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Abstract 

As more and more people are buying wearables and are interested in monitoring their stress 

level with them, it gets increasingly important to find a good way of inferring psychological 

measures such as stress and arousal from physiologically measurable variables such as heart 

rate. As laboratory experiments may not be able to predict relationships in real life, a wearable 

and experience sampling study taking place in daily life was chosen for the current study. 

Because heart rate changes are associated with both a physical and a psychological part, it is 

important to try to account for the physical part when the interest lies in the heart rate changes 

mostly associated with psychological changes. Previously, there have been different 

approaches to do this, which are all not practical for a study in daily life. In the present study, 

a new approach to calculating the psychologically caused part of heart rate called “Residuals 

from Acceleration predicted Heart Rate” (RAHR) is explored. In this approach, a regression is 

made for heart rate predicted by magnitude of acceleration (physical activity). The positive 

residuals of this are taken as RAHR. This approach can be implemented with only a heart rate 

sensor and an accelerometer in the wearable. A correlation for acceleration and heart rate was 

found and RAHRs were implemented. Unfortunately, no relationship could be found between 

RAHR and the four measures of psychological experience, namely momentary and 

retrospective experienced stress, and momentary and retrospective experienced arousal. Still, 

a new method for calculating the psychological part of heart rate has been tested which can be 

used in the field instead of the laboratory. This method now must be validated further in order 

to see if it may be usable for giving feedback about people’s emotional state. Further research 

is needed for this. 
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Introduction 

The demand for wearables, such as fitness bands, smart bands, or smart watches, is 

increasing. The prediction is that the market for all wearables will nearly double from 2017 to 

2021, with watches and wristbands still holding nearly 90% market share of all types of 

wearables in 2021 (IDC, 2017). One main goal of an increasing number of those devices is 

giving users feedback about their stress levels (Maslakovic, 2017). Receiving this feedback is 

also one of the demands users have for those devices, which can be seen in a survey from the 

UK (Valencell, 2016). Here, 55% of the participants who owned a wearable would like to 

monitor their stress with it. Receiving information about your stress level is seen as an 

impulse for actively trying to relax during high stress phases and thereby making your life 

healthier and happier. There are already devices that offer solutions for relaxing in addition to 

this stress-level information (Caddy, 2017). 

 Stress and other psychological experience (e.g., arousal or a specific emotion such as 

anger or fear) is often associated with activity in the autonomic nervous system (ANS; 

Kreibig, 2010). As ANS activity can be measured through different physiological measures, 

the psychological variable stress can be deduced from different sorts of data. Sandulescu, 

Andrews, Ellis, Bellotto, and Mozos (2015) for example used heart rate (HR) and 

electrodermal activity (EDA) to measure the stress level of their participants, while in a study 

by Wijsman, Grundlehner, Liu, Hermens, and Penders (2011) electrocardiography (ECG), 

respiration, skin conductance, and electromyography (EMG) were used. Although stress-level 

recognition is already implemented in some commercial wearables, inferring psychological 

experience as stress, a specific emotion, or general arousal from physiological measures was 

found to be quite difficult, as the relation between physiological events (i.e., responses of the 

body) and psychological events (i.e., experience of the mind) is more complex than lay-

people and scientists would initially hypothesize (Evers et al., 2014; Fairclough, 2009; 

Feldman Barrett, 2006). 

 Cacioppo, Tassinary, and Berntson (2017) define psychological events as ‘conceptual 

variables representing functional aspects of embodied processes’ (Cacioppo et al., 2017, p. 8) 

and physiological events as ‘empirical physical variables’ (Cacioppo et al., 2017, p. 8). They 

believe that such events should be seen as representing two domains or sets made up of 

different elements. The elements in one set can be related with the elements in the other set in 

five different ways (Figure 1). Firstly, in a one-to-one relation, one element from the 

psychological set is associated with one element from the physiological set, while, secondly, 

in a many-to-many relation, two or more psychological and physiological elements are 
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associated with each other. Thirdly, in a many-to-one 

relation, two or more psychological elements are 

associated with one physiological element, and 

fourthly, in a one-to-many relation, the opposite is 

the case. In the fifth sort of relation, a null relation, 

there is no association between a psychological 

element and the physiological element (Cacioppo et 

al., 2017). Although one-to-one relations are the 

easiest to interpret, they should not be assumed 

without reason. Evers et al. (2014), presented a dual-

process framework for coherence between the 

experiential and physiological systems and showed 

that this coherence only takes place within one 

system, but not across systems. Another assumption 

that should not be made is that relations between 

psychological and physiological events are the same 

across situations (and time) and individuals 

(Cacioppo et al., 2017). There are differences in 

experiencing emotions, both within and between situations and individuals (Russell, 2009). 

As the inference of psychological activity from physiological activity is so complex, 

more research is needed in this domain. While laboratory studies researching stress and 

emotions may be easier to control, they may not represent real-life situations, both due to the 

kind of situations used and their predictability in the laboratory versus unpredictability in the 

field (i.e., real life). Laboratory studies thus lack good ecological validity (Zanstra & 

Johnston, 2011). Through technological advances, real-life field studies are increasingly easy 

to execute. Physiological activity (e.g., heart rate, EDA) can be measured more easily and less 

obtrusively through small, wearable sensors. Also, psychological variables (e.g., stress, 

emotion, arousal) as measured through self-report can now be retrieved in real time through 

the use of electronic diary methods, for example by the use of smartphone apps (Zanstra & 

Johnston, 2011). Using these technological advances makes it easier to correlate 

psychological and physiological activity. This can be done during real life and in real-time, 

which increases the ecological validity of the study. 

In the current study, the mentioned technological advances are used to explore the 

relationship between physiological and psychological events in daily life. As ANS activity, in 

Figure 1. Possible relationships 

between domains 
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the current study measured through heart rate, is generally said to be influenced by both 

physical and psychological activity (Carroll, Turner, & Rogers, 1987), a new way to filter out 

the physical part, called “Residuals from Acceleration predicted Heart Rate” (RAHR), is 

developed and described below. This way, it is possible to examine which part of the 

participants’ sensor-measured heart rate is not caused physically but psychologically. This 

part of the heart rate is then correlated to their subjective stress and arousal. 

Physiological activity 

Because of the availability of wearable sensors, physiological activity can be 

measured easier, faster, less obtrusively, and continuously in daily life. In the current study, 

heart rate was chosen as a measure for ANS activity. Measuring heart rate is a feature of 

many wearable sensors, so that it is readily available for many wearable owners. 

 Heart Rate. Heart rate is generally said to incorporate both physical activity and 

psychological activity (Carroll et al., 1987). The physically induced heart rate is evoked by 

metabolic activity, i.e. oxygen needs to be transported to the relevant muscles faster, leading 

to an increase in blood-pumping-rate of the heart. Psychologically induced heart rate is the 

increase in heart rate that cannot be attributed to physical activity, which is sometimes called 

“additional heart rate” (AHR; Carroll et al., 1987). When the actual heart rate lies above the 

heart rate that can be predicted by physical activity, this is called AHR (Carroll et al., 1987). 

Based on a method by Blix, Stromme, and Ursin (1974), who found that pilots had higher 

heart rates during challenging flight operations than would have been predicted by their 

oxygen consumption, AHR has traditionally been calculated through a regression function of 

heart rate and oxygen consumption. While some sort of physical task is executed, the 

participant’s heart rate and oxygen consumption are measured. From these measurements, a 

regression equation with oxygen consumption as a predictor for heart rate is made. This 

regression function then serves as a predictor for the physical part of heart rate during a 

psychologically demanding task. The predicted heart rate is subtracted from the actual heart 

rate during the task, so that the additional heart rate is calculated. Different sorts of physical 

tasks, including isotonic exercise (Carroll, Turner, & Hellawell, 1986; Carroll, Turner, & 

Prasad, 1986), static exercise (Carroll et al., 1987), and upper and lower body dynamic 

exercise (Turner, Carroll, Hanson, & Sims, 1988) have already been researched as reference-

exercises, and also different (difficulties of) psychological tasks were tested. Thayer, Van 

Doornen, Turner, and Building (1991) have also tested carbon dioxide production instead of 

oxygen consumption as a potential predictor for heart rate and found it to be appropriate. All 

these mentioned studies were executed in a laboratory, using controlled tasks with different 
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levels of difficulty in order to simulate stressors. Wilhelm and Roth (1998) tried to bring this 

AHR-method into a more ambulatory context. Instead of oxygen consumption, they used 

minute ventilation and compared the AHRs of flight-phobics and non-phobics when entering 

a plane. Although their measurement-equipment was already wearable, it was far from real-

life compatible, using multiple electrodes and sensors all over the body. 

Another way to measure one’s metabolic or muscle activity in order to calculate AHR 

is to measure body movement. Myrtek et al. (1988) developed a wearable device that 

measured acceleration and ECG. It compares heart rate and physical activity with heart rate 

and activity of the previous minutes in order to detect an increase in heart rate occurring 

without increase in physical activity. Their algorithm (Myrtek, Aschenbrenner, & Brügner, 

2005) is based on the idea that an increase in heart rate that is not accompanied by an increase 

in physical activity must occur due to an emotional (psychological) event. This method was 

used in various studies (e.g. Myrtek, Aschenbrenner, & Brügner, 2005; Myrtek, Weber, 

Brügner, & Müller, 1996; Myrtek & Brügner, 1996). In a study by Myrtek, Weber, Brügner, 

& Müller (1996), it was found that chronically stressed students generally had a higher AHR 

than non-stressed students, and that this effect was especially true when they were at the 

university in contrast to being at home. Myrtek and Brügner (1996) also found that through 

AHR, emotional events could be detected, at least in the laboratory. AHR was higher for 

watching an erotic film compared to watching a comedy, both while being physically active 

and physically inactive (Myrtek & Brügner, 1996). For the field, the results concerning AHR 

were more ambiguous (Myrtek et al., 2005).  

 Because in the current study, the relationship between heart rate and psychological 

measures is researched, it is important to first filter out the part of the heart rate that correlates 

with physical activity. Both approaches, the one using oxygen consumption and the one by 

Myrtek, are not practical in real life. Measuring oxygen consumption is possible in the 

laboratory, but not practical in a study of daily life. The device developed by Myrtek et al. 

(1988) was wearable, but is not freely available for everyone. Also, two sensors are used in 

their approach, one on the chest and one on the hip. This is less comfortable and more 

handicapping in daily life than a presently often used wrist-sensor. For the current study, a 

new way of calculating a form of AHR is explored, which combines the two approaches and 

is possible with the sensors that are available in most wearables. 

 As with the traditional way of calculating AHR, the idea is to build a regression 

function to determine the part of the heart rate that can be predicted by physical activity. 

Normally, this regression is used to predict heart rate based on the participant’s oxygen 
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consumption. For the current study, Myrtek et al.'s (1988) idea to use physical activity instead 

of oxygen consumption to predict heart rate is used. This way, the problem with measuring 

oxygen consumption in real life is avoided. For measuring physical activity, an easier setup is 

used, since it can now already be measured with a wrist-worn accelerometer. 

Physical activity. Since an accelerometer measuring 3-axis acceleration is built into 

most wearables already, its data is used to calculate the participants’ physical activity. 

Accelerometers measure acceleration of the sensor as gravitational-force (g). 1g is equivalent 

to 9.81 m/s2. In the current study, Euclidean Norm Minus One (ENMO) as described by 

Bakrania et al. (2016) is used to predict physical activity. It is an easy and reliable way of 

filtering out gravity, which always influences raw accelerometer data, so that pure motion 

data is received. ENMO is calculated through subtracting 1g from the magnitude of the vector 

of acceleration, which is calculated using the Euclidean Norm. All values that are negative 

after this subtraction are rounded up to 0g. The magnitude of acceleration calculated through 

ENMO is thus used as a predictive factor for heart rate.  

RAHR. As individuals differ both in their heart rate and in their amount of physical 

activity, a regression line with magnitude of acceleration as a predictor for heart rate is fitted 

for each participant in the current study. Based on the fitted regression function, the physical 

part of the heart rate can be predicted through the magnitude of acceleration. A comparison of 

the estimated values to the observed values can provide an insight into the psychologically 

caused part of the heart rate. All positive residuals are thus possibly caused by psychological 

activity. The name of this new measure is “Residuals from Acceleration predicted Heart Rate” 

(RAHR). The next step in exploring this new measure is to correlate it to psychological 

measures, in this case stress and arousal. 

 

Psychological Experience 

The aim of the current study is to correlate physiological activity as measured through 

RAHR with psychological experience. As psychological experience is something subjective, 

it is best measured through the subjective measure of self-report. Different forms of subjective 

self-report exist (Conner & Feldman Barrett, 2012). On the one hand, there are retrospective 

self-report techniques which rely on memory-based reporting where participants need to 

remember and reproduce their experience. Here, the remembering self is examined. On the 

other hand, there are momentary self-report techniques, which examine the experiencing self. 

People are asked to describe what they are thinking or feeling in (near) real-time (Conner & 

Feldman Barrett, 2012). When those momentary self-reports take place in daily life and over a 



Final Version Master Thesis, Jule Krüger, s1408798 

longer time, experience sampling is often used, which is also called ecological momentary 

assessment or ambulatory assessment (Conner & Feldman Barrett, 2012). Through the above-

mentioned technological advances and mostly through the development of smartphones, 

experience sampling is easier to execute than ever. Participants can receive push messages to 

answer short questions which have been programmed into a mobile application. Those 

applications compile the acquired data so that they can be analysed easily (Conner & Feldman 

Barrett, 2012). To get a more complete picture and correlate both participants’ momentary 

and retrospective self-report with RAHR, ratings of psychological experience in the current 

study are inquired for both the previous minute (momentary) and the previous two hours 

(retrospective). The two sorts of measures do not only differ between the type of self-report, 

but also concerning the recall period (i.e., one minute versus two hours). When certain 

stressful events need to be recalled by participants, the period over which these need to be 

recalled may affect the result (Cohen, Cimbolic, Armeli, & Hettler, 1998). The feeling of 

stress or arousal within one minute may be easier to determine for participants than the feeling 

of stress or arousal over two whole hours, since a lot can change within this timespan. There 

may thus be a difference between the reliance or validity of the two forms of measures, both 

due to the type of self-report and due to the recall period. 

The two psychological variables that are correlated with RAHR in the current study 

are stress and arousal. As described above, stress level is a measure that users of wearables 

would like to have calculated for them in order to be able to actively relax themselves. Stress 

can be defined “as a state of high general arousal and negatively tuned but unspecific 

emotion, which appears as a consequence of stressors (i.e., stress-inducing stimuli or 

situations) acting upon individuals” (Boucsein, 2012, p. 381). This shows that stress is related 

to the ‘fight-or-flight’ system. When a potential danger is experienced, the body reacts to it by 

preparing to either fight the danger or run away from it (Segerstrom & Miller, 2004), a 

reaction experienced as stress. When stress becomes chronic, it can become a threat to 

humans’ health (Sharma & Gedeon, 2012). Due to the fact that stress can potentially lead to 

health problems, and the fact that most wearable users’ request to get feedback about their 

stress level, this psychological variable is included into the current study. 

Concerning arousal, it can be said that it is not as extreme as stress and can be both 

negative or positive (Russell, 2009). In his circumplex model of affect, Russell (1980) 

presents a two-dimensional model featuring the dimensions pleasure-displeasure and 

activation-deactivation. Arousal is placed at high activation, but in the middle between 

pleasure and displeasure, showing that it is rather a general intensity of an emotion than its 
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valence (Russell, 2009). Arousal is used as a psychological variable in the current study in 

addition to stress because it includes the intensity of both positive and negative feelings. 

Stress, in comparison, mostly includes negative feelings, although this may differ as some 

people may experience stress more positively than others. Still, Boucsein (2012) states that 

both negatively and positively experienced stress (i.e., distress and eustress) result in similar 

physiological responses. The current study does not differentiate between the two.  

   

The current study 

Additional heart rate seems to be a promising predictor for psychological activity. 

However, calculating it with oxygen consumption or a device built specifically for this is not 

practical for everyday use. For that reason, the present study explores a new approach for 

calculating additional heart rate called “Residuals from Acceleration predicted Heart Rate” 

(RAHR). Furthermore, the current study investigates the relationship between RAHR and 

momentary and retrospective self-reports of stress and arousal. The research question for the 

current study is thus: How does the RAHR correlate to the participants’ subjective experience 

of momentary and retrospective stress and arousal? 

Method 

Participants 

21 participants were recruited for the study through convenience sampling. Three 

participants did not complete the study due to errors with their E4 equipment and were 

removed from the data. The remaining 18 participants were aged 19 to 27 years (M = 20.83, 

SD = 1.86) and had either Dutch, German, or English as their native language. The 

participants were required to own a smartphone and be able to use a computer with an internet 

connection and a USB-port. The research was approved by the Ethics Committee of the 

faculty of behavioural sciences of the University of Twente. 

 

Design 

The study was executed in a longitudinal experience sampling study with a within-

subject design. Both physiological data and psychological data were collected during a 7-day 

period. The physiological data were sampled passively and continuously through sensors. The 

psychological data were collected in a fixed time-based sampling method, asking the 

participants to actively answer four questions every two hours. Both momentary and 

retrospective self-report for stress and arousal had to be rated on a scale from 0 to 10. 
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Materials and measures 

For the study’s physiological measures, the participants were provided with Empatica 

E4 wristbands (Garbarino, Lai, Bender, Picard, & Tognetti, 2015). The wristband is equipped 

with different sorts of sensors. A photoplethysmograph (PPG) measures the wearer’s blood 

volume pulse (BVP) with a sample rate of 64 Hz. From the BVP, the device can calculate the 

person’s heart rate. The amount of physical activity of the wearer can be calculated from the 

built-in 3-axis accelerometer that measures the acceleration in all three directions at a 32 Hz 

sample rate. Measures that were not used for the present report, but also measured by the 

sensor, are electrodermal activity and skin temperature. 

 The participants received an E4 wristband in its container, a charging cradle, and a 

Micro USB to USB cable with which the wristband could be connected to a computer. They 

also received instructions on how to use the wristband. Through the software Empatica 

Manager, the participants uploaded the data collected over the respective day every night. 

 For the psychological measures used in the study, the participants installed the 

application “mQuest” on their smartphones. Through this application, surveys and 

questionnaires can be send to users in determined time intervals. Four questions were sent to 

them every two hours, “How intense were your emotions during the last two hours?”, “How 

intense were your emotions during the last minute?”, How much stress did you experience 

during the last two hours?”, and “How much stress did you experience during the last 

minute?”. The questions were rated on a scale from 0 (very low) to 10 (very high). Also, the 

Toronto Alexithymia Scale (TAS-20) was filled in once before and once after the study. The 

data from this scale were not used in the present report. 

 

Procedure 

Before the data gathering, the participants were briefed. They read and signed an 

informed consent and filled in the TAS-20, and received the E4 wristband as well as 

instructions on how to use it and how to upload the data every night. Also, an instruction for 

how to use the mQuest application was given after it was installed on the participants’ phones. 

 During the data gathering, which took seven full days, the participants wore the E4 

wristband all the time they were awake. During the seven days, the four self-report questions 

were prompted to them by the mQuest application every two hours. The participants uploaded 

the wristband data every night through their computer. 
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 After seven days of data gathering, a debriefing was held for the participants. They 

gave back the E4 wristband and its accessories, and again filled in the TAS-20. Furthermore, 

a semi-structured exit interview was held, including questions about the burden of the 

experiment and the subjectivity of emotions and stress. 

 

Data Analysis 

The physiological data was obtained from the CSV files provided by the E4 sensor. 

Heart rate data was calculated from the inter-beat interval (IBI) data as estimated from the 

BVP by the E4 sensor. This was done by calculating 60 divided by the IBI values. As the raw 

3-axis accelerometer data’s unit of measurement was 1/64g, it was divided by 64 to scale it to 

+/- 2g. Physical activity was calculated from the three axes as the magnitude of the vector of 

acceleration, using the Euclidean Norm: 

Magnitude of acceleration =√𝑥𝑖
2 +  𝑦𝑖

2 +  𝑧𝑖
2 

To filter out the effect of gravity on the accelerometer, the Euclidean Norm Minus One 

(ENMO) was calculated, where the magnitude of acceleration is subtracted by 1g. All values 

that come out of this calculation below zero are rounded up to zero. This way, the 

gravitational force should be excluded, leading to a measure for only physical activity. 

 The self-report data was obtained from the CSV files provided by the mQuest mobile 

application. All variables (HR, magnitude of acceleration, present stress, present arousal, past 

stress, past arousal) where provided with timestamps and joined together into a dataset based 

on the timestamps. The data were then averaged per minute. When a value was missing for at 

least one of the two physiological variables (HR or magnitude of acceleration), the whole row 

was removed from the dataset as a preparation for correlating the two variables with each 

other. From 91.500 rows of data, 68.829 rows remained after the removal of missing data. 

This high amount of missing values stems mainly from the missing values already present in 

the IBI file given by the E4 sensor, but also rows with only self-report data were removed, 

when no physiological data were measured for that time. 

When plotting magnitude of acceleration against heart rate, only a small part of the 

acceleration data was above 0.2 g (Figure 2), specifically only about 0.2% of the data. As the 

confidence intervals in the curve drawn in the figure get bigger when the magnitude of 

acceleration becomes higher, it was chosen to remove the data points above 0.2 g acceleration 

and only work with the ones below that point. Through this, 119 of the total 68,829 rows were 

removed from the dataset. After this filtering (Figure 3), the regression line seems a little less 
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steep towards x = 0.2, but in general it still looks similar to the line in Figure 2. This shows 

that not too much is different after the data points above 0.2 g are removed. Because the 

regression line in Figure 3 is nearly linear, a local linear correlation between heart rate and 

magnitude of acceleration is assumed for the part of the data that lies below 0.2g. This 

assumption is applied during the current study. 

 

  

In order to calculate RAHR, a mixed-effects regression model as described by Finch, 

Bolin, and Kelley (2014) was built by using the lme4 package (Bates, Mächler, Bolker, & 

Walker, 2015) in the programme R (R Core Team, 2017), Version 3.4.2. A regression model 

was built with heart rate as dependent variable and magnitude of acceleration as predictor. A 

random effect for both intercept and slope was added for the different participants, because it 

seemed that both heart rate and physical activity were differing for the different participants 

(see section with descriptive statistics), so that including this into the model should provide a 

better fit. Also, because the estimated within-subject correlation of the random effect for the 

intercept and the random effect of the slope was found to be very low (-0.02), the easier 

model that does not allow for this correlation (i.e., in which two random-effects terms are 

specified) was chosen. In R, the final model looked like this: 

HR.model <- lmer(HR ~ Acc + (1|Part) + (0+Acc|Part), data=D, 

REML = FALSE) 

Figure 2. Magnitude of acceleration (g) 

plotted against heart rate (bpm). 

 

Figure 3. Magnitude of acceleration (g) 

plotted against heart rate (bpm) after 

removing acceleration above 0.2g. 
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For the calculation of the correlation of RAHR with the self-report variables, four 

models with RAHR as predictor variable and the self-report variables as dependent variable 

were constructed. Two were built for momentary self-report (i.e., stress and arousal during the 

last minute) and two for retrospective self-report (i.e., stress and arousal during the last two 

hours) data. For the momentary self-report, the data was correlated with the RAHR of the 

previous minute, and for the retrospective self-report, the data was correlated with the average 

RAHR of the previous two hours. The models that were fitted in R looked like this: 

 

RAHRStrPres.model <- lmer(StressPres ~ RAHR + (RAHR|Part), 

data = DPres, REML=FALSE, control = lmerControl(optimizer 

= 'Nelder_Mead')) 

RAHRAroPres.model <- lmer(ArousalPres ~ RAHR + (RAHR|Part), 

data = DPres, REML=FALSE, control = lmerControl(optimizer 

= 'Nelder_Mead')) 

RAHRStrPas.model <- lmer(StressPas ~ RAHRmean + 

(RAHRmean|Part), data = DPas, REML = FALSE, control = 

lmerControl(optimizer = 'Nelder_Mead')) 

RAHRAroPas.model <- lmer(ArousalPas ~ RAHRmean + 

(RAHRmean|Part), data = DPas, REML = FALSE, control = 

lmerControl(optimizer = 'Nelder_Mead')) 

 

For these models, the Nelder-Mead optimization routine was used, because the BOBYQA 

optimization method which is used by the lmer()-function by default did not give any 

results for some of the model-fits. 

Results 

Descriptive Statistics 

Physiological variables. The physiological variables that were measured for this 

study are heart rate, calculated from inter-beat intervals, and magnitude of acceleration, 

calculated with ENMO from 3-axis accelerometer data. In Table 1, a summary of the 

descriptive statistics for the two variables, averaged over all participants, can be found. The 

mean measured heart rate +/- one standard deviation reaches from 65.21 to 99.91 bpm, which 

lies inside the normal resting heart rate for adults (60 – 100 bpm; Laskowski, 2015). The 

mean for the magnitude of acceleration was found to be 0.01g, and there was not a lot of 

deviation from this. This shows that for the biggest part of the data the measured data points 
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lie close to the mean showing not a lot of spread in acceleration. Because of the removal of 

the data with a magnitude of acceleration above 0.2 g, the maximum possible value lies at 

0.2g. 

Table 1. Summary descriptive statistics of the averaged physiological 

variables 

Variable N Mean (SD) Min Max 

Heart Rate 68710 82.56 (17.35) 36.22 191.99 

Mag. Acc. 68710 0.01 (0.02) 0 0.2 

When looking at the data from a between-subject perspective, variations can be found 

between participants in both heart rate (Figure 4) and physical activity (Figure 5). An example 

of two participants that differed substantially in their heart rate are 4 and 17. The upper 

quartile of participant 4 lies below the lower quartile of participant 17, which means that most 

of the time participant 17’s heart rate lay above that of participant 4. Concerning the 

participants’ physical activity, especially participant 4, 5, and 10 should be mentioned. The 

medians of their magnitude of acceleration are above 0g, which is not the case for the other 

participants. All in all, variation in the two physiological variables can be found between 

participants.  

  

Self-Report variables. The four self-report variables that were measured during the 

current study are stress and arousal of the last minute (in the text also referred to as 

Figure 4. Heart rate (bpm) per participant 

 

. 

 

Figure 5. Magnitude of acceleration (g) per 

participant. 
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‘momentary’, ‘present’, or ‘now’), and stress and arousal for the last two hours (in the text 

also referred to as ‘retrospective’ or ‘past’). The values reach from 0 (very low) to 10 (very 

high). As can be seen in Table 2, the values for retrospective arousal have the highest mean, 

but on average all data are on the low side. 

Table 2. Summary descriptive statistics 

of the averaged self-report variables 

Variable Mean (SD) 

Stress Now 1.86 (1.84) 

Arousal Now 2.37 (1.74) 

Stress Past 2.63 (1.99) 

Arousal Past 3.34 (1.71) 

N = 413, Range = 0 – 10 

 

When looking at the between-subject data again, variations are also apparent in the 

self-report variables (Figure 6 and 7). In Figure 6 on the left, for example, the momentary 

subjective stress per participant is shown. Especially participant 19 stands out in this plot, 

because the upper quartile of his answers about momentary stress go up to 8, while it lies 

below 4 for most of the participants. In the right part of Figure 6, showing the momentary 

subjective arousal, especially participant 10 and his/her high spread between lower and upper 

quartile should be mentioned. In Figure 7 on the left, it can be seen that only participant 19 

Figure 6. Answers to the momentary self-report variables per participant. 
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rated his past stress higher than 8 at least once. On the right side, participant 10 should be 

mentioned again, as his/her median is higher than all upper quartiles of the other participants.  

 

Calculating RAHR 

In order to calculate RAHR, a model fit was made with heart rate as an outcome, 

magnitude of acceleration as predictor, and random effects of participant on intercept and 

slope, which were uncorrelated. Below, the results for both fixed and random effects are 

explained. 

Fixed effects. The fixed effect in the model was magnitude of acceleration as a 

predictor of heart rate. In order to make sure that magnitude of acceleration is indeed a 

predictor of heart rate, an ANOVA was executed, comparing the model including acceleration 

as a predictor with the model excluding acceleration as a predictor. It was found, that the 

model including acceleration was indeed a better fit for the data [χ2(1) = 33.01, p < 0.001], 

supporting its addition to the model. The test of statistical significance built into the R 

package lmerTest (Kuznetsova, Brockhoff, & Christensen, 2017) and based on the 

Satterthwaite approximation also shows that magnitude of acceleration is a significant 

predictor of heart rate in the fitted model [t = 9.73, df = 20.63, p < 0.001]. The direction of the 

prediction is positive, showing that the higher the value for magnitude of acceleration, the 

higher the heart rate. 

When looking at only the fixed effects in the model, the pattern shown in Table 3 can 

be found. Here, it must always be remembered that these are averaged values. Because the 

model is built with participants as a random effect, these values may not be very meaningful, 

Figure 7. Answers to the retrospective self-report variables per participant. 
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and an analysis of the random effects is still necessary. The intercept in Table 3 can be called 

the resting pulse, for it is the average heart rate at an acceleration of 0g, when a person is not 

physically active at all. The 95% confidence interval (CI) for the intercept does not leave a lot 

of space for deviation from the mean, ranging from 76.92 to 82.66 bpm. The slope that is 

given in Table 3 shows how much bpm the heart rate increases on average when magnitude of 

acceleration increases by 0.1g1 - the higher the value for the slope, the bigger the increase. 

Here, a little more deviation from the mean is possible, so that the 95% CI leaves space for 

heart rate changes from 28.20 to 43.42 bpm once a person goes from inactive (0g) to a little 

active (0.1g). The regression line for this is the black line in Figure 8. 

 

Table 3. Fixed effects, including 95% confidence intervals. 

 2.5% CI Mean (SD) 97.5% CI 

Intercept 76.92 79.79 (1.39) 82.66 

Slope 0.1g (Acc) 28.20 35.79 (3.68) 43.42 

 

 

                                                 
1 Normally, the slope gives a value for how much the y-value (outcome variable, here heart rate) increases when 

the x-value (predictor, here magnitude of acceleration) grows by 1 (here 1g). Because a physical activity of 1g is 

not included in the data set, it was chosen to set 0.1g as a more meaningful increase in activity. For this, the 

original slope values were divided by 10. To get the original slope-values, the used values thus must be 

multiplied with 10. 

Figure 8. Linear regression lines for y = heart rate 

and x = magnitude of acceleration, plotted per 

participant. The black line shows the average 

regression line from the fixed effects data. 
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Random effects. In Figure 8, the linear regression 

line for each participant based on the model with heart rate as 

outcome variable and magnitude of acceleration as predictor 

can be seen in comparison to the average regression line. The 

graph shows that the participants differ greatly in their 

relation between the two variables. Furthermore, an ANOVA 

shows that the mixed effects model (i.e., with both fixed and 

random effects) has a better fit for the data than a generalized 

linear model (i.e., with fixed effects, without random effects) 

[χ2(2) = 7620.5, p < 0.001]. This supports the decision of 

adding random effects to the model. 

When looking at the coefficients of the model (Table 

4), it can be seen that the participants’ intercepts range from 

65.50 to 90.84 (M = 79.79, SD = 6.03). The between- 

participant standard deviation of the intercept lies only at 

5.87 (95% CI [4.37, 8.48]) (i.e., the variability of the 

intercept between participants is not very high), but when 

comparing the model with and without the random intercept 

effect through the anova() function in R, the model fit is 

significantly better for the model including the random 

intercept effect [χ2(1) = 5612.2, p < 0.001]. 

The slope also differs greatly between participants 

(Table 4). When looking at how much the participants’ heart 

rate rises from no motion (0g) to some motion (0.1g), the 

value goes from minimally 17.03 to maximally 73.85 (M = 

35.80, SD = 15.75). The slope’s between-participant standard 

deviation is 15.45 (95% CI [11.39, 22.44])  (i.e., the 

variability of the slope between participants is quite high). Also, when comparing the model 

with and without the random slope effect through the anova() function, the model fit is 

again significantly better for the model including the random slope effect [χ2(1) = 1042, p < 

0.001]. The big between-participants variance and the results from the ANOVAs show that it 

is appropriate to add participant as a random effect to the mixed-effects model, because more 

variance is explained by it. 

Table 4. Coefficients of the 

mixed-effects model of heart 

rate and magnitude of 

acceleration per participant 

(Part.). 

Part. Intercept Slope 

0.1g 

1 77.96 46.47 

2 84.80 73.85 

3 84.06 38.31 

4 65.50 50.19 

5 73.88 45.29 

6 83.79 33.20 

7 74.88 27.39 

8 85.81 29.41 

9 80.00 53.28 

10 80.32 18.08 

11 75.62 18.72 

12 76.62 54.90 

15 82.67 30.90 

17 90.84 35.86 

18 76.97 17.81 

19 73.26 17.03 

20 85.48 19.86 

21 83.75 33.77 

Total 79.79 28.20 
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The estimated within-subject correlation of the random effect for the intercept and the 

random effect of the slope was found to be very low (-0.02), which shows that a participant’s 

high resting pulse did not predict a strong effect of physical activity on heart rate. When 

comparing the model including only one random-effects term for both effects with the model 

including one random-effects term for each effect through the anova() function, it was 

found that the two models do not differ significantly in their fit [χ2(1) = 0.004, p = 0.9472]. 

Because of these findings, the easier model excluding the correlation between random effect 

of participant on intercept and random effect of participant on slope was chosen. 

RAHR. The residuals from this model (i.e. the difference between the expected values 

and the observed values) were taken as the RAHR values. All values lower than zero were 

replaced with a zero in the dataset. After this, RAHR was found to lie at maximally 116.32 

bpm and minimally at 0 bpm (M = 5.67, SD = 11.56). Figure 9 shows the RAHR per 

participant. It can be seen that the median for each participant lies at zero, which means that 

more than half of all RAHR values are zero. Although the upper quartile is similar for most 

participants, especially participants 1 and 5 stand out with their higher upper quartiles and 

participants 8 and 20 with their lower upper quartiles. So, although not a lot of difference is 

apparent between the participants, there still is some variation. 

 Figure 9. RAHR per participant 
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Correlating RAHR and Self-Report Data 

Based on the fitted models, with RAHR as predictor for the self-reported variables, the 

regression lines for each participant were drawn (Figure 10, 11). When looking at the left 

picture in Figure 10, it can be seen that RAHR and momentary self-reported stress seem to be 

correlated in the same direction for nearly all participants. The correlation is not significant [t 

= -1.87, df = 4.72, p = 0.124] and opposite to the expected correlation. Here it can be seen that 

the higher the self-reported stress, the lower the RAHR. The correlations of the other three 

self-report variables and RAHR are also not significant [(t = 0.98, df = 11.00, p = 0.347), (t = 

Figure 10. RAHR correlated with present stress and arousal. 

Figure 11. RAHR correlated with past stress and arousal. 
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0.17, df = 9.36, p = 0.869), (t = 0.33, df = 7.63, p = 0.754)]. In the graphs in Figure 10 and 11 

it can be seen that individual participants seem to have a correlation between their RAHR and 

their self-reported data, but that these can be both positive and negative. No apparent pattern 

can be found for this. 

The same approach was tried again including only the higher values of the self-

reported variables (+1 SD above mean). The results found here were also non-significant. All 

in all, no apparent relation between self-reported data and RAHR calculated from heart rate 

and magnitude of acceleration could be found, neither on an inter-individual nor on an intra-

individual level. 

Discussion 

The goal of this study was to explore the relationship between a new measure for the 

psychologically caused part of heart rate called “Residuals from Acceleration predicted Heart 

Rate” (RAHR) and self-reported momentary and retrospective stress and arousal data. With 

regard to the calculation of the RAHR it can be said that magnitude of acceleration and heart 

rate did indeed correlate with each other, so that the positive residuals of the data could be 

used as RAHR. In the next step, RAHR was correlated with different self-report data. Here, 

none of the correlations was found to be significant, indicating that there is no relationship 

could be found between RAHR and the subjective psychological data. 

Concerning the calculation of RAHR, it was found that magnitude of acceleration 

indeed correlated with heart rate, so that the positive residuals of its regression line could be 

used as RAHR. This is in accordance with the studies that found that oxygen consumption (or 

minute ventilation, carbon dioxide production) predicted heart rate (Carroll, Phillips, & 

Balanos, 2009; Carroll et al., 1987; Carroll, Turner, & Hellawell, 1986; Carroll, Turner, & 

Prasad, 1986; Thayer et al., 1991; Turner et al., 1988; Wilhelm & Roth, 1998), although the 

methods used in those studies were quite different from the current study. Of course, the first 

big difference concerns the measures used: in the current study, physical activity instead of 

oxygen consumption was used as a predictor for heart rate. Although Wilhelm and Roth 

(1998) state that physical activity is not a good measure for metabolic demand, a clear 

correlation between heart rate and physical activity was found in the current study. The 

second difference concerns the data analysis. In the current study, one mixed-effects model 

was built for all data instead of one regression equation for each participant. By adding 

participants as random effects to the model, the individual differences were taken into account 

without the necessity to build 18 different regressions. The current method for analysis of the 
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data thus seems to also be usable for bigger datasets, preventing the need to compute 

everything separately or losing track. Another difference to the previous studies concerns the 

design of the study. An approach was chosen that was easily executed in the field in 

comparison to the laboratory, were nearly all cited studies took place. The measurement of 

oxygen consumption is difficult outside of the laboratory, so that the previous studies were 

confined to that area. In the attempt by Wilhelm and Roth (1998) to execute an ambulatory 

study by swapping oxygen consumption for minute ventilation, still a lot of electrodes and 

sensors all over the body were necessary. In the current study, only one wrist-worn sensor was 

used. This way, participants could go on with their normal life without being disturbed or 

confined by too much equipment. By executing the study in the field, no artificial stressors 

were necessary. A fourth difference to the previous studies was the length of the current 

study. While all cited studies took place during a few minutes, hours, or at the most a day, the 

current study ran seven whole days. This way, a lot more data could be collected over a lot of 

different real-life situations. Although the current study was so different from the previous 

studies, a correlation was found based on which RAHR could be calculated. Here, it is 

especially striking that the correlation was different for all participants, showing the necessity 

of person-specific approaches when calculating this sort of data. 

Contrary to the hope to validate the RAHR against psychological data, no significant 

relationship was found between the psychological and physiological variables. There could be 

multiple reasons for not finding a relationship between the variables. One explanation is that 

the newly calculated measure RAHR might not be fitting to be correlated with subjective 

psychological data. Due to some limitations with the measure, it may be the case that RAHR 

may not be an appropriate measure to predict psychological variables. When comparing the 

present study’s way of calculating RAHR to previous approaches of calculating AHR, one 

difference stands out: in other studies, the regression line was built based on a baseline 

measurement, in which the participants were physically active. In the current study, the 

regression line was made for the whole time of measurement, so that it is not excluded that 

there is already a part of the psychologically explained heart rate in this regression line. This 

part may be different for every participant and bias the results. In a potential future study, it is 

suggested to try the new calculation with a baseline approach. 

Another possible explanation for not finding significant results is that RAHR is 

appropriate to predict psychological data, but not the four variables measured during this 

study. It could, for example, be usable for the prediction of specific emotions like fear (e.g., 

flight-phobia, Wilhelm and Roth (1998)) or anger (which seems to have a big influence on 
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cardiovascular activity (Suchday, Carter, Ewart, Larkin, & Desiderato, 2004)), or cognitive 

workload (as in the original AHR study by Blix et al. (1974), which examined pilot 

workload). 

When looking at the different categories of relation between psychological and 

physiological events by Cacioppo et al. (2017), the relation between the psychological and 

physiological elements measured in the current study is definitely not found to be an easy 

one-to-one relation. More research is necessary to determine which of the other four 

categories may be true for these variables. Based on the findings in the current study, it looks 

like there is no relation at all, which would be in accordance with the study by Evers et al. 

(2014). Here, the authors presented a framework showing that a relation between responses 

only takes place within one system (either physiological reactions or psychological 

experience), but not across those systems. In the context of the current study, this means that 

the non-existent correlation of the variables might be explained by the assumption that 

physiological reactions (i.e., heart rate) are part of the automatic system, and experience of 

psychological states (i.e., stress and arousal) are part of the reflective system. There should, 

however, be a correlation between subjective stress and arousal in the current study because 

both are part of the reflective system. In a follow-up analysis, these correlations between the 

pairs present stress – present arousal, and past stress – past arousal could indeed be found, 

providing further support for Evers et al.'s (2014) claims that there might be no response 

coherence between the two domains but only within them. Other authors have also stated that 

the relation between physiological responses of the body and psychological experience of the 

mind is more complex than one would think (e.g., Fairclough, 2009; Feldman Barrett, 2006). 

 

Strengths and Limitations 

When looking at the current study, several strengths can be seen. The biggest strength 

is that a new approach for calculating additional heart rate has been tested. It can easily be 

implemented in most wearables, because it only needs heart rate and accelerometer data, 

which are both often measured in common sensors. Even though it was not possible to 

correlate the measure with the self-reported data in the current study, this does not mean that 

it is completely worthless. As people may not know about how their body reacts to 

psychological stress or arousal, RAHR may be able to provide them with some insight to this. 

Most wearables only give normal heart rate, in which the physically caused part is also 

included. RAHR could help people in learning more about their body, because direct feedback 
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about bodily functions is possible. This might then even lead to a higher correlation of 

physiological and psychological variables (Van Dijk, Westerink, Beute, & Ijsselsteijn, 2015). 

Another strength is the big amount of data that could be gathered for the study. More than 

65.000 points of aggregated physiological data and more than 400 points of self-report data 

were accessible. Due to this amount of data, the positive correlation of magnitude of 

acceleration and heart rate was found to be significant. Also, for each individual a lot of data 

points were available so that individual differences could be exposed, although the correlation 

was positive for every participant. The field-test nature is also a strength, as it is more 

promising than laboratory studies concerning ecological validity. 

 Of course, the study also has its limitations. Although there were already a lot of data 

points, the participants only took part in the study for seven days. People may differ from 

situation to situation, and executing a study in daily life over a longer period gives the 

opportunity for a bigger variance of different situations. If, for example, during the measured 

week some of the participants had an exam week, this would probably have influenced their 

results. This shows that the field-test nature also bears its limitations. No control and no 

experimental manipulations are possible in daily life. 

 In this study, the “correctness” of the RAHR can only be inferred from the fact that 

magnitude of acceleration and heart rate significantly correlate with each other. For a future 

study, it is important to compare the new way of calculating RAHR with the other ways of 

calculating AHR that are already used (e.g., with the regression line of heart rate and oxygen 

consumption) in order to validate it further. 

 The experience sampling part of the study could also be improved. The terms “stress” 

and “arousal” seem quite general and may not catch the emotions that RAHR may be able to 

find. For more clarity for both participants and researchers, more specific data on what 

emotions people feel at a moment could be inquired. What could be added to the experience 

sampling part of the study in a future research is that the participants are not only asked about 

their feelings, but also about the kind of situation they are in at that moment. This would make 

an exploration of even more correlations possible and may lead to an identification of 

situations in which people feel certain emotions in their daily life, and maybe even an 

identification of the situations in which RAHR and psychological measures are more related 

with each other. Also, a little bit more control is added to the quite uncontrollable nature of a 

field test. 
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Conclusion 

The current study explored a new approach for calculating the psychologically caused 

part of heart rate (RAHR) and examined the relationship between this newly calculated 

variable and both momentary and retrospective self-report. Although the results have not all 

been as expected, they can be taken as a starting point for further research concerning for 

example wearables, response coherence, RAHR, or daily-life data collection.  
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