A.13b. The
DFA analysis shows similar values for α1 (1.63 and 1.41), but different values for α2 (α2 for
left figure is 0.073, α2 for middle figure is 0.137). The lower value for α2 in the left figure
indicates a more organized signal, which agrees with our visual examination.

A.6 Discussion and conclusion

In this chapter we investigated characteristic behaviour of detrended fluctuation analysis
on different signals. We have shown that linear functions have a scaling exponent of ex-
actly 2. On smaller box sizes, smooth functions also approximate this scaling exponent.
When the signal contains more noise and/or is more complex on the smaller scales, the scal-
ing exponent will be lower. For a complete white noise signal, the scaling exponent will
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approximate 0.5. For a sine signal the DFA curve reaches a plateau after a certain box size,
i.e. a box size larger than the period of the sine wave. For sinusoidal signal with noise or a
combination of sines, the second slope of the DFA curve (i.e. the slope of the plateau) shows
how similar the signal is to a single sine wave.

Detrended fluctuation analysis has been used for VF waveform analysis in a few studies. A
study of Lin et al. in 2010 showed lower values of α2 in subjects with successful defibrilla-
tion, but no difference in α1 [78]. They found a similar discriminative ability for DFAα2 and
AMSA to identify the presence of a successful defibrillation. Similarly to what is described
here, they conclude that the second slope of DFA describes how similar a signal is to a si-
nusoidal wave. In a study by Endoh et al. in 2011, a different approach was used where
no difference was made between the slope of the first and second part of the graph. They
found a lower value of DFA in successful defibrillation episodes, after which they conclude
that a more irregular, unpredictable and complex VF waveform is strongly associated with
increased possibility of successful defibrillation [113]. Lower DFAα2 values indicate more
similarity to a sinusoidal wave, meaning less complex signals, therefore the conclusion of
Endoh does not correspond to the results of Lin. A study not directly investigating defibril-
lation success is done by Hall et al. in 2011. They found lower values for DFA (similarly to
Endoh et al., no α1 or α2 is shown) in patients with primary VF compared to patients with
secondary VF, but did not find differences in the rate of shock success between these groups.
They did find differences in long-term outcome, with 42% discharged alive in primary VF
group versus no survivors in secondary VF group [114].

Unfortunately, the studies by Lin and Endoh do not report baseline characteristics and dif-
ferences between patient population, while Hall only reports characteristics of the primary
and secondary VF groups, and not differences between patients with successful and unsuc-
cessful defibrillation within the primary VF group. Furthermore, the study by Lin reported
the separate DFA α1 and α2 values, while Endoh and Hall did not make this distinction.
Therefore it is difficult to compare these studies.

Given the limitations of these studies, DFA may not yet be suitable for clinical application
in VF waveform analysis. However, since this method investigates the slope of a curve, it
is not so much affected by the amplitude of the signal. Considering that the presence of an
underlying inferior infarction greatly influences mainly the amplitude of the signal [25–27,
29, 104], it may be worthwhile to further investigate this parameter in terms of prediction
of for example shock success or arrest duration. Also in prediction of acute myocardial
infarction it may be useful to combine DFA with established parameters as AMSA in an
effort to further improve discriminative ability of the VF waveform.
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B Acute coronary occlusion
categorisation criteria

Included patients were firstly categorised according to the presence of a myocardial infarc-
tion (MI), following the criteria of the 3rd universal definition of myocardial infarction [41]:

• Detection of a rise and/or fall of cardiac troponin with at least one value above the
99th percentile upper reference limit and with at least one of the following:

– Symptoms suggestive of ischaemia, as determined using the ambulance or emer-
gency department (ED) notes.

– New or presumed new ST segment or T wave changes in two contiguous leads
or new left bundle branch block (LBBB), as determined on the ambulance or ED
ECG.

– Development of pathological Q waves on the ECG.

– Imaging evidence of new loss of viable myocardium, as determined on echocar-
diography or coronary angiography (CAG).

– Identification of an intracoronary thrombus by acute angiography or on autopsy.

• Cardiac death with symptoms suggestive of myocardial ischaemia or presumed new
ischaemic ECG changes or new LBBB, but death occurred before cardiac biomarkers
were obtained, or before cardiac biomarker values would be increased.

Subsequently, we assessed whether a patient had evidence of an acute coronary occlusion
(ACO), according to the following criteria, of which one had to be present to be categorised
in the ACO group:

• ST-segment elevation according to current guidelines: new ST-elevation at the J-point
in two contiguous leads with the cut-points: ≥0.1 mV in all leads other than leads
V2–V3 where the following cut points apply: ≥0.2 mV in men ≥40 years; ≥0.25 mV in
men <40 years, or ≥0.15 mV in women) as determined on ambulance or ED ECG.

• Identification of an intracoronary thrombus or acute occlusion, as identified by an ex-
perienced interventional cardiologist on acute CAG or by a pathologist on autopsy.

All patients meeting the criteria for MI as well as the criteria for ACO were assigned to the
ACO group, whereas all other patients were assigned to the patient group without ACO.
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C Flowchart sub-analysis acute
coronary occlusion

FIGURE C.1: Flowchart patient inclusion. OHCA = Out-of-hospital cardiac arrest, VF = Ventricu-
lar fibrillation, AED = Automated external defibrillator, ICD = Implantable cardioverter defibrilla-
tor, ECG = Electrocardiogram, TTI = Transthoracic impedance, ROOR = Return of organized rhythm,
CPR = Cardiopulmonary Resuscitation, CCF = Chest compression fraction, ACO = Acute coronary

occlusion.
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D Change in VF waveform
characteristics of OHCA-patients
with or without an underlying
acute coronary occlusion

TABLE D.1: Change in VF waveform characteristics of OHCA-patients with or without an
underlying ACO

∆WFP ACO (n=38) Non-ACO (n=22) p-value

Amplitude characteristics
∆AMSA XXXXXXX 1.29 (-0.56 – 4.04) 1.34 (-0.38 – 5.09) 0.937
∆MAA 0.01 (-0.01 – 0.03) 0.02 (-0.01 – 0.06) 0.284
∆MDS 0.57 (-0.26 – 1.16) 0.86 (-0.12 – 2.45) 0.250
∆PSA 0.02 (-0.01 – 0.07) 0.02 (-0.02 – 0.14) 0.547
∆VS 0.02 (-0.01 – 0.09) 0.04 (-0.01 – 0.10) 0.448

Frequency characteristics

∆DF 0.33 (-0.33 – 1.66) 0.50 (-0.66 – 1.58) 0.660
∆MDF 0.33 (-0.66 – 1.00) 0.33 (-0.33 – 1.33) 0.674
∆FR 0.05 (-0.34 – 0.30) 0.08 (-0.21 – 0.90) 0.255

Scaling analysis characteristics

∆DFAα -0.03 (-0.09 – 0.04) -0.04 (-0.09 – 0.03) 0.844
∆DFAα1 -0.05 (-0.16 – 0.09) -0.05 (-0.13 – 0.02) 0.764
∆DFAα2 -0.01 (-0.04 – 0.01) -0.01 (-0.03 – 0.01) 0.896
∆SDW -2.00 (-8.57 – 0.96) -5.27 (-10.51 – 0.01) 0.158

Values are given in medians (interquartile ranges). VF = Ventricular fibrillation, OHCA =
Out-of-hospital cardiac arrest, ACO = Acute coronary occlusion. AMSA = Amplitude spec-
trum area, MAA = Mean absolute amplitude, MdS = Median slope, PSA = Power spectrum
area, VS = Variance of slope, DF = Dominant frequency, MdF = Median frequency, FR = Fre-

quency ratio, DFA = Detrended fluctuation analysis, SDW = Scale distribution width.
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E Discrimination of inferior
coronary occlusion

In Chapter 4, we investigated the discriminative ability of (a combination of) VF waveform
parameters to identify an underlying ACO in OHCA. This was based on several studies
showing that VF waveform parameters were altered in the presence of an ACO [27, 30,
101]. However, these parameters are also dependent on the ECG lead direction [115]. Since
the recording direction during OHCA roughly corresponds to lead II in the 12 leads ECG
(the area adjacent to the inferior wall), inferior coronary occlusions may show even more
alteration in VF characteristics than anterior or posterior coronary occlusions. Therefore,
we performed an additional analysis for the same 102 patients, where in the ACO group
the patients were subdivided according to the localisation of the occlusion. Patients with
an inferior ACO were classified in one group, whereas patients with anterior and posterior
ACO and patients without ACO were classified in the other group. Similar analysis as in
Chapter 4 were used to determine whether (a combination of) VF waveform parameters
could discriminate between inferior ACO and no inferior ACO. In this sub analysis, the
results will be briefly discussed and will be regarded in relation to the results from Chapter 4
without extensively discussing all details and clinical implications.

The baseline characteristics of patients with an inferior ACO versus patients with anterior
and posterior ACO together with patients without ACO can be found in Table E.1. Between
patients with and without an inferior ACO, no differences occurred in EMS response time.
In the patients without inferior ACO, a higher rate of first shock success, ROSC at arrival ED
and 24 hour survival was found when compared to patients with inferior ACO.

The waveform parameters of patients with an inferior ACO versus patients with anterior
and posterior ACO together with patients without ACO are shown in Table E.2. Similar to
the difference between ACO and non-ACO patients, all the amplitude differences are signif-
icantly lower in patients with inferior ACO compared to patients without an inferior ACO.
The frequency and scaling analysis characteristics show no significant differences between
the groups.

Regarding the change in waveform parameters in response to CPR, a significant difference in
increase in VF amplitude characteristics occurred between CCF≥0.6 and CCF<0.6 in patients
without inferior ACO, whereas this difference was not seen in patients with inferior ACO.
These results are also similar to the differences between ACO and non-ACO patients.

The areas under the curve of the ROC curves of the single waveform parameters and the
waveform parameters combined with change and CPR with corresponding 95% confidence
interval can be found in Table E.3. Although the DFAα1 did not differ between patients
with and without inferior ACO, this parameter was still investigated to be able to compare
the results with the original results from Chapter 4. All amplitude characteristics show a
similar limited predictive ability, with PSA and VS showing the best predictive ability with
an AUC of 0.67. The combination of the single waveform parameters with the change in
that parameter in response to CPR was applied to the 60 patients from which the change in
waveform parameter between the first and second shock could be determined (18 inferior
ACO vs. 42 no inferior ACO). For all parameters, the combined model showed a higher
AUC than the single WFP. Similar to the discrimination between ACO and non-ACO, the
highest AUC is found for the combined model with MdS. This is slightly lower than the
AUC of the same model for predicting ACO (0.75). Therefore the combination of a single
waveform parameter with the change in that parameter in response to CPR is not better
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in discriminating inferior ACO from no inferior ACO than discriminating ACO from non-
ACO.

In the baseline characteristics of the patients in Chapter 4, a significant difference was found
in EMS response time between patients with and without ACO. In this sub-analysis, no sig-
nificant difference was found between patients with an inferior ACO compared to patients
with anterior and patients without ACO. However, to be able to compare this sub analysis
with the analysis in Chapter 4, here we also added the response time to the combined models
to see whether this leads to an improved (theoretical) discriminative ability. The results are
displayed in Table E.4. Similar to the discrimination of ACO and non-ACO, adding response
time to the combined models leads to an improved discriminative ability for all waveform
parameters. Furthermore, the AUCs of MdS, PSA and DFAα1 are slightly higher than the
AUCs of the model with response time discriminating ACO and non-ACO. However, as dis-
cussed in Chapter 4 (Section 4.4.2), using response time in the discrimination model might
not be clinically relevant.

TABLE E.1: Baseline characteristics of patients with an inferior ACO versus patients with anterior and
posterior ACO together with patients without ACO.

Variable All (n=102) Inferior ACO (n=25) No inferior ACO (n=77) p-value

Age (years) 61.5 (51 – 71.3) 66.0 (55.5 – 71.5) 61.0 (50.5 – 71.5) 0.228
Male gender (n=102) 73 (71.6) 19 (76.0) 54 (70.1) 0.572

Pre-hospital
Previous MI (n=92) 25 (27.2) 5 (25.0) 20 (27.8) 0.805
Public location arrest n=102 44 (43.1) 9 (36.0) 6 (45.5) 0.407
Witnessed arrest: n=99 86 (86.9) 20 (83.3) 66 (88.0) 0.510
- Bystander witnessed 84 (84.8) 20 (83.3) 64 (85.3) 0.754
- EMS witnessed 2 (2.0) 0 (0) 2 (2.7) 1.000
Bystander CPR n=99 66 (66.7) 16 (64.0) 50 (67.6) 0.744
Autopulse used n=99 31 (63.3) 7 (28.0) 24 (32.4) 0.679
Response time (min) n=92 8 (6 – 10) 8 (6 – 11.75) 8 (6 – 10) 0.419
Shocks delivered by EMS 3 (1 – 6) 4 (2 – 8) 3 (1 – 5) 0.101
Amiodarone n=98 64 (65.3) 17 (70.8) 47 (63.5) 0.513
Epinephrine n=99 79 (79.8) 21 (87.5) 58 (77.3) 0.386
Atropine n=98 24 (24.5) 11 (45.8) 13 (17.6) 0.005

In-hospital
12-leads ECG n=102 97 (95.1) 23 (92.0) 74 (96.1) 0.594
Coronary angiography n=102 74 (72.5) 16 (64.0) 58 (75.3) 0.270
Immediate CAG n=102 63 (61.8) 14 (56.0) 49 (63.6) 0.495
Delayed CAG n=102 11 (10.8) 2 (8.0) 9 (11.7) 1.000
PCI n=102 54 (52.9) 14 (56.0) 40 (51.9) 0.724
CABG n=102 2 (2) 0 (0) 2 (2.6) 1.000
Troponin I max n=98 19.5 (1.1 – 94.2) 20.3 (0.25 – 100) 15.6 (1.83 – 92.3) 0.873
Autopsy n=102 14 (13.7) 6 (24.0) 8 (10.4) 0.101

Clinical outcomes
First shock success n=101 50 (49.5) 7 (30.4) 43 (57.3) 0.024
ROSC at arrival ED n=102 81 (79.4) 13 (52.0) 68 (88.3) 0.000
Survival 24 hrs n=101 77 (76.2) 13 (52.0) 64 (84.2) 0.001
Survival at discharge n=102 49 (48.0) 10 (40.0) 39 (50.6) 0.354

Values are given in numbers (%) or medians (interquartile ranges). Troponin I is given in µg/L
(measured with the (no longer available) Immulite 2000, DPC cardiac troponin I immunoassay).
OHCA = Out-of-hospital cardiac arrest, ACO = Acute coronary occlusion, MI = Myocardial infarction,
EMS = Emergency medical services, ECG = Electrocardiogram, CPR = Cardiopulmonary resuscitation,
PCI = Percutaneous coronary intervention, CABG = Coronary artery bypass grafting, ROSC = Return

of spontaneous circulation, ED = Emergency department.
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TABLE E.2: Waveform parameters of patients with an inferior ACO versus patients with anterior and
posterior ACO together with patients without ACO.

Waveform parameter Inferior ACO (n=25) No inferior ACO
(n=77)

p-value

Amplitude characteristics
Amplitude spectrum area (AMSA) 7.83 (4.65 – 9.45) 10.81 (5.91 – 14.16) 0.014
Mean absolute amplitude (MAA) 0.09 (0.05 – 0.12) 0.11 (0.08 – 0.15) 0.023
Median slope (MdS) 2.52 (1.74 – 3.42) 4.06 (2.17 – 5.36) 0.014
Power spectrum area (PSA) 0.04 (0.02 – 0.07) 0.10 (0.03 – 0.19) 0.009
Variance of slope (VS) 0.05 (0.02 – 0.08) 0.09 (0.04 – 0.19) 0.012

Frequency characteristics
Dominant frequency (DF) 3.66 (2.99 – 5.15) 4.65 (3.32 – 6.15) 0.064
Median frequency (MdF) 4.32 (3.66 – 5.49) 4.65 (3.99 – 5.98) 0.261
Frequency ratio (FR) 0.26 (0.11 – 1.01) 0.26 (0.14 – 0.60) 0.776

Scaling analysis characteristics
Detrended Fluctuation Analysis (DFA) α1 1.42 (1.30 – 1.53) 1.39 (1.26 – 1.48) 0.235
Detrended Fluctuation Analysis (DFA) α2 0.07 (0.04 – 0.10) 0.07 (0.05 – 0.10) 0.759
Scale distribution width (SDW) 24.81 (19.80 – 30.12) 22.55 (17.40 – 27.54) 0.163

Values are given in medians (interquartile ranges). ACO = Acute coronary occlusion.

TABLE E.3: AUCs with corresponding 95% confidence intervals of the single waveform parameters
and of the combined models.

Single WFP AUC [95% CI] (n=102) WFP+∆WFP+CCF AUC [95% CI] (n=60)

AMSA 0.66 [0.55; 0.78] AMSA 0.73 [0.59; 0.86]
MAA 0.65 [0.53; 0.77] MAA 0.68 [0.52; 0.83]
MdS 0.66 [0.55; 0.76] MdS 0.74 [0.60; 0.87]
PSA 0.67 [0.56; 0.78] PSA 0.70 [0.56; 0.85]
VS 0.67 [0.55; 0.78] VS 0.70 [0.56; 0.84]
DFAα1 0.58 [0.44; 0.71] DFAα1 0.70 [0.57; 0.84]

The combined models consist of the waveform parameter before the first shock, the change in that
parameter between first and second shock, the chest compression fraction (categorical ≥ or < 0.6)
and an interaction term of ∆WFP*CCF. WFP = Waveform parameter, AUC = Area under the curve,
CI = Confidence interval, CCF = Chest compression fraction, AMSA = Amplitude spectrum area,
MAA = Mean absolute amplitude, MdS = Median slope, PSA = Power spectrum area, VS = Variance

of slope, DFA = Detrended fluctuation analysis.

TABLE E.4: AUCs with 95% CI of combined models (i.e. WFP+∆WFP+CCF+
∆WFP*CCF) with EMS response time

Waveform parameter AUC [95%CI] n=55

Amplitude spectrum area (AMSA) 0.77 [0.64; 0.91]
Mean absolute amplitude (MAA) 0.76 [0.63; 0.90]
Median slope (MdS) 0.83 [0.73; 0.94]
Power spectrum area (PSA) 0.79 [0.68; 0.91]
Variance of slope (VS) 0.74 [0.61; 0.88]
Detrended Fluctuation Analysis (DFA) α1 0.77 [0.65; 0.89]

AUC = Area under the curve, CI = Confidence interval, WFP = Waveform parameter,
CCF = Chest compression fraction, EMS = Emergency medical services.
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