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1 Introduction

Light is crucial in life. Without light, we could not see, plants would not grow, and the
earth would be a cold rock. The importance of light is easy to understand, however the
understanding of light can be a hard subject. Over the past decades we gained more
knowledge about light, but light still carries mysteries. If we understand light better, this
can lead to big changes in the future. One can think of optical computers, where photons
are used instead of electrons to store and transfer information [1], or using light in the
distribution of quantum keys for sending encrypted information with the use of quantum
cryptography [2, 3].

To understand the behaviour of light, it is necessary to look at the reflection, ab-
sorption, and propagation of light. One way to reflect, manipulate, trap, or even slow
down light is using photonic crystals. A photonic crystal is a natural or artificial com-
posite of dielectric materials with periodic structure on a length scale of the wavelength
of light. Due to the periodicity of the structure, photonic crystals have a discrete trans-
lation symmetry, which means that they are invariant under translations of lengths that
are multiples of a fixed step-size [4]. In vector notation, it can be described as

ε(r) = ε(r + l · a), (1.1)

where ε is the permittivity at position r in the photonic crystal, a is the lattice parameter,
and l is an integer. Diffraction can occur for nearly all of the incoming light, if the crystal
is perfectly ordered. In such a case, all the light of a specific wavelength, or of a range
of specific wavelengths, is reflected. This light is not allowed from propagation at the
boundary of the photonic crystal and can not penetrate into the material. Such an
exclusion of a range of wavelengths in one direction is called a stop gap [4]. If light is
forbidden to propagate in all three directions, it is called a band gap. Light within a
photonic band gap, incident from any direction, is forbidden to propagate through the
photonic crystal [4].

Geometries of materials with different repeated structures are shown in Fig. 1.
The left example shows the Bragg Stack, a one-dimensional repeated material which
produces a stop gap. The permittivity alternates between two values from layer to layer.
The periodical differences in permittivity of layers cause the refractive index to differ
per layer. If an incident wave hits the crystal, it is (partially) reflected. Depending on
the wavelength and the periodicity of the refractive index in the crystal, the incident
and reflected wave interfere constructively or destructively. These interference processes
can lead to peculiar optical phenomena. Namely, if the incident wave has a wavelength
equal to the lattice spacing of the crystal, the incident and reflected wave have the same
wavelengths. However, the reflected wave travels in opposite direction of the incident
wave. Interference of both waves causes a standing wave. The low frequency modes of
this standing wave concentrate their energy in the regions with high permittivity, whereas
the high frequency modes concentrate their energy in the regions with low permittivity.
Both standing waves have the same wavelengths, but are concentrated in a medium with
different dielectric permittivity and thus refractive index. These differences cause the
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Figure 1: Examples of periodicity in materials, different colours indicate a different dielectric permittivity value.
Figure courtesy: [4].

frequency to change. This can be obtained from the dispersion relation, given as

ω =
c

n
· k =

c

n
· 2π

λ
, (1.2)

with ω being the frequency of light, c the speed of light, n the refractive index, and λ the
wavelength. This relation shows that differences in refractive index result in differences
in frequency. With layers differing in permittivity, and as a result modes differing in
frequencies, a stop gap is created. Hence, a region of frequencies is created where waves
can not propagate in a certain direction. If this stop gap occurs in every direction it is
called a band gap. An increase in difference in permittivity between the layers, will result
in an increase in the region of frequencies of the stop or band gap [4]. The band gap
is a range of forbidden frequencies, causing light, with those frequencies, to fully reflect
independent of angle of incidence.

A photonic nanostructure known to have a large 3D band gap is the 3D Inverse
Woodpile crystal. This 3D structure consists of two 2D arrays of identical pores running
in the x and y direction. If the pores are taken to be low-indexed materials having a small
dielectric permittivity in comparison to the surrounding structure, a highly-indexed ma-
terial with large dielectric permittivity a band gap is obtained. The radius of the pores
can differ, but is mostly taken between r = 0.19a and r = 0.245a, with a the lattice
parameter, in order to obtain a wide as possible 3D photonic band gap [34]. The unit
cell of an Inverse Woodpile crystal is a cubic with lattice parameters a and c according
to the ratio a

c
=
√

2. In Fig. 2, the Inverse Woodpile is depicted with pores of radius
r = 0.19a. We are interested in the Inverse Woodpile crystal, since the band gap can
have a relative bandwidth up to 25.4% [34].

The reflectivity properties due to the band gap can be used in many different appli-
cations. In solar cells photonic crystals could be used as back reflector to reflect incident
light. Photonic crystals can be applied in solar cells in such manner that light is perfectly
reflected from every angle of incidence for a large range of frequencies. A higher reflec-
tion rate in solar cells causes more light to be absorbed, which increases the efficiency of
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Figure 2: The Inverse Woodpile crystal is an example of a 3D photonic band gap crystal. In top view the whole
unit cell is depicted. At the bottom left we have a view in xy plane and at the bottom right in yz plane of the
Inverse Woodpile crystal.

the solar cell. In fibre-optics, a fibre could be coated by photonic crystals to keep light
trapped inside with reduced or without loss [8]. Photonic crystals can also be found in
nature. The butterfly Thecla Opisena uses this unusual hierarchical structure in its wings
as camouflage [9].

Besides perfectly periodic photonic crystals, impurities can have many different ap-
plications. If the periodicity is intentionally broken, for example due to a single pore
having a larger or smaller radius, a point defect cavity is created. Multiple point defects
aligned in one direction can create a line defect. Point defects can cause single frequency
modes to exist in the band gap. The defect mode cannot penetrate into the rest of the
crystal, since it has a frequency in the band gap [4]. These structures with certain defects
provide index guiding by total internal reflection in a direction normal to the plane of
the crystal, as in a planar waveguide [10]. Light can be trapped by use of point and line
defects and in special cases light can even be slowed down [11].

Photonic crystals have interesting properties, but are also complicated nano-structures.
In combination with the size constraints on photonic crystals and the impact of impuri-
ties, production of the crystals is hard. The prediction of the optical properties of different
photonic crystal structures is also useful. In order to minimize trial and error research
work, numerical simulations are applied. In this report we investigate the properties of
photonic crystals by accurately modelling the propagation of light inside nanophotonic
structures.
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2 Accurate Modeling of Light Propagation in 3D Pe-

riodic Nanophotonic Structures

2.1 Problem Formulation

Light is an electromagnetic wave [13]. Light propagation is described using the Maxwell
equations, which express the electromagnetic propagation on a macroscopic level. In SI
units, Maxwell’s equations are given by

∇ ·D(r, t) = ρ(r, t), (2.1a)

∇× E(r, t) +
∂B(r, t)

∂t
= 0, (2.1b)

∇ ·B(r, t) = 0, (2.1c)

∇×H(r, t)− ∂D(r, t)

∂t
= J(r, t), (2.1d)

where E is the electric field and H is the magnetic field, D and B describe the displace-
ment and magnetic induction fields, respectively, ρ is the free charge density, and J is
the current density [4]. Equation (2.1a) is known as Gauss’ law and describes the total
electric flux out of a closed surface [14]. Equation (2.1b) is known as Faraday’s law of
induction, which describes the interaction of the magnetic field with its surroundings [15].
Equation (2.1c) is known as Gauss’ law of Magnetism and states that the magnetic field
is a solenoidal vector field [16]. Equation (2.1d) is Ampere’s circuit law combined with
Maxwell’s addition, which relates the magnetic field to the electric current through a loop
[14].

We assume the medium as the domain Ω ⊂ R3. We consider this medium as the ho-
mogeneous dielectric material, where the dielectric permittivity is a function of position
vector r. The structure does not vary with time, also there are no free charges. We use
these approximations to relate the displacement field D and the electric field E. We do
the same for the magnetic induction field B and magnetic field H [12].

Assuming the field strengths small enough, such that we have linear correlations,
and the dielectric material being macroscopic and isotropic, i.e. E(r, ω) is related to
D(r, ω) via a combination of the vacuum permittivity ε0 and the relative permittivity
ε(r, ω), we get D(r) = ε0ε(r, ω)E(r). Similarly, the definition of the relation between the
magnetic induction field and the magnetic field is given by B(r) = µ0µ(r, ω)H(r), with
µ0 the magnetic permeability of a vacuum and µ(r, ω) the relative magnetic permeability
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[4]. We implement these relations in the Maxwell’s equations, (2.1), to obtain

∇ · εE(r, t) = ρ(r, t), (2.2a)

∇× E(r, t) = −µ∂H(r, t)

∂t
, (2.2b)

∇ · µH(r, t) = 0, (2.2c)

∇×H(r, t) = J(r, t) + ε
∂E(r, t)

∂t
, (2.2d)

in the domain of the medium, i.e. Ω ⊂ R3. Here, we take ε = ε0ε(r, ω) describing
the electric permittivity, and µ = µ0µ(r, ω) describing the magnetic permeability. Also,
∇ = ( ∂

∂x
, ∂
∂y
, ∂
∂z

)T is the gradient operator. Note, if equation (2.2c) holds for the initial

conditions and ∇ · J = 0, then (2.2b) and (2.2d) will ensure that (2.2c) will always be
satisfied. Therefore, we drop equation (2.2c) from the derivations, but keep it in mind
at places where the consistency might be broken [7]. Since we assumed that there are no
free charges, the free charge density, ρ, is set to zero. Hence, we simplify equation (2.2a),
i.e., Gauss’ Law, to

∇ · εE(r, t) = 0. (2.3)

Since we assume the light propagation in the linear regime of the Maxwell equations,
it gives us the possibility to separate time and space dependency in functions E,H, and
J . We separate time and space dependency by expanding the fields into a set of harmonic
modes. These modes represent the field patterns that vary harmonically, i.e. sinusoidally,
with time [4]. We take the real part to obtain the physical fields and the complex part
to construct the time dependent part of the functions. We write a harmonic mode as a
spatial pattern times a complex exponential, i.e.

E(r, t) = Ē(r)e−iωt, (2.4a)

H(r, t) = H̄(r)e−iωt, (2.4b)

J(r, t) = J̄(r)e−iωt, (2.4c)

where i =
√

(−1), and ω is the angular frequency. Combining equations (2.3) and (2.4)
with (2.2), we get

∇ · εĒ(r) = 0, (2.5a)

∇× Ē(r) = iωµH̄(r), (2.5b)

∇× H̄(r) = J̄(r)− iωεĒ(r). (2.5c)

With equations (2.5b) and (2.5c) we make a combination between the electric field Ē(r)
and magnetic field H̄(r). We divide equation (2.5b) by µ, such that we have

µ−1∇× Ē(r) = iωH̄(r). (2.6)
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We take the curl on both sides of equation (2.6) and take iw in front of the curl at the
right hand side, such that we get

∇× (µ−1∇× Ē(r)) = iω(∇× H̄(r)). (2.7)

We insert equation (2.5c) into (2.7), to obtain

∇× (µ−1∇× Ē(r)) = iωJ̄(r) + ω2εĒ(r)). (2.8)

We now have a function with the electric field Ē(r) as a free variable. To simplify, we
take j = iωJ̄(r) and get rid of the overhead bar. This gives us

∇× (µ−1∇× E(r))− ω2εE(r) = j. (2.9)

Equation (2.9) formulates the electric field E(r). We assume the domain Ω to have a
perfectly conduction boundary. We apply a known current source j to calculate a har-
monic solution of equation (2.9) [12]. Since we assume a perfectly conduction boundary,
we have

n× E = g at Γ = ∂Ω, (2.10)

where n ∈ R3 denotes the outward normal unit vector at ∂Ω, the boundary of the domain
Ω. We denote the tangential trace of the electric field E by g ∈ R3, which is equal to
zero in an ideal case.

Similar to the derivation of the electric field, a derivation of the magnetic field can
be made, in which case we have a function with the magnetic field as a free variable. We
only take the derivation of the electric field.

2.2 Function Spaces

In mathematics, function spaces describe the characteristics of a set of functions. In this
report, we use multiple notations and function spaces. These are listed and defined in
this section. We take an open domain Ω in R2 or R3 and denote the Hilbertian Sobolev
space of real or complex scalar- or vector-valued functions by Hs(Ω)d, with d = 1, 2 or 3,
and the regularity exponent s ≥ 0. If s = 0, Hs(Ω) is given as L2(Ω). We denote the
standard inner product in L2(Ω) as (·, ·)Ω. The norm for the space Hs(Ω)d, d = 1, 2 or 3,
is given by || · ||s,Ω [12]. Furthermore, we use the next notations and function spaces

H1(Ω) :={v ∈ L2(Ω) : |∇v| ∈ L2(Ω)}, (2.11a)

H1
0 (Ω) :={v ∈ H1(Ω) : v = 0 at δΩ}, (2.11b)

H(div; Ω) :={v ∈ L2(Ω)3 : ∇ · v ∈ L2(Ω)}, (2.11c)

H0(div; Ω) :={v ∈ H(div; Ω) : v · n = 0 at δΩ)}, (2.11d)

H(div0; Ω) :={v ∈ H(div; Ω) : ∇ · v = 0 ∈ Ω}, (2.11e)

H(curl; Ω) :={v ∈ L2(Ω3) : ∇× v ∈ L2(Ω3)}, and (2.11f)

H0(curl; Ω) :={v ∈ H(curl; Ω) : n× v = 0 at δΩ}. (2.11g)
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2.3 Mixed Formulation

We consider the domain Ω ⊆ R3 with the boundary Γ. We assume that the electric field
E ∈ H(curl; Ω)∩H(div0; Ω)⊕H1

0 (Ω). Since we assume that the electric field is sufficiently
smooth, we consider the L2(Ω)3-orthogonal Helmholtz decomposition. The electric field
function is written as

E = u+∇φ, (2.12)

with u ∈ H(curl; Ω)∩H(div0; Ω) and φ ∈ H1
0 (Ω), where u represents the vector potential

and φ represents the scalar potential of the system [12, 18, 19, 20, 21, 26]. The Helmholtz
decomposition is orthogonal in L2(Ω)3, which implies that (u,∇φ) = 0 for all φ ∈ H1

0 (Ω)
and u ∈ H(curl; Ω) ∩H(div0; Ω). We define p := ω2φ, to simplify equation (2.9) to

j = ∇× (µ−1∇× Ē(x))− ω2εĒ(x),

= ∇× (µ−1∇× (u+∇φ))− ω2ε(u+∇φ),

= ∇× (µ−1∇× u)− ω2εu− ε∇p.

Since φ ∈ H1
0 (Ω), we reduce the perfectly conducting boundary condition at Γ, given by

equation (2.10), to

g = n× (u+∇φ)

= n× u.

Similarly, we rewrite Gauss’ Law to

0 = ∇ · (εĒ) (2.13)

= ∇ · (ε(u+∇φ)) (2.14)

= ∇ · (εu) +∇ · ∇φ. (2.15)

We use φ ∈ H1
0 (Ω) ⇒ φ = 0 at Γ, to deduce that the scalar potential φ is also equal to

zero in the domain Ω, since φ = 0 is the unique solution of

∇ · ∇φ = ∆p = 0 in Ω,

and
p = 0 at Γ.

Assuming that∇·j = 0 is valid, the modified Maxwell equations give us a model problem,
which is to find a pair of (u, p), such that

∇× (µ−1∇× u)− ω2εu− ε∇p = j in Ω, (2.16a)

∇ · (εu) = 0 in Ω, (2.16b)

n× u = g at Γ, (2.16c)

p = 0 at Γ. (2.16d)
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2.4 Discontinuous Galerkin discretization

To accurate model the propagation of light, we discretize the medium into many smaller
parts, called elements, such that the sum of these parts is the whole medium. We indicate
the elements by K and take the permittivity ε to be constant inside each element. If we
use more elements, the medium can be better approximated. However, calculations with
more elements are computationally more expensive.

We employ the Discontinuous Galerkin Finite Element Method to do calculations
with unstructured meshes generated with the Centaur mesh generator [12, 35]. We take
a finite element mesh Th of the domain Ω subdivided in tetrahedral elements. The
granularity of the shape regular mesh Th is indicated by h, i.e. h = maxK∈Th(hK), where
hK = diameter(K) for all K ∈ Th. We assume that the meshes are aligned with the
discontinuities in the coefficients µ and ε. The set F ih represents all internal faces in Th,
and F bh represents all boundary faces in Th. Therefore, the set of all faces is represented
as Fh = F ih ∪ F bh [12].

We approximate the scalar- and vector-valued functions p and u, respectively, in the
discontinuous finite element spaces Qh and Vh, where

Qh := {q ∈ L2(Ω) : q|K ∈ P l(K),∀K ∈ Th}, (2.17)

Vh := {v ∈ L2(Ω)3 : v|K ∈ Sl(K),∀K ∈ Th}, (2.18)

for approximating order l ≥ 1, with P l(K) the space of Lagrange polynomials of degree
at most l on K, and Sl(K) the space of Nédélec elements of first family [12, 25]. For the
piecewise smooth vector- and scalar-valued functions v ∈ Vh and q ∈ Qh, we introduce
the trace operators to extend the notion of restriction of the function to the boundary
of the domain [17]. We state that F ∈ F ih is an internal face shared by two elements
KL and KR. Here the upper script notation L indicates the element to the left, and R
indicates the element to the right of face F . We define nL as the unit outward normal
vector of element KL at a face F and nR as the unit outward normal vector of element
KR at a face F . Note that nL = −nR. We take the tangential and normal jump of a
vector-valued function v at F ∈ F ih by

[[v]]T ≡ nL × vL + nR × vR,
[[v]]N ≡ nL · vL + nR · vR,

where the tangential jump is indicated by subscript T and the normal jump is indicated
by subscript N . The normal jump of a scalar-valued function q is defined by

[[q]]N ≡ nLqL + nRqR.

Similarly, we specify the averages of v and q by

{{v}} ≡ vL + vR

2
,

{{q}} ≡ qL + qR

2
.
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For the boundary faces F ∈ F bh, we define the tangential jump and normal jump of the
vector-valued function v by the element to the left. Hence, we have

[[v]]T ≡ nL × vL,
[[v]]N ≡ nL · vL.

Similarly, we define the jumps in the same way, as the averages. For a scalar-valued
function q, we define the normal jump to be

[[q]]N ≡ nLqL,

and we define the averages on the boundary as

{{v}} ≡ v,

{{q}} ≡ q.

Later on we will eliminate the auxiliary variables in the discontinuous Galerkin discretiza-
tion using lifting operators [12, 26, 27]. We define the lifting operators as

(L(u), w)Ω ≡
∑
F∈F i

h

∫
F

{{u}} · [[w]]TdS, (2.19)

and

(S(u), w)Ω ≡
∑
F∈Fh

∫
F

[[u]]T · {{w}}dS. (2.20)

The operator ∇h denotes the elementwise spatial derivative ∇ operator.

2.5 Weak Formulation

We will introduce the weak form of our problem to obtain the discontinuous Galerkin
Discretization [12, 20, 22]. With a weak formulation the continuity requirements are
reduced on the basis functions, which allows the use of simplified polynomials. We use
the Ainsworth-Coyle basis functions or Nédélec basis functions [7, 5, 24, 25]. With the
weak formulation, we approximate the exact results accurately, when the right mesh
refinement is used. To obtain the weak formulation for the set of equations (2.16), an
auxiliary variable M is introduced, such that

∇×M − ω2εu− ε∇p = j in Ω, (2.21)

with the assumption that
M − µ−1∇× u = 0 in Ω. (2.22)

With the introduction of test functions v, w ∈ Vh, we elaborate the weak formulation.
Multiplying test function v with equation (2.21) and test function w with (2.22), replacing
M with Mh ∈ Vh, u with uh ∈ Vh, and p with ph ∈ Qh, and integrating over the domain

13



Ω, we obtain

(j, v)Ω =
∑
K∈τh

∫
K

((∇×Mh) · v − ω2εuh · v − ε∇ph · v)dx, (2.23)

and

(Mh, w)Ω =
∑
K∈τh

∫
K

(µ−1(∇× uh)) · wdx, (2.24)

where (., .)Ω denotes the standard L2(Ω) inner product.
Next, we use the following identity for a matrix A

(A~b) · ~c = (A~b)T~c = ~bTAT~c = ~b · (AT~c), (2.25)

where the upperscript T indicates the transpose of a vector or matrix. If A is symmetric,
which is the case for µ−1, this identity results in

(A~b) · ~c = ~b · (A~c). (2.26)

We also consider the next identity, with B and C as vector quantities,

(∇×B) · C = ∇ · (B × C) + (∇× C) ·B. (2.27)

Finally, we introduce the divergence theorem∫
V

(∇ ·D)dV =

∫
S

(D · n)dS, (2.28)

where V is the volume over which we integrate, D represents a continuously differentiable
vector field, n is the outward pointing unit normal field of the boundary of the volume,
indicated by S

We use identities given in equations (2.26) and (2.27), to rewrite (2.24) to

(Mh, w)Ω =
∑
K∈τh

∫
K

(∇ · (uh × µ−1w) + (∇× (µ−1w)) · uh)dx, (2.29)

and we use the divergence theorem, given in (2.28), to obtain

(Mh, w)Ω =
∑
K∈τh

∫
K

(∇× (µ−1w) · uh) +
∑
K∈τh

∫
Γ

(u∗h × µ−1w) · ndS, (2.30)

where u∗h denotes the numerical flux for uh. The numerical flux u∗h is introduced since
uh ∈ Vh has a multivalued trace at the element faces. Using the identity, given by equation
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(2.27), (2.30) can be rewritten to

(Mh, w)Ω =
∑
K∈τh

∫
K

((∇× uh) · µ−1w −∇ · (uh × µ−1w))dx

+
∑
K∈τh

∫
Γ

(u∗h × µ−1w) · ndS.
(2.31)

Firstly, we apply the divergence theorem on the second term. Then we use the identity
given in equation (2.27) on the right hand side. Using the fact that the test function w
is zero outside element K by definition of a test function, we get

(Mh, w)Ω =
∑
K∈τh

∫
K

(∇× uh) · µ−1wdx+
∑
K∈τh

∫
Γ

((u∗h − uh)× µ−1w) · ndS (2.32)

⇒ (Mh, w)Ω =
∑
K∈τh

∫
K

(∇× uh) · µ−1wdx+
∑
K∈τh

∫
Γ

(n× (u∗h − uh)) · µ−1wdS. (2.33)

We will now introduce two more mathematical identities, which will be used several
times in this chapter. Firstly, we introduce the expressions for the average and tangential
jump, as defined in Section 2.4, into the right hand side of equation (2.33), such that we
have ∑

K∈τh

∫
Γ

(n× u) · vdS =
∑
F∈F i

h

∫
F

((nL × uLh ) · vLh + (nR × uR) · vRh )dS

+
∑
F∈F b

h

∫
F

(nL × uLh ) · vLhdS.
(2.34)

Since each internal face appears twice in the summation over all the faces ∂K and using
nR = −nL, we immediately obtain our first identity: For any uh, vh ∈ Vh, we have∑

K∈τh

∫
Γ

(n× u) · vdS =
∑
F∈F i

h

∫
F

([[u]]T · {{v}} − [[v]]T · {{u}})dS

+
∑
F∈F b

h

∫
F

[[u]]T · {{v}}dS.
(2.35)

Similarly, the second relation is derived by introducing the jumps and averages for vector-
and scalar-valued functions, defined in Section 2.4, at the right hand side, and by using
nR = −nL. This relation is used to simplify the discontinuous Galerkin discretization:
∀uh ∈ Vh, qh ∈ Qh, we have∑

K∈τh

∫
Γ

qhuh · ndS =
∑
F∈F i

h

∫
F

([[qh]]N · {{uh}}+ [[uh]]N · {{qh}})dS

+
∑
F∈F b

h

∫
F

[[qh]]N · {{uh}}dS.
(2.36)
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Implementing the first identity in equation (2.35) into (2.33), we obtain

(Mh, w)Ω =
∑
K∈τh

∫
K

(∇× uh) · µ−1wdx

+
∑
F∈F i

h

∫
F

([[u∗h − uh]]T · {{µ−1w}} − [[µ−1w]]T · {{u∗h − uh}})dS

+
∑
F∈F b

h

∫
F

[[u∗h − uh]]T · {{µ−1w}}dS.

(2.37)

With use of lifting operators, defined in equations (2.19) and (2.20), we rewrite (2.37) to

(M,w)Ω =
∑
K∈τh

∫
K

(∇× u) · µ−1wdx+ (S(u∗ − u), µ−1w)Ω − (L(u∗ − u), µ−1w)Ω (2.38)

⇒ (M,w)Ω = (µ−1∇h × u,w) + (µ−1S(u∗ − u), w)Ω − (µ−1L(u∗ − u), w)Ω. (2.39)

Since w ∈ Vh is an arbitrary test function, we deduce the expression to

Mh = µ−1∇h × uh + µ−1S(u∗h − uh)− µ−1L(u∗h − uh), (2.40)

almost everywhere in Ω. Next, using the identity given in equation (2.27), we rewrite
(2.23) to

(jh, v)Ω =
∑
K∈τh

∫
K

(∇ · (Mh × v) +Mh · (∇× v)− ω2εuh · v − ε∇ph · v)dx. (2.41)

We rewrite the first term on the right hand side, using the divergence theorem, applying
the identity in equation (2.27), and using the fact that the test function v is zero outside
element K by definition of a test function, we obtain

(jh, v)Ω =
∑
K∈τh

∫
K

(Mh · (∇× v)−ω2εuh · v− ε∇ph · v)dx+
∑
K∈τh

∫
Γ

(n×M∗
h) · vdS, (2.42)

with M∗
h the numerical flux for Mh. Now, using the first identity, we can express the

contribution from the element boundaries as a sum over all faces in TH .

(jh, v)Ω =(Mh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

+
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}})dS

+
∑
F∈F b

h

∫
F

[[M∗
h ]]T · {{v}}dS.

(2.43)
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Substituting the value of Mh, given in equation (2.39), into (2.43), we obtain

(jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

+(S(u∗h − uh), µ−1∇h × v)Ω − (L(u∗h − uh), µ−1∇h × v)Ω

+
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}})dS

+
∑
F∈F b

h

∫
F

[[M∗
h ]]T · {{v}}dS.

(2.44)

Using the definition of the lifting operators in equations (2.19) and (2.20), we get

(jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

+
∑
F∈Fh

∫
F

[[u∗h − uh]]T · {{µ−1∇h × v}}dS −
∑
F∈F i

h

∫
F

{{u∗h − uh}} · [[µ−1∇h × v]]dS

+
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}})dS +
∑
F∈F b

h

∫
F

[[M∗
h ]]T · {{v}}

⇒ (jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

+
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}}

+[[u∗h − uh]]T · {{µ−1∇h × v}} − {{u∗h − uh}} · [[µ−1∇h × v]])dS

+
∑
F∈F b

h

∫
F

([[M∗
h ]]T · {{v}}+ [[u∗h − uh]]T · {{µ−1∇h × v}})dS.

(2.45)

Using integration by parts for the following

−(∇hph, εv)Ω = −
∑
K∈τh

(∇ph) · εvdx

= −
∑
K∈τh

∫
K

(∇ · (phεv)− ph∇ · (εv))dx

= −
∑
K∈τh

∫
Γ

p∗hn · εvdS +
∑
K∈τh

∫
K

ph∇ · (εv)dx,

and using the second identity in equation (2.36), we get

(∇hph, εv)Ω =
∑
F∈F i

h

∫
F

([[p∗h]] · {{εv}}+ [[εv]]N{{p∗h}})dS

+
∑
F∈F b

h

∫
F

[[p∗h]] · {{εv}}dS − (ph,∇h · (εv))Ω.

(2.46)
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Substituting this back into equation (2.45), we obtain

(jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω + (ph,∇h · (εv))Ω

−
∑
F∈F i

h

∫
F

([[p∗h]]N · {{εv}}+ [[εv]]N{{p∗h}})dS

−
∑
F∈F b

h

∫
F

[[p∗h]]N · {{εv}}dS +
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}}

+[[u∗h − uh]]T · {{µ−1∇h × v}} − {{u∗h − uh}} · [[µ−1∇h × v]])dS

+
∑
F∈F b

h

∫
F

([[M∗
h ]]T · {{v}}+ [[u∗h − uh]]T · {{µ−1∇h × v}})dS.

(2.47)

Again, using the integration by parts for the terms consisting parameter p, we get

(jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

−
∑
F∈F i

h

∫
F

([[p∗h − ph]]N · {{εv}}+ [[εv]]N{{p∗h − ph}})dS

−
∑
F∈F b

h

∫
F

[[p∗h − ph]]N · {{εv}}dS +
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}}

+[[u∗h − uh]]T · {{µ−1∇h × v}} − {{u∗h − uh}} · [[µ−1∇h × v]])dS

+
∑
F∈F b

h

∫
F

([[M∗
h ]]T · {{v}}+ [[u∗h − uh]]T · {{µ−1∇h × v}})dS.

(2.48)
With this, we obtain a weak formulation of equation (2.16a) in Ω, as the first part of the
system we want to solve given in (2.16).

For the divergence constraint, i.e. equation (2.16b),

∇ · (εu) = 0 in Ω,

the discontinuous Galerkin formulation can be obtained in a similar way. Multiplying
equation (2.16b) with arbitrary test functions q ∈ Qh, integrating over each element
K ∈ Th and using the second identity (2.36), gives

0 = −
∑
K∈Th

∫
K

∇q · (εuh)dx+
∑
F∈F i

h

∫
F

([[q]]N · {{(εu∗h)}}+ [[(εu∗h)]]N{{q}})dS

+
∑
F∈F b

h

∫
F

[[q]]N · {{(εu∗h)}}dS,
(2.49)

in Ω.
For the remaining part of the system, i.e. equations (2.16c) and (2.16d), the dis-

continuous Galerkin formulation is given by solely replacing u and p by their discretized
numerical fluxes u∗h and p∗h, respectively, and replacing g by its discretized form gh, ob-
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taining

n× u∗h = gh, (2.50)

p∗h = 0, (2.51)

at Γ.

2.6 Interior Penalty Flux

Our modified model problem, with the assumption that ∇ · j holds, where we needed to
find a pair (u, p) such that the equations given in (2.16) hold, is in weak form given by
finding a pair (uh, ph) such that (2.48), (2.49), (2.50) and (2.51) hold. We now define the
numerical fluxes u∗h, p

∗
h,M

∗
h . This can be done in many different ways, however we choose

to use the Interior Penalty (IP) numerical fluxes defined in [12, 23, 21, 26, 22, 29]. For
interior faces, i.e. F ∈ F i

h, we have

u∗h = {{uh}}, (2.52a)

M∗
h = {{µ−1∇h × uh}} − aF [[uh]]T , (2.52b)

p∗h = {{ph}} − bF [[εuh]]N , (2.52c)

εu∗h = {{εuh}} − cF [[ph]]N , (2.52d)

with aF , bF , cF ∈ R+ as penalty coefficients. For boundary faces, i.e. F ∈ F b
h, we have

n× u∗h = gh, (2.53a)

M∗
h = {{µ−1∇h × uh}}+ aFgh − aF [[uh]]T , (2.53b)

p∗h = 0, (2.53c)

εu∗h = {{εuh}} − cF [[ph]]N , (2.53d)

with aF , cF ∈ R+ as penalty coefficients and gh ∈ Vh as the L2 approximation of the
boundary value at Γ.

Inserting equations (2.52) and (2.53) into (2.48), and using the relations for the
jumps and averages, e.g. [[{{uh}}]] = 0, and using [[M∗

h ]]T · {{v}} = −[[v]]T · {{M∗
h}} for
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F ∈ F b
h, we get

(jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

+
∑
F∈F i

h

∫
F

([[ph]]N · {{εv}}+ bF [[εv]]N [[εv]]N)dS

+
∑
F∈F i

h

∫
F

(−[[v]]T · {{µ−1∇h × uh}}+ [[v]]T · aF [[uh]]T − [[uh]]T · {{µ−1∇h × v}})dS

+
∑
F∈F b

h

∫
F

(−[[v]]T · ({{µ−1∇h × uh}}+ aFgh − aF [[uh]]T )

+(gh − n× uh) · {{µ−1∇h × v}})dS

⇒ (jh, v)Ω =(µ−1∇h × uh,∇h × v)Ω − (ω2εuh, v)Ω − (∇hph, εv)Ω

+
∑
F∈F i

h

∫
F

([[ph]]N · {{εv}}+ bF [[εv]]N [[εv]]N)dS

+
∑
F∈F i

h

∫
F

(−{{µ−1∇h × uh}} · [[v]]T − {{µ−1∇h × v}} · [[uh]]T + aF [[uh]]T · [[v]]T )dS

+
∑
F∈F b

h

∫
F

(−{{µ−1∇h × uh}} · [[v]]T − {{µ−1∇h × v}} · [[uh]]T + aF [[uh]]T · [[v]]T )dS

+
∑
F∈F b

h

∫
F

(−aF [[v]]T · gh + gh · {{µ−1∇h × v}})dS,

(2.54)
in Ω.

Applying the Interior Penalty flux for the divergence constraint on the faces F ∈ Fh
and eliminating double jumps and average operators, we get

0 = −(εuh,∇hq)Ω +
∑
F∈Fh

∫
F

({{(εuh)}} · [[q]]N − cF [[ph]] · [[q]]N)dS, (2.55)

in Ω.
For the remaining two equations of the modified model, given in equations (2.50)

and (2.51), we get

n× uh = gh, (2.56)

p∗h = 0, (2.57)

at Γ.
Therefore, a weak formulation of the time-harmonic mixed Maxwell equations with

the divergence constraint can be written as follows: Find (uh, ph) ∈ Vh × Qh, such that
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∀(v, q) ∈ Vh ×Qh

ah(uh, v)− (ω2εuh, v)Ω + bh(v, ph) = (jh, v)Ω + dh(gh, v), (2.58a)

bh(uh, q)− ch(ph, q) = 0, (2.58b)

where we have

ah(uh, v) = (µ−1∇h × uh,∇h × v)Ω

−
∑
F∈Fh

∫
F

({{µ−1∇× uh}} · [[v]]T + {{µ−1∇× v}} · [[uh]]T )dS

+
∑
F∈Fh

∫
F

aF [[uh]]T · [[v]]TdS +
∑
F∈F i

h

∫
F

bF [[εv]]N [[εuh]]NdS, (2.59a)

bh(v, ph) = −(∇hph, εv)Ω +
∑
F∈Fh

∫
F

[[ph]]N · {{εv}}dS, (2.59b)

ch(ph, q) =
∑
F∈Fh

∫
F

cF [[ph]]N · [[q]]NdS, (2.59c)

dh(gh, v) =
∑
F∈F b

h

∫
F

(aF [[v]]T · gh − gh · {{µ−1∇× v}})dS. (2.59d)

As described before, ∇h denotes the elementwise ∇ operator. We note that the bilinear
form ah corresponds to the interior penalty discretization of the curl-curl operator with an
additional normal jump term. The bilinear form bh discretizes the divergence constraint
in the mixed Maxwell formulation using a discontinuous Galerkin scheme. The bilinear
form ch is a stabilization term, which controls the jumps in the scalar potential p. The
parameters aF , bF and cF are positive stabilization parameters, which depend on the mesh
size and the polynomial order of the basis functions.

2.7 Eigenvalue Problem Formulation

In the remainder, we consider light propagation in an infinite periodic domain Ω without
external current sources, i.e. j = 0. Equations (2.59) give us the generalized eigenvalue
problem in ω2 as: Find (uh, ph, ω) ∈ Vh ×Qh × C, such that ∀(v, q) ∈ Vh ×Qh,

ah(uh, v) + bh(v, ph) = (ω2
hεuh, v)Ω, (2.60a)

bh(uh, q)− ch(ph, q) = 0. (2.60b)

Reference [22] presents the complete convergence theory for the eigenvalue problem given
by equations (2.60). To study a unit cell, infinitely repeated in every direction, we employ
Bloch-Floquet periodic boundaries in the positive and negative X, Y, and Z directions
for the domain Ω to describe an infinite periodic crystal and introduce the Bloch mode
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expansion

uh(r) = eik·rũh(r), (2.61)

ph(r) = eik·rp̃h(r), (2.62)

where the wave vectors ũ and p̃ are periodic, such that the period fits in the domain Ω.
Hence, we have

ũh(r) = ũh(r +R), (2.63)

p̃h(r) = p̃h(r +R), (2.64)

for all lattice vectors R. Introducing the Bloch mode expansion into equation (2.60), we
obtain the eigenvalue problem: Find (ũh, p̃h, ωh) ∈ Vh×Qh×C, such that ∀(v, q) ∈ Vh×Qh,

ah(ũh, v) + bh(v, p̃h) = (ω2
hεũh, v)Ω,

bh(ũh, q)− ch(p̃h, q) = 0,
(2.65)

where

ak,h(ũh, v) = (µ−1∇k,h × ũh,∇k,h × v)Ω

−
∑
F∈Fh

∫
F

({{µ−1∇k × ũh}} · [[v]]T + {{µ−1∇k × v}} · [[ũh]]T )dS

+
∑
F∈Fh

∫
F

aF [[ũh]]T · [[v]]TdS +
∑
F∈F i

h

∫
F

bF [[εv]]N [[εũh]]NdS, (2.66a)

bk,h(v, p̃h) = −(∇k,hp̃h, εv)Ω +
∑
F∈Fh

∫
F

[[p̃h]]N · {{εv}}dS, (2.66b)

ck,h(p̃h, q) =
∑
F∈Fh

∫
F

cF [[p̃h]]N · [[q]]NdS, (2.66c)

with ∇k = ∇+ ik. Equation (2.65) represents the model problem to calculate a photonic
band structure. The discontinuous Galerkin discretization of equation (2.65) results in
the following matrices:

ak,h(vj, vi)→ Aij,

bk,h(vi, qj)→ Bij,

ck,h(qj, qi)→ Cij,

(vj, εvi)→Mij.

Hence, the generalized eigenvalue problem, in terms of matrices, is given by(
A B
BT C

)(
uh
ph

)
= ω2

(
M 0
0 0

)(
uh
ph

)
, (2.67)
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which finds the smallest eigenvalue ωh.
For an efficient computation of the photonic bandstructure, References [12, 22] report

that it is beneficial to rewrite the generalized eigenvalue problem, given in equation (2.67),
as (

M 0
0 0

)(
uh
ph

)
= ω̃2

(
A B
BT C

)(
uh
ph

)
, (2.68)

with ω2
h = 1

ω̃2
h
. The benefit of this formulation is the more efficiently computations of the

largest eigenvalues of a matrix, than the non-zero eigenvalues close to zero as is generally
done in photonic crystal band gap computations. This possibility arises due to the mixed
formulation satisfying the divergence constraint, eliminating the large null space of the
curl-curl operator. Hence, we will only obtain non-zero eigenvalues.

2.8 Implicit Divergence Constraint

A simplification of the eigenvalue problem derived in the previous subsections is achieved
by implicitly enforcing the divergence constraint. We rather assume that ∇·(εĒ) is equal
to zero. Given a divergence free initial condition, equation (2.1a) will automatically be
satisfied at all times at the continuous level. Hence, we neglect equation (2.1a) in the
same way as we neglected (2.1c) in (2.1) [7]. Therefore, the modified model is reduced to
equations (2.9) and (2.10), i.e.

∇× (µ−1∇× E)− ω2εE = j in Ω, (2.69a)

n× E = g at Γ. (2.69b)

Similar to the derivation in Subsection 2.5, we introduce an auxiliary variable M such
that equation (2.69a) is rewritten to

∇×M − ω2εE = j in Ω, (2.70)

with the assumption that
M − µ−1(∇× E) = 0. (2.71)

Multiplying test function v with equation (2.70) and test function w with (2.71), replacing
M with Mh ∈ Vh and E with Eh ∈ Vh, and integrating over domain Ω, we obtain

(j, v)Ω =
∑
K∈Th

∫
K

(∇×Mh) · v − ω2εEh · vdx, (2.72)

and

(Mh, w)Ω =
∑
K∈Th

∫
K

(µ−1(∇× Eh)) · wdx, (2.73)

where (., .)Ω denotes the standard L2(Ω) inner product. We apply the same derivation as
in equation (2.24), with only uh replaced by Eh. Therefore, with the same definitions as
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given in Subsection 2.4, the auxiliary variable is rewritten to

Mh = µ−1∇h × Eh + µ−1S(E∗h − Eh)− µ−1L(E∗h − Eh). (2.74)

We employ the method of Subsection 2.5 on equation (2.72). We use the divergence
theorem and the identities given in Subsection 2.4. We substitute Mh and the Lifting
operators back into the equation. Finally, we use integration by parts, to obtain

(jh, v)Ω =(µ−1∇h × Eh,∇h × v)Ω − (ω2εEh, v)Ω

+
∑
F∈F i

h

∫
F

([[M∗
h ]]T · {{v}} − [[v]]T · {{M∗

h}}

+[[E∗h − Eh]]T · {{µ−1∇h × v}} − {{E∗h − Eh}} · [[µ−1∇h × v]])dS

+
∑
F∈F b

h

∫
F

([[M∗
h ]]T · {{v}}+ [[E∗h − Eh]]T · {{µ−1∇h × v}})dS.

(2.75)

Next, we set the definition of the numerical fluxes [12, 27]. For interior faces F ∈ F i
h, we

have

E∗ = {{E}}, (2.76a)

M∗
h = {{µ−1∇Eh}} − aF [[Eh]]T , (2.76b)

with aF ∈ R+ as penalty coefficient. For boundary faces F ∈ F b
h, we have

n× E∗h = gh, (2.77a)

M∗
h = {{µ−1∇Eh}}+ aFgh − aF [[Eh]]T . (2.77b)

Inserting these numerical fluxes into equation (2.75) to obtain the space discretization
according to the interior penalty numerical flux, we get

(jh, v)Ω =(µ−1∇h × Eh,∇h × v)Ω − (ω2εEh, v)Ω

+
∑
F∈F i

h

∫
F

(−{{µ−1∇h × Eh}} · [[v]]T − {{µ−1∇h × v}} · [[Eh]]T + aF [[Eh]]T · [[v]]T )dS

+
∑
F∈F b

h

∫
F

(−{{µ−1∇h × Eh}} · [[v]]T − {{µ−1∇h × v}} · [[Eh]]T + aF [[h]]T · [[v]]T )dS

+
∑
F∈F b

h

∫
F

(−aF [[v]]T · gh + gh · {{µ−1∇h × v}})dS.

(2.78)
With this equation, we have a weak formulation of the time-harmonic mixed Maxwell
equations, with the implicit divergence constraint, which can be written as: Find Eh ∈ Vh,
such that ∀v ∈ Vh,

ah(Eh, v)− (ω2εEh, v)Ω = (jh, v)Ω + dh(gh, v), (2.79)
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with

ah(Eh, v) = (µ−1∇h × Eh,∇h × v)Ω

−
∑
F∈Fh

∫
F

({{µ−1∇× Eh}} · [[v]]T + {{µ−1∇× v}} · [[Eh]]T )dS

+
∑
F∈Fh

∫
F

aF [[Eh]]T · [[v]]TdS +
∑
F∈F i

h

∫
F

bF [[εv]]N [[εEh]]NdS, (2.80a)

dh(gh, v) =
∑
F∈F b

h

∫
F

(aF [[v]]T · gh − gh · {{µ−1∇× v}})dS. (2.80b)

where ∇h denotes the elementwise ∇ operator and aF , bF ∈ R+ are the penalty co-
efficients, which are positive stabilization parameters depending on the mesh size and
polynomial order of the basis functions. In this special case, we again note that the bi-
linear form ah corresponds to the interior penalty discretization of the curl-curl operator
with an additional normal jump term.

Similar to Subsection 2.7, we formulate the eigenvalue problem, by assuming there is
no external source, such that j = 0 and gh = 0 on an infinite periodic domain Ω. Also, we
similarly introduce the Bloch-Floquet periodic boundaries in the positive and negative X,
Y, and Z directions for the domain Ω in order to consider a unit cell, which is infinitely
many times repeated in all directions. Introducing the Bloch mode expansion, we get

Eh(r) = eik·rẼh(r), (2.81)

with wave vector k. Here Ẽh is periodic, such that the period fits in the domain Ω. Hence,
we have

Ẽh(r) = Ẽh(r +R), (2.82)

for all lattice vectors R. Implementing this into equation (2.79) gives the generalized
eigenvalue problem in ω2

h as: Find (Ẽh, ωh) ∈ Vh × C, such that ∀v ∈ Vh,

ah(Ẽh, v) = (ω2
hεẼh, v)Ω, (2.83)

where

ak,h(Ẽh, v) = (µ−1∇k,h × Ẽh,∇k,h × v)Ω

−
∑
F∈Fh

∫
F

({{µ−1∇k × Ẽh}} · [[v]]T + {{µ−1∇k × v}} · [[Ẽh]]T )dS

+
∑
F∈Fh

∫
F

aF [[Ẽh]]T · [[v]]TdS +
∑
F∈F i

h

∫
F

bF [[εv]]N [[εẼh]]NdS,

(2.84)

with ∇k = ∇+ ik. Equation (2.83) represents the model problem to calculate a photonic
band structure. The discontinuous Galerkin discretization of equation (2.69) results in
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the following matrices:

ak,h(vj, vi)→ Aij,

(vj, εvi)→Mij.

Therefore, the generalized eigenvalue problem, in terms of matrices, is given to be

AEh = ω2
hMEh, (2.85)

which finds the eigenvalues ωh.
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3 Numerical Computations of the Generalized Eigen-

value Problem Implementation in hpGEM

We aim to solve a generalized eigenvalue problemMx = λSx, as given in equation (2.85).
We test different photonic crystal structures, where the geometries of these structures are
defined by the dielectric permittivity function varying in space. To perform numerical
computations, we use the software package hpGEM [28], which is able to solve the gener-
alized eigenvalue problem. Besides hpGEM, multiple toolkits are used. The applications
are elaborated in this section.

3.1 Software Package hpGEM

We solve the generalized eigenvalue problemMx = λSx using the C++ software package
hpGEM [28]. The hpGEM software package is developed with multiple applications, e.g.,
DG-Max, to apply the discontinuous Galerkin methods to a variety of physical problems.
It is specialized to solve partial differential equations for fluid mechanics and electro-
magnetism, among which we find the Maxwell equations [5, 7]. The hpGEM package
uses toolkits PETSc [31] and SLEPc [32] to solve linear systems and eigenvalue prob-
lems, respectively [31, 32]. The hpGEM package provides a structured mesh generator.
Additionally, it provides a Centaur[35] mesh reader to enable computations on complex
structures with unstructured meshes. We use the commercial packages Rhinoceros [36]
and Centaur [35] to create complex structures and to generate unstructured meshes,
respectively. The hpGEM package also provides a wide range of features, such as:

– handling mesh geometries in one, two and three dimensions, with a variety of ele-
ment shapes with homogeneous or periodic boundary conditions

– creating structured meshes

– reading unstructured Centaur meshes

– providing a variety of basis functions

– giving the possibility of h- and p- adaptation

– computing Jacobians and coordinate transformations from the reference element to
the physical element for internally and externally generated meshes

– computing integrals, e.g., Gauss’ integration rules up to at least order seven for
all supported geometries are included in support of higher-order finite element dis-
cretizations

– including a global algebraic system assembly
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– providing automated-routines to write a computed solution to Tecplot and Paraview
files

The DG-Max application of the software package hpGEM is able to calculate the
eigenvalue problem, the time-dependent Maxwell system, and the time-harmonic Maxwell
system. Additionally, DG-Max can handle perfectly conducting and periodic boundary
conditions, the Interior Penalty and Brezzi [27] flux, and geometries with a piecewise-
constant permittivity ε.

3.2 Software Application DG-Max

We use the DG-Max solver to apply the discontinuous Galerkin methods to the Maxwell
equations. A computation with the software application DG-Max starts with initializing
all mesh data, a timer starts, and the input parameters, such as type of solver and basis
functions, are read. DG-Max constructs a structured mesh with boundary conditions
via the hpGEM kernel or DG-Max reads an unstructured mesh and boundary conditions
from a pre-generated Centaur file. PETSc is initialised and the global matrices M and
S are defined. A variable is initialized which indicates if the inverse of M needs to
be calculated. Depending on the type of solver, the initial solution, the derivative of
the initial solution, and the source term are defined. The next step is to compute the
element matrices. If the inverse mass matrix is used, also the Jacobian and its derivatives
are computed. For each element, the local mass matrices (or inverse mass matrices) and
stiffness matrices are initialized and the actual values of the local matrices are computed
using the integration routines provided by hpGEM. The same is done for all boundary
and internal faces. With the use of a pre-defined solver, the linear system is solved and
output is created.

To correctly use the DG-Max code, we use mainly three files to implement the
settings. These three files are DG-Max.cpp, BaseExtended.cpp, and ElementInfos.cpp.
DG-Max.cpp is the main file, where we initialise the mesh and the boundary conditions,
call the element- and face integrations, indicate the type of basis functions and set the
type of solver. In BaseExtended.cpp, we describe the solvers and also calculate the
element- and face integrands. In ElementInfos.cpp, we define the dielectric function and
the penalty parameter.

DG-Max.cpp - Starting in DG-Max.cpp, one states if an internal mesh must be
generated or that an external mesh is used. The internal mesh is a structured mesh
generated depending on the input parameter n with which the function is called1. The
domain Ω = (0, 1)3 is subdivided in n ∗ n ∗ n sub-cubes, which are then split into five
tetrahedra, four of which are congruent [7]. In total, there are 5n3 elements generated.
The boundary conditions need to be set manually, before generating the mesh. In case
of an external mesh, a ‘.hyb’ file needs to be called. A build-in mesh reader2 is used

1Changes made in DG-Max.cpp: MyMeshManipulator()
2Changes made in MeshManipulator Impl.h: readCentaurMesh3d()
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to read all the data from the given file. When the mesh is generated or read, the basis
functions are initiated. In DG-Max, two basis functions are implemented, the Ainsworth
Coyle basisfunctions and the Nédélec elements [25, 5]. The final setting in DG-Max.cpp
is the type of problem which needs to be solved. DG-Max consists of three different
solvers, namely the time-dependent, harmonic, and eigenvalue solver. Whereas the time-
dependent solver is mainly used to check the code and can later on be used for different
applications, the harmonic solver can be used to check different errors in the harmonic
solutions, e.g., the L2(Ω)3 error. Since we are interested in the eigenvalues of different
nanophotonic structures, we use the eigenvalue solver. In addition, we use the harmonic
solver to check if the code is working correctly.

BaseExtended.cpp - Three solvers are implemented in BaseExtended.cpp and all
the corresponding computations are done to obtain the results. At the start of the
eigenvalue solver function, the degrees of freedom per element are determined using the
basis functions. In case of periodic boundary conditions, boundary blocks3 are located in
the global matrix to take into account the elements adjacent to the periodic boundaries.
The mass matrix M, stiffness matrix S, and the local matrices are computed4. The
eigenvalue problem is initialised using SLEPc5. If needed, the inverted mass matrixM−1

is assembled, to initialize the product with stifness matrixM−1S. If the implementation
of DG-Max is used, rather than DivDG-Max, i.e. the divergence constraint is neglected,
a target is set to find the eigenvalues in the neighbourhood of this target. If no target is
used, it is possible to find solely zero eigenvalues, if we search for the smallest eigenvalues.
The number of desired eigenvalues is adjustable. Since we use a finite mesh resolution and
therefore higher eigenvalues have many nodes and peaks and will not be approximated
accurately, we put it the number of desired eigenvalues to 24. A significant fraction
of the spectrum consists of zero eigenvalues, therefore it may be necessary to calculate
many more eigenvalues than the few non-zero eigenvalues we are interested in. The
number of iterations depends on the number of different wave vector k-values we use. If
we use one k-value, only one iteration is needed. If we use more k-values, the system
will be recalculated per k-value. In case of the eigenvalue solver, we are interested in
the eigenvalues throughout the Brillouin zone in the reciprocal space, i.e. the smallest
primitive unit cell of the structure of interest [4]. We take up to 60 k-values to implement
the k shift. We start with k equal to (0, 0, 0), then ‘shift’ in the ΓX direction up to (π, 0, 0)
in 20 steps, after that we shift in the XS direction in 20 steps up to (π, π, 0). Finally, we
go straight up along the SR direction and increase k up to (π, π, π), again in 20 steps.
This is illustrated in Fig. 3. At every iteration, local and global matrices are recalculated
with the corresponding k-value. The output of the eigenvalue solver is a vector with all
the calculated eigenvalues. In case of 60 iterations, this yields 1440(= 24∗60) eigenvalues.
ElementInfos.cpp - DG-Max handles geometries with a piecewise-constant dielectric

function ε. We take the piecewise dielectric function ε constant in each element. The
piecewise dielectric constant can differ strongly per element. Depending on the dielectric

3Changes made in BaseExtended.cpp: FindBoundaryBlocks()
4Changes made in BaseExtended.cpp: elementMassIntegrand(), elementStiffnessIntegrand(),

elementSpaceIntegrand(), initialConditionsIntegrand(), initialConditionsDerivIntegrand(),
faceStifnessIntegrand(), faceStiffnessIPIntegrand(), faceSpaceIntegrandIP(),
faceStifnessIntegrandBR()

5Changes made in BaseExtended: SolveEigenvalues()
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Figure 3: Visualization of the shift in wave vector k in reciprocal space. We start in Γ and shift to R via X and
S, respectively.

function, we need mesh refinements to do proper calculations. We build the structures in
such manner, that the grid is refined at the jumps in dielectric constants. We describe the
piecewise dielectric function in ElementInfos.ccp. Here, the value of the dielectric constant
is set per physical element6. In ElementInfos.cpp, we also calculate the penalty parameter.
We adjust the penalty parameter using the input parameters. In case we use hpGEM
to internally generate a structured mesh, the penalty parameter is set automatically to
n(p + 1)(p + 3), with n the number of sub-cubes in one direction and p the polynomial
order of the basis function. However, if an external unstructured mesh is used, the penalty
parameter must be set manually, accordingly to the smallest element in the mesh.

3.3 Additional Toolkits

The software package hpGEM only handles a cubic domain tessellated with tetrahedra,
creating a structured mesh. This is easy to use for simple structures. However, it is less
accurate when corners are involved or a local mesh refinement is needed. In the case of
hpGEM mesh generation all the elements have the size of the smallest needed element size.
An unstructured grid is a solution to efficiently deal with general geometries and local
mesh refinement. The toolkits Rhinoceros[36] and Centaur[35] are commercial toolkits,
which we use to create more complex structures and meshes.

3.3.1 Structure Modeling

We use Rhinoceros to create the structure of the nanophotonic crystal with a cubic unit
cell of interest. We employ commands such as ‘Box’, ‘Circle’, ’Array’, and ‘MakeHole’. If
structures consist of pores, we need to create an overlap of these pores to form the edge
of the domain. This is necessary to apply the boundary conditions. If we do not create
an overlap, it will be taken as empty space. We create a new outer structure and use the
command ‘split’ to easily create these overlaps. We remove these double panels so that

6Changes made in ElementInfos.cpp: ElementInfos()
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Centaur does not have to handle this, which takes more time and easily causes errors.
The file needs to be saved as .igs file for use in Centaur. It needs to be saved as .3dm file
if reopening in Rhinoceros is considered.

3.3.2 Mesh Generation

In Centaur the structure, created in Rhinoceros, needs to be loaded and a CAD cleaner
is used to create the edges (panels) and boundaries of the edges (curves) of the data
points of the structure. The boundary conditions are set. In case of periodic boundary
conditions, Centaur uses periodic and shadow panels, which need to be combined. In
case of multiple dielectric regions, an extra region needs to be created. The overlapping
curves of the different regions need to be combined by use of interfaces. If done correctly,
a mesh is generated. The input parameters for the mesh generation need to be set, such
that refinement is performed correctly. It is necessary to put the number of pyramids to
zero, such that solely tetrahedra are created. The output of the mesh generator consists
of a large number of files and folders, but for the computations with DG-Max, only the
.hyb file is used. This file is loaded into DG-Max as described in the previous Section. In
case of an unstructured Centaur mesh the penalty parameter needs to be set manually
using the input parameters. The penalty parameter is set to n(p+ 1)(p+ 3), with p the
polynomial order of the basis functions and n the multiplicity of the smallest element
fitting in one direction.
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4 Results

We present computations using DG-Max for various tests cases in this section. We per-
form a series of test calculations. We solve the eigenvalue problem given in equation
(2.85) for the reduced frequency ω̃2, with ω̃ = ωa/2πc, where ω is the frequency, a the
lattice parameter, and c the speed of light. We express ω̃ in units of (a/λw), with λw the
wavelength. We are mainly interested in the smallest non-zero eigenvalues. Note, that
we solve the problem for ω̃2 in (2.85), whereas the DG-Max eigenvalue solver solves the
general eigenvalue problem in λ. Since ω̃2 = λ, we take the square root of λ in order to
find ω̃. In case periodic boundary conditions are considered, an additional division by 2π
is needed to find the correct eigenvalues.

First, we analytically validate the code of DG-Max. After that, we perform conver-
gence tests for the Vacuum Crystal, Bragg Stack, Cylindrical Crystal, Cuboid Crystal,
and the Inverse Woodpile crystal. The Bragg Stack, Cylindrical, Cuboid, and Inverse
Woodpile Crystal cases are compared to the MPB plane-wave expansion method [6].We
compare the numerical results of the Vacuum crystal to the analytical solution. We cal-
culate the convergence order of the Inverse Woodpile crystal and apply the Richardson
extrapolation.

4.1 Harmonic Solver

The first validation of the software application DG-Max is performed using the harmonic
solver of DG-Max. Given an exact solution, the source term is calculated by hand. With
the source term as input, the exact solution is numerically calculated. The output of the
harmonic solver is the error of the calculated solution compared to the exact solution in
L2(Ω), H(curl), and DG-norm. We define the H(curl) and DG-norm as

||E||2curl = ||E||20 + ||∇ × E||20, (4.1)

||E||2DG = ||E||20 + ||∇h × E||20 + ||h−
1
2 [[E]]||20,Fh

, (4.2)

where || · ||0 denotes the L2(Ω)-norm, || · ||0,Fh
the L2(F ) norm, and h(x) = hF , which

is the diameter of face F , containing x [29]. In References [5, 7, 29, 30] multiple tests
for structured meshes are given. To validate the code, we repeat these tests of which the
results are presented in the appendix, see Appendix A. We conclude that the DG-Max
code works properly using the harmonic solver.

4.2 Eigenvalue Solver and Internal Meshes

We obtain the results of the eigenvalue problem using the eigenvalue solver of DG-Max.
In order to validate the eigenvalue solver of DG-Max, we calculate the eigenvalues for
common geometries. We consider the eigenvalue problem with the implicit divergence
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constraint, given in Section 2.8 by equation (2.85). Hence, we solve the generalized
eigenvalue problem in ω̃2 for different dielectric permittivity functions ε.

4.2.1 Vacuum Crystal

The Vacuum Crystal is considered the simplest test case, since also an analytical solution
can be calculated. We consider a homogeneous cube consisting of air with a constant
dielectric permittivity ε = 1 of which we calculate the 3D photonic band structures. The
homogeneous cube is periodically repeated in all three directions using periodic boundary
conditions. For validation, we analyse it by an analytical method and two numerical
methods.

We calculate the analytical solution by taking a cube with dimensions a × a × a,
with a the lattice parameter, where ε is constant throughout medium. Replacing ω with
ω̃, taking µ = 1, assuming that E is constant and by taking k orthogonal to E, equation
(2.85) is reduced to

ik × ik × E = ω̃2E, (4.3)

such that we find ||k||2 = ω̃2. Considering the Bloch-Floquet theory, we see that at least
||k + 2πl|| = ω̃2,∀l ∈ Z3, are eigenvalues of (4.3).

To find eigenvalues with DG-Max, we employ a structured mesh of 2560 tetrahedra,
generated in hpGEM. We approximate the electric field E using first order hierarchic
basis functions of H(curl) conforming finite elements as given by Ainsworth and Coyle
[24]. We set the penalty coefficients to aF = 64 and bF = 0. In order to find the lowest
eigenvalues and not solely zero eigenvalues, we set the target of the eigenvalue solver to
λ = 40, to find eigenvalues in the neighbourhood of ω̃ = 1.01. Finally, the well-known
MPB solver [6] for photonic band structures is used for comparison. Using the MPB
plane-wave expansion method with a spatial resolution of 32 × 32 × 32 = 32768 grid
points, additional approximations for the photonic band structures are calculated [12].

In Fig. 4 the results of the analytical method, the DG-Max eigenvalue solver, and
the MPB solver are shown for the 3D photonic band structure of the Vacuum Crystal
between ω̃ = 0 and ω̃ = 1.4. The results of the DG-Max eigenvalues solver match with
the analytical solution. However, at higher frequencies, there is a difference in numer-
ically calculated eigenvalues and analytically calculated eigenvalues. These differences
are not statistical errors, since they follow a systematic trend. Due to the inverse rela-
tion of wavelength and frequency, wavelength decreases with increasing frequency. To
accurately resolve these higher frequency waves, the DG-Max eigenvalue solver needs a
higher mesh resolution and the MPB eigenvalue solver needs a higher spatial resolution
in order to reduce this systematic error. If the divergence constraint is not explicitly
enforced, about 60% of the eigenvalues in the band structure are zero eigenvalues. DG-
Max frequently finds these zero eigenvalues, which cause a major waste of computational
time. We note that the MPB method computes several non-physical eigenvalues, which
are not calculated in the analytical solution. These spurious eigenvalues are not present
at low frequencies when the homogeneous cube is taken as a fictitious Bragg stack with
alternating layers of dielectric permittivity ε1 = 1 and ε2 = 1.0001. However, the spurious
eigenvalues are still present at higher frequencies [12].
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Figure 4: The 3D photonic band structure for a Vacuum Crystal with dielectric permittivity of ε = 1. We
computed the eigenvalues of the Vacuum Crystal case using the DG-Max solver with a structured mesh of 2560
elements, the MPB solver using a resolution of 32×32×32 grid points, and the analytical solution. The red dots
are the numerically calculated eigenvalues by the DG-Max eigenvalue solver. The open blue diamonds represent
the numerically calculated eigenvalues by the MPB solver. The black solid line represents the solution to the
analytical solution. A unit cell of the Vacuum Crystal is also presented.

4.2.2 Bragg Stack

To study the accuracy of the eigenvalue computations in the presence of material inter-
faces, we calculate the 3D photonic band structure of a Bragg stack, which is a cube
consisting of alternating slabs, which differ in dielectric permittivity. We take one layer
with width 0.5a, with a being the lattice parameter, consisting of air with dielectric
permittivity ε1 = 1. The other layer, with the same width, consists of a high-index
material with dielectric permittivity ε2 = 13. Both layers are periodically repeated in
the x-direction and are infinitely long in the other two directions y and z, using periodic
boundary conditions.

We employ a structured mesh of 2560 tetrahedra, generated by hpGEM, in case
of the DG-Max eigenvalue solver. The electric field E is again approximated using the
first order of hierarchic basis functions of H(curl) conforming finite elements proposed by
Ainsworth and Coyle [24]. The penalty coefficients are set to aF = 64 and bF = 0. The
target of the eigenvalue solver is set to λ = 5, so that we find eigenvalues in the neigh-
bourhood of ω̃ = 0.36. For comparison, the approximations of the 3D photonic band
structures are also calculated using MPB plane-wave expansion method with a spatial
resolution of 32× 32× 32 = 32768 grid points.

Figure 5 shows the 3D photonic band structure between ω̃ = 0 and ω̃ = 0.4, ob-
tained using the DG-Max eigenvalue solver and MPB solver. We observe that the band
structures computed by the DG-Max solver match very well with the ones computed by
the MPB method. However, we observe small differences at higher regions in frequency.
This is an expected result, since a higher mesh resolution is required to resolve a solution
with a smaller wavelength. We observe that the DG-Max computes many zero eigen-
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values, since the divergence constraint is not explicitly enforced and hence, wastes a lot
of computing time. The highlighted region in the ΓX direction of the reciprocal space
indicates the stop gap of the Bragg Stack, see [4]. In the stop gap region, from ω̃ = 0.15
up to ω̃ = 0.26, no modes exist with a wave vector along the ΓX direction. Therefore
all light with a frequency in this region is completely reflected if it falls upon the Bragg
Stack structure in the ΓX direction.

Figure 5: The 3D photonic band structure for the Bragg Stack with dielectric permittivity of ε1 = 1 and ε2 = 13.
We computed the eigenvalues of the Bragg Stack using the DG-Max solver with a structured mesh of 2560
elements and the MPB solver using a resolution of 32 × 32 × 32 grid points. The red dots are the numerically
calculated eigenvalues by the DG-Max eigenvalue solver. The open blue diamonds represent the numerically
calculated eigenvalues by the MPB solver. A unit cell of the Bragg Stack is also presented, with the yellow part
indicating ε2 and the grey part indicating ε1.

4.3 Eigenvalue Solver and External Meshes

More complex structures are used to characterize the effect of the presence of a more
complex material interface. We created complex structures using Rhinoceros and Cen-
taur, as elaborated in Section 3.3. The externally created meshes are unstructured, in
contrast with the internally generated structured meshes. We load the externally gen-
erated meshes in DG-Max, where a build-in mesh reader is used to read the mesh with
the boundary conditions set in Centaur. All the settings used in Centaur, to generate
the unstructured meshes, can be found in the appendix, see Appendix B. Besides the
employed Vacuum Crystal and Bragg Stack, we test three more geometries. A cubic
structure with centred cylinder as simplest testcase with an external mesh, a cubic cell
with centred cuboid to employ the singularities at the corners of the cuboid inside the
cube, and the Inverse Woodpile, since it can have a 3D band gap with a large relative
band width [34].

35



4.3.1 Cylindrical Crystal

We compute the 3D photonic band structure, where the dielectric permittivity of ε2 = 13
is centred in a rod shape in the centre of the cube, with radius 0.2a, with a the lattice
constant. The surroundings of the rod is taken as air, therefore the dielectric permittivity
is ε1 = 1. This cube is periodically repeated in the x- and y-direction and elongated in
the z-direction, using periodic boundary conditions.

We employ an unstructured mesh of 3349 tetrahedra, generated using Centaur, in
case of the DG-Max eigenvalue solver. The electric field E is approximated using the
first order of hierarchic basis functions of H(curl) conforming finite elements proposed
by Ainsworth and Coyle [12]. The penalty coefficients are set to aF = 640 and bF = 0.
The target of the eigenvalue solver is set to λ = 12, so that we find eigenvalues in the
neighbourhood of ω̃ = 0.55. The 3D photonic band structures are also calculated using
the MPB plane-wave expansion method with a spatial resolution of 32× 32× 32 = 32768
grid points.

The results of the 3D photonic band structure, between ω̃ = 0 and ω̃ = 0.78, of the
square lattice of dielectric columns are shown in Fig. 6. These results are obtained using
the DG-Max eigenvalue solver and MPB solver. We observe that the band structure
computed by the DG-Max eigenvalue solver and MPB method match well. However, we
observe small errors at higher regions in frequency. This conforms with our expectation
that an eigenvalue solver needs a higher spatial or mesh resolution at higher frequencies.
We observe that the DG-Max computes many zero eigenvalues, since the divergence
constraint is not explicitly enforced.

Figure 6: The 3D photonic band structure for the Cylindrical Crystal case with dielectric permittivity of ε1 =
1 and ε2 = 13. We computed the eigenvalues of the Cylindrical Crystal using the DG-Max solver with a
unstructured mesh of 3349 elements and the MPB solver using a resolution of 32 × 32 × 32 grid points. The
red dots are the numerically calculated eigenvalues by the DG-Max eigenvalue solver. The open blue diamonds
represent the numerically calculated eigenvalues by the MPB solver. A unit cell of the Cylindrical Crystal is also
presented, where the yellow and grey parts indicate ε2 and ε1, respectively.
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4.3.2 Cuboid Crystal

In the Cuboid Crystal case, we compute the 3D photonic band structure, where the
dielectric permittivity of ε2 = 13 is centred square-like inside a cube. The length and
width of the square in the x- and y-direction is 0.8a, such that the surroundings have a
width of 0.1a in both directions, where a is the lattice parameter. The surrounding is
considered air and thus has dielectric permittivity ε1 = 1. This cube with inner square
is periodically repeated in the x- and y-direction and elongated in the z-direction, using
periodic boundary conditions. Due to the elongation in the z-direction, we thus have a
cuboid inside a cube.

We employ an unstructured mesh of 3278 tetrahedra, generated using Centaur, in
case of the DG-Max eigenvalue solver. The electric field E is approximated using the
first order of hierarchic basis functions of H(curl) conforming finite elements proposed
by Ainsworth and Coyle [12]. The penalty coefficients are set to a = 80 and b = 0.
The target of the eigenvalue solver is set to λ = 6, so that we find eigenvalues in the
neighbourhood of ω̃ = 0.39. The 3D photonic band structures are also calculated using
MPB plane-wave expansion method with a spatial resolution of 32 × 32 × 32 = 32768
grid points.

Figure 7 shows the results of the 3D photonic band structure of the Cuboid Crystal
between ω̃ = 0 and ω̃ = 0.34. The results are obtained using the DG-Max eigenvalue
solver and the MPB solver. We observe that the band structure computed by the MPB
method match with the ones computed by the DG-Max solver. However, we observe errors
at higher regions in frequency. This in agreement with our expectation that an eigenvalue
solver needs a higher spatial or mesh resolution at higher frequencies in comparison with
the MPB solver. We observe that the DG-Max solver computes many zero eigenvalues,
since the divergence constraint is not explicitly enforced.

Figure 7: The 3D photonic band structure for the Cuboid Crystal case with dielectric permittivity of ε1 = 1
and ε2 = 13. We computed the eigenvalues of the Cuboid Crystal using the DG-Max solver with a structured
mesh of 2560 elements and the MPB solver using a resolution of 32 × 32 × 32 grid points. The red dots are
the numerically calculated eigenvalues by the DG-Max eigenvalue solver. The open blue diamonds represent the
numerically calculated eigenvalues by the MPB solver. A unit cell of the Cuboid Crystal is also presented, where
the yellow part indicates ε2 and the grey part indicates ε1.
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4.4 Convergence plots

To verify that the refinement of the mesh results in a more accurate eigenvalue calculation,
we consider the convergence of the results obtained from the calculations by the DG-
Max eigenvalue solver and the MPB solver. We study the convergence of a specific
eigenvalue. We compute the eigenvalues corresponding to wave vector k = (0, 0, 0) for
different geometries. We test the same geometry using a sequence of increasingly refined
meshes. We plot the obtained results against hest, which is an estimation of the size of
one element. Using the total number of elements N , we estimate the size of an element
by

hest =
1

3
√
N
. (4.4)

We expect that for larger N , the calculated eigenvalues will be more accurate. Note,
however, that the structure of each unstructured mesh for each value of N is different,
which can affect the monotonicity of the convergence rate.

In this section we study all cases using external unstructured meshes generated by
Centaur. In order to test the efficiency of the DG-Max eigenvalue solver, we also test to
see how far we can increase the total number of elements N . We make a comparison with
the MPB solver for the Cylinder, Cuboid, and Inverse Woodpile crystal. We compare
the convergence order of both solvers for the Inverse Woodpile crystal using Richardson
extrapolation.

4.4.1 Vacuum Crystal

In the Vacuum Crystal case, where we take a homogeneous cube consisting of air with
a constant dielectric permittivity ε = 1, we use mesh sizes of N = 375, 707, 3107, 6273,
11663, and 28351. Hence, we obtain hest = 0.139, 0.112, 0.069, 0.054, 0.044, and 0.033,
respectively. The target is set to λ = 40 for the DG-Max eigenvalue solver to find eigen-
values in the neighbourhood of ω̃ = 1.01.

We find a single eigenvalue with a multiplicity of 12, as well as several zero eigen-
values. These 12 eigenvalues are the approximation of the first eigenvalue ω̃ = 1 for the
Vacuum Crystal. To compare the convergence of the eigenvalues, we take the largest
computed eigenvalue for each different mesh size. Note that the largest computed eigen-
value is the worst approximation of the first eigenvalue ω̃ = 1.

In Fig. 8 the results of the largest computed eigenvalue of the Vacuum Crystal are
obtained for different sized unstructured meshes. Note that we plot by hest. The specific
eigenvalue monotonically decreases to the first exact eigenvalue as the number of elements
is increased. Hence, Fig. 8 shows a clear convergence with increasing mesh sizes. The
increase in mesh refinement, resulting in up to more than 28000 elements, is handled
correctly by the DG-Max solver. The same number of non-zero eigenvalues is calculated
for different mesh sizes.

The analytical solution of the vacuum case is known, therefore we make a compari-
son between the approximated eigenvalues λh and the exact solution λ. We calculate an
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exact eigenvalue of λ = 4π2, hence we find ω̃ = 1. We calculate the error Eh by

Eh =
|λ− λh|

λ
. (4.5)

Figure 9 shows the error in numerical solution Eh against hest. The error is decreasing for
increasing total number of elements. Since the error decreases to zero, a better approx-
imation of the exact solution is calculated using a refined mesh of the Vacuum Crystal.
Note that this is the worst computed approximation of the exact eigenvalue.

We use the error and hest to observe the convergence in logarithmic scale for com-
parison. In Fig. 10 the results of the error in numerical solution in logarithmic scale is
presented.

Figure 8: The largest computed eigenvalue by the DG-Max eigenvalue solver of the Vacuum Crystal for wave
vector k = (0, 0, 0). We set the target of the DG-Max solver to ω̃ = 1. We set the dielectric permittivity to
ε = 1. We use different sized unstructured Centaur meshes ranging from 375 elements up to 28351 elements. The
estimation of the size of one element hest is expressed as 1/ 3

√
N . The red dots indicate the computed eigenvalues.

The solid red line indicates the convergence. The dashed black line indicates the first exact eigenvalue ω̃ = 1 of
the Vacuum Crystal.
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Figure 9: The error of the largest computed eigenvalue by the DG-Max solver of the Vacuum Crystal for wave
vector k = (0, 0, 0). We set the target of the DG-Max solver to λ = 40 to obtain eigenvalues in the neighbourhood
of ω̃ = 1. We set the dielectric permittivity to ε = 1. We use different sized unstructured Centaur meshes ranging
from 375 elements up to 28351 elements. The error Eh is given by |λ − λh|/λ, with λ the analytical calculated
eigenvalue and λh the numerically computed eigenvalue of the Vacuum Crystal. The estimation of the size of
one element hest is expressed as 1/ 3

√
N . The red dots indicate the computed eigenvalues. The error Eh goes to

zero for increased mesh sizes, indicated by the red solid line, therefore the computed eigenvalue λh converges to
the correct eigenvalue λ.

Figure 10: The error of the last computed non-zero eigenvalue by the DG-Max solver of the Vacuum Crystal
for wave vector k = (0, 0, 0) in logarithmic scale. We set the dielectric permittivity to ε = 1. We use different
sized unstructured Centaur meshes ranging from 375 elements up to 28351 elements. The error Eh is given by
|λ − λh|/λ, with λ the analytically calculated eigenvalue and λh the numerically computed eigenvalue of the

Vacuum Crystal. The estimation of the size of one element hest is expressed as 1/ 3
√
N . The red dots indicate

the computed eigenvalues. The error Eh goes to zero for increased mesh sizes, indicated by the red solid line,
therefore the computed eigenvalue λh converges to the correct eigenvalue λ.

4.4.2 Bragg Stack

We observe the convergence of the Bragg Stack for a single wave vector k = (0, 0, 0). We
take a cube consisting of alternating slabs which differ in dielectric permittivity. We take
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one layer with width 0.5a, with a the lattice parameter, consisting of air with dielectric
permittivity ε1 = 1. The other layer, with same width, consists of a high-index material
with dielectric permittivity ε2 = 13. We use meshes with sizes N = 375, 707, 3107, 6273,
11663, and 28351 and thus have hest = 0.139, 0.112, 0.069, 0.054, 0.044, and 0.033 for the
Bragg Stack. Hence, we use the same number of elements as in the Vacuum Crystal case,
only now with a different dielectric function ε. We set the target of the DG-Max solver
to λ = 5 to obtain eigenvalues in the neighbourhood of ω̃ = 0.36.

The computations for the Bragg Stack with the eigenvalue solver result in diverse
non-zero eigenvalues ranging from ω̃ = 0.326 to ω̃ = 0.495, rather than one single eigen-
value with a certain multiplicity. Also, several zero eigenvalues are found. For differ-
ent mesh sizes, we find a different number of non-zero and zero eigenvalues, since the
various externally generated unstructured meshes have a different element distribution.
Computations done with meshes N = 707, 6273, 11663, and 28351 result in 14 non-zero
eigenvalues, with N = 3107 we find 22 non-zero eigenvalues and for N = 375, we find 12
non-zero eigenvalues. We take the largest computed eigenvalue in each case for different
mesh sizes for comparison. Since we find 8 additional non-zero eigenvalues in case of
N = 3107, we neglect these 8 non-zero eigenvalues and take the largest eigenvalue of
the remaining 14 non-zero eigenvalues. This specific eigenvalue is around ω̃ = 0.44. The
convergence of the results obtained by the DG-Max solver is compared to the largest
computed eigenvalue ω̃ = 0.4369 of the MPB solver using the wave vector k = (0, 0, 0)
and space resolution of 32× 32× 32 grid points.

In Fig. 11 we show the convergence plot for a specific eigenvalue of the Bragg Stack.
A decrease of the largest computed eigenvalue is obtained for an increase in total number
of elements. Hence, we have convergence for an increase in total number of elements.
The increase in mesh refinement, resulting in up to more than 28000 elements, is handled
correctly by the DG-Max solver for the Bragg Stack.

Figure 11: The largest computed eigenvalue by the DG-Max eigenvalue solver of the Bragg Stack for wave vector
k = (0, 0, 0). We set the target of the DG-Max solver to λ = to obtain eigenvalues in the neighbourhood of
ω̃ = 0.36. We set the dielectric permittivities to ε1 = 1 and ε2 = 13. We use different sized unstructured
Centaur meshes ranging from 375 elements up to 28351 elements. The estimation of the size of one element
hest is expressed as 1/ 3

√
N . The red dots indicate the computed eigenvalues. The solid red line indicates the

convergence. The blue dashed line indicates the last computed eigenvalue by the MPB solver using 32× 32× 32
grid points.
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4.4.3 Cylindrical Crystal

We compute the photonic band structure of the Cylindrical Crystal case for a single
wave vector k = (0, 0, 0) using the DG-Max eigenvalue solver and the MPB plane-wave
expansion method. We take the dielectric permittivity of ε2 = 13 centred in a rod shape
in the centre of the cube, with radius 0.2a, with a the lattice constant. We consider the
surroundings of the rod to be air, therefore the dielectric permittivity is given by ε1 = 1.
To study the convergence of the results obtained with the DG-Max solver, we generate
multiple unstructured meshes of different sizes using Centaur. We use meshes with the
total number of elements N = 1404, 5791, 10446, 14944, 36478, 80555, and 177587. This
results in hest = 0.089, 0.056, 0.046, 0.041, 0.023, and 0.018, respectively. Figure 12 shows
two cross sections of the unit cell of the Cylindrical Crystal of an unstructured mesh
with 80555 elements. To study the convergence of the calculated eigenvalues of the MPB
solver, we take grids with 8×8×8, 16×16×16 and 32×32×32 grid points, resulting in
hest = 0.125, 0.0625, and 0.03125, respectively. We set the target of the DG-Max solver
to λ = 12 to find eigenvalues in the neighbourhood of ω̃ = 0.55.

Similarly to the Bragg Stack, in the Cylindrical Crystal case we do not find one single
eigenvalue multiple times for both solvers. We find more diverse non-zero eigenvalues
in a range of ω̃ = 0.532 up to ω̃ = 0.768 and several zero eigenvalues. The number
of calculated eigenvalues by DG-Max differs per mesh size, which all have a different
element distribution. In case of mesh sizes N = 5791, 10446, 80555, and 177587 we find
16 non-zero eigenvalues, with mesh size N = 14944 we find 17 non-zero eigenvalues,
and if N = 1404 we find 10 non-zero eigenvalues. Using the MPB solver, we obtain 8
non-zero eigenvalues and several zero eigenvalues. In order to compare the convergence
of both solvers, we take the 6th computed eigenvalue for each different mesh size. We
find 17 computed non-zero eigenvalues for the mesh size N = 14944, which is one more

Figure 12: Two cross sections in the xy-plane of the unit cell of the Cylindrical Crystal. The unstructured
mesh contains 80555 elements. The mesh is generated using toolkit Centaur [35]. The yellow area indicates the
highly-indexed material with dielectric permittivity of ε2 = 13. The grey area indicates the low-indexed material
with dielectric permittivity of ε1 = 1.
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calculated eigenvalue in comparison to the largest mesh sizes for the DG-Max solver,
therefore we take the 7th computed eigenvalue in this case.

Figure 13 shows the convergence for the Cylindrical Crystal of the specific eigenvalue
computed using the DG-Max and MPB solver. We plot the obtained eigenvalues ω̃ against
hest. An increase in total number of elements N results in a decrease in the specific ω̃, for
both of the solvers. At smaller mesh sizes the differences in computed eigenvalues by the
different solvers is larger in comparison to the computed eigenvalues using larger mesh
sizes. We speculate that this is related to the divergence constraint, which is not enforced
at the discrete level in DG-Max, whereas it is enforced at the discrete level in the MPB
solver [4]. With increasing mesh refinement, the results are approximately equal. The
increase in mesh refinement for the meshes created with Centaur, resulting in up to more
than 177000 elements, is handled correctly by DG-Max for the Cylindrical Crystal.

Figure 13: The 6th computed non-zero eigenvalue by the DG-Max eigenvalue solver and the MPB solver of the
Cylindrical Crystal for wave vector k = (0, 0, 0). We set the target of the DG-Max solver to λ = 12 to obtain
eigenvalues in the neighbourhood of ω̃ = 0.55. We set the dielectric permittivities to ε1 = 1 and ε2 = 13. We use
different sized unstructured Centaur meshes ranging from 1404 elements up to 177587 elements for the DG-Max
solver. In case of the MPB solver uses mesh resolutions of 512 up to 32768. The estimation of the size of one
element hest is expressed as 1/ 3

√
N . The red dots indicate the eigenvalues computed using DG-Max. The open

blue diamonds represent the computed eigenvalue using the MPB solver. The solid red and blue line indicate the
convergence of both solvers.

4.4.4 Cuboid Crystal

We employ the geometry for the Cuboid Crystal, where we have a square with length and
width 0.8a centred in a cube with a dielectric permittivity ε2 = 13, which is elongated
in the z-direction. We surround the square with air, which has a dielectric permittivity
of ε1 = 1, with a width of 0.1a in both x- and y-direction. The cube with inner square is
periodically repeated in the x- and y-direction using periodic boundary conditions. We
compute the photonic band structure for a single wave vector k = (0, 0, 0) for different
sized meshes using the DG-Max eigenvalue solver and the MPB Solver. In case of the
DG-Max eigenvalue solver, we use N = 1603, 3278, 5838, 10570, 13810, 23222, and 35077,
which result in hest = 0.086, 0.067, 0.056, 0.046, 0.41, 0.035, and 0.031, respectively. Figure
14 shows two cross sections of the unit cell of the Cuboid Crystal of the unstructured
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mesh with 35077 elements. We employ the MPB solver using resolution spaces 512, 4096,
and 32768, resulting in hest = 0.125, 0.063. We set the target of the DG-Max solver to
λ = 6 to obtain eigenvalues in the neighbourhood of ω̃ = 0.39.

Both solvers do not find one single eigenvalue with certain multiplicity for one wave
vector k, but find more diverse eigenvalues in a range of ω̃ = 0.3 up to ω̃ = 0.5. The
number of calculated eigenvalues by DG-Max differs per mesh size, which all have a
different element distribution. In case of N = 5838, 10570, 13810, we find 15 non-zero
eigenvalues, for N = 35077 we find 14 non-zero eigenvalues, for N = 23222 we find 11
non-zero eigenvalues, with N = 3278 12 non-zero eigenvalues, and for N = 1603 we find
17 non-zero eigenvalues. Using the MPB solver, we obtain 13 non-zero eigenvalues. In
order to compare the convergence of both solvers, we take the 8th computed eigenvalue
for each different mesh sizes. We find less eigenvalues with DG-Max in the cases of
N = 23222 and N = 3278, therefore we take the 5th calculated eigenvalue in these cases.

In Fig. 15 the convergence is shown of the specific eigenvalue computed by the
DG-Max eigenvalue solver and MPB solver for increasing total number of elements N .
The approximations by the DG-Max solver are worse than the MPB solver, in case of a
coarse mesh. However, this is compensated with the faster convergence of the DG-Max
solver in comparison with the MPB solver. With increasing mesh refinement we see that
the approximations are about equal for both solvers. The increase in total number of
elements for Centaur meshes, resulting in a mesh over 35000 elements, is handled correctly
by DG-Max.

Figure 14: Two cross sections in the xy-plane of the unit cell of the Cuboid Crystal. The unstructured mesh
consists of 35077 elements. The mesh is generated using toolkit Centaur [35]. The yellow area indicates the
highly-indexed material with dielectric permittivity of ε2 = 13. The grey area indicates the low-indexed material
with dielectric permittivity of ε1 = 1.
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Figure 15: The 8th computed non-zero eigenvalue by the DG-Max eigenvalue solver and the MPB solver of
the Cuboid Crystal for wave vector k = (0, 0, 0). We set the target of the DG-Max solver to λ = 6 to obtain
eigenvalues in the neighbourhood of ω̃ = 0.39. We set the dielectric permittivities to ε1 = 1 and ε2 = 13. We use
different sized unstructured Centaur meshes ranging from 1603 elements up to 35077 elements for the DG-Max
solver. In case of the MPB solver uses mesh resolutions of 512 up to 32768 gird points. The estimation of the
size of one element hest is expressed as 1/ 3

√
N . The red dots indicate the eigenvalues computed using DG-Max.

The open blue diamonds represent the computed eigenvalue using the MPB solver. The solid red and blue line
indicate the convergence of both solvers.

4.4.5 Inverse Woodpile

Next, we test the Inverse Woodpile crystal. We take the two 2D arrays of identical
pores running in the ΓX and XS direction. The pores have radius r = 0.19a, with
a the lattice parameter. We take the unit cell with lattice parameters a in the XS
and c in the directions ΓX and SR. To approximate the ideal ratio a

c
=
√

2 for cubic
symmetry, we use c = 0.707a to create the structure in Rhinoceros for use in DG-Max.
In MPB we take the ratio up to 6 decimals of

√
(2). In Fig. 2 the Inverse Woodpile

is depicted with x, y, and z directions corresponding to reciprocal space with ΓX,XS,
and SR directions, respectively. We take the pores to be high-indexed materials with a
dielectric permittivity of ε2 = 13. We consider the surroundings to consist of air, which
has a dielectric permittivity of ε1 = 1.

The 3D photonic band gap structure is calculated using the DG-Max eigenvalue
solver and the MPB solver. For the DG-Max solver, we create meshes using Centaur
with total number of elements N = 11199, 14903, 18568, 28342, and 56695. Hence, we
use hest = 0.045, 0.041, 0.038, 0.033, and 0.026, for scaling purposes. Figures 16 and 17
show cross sections of the unit cell of the Inverse Woodpile Crystal of the unstructured
mesh with 56695 elements. In case of the MPB solver we use resolutions 35 × 50 ×
35, 70 × 100 × 70, and 140 × 200 × 140 grid points, resulting in a total number of grid
points N = 61250, 490000, and 3920000, and we thus have hest = 0.025, 0.013, and 0.006,
respectively. We set the target of the DG-Max solver to λ = 10 to obtain eigenvalues in
the neighbourhood of ω̃ = 0.50

Both solvers calculate more diverse eigenvalues. The results of the DG-Max solver

45



are in the range of ω̃ = 0.33 up to ω̃ = 0.54, whereas the MPB solver has eigenvalues in
a range from ω̃ = 0.38 up to ω̃ = 0.75. The number of computed non-zero eigenvalues
by the DG-Max eigenvalue solver are 6, 12, 16, 19, and 17 for the mesh sizes, in order
from smallest to largest mesh. The output of the MPB solver consists of 25 non-zero
eigenvalues. In order to compare the solvers, we study the influence of the resolution
on the calculated eigenvalue around ω̃ = 0.495. Therefore, we take the first calculated
eigenvalue by DG-Max, and the 8th calculated eigenvalue by MPB for all different mesh
refinements. The results of both solvers are shown in two different figures.

Figure 18 shows the convergence of a specific eigenvalue for the Inverse Woodpile
with increasing mesh refinement. The calculated eigenvalue decreases monotonically as
the number of elements increases. The increase in total number of elements for Centaur
meshes, resulting in a mesh of 56000 elements, is handled correctly by DG-Max, for this
complex structure. The number of non-zero eigenvalues even increases with increasing
total number of elements. A very small mesh refinement in combination with the complex
structure of the Inverse Woodpile crystal results in only six non-zero eigenvalues, whereas
in the case of large mesh refinements up to nineteen non-zero eigenvalues are calculated.

In Fig. 19 the convergence of a specific eigenvalue for the Inverse Woodpile with
increase in mesh resolution using the MPB solver is shown. We obtain a slightly different
eigenvalue around ω̃ = 0.495 in comparison with the DG-Max solver, for reasons that
are currently not clear. The solutions of the MPB solver also show a convergence for
increasing total number of elements.

In order to obtain the order of convergence and to make use of the Richardson
extrapolation we want to use mesh sizes with N,N/2, and N/4. To approximate the
convergence order of the DG-Max solver we employ the Centaur meshes with total number
of elements N = 11199, 28342, and 56695. In case of the MPB solver we use the given

Figure 16: Two cross sections in the xy-plane of the unit cell of the Inverse Woodpile crystal. The total number
of unstructured elements is 56695. The mesh is generated using toolkit Centaur [35]. The yellow area indicates
the highly-indexed material with dielectric permittivity of ε2 = 13. The grey area indicates the low-indexed
material with dielectric permittivity of ε1 = 1.
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Figure 17: Two cross sections in the yz-plane of the unit cell of the Inverse Woodpile crystal. The total number of
unstructured elements is 56695. The mesh is generated using toolkit Centaur [35]. The yellow area indicates the
highly-indexed material with dielectric permittivity of ε2 = 13. The grey area indicates the low-indexed material
with dielectric permittivity of ε1 = 1.

three meshes with resolutions 35 × 50 × 35, 70 × 100 × 70, and 140 × 200 × 140. The
convergence order is calculated using

(ω̃N/4 − ω̃N/2)

(ω̃N/2 − ω̃N)
= 2q, (4.6)

with ω̃ the results of the Inverse Woodpile crystal computation with mesh size indicated
by the subscript [33]. To calculate the order of convergence directly, we solve

q =
log(

(ω̃N/4−ω̃N/2)

(ω̃N/2−ω̃N )
)

log(2)
. (4.7)

Figure 20 shows the results of the convergence orders for both the solvers. We only see
six band indexes for the DG-Max solver, since the solver only computed six non-zero
eigenvalues with the mesh of N = 11199. For the MPB solver we have 20 different band
indexes and therefore calculate 20 convergence orders. The mean of the convergence
orders of both solvers is calculated and plotted. The dashed upper line is the mean of
the DG-Max solver and is equal to q = 2.24, whereas the lower straight line is the mean
of the MPB solver, which is equal to q = 1.42. Note that the convergence order of the
DG-Max solver is calculated using the finest mesh, which contains about 12000 elements,
rather then N/4 ≈ 14000. We therefore expect that the true convergence order is about
q = 2 for the DG-Max solver. The convergence order of the MPB solver is approximately
q = 1.5. The convergence order of DG-Max is higher than the convergence order of the
MPB solver.

Using the estimated convergence order of the DG-Max eigenvalue solver we use
the Richardson extrapolation to approximate the exact outcome at hest = 0 [33]. We

47



approximate the specific eigenvalue using N = 56695 and N/2 = 28342, using

ω̃ = ω̃N +
(ω̃N − ω̃N/2)

(2q − 1)
, (4.8)

where we take an estimated q = 2 on basis of the calculated convergence order of the
DG-Max solver. This results in an approximated eigenvalue of ω̃ = 0.4979, as shown in
Fig. 18.

Figure 18: The first computed non-zero eigenvalue by the DG-Max eigenvalue solver of the Cuboid Crystal
for wave vector k = (0, 0, 0). We set the target of the DG-Max solver to λ = 10 to obtain eigenvalues in the
neighbourhood of ω̃ ≈ 0.50. We set the dielectric permittivities to ε1 = 1 and ε2 = 13. We use different sized
unstructured Centaur meshes ranging from 11199 elements up to 56695 elements. The estimation of the size of
one element hest is expressed as 1/ 3

√
N . The red dots indicate the eigenvalues computed using DG-Max. The

solid red line indicates the convergence of the solver. The Richardson Extrapolation is represented by the solid
green triangle. The solid green line indicates the convergence according to the Richardson Extrapolation. The
extrapolated eigenvalue has a frequency of ω̃ = 0.4975.
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Figure 19: The 8th computed non-zero eigenvalue using the MPB solver of the Cuboid Crystal for wave vector
k = (0, 0, 0). We set the dielectric permittivities to ε1 = 1 and ε2 = 13. We use different sized meshes having
resolutions of 61250 up to 3920000 grid points. The estimation of the size of one element hest is expressed as
1/ 3
√
N . The open blue diamonds indicate the eigenvalues computed by the MPB solver. The solid blue line

indicates the convergence of the solver.

Figure 20: The convergence rates of the Inverse Woodpile crystal for the DG-Max solver and the MPB solver.
In case of the DG-Max eigenvalue solver we used mesh sizes of 11199, 28342, and 56695 elements. In case of the
MPB solver we used mesh resolutions of 61250, 490000, and 3920000 grid points. The red dots represent the
calculated convergence orders using the computed eigenvalues with the DG-Max solver. The upper dashed red
line indicates the mean of the order of convergence of the DG-Max results. The open blue diamonds represent the
calculated convergence orders of the computed eigenvalues using MPB. The bottom straight blue line indicates
the mean of order of convergence of the MPB results.
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5 Conclusion and Outlook

In this work, we tested the DG-Max solver and the included algorithms by performing a
series of computations on real photonic crystals. The DG-Max solver is validated using
multiple test cases for the harmonic and eigenvalue solver. We solved the time-harmonic
Maxwell Equations using the Harmonic solver for the Vacuum Crystal. The eigenvalue
problem with implicit divergence constraint was validated using the DG-Max eigenvalue
solver for the Vacuum Crystal, Bragg Stack, Cylindrical Crystal, and Cuboid Crystal.
We solved the eigenvalue problem using the Ainsworth-Coyle basisfunctions with poly-
nomial order p = 1. The Vacuum Crystal and Bragg Stack were tested using internally
generated structured meshes. We used externally generated unstructured meshes for the
Cylindrical and Cuboid Crystal. In order to verify the capabilities of the DG-Max solver,
we solved the eigenvalue problem with implicit divergence constraint for a single wave
vector k = (0, 0, 0). We were able to perform computations for the Cylindrical Crystal
with a mesh consisting of approximately 177000 elements, for the Cuboid Crystal with
over 35000 elements, and for the Inverse Woodpile with a mesh of approximately 56000
elements. The convergence rate of the approximations for the eigenvalue solver is very
promising. The convergence order of q = 2 was achieved for the Inverse Woodpile pho-
tonic crystal, which is in accordance with the expected convergence order of O(h2p). The
Richardson Extrapolation was applied to estimate the eigenvalue of the Inverse Woodpile
photonic crystal.

The eigenvalue problem was solved using the implicit divergence constraint, however
if the divergence constraint is applied, the null space of the curl-curl operator in the
eigenvalue problem is removed. This removal of the null space makes it possible to invert
the eigenproblem, which is expected to lead to a much larger convergence speed of the
Krylov subspace method. With the divergence constraint, we expect to be able to do
calculations with even larger mesh refinements.

Alternatively, applying a preconditioner could lead to faster calculations. We could
also study whether using a different iterative solver could enhance the convergence speed.

The DG-Max solver only handles cubic unit cells. Implementing the option of dif-
ferently shaped unit cells would lead to a wider range of possibilities to study photonic
crystals with different crystal latices. The results could also be extended in the case of
parallel computations where the wave vector k is not equal to zero.

It is a significant challenge to calculate the optical properties of crystals with disorder,
and of crystals with finite size. We anticipate that DG-Max could be easily extended to
handle crystals with disorder, by incorporating the disorder into the unstructured mesh.
To calculate the optical properties associated with finite size, such as the reflectivity, it
is necessary to implement non-reflecting boundary conditions in the harmonic solver.

A user interface of the different DG-Max solvers could contribute to easily switching
between test cases. Adjusting settings for the solver in the user interface, instead of
making changes to the code, will provide a better usability.
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6 Appendix A

To validate the software application DG-Max, we use the Harmonic solver. We solve the
time-harmonic Maxwell Equations given in equation (2.85) on the domain Ω = [0, 1]3.
We calculate the source term using a given electric field. Using this source term, we
recalculate the electric field using the harmonic solver and find the error between the
exact electric field and the calculated electric field. We use the Interior Penalty flux with
penalty parameters aF = n(p+ 1)(p+ 3) and bF = 0, with n the number of cubes in each
coordinate direction and p the polynomial order of the basis functions. Both Ainsworth-
Coyle and Nédélec basisfunctions are considered. Note that the total number of elements
N in the mesh is equal to 5n3. For the validation using the Harmonic solver, we use the
simplest test case, i.e., we employ the Vacuum Crystal, and hence the dielectric function
is constant throughout the medium. The dielectric constant is set to ε = 1. According to
the theoretical analysis [22], the order of convergence should be equal to p and p+ 1 for
the DG-norm and L2-norm, respectively. We test the Harmonic solver for two different
boundary properties, namely the Homogeneous Boundary Condition and the Periodic
Boundary Condition.

6.1 Homogeneous Boundary Condition

We use the boundary condition
n× E = 0

with n the outward pointing normal and E the electric field. We use the next exact
solution and corresponding source term

E(r) =

sin(πy) sin(πz)
sin(πx) sin(πz)
sin(πx) sin(πy)


j(r) =

sin(πy) sin(πz)
sin(πx) sin(πz)
sin(πx) sin(πy)

 (2π2 − 1).

We show the results of the error for the harmonic problem with homogeneous boundary
conditions in Table 1. Based on these results we conclude that the implementations
for the Ainsworth-Coyle basisfunctions and the Nédélec basisfunctions are correct. The
results are in correspondence with References [7, 5, 30, 29].
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Ainsworth-Coyle Nedelec
||E − Eh||L2 ||E − Eh||DG ||E − Eh||L2 ||E − Eh||H(curl) ||E − Eh||DG

p = 1
N = 5 9.28261E-01 1.62854E-00 6.5833E-01 7.63698E-01 1.27529E-00
N = 40 2.32551E-01 2.019003E-00 4.02097E-01 2.00626E-00 2.02443E-00
N = 320 3.83959E-02 9.55292E-01 2.29614E-01 1.01503E-00 1.01777E-00
N = 2560 8.25675E-03 4.73758E-01 1.18945E-01 5.11162E-01 5.11686E-01
N = 20480 1.99599E-03 2.36097E-01 5.99649E-02 2.5652E-01 2.56639E-01
N = 163840 4.97621E-04 1.17865E-01 3.0041E-02 1.2848E-01 1.28509E-01

p = 2
N = 5 2.89629E-01 2.61006E-00 3.48656E-01 2.4495E-00 2.52811E-00
N = 40 2.76453E-02 6.3689E-01 1.04756E-01 6.32939E-01 6.39719E-01
N = 320 3.10859E-03 1.53192E-01 2.8631E-02 1.55768E-01 1.56455E-01
N = 2560 3.60829E-04 3.65245E-02 7.2919E-03 3.80809E-02 3.81546E-02
N = 20480 4.39965E-05 8.92042E-03 1.83137E-03 9.3973E-03 9.40574E-03

p = 3
N = 5 8.04395E-02 1.89736E-00 1.11536E-01 1.66911E-00 1.70135E-00
N = 40 5.00262E-03 1.70872E-01 1.69895E-02 1.55559E-01 1.56825E-01
N = 320 1.98414E-04 1.56358E-02 2.23184E-03 1.55275E-02 1.557E-02
N = 2560 1.05E-05 1.77921E-03 2.82453E-04 1.81169E-03 1.8136E-03

p = 4
N = 5 2.38314E-02 3.37751E-01 3.37801E-02 3.17005E-01 3.21806E-01
N = 40 4.46275E-04 2.09013E-02 2.13739E-03 2.07168E-02 2.08152E-02
N = 320 9.12398E-05 3.32809E-03 1.51583E-04 2.46929E-03 2.47722E-03

Table 1: Error in the L2(Ω), H(curl,Ω), and DG-norm for the harmonic problem with homogeneous boundary
conditions for different sized structured meshes and different polynomial orders of the basis functions. We use
the Ainsworth-Coyle and Nédélec basis functions.

52



6.2 Periodic Boundary Condition

In this case we consider periodic boundary conditions. The exact solution and corre-
sponding source term are given by

E(r) =

sin(πy) sin(πz)
sin(πx) sin(πz)
sin(πx) sin(πy)


j(r) =

sin(πy) sin(πz)
sin(πx) sin(πz)
sin(πx) sin(πy)

 (8π2 − 1).

The results of the harmonic problem with periodic boundary conditions are given in Table
2. Based on these results we conclude that the implementations for the Ainsworth-Coyle
and Nédélec basisfunctions are correct. The results are corresponding with References
[5, 7, 29, 30].

Ainsworth-Coyle Nedelec
||E − Eh||L2 ||E − Eh||DG ||E − Eh||L2 ||E − Eh||H(curl) ||E − Eh||DG

p = 1
N = 320 7.75575E-01 3.73966E-00 4.14402E-01 3.84946E-00 3.85994E-00
N = 2560 1.04547E-01 1.881E-00 2.31215E-01 1.99779E-00 1.99991E-00
N = 20480 1.48174E-02 9.42424E-01 1.19048E-01 1.00605E-00 1.00652E-00
N = 163840 2.519E-03 4.71155E-01 5.99695E-02 5.03804E-01 5.03918E-01

p = 2
N = 320 7.45153E-02 1.03894E-00 1.07071E-01 1.06844E-00 1.0717E-00
N = 2560 5.42294E-03 2.74011E-01 2.86335E-02 2.85039E-01 2.85511E-01
N = 20480 4.54879E-04 6.94452E-02 7.29111E-03 7.25098E-02 7.2571E-02

p = 3
N = 320 1.25244E-02 2.0532E-01 1.70813E-02 2.09727E-01 2.10098E-01
N = 2560 4.28822E-04 2.64982E-02 2.23521E-03 2.71281E-02 2.71509E-02

p = 4
N = 320 1.24048E-03 3.22842E-02 2.16354E-03 3.29134E-02 3.29484E-02

Table 2: Error in the L2(Ω), H(curl,Ω), and DG-norm for the harmonic problem with periodic boundary conditions
for different sized structured meshes and different polynomial orders. We use the Ainsworth-Coyle and Nédélec
basis functions.
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7 Appendix B

In this appendix we elaborate on the settings used for the toolkit Centaur [35]. We
employ different geometries for which we generate different sized meshes. To ensure the
reproducability of the results, we give the settings for all these meshes.

After we load the structure in Centaur and set the boundary conditions, we can start
generating the mesh. If we click the mesh generation button of Centaur, a window pops
up. In this window multiple settings can be manually changed to obtain the preferred
mesh refinement. We proceed to customize the input parameters, rather then using the
defaults settings. We configure the input parameters which opens a new window contain-
ing 6 tabs. We will only change settings in the tabs Surface, Prism/Hex, and Tetrahedra.
Once we changed the parameters to the preferred settings, we can proceed with the mesh
generation. We do not change advanced settings. The casename is manually changed,
according to the test case.

Surface contains 7 parameters of which we will change 3 to the preferred settings.
We set the stretching ratio (SR) to control the rate of change of element size from one
surface face to its neighbours. We keep the scaling factor, which controls the overall size
of the grid elements, equal to default value of 1.0, at all times. We change the maximum
length scale Lmax to control the maximum size of surface elements. We change the min-
imum length scale Lmin to control the minimum size of surface elements. We keep the
factor for curvature clustering, proximity clustering, and CAD clustering to the default
settings. These factors control the amount of clustering based on the local curvature of
the geometry, based on the occasion if two surfaces are close to each other, and based on
near small CAD features in the geometry, respectively. We show the changed settings in
tables 3, 4, 5, and 6, for different geometries with accordingly mesh sizes.

Prism/Hex contains 5 parameters, however we only change the setting of the num-
ber of prism and hex layers we want to use. We set this value to zero in all cases, since
we solely want to use tetrahedra.

Tetrahedra shows 5 parameters. We change the stretching ratio (SR) to control
the rate of change of element size from one element to its neighbours. We change the
interface length scale blending factor (BF) to control which length scale the tetrahedra
need to match. We use the interface thickness ratio (ITR) to set the ratio between size
of the tetrahedra and the thickness of the last layer of mesh. We use the tetrahedra grid
quality (TGQ) to control the tetrahedral quality improvement process. Its value sets the
maximum allowable sliver, skewness, and volume ratio. Additionally, the limit maximum
tetrahedral size can be set. For the generation of the meshes of the Vacuum Crystal and
Bragg Stack, we allowed a maximum scale of 0.125 for all tetrahedra. In all other cases,
we did not manually limit the size of all tetrahedra.
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Surface Tetrahedra
SR Lmax Lmin SR BF ITR TGQ

N = 375 2.0 1.6 5e−2 1.5 0.8 2.0 5
N = 707 1.4 1.0 3e−3 1.5 0.8 2.0 5
N = 3107 1.35 1.6 3e−3 2.0 0.8 2.0 5
N = 6273 1.7 0.02 1e−6 1.6 0.8 1.6 5
N = 11663 1.7 0.01 1e−6 1.6 0.8 1.6 5
N = 28351 1.8 0.004 1e−4 1.6 1.0 1.6 10

Table 3: Input parameters for the customized mesh generation of the Vacuum Crystal and Bragg Stack using
Centaur. The abbreviation ST stands for stretching ratio, Lmax for maximum length scale, Lmin for minimum
length scale, BF for interface length scale blending factor, ITR for the interface thicness ratio, and TGQ for the
tetrahedra grid quality.

Surface Tetrahedra
SR Lmax Lmin SR BF ITR TGQ

N = 1404 2.2 0.2222 0.005 1.9 0.8 1.9 5
N = 3349 2.0 0.2222 0.020 1.8 0.6 1.8 5
N = 5791 2.0 0.2222 0.005 2.0 0.8 2.0 5
N = 10446 2.0 0.2222 0.005 1.9 0.8 1.9 5
N = 14944 2.0 0.2222 0.005 1.8 0.8 1.8 5
N = 36479 2.0 0.2222 0.005 1.6 0.8 1.6 5
N = 80555 1.5 0.2222 0.005 1.7 0.8 1.7 8
N = 177587 1.5 0.2222 0.0005 1.5 0.8 1.5 8

Table 4: Input parameters for the customized mesh generation of the Cylindrical Crystal using Centaur. The
abbreviation ST stands for stretching ratio, Lmax for maximum length scale, Lmin for minimum length scale, BF
for interface length scale blending factor, ITR for the interface thickness ratio, and TGQ for the tetrahedra grid
quality.
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Surface Tetrahedra
SR Lmax Lmin SR BF ITR TGQ

N = 1603 2.8 0.4 0.03 2.8 0.5 2.8 5
N = 3278 2.5 0.4 0.02 2.6 0.6 2.6 5
N = 5838 2.2 0.4 0.014 2.4 0.8 2.4 5
N = 10570 1.2 0.4 0.005 1.9 0.5 1.9 5
N = 13810 1.6 0.4 0.01 1.8 0.5 1.8 5
N = 23222 1.8 0.4 0.00833 1.7 0.8 1.7 5
N = 35077 1.8 0.4 0.00833 1.6 0.8 1.6 5

Table 5: Input parameters for the customized mesh generation of the Cuboid Crystal using Centaur. The
abbreviation ST stands for stretching ratio, Lmax for maximum length scale, Lmin for minimum length scale, BF
for interface length scale blending factor, ITR for the interface thickness ratio, and TGQ for the tetrahedra grid
quality.

Surface Tetrahedra
SR Lmax Lmin SR BF ITR TGQ

N = 11199 1.8 0.02828 0.002 2.2 0.7 2.2 5
N = 14903 1.8 0.05656 0.002 2.1 0.6 2.1 5
N = 18568 1.8 0.05656 0.001 2.0 0.8 2.0 5
N = 28341 1.8 0.05656 0.002 1.9 0.7 1.9 8
N = 56695 1.8 0.05656 0.002 1.8 0.7 1.8 8

Table 6: Input parameters for the customized mesh generation of the Inverse Woodpile crystal using Centaur.
The abbreviation ST stands for stretching ratio, Lmax for maximum length scale, Lmin for minimum length scale,
BF for interface length scale blending factor, ITR for the interface thickness ratio, and TGQ for the tetrahedra
grid quality.
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