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Preface

I am proud to present my master’s thesis, which has the unique honor of exhilarating me at
this point practically as much as at the very beginning almost a year ago. The project has
also the more questionable honor of deviously installing an AED detector in my body, as I
suddenly see AEDs everywhere. And of course, I’m sure they are not where they should be!

Naturally, these wonders would never exist without the many people that were involved to
some extent. I’d like to start with thanking the people from the AMC who collaborated with
me and provided the necessary data. I greatly respect the work they do and I am honored of
doing my part and (hopefully) contributing to society.

Then, although often taken for granted, I came to appreciate the power of current tech-
nology. I still remember how I would cut nice pictures from magazines and glue them in
my reports many years ago... Now, I have programmed almost 5000 lines of code that could
potentially help hundreds of people survive a cardiac arrest, while a few years ago, I wouldn’t
understand any of these lines. Without the computer and the Internet at my fingertips, I’m
sure that this report and its results wouldn’t be anything like they are in the current forms.

Moving on the really important parts — first and foremost, I’d like to thank my supervisor
Derya who introduced me to the topic at the time when I almost gave up on finding a “really
inspiring and challenging” graduation project. Although I tend to do “everything” (and
eventually not the right thing) when I’m enthusiastic, she helped me staying on the right
path during the entire journey.

I wouldn’t be half as proud of this work if not for my second supervisor Johann, who
effortlessly found some logic in the chaos that I wrote in the mathematical chapter. Although
reading dozens of articles improved my ability to decipher the mathematical hieroglyphs, he
helped me to actually write in logical, beautiful definitions. Nevertheless, Johann advised
once to not “write philosophically, but mathematically”. I will oppose him for once, and
remember Confucius: “To put the world right in order, we must first put the nation in order;
to put the nation in order, we must first put the family in order; to put the family in order,
we must first cultivate our personal life; we must first set our hearts right.”
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iv Preface

What I want to say is that everything would be so much harder, if not impossible, when
your family and loved ones are not around. Therefore, I’d like to thank those people, who
are the most important things in life, for their unconditional love, support and for just being
with me.

— Arthur Nazarian



Summary

Treating out-of-hospital cardiac arrests (OHCAs) is extremely challenging due to their un-
predictability and urgency of intervention. Despite exhaustive efforts and resources put into
programs for responding to OHCAs, outcomes remain disappointing. However, the usage of
public automated external defibrillators (AEDs) enables bystanders to treat OHCAs prior to
the arrival of emergency medical responders and consequently improves survival outcomes.
Nevertheless, the parallel observation that AEDs are used less frequently than desired seems
to be due to insufficient public awareness, lack of bystander willingness and the absence of
data-driven methods in choosing AED locations. Although the first two aspects are recently
improved by incorporating systems where registered and willing civilian responders are guided
to aid during an OHCA, the lack of data-driven methods in choosing effective AED locations
has not been sufficiently tackled yet. Only recently, studies emerged suggesting methods for
deploying AEDs with mathematical optimization techniques based on historic incidences of
OHCAs.

With this research, we contribute to existing literature by proposing a comprehensive and
efficient prescriptive optimization method that guides the deployment of AEDs. In addition
to using a binary coverage function where an AED is considered to be either fully covered
or not covered at all, we incorporate a decaying coverage function that realistically follows
survival distributions in our algorithm. We do so by applying the generalized maximum
coverage location problem (GMCLP) to the AED deployment problem. Our methodology
accounts for the uncertainty of future cardiac arrest locations and incorporates the creation
of candidate locations for AED placement. The latter enables controlling the granularity of
possible AED locations and consequently affects the solution quality. The proposed heuristic
optimization methods comprise an efficient and effective Greedy heuristic and a more com-
plex hybrid algorithm that is based on a combination of the Greedy Randomized Adaptive
Search Procedure (GRASP) and Simulated Annealing (SA). We extended GRASP with with
“parameterized regret-based random sampling” to be able to control the placement of AEDs
at more promising locations. SA is extended with “reannealing”, which enables exploring
neighborhood solutions in the proximity of the configuration that is found by the regular
SA algorithm to possibly further improve the solution. Finally, we show that given the
same computational resources, the combination of a high-density candidate locations with
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vi Summary

the Greedy algorithm outperforms more effective but complex methods with lower density
candidate locations.

We employ the proposed methodology to the North Holland and Twente regions in the
Netherlands using real data from an established cardiac arrest registry. By relocating existing
AEDs in 43 municipalities in the study area, we show that the average proportion of instances
where an AED can be retrieved within the first critical 6minutes can be improved from 47.2%
to 68.5%. Using the more realistic decaying coverage function, the coverage of future cardiac
arrests improves by 73.5%. In addition, we compute an approximation of the set covering
location problem (SCLP) that shows how many AEDs are needed to cover all cardiac arrests
within 6min. We find median numbers of AEDs of 135 (interquartile range (IQR): 78–208)
and 227 (IQR: 180–309) per municipality in North Holland and Twente respectively, while
on average 19.0% and 23.5% of these numbers of AEDs are currently present.

This study is the first to utilize data-driven heuristic optimization techniques for allocating
AED locations in the Netherlands. With the proposed methodology, we suggest that AEDs
can be retrieved and applied to cardiac arrest victims within shorter time frames more often.
Consequently, the implications are that more beneficial survival outcomes can be expected.
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Chapter 1

Introduction

1.1 Out-of-hospital cardiac arrests

Cardiovascular diseases (CVDs) are the leading cause for global mortality, being responsible
for more than 17 million deaths annually (World Organization. World Heart Federation.
World Stroke Organization, 2011). The number of patients who experience an out-of-hospital
cardiac arrest (OHCA) has been reported to be 350 000–700 000 in Europe per year (Perkins,
Handley, et al., 2015). A successful resuscitation is uncommon; a recent large scale study
which included 27 nations found that only 5–30% of persons are discharged alive from the
hospital in Europe (Gräsner et al., 2016), while globally this number is as low as 1% (Mehra,
2007). Hence, OHCAs are lethal in most cases (Weisfeldt et al., 2010).

Unfortunately, these statistics are not expected to improve substantially due to increasing
rates of heart failure, the ageing of population in industrialized nations, and the growing
prevalence of CVDs in developing countries (Keller & Halperin, 2015; World Organization.
World Heart Federation. World Stroke Organization, 2011). Accordingly, it is concluded that
OHCA is still a major health problem (Berdowski, Berg, Tijssen, & Koster, 2010; Gräsner et
al., 2016).

Cardiac arrest is defined as “cessation of cardiac mechanical activity as confirmed by
the absence of signs of circulation” (Jacobs et al., 2004, p.3387). In other words, it occurs
when the heart stops pumping blood consistently due to abnormal heart rhythms. However,
successful resuscitation (i.e. survival to hospital discharge) is possible and depends on several
aspects as highlighted by the “chain of survival” of the European Resuscitation Council
(ERC), as illustrated in Figure 1.1 (Perkins, Handley, et al., 2015):

1. early emergency activation,

2. early cardiopulmonary resuscitation (CPR),

3. early defibrillation,

4. timely and appropriate advanced care.
Approximately half of the people experiencing an OHCA have a shockable heart rhythm,

1
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Figure 1.1: The chain of survival of OHCA. ©2015 from Perkins, Handley, et al.

i.e. ventricular fibrillation (VF) or ventricular tachycardia (VT) (Blom et al., 2016). For
them, defibrillation — giving a shock — is of utter importance for survival as it has a chance
to “reset” the heart to a regular rhythm. Defibrillation within 3–5min after collapse can
result in survival rates as high as 50–70% (Berdowski et al., 2011; Blom, Beesems, et al.,
2014; Ringh, Rosenqvist, et al., 2015; Valenzuela et al., 2000). The quality of life of OHCA
survivors in general is good (Smith, Andrew, Lijovic, Nehme, & Bernard, 2014; van Alem,
Waalewijn, Koster, & de Vos, 2004), while bystander defibrillation decreases the risk on brain
damage and nursing home admission even further (Kragholm et al., 2017).

However, each minute of delay of defibrillation reduces the probability of survival to
discharge by 10% (Valenzuela, Roe, Cretin, Spaite, & Larsen, 1997). The larger the distance
to a defibrillator, the longer it takes to retrieve the device and the more time passes before
defibrillation can be applied to the OHCA patient. This implies that survival and therefore
the “coverage” of an OHCA by a defibrillation device decreases as a function of distance
(De Maio, Stiell, Wells, & Spaite, 2003; Larsen, Eisenberg, Cummins, & Hallstrom, 1993;
Valenzuela et al., 1997; Waalewijn, De Vos, Tijssen, & Koster, 2001).

1.2 The Automated External Defibrillator

Since the development of the automated external defibrillator (AED) (Figure 1.2) by Diack,
Welborn, Rullman, Walter, and Wayne (1979), the mobile device has seen considerable and
successful usage specifically in recent years. An AED automatically assesses the cardiac
rhythm and delivers an appropriate, potentially lifesaving defibrillation. The success of the
usage of the device lies in the fact that it is safe and effective when used by lay responders with
minimal or no training (Yeung, Okamoto, Soar, & Perkins, 2011). Even usage by children
older than 8 years is considered to be appropriate (Akahane et al., 2013; Johnson et al., 2014;
Mitani et al., 2013).

It has been widely reported that improved survival and neurological status at discharge
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are associated with the use of public access (or “on-site”) AEDs for OHCA victims (Bækgaard
et al., 2017; Hallstrom, 2004; C. M. Hansen, Kragholm, Pearson, et al., 2015; C. M. Hansen
et al., 2017; Kitamura et al., 2010; Kragholm et al., 2017; Nakahara et al., 2015; Nielsen,
Folke, Lippert, & Rasmussen, 2013; Ringh, Rosenqvist, et al., 2015). One of the largest
studies has been performed by Kitamura et al. (2016) in Japan, where almost 44 000 OHCA
instances with survival data were analyzed from 2005–2013. The research showed a 15-fold
increase of AED usage, and at the same time an increase from 6 to 201 survivors whose
survival with a favorable neurologic outcome was attributed to public access defibrillation
(PAD). In the Netherlands it has also been statistically proven that the increase of survival
can be explained for a considerable part by the growing usage of the AED (Berdowski et al.,
2011; Blom, Beesems, et al., 2014). Zijlstra, Radstok, et al. (2016) widened the research by
comparing six Dutch regions, and confirmed that a lower usage of AEDs translates to lower
survivability in the region.

Interestingly, while research on the independent contributions of bystander CPR has
shown a positive association with long-term survival — e.g. as recommended in the “chain of
survival” (Figure 1.1) — Capucci et al. (2016) proved the effectiveness of exclusively on-site
AEDs by avoiding bystander CPR usage during a 13-year long PAD program.

Such indisputable efficacy of AEDs can be explained by the quick access to an AED and
hence a decrease of the time to defibrilliation. In contrast, the arrival of emergency medical
services (EMS) is often lethally late for most OHCA patients (Rea et al., 2010). Therefore,
lay responders should perform CPR and apply defibrillation within the crucial first minutes
after collapse (Bradley & Rea, 2011; C. M. Hansen, Kragholm, Granger, et al., 2015). For
example, with typical ambulance arrival times of 10–12min, the probability for survival would
be very low, whereas a typical AED shock can be delivered by a lay responder at a time when

Figure 1.2: Automated External Defibrillator device
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the probability of survival is 40–70% (Caffrey, Willoughby, Pepe, & Becker, 2002; Page et
al., 2000; Valenzuela et al., 2000).

Moreover, as the cells in the heart use a great quantity of energy during a cardiac arrest,
the heart rhythm changes to asystole (non-shockable rhythm with no electrical activity) due
to the depleting energy sources (Salcido, Menegazzi, Suffoletto, Logue, & Sherman, 2009).
Empirical results show that more than 60% of patients have a shockable rhythm when a
defibrillator is connected within 6min, whereas this proportion decreases to 40% at 12min
(Hulleman et al., 2016). Therefore, not only can an AED that is retrieved by lay responders
deliver a shock earlier than the EMS can and thus improve survival rates, it can do so at
the time when there is a higher chance of being able to deliver a shock at all — improving
survival rates even further.

It must also be noted that effective AED deployment is not solely of major benefit for the
survivability of patients — the total costs per patient are also lower, mostly due to shorter
in-hospital stay (Alem, 2003; Berdowski, Kuiper, Dijkgraaf, Tijssen, & Koster, 2010).

1.3 Civilian response system

Traditionally, bystanders have been limited to a line-of-sight area when retrieving AEDs or to
an arbitrary and ineffective search for such device. Until recently, there have been no practical
methods to either recruit willing and competent bystanders to a cardiac arrest victim or to
more efficiently retrieve an AED.

In this study, we use real data from a registry in the Netherlands that is discussed in
Section 3.1. In the Netherlands, a civilian response system (CRS) is currently implemented
in practically every region. The particular CRS in the study area with available AED data
is called “HartslagNu” (https://www.hartslagnu.nl). A CRS contains registered civilian
responders (volunteers who can provide CPR and AED defibrillation for a cardiac arrest
victim) and a registry for AEDs. The CRS is activated as part of the general EMS dispatching
efforts in the Netherlands. In case of a medical emergency, people call the national emergency
number and reach the dispatch center. When the dispatcher suspects a cardiac arrest,

1. two ambulances of a single tier, with each vehicle being equipped with a manual de-
fibrillator (mDFB) and able to perform advanced cardiovascular life support (ACLS)1

and manned by a paramedic and a driver who can perform CPR, are sent;

2. “first responders (FRs)”, i.e. police and fire fighters2, equipped with an AED, are sent

1Besides performing CPR and defibrillation, ACLS involves the use of adjunctive equipment and drugs to
further stabilize and manage a victim of cardiac arrest (“Chapter 32 - Preparation for Emergencies”, 2018).

2According the CARES registry, FRs are defined as personnel “who respond to the medical emergency in
an official capacity as part of an organized medical response team but are not the designated transporter of
the patient to the hospital” (McNally et al., 2013, p.17). FRs are dispatched nationally in the Netherlands
since 2010 (Beesems, Zijlstra, Stieglis, & Koster, 2012).

https://www.hartslagnu.nl
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if they are located in the proximity of the OHCA;

3. the CRS is activated. In case of a suspected cardiac arrest, the CRS alerts registered
volunteers by a short message service (SMS) or mobile application alert according to
regional dispatch guidelines (Zijlstra, Pijls, et al., 2016). The CRS responders can be
guided directly to the site of cardiac arrest, or can be first directed to collect the closest
AED.

Figure 1.3 illustrates the workings of the particular CRS during the study period. When
system is activated, all available AEDs and lay responders within a circle of 1000m from
the OHCA victim are identified 3. Around each AED within this area, an additional circle
with a radius of 500m is generated within which alerted lay responders may be directed to
retrieve the AED first (“responder (AED)” in Figure 1.3) and then head to the victim if this
route is less than 5% longer than a direct route to the victim. Otherwise, the lay responder
is guided directly towards the victim to perform CPR (“responder (CPR)” in Figure 1.3). In
total, a maximum of 30 registered lay responders are alerted via a text message or mobile
application, from whom around two thirds is directed to an AED and the rest directly to the
victim. If no AEDs are found, all lay responders are directed to the victim to perform CPR
(Hoe werkt een alarmering, 2017).

There are a few reasons why CRS responders might not be dispatched. For instance,
“no complete address known at moment of dispatch, an evidently non-cardiac cause, patient
aged below eight years, ambulance or first responder nearby, or if an AED is already present”
(Zijlstra et al., 2014, p. 1445).

The Dutch law allows anyone to apply an AED; however, to be part of the CRS, one must
be at least 18 years old and must have finished a standard basic life support (BLS)/AED
course according to the guidelines of the ERC4, which should be renewed every two years
(Berdowski et al., 2011). Registration of CRS responders is done via an online database
and includes information such as contact details, specifications of BLS certificate, address
and time when the responder is available (Zijlstra et al., 2014). Location information by
Global Positioning System (GPS) can be enabled in the mobile application as well. Civilian
responders are not obliged to act on an alert.

1.4 Research objective

Given the major potential impact that reducing defibrillation times can have on thousands
of OHCA victims per year, we pursue contributing in this regard. The focus of this thesis

3During 2016, a newer version of the CRS incorporated a dynamic distance that uses the road network. In
that case, lay responders are identified who can travel to the victim’s address with a speed of 15 km/h within
6min (i.e. 1500m).

4The ERC guidelines are based on the most recent International Liaison Committee on Resuscitation
(ILCOR) 2015 Consensus on International Consensus on Cardiopulmonary Resuscitation and Emergency
Cardiovascular Care Science With Treatment Recommendations (CoSTR) (Hazinski et al., 2015).
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is on providing a prescriptive method that can aid in optimizing the placement of AEDs
and consequently could positively affect survival rates. More specifically, we seek to provide
a data-driven algorithmic technique to efficiently solve the “AED deployment problem” —
where to place AEDs such that the defibrillation times to future cardiac arrests are minimized.

We develop heuristic optimization methods that can effectively and efficiently solve com-
plicated problems instances. We start by creating a relatively simple Greedy algorithm for
the problem, and then devise more complex algorithms that are based on the hybridization of
Greedy Randomized Adaptive Search Procedure (GRASP) and Simualated Annealing (SA)
with some extensions. As part of the data-driven method to prepare the necessary data for
optimization, we create a spatial probability density function of the cardiac arrest risk that
is used to simulate new OHCA instances that serve as the demand input for our algorithm.
Concerning the supply side of the problem, we propose a scalable method to efficiently create
candidate locations for AED placement by means of subdividing the area with hexagons. We
show that precise AED placement (with a granular set of candidate locations) in combination
with simpler heuristics is more effective than a coarser density of locations in combination
with more complex solution techniques.

Ultimately, we apply to our methods to two vast areas in the Netherlands with real data
from an established OHCA registry and show that the proposed methods are very effective
in solving the AED deployment problem and thus minimizing the time to defibrillation.

Figure 1.3: Specifics of the alert procedure of the civilian response system
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1.5 Literature review

In this section we first describe how the AED location problem is formulated from a scientific
perspective and then discuss previous work on the problem. Although there is substantial
research on identifying areas that typically exhibit a higher probability of OHCA incidences,
prescriptive methods that help in the actual and precise placement of AEDs is a relatively
novel branch in academic literature. In Subsection 1.5.1 we introduce locations problems in
general and then discuss specific AED research in Subsection 1.5.2. Lastly, Subsection 1.5.3
describes previous research on civilian response systems.

1.5.1 Location problems

Introduction to relevant location problems

The AED location problem belongs to the family of location problems, namely “facility
location” or “location analysis”, which have been numerously investigated by operations
researchers. The key objective in those problems is to determine the locations of “facilities”
with respect to “demand” and a distance function. Classical applications include locating
EMS bases, fire and police stations, airline hubs, waste disposal sites, warehouses and many
more. An extensive list of applications can be found in Hale and Moberg (2003).

Location problems can be categorized according to their location space: discrete, network
or continuous (Eiselt & Marianov, 2011). In discrete models, the locations of facilities are
restricted to to a pre-specified set of potential locations. These locations are “nodes” in
network models, which are interconnected by arcs. Continuous models are more flexible as
they seek to determine the locations anywhere on the plane; thus, there is an infinite number
of potential locations for the facilities.

Another way to categorize location problems is according to the type of objective function:
minisum (or “median problems”), minimax (or “center problems”) and covering (Laporte,
Nickel, & da Gama, 2015). In the minisum problem, new facilities are placed such that the
weighted sum of the distances from demand locations to the nearest facility is minimized.
The minimax problem minimizes the maximal weighted distance, which is often used for
worst case analyses. Covering problems require demand locations to be within a specific
given distance or time from facilities in order to be considered as “covered” by the facilities’
service.

Regarding our AED problem and the location space, it can be considered as any of the
three models. The difference between the continuous and discrete model is that the former can
give better results due to not having the restriction of specific candidate locations. However, it
is inherently harder to solve. The network model can be considered as a specific discrete model
where candidate locations for AED placement and cardiac arrest locations are represented
by nodes and the possible routes between these nodes are represented by arcs. However,
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realistically determining these routes can be extensive and challenging. Therefore, we model
our AED problem as a discrete space model. Chapter 4 provides more insight into this choice.

In relation to the objective function, there is more clarity. In the AED location problem,
there is a critical time and thus distance within which the demand (i.e. cardiac arrest) needs
to be served if it is to be considered as covered by a facility (i.e. AED). Therefore, rather than
using the distances between demand and facilities as variables that the minisum and minimax
models utilize, the provided coverage to demand is of the essence. Hence, the problem falls
into the covering models. This class can be further divided in three basic types: p-center
problems, set covering problems, and maximal covering problems (Daskin, 2008).

The p-center problem seeks to place at most p facilities to minimize the maximum dis-
tance between all demand nodes and their assigned facility (Hakimi, 1964, 1965). In the
set covering location problem (SCLP), the objective is to minimize the number of opened
facilities subject to covering all demand (Toregas, Swain, ReVelle, & Bergman, 1971). The
form of the maximum coverage location problem (MCLP) can be considered to be the inverse:
maximizing the demand covered subject to a limited number of facilities that may be opened
(Church & ReVelle, 1974). These models can all be used for the AED problem. However, the
MCLP is more applicable to the real world as resources are often limited (hence, the number
of facilities is pre-determined) and coverage is restricted to a certain time within which an
OHCA victim should be defibrillated (hence, the coverage distance is pre-determined).

1.5.2 Relevant literature on AED deployment

Applying the facility location models to AEDs

Significant research in AED location problems only started in the last decade. Ahmadi-
Javid, Seyedi, and Syam (2017) conducted an extensive survey of operations research studies
in light of healthcare facility location that are published since 2004, and from the approx-
imately 150 considered articles, only 5% comprised “public access devices”, while primary
care facilities and ambulance stations were covered in 55% of the articles. This may be
due to the fact that translating classic facility location approaches to the AED deployment
problem is not straightforward, as the location of an AED is not necessarily known by lay
responders. Consequently, demand is not satisfied by the closest “facility” at all times, as is
usually considered in conventional location problems. Traditionally, there is not necessarily
a single lay responder who (omits giving CPR and) travels directly to an AED, nor does
the responder travel to the closest AED by definition. This implies that the AED location
problem presents a multiple-responder model that maximizes coverage in which more than
one AED can contribute to the coverage of a cardiac arrest as, for example, proposed in
Chan, Demirtas, and Kwon (2016). However, with the increasing usage of novel technologies
that guide lay responders to a nearby AED such as the CRS (see Sections 1.3 and 1.5.3),
some of these uncertainties can be alleviated as lay responder behavior can be predicted or
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even controlled to some extent.

Identifying high risk cardiac arrest locations

Prior to applying facility location problems to AEDs, one of the earliest streams in direct-
ing AED placement was by analyzing locations with high cardiac arrest risk (e.g. Becker,
Eisenberg, Fahrenbruch, & Cobb, 1998; Brooks, Hsu, Tang, Jeyakumar, & Chan, 2013; En-
gdahl & Herlitz, 2005; Folke et al., 2009; Gratton, Lindholm, & Campbell, 1999; Fedoruk,
Currie, & Gobet, 2002; Iwami et al., 2006; Murakami et al., 2014; Muraoka et al., 2006;
Sun, Brooks, Morrison, & Chan, 2017). These studies typically identified specific building
types that showed a higher cardiac arrest risk, for example airports, railway stations, nursing
homes, playgrounds, golf courses and workplaces.

There are straightforward implications for AED deployment with this practice, as stake-
holders can identify the pre-determined high-risk buildings easily in their particular region
and develop partnerships with the building owners to place AEDs. However, a significant
number of cardiac arrests occur outdoors (Fredman et al., 2016; Koster, 2013; Rea et al.,
2010) and cannot be categorized under any building type, which diminishes the quality and
realism of such method. Moreover, high-risk buildings are profoundly reliant on heterogeneous
demographics and specific spatial characteristics and thus cannot be generalized accurately.

A more generalizable approach is to analyze the spatial distribution of historical OHCAs
and then identify high risk areas. Many studies utilized geographical information system
(GIS) methods to identify OHCA clusters (Chrisinger et al., 2016; Dahan et al., 2016; Lerner,
Fairbanks, & Shah, 2005; Lin et al., 2016; Malcom, Thompson, & Coule, 2004; Moon et
al., 2015; Ong et al., 2008; Raun, Jefferson, Persse, & Ensor, 2013; Sasson et al., 2012;
Semple et al., 2013; Soo, Huff, Gray, & Hampton, 2001; Warden, Daya, & LeGrady, 2007).
For instance, Moon et al. (2015) used Kernel Density Estimation (KDE) on OHCA and
AED locations and found that their respective locations not necessarily coincide. Dahan et
al. (2016) compared three strategies, namely placing AEDs at locations where an OHCA
occurred every 5 years, a grid-based strategy and a strategy to place AEDs at a specific
landmark. Somewhat differently, without using historical OHCA locations, C.-C. Chen and
Chen (2017) used computer vision to detect human movement indoors to aid AED placement
decisions.

These spatial methods are definitely an improvement on the building-only restriction
to broadly identify focus for AED placement and to more effectively target interventions
outdoors. However, in general, resources are limited and it is financially infeasible to install
AEDs at each “high-risk” region. Alternatively, if resources do allow deploying AEDs in all
high-risk regions, the challenge remains identify specific locations for AED placement within
those regions. Also, outside those high-risk regions, there is no guidance to place AEDs at
sites that are considered to possess a lower cardiac arrest risk. Therefore, it is of essence to
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determine a relevant subset of locations for AED placement that have the maximum impact
on OHCA coverage. A prescriptive method for explicit and accurate AED deployment would
be most useful.

Methods for guiding AED deployment

Mathematical models are able to improve upon the previously mentioned problem of not
having a prescriptive framework for placing AEDs. One of the first mathematical approaches
was by Mandell and Becker (1996), who proposed a multi-objective integer linear program
(ILP) model by using overall survival and equity of survival rates to help selecting BLS units
on which an AED should be placed. Rauner and Bajmoczy (2003) combined a decision
model with an ILP model to eventually conclude that equipping all ambulances with AEDs
is cost-effective.

Starting from 2009, research appeared on actual on-site AED placement — Myers and
Mohite (2009) applied a MCLP model to optimize AED placement in a university community.
By relocating two AEDs, they increased the coverage from 78% to nearly 95% while also
reducing the additional number of AEDs from 5 to 2 to achieve a 100% coverage. There are
also studies incorporating “vertical” AED placement. Dao, Zhou, Thill, and Delmelle (2012)
combined GIS and ILP to optimize AEDs in a multi-story academic building and Chan
(2016) compared placing AEDs in elevators and lobbies to minimize the distance travelled to
a cardiac arrest in a high-rise building. On a “regular” plane, Chan et al. (2013) established a
data-driven MCLP approach where geographic clusters of cardiac arrests in Toronto (Canada)
are identified and prioritized with the MCLP, which outperformed an intuitive population-
based method. Siddiq, Brooks, and Chan (2013) used the same registry and approach but
examined the effect of different AED coverage ranges and number of AEDs to be deployed.
Sun, Demirtas, Brooks, Morrison, and Chan (2016) optimized AED placement in Toronto by
taking into account both location and hours of operation of the buildings that AEDs were
located in. The study predicted a 25% improvement in actual coverage, with the greatest
possible gain during nighttime, which corresponds with the time period where survival rates
were worst. Chan et al. (2016) extended the research in Toronto by introducing realistic
multi-responder models with a probabilistic extension of the MCLP with gradual coverage,
and consequently improved coverage with as much as 40%. Chan, Shen, and Siddiq (2017)
used a row-and-column generation algorithm for deploying AEDs in public areas by using a
conditional value-at-risk objective function to mitigate the risk of unacceptably long distances
between cardiac arrest locations and their nearest AEDs. Finally, Kwon, Kim, Lee, Yu, and
Huh (2017) used a GIS approach to improve AED deployment by including a pedestrian
network dataset and network barriers in two urban districts in Seoul (South Korea).

In contrary to the previously mentioned studies, only few authors have used a heuristic
approach. Tsai, Ko, Huang, and Wen (2012) used two spatially and temporally weighted
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models to consider the spatial and temporal characteristics of convenience stores and cardiac
arrests in Taipei City (Taiwan) and used a Genetic Algorithm (GA) to solve the AED location
problem. Bonnet, Gama Dessavre, Kraus, and Ramirez-Marquez (2015) applied the MCLP
in an urban environment by using a multi-objective GA and incorporated both availability
of AEDs and the number of AEDs as an objective function.

1.5.3 Prior literature on civilian response systems

All previously mentioned studies did not incorporate civilian response systems (CRSs), as
described in Section 1.3. Knowing the location of AEDs greatly improves the time of retrieving
the device (Riyapan & Lubin, 2016). The CRS facilitates a multitude of trained civilian
responders to react to an OHCA by guiding them to the victim and also by helping them in
retrieving an AED first. This enables a higher rate of CPR efforts by trained responders and
a higher utilization of nearby AEDs. For example, without the usage of a CRS, Agerskov
et al. (2015) found that in Copenhagen (Denmark) only 3.8% of all OHCAs had an AED
applied prior to ambulance arrival, although in 15.1% instances an AED was present within
100m of the cardiac arrest. Similar unfavorable results were found in Sweden even when
using guidance by the dispatcher via phone to a nearby available AED (Fredman et al.,
2016). However, quicker and clearer guidance with the use of mobile phone technology of a
CRS could improve these results.

Prior studies utilizing mobile phone technology to improve bystander CPR and defib-
rillation efforts during an OHCA date back to 2011 and were performed in Sweden (Ringh,
Fredman, Nordberg, Stark, & Hollenberg, 2011; Ringh, Rosenqvist, et al., 2015), Japan (Sakai
et al., 2011; Yonekawa et al., 2014), Denmark (S. M. Hansen et al., 2015) the United States
(Brooks, Simmons, Worthington, Bobrow, & Morrison, 2016) and Switzerland (Caputo et
al., 2017). Most of the researches found improved CPR and defibrillation times, although
some (mostly older) studies report opportunities for improvement concerning the implemen-
tation of the CRS. For instance, Sakai et al. (2011) found a significant improvement in travel
distance when using the CRS, but this did not translate to a reduced time to retrieve an
AED due to the additional time for operating the system.

The Netherlands was and is also active on the front of CRS development and research.
Scholten, van Manen, van der Worp, IJzerman, and Doggen (2011) was one of the first to
collect relevant information about using a CRS and used the same registry as our study in the
first three months in 2010 in the region of Twente in the Netherlands. Per OHCA victim, of
whom 84.6% had the incident at home, an average of 62 civilian responders were alerted and
11 came into action. A few years later, Zijlstra et al. (2014) analyzed the functioning of the
same CRS with the focus on response times and early defibrillation and expanded the study
region to North Holland. They also found the CRS being very effective for residential OHCAs.
In general, the time to connection was 2:54 shorter than the connection times by EMS. Most
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recently, the prospective registry study of Pijls, Nelemans, Rahel, and Gorgels (2016) assessed
whether the usage of a CRS improves survival after OHCA in the province of Limburg in the
Netherlands. The CRS’ responders were the first to initiate CPR and defibrillation 25% of
the time, and the respective cardiac arrest victims had increased survival to hospital discharge
when compared with those without civilian responders.

1.6 Motivation and contributions

In this section we describe the gaps in literature and practice that motivated this research with
regards to AED deployment. Consequently, we end this chapter with stating the contributions
that this research proposes and give an overview of the remainder of this work.

1.6.1 Potential for improving current AED locations

Despite the fact that the benefits for survival of using AEDs are unequivocal, the actual
proportion of OHCAs with bystander applied AEDs is at times not significant. For instance,
only 2.1% of 13 769 OHCAs had an AED applied in North America (Weisfeldt et al., 2010),
in Japan an AED shock was delivered in only 3.7% cases (Kitamura et al., 2010), a study
in Hampshire (England) reported 4.25% successfully retrieved AEDs during 1035 confirmed
cardiac arrests (Deakin, Shewry, & Gray, 2014) and a study in Toronto (Canada) found 8%
of cardiac arrests where a bystander AED was applied (Sun et al., 2016). Apparently, even
with significant statewide interventions, increasing defibrillation rates by public AEDs proves
to be challenging (C. M. Hansen, Kragholm, Pearson, et al., 2015).

The AED usage rates depend mostly on the amount of public awareness, the degree of
bystander willingness and adequate placement of AEDs. Thus, improving these factors should
yield more frequent usage and survival. Regarding the AED lcoations, the official guideline
by the European Resuscitation Council (ERC) is that the placement of AEDs are considered
to be cost-effective in areas where one cardiac arrest per 5 years can be expected (Monsieurs
et al., 2015). However, this is often in contrast with actual practice. For example, Yoon,
Jeong, Kwon, and Lee (2016) showed that while 99.5% of AEDs in Busan Metropolitan City
(South Korea) were well-maintained and in operable condition, the actual usage of an AED
is once per 26.3 years in average due to placement in low-priority locations. Danish studies
found that 94.6% of all AEDs were placed in areas with low risk or no cardiac arrests at all
in Copenhagen (C. M. Hansen et al., 2014) and an AED was located within 100m only in
15.1% of all cardiac arrest incidences (Agerskov et al., 2015). In Toronto 21.5% of AEDs was
inaccessible when needed (Sun et al., 2016). These studies all indicate the existing potential
of improving AED network strategies.

A first step would be deploying more AEDs. However, plainly increasing the number of
AEDs is not viable, as the placement of a large amount may be very costly if not managed
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properly and preceded by public awareness (Folke et al., 2009; Zorzi et al., 2014). Also,
although Ringh, Jonsson, et al. (2015) reported a tremendous increase of public AEDs in
Stockholm (Sweden), the proportion of public defibrillations increased only marginally in
comparison. The authors regard aspects as “logistics” and “information” to be “more efficient
than the spread of unregulated AEDs in terms of AEDs used” (p.6).

Thus, currently there is insufficient coordination of AED deployment efforts (Merchant
& Asch, 2012). We mentioned the sole official guideline by the ERC of placing AEDs where
cardiac arrest per 5 years can be expected. Unfortunately, such limited and equivocal guide-
line is hard to implement without quantifiable guidance. The ERC guidelines appropriately
acknowledge that there is indeed a “knowledge gap” (Travers et al., 2015, p. S71) in regards
to optimized AED deployment strategies.

1.6.2 Knowledge gaps

In addition to the practical opportunities for further improvement, we address the knowledge
gaps in literature as follows:

Need for tractable solution approaches. Previously, Section 1.5.2 mentioned that most
research on the AED deployment problem used exact methods. However, exact methods
may be very costly regarding the required computational resources. For example, Chan
et al. (2016) used a computer cluster for solving the exact mathematical models —
something that stakeholders most likely will not possess. On the other hand, we found
only two heuristic approaches to the AED problem by Tsai et al. (2012) and Bonnet
et al. (2015), indicating that heuristics are not substantially exploited in this regard.
For example, both authors used established Genetic Algorithm (GA) metaheuristics5,
while there are many other heuristics and methodologies.

Need for analyzing a broader set of candidate locations. To the best of our knowl-
edge, all previous research on AED deployment used a predefined (subset of) buildings
or landmarks as candidate locations for AED placement. Other methodologies and
applications are not yet studied, even though it is currently customary and appropriate
to place AEDs outdoors without limiting the locations to buildings only.

Need to expand research to a larger set of OHCAs. Besides the potential exploring
other methodologies, most research (e.g. the studies in Toronto) used only public
OHCAs. As these are a small subset (typically 20–40%) of all cardiac arrests, the
impact of such research is rather small when viewed in the context of the overall OHCA
burden. Also, all mentioned studies optimized in a confined urban environment, while
in practice, stakeholders could consider a larger or more heterogeneous area.

5Blum, Puchinger, Raidl, and Roli (2011) define metaheuristics as “approximate algorithms for optimization
that are not specifically expressed for a particular problem” (p.4135).



14 Chapter 1. Introduction

1.6.3 Contributions

With the motivation in the previous subsection stating the aspects where new research can
contribute to, we summarize the contributions of this study below:

Novel algorithm to effectively optimize the AED deployment problem. Aside from
having no central decision maker that oversees (national) AED deployment or tak-
ing into account the usual time delay of translating the research phases into practice
(Morris, Wooding, & Grant, 2011), we believe a part of the barriers to implement
evidence-based methods lie in the optimization methods. Moreover, also in the re-
search field the effort of converting an existing technique to a new study area can be
significant. One of the reasons is that the AED deployment problem is NP-hard, mean-
ing that in the worst case, exact methods are expected to require exponentially more
computational resources as the problem size grows. In contrast, our proposed algo-
rithm calculates and presents a solution of most instances within limited time without
extensive computational resources. Additionally, such performance enables the proposed
algorithm to be implemented for large instances (e.g. large areas such as entire regions
or even countries) and/or with great precision (e.g. many potential AED locations).

Methodology for dynamically creating high quality problem instances. Besides us-
ing a powerful optimization technique that gives good solutions in a short time, we
introduce a dynamic methodology that creates candidate locations for AED placement.
This technique depends on historical cardiac arrest data only, thus removing the re-
quirement of obtaining data of e.g. the coordinates of buildings that can be used as
candidate locations. More specifically, we implement a scalable hexagonal tessella-
tion for the creation of candidate locations. To the best of our knowledge, generating
problem instances in a similar fashion is not previously studied in AED deployment
literature. Moreover, this method enables having control over the potential solution
quality of the AED deployment model. We show with real data that the combination
of a granular tessellation with the developed efficient algorithm outperforms an exact
method with a manageable, but therefore coarser, granularity of candidate locations.
Thus, not only is less data required, the solution quality can be improved as well.

First data-driven AED deployment method in the Netherlands. To the best of our
knowledge, this research is the first to apply data-driven AED deployment methods in
the Netherlands. The study features real data from two regions and uses this data for
the analysis of the current situation and the application of the proposed methodology.
In addition, what relatively distinguishes this study from previous literature, is that we
consider both urban and rural areas as well as cardiac arrests that occurred at both
public and residential areas. Consequently, this research affects most out-of-hospital
cardiac arrests in a vast and heterogeneous area. With the proposed definition of when
and to what extent a cardiac arrest is considered “covered”, we eventually improve
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the current average coverage of 43 municipalities in the Netherlands by 73.5% when
relocating existing AEDs. Therefore, using the positive trend in the Netherlands — a
growing number of applied AEDs (Blom et al., 2016) and promising results with the
usage of the CRS (Zijlstra et al., 2014) — as a catalyst, our data-driven method is
another step forward in improving the survival of OHCAs.

Introduction to remainder of this work

The remainder of this research is organized as follows. Chapter 2 formally defines the AED
deployment problem and presents the methodology for solving the problem. A straightfor-
ward but efficient “Greedy” algorithm is proposed as well as more complex but effective
methods. In Chapter 3, the context of cardiac arrests in the Netherlands is described along
with the characteristics of the obtained data. Next, in Chapter 4, the data that is necessary
for our optimization method is created by transforming available raw data. More specifi-
cally, the spatial distribution of cardiac arrest risk is analyzed, after which future cardiac
arrests are simulated. Then the function that determines to what extent a cardiac arrest is
considered to be “covered” is defined. The chapter concludes devising the method to create
candidate locations for AED placement. Finally, Chapter 5 shows the results of solving the
AED deployment problem with the proposed methodology and real cardiac arrest data, after
which Chapter 6 completes this work with a conclusion and discussion.
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Chapter 2

Methodology

We have previously discussed that a structured AED placement program with a focus on co-
ordination is more effective than the spread of unregulated AEDs (Siddiq et al., 2013; Ringh,
Jonsson, et al., 2015). The previous chapter presented examples of how existing studies show
promising results by prioritizing AED placement depending on historical OHCA episodes.
In this chapter, we contribute to existing literature and present a prescriptive framework to
help decision-makers in the placement of AEDs. In Section 2.1 we discuss the mathemat-
ical formulation of the AED deployment problem. Section 2.2 discusses a straightforward
Greedy heuristic to solve the optimization model and more complex algorithms that may
further improve the solution quality.

2.1 Mathematical optimization model

We have discussed in the previous chapter that the MCLP is a viable model to solve the
AED deployment problem. However, the classical MCLP utilizes a binary coverage function,
meaning that the amount of coverage that an AED provides to any cardiac arrest within
its coverage radius is the same, irrespective of the actual distance to the arrest. Figure 2.1
illustrates two important characteristics that imply that such binary coverage function can
be unrealistic.

The three cardiac arrest victims within the circle in Figures 2.1a and 2.1b are considered
to be fully covered, even though the victims in (2.1b) are much closer to the AED than in
(2.1a). Note that one victim on the far right is not covered at all (0% coverage) in both cases.
However, a victim close to the non-covered victim in (2.1a) is considered to be 100% covered.
Realistically, the coverage between these two nearby victims should not be that different.

Note that in total, in both scenarios the AED provides full coverage to 3 cardiac arrests.
Realistically, a nearby AED would be quickly found and retrieved, while an AED at a larger
distance would be harder to find and would need more traveling time for bringing the device
to the victim. Thus, a more appropriate coverage definition should account for the provision

17
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of better/quicker service as this directly relates to the survival of an OHCA.

Based on the above, we incorporate an extension of the MCLP that utilizes a “gradual
coverage decay model”. Such model was first introduced by Berman and Krass (2002) and is
also used by Chan et al. (2016) to overcome the mentioned problem regarding realistic AED
coverage. This generalized maximum coverage location problem (GMCLP) generalizes and
improves upon the abrupt termination of coverage of the traditional MCLP. We use a similar
approach since gradual coverage is more realistic for the AED problem.

We now define the mathematical model that utilizes the GMCLP to some extent. In the
remainder of this chapter we use a general terminology with “facilities” (i.e. AEDs) that
provide coverage to a certain “demand” (i.e. OHCAs).

Let I denote the set of demand nodes, J e denote the locations of existing facilities (i.e.
facilities that are already opened) and J c denote the candidate locations for new facilities.
Furthermore, let J = J e ∪ J c and assume J e ∩ J c = ∅. Each facility has two coverage
radii r1 and r2 with r1 ≤ r2. Furthermore, let dij be the distance between a demand node at
location i and a facility at location j. If dij < r1, then the demand node i is considered to be
“fully covered” by facility node j. If the distance between demand node i and facility node
j falls in between the two radii of the closest facility, i.e. r1 < dij ≤ r2, demand node i is
considered to be partially covered. The level of partial coverage (proportion of the available
service provided) is given by a monotonic non-decreasing “coverage decay function” f(dij)
(Berman, Krass, & Drezner, 2003). Finally, if demand node i is located farther than the
outer radius (r2 < dij) from facility node j, the demand is considered to be not covered by
facility node j. We assume without loss of generality that J c contains only locations j for

(a) Victims far from AED

(b) Victims close to AED

Figure 2.1: Two illustrations that show unrealistic characteristics of the traditional MCLP with a
binary coverage function
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which at least one demand node i with dij ≤ r2 exists. The coverage level cij of facility j
for demand node i is formally defined in Equation (2.1). Note that with r1 = r2, coverage is
identical to the conventional binary MCLP.

cij =


1 if (dij ≤ r1);

f(dij) if (r1 < dij ≤ r2), ∀i ∈ I, ∀j ∈ J ;

0 otherwise.

(2.1)

We can now formulate the mathematical model that employs this coverage level. The
number of facilities to be deployed is denoted by χ. We define decision variable Yj to be 1
if a facility is placed at location j, and 0 otherwise. Furthermore, we define binary variables
Wij to be 1 if if demand node i is covered by a facility at location j at some nonzero level
(either partially or fully covered) and 0 otherwise. Using these variables we now formulate
the given problem by the following mathematical model:

maximize
∑
i∈I

∑
j∈J

cijWij (2.2a)

subject to
∑
j∈J c

Yj≤ χ, (2.2b)

Yj= 1, ∀j ∈ J e (2.2c)

Wij≤ Yj , ∀i ∈ I, ∀j ∈ J c (2.2d)∑
j∈J c

Wij≤ 1, ∀i ∈ I (2.2e)

Wij∈ {0, 1}, ∀i ∈ I, ∀j ∈ J c (2.2f)

Yj∈ {0, 1}, ∀j ∈ J (2.2g)

The objective function (2.2a) maximizes the coverage level that facilities from J provide
to demand nodes in I. Constraint (2.2b) limits the number of locations in which new facilities
are placed to χ. Constraint (2.2c) defines existing facilities as already having a placed facility
at location j and these facilities are not moved. Constraint (2.2d) ensures that demand can
only be covered by a placed facility. Constraint (2.2e) allows each demand i to be covered by
at most one facility from J c. Finally, note that Constraint (2.2c) is a facultative constraint,
as it depends on the decision-maker whether existing facilities can be relocated. In Section 5.4
we assess the potential of relaxing Constraint (2.2c) and redeploying existing AEDs.

Berman and Krass (2002) found that the solution of the linear program (LP)-relaxation
of model (2.2) is often all-integer, thus providing an optimal solution to ILP (2.2). The
authors noted that “the reasons for this unusual behavior are poorly understood” (p.570).
In all our instances in Chapter 5, solving the LP-relaxation indeed results in feasible integer
solutions. However, it is possible to construct instances where this is not the case and the
relaxation then provides an upper bound (UB) to the ILP problem. In those cases, integrality
can be restored by branching on the non-integer variables.
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2.2 Algorithmic models

The mathematical model in the previous section is an extension of the MCLP and we noted
that the LP-relaxation can be equivalent to the integer problem. Nevertheless, the MCLP has
been proven to be non-deterministic polynomial-time (NP)-hard (Megiddo, Zemel, & Hakimi,
1983). This means that it is not expected that the problem can be solved in polynomial time,
i.e. the computational time grows exponentially in most cases. Practically, this translates
to the fact that exact optimization techniques, as most recently used by Chan et al. (2016),
can exhibit problems in solving the problem. They cannot solve large problem sizes within
foreseeable time, or in some cases they cannot give any feasible solution at all.

A heuristic approach, in contrast to exact methods, does not guarantee an optimal result.
However, in most cases the results are very close to the optima and the benefit is that the
computation time is much shorter and memory requirements are much more favorable. In
other words, such algorithm should be able to solve problems with a large solutions space.

In the remainder of this section we devise an effective algorithm to solve the AED de-
ployment model from the previous section. We start with a straightforward Greedy heuristic
and gradually improve upon this algorithm so that better solutions can be reached.

2.2.1 The Greedy algorithm

The Greedy algorithm is a prime example of an approach that “considers specific informa-
tion of the problem”. Church and ReVelle (1974) first proposed Greedy Adding (in short:
“Greedy”) for the MCLP. The translation to the GMCLP is straightforward.

Greedy is an efficient polynomial-time heuristic. At each iteration, it chooses the current
“best” location, with respect to the objective function, to be added to the solution. Its
“greediness” is given by the fact that it is not looking ahead to account for how the current
decision will impact later decisions and alternatives. Greedy can be considered a multi-stage
method that optimally selects one location (χ = 1) at each stage. Naturally, the overall
solution that is constructed during multiple stages is not optimal per se.

Before discussing our Greedy algorithm for the GMCLP in further detail, we first define
some extra sets and variables that are used in the forthcoming algorithms. Note that an
overview of the used notation is available at page xxi.

Let Ij ⊆ I denote the set of demand nodes i that can be covered by a facility at location
j, and similarly, let Ji ⊆ J c denote the set of locations j that can cover demand i, i.e.
Ij := {i ∈ I | cij > 0} and Ji := {j ∈ J c | cij > 0}. From the deployed AEDs in Ji, the one
with the best coverage in regards to cardiac arrest i is assigned to that cardiac arrest, which
is denoted by the variable J∗

i := argmax(j∈Ji|Yj=1)(cij), for all i ∈ I. If no facility can cover
cardiac arrest i (i.e. Ji = ∅), then J∗

i = nil. Related is I∗
j , which is the set of all demand i to

which the facility at location j is assigned to. Thus, I∗
j := {i ∈ Ij | J∗

i ̸= nil}, for all j ∈ J c.
Note that J∗

i ∈ Ji ⊆ J c ⊆ J and I∗
j ⊆ Ij ⊆ I.
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Algorithm 2.1 Greedy algorithm for the GMCLP
1: procedure Greedy(I,J ,cij ,χ)
2: Facilitiesdeployed ← 0
3: Determine φ0

j , ∀j ∈ J
4: while Facilitiesdeployed < χ do
5: BestLocation ← argmaxj φ

0
j

6: PlaceFacility(BestLocation) ▷ See procedure in Algorithm 2.2
7: Facilitiesdeployed ← Facilitiesdeployed + 1
8: end while
9: end procedure

Let φi denote the best coverage that demand i receives in the current solution, φi :=
{ciJ∗

i
| J∗

i ̸= nil}. In case that no facility is assigned to demand i (i.e. J∗
i = nil), we define

φi := 0. Furthermore, let the variable φ0
j denote the total potential coverage that a facility

at location j can add to the current solution, assuming that currently no facility is placed at
location j, thus φ0

j :=
∑

i∈Ij max ((cij − φi) , 0). In case a facility is placed at location j, let
φ1
j denote the actual total coverage that the facility provides, thus φ1

j :=
∑

i∈I∗
j
(cij). Note

that with these formulations, the objective function of maximizing the total provided coverage
can be formulated as

∑
i∈I(φi),

∑
j∈J (φ1

j ),
∑

i∈I (cij | j = J∗
i ) or

∑
j∈J

(∑
i∈I∗

j
(cij)

)
.

Using the introduced notations, we now define the Greedy algorithm for the GMCLP.
Procedure Greedy is shown in Algorithm 2.1 and has sets I and J , the coverage matrix cij
and the number χ of facilities to be deployed as an input. Greedy is a constructive algorithm,
meaning that it is “constructing” the solution by placing one facility at a time — as such,
there are χ iterations. After all φ0

j are determined, the algorithm selects per iteration simply
(greedily) the location with the highest φ0

j .

The needed update of all necessary values after a choice is made is depicted in procedure
PlaceFacility (see Algorithm 2.2). The goal is to check all demand that can be covered by
the new facility (in set Ij) and assign them to this new facility if their coverage is improved.
As opposed to the MCLP, with the GMCLP, already assigned demand can be reassigned to a
newly added facility since this might provide better coverage. Namely, if facilitym is assigned
to demand node i with a low coverage and another facility n is placed in the neighborhood
that can cover i with a higher value (i.e. cim < cin), the demand node is reassigned to facility
n and thus I∗

j and J∗
i are changed. In the binary MCLP, there is no distinction in coverage,

and demand nodes will not be reassigned.

Berman and Krass (2002) noted that Greedy performs well for this problem, with the
theoretical worst case bound of the relative error being 37%. In the computational experi-
ments they found that Greedy typically provided optimal solutions or solutions within 1%
of optimality. We empirically confirm this in Section 5.1 as we found an optimality gap be-
tween Greedy and the optimum of 0.087% for mid-sized instances of the GMCLP. In these
experiments, Greedy gave the optimal solution in 27.9% cases.
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Algorithm 2.2 Procedure for placing a facility at location j
1: procedure PlaceFacility(j)
2: φ0

j ← 0 ▷ Initialization
3: for i ∈ Ij do ▷ Loop over all i that j can cover
4: if J∗

i = ∅ then ▷ If no j is assigned to i yet...
5: Update J∗

i , I∗j , φi, φ0
j , φ1

j ▷ ...assign i to j

6: else ▷ If a facility is assigned to i already...
7: if φi < cij then ▷ ...but the coverage from i is better...
8: Update J∗

i , I∗j , φi, φ0
j , φ1

j ▷ ...assign i to j

9: end if
10: end if
11: end for
12: end procedure

2.2.2 Improving upon Greedy: GRASP

Motivation for developing a hybrid algorithm

A Greedy algorithm, such as given in the previous section, is an efficient algorithm that can
be easily implemented to solve problems. For this reason, it is often used as the lower bound
(LB) for a subsequent, more effective, method — either a more intelligent heuristic, or an
exact approach (where the LB may be used to discard certain “branches” at an early stage).

Farahani, Asgari, Heidari, Hosseininia, and Goh (2012); Li, Zhao, Zhu, and Wyatt (2011);
Murray (2016) listed papers that solve the MCLP and other covering problems. Many popular
metaheuristics have already been used, e.g. GA, Lagrangian Relaxation (LR), Tabu Search
(TS) and SA. We use another another metaheuristic to design a better heuristic for the
GMCLP, namely the GRASP (Feo & Resende, 1995) in combination with SA (Kirkpatrick,
Gelatt Jr., & Vecchi, 1983). The GRASP metaheuristic computes multiple solutions, whereby
each solution is constructed in two phases — a construction phase, where a feasible solution is
constructed based on a stochastic variant of Greedy, which starts at the constructed solution
and applies iterative improvement until a locally optimal solution is found. The SA is an
effective local search metaheuristic that can escape from local optima and can therefore serve
as good replacement of GRASP’s second phase.

Before going into more detail about the specifics of these heuristics, we justify the choice of
using GRASP and SA as follows: as shown in the previous subsection, the Greedy heuristic
is expected to perform well, and we expect the GRASP, which is based on Greedy for a
significant part, to perform even better. Also, GRASP is a multi-start heuristic that can
produce multiple solutions, similar to many other popular population-based heuristics such
as GA. To the best of our knowledge, GRASP has only been employed by Resende (1998)
to solve covering problems, while GA has shown mixed results (e.g. Jaramillo, Bhadury,
& Batta, 2002; Li et al., 2009). Therefore, it is interesting to add to the literature how
GRASP performs on the GMCLP. In addition, population-based metaheuristics are usually
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very effective in finding good solutions in extremely large solution spaces (i.e. “exploring”
the solution space), but tend to be inferior to local search metaheuristics such as SA for
“exploiting” a particular solution. For this reason, researchers often develop hybrid algorithms
that employ both type of heuristics. Therefore, considering the first phase phase of GRASP
as the exploratory phase and SA as the phase for exploitation, we expect the hybridization
of these heuristics to produce good results.

The GRASP metaheuristic for the gradual MCLP

Having chosen the GRASP metaheuristic as a basis to develop an algorithm that is more
effective than Greedy, we continue with an overview of GRASP. Let S denote the set of
solutions found in the algorithm, where initially, S = ∅ and in total, θ number of solutions
are constructed. Furthermore, let s∗ denote the best solution among all solutions and C(s)
denote the objective value of a solution s. The generic GRASP is given in Algorithm 2.3.
Repeated applications (θ times) of the construction procedure yields diverse starting solutions
for the local search and the overall best solution (s∗) is kept as the result.

The construction phase RandomizedGreedy is very similar to “Semi-Greedy”, indepen-
dently proposed by Hart and Shogan (1987). At each iteration within RandomizedGreedy,
the next element to be added is now randomly selected from a restricted candidate list (RCL),
as opposed to the deterministic selection as in Greedy. The RCL is a subset of an overall
candidate list (CL) that consists of all candidate elements where no facility is placed yet,
thus CL := {k ∈ J c | Yk = 0}. We determine the RCL by choosing the elements with the
best φ0

j values. This probabilistic component of GRASP of randomly choosing from a set of
good locations allows for different solutions to be obtained at each iteration. Note that by
setting |RCL| := 1, we get back to Greedy.

Algorithm 2.4 shows the construction phase. For selecting the elements for the RCL, we
do not use a simple cardinality-based procedure, but a different, more dynamic, value-based
mechanism. This procedure Construct(CL, α) depends on parameter α ∈ [0, 1] and defines

Algorithm 2.3 General procedure of GRASP
1: procedure GRASP(I,J ,φ0

j ,χ,θ,α)
2: s∗ ← 0
3: for iteration = 1 to θ do
4: s← RandomizedGreedy(I,J ,φ0

j ,χ,α) ▷ See function in Algorithm 2.4
5: IterativeImprovement(J c,s) ▷ See procedure in Algorithm 2.5
6: if C(s) > C(s∗) then ▷ Update best solution if current solution is better
7: s∗← s

8: end if
9: end for
10: end procedure
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the RCL by:

RCL :=
{
j ∈ J c

∣∣∣∣φ0
j ≥

(
min
j
φ0
j + α

(
max

j
φ0
j −min

j
φ0
j

))}
. (2.3)

This means that being a member of the RCL depends on the relative quality of the elements
with respect to their potential added value denoted by parameter φ0

j . Consequently, the
length of the RCL may be different during each iteration of placing a facility.

Naturally, the solutions computed during the construction phase are in general not of high
quality. Hence, a second phase is added to GRASP, the local search phase. The simplest form
of local search is “iterative improvement”, where neighborhoods are continuously explored
to find better solutions. Let N(s) denote the neighborhood of solution s and s′ be a such
neighborhood solution. We define a s′ as any solution where only one location of a placed
facility differs from the current solution. Furthermore, let F (s) be the set of locations with a
placed facility in s, i.e. F (s) := {k ∈ J c | Yk = 1}, and let NF(s) be the set of locations with
no placed facility in s, i.e NF(s) := {k ∈ J c | Yk = 0}. Note that NF(s) = J c \ F (s) = CL.
Using these definitions, we implement iterative improvement for the second phase of GRASP
as defined in the procedure in Algorithm 2.5.

In the procedure, the initial solution is the solution found with RandomizedGreedy.
This solution is stored as the best solution (s∗) and the procedure seeks to improve this best
solution. We take each facility from that solution and relocate it iteratively to candidate
locations where no facility was placed yet. In other words, facilities are “exchanged” with an
empty location and as such, a neighborhood solution is created. If the objective function of
the neighborhood solution improves upon the previously best solution, we replace the best
solution with this neighborhood solution. After all possible exchanges of each placed facilities
are performed and a new solution has been accepted, a new iteration of the procedure starts
to explore the neighborhood of that new solution. Otherwise, a local optimum with regards
to its direct neighbors is found and the procedure terminates.

Algorithm 2.4 Function of GRASP’s construction phase
1: function RandomizedGreedy(I,J ,φ0

j ,χ,α):s
2: Facilitiesdeployed ← 0
3: while Facilitiesdeployed < χ do
4: CL ← {j ∈ J c | Yj = 0}
5: RCL← Construct(CL, α)
6: Choose ChosenLocation randomly from RCL
7: PlaceFacility(ChosenLocation) ▷ See procedure in Algorithm 2.2
8: Facilitiesdeployed ← Facilitiesdeployed + 1
9: end while
10: Result ← s

11: end function
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Algorithm 2.5 Procedure of GRASP’s local search phase
1: procedure IterativeImprovement(J c, s)
2: s∗ ← s ▷ Current solution is stored as best solution.
3: SolutionIsImproved ← TRUE
4: while SolutionIsImproved = TRUE do ▷ Iterate until local optimum is reached.
5: SolutionIsImproved ← FALSE ▷ First assume that we do not improve the solution.
6: for m ∈ F(s) do ▷ Loop through all facilities that are placed.
7: RemoveFacility(m) ▷ Similar to PlaceFacility.
8: for n ∈ NF(s) do ▷ Place facility from m to all empty candidate locations.
9: PlaceFacility(n) ▷ See Algorithm 2.2
10: if C(s) > C(s∗) then ▷ If solution is improved...
11: s∗ ← s ▷ ...save the solution as the best solution.
12: SolutionIsImproved ← TRUE ▷ A new solution is accepted, so another while-loop...
13: end if ▷ ...will be performed to explore the neighborhood of the new solution.
14: RemoveFacility(n)
15: end for
16: PlaceFacility(m)
17: end for
18: s← s∗ ▷ The best solution found so far becomes the incumbent solution for next iteration.
19: end while
20: end procedure

Incorporating a bias in the construction phase

Although the previously defined general GRASP algorithm is known to perform well, quicker
and/or better results can be achieved when incorporating specialized knowledge about the
specific problem. This way, it is possible to consequently “guide” the algorithm towards
potentially better solutions.

This “guidance” can be realized for theRandomizedGreedy algorithm by differentiating
between elements in regards to their potential quality. Bresina (1996) introduced “heuristic-
biased stochastic sampling” for Greedy-based algorithms where the selection of the next
element is determined by a certain pre-defined probability function (e.g. linear, logarith-
mic, polynomial). Similarly, we incorporate “parameterized regret-based random sampling”
(Kolisch & Drexl, 1996) that was originally used for scheduling problems. By using φ0

j as a
proxy for quality, we first define priority ψj of selecting element j and based on this priority
we define the probability pj of selecting element j. The priority ψj is determined as follows:

ψj := φ0
j −min

k
φ0
k, ∀j ∈ RCL (2.4)

Then the relative probability pj can be determined by:

pj :=
(ψj + 1)β∑

j∈RCL (ψj + 1)β
, ∀j ∈ RCL, (2.5)

where β ∈ [0,∞) is a parameter which characterizes the bias within the method. As can be
seen in Figure 2.2, an increasing value of β increases the probability of selecting the better
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Figure 2.2: Effect of different bias factors on the probability density function of selecting an element
from a set of 10 elements. Note that the distribution is determined by the value of φ0

j on the horizontal
axis.

solutions with respect to φ0
j . β := 0 gives random selection (the default method in GRASP)

and β → ∞ gives deterministic selection (equal to regular Greedy).
The priorities and probabilities are determined for each element in the RCL during each

iteration of RandomizedGreedy, thus χ times per construction of a solution. The difference
of this technique with the one from Bresina (1996) is that it does not assume a certain
pre-defined probability function, but determines the probability function dynamically by
accounting for the quality of candidate elements. Incorporating the bias component facilitates
good solutions within fewer iterations as we show in the computational results in Section 5.2.

2.2.3 Hybridization with Simulated Annealing

Introducing Simulated Annealing

In the previous section we discussed the two phases of GRASP — the construction and
local search phase. The GRASP metaheuristic is widely and successfully implemented as
discussed by Festa and Resende (2011). We have extended the first phase with an optional
bias to control the probability of choosing certain elements. In this section we focus on the
second phase of GRASP and substitute the used local search based on iterative improvement
by a more sophisticated heuristic, namely Simualated Annealing (SA).

The major downside of iterative improvement is that it easily gets “trapped” at a (poor)
local optimum. To overcome this and allow the local search to leave the local optimum,
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neighborhood solutions that yield a deterioration of the objective function to some extent
can be considered.

Simulated Annealing (Kirkpatrick et al., 1983) uses this principle. It is inspired by the
physical annealing process of solids, where the solid is heated until it melts. In this state,
particles move frantically in a random fashion. Then the temperature is carefully lowered,
and the particles slowly arrange themselves in a highly structured lattice, for which the
corresponding energy is minimal.

SA adopts this principle of randomly moving to neighboring structures, even with dete-
riorations of the objective function. In the early phases (exploring phase), almost all ran-
domly selected neighborhood solutions are accepted. However, depending on the progress,
the probability of moving to deteriorating solutions gets smaller. Eventually SA enters a
phase (exploiting phase) where almost only neighborhood solutions are accepted that im-
prove the incumbent solution. In other words, SA starts with a high temperature and with
a “random search” to escape local minima; then the temperature gradually cools down and
the algorithm converges to iterative improvement1.

The Simulated Annealing algorithm

SA is tuned by determining a temperature scheme and rules on computing and accepting
neighborhood solutions. Generally, a starting temperature T0 is chosen and after each iter-
ation, the temperature is lowered by a determined rule. The metaheuristic is often viewed
as a process in which a sequence of Markov chains (Isaacson & Madsen, 1976) is generated,
one for each value of temperature T . Each chain consists of a sequence of κ trials, where
neighborhood structures (N(s)) are computed and possibly accepted as the new incumbent
solution (Aarts, Korst, & Michiels, 2005). The algorithm stops after a certain termination
criterion is met. Such general SA algorithm is shown in Algorithm 2.6.

Based on extensive experiments in the field of applied mathematics, van Laarhoven and
Aarts (1987) mention several options for determining an effective tuning. T0 is often chosen
such that almost all neighborhood solutions, irrespective of their quality, are accepted. The
number of iterations κ per temperature T can be set empirically and the cooling of the
temperature can be realized by a “cooling factor” δc ∈ (0, 1) and Tk+1 := δc ∗ Tk. Most SA
schemes utilize the Metropolis criterion (Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller,
1953) to accept a deteriorating neighborhood configuration. Combining this with always
accepting a neighborhood that improves the current solution, we compute the probability
paccept(s,s′,T ) to accept a neighborhood solution by:

paccept(s, s′, T ) = min
(
1, exp

(
C(s)− C(s′)

T

))
(2.6)

1It is proven that under some assumptions, SA guarantees asymptotic convergence to the global optimum
with an infinite number of transitions (Aarts & Korst, 1989).
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Algorithm 2.6 General Simulated Annealing procedure
1: procedure Simulated Annealing(I,J ,T0,κ, termination criterion, s)
2: s∗ ← s ▷ Current solution is set as best solution.
3: T ← T0 ▷ Initial temperature is set as current temperature.
4: while termination criterion not met do
5: for l = 1 to κ do
6: s′ ∈ N(s) ▷ Generate neighborhood solution.
7: if paccept(s, s′, T ) > random[0, 1) then ▷ If neighborhood solution is accepted...
8: s← s′ ▷ ...save neighborhood solution as as current solution.
9: if C(s) > C(s∗) then ▷ If current solution is better than best solution...
10: s∗ ← s ▷ ...save current solution as best solution.
11: end if
12: end if
13: end for
14: Update T

15: end while
16: end procedure

Note that with a large T and a deteriorating neighborhood solution, paccept is indeed
rather high, while with a lower temperature, the probability is low. Also, setting T := 0
corresponds to a version of iterative improvement2. Finally, the termination criterion is often
set as a threshold value of the temperature or a threshold value of the number of iterations
where no neighborhood solution is accepted. We employ the latter with λ denoting the
number of iterations where no new neighborhood solutions are accepted.

Simulated Annealing with reannealing

There are plethora of extensions for SA in literature (e.g. Tsallis & Stariolo, 1996; Szu &
Hartley, 1987). Inspired by Ingber (1989), we devise a “reannealing” method. Once the
termination criterion is reached, meaning that in the last λ iterations no new solution has
been accepted, we “reheat” the temperature to start a reannealing process. By doing so,
we increase the probability to accept worse solutions again so that other solutions than the
found (local) optimum can be explored.

Reheating the temperature to T0 again would introduce too much randomness and de-
terioration of neighborhood solutions. Consequently, practically a completely new solution
would be reached before the exploitation phase starts. This would essentially be the same as
running the regular algorithm multiple times with a different start solution. The goal of the
reannealing, however, is to slightly explore neighborhood solutions that are not substantially
different from the found local optimum to then hopefully find a neighboring local optimum
that is better. This process is visualized in Figure 2.3.

Let r denote the number of the reannealing iteration in the algorithm. To enable the “light
2In iterative improvement however, the neighborhood solutions are not necessarily examined randomly.
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Figure 2.3: Illustration of the objective value in a maximization problem solved with a Simulated
Annealing algorithm with a single reannealing process. Note that before reannealing starts, the
algorithm converged to a local optimum. By slightly moving away from this local optimum in the
reannealing phase, a better optimum is eventually found.

exploration” when reannealing starts, we employ a similar approach as with the cooling of the
temperature after each sequence of Markov chains (κ) by using a “heating factor” δh ∈ (0, 1).
More precisely, we set T := T0 ∗ (δh)r. This means that the more often reannealing is applied,
the less deterioration is accepted from the found solutions so that the already good solutions
are not completely lost. In Chapter 5 the effectiveness of extending SA with our proposed
reannealing method is investigated.

2.3 Conclusion on methodology

In this section, we have first formulated the mathematical model for the AED deployment
problem. The model is based on the GMCLP, which is an extension of the classical MCLP
that incorporates a more general coverage function. This coverage function defines to what
extent demand is considered to be covered by a facility and thus, as opposed to the MCLP,
enables partial coverage. This is important for the AED deployment problem, since a victim
of a cardiac arrest will benefit of quicker defibrillation times.

Since the MCLP has been proven to be NP-hard, it is likely that the problem cannot
be easily solved with exact methods. Therefore, we developed a Greedy algorithm for the
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GMCLP that gives good results with little computational resources. To reach even better
results, we developed a more complex algorithm utilizing the GRASP heuristic that consists
of a constructive phase and a local search phase. We extended the construction phase with
parameterized regret-based random sampling to be able to control the placement of facilities
at more promising locations. Subsequently, we devised a SA algorithm that is effective at
escaping from local optima to find a better optimum and extended this with reannealing.
Reannealing enables exploring neighborhood solutions in the proximity of the configuration
that is found by the regular SA algorithm without falling back to inferior solutions.

Although both algorithms —GRASP with biased sampling and SA with reannealing —
can be used on their own, we expect better results when combining the algorithms. Such
hybridization may be realized by substituting the regular local search phase in GRASP with
SA. In Chapter 5 we test the algorithms with real data and present the results.



Chapter 3

Case study

In this chapter, prior to applying our heuristic optimization method to real data, we provide
the context of the obtained data. Section 3.1 introduces the used data for the rest of this study.
In Section 3.2 we investigate efforts of improving cardiac arrest survival in the Netherlands,
the availability of AEDs and the currently used methodology of deploying AEDs.

3.1 Study design

This section describes the origins of the obtained data and consequently the scope of our
study regions. We also discuss what data we consider for the optimization model and give
descriptive characteristics of the included data set.

3.1.1 Cardiac arrest and AED data origins

The historical OHCA data that is used in our analysis origins from a large-scale community-
based registry – AmsteRdam REsuscitation STudies (ARREST) – and is obtained in coop-
eration with the Academic Medical Center (AMC) in Amsterdam. The registry has started
in June 2005 to identify genetic, clinical, pharmacological and environmental determinants
of OHCAs (Blom, van Hoeijen, et al., 2014). ARREST is an ongoing, prospective observa-
tional registry of all OHCAs in the province North Holland (excluding the region of “Gooi-
and Vechtstreek”), the region of Twente and the municipality of Breda in the Netherlands
(Zijlstra, Radstok, et al., 2016). There were 25 regional ambulance facilities (RAFs) (or Re-
gionale Ambulancevoorziening (RAV) in Dutch) and 21 ambulance dispatch centers in the
Netherlands, but the latter is reduced to 10 centers since 2017.

In cooperation with the AMC, AED data is obtained from the HartslagNu foundation and
consists of spatial coordinates of all AED locations within our study area that are recorded
in the registry. The medical ethics review board of AMC approved this study protocol. All
studies with the ARREST registry are conducted according to the principles expressed in the
Declaration of Helsinki (World Medical Association, 2013).

31
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3.1.2 Study regions

This study is comprised of two regions in the Netherlands — the majority of the province of
North Holland and the region of Twente. Although not the entire province North Holland
is included, we refer to the considered region as “North Holland”. There are three RAFs in
North Holland and one in Twente (Overzicht RAV’s en meldkamers in Nederland, 2017).

Interesting to note is that to the best of our knowledge, this is one of the first studies
to optimize the deployment of AEDs in such a vast and diverse area, including both rural
and urban settings. On municipality level, the population density ranges from 84–3530 km−2

in the municipalities of Texel and Hoorn respectively (Centraal Bureau voor de Statistiek,
2015).

3.1.3 Data inclusion

The original data was collected from 1 January 2006 to 31 December 2016 in North Holland
and 1 February 2010 to 31 December 2016 in Twente1 and consists of all persons with an
OHCA, irrespectively of cause. Note that the CRS is gradually implemented in Twente since
2008 and in North Holland since 2009 (Beesems et al., 2012).

AED and cardiac arrest data are obtained of the entire region of Twente while some
municipalities in North Holland do not have AED data. The included study areas and their
respective available data are illustrated in Figure 3.1. A detailed overview of the included
areas is given in Appendix A.1. In total, we include 43 municipalities in our optimization
analysis.

The included data consists of a total of 12 455 OHCAs with 10 667 and 1788 OHCAs in
North Holland and Twente respectively and is derived from a total of 26 178 patients with sus-
pected OHCAs. We refer the reader to the respective methodology for obtaining the OHCA
and AED data sets to Appendix A.2. Table A.1 depicts the main medical characteristics of
the included cardiac arrest data set.

3.1.4 Data characteristics

Examining the data, most notably, we find the interval from emergency call to the connection
of an AED being 06:10 (interquartile range (IQR): 03:54–08:12) in public areas and 07:43
(IQR: 06:21–09:28) in residential areas2. This can be explained by the number of deployed
AEDs in residential areas often not being on par with public areas3 (e.g. Fredman et al.,

1Data prior to 1 February 2010 from the region of Twente is considered unreliable and is omitted in our
and all prior researches using the ARREST registry.

2OHCAs witnessed by EMS, FR and general pracitioners are not considered.
3For instance, a recent Danish study found that even with extensive nationwide initiatives to facilitate

public-access defibrillation, the situation at residential locations remained unchanged during almost 12 years
(S. M. Hansen et al., 2017). At the same time, bystander defibrillation increased from 1.2% to 15.3% at
public locations.
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Figure 3.1: Map of the Netherlands with the considered study regions

2017). Moreover, as stated by the ERC guidelines: “the full potential of AEDs has not yet
been achieved, because they are mostly used in public settings, yet 60–80% of cardiac arrests
occur at home” (Perkins, Handley, et al., 2015, p.91). Therefore, contrary to many previous
studies, we are pleased to suggest a method to improve the deployment of AEDs for the
complete population of the regions – in both public and residential areas.

Fortunately, a CRS can influence the outcomes at residential locations, as it is designed
in such way, that trained lay responders will voluntarily come with the goal to perform CPR
and apply an AED. The literature that includes CRSs, does indeed report improvements on
bystander-delivered defibrillation rates in both public and residential areas. For example,
although Berdowski et al. (2011), using the ARREST registry, have shown that on-site AEDs
were less effective in residential locations, a later study has shown that the majority of CRS
AEDs were used on victims at home in comparison to on-site AEDs (Zijlstra et al., 2014).

We concur the findings that CRS AEDs are mostly used at residential locations with our
data. Namely, only 8.0% of connections in residential areas were by on-site AEDs while this
number is 32.9% for the CRS AEDs. However, the opposite is true in the case of public
connections: on-site AEDs were connected the most often relatively to their total number
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(52.9%) and the CRS AEDs perform the worst (12.0%).
Therefore, on-site AEDs are very useful for public OHCAs, while AEDs that are deployed

by the CRS are often used in residential areas, meaning that the two scenarios of retrieving
an AED complement each other. Note that most CRS AEDs can be considered as “on-site”
when not retrieved with the aid of the system. Thus, although we utilize only registered
AEDs in our optimization methods, the results may also affect events where lay responders
retrieve an AED without the CRS. Nevertheless, optimizing for all available AEDs would be
most effective. Thus, with time, as more AED are registered, our optimization methods may
yield even better results.

3.2 Efforts in improving cardiac arrest survival

We continue with a discussion of the actual deployment efforts in our study area. We show
that the Netherlands is actively engaged in improving resuscitation and defibrillation efforts
and that recruiting civilian responders for the CRS is successful. Naturally, this is of great
interest to our optimization model since our AED data is obtained from the CRS.

3.2.1 Dutch Heart Association

In the Netherlands, the foundation Dutch Heart Association (DHA) (“Nederlandse Hart-
stichting” in Dutch) is the largest organization in the country that strives to improve the
survival and quality of life of CVDs. The foundation states that if CPR and defibrillation
is started within 6min, survival increases to 25%4. The DHA wishes that the Netherlands
becomes a single 6min zone (Dutch Heart Association, 2016). In other words, it should be
possible to defibrillate each OHCA incident in the entire country within 6min after an emer-
gency call. For the 300 OHCAs that occur in the Netherlands per week, such zones would
save 2500 additional lives per year (Dutch Heart Association, 2016).

The foundation attempts to achieve this by building a network of civilian responders and
AEDs with the CRS. The goal of obtaining 1% civilian responders compared to the of the
country’s population has been recently reached (Mijlpaal bereikt: 170.000 burgerhulpverleners
in Nederland, 2017), possibly due to successful media campaigns5. See also the current
average proportion of civilian responders per province in Figure 3.2.

However, obtaining more AEDs in the system appears to be difficult and will take signifi-
cantly more time (Dutch Heart Association, 2016). Currently there are at least 11 603 AEDs
registered while the official goal is 30 000 devices.

4A recent study came to a similar conclusion and reported a response time threshold of 6.5min for favorable
neurological outcomes after OHCAs (Ono et al., 2016).

5Enami, Takei, Goto, Ohta, and Inaba (2010) showed that due to the increased number of reports on
successful resuscitations by citizens, more people learn how to use an AED and are more willing to use it.
This may partly explain why DHA’s efforts are successful in regards to recruiting civilian responders.
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Figure 3.2: Proportion of the population of civilian responders per province in the Netherlands as
of December 2016. 1% is the goal and is considered as “100% coverage”. ©2016 Hartstichting, from
Dutch Heart Association.

3.2.2 Availability of AEDs

The temporal availability of AEDs is important for this study as it directly influences the
efficacy of deployed AEDs. In this regard, C. M. Hansen et al. (2013) found that AED
coverage decreased by 53.4% at the time when 61.8% of all cardiac arrests in public locations
occurred in Copenhagen (Denmark). Similarly, Sun et al. (2016) found a decrease of 21.5%
of actual coverage when accounting for the hours of operation of the buildings where AEDs
were placed in Toronto (Canada). Thus, not only strategic placement but also uninterrupted
AED accessibility is critical to affirm effective PAD programmes.

With our data, we found the average availability to be 84.6% (95% confidence interval
(CI): 83.4–85.9) over all years, which is more favorable than in the previously mentioned
studies. Moreover, modern policies in the Netherlands aim to place AEDs outdoors for
continuous availability. For example, the DHA states that all new AEDs that are registered
in the CRS should be available 24 h a day and refer to buying an outdoor AED cabinet
(AED-buitenkast kopen, 2017).

Also, the DHA collected funds in 2016 to place as much as 1000 new AEDs outdoors
in dedicated cabinets (Dutch Heart Association, 2016, p.15,43). The municipality of Breda
even relocated almost half of its AEDs to outdoor locations for the use by the community
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(Breda AED proof - Eindrapportage aanpak AED-netwerk Breda, 2012). Therefore, with
these measures, it is very likely that the overall availability of AEDs will improve over time.
Consequently, we assume uninterrupted AED availability in our optimization methods.

3.2.3 Placement of AEDs

AEDs are stimulated to be placed in public areas such as schools, sport facilities, retire-
ment homes, work spaces. However, the deployment is not centrally controlled or directed
(Berdowski et al., 2011) as only about 40% of all AEDs are managed by the municipality
and are placed in “strategically situated places” (Zijlstra et al., 2014).

Interesting to note is that data-driven methods to determine specific AED locations seem
absent. In Twente, the foundation Twente Hart Safe6 advised that within a radius of 500m,
there should be one AED, without a derivation to this number (Matthijssen & Suijkerbuijk,
2009). In 2009 the entire province of Limburg started a project of improving AED locations
and applied a slightly less homogeneous deployment strategy. The advice was that at densely
populated areas, at every 500m one AED should be placed, whereas for sparsely populated
areas the distance should be 2000m (Matthijssen & Suijkerbuijk, 2009). As discussed in
previous literature (see Section 1.5.2), cardiac arrest risk is not directly and solely dependent
on population, nor is it homogeneously dispersed over the entire area. This means that
equally distributing AEDs over the plane or placing new AEDs at “white spots” (i.e. areas
without AED coverage) would not be very effective method for reducing defibrillation times.

Yet, some cities or municipalities claim to have “full AED coverage”7. However, the
emphasis is on the number of civilian responders in the region, less on the number of AEDs. At
the same time, information about prescriptive deployment strategies of AEDs seem completely
non-existing.

3.3 Conclusion on case study

This chapter we discussed that we have obtained historical cardiac arrest data from the
AmsteRdam REsuscitation STudies (ARREST) registry and AED location data from the
civilian response system (CRS) “HartslagNu”. The study area consists of two vast regions
in the Netherlands — the region of North Holland and Twente. After examining the data,
we found that the AEDs that are within the CRS registry were relatively very effective in
defibrillating OHCA victims at residential locations, while historically, most research was
mostly aimed at public OHCAs. Since 60–80% of all OHCAs occur at residential locations,

6http://www.twentehartsafe.nl/
7For example, the foundation “Breda AED Proof” states that when an AED can be retrieved within 6min

in the entire region, this region can call itself “AED Proof” (www.breda-aed-proof.nl). The municipality of
Breda is allegedly the first such region.

http://www.twentehartsafe.nl/
www.breda-aed-proof.nl
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using AEDs from the CRS allows us to suggest a method that possibly has significant impact
on improving defibrillation efforts for the complete study population.

The potential impact of our proposed AED deployment optimization method is aug-
mented by the environment in the Netherlands. Namely, to the best of our knowledge, there
has been no research or practical efforts for deploying AEDs with a data-driven technique.
On the other hand, the Dutch Heart Association (DHA) actively pursues increasing the reg-
istry with civilian responders and AED locations and has reported significant success in this
regard. Moreover, increasingly more AEDs are placed or even relocated to outdoor locations.
This enables us to assume that the deployed AEDs by our optimization methods will have
uninterrupted availability for the community.
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Chapter 4

Data preparation

Our optimization method enables deploying AEDs at locations such that the AEDs can be
retrieved as quickly as possible and deliver a shock to an OHCA victim. However, the method
requires certain data and definitions, and some of those are not necessary known at this point.
For this purpose, this chapter analyzes and transforms the known data into data that can be
used by the optimization method.

To make certain steps in the methodology clear, we first present an overview of the plan
of approach in Section 4.1. Hereafter, all data, parameters and definitions are determined in
the subsequent sections. In the next chapter we incorporate these aspects in the proposed
optimization method and present the results.

4.1 Methodology overview

To guide the reader through the steps of our methodology, we present a flowchart of the
required data and processes in Figure 4.1. As can be seen on the left side of the figure, we
need demand data (consisting of cardiac arrests at locations i ∈ I) that should be covered
by AEDs), supply data (consisting of candidate locations j ∈ J where AEDs can be placed)
and a definition of of the coverage function (that quantifies to what extent a cardiac arrest
at location i is covered by an AEDs at location j).

Concerning the demand data, in Section 4.2, we transform the raw data with historical
OHCAs and existing (registered) AEDs into location data that can be used by our opti-
mization methods. Hereafter, Kernel Density Estimation (KDE) analyses are performed that
determine the distribution of the OHCA risk. Knowing the cardiac arrest risk, we simulate
new locations that serve as forecasted OHCAs locations. With these locations, we define It

and Iv for respectively training and then validating our optimization models.

In Section 4.3 we analyze different events that typically occur during a cardiac arrest with
respect to the time they take. Hereafter, we can more realistically assess how and to what
extent AEDs provide coverage to OHCAs in our study. Accordingly, we set the parameters

39
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Figure 4.1: Flowchart of the methodology of AED optimization. The red ellipses indicate in which
section the respective process is described; the blue circles indicate what data is defined by that
process.

for the coverage function cij that we have introduced in Equation (2.1).
Lastly, in Section 4.4, we discuss the characteristics of efficient and effective locations and

devise a method to create our own set of candidate locations (J c).
At this point, all data, parameters and definitions are defined and can be used as an

input for our optimization methods that were previously defined in Chapter 2. As discussed
in that chapter, we can solve the AED deployment problem with an exact method (with the
mathematical model in Section 2.1) and with a heuristic approach (discussed in Section 2.2).
The exact method guarantees an optimal solution, but for very large problem sizes, it will
not be able to give a solution due to excessive computer memory requirements. Our proposed
heuristic optimization methods are suggested to give a solution within a foreseeable time, but
the challenge is in acquiring as good as possible results.

Chapter 5 consists of the computational results of the previously defined methods. First
we compare the algorithms to an optimal solution in Section 5.1 and tune the parameters so
that the best possible results can be obtained with our heuristic algorithms. Next we apply
the tuned algorithms to our problem and present the results in Section 5.4.

4.2 Cardiac arrest locations

We continue with more detailed spatial analyses and transformations of historical cardiac
arrests to create the demand data. Our ultimate goal is to deploy AEDs such that they
can improve the probabilities on survival for future OHCA victims. Therefore, we need to
estimate the distribution of the cardiac arrest risk. To do so, we first transform the raw data
into location data in Section 4.2.1 and discuss the validity of using these locations of historical
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cardiac arrests for determining the cardiac arrest risk distribution in Section 4.2.2. In Sec-
tion 4.2.3 we determine the risk distribution with a KDE method. Lastly, in Section 4.2.4,
the cardiac arrest risk distribution is discretized into point data which can be used as an
input for set I in our algorithms.

4.2.1 Acquiring spatial data

First, the data is processed in such way that it can be used by the optimization models. Since
the potentially life-saving potential of AEDs can only be achieved if an AED can deliver a
shock in time, there is an inherently temporal dimension to the AED location problem. This
temporal dimension can be converted to a spatial dimension as a proxy, since, prompt delivery
can only be realized by proximate locations of the devices in relation to an OHCA. Hence,
acquiring data of spatial coordinates of the OHCAs and AEDs is a crucial aspect.

The included OHCA data, as opposed to the AED data, does not contain spatial coordi-
nates but addresses in a string. Therefore, the raw data cannot be used directly to determine
the coverage that AEDs provide to OHCAs and therefore should be transformed. An ap-
propriate and straightforward methodology is geocoding. Goldberg, Wilson, and Knoblock
(2007, p. 33) describes geocoding as the “act of turning descriptive locational data such as
a postal address or a named place into an absolute geographic reference”.

We discuss the our methods of geocoding in Appendix A.3 in detail. After excluding
inappropriate locations, the final data set that is used for the AED optimization consists of
5781 cardiac arrests and 2185 AEDs.

4.2.2 Spatiotemporal stability

Due to the stationary nature of AED locations, deployment strategies can only be effective
if it is possible to predict future cardiac arrest risk. However, accurate prediction is very
challenging as OHCA incidence rates depend on a plethora of factors, for instance health
characteristics of patients with no cardiac history (Deo et al., 2016), population movement
(Marijon et al., 2015) and socio-economic factors (Dahan et al., 2017). Not only is developing
an accurate prediction model troublesome, obtaining the necessary data is often difficult too.

However, previously it has been shown that cardiac arrest risk is spatiotemporally stable
(Chan et al., 2016; Demirtas, Brooks, Morrison, & Chan, 2015; Onozuka & Hagihara, 2017;
Sasson et al., 2010). In other words, historical OHCAs locations tend to remain stable over
time and current risk areas are likely to be representative for the future. On a large scale,
this is implicitly acknowledged in the Netherlands as the annual incidence of OHCAs remains
stable over 6 regions (Zijlstra, Radstok, et al., 2016). In addition, we have illustrated the
incidence rates of the region of Amsterdam as hotspots in Figure 4.2 to visually confirm the
tendency of stability.

Consequently, the spatiotemporal stability helps to justify using historical cardiac arrests
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for AED deployment optimization strategies and ensuring that stationary AED placement
will provide long-term benefits.

4.2.3 Kernel Density Estimation of cardiac arrests

Although we have discussed the validity of using historical OHCA locations for AED deploy-
ment, the takeaway is that cardiac arrest areas remain stable over time. In other words,
we cannot optimize bluntly for exact locations of past incidences but need to determine the
spatial distribution of the OHCA risk. Thus, the point measures (historical OHCAs) need to
be converted to a spatial probability distribution.

A widely used GIS method is Kernel Density Estimation (KDE) (Sheather & Jones, 1991),
which has the advantage of utilizing clusters that do not follow administrative or geopolitical
boundaries. Prior studies used KDE to identify OHCA risk areas (Chrisinger et al., 2016;
Lerner et al., 2005; Moon et al., 2015; Ong et al., 2008; Semple et al., 2013) and for
optimization purposes such as in this research (Bonnet et al., 2015; Chan et al., 2016, 2017).

The KDE method applies a continuous density function at each observed data point
with a “bandwidth”, which is proportional to the standard deviation of the density function.
The aggregated density function is the result of the KDE, with the bandwidth acting as a
smoothing factor. Thus, the higher the bandwidth, the more uncertainty of the OHCA risk.

We use the bivariate KDE model by Botev, Grotowski, and Kroese (2010) to determine

Figure 4.2: The region of Amsterdam (North Holland) with four cardiac arrest risk analyses with the
KDE method (see Section 4.2.3), aggregated per 5 years. Note that the ERC recommends placing
AEDs where OHCAs occur once every 5 years and that the hotspots in the illustrations above seem
stable over the years.
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(a) KDE of North Holland

(b) KDE of Twente

Figure 4.3: Three-dimensional probability densities by the bivariate KDE. Higher peaks indicate a
higher cardiac arrest risk at the location on the plane.

the appropriate bandwidth. The particular method improves upon the classical model — for
instance, it is immune to accuracy failures in the estimation of multimodal densities with
widely separated modes. The two bandwidth parameters are chosen optimally without the
assumption of a parametric model for the data or any “rules of thumb”.

However, the original data consists of the conventional World Geodetic System 1984
(WGS84) coordinate system, i.e. latitude and longitude, and cannot directly be utilized
in the KDE. Namely, distance metrics depend on their location on the spherical Earth, for
which our KDE method cannot account for1. Therefore, we convert the coordinates from

1Consider the (extreme) example of two points with a difference of 10° longitude located on the equator
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WGS84 to the European Datum 1950 Universal Transverse Mercator (UTM) coordinate
system (zone 31N). This is a practical 2-dimensional Cartesian coordinate system that instead
of utilizing a single map projection, employs 60 zones to identify locations on the Earth. The
practical benefit is that the UTM system facilitates the usage of the metrical system for
easy calculations of Euclidean distances. For example, a typical latitude-longitude format as
52°20′33.0′′N 6°40′1.5′′E is transformed to 5 805 674.5N 749 872.3E with meters as units.

We note that an Euclidean distance is an overestimation for the actual distance, since such
calculation takes a straight-line “shortcut” through the spherical Earth instead of following
the curvature. Logically, the error increases with the distance. We have empirically tested
different distances when an AED can be retrieved at different locations in our study area
and found no significant differences for our purposes (error did not exceed 1m) between the
Euclidean distance (with UTM) and the great circle distance (with WGS84).

With the UTM coordinates and using the KDE method, we establish the uncertainty of
the clustering of a certain region by calculating the bandwidth. Consequently, the aggre-
gated probability density function of cardiac arrest risk is determined. We found the two-
dimensional bandwidth (east–west; north–south) to be (253.0m; 416.1m) for North Holland
and (347.3m; 313.7m) for Twente. Figure 4.3 shows the resulted bivariate KDE distributions
of our two study regions.

As the most applicable single decision makers for AED deployment are usually munic-
ipalities (see Section 3.2.3), we focus on analyzing municipalities individually. This will
accurately cluster AED deployment efforts and will give the most practical insights. There-
fore, we have also determined the bandwidth for all 43 municipalities, with the median of
the horizontal bandwidth being 247.1m (IQR: 201.7–344.4) and the median of the vertical
bandwidth 282.3m (IQR: 231.5–367.1).

4.2.4 Simulating cardiac arrests

With the distribution of the OHCA risk known, we can simulate cardiac arrest incidences that
follow the density function. However, when using a simulated cardiac arrest set for optimiza-
tion, “overfitting” can occur where the model parameters are optimized for the given data but
may perform poorly with independent data (Simon, Radmacher, Dobbin, & McShane, 2003).
In other words, we can optimize with excellent results for a given problem instance, but this
does not automatically translate to a robust deployment for the future. Consequently, it is
essential to obtain an unbiased solution with the optimization model. Methods for obtaining
unbiased results include cross-validation or using independent data sets for “validating” the
model.

(i.e. 0° latitude). The distance between these two points is 1112 km. The same difference in longitude at 70°
latitude (e.g. at the hight of Norway) results in a distance of 380 km. Consequently, KDE’s bandwidth in
degrees would be meaningless.
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We choose the latter approach — for each optimization run, we compute a set of simulated
cardiac arrests that is used as an input for the optimization method. In other words, this
set (It) “trains” the model. Hereafter, we evaluate the output of our model using separately
generated “validation” sets (Iv). Note that we interchange I by It or Iv in the optimization
models.

We follow the guidelines for discrete event simulation proposed by Karnon et al. (2012)
where possible. For example, we use identical random number seeds for the testing phase to
ensure that all models can be compared correctly, and use randomized random number seeds
for generating the validation sets. Also, given the probabilistic characteristic of a simulation
model, the output has a random aspect as well. Thus, the more instances in the training
set, the better the discrete values will follow the KDE’s probability distribution. Also, the
more iterations in the simulation model during the validation phase, the more accurate the
performance metrics are estimated. We adapt the technique of Law (2014) to our method
for determining an appropriate number of Iv sets, denoted as n∗, to ensure that our output
metrics are sufficiently accurate.

A confidence interval (CI) can give an indication of accuracy; a CI is defined as X ±
tn−1,1−α/2

√
s2/n, with t denoting the Student’s t-distribution, α the significance level, X

the sample mean and s denoting sample variance. We can perform as much iterations until
the width of the CI, relative to the average, is sufficiently small. The relative error can be
estimated by γ = |X −µ|/µ. However, by using γ directly as an estimate, the actual relative
error would be at most γ/ (1− γ). This can be improved by using the corrected target value
γ′ = γ/ (1 + γ). Finally, combining this with the CI, the minimum number of simulation
runs n∗ for which the estimated relative error is ≤ γ′ is found by:

n∗ = min
{
n :

tn−1,1−α/2
√
s2/n

X
≤ γ

1 + γ

}
(4.1)

We apply Equation 4.1 to our data and find an appropriate number for n∗ in Section 5.3.

4.3 Determining coverage

To maximize the efficacy of any AED deployment strategy, the used method should incor-
porate the real-life scenario(s) as much as possible. Therefore, to determine the aspects and
key factors that influence OHCA outcomes, we consider typical events during a cardiac ar-
rest. Hereafter we can determine the parameters within the previously formalized coverage
function that defines when an OHCA is considered to be “covered” by an AED in our model.

4.3.1 Collapse-to-call

The first interval, also being the first link in the Chain of Survival (Figure 1.1), considers
the time between collapse and call to the dispatch center. Although it is not part of DHA’s



46 Chapter 4. Data preparation

6min guideline, the collapse-to-call interval causes a significant delay of defibrillation that
strongly influences positive outcomes of OHCAs (Swor, Compton, Domeier, Harmon, & Chu,
2008; Takei et al., 2015). Creating more awareness in the society and increasing the com-
munity of medically trained lay responders, something the DHA is successfully pursuing (see
Section 3.2.1), may improve this time interval. Likely for this same reason, Strömsöe et al.
(2015) found that the collapse-to-call interval has improved from 5 to 2min in Sweden over
19 years. Therefore, although we do not have information on collapse and thus are not able
to assess this aspect in our study area, even a minute of improvement in this stage may have
significantly positive consequences on OHCA survival.

4.3.2 Events considered in the 6 minute zone

Next, we consider the events starting with the call to the dispatch center. We remind that
the DHA guidelines state that the call-to-shock time should be at most 6min. Our data
shows that the call-to-connection times of CRS AEDs is well beyond 6min in our study area,
with a median of 7:42 (IQR: 6:29–9:12), while the on-site AEDs had a median of 4:12 (IQR:
2:23–6:39) when considering only instances when the respective AEDs were connected first2.
Naturally, our methods aim to improve these numbers. Therefore, we need to establish the
time that can be allocated to the travel time of bringing an AED to the victim to implement
this in our model correctly. Since the data shows that AEDs that are retrieved with the aid
of the CRS generally have worse defibrillation times than on-site AEDs and the former case
consists of more (complex) actions, we first focus on the procedures of retrieving CRS AEDs.

We analyze all key events during the allocated time frame of 6min and find the time that
we can use for the AED optimization. Figure 4.4 illustrates the events up to the defibrillation
by an AED after a typical OHCA in the Netherlands with an implemented CRS. The blue
segments (number 1 and 7) are derived from the data. However, the red segments are not
directly known. Note that realistically, the duration of retrieving an AED is also determined
by AED placement. However, since the locations of alerted civilian responders are unknown
to us, we cannot determine this interval correctly and need to make assumptions.

The green segment (number 5) is the actual time the responder travels with an AED. This
time frame directly influences within what distance an AED should be located to be able to
deliver a shock in time. Our goal is to determine this time frame and then implement it in our
model. Obviously, all other variables should be improved (e.g. minimizing the call-to-alert
interval, minimizing the set-up time of AEDs, etc.) whenever possible, but this is outside the
scope of this research.

2Berdowski et al. (2011) previously reported an expected survival rate of 49.6% for OHCAs that were
defibrillated by on-site AEDs with a historical call-to-shock interval of 4.1min (median), survival of 17.2% for
AEDs from FRs with a 8.5min interval and survival of 14.3% with no defibrillation at all.
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Figure 4.4: Time intervals between the call to dispatch center and AED shock. Blue segments
denote intervals that are determined with historical data; red segments denote intervals that are not
directly known and are determined by assumptions or from literature; the green segment denotes the
interval that is determined after all other events are considered. The allocated times are discussed
in Sections 4.3.3–4.3.5. As recommended by the DHA, the maximum allocated time for all events is
6min.

4.3.3 Call-to-alert

The first interval in Figure 4.4 is call-to-alert. Early identification of a cardiac arrest during
emergency calls increases the provision of bystander CPR and defibrillation and consequently
survival of OHCAs (Viereck et al., 2017). However, such recognition remains a challenge to
dispatchers. Previously, 29% of included cardiac arrests were not recognized as such in the
RAF of Amsterdam in 2004 (Berdowski, Beekhuis, Zwinderman, Tijssen, & Koster, 2009).

Existing literature reported results of a median interval the call-to-alert of 2–4min (Herlitz
et al., 2003; Swor, Jackson, Walters, Rivera, & Chu, 2000; Takei et al., 2010) with a high
accuracy of recognition of OHCAs by medical dispatchers (Møller et al., 2016). The median
of the interval from our data is 2:18 (IQR: 1:34–3:29)3. Ideally, bystanders would call prior to
the cardiac arrest. However, in such cases the victim has more often a non-shockable rhythm
(Eisenberg, Cummins, Litwin, & Hallstrom, 1986).

Although not within the scope of this research, the length of this interval is significant
and greatly limits the time that is left to start defibrillation by AEDs. A quick visual
glance at Figure 4.4 shows that this even takes most of the time within the allocated 6min
compared to other events. It is worth noting that a recent study found a mean of 0:35 for
this same interval (Caputo et al., 2017). For the study’s region with a population density
of 1251/km2 and challenging terrain as mountains, valleys, and lakes, this is an impressive
result (in comparison, the mean of our complete dataset is 2:50). Moreover, a recent Danish
study touched upon using machine learning for recognizing cardiac arrests, and reported
much improved results compared to human recognition (Blomberg, Folke, Møller, & Lippert,
2017). This indicates that improvement in this area is possible and should be pursued to
have a significant effect on defibrillation times.

3Excluding instances with EMS, FRs and general practitioners as a witness and including only the common
time periods of the data of the two regions — i.e. 1 February 2010 to 31 December 2016
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4.3.4 Alert-to-AED-retrieval

The alert-to-AED-retrieval considers the segments 2–4 in Figure 4.4. Realistically, this in-
terval does not fully consist of only traveling time. In the first of these events, time passes
before a civilian responder actually receives and reads the alert. Also, the responder needs
to end his/her current doings and possibly perform other actions before leaving the original
location. We allocate 0:30 for this timeframe (segment 2).

Then the route towards the AED starts (segment 3). Currently, the CRS uses a 500m
radius around each AED within which a civilian responder can be assigned to for retrieving
the device (also see Figure 1.3). Although the CRS strives to assign responders to AEDs such
that the route would be less than 5% longer than a direct route to the victim, this scenario
cannot be guaranteed. This means that in the worst case, assuming a 15 km/h traveling speed
(as used by the CRS), segment 3 will take 2:00 for a distance of 500m. On the contrary, in
the best case scenario, in which the AED is located exactly on the route towards the victim,
segment 3 would not take any additional time. We make a conservative assumption that on
average, the responder will travel 100m, which translates to 0:24.

Segment 4 denotes the time of visually finding the AED once arrived at the location and
possibly retrieving it from its cabinet. Cabinets are often secured with a lock. We allocate
0:10 for this event.

4.3.5 Arrival-to-shock

We determine the travel time between the locations of the AED and the victim after having
determined all other intervals. Thus, we continue with the next event — the arrival-to-
connection in segment 6. When a lay responder has arrived to the victim, the AED should
be turned on, the clothing of the chest of the victim should be removed and the AED pads
should be applied. Only then a connection can be made.

Hereafter, during the connection-to-shock in segment 7, the AED automatically analyzes
the hearth rhythm and shocks the victim if it deems necessary4. This is not always successful
on the first trial.

Our data has no information of the time of arrival of lay responders, but the connection
and shock times are recorded. The median interval of AED connection-to-shock (segment 7)
for our complete study region is 0:22 (IQR: 0:19–0:28) when only an AED was connected,
and 0:23 (IQR: 0:20–0:35) when first an AED was connected and then an mDFB. This is in
agreement with Hosmans et al. (2008), who reported an interval between the application of
electrodes to the delivery to shock of 0:23, with no significant difference between whether an
automatic or semi-automatic AED was used. We allocate 0:23 for this interval.

Gundry, Comess, DeRook, Jorgenson, and Bardy (1999) found an average arrival-to-shock
4This is in the case of a fully automatic AED. With a semi-automatic AED, the devise prompts the user

to press a button for a shock.
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time of 1:30 for six-graders and 1:07 for paramedics. We assume 1:30 for this interval and
subtract the time of connection-to-shock to find 1:07 for the arrival-to-connection interval.

4.3.6 Conclusion on time to retrieve and connect an AED

Subtracting the discussed segments from DHA’s 6min guideline, we can determine how much
time there is left to bring an AED to the victim (i.e. segment 5 in Figure 4.4). This results
in 1:08 or 283m with a speed of 15 km/h. When considering a quick walking speed of 8 km/h
for the distance of traveling to the AED and to the victim, segment 3 takes 0:45 which leaves
0:47 for the travel time to a victim. This is equivalent to a distance of 104m.

If we consider the scenario when an on-site AED is used, segments 1–3 (call-to-arrival at
AED) of Figure 4.4 differ from the situation with the CRS. This leaves 4:20 for retrieving an
AED. However, in this scenario a nearby lay responder should make a return route and is
often unguided in the search for an AED. Nevertheless, if we assume that the search starts
immediately after the call to dispatch center and the responder travels with a perfect route to
an AED, the responder can retrieve the AED at 289m when considering a speed of 8 kmh−1.

Given the relative conservative assumptions and the previous discussion, in the current
situation, we choose 300m as the borderline of the distance within which it is possible to
retrieve an AED successfully with or without a CRS. We can additionally justify this by
comparing the results of previous research (see Section 1.5.3). There, incorporating a CRS,
different distances are used that consider AEDs “covering” a particular OHCA. The distances
range from 100–500m, with a notable example of Ringh et al. (2011), who showed that in
their study, only 2.5% of responders who were at a distance of 400–500m from the cardiac
arrest arrived prior to the ambulance.

The distance of our CRS of up to 1500m is controversially longer. With that distance,
the responder would need an average travelling speed of 79 kmh−1 when considering the time
that we have allocated to travel from the AED to the victim. Possibly for this reason, some
municipalities did not implement the CRS5. Perhaps the CRS of our study region envisions
that civilian responders could drive a car or ride a bicycle and therefore accommodate an
extra distance for its alerts. Or, given the fact that up to 30 responders may be alerted, the
idea is to better have too many alerted responders than too few6.

Nevertheless, we find the used 1500m distance a significant overestimation of the current
5In 2012, the municipality of Leiderdorp has rejected the implementation of the same CRS as in our

study region because the Gemeentelijke Gezondheidsdienst (GGD) (the national public health institute in the
Netherlands) concluded in their research that the system does not in fact improve survival since lay responders
often cannot reach the victim within 6min (Schouten & Driessen-Jansen, 2012). We have also shown that the
median call-to-connection time of the historical OHCAs is 7:42 when only considering the instances where the
CRS-AED was connected first. The results are worse when including all instances.

6Brooks et al. (2016) found that when a “long” distance is used (400m in the study), EMS or FRs often
arrive prior to the civilian responders. In this case, effective lay responder efforts can be hampered by their
feelings of “frustration of responding and then not being able to participate” (p.24).
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situation and thus implement a maximum distance of 300m in our optimization model as a
more realistic approach.

4.3.7 The coverage function

In the previous subsection we have determined that a distance between an AED and OHCA
of 300m can be considered acceptable in regards to the efficacy on survival. Thus, as such
we have implicitly set the outer radius r2 of Equation (2.1) to 300m.

For the rest of the parameters in Equation (2.1), we examine previous literature on the
rate of survival with respect to time to defibrillation. Chan et al. (2016) chose 20m for r1
as lay responders can immediately spot an AED within this distance. We concur with the
argumentation that it is very likely that an AED within 20m will be visually spotted and
immediately retrieved. Moreover, we have previously discussed that the median delay for
activating the CRS is 2:18, which is significant. If an AED could be retrieved because it was
within the “line of sight”, prior to the CRS alert, such situation would be vastly superior. In
short, since an AED located within 20m is as good as it gets, we consider such scenario as
“fully covered” and set r1 = 20m.

Regarding the scenario that the cardiac arrest is located between the two radii and only
partial coverage exists, there is consensus in prior literature of a decreasing survival proba-
bility with the time of collapse to defibrillation as the independent variable. However, the
studies do not necessarily report the same numerical values. Most likely, indisputable num-
bers cannot be ensured as too many factors exist that may affect results. However, most
studies do acknowledge an exponentially declining rate of survival after an OHCA as the
time to defibrillation increases (e.g. Callans, 2004; De Maio et al., 2003; Nordberg et al.,
2015; Valenzuela et al., 1997; Waalewijn et al., 2001; Yasunaga et al., 2011). An exponen-
tially decreasing survival rate implies that at some point, the delay to defibrillation does
not affect survival significantly any more. This is also confirmed by van Alem et al. (2004),
who found that extreme delays to defibrillation are not significantly different from moderate
delays in regards to quality of life. Therefore, regarding the scenario that the cardiac arrests
is located between the two radii and only partial coverage exists, we use the specific distance
as a proxy for survival and adapt f (dij) in Equation (2.1) with an exponential function.

Consequently, adapting the coverage function to our situation, cij is defined as follows:

cij =


1 if (dij ≤ 20);

e−η(dij−20) if (20 < dij ≤ 300); ∀i ∈ I, ∀j ∈ J ;

0 otherwise.

(4.2)

To have a similar function to the survival rates, we set η = 0.015 in the exponential compo-
nent. This results in a function as illustrated in Figure 4.5.

Note that we use Euclidean distances for determining coverage. The Euclidean distance is
shown to be highly correlated with road distance and with travel time (Boscoe, Henry, & Zdeb,
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Figure 4.5: Exponential coverage decay function for optimization model. Used parameters: r1 =
300m, r2 = 20m and α = 0.015. See Equation (4.2) for the corresponding function.

2012; Jones, Ashby, Momin, & Naidoo, 2010; Phibbs & Luft, 1995). Only physical barriers
(e.g. multiple floors, walls, waterways) may negatively affect the precision of the Euclidean
distance. On the other hand, straight-line distances are especially adequate when considering
the routes that can be taken by lay responders, as the responders can take shortcuts that are
not on a road network.

4.4 Effective candidate locations

We remind that any facility location optimization strategy as discussed in the literature in
Section 1.5 requires (1) a set of demand nodes (i.e. cardiac arrest locations in our study,
in set I), (2) a coverage function (cij) that determines to what extent demand is covered
by a facility and (3) a set of potential facility locations (i.e. AED locations, in set J c) for
optimization. In this section we finalize the methods for determining the data for set by
discussing how potential AED locations are determined. In the next chapter we present the
optimization results.

4.4.1 Motivating the characteristics of adequate candidate locations

We have previously discussed that most prior research used (a subset of) existing buildings as
candidate locations for AED placement (e.g. Bonnet et al., 2015; Chan et al., 2016; Tsai et
al., 2012). Others have used landmarks such as postal collection boxes (Srinivasan, Salerno,
Hajari, Weiss, & Salcido, 2017) and bike sharing stations (Dahan et al., 2016). However, we
note that the quality of solutions not solely depends on effective algorithms, but arguably
even more so on input data. More specifically, candidate locations should facilitate high
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quality problem instances to assure the potential of good coverage results. Even though
using buildings or landmarks seems sensible from a practical point of view, we argue that
using a pre-defined set of locations is is not the very practical nor effective.

For example, data of building locations or landmarks is not always available, which makes
the entire AED deployment optimization impossible at times. In addition, building locations
consist of address locations, indicating that, in most cases, AEDs are bound to the entrance of
buildings. This means that the possibility of AEDs on the street are omitted, despite positive
outcomes of such deployment strategies (e.g. Capucci et al., 2016). Moreover, we discussed
in Section 3.2.2 that in our study area, an increasing number of AEDs are placed outside
and even relocated from indoors to outdoors. Arguably most importantly, the dependency
on address locations or a subset of the study area (as in the case when choosing a certain
landmark) means that some OHCA incidences could be not covered at all, while other OHCAs
could have abundant AED placement options in the proximity with ample overlap.

A hypothetical example of this phenomenon is visualized in Figure 4.6. The illustration
shows that when using addresses (mostly front entrance) of building locations as candidate
locations for AED placement, optimization can be inefficient and yield ineffective results.
Namely, in the front of the image, there are 5 cardiac arrest victims, but due to the relatively
large buildings and thus sparse possible locations, there are only few options for placing AEDs.
A completely different situation is in the rear of the illustration, where there are densely
built smaller buildings, which results in an abundance of candidate AED locations for just
one cardiac arrest. Consequently, this single cardiac arrest enjoys substantial computational
efforts while most of the cardiac arrests in the front cannot even be covered.

In our opinion, these arguments give enough reason to investigate other methods for
computing candidate locations for facilities and improving the potential of the quality of
solutions. Hence, instead of using pre-defined locations, we seek to generate potential facility
locations that can cover any area on the plane, such that it is possible to control the density
of the locations. This way, the user can determine how many locations are analyzed, with
possibly better solutions when using more locations.

Assuming all AEDs are equal and thus have a homogeneous spatial coverage, the most
representative theoretical shape of “coverage” would be a circle. Since it is not possible to
distribute the plane with circles such that every area is covered without any overlap, we
seek to find a scalable method that distributes circles with as little overlap as possible. Less
overlap translates to fewer locations and thus a more efficient set of candidate locations.

Since circles are symmetrical, the “pattern” of the candidate AED locations should be
symmetrical too. Therefore, we divide the plane in equal shapes, or, in other words —
“regular” polygons, which have equal sides and angles. The three possibilities are triangles,
squares and hexagons (Carr, Olsen, & White, 1992). The technical name for creating such
subdivisions of a plane is “tessellating”.
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Figure 4.6: A hypothetical scenario with a 3D-view from a real city in the Netherlands. At the front
of the illustration, 1 out of 5 cardiac arrests can be covered by one potential AED location; at the
rear of the image, a single cardiac arrest can be covered by many potential AED locations.

4.4.2 The hexagonal tessellation

The first tessellation we have mentioned, the triangular tessellation, requires the triangles
to have two different orientations (one vertex pointing upwards or downwards), which is for
most applications undesirable. The hexagonal tessellation is less popular than the rectangular
tessellation7, likely due to more difficult implementation characteristics since cells in the
hexagonal tessellation are aligned along three axes as opposed to two axes (a horizontal and
vertical axis) in the square tessellation. This makes the coordinate system less straightforward
(see e.g. Snyder, 1999).

However, Kershner (1939) mathematically proved that if the Euclidean plane is covered
with circles, the density of the covering would be at least 2π

3
√
3 , and proved that if circles

would be positioned in the centroid of hexagons, such hexagonal tessellation has a density
equal to the minimum density, thus being optimal. This is also immediately evident when
visually comparing the overlap of the two tessellations in Figure 4.7.

Moreover, it can be determined that the following is true in regards to tessellations
by squares and hexagons with a circle at the respective centroids: areasquare = 2R2 and
areahexagon = 3

2
√
3R2 with R being the circumradius of the polygon (or in other words: the

radius of the circumscribed circle as in Figure 4.7). This means that squares have an area

7Birch, Oom, and Beecham (2007) found that in the journal “Ecological Modelling”, 64 papers used a
rectangular and only 2 the hexagonal tessellation
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(a) Tessellation by squares (b) Tessellation by hexagons

Figure 4.7: Overlap of equal circles when placed at the centroids of the respective polygons of the
square and hexagonal tessellation.

that is 2
3
2
√
3 ≈ 77% of the area of hexagons. Or in other words, there are 23% fewer locations

needed when using the hexagonal tessellation instead of the square tessellation.
We have confirmed this empirically by tessellating the entire region of our data sets and

removing locations that have no coverage potential. We found that there are on average 23%
fewer locations needed to cover all demand in comparison to the square tessellation. This is
entirely in line with the theoretical proportion we mentioned earlier.

Consequently, using the centroids of hexagons in the tessellation as candidate AED loca-
tions enables covering any demand on the entire Euclidean plane with minimal density. As
such, we choose the hexagonal tessellation for creating candidate AED locations. Depending
on demand data I and the set radius for a hexagon R, we create candidate locations J c with
the hexagonal tessellation as shown in Algorithm 4.1.

By altering parameter R, the granularity of candidate locations can be controlled. This
allows us to create solutions spaces anywhere between having only few possibilities to place
facilities, and having endless possibilities to place facilities. With the latter, the optimal
solution approaches the quality of the optimum of continuous optimization8 and in most
cases represents the reality better.

Previously we mentioned that exact methods will always give the optimal solution but
they cannot solve large problem instances. On the other hand, heuristic methods do not
guarantee optimal solutions but are able to solve large problem instances. Projecting this
on the power of controlling the granularity of candidate locations, this means that with a
predefined quantity of computational resources, exact methods can give an optimal solution to

8When optimizing with continuous variables, facilities can be placed anywhere on the plane and are not
limited by pre-determined candidate locations. However, such methods are computationally very intensive
and most often not tractable.
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Algorithm 4.1 Procedure of creating candidate facility locations with a hexagonal tessellation
1: procedure HexagonalTessellation(I,R)
2: Find maximum and minimum coordinates of I in x and y direction
3: Tessellate the rectangular area within this range with hexagons with R as hexagon radius
4: J c ← Find and delete locations without coverage potential, i.e. cij = 0
5: Compute Ij and Ji for utilization in algorithm
6: end procedure

a problem that is far from the continuous problem. On the other hand, an effective algorithm
can give a close-to-optimal solution to a problem that is near the continuous problem.

In short, we state that “given an effective heuristic, finding a heuristic solution to an
exact problem may be superior to finding an exact solution to an approximate problem.” We
evaluate this statement by assessing the power of controlling the granularity of candidate
locations in Section 5.2 by solving with the exact and algorithmic methods.

4.5 Conclusion on data preparation

In this chapter we have determined the necessary data, which was not defined yet, for our
optimization methods from Chapter 2. Firstly, we converted point data of the locations of
historical cardiac arrests into a spatial probability density function with the Kernel Density
Estimation (KDE) method. We showed that the historical distribution stays stable over time
and thus is an appropriate representation of cardiac arrest risk. This ensures that adequate
AED placement will stay effective on the long-term. With this distribution, we simulated
new cardiac arrest locations that can serve as data for the sets It and Iv. The former so
called “training” set is used as a direct input for an optimization model, and the independent
“validation” set Iv is used to test the output of the model on its performance with respect
to the total provided coverage.

Then we examined the different events that occur during a typical OHCA and established
the necessary parameters for the coverage function cij that determines to what extent an
AED at location j covers a cardiac arrest at location i. We determined that when an AED
is located within 20m from a cardiac arrest, the AED provides full coverage, and that up
to 300m a cardiac arrest can be covered within 6min (as recommended by the medical
guidelines). Cardiac arrests that are located farther than 300m are considered as not covered,
while cardiac arrests in between 20 and 300m are partially covered. This partial coverage
is determined by a exponentially decreasing function that follows typical survival functions
with respect to the time to defibrillation.

Lastly, the set J c was determined, consisting of potential locations for AED placement.
We found that the by subdividing the plane with regular hexagons and using their centroids as
candidate locations is an appropriate method. This way, the user is not limited to pre-defined
locations and can scale the density of the locations by altering the size of the hexagons.
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Chapter 5

Results

Having defined the necessary sets, parameters, definitions and methodology to solve the AED
deployment problem in the preceding chapters, we apply our techniques to the actual data.
In Section 5.1 we fine-tune our optimization setup with respect to the data so that the best
possible results can be obtained. Then, in Section 5.4, the tuned algorithm is applied to all
43 municipalities that included in this research and consequently we discuss the results.

5.1 Determining the algorithm tunings

In this section we evaluate different heuristic approaches to find the most suitable method with
which we can obtain the best possible results when solving several realistic AED deployment
problems in the next section. First, we find upper and lower bounds in Subsection 5.1.1
to get a sense of the solution quality of the developed algorithms. In Subsection 5.1.2 we
determine the most appropriate parameter settings for the algorithms and determine the
most relevant approach to solve the problems. Then, in Subsection 5.2, we examine different
densities of the candidate locations in regards to their solution quality and further narrow
down to an effective combination of an algorithm and granularity of the tessellation. Finally,
in Subsection 5.3, we define the final setup for solving the AED deployment problem.

Before detailing the results, we have defined the used software and hardware for this
research in Appendix A.4, including a short discussion on the choice of using a “compiler”
for optimization.

5.1.1 Bounds and metrics

As discussed in Chapter 2, the solution obtained from the Greedy heuristic can serve as a
lower bound (LB) and the exact solution as an upper bound (UB). With these bounds, we
can tune the algorithms and subsequently evaluate the quality of the resulted solutions.

We apply our methods to all 43 municipalities in this subsection at all times. This results
in very diverse problem instances. Each municipality has a different cardiac arrest risk distri-
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bution over different geographical areas and thus heterogeneously clustered demand nodes.
Also, the number of existing AEDs is diverse — from 1 up to 127 per municipality. Tuning
the algorithms with diverse problem instances yields more robust algorithms. Therefore, the
tuning is performed for a scenario where existing AEDs are relocated.

We have discussed in Section 2.1 that we can often substitute the ILP formulation with
the LP-relaxation when being cautious about whether we obtain all-integer solutions. The
complexity of the problem is determined by the number of simulated cardiac arrests in training
set It and the number of candidate locations in set J c. The latter is controlled with the
radius of hexagons — denoted by parameter R.

We first define the size of It. We remind that the ERC guidelines state that it is cost-
effective to place AEDs at locations where at least one OHCA occurs in 5 years. Considering
all municipalities, the highest average historical OHCA incidence rate per years is 56. Con-
sequently, to simulate 5 years, we create 300 cardiac arrests and thus set |It| = 300 in each
of the 43 municipalities using the municipalities’ bandwidth that was previously computed
with the KDE method in Section 4.2.3.

The number of candidate locations can then be determined such that the problem can be
solved by the exact method. This is empirically realized by setting R = 50m which results
in a median of 3267 (IQR: 2583–4392) candidate locations in set J c.

We report the results as the total average coverage received by all OHCAs in a municipal-
ity (i.e.

∑
i∈I(φi) divided by the number of cardiac arrests), averaged over all municipalities.

Note that the results consider the gradual coverage as defined by Equation (4.2). Conse-
quently, a value of 50% does not mean that half of the OHCAs are covered, but that in
average, the OHCAs received 50% coverage.

The average coverage per OHCA per municipality as found by Greedy is found to result
in 30.09%, and the optimum is 30.18%. Hence, the average optimality gap is 0.087%. In
12 of 43 municipalities (i.e. 27.9%), Greedy has found the optimal coverage value. Table 5.1
shows the found results of the Greedy and optima, as well as other algorithms after tuning
their parameters. We discuss the tuning of the algorithms and their results next.

5.1.2 Tuning GRASP and Simulated Annealing

Although the Greedy solutions are excellent with respect to the optima, we try to further
improve the quality of the results. First, GRASP with local search (defined in Section 2.2.2)
is tuned by determining the parameters α and β such that a good performance is found.
Figure 5.1 shows the relative scores of different values for α and β. We define “relative scores”
as relative performance in regard to the Greedy solution as the LB and the optimal solutions
as UB. In other words, with s∗ denoting the best found objective value of an optimization
method, relative score = 100∗

(
C

(
s∗algorithm

)
− C

(
s∗Greedy

))/(
C

(
s∗optimum

)
− C

(
s∗Greedy

))
.
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Table 5.1: Algorithm results on medium sized problem instances

Method Averagea Optimalb Scorec Timed

% % % s

Greedy 30.09 27.9 0.0 0.03

Randomized Greedye 30.15 44.2 63.8 118.7
GRASPf 30.17 67.4 84.6 16.3
biased GRASP, no.1g 30.17 69.8 84.7 15.8
biased GRASP, no.2h 30.17 72.1 85.3 103.2

SA (random start)i 29.47 4.7 −7.1 101.4
SA (Greedy start)i 30.16 55.8 73.4 100.9
SA (Randomized Greedyj start)i 30.16 55.8 73.6 118.2
SA (Randomized Greedyj start) + reannealingk 30.17 62.8 84.9 128.7

Exact method (optimal) 30.18 100.0 100.0 107.2l

Note: GRASP = Greedy Randomized Adaptive Search Procedure, SA = Simualated Annealing.
a Average coverage provided to 300 simulated OHCAs over all 43 municipalities in study area when relocating existing

AEDs.
b Proportion of instances (with respect to the 43 municipalities) when the optimal solution is found.
c The score is defined as the relative difference between the Greedy and optimal solution. Note that more precise

results are used for the calculations than the numbers shown in the “Average” column.
d Average running time per municipality in seconds.
e α = 0.98, 2000 iterations.
f α = 0.98, 5 iterations.
g α = 0.98, 5 iterations, β = 11.
h α = 0.98, 50 iterations, β = 8.
i T0 = 0.02, δc = 0.999, κ = 100, λ = 40000.
j α = 0.98, 100 iterations, β = 11.
k T0 = 0.03, δc = 0.999, κ = 80, λ = 40000, δh = 0.750, number of reannealings = 5.
l Note that although the exact solution is relatively fast, memory requirements are the bottleneck.

Tuning GRASP with biased sampling

Figure 5.1 shows the results of different α of GRASP stratified by β. The figure suggests
that incorporating biased sampling can improve the regular GRASP heuristic. For the used
problem instances, β in the range of 8–11 result in better objective values for all α. Regarding
α, values in the range of 0.97–0.98 yield the best results. Note that with a carefully chosen
α, the algorithm is less sensitive to the value of β.

We remind that the higher the α and β, the more “greedy” the algorithm performs. Also
note that these parameters are tuned to these problem instances; larger problems will likely
benefit from less “greedy” tunings so that more exotic/complex structures can be explored.

With the right tuning, as can be seen in Table 5.1, GRASP yields a relative score of
84.6% with only 5 iterations, while incorporating the biased sampling marginally improves
the score to 84.7%. When increasing the number of iterations to 50, the score jumps to
85.3% or, alternatively stating — the optimality gap is 0.043%. We have also tested only
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the first part of GRASP, the Randomized Greedy construction phase without local search.
Randomized Greedy is not competitive with GRASP as it yields an inferior score of 63.8%
even with significantly more computational resources.

Tuning Simulated Annealing

Applying SA (defined in Section 2.2.3) to the same problems gives mixed results. Firstly,
using the classical temperature scheme where most neighborhood structures are accepted
(i.e. with a high value of T0) in the first phase never performed better than Greedy. In the
exploratory phase, the objective value deteriorates significantly and becomes approximately 5
times worse than the global optimum. The problem is that getting back to favorable solutions
in the exploiting phase appears to be challenging.

The reason may be that in our AED deployment problem, there is a relatively high
number of candidate locations and most of them have a relatively low coverage potential.
Thus, most of the solutions are not very competitive. This means that if the incumbent
solution is mediocre, there are relatively few possible transitions that will change the solution

Figure 5.1: Results of the average scores of all 43 municipalities calculated by the GRASP algorithm
with biased sampling. “Relative score” depicts the difference between the Greedy solution (0%) and
the optimal solution (100%). Different α factors dynamically determine the elements for the restricted
candidate list (RCL) and are stratified by the bias factor β. Note that β = 0 is equal to the regular
GRASP with no bias.
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to a favorable objective value. Due to the random nature with which SA generates its
neighborhood structures, selecting these particular neighborhood solutions is unlikely, and
the objective values doe not improve as much as one would desire. Consequently, once a good
solution is found, only relatively minor deteriorations should be allowed.

This explains why with a random starting configuration (and thus often mediocre starting
solutions), SA is not able to get good results and the average solutions are even worse than
Greedy. Table 5.1 shows that this approach yields a relative score of −7.1%.

However, when starting with a good initial configuration, i.e. from Greedy or the first
phase of GRASP (Randomized Greedy), and only allowing relatively minor deteriorations
by setting T0 accordingly, SA eventually does improve the initial solution. After empirically
testing a few dozen temperature schemes, the best scheme resulted in a relative score of
73.4% and 73.6%.

Still, the quality of results are worse than GRASP’s results, even compared to the GRASP
algorithm with only 5 iterations. This can be explained by the sensitivity to the temperature
scheme per problem instance. Namely, when using a lower T0 to limit the deteriorations, the
algorithm may converge immediately on its initial solution on some problem instances. On
the other hand, when using a higher T0, the solutions may deteriorate too much on some
problem instances and thus the algorithm gets “trapped” in mediocre solutions. Consequently,
defining a single tuning for SA for all municipalities is not without compromises, and this
explains why GRASP fares better when applied to many heterogeneous problem instances.

When factoring in the extension of reannealing, SA’s performance is favorably affects,
resulting in a relative performance of 84.9% with approximately the same computational
resources. As we have mentioned in Section 2.2, reannealing enables the algorithm to find
not-too-distant but better neighbors. Nevertheless, biased GRASP performs slightly better
than SA with reannealing, scoring 85.3% versus 84.9%. However, we empirically found that
when SA with reannealing is properly tuned per problem instance, it can be superior to
biased GRASP. Moreover, the iterative improvement phase of GRASP becomes extremely
time-consuming for large problem instances, while SA can maintain competitive results within
a reasonable amount of time.

Conclusion on algorithm tuning

In this subsection, we have evaluated the performance of different algorithms for medium-sized
problems with known optima that were calculated with an exact method. Greedy performed
very well with little computational resources, while GRASP was able to give improved results.
Extending GRASP with biased sampling further improved the results. SA, especially with
reannealing, is capable of giving competitive results but is sensitive to its tuning depending
on the problem instance. Consequently, GRASP performs more consistently when a single is
tuning is used on multiple heterogeneous problem instances.
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5.2 Optimization compared to candidate locations

We have discussed in Section 4.4 that by controlling the radius R of the tessellation, theo-
retically, the solution quality of continuous optimization can be approached. We test this by
solving the relocation problem for all municipalities with different R.

We were able to compute hexagonal tessellations on all municipalities with R being as
small as 15m. More granular settings required more computer memory than in our possession.
A tessellation with R > 1500m would be infeasible for some municipalities as a hexagon
of that size could not be placed within the geographical bounds. Therefore, we solve the
relocation problem with |It| = 300 and R = [15, 1500]. Results of solving the problems with
different optimization methods can be found in Figure 5.2.

Regarding the optimal solutions, as discussed in the previous subsection, the maximum
granularity with which the problem instances could be solved was with R = 50m with on
average 3556 locations per municipality. Larger problem sizes could not be solved due to
rapidly increasing memory requirements1.

We previously showed that GRASP can give near-optimal solutions consistently over
different problem instances, with an average optimality gap of 0.043%. However, Greedy
performs also well (optimality gap = 0.087%) and does so with minimal computational
efforts. We found that GRASP could solve problem instances with R = 30m (on average
9836 locations per municipality) and R = 20m (22 083 locations) in respectively 1.1min and
14.4min on average per municipality. We did not attempt to solve for R = 15m (39 221
locations) with GRASP since a single municipality could not be solved within an hour.
However, Greedy solved all 43 municipalities with R = 15m in 1.2 s per municipality on
average.

Figure 5.2 makes it evident that the impact of solution methods is substantially smaller
than the impact of more granular hexagons. With the computational resources at hand, with
the exact methods we can obtain an average objective value of 31.18% with R = 50m; with
GRASP — 32.57% with R = 20m in 14.4min; with Greedy — 32.76% with R = 15m in
1.2 s. Also note that near R = 15m, the objective value in Figure 5.2 starts to converge,
meaning that more granular tessellations would yield only marginally better results.

Thus, Greedy can ultimately yield superior results in much less time. Therefore, referring
to and updating our statement in Section 4.4, “Given a high-quality heuristic, finding a
heuristic solution to an exact problem instance is superior to finding an exact solution to
an approximate problem instance” for our study purposes. With this in mind, we further
narrow down our optimization method to Greedy with an as granular as possible hexagonal

1For example, an instance with 3× 106 variables and constraints required ∼ 6GB RAM. Solving with R

= 40, 30 and 20m and 300 demand nodes and taking the largest problem instance per given R, the exact
method would have more than 5, 9 and 20× 106 variables and constraints respectively and an exponentially
increasing size of the cij matrix.
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Figure 5.2: Performance of the Greedy algorithm relative to the granularity of the hexagonal tes-
sellation as input J c. The resulting objective values are the average results when relocating existing
AEDs of all 43 munipalities with 300 simulated OHCAs. Since the number of locations exponentially
increases with R, a logarithmic horizontal scale is used. For comparison, the best solutions found by
the exact method (with R = 50m) and GRASP (with R = 20–30m) are also included.

tessellation for creating the candidate locations.

5.3 Simulation setup

Up until now we have optimized a given demand set without accounting for the probability
of deviations of demand locations. Following the methodology in Section 4.2.4, we solve
the AED deployment problem with a large training set (It) and then create a sufficient
number (n∗) of independent validation sets (Iv) to test the deployment on its performance
and robustness.

However, increasing the size of It also increases the problem size —most evidently because
the cardiac arrest set is increased, but also because due to the higher quantity of simulations,
cardiac arrests are often spatially more dispersed and thus more candidate locations are
needed to be able to cover all demand.

In the previous subsection, we used R = 15m with |It| = 300. With fixed computational
resources, improving the robustness of our solutions by increasing the number of simulated
demand in It is only possible at the expense of a larger R. However, a larger R decreases the
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solution quality as we have seen in the previous subsection. Therefore, we test different values
of R with different It to find adequate parameters for the best possible coverage solutions.
Starting with the lowest possible R = 15m, |It| is increased until computer memory was
insufficient with |Iv| = 60 (maximum average number of cardiac arrests in a year) and n∗ =
500 (discussed in Section 4.2.4). The size of n∗ is expected to be sufficient — we evaluate
this later in this section. The best results of this approach are displayed in Figure 5.3.

The figure illustrates that the previously used optimization setups are not robust in
regards to independent validating sets, even though we have shown that more granular can-
didate locations can result in better solutions for the training set. In general, it is better to
increase the size of It to some extent, at the expense of R. The best trade-off is found at R =
140 and |It| = 50 000 with an objective value of approximately 14.2%. Possibly, with more
efficiently implemented data structures, memory would be less of an issue and more granular
tessellations could be used with larger training sets

We can now evaluate the appropriate amount of simulation runs of the validation set with
Equation (4.1). This results in an average n∗ of 59 per municipality. However, one outlier
has n∗ = 474. This can be explained by the fact that the municipality has only three AEDs
registered — the performance of a few AEDs is not sufficiently pooled with other devices and
thus more random behavior can be expected. Nevertheless, we set n∗ = 500 for subsequent
optimization runs to confidently obtain meaningful metrics.

Consequently, the final configuration of our methodology to solve the AED deployment
problem is the Greedy algorithm, R = 140m, |It| = 50 000, |Iv| = 60, n∗ = 500.

Figure 5.3: Average performance of R stratified by number of simulations, tested by validation sets.
Tested by relocating existing AEDs of all 43 municipalities with Greedy algorithm, by gradually
increasing the training set It. |Iv| = 60, n∗ = 500.
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5.4 Potential of optimizing AED deployment in the Nether-
lands

In the previous section we have determined the most appropriate optimization setup to solve
the AED deployment problem. In this section we analyze the current situation regarding
AED coverage in the study areas in the Netherlands and assess the potential of implementing
our optimization methods.

5.4.1 Results of complete study area

The results of solving the AED deployment problem for all municipalities with different sce-
narios are presented in Table 5.2. The very first line reports the existing coverage of currently
registered AEDs, which gives a total coverage of 8.20% in average over all municipalities.
Note that the binary coverage results are the solutions of the MCLP and indicate the pro-
portion of OHCAs that could be covered within 6min.

The median number of existing AEDs is 44 (IQR: 23–83). By deploying an additional
25 in each municipality and using the more realistic gradual coverage with our algorithmic
approach, the results are more than doubled. Relocating the existing AEDs is also very
effective — coverage is improved up to 14.23%, which has more impact than placing an
additional 10 AEDs to the currently deployed AEDs (coverage of 13.04%).

In the last three columns, the average percentage of OHCAs that are “fully”, “partially”
and “not” covered over all 500 simulation runs is reported. Separately, we have also solved the
problems with the classical binary coverage, with much more optimistic results as expected.

Also note that theoretically, a better overall solution can be obtained by solving for the
entire region of Twente and North Holland. Namely, AEDs can be moved from municipalities
that have a relative large number of devices to municipalities that have worse coverage results.
However, as we have discussed in Subsection 5.3, a high number of cardiac arrests should
be simulated for the It set so that the deployment is significantly robust to uncertain future
cardiac arrest locations. With the aid of Figures 5.2 and 5.3 we discussed that with a given
computer memory, there is a trade-off between the R (and thus the potential solution quality)
and the number of simulated nodes in It (and thus the robustness with regards to uncertain
future cardiac arrest locations). Aggregating municipalities requires even more simulations
or coarser granularity of candidate locations. Consequently, due to these reasons we could
not obtain more favorable results when optimizing for a whole region than optimizing each
municipality individually.

5.4.2 Municipality-specific results

In addition to the general results in the previous subsection, we present a few interesting
cases of optimizing on municipality level.
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Effect of determined cardiac arrest risk

We observe that the precision of the determined cardiac arrest risk (with KDE) affects the
quality of results. For instance, although the average coverage when relocating existing AEDs
was 14.23%, one municipality fared much worse (3.60%), even though there are relatively
many AEDs (99). In comparison, a neighboring municipality with 72 AEDs had a coverage
of 22.57%.

This can be explained by quite random behavior of historical OHCA incidences and having
relatively few data points (49) that resulted in a bandwidth of [1875.9m, 1970.0m] (horizon-
tal, vertical). This is much higher than the typical bandwidth as reported in Section 4.2.3.
Consequently, simulated cardiac arrests are very evenly spread and hotspots cannot be ac-
curately determined. Therefore, we can state that in some instances, future cardiac arrest
locations cannot be determined adequately by using the KDE. However, since the bandwidth
of most other municipalities is fairly consistent, an assumption can be made with possibly an
optimistic and pessimistic scenario.

Table 5.2: Different scenarios of existing AED coverage and deployment optimization

AED setup Coverage (%)b IQRc Covered OHCAs (%)c

existing AEDsa new AEDs (n) binary gradual % fullyd partiallyd notd

0 47.16 8.20 6.64–10.19 0.35 46.87 52.78
10 67.98 13.04 11.14–14.88 0.63 60.72 38.65

existing fixed 25 79.54 17.54 15.27–19.73 0.93 67.40 31.68
50 87.95 22.82 19.55 –25.91 1.33 73.87 24.78

100 91.63 29.47 25.41–33.57 1.88 80.85 17.27

0 68.49 14.23 11.50–17.87 0.75 53.73 45.52
10 78.96 17.25 14.61–19.33 0.93 61.57 37.50

relocated 25 85.86 20.77 18.36–24.54 1.18 67.05 31.77
50 91.18 25.11 22.42–28.71 1.50 73.73 24.78

100 93.08 30.77 27.26–34.19 1.88 81.50 16.63

Note: Solved with Greedy algorithm, R = 140m, |It| = 50 000, |Iv | = 60, n∗ = 500. Average difference between coverage

solution of training set and validation sets is 2.21%. AED = automated external defibrillator, IQR = interquartile range,

OHCA = out-of-hospital cardiac arrest.
a Median number of existing AEDs of municiplities in study area is 44 (IQR: 23–83).
b Gradual coverage defined as in Section 4.3.7; binary coverage is computed by setting r1 = r2.
c With respect to gradual coverage.
d “Fully covered” applies when dij ≤ 20m, “partially covered” when 20 < dij ≤ 300m and “not covered” when dij >

300m in accordance with Equation (4.2). Percentages are the average of all 500 simulation runs.
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Improving the coverage of municipalities

Another interesting observation is that the average improvement of relocating currently de-
ployed AEDs is 73.5%. For the following municipalities, we could improve the coverage by
only 41–48%: Borne, Oldenzaal, Purmerend, Twenterand, Bergen (NH.) and Hoorn. On
the other end of the spectrum, Uithoorn, Zaanstad, Aalsmeer and Wormerland could be im-
proved by 206–252%. Most notably, Zaanstad appears to have 44 AEDs located at ineffective
locations, while the other 3 municipalities only have less than 8 AEDs overall.

Figure 5.4 shows the situation in Zaanstad. Currently, the existing 44 AEDs provide
2.8% coverage but relocating these AEDs with our optimization method results in 9.1%
coverage (225.0% improvement). Note that in the current case it can be easily observed
that the hotspots of predicted cardiac arrest risk and the locations of existing AEDs do not
adequately coincide.

Similarly, Figure 5.5 shows the currently placed AEDs (providing 8.2% coverage) in the
municipality of Borne and the relocation of existing AEDs improves the coverage to only
11.5% (40.2% improvement). Note that in this case the currently placed AED are more in
line with the predicted cardiac arrest risk. However, not that in practice, it is not uncommon
to place AEDs after a (first) OHCA incident. Therefore, it is possible that in some cases, the
deployment strategy is performed retrospectively while we seek to optimize the placement of
AEDs prior to OHCAs by predicting the incidence risk.

The results of Borne illustrate another phenomenon. Due to the characteristics of our
objective function in the optimization model, AEDs are placed at locations that maximize
overall survival. Thus, with a limited amount of AEDs, there will be no AEDs deployed
at locations with lower cardiac arrest risk such as rural areas. In Borne we see only AEDs
in the neighborhood of the city center. Although this is what should be expected from an
optimization standpoint, such approach is conflicting with the “equity” of provided service
(see also the study of Mandell and Becker (1996) who used a trade-off between equity and
effectiveness).

In addition to relocating the existing 23 AEDs in Borne, we increase the total number of
AEDs that should be deployed by our optimization method until AEDs are placed outside the
city center. After approximately 70 total AEDs, the devises are placed outside the city center,
as can be seen in Figure 5.6. Note that due to the decaying coverage function (Equation 4.2),
our method prioritizes placing AEDs at the high risk areas in the city center with overlap,
rather than placing AEDs at low risk locations but covering a larger area. Or in other words,
the optimization method takes into account that quicker defibrillation at high risk areas might
be more beneficial than plainly covering a larger but low risk area where a cardiac arrest can
be defibrillated within 6min.
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Figure 5.4: Locations of 44 AEDs in the municipality of Zaanstad. Top image: cardiac risk probability
distribution (KDE method); center image: current deployment of existing AEDs (2.8% coverage);
bottom image: optimized deployment by relocating existing AEDs (9.1% coverage).
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Figure 5.5: Locations of 23 AEDs in the municipality of Borne. Top image: cardiac risk probability
distribution (KDE method); center image: current deployment of existing AEDs (8.2% coverage);
bottom image: optimized deployment by relocating existing AEDs (11.5% coverage).
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Figure 5.6: Results of relocating 23 existing AEDs in the municipality of Borne and deploying 50
additional AEDs (73 AEDs in total). Total coverage = 24.7%. Note that only after having more than
70 AEDs, the devices are placed outside the city center.

Value of additional AEDs

Figure 5.7 shows the results of the current deployment, and when relocating existing AEDs
with 0, 10, 25, 50, 100, 250 and 500 additional “new” AEDs in some municipalities of Twente.
As expected, relocating the current AEDs improves the coverage significantly. Also, adding
extra AEDs in a situation where there are already a substantial number of AEDs improves the
solution relatively slightly. For example, the objective value of the municipality of Almelo
improves evidently more when adding 10–50 AEDs than when adding 500 AEDs. Note
that this effect is less evident for situations with lower coverage, e.g. the municipalities of
Tubbergen or Enschede. Consequently, the general takeaway is that even when adding a
large number of AEDs, the improvement in coverage might be considered worthwhile.

5.4.3 Number of AEDs needed for “full coverage”

The method of using the hexagonal tessellation enables us to get an indication of the SCLP
solution as well. In other words, we can determine the least number of facilities are needed to
enable “full coverage”2 and where these facilities should be placed. Namely, by setting R = r2

in our model, all candidate locations that cannot cover the simulated cardiac arrests within
300m are deleted (see also Algorithm 4.1). Then, placing AEDs at all candidate locations
automatically covers all demand.

Note that this is an upper bound for the optimal solution — if a demand node falls within
the overlapping region (see Figure 4.7b), one of the hexagons could be deleted if there is no

2according to the MCLP, meaning that a demand at a distance of 300m from a facility is considered to be
sufficiently covered
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other demand in the non-overlapping regions. Also note that this heuristic solves the SCLP
instance with R = 300 and better solutions can be expected when solving the SCLP with
regular optimization techniques and more granular radius.

Nevertheless, solving the SCLP with this approach gives a (possibly overestimated) indi-
cation of how many AEDs are needed in a region to cover all cardiac arrests within 300m.
The results are shown in Table 5.3. Notable good performers are the municipalities of Hoorn,
Oldenzaal and Edam-Volendam, respectively possessing 65.6%, 51.4% and 46.7% AEDs of
the total number that is needed to cover all future cardiac arrests that we have modelled. On
the other hand, there are 8municipalities in North Holland that have fewer than 10 AEDs and
consequently possess less than 7% of the total desired number of AEDs. Municipalities that
would need municipalities are Beemster, Hollands Kroon and Haaksbergen, having 11–12%
of the desired number of AED. Overall, the average proportion of AEDs that is currently
present in the entire study area is 18.8%.

Figure 5.7: Average objective value of provided coverage to all OHCAs in the validation sets stratified
by the number of AEDs per municipality. Per municipality, the first up to the eighth node consider
respectively (1) the currently deployed AEDs, (2) relocating the existing AEDs with the proposed
optimization method, (3) relocating the existing AEDs and adding 10 AEDs, (4) relocating and adding
25 AEDs, (5) relocating and adding 50 AEDs, (6) relocating and adding 100 AEDs, (7) relocating and
adding 250 AEDs, (8) relocating and adding 500 AEDs. Solved with Greedy algorithm, R = 140m,
|It| = 50 000, |Iv| = 60, n∗ = 500.
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Table 5.3: Median number of AEDs in the regions compared to SCLP solution

North Holland Twente

n IQR n IQR

current AEDs 35.0 11.5 – 60.5 77.5 39.0 – 105.5
SCLP solutiona 174.0 113.0 – 246.5 278.0 242.0 – 410.5

% IQR % IQR

AEDs currently presentb 20.1 10.2 – 24.5 27.9 16.1 – 25.7

Note: SCLP = set covering location problem; IQR = interquartile range; AED = automated

external defibrillator.
a These numbers indicate how much AEDs are needed to cover all cardiac arrests. Solved

with |It| = 10 000.
b When comparing the current number of AEDs to the total number of AEDs required per

municipality by the SCLP solution. Overall average proportion of AEDs present of the entire
study area is 18.8%.
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Conclusions

In this work, our ultimate goal was to aid decision-makers in improving the survival rates
of out-of-hospital cardiac arrest (OHCA) victims, which currently are worse than one would
desire. Although quick defibrillation by automated external defibrillators (AEDs) has a high
potential in improving these rates, this has often not been realized yet in practice. The Euro-
pean Resuscitation Council (ERC) states appropriately that “any technology that improves
the delivery of swift bystander cardiopulmonary resuscitation (CPR) with rapid access to an
AED is to be encouraged” (Monsieurs et al., 2015, p.5). Our research contributed with such
a prescriptive tool that guides in deploying AEDs at effective locations that enable quick
defibrillation. Moreover, contrary to many existing retrospective approaches, we account for
the uncertainty in future cardiac arrest locations and thus provide more robust results.

We presented different heuristic optimization techniques to tackle the mathematical AED
deployment problem — where to place AEDs such that the total provided coverage to car-
diac arrests is maximized. For the “coverage”, we implemented a realistic gradual coverage
function, which follows typical survival functions that depend on the time to defibrillation,
as defined by the generalized maximum coverage location problem (GMCLP). Naturally, our
proposed methods can easily be translated to other facility covering location problems with
decaying service distances or times.

First we developed a Greedy algorithm that yields excellent results (optimality gap:
0.087%) with little computational efforts. We proposed a second, more complex heuris-
tic based on Greedy Randomized Adaptive Search Procedure (GRASP) and extended it with
“parameterized regret-based random sampling” and showed that it can further improve the
results. This GRASP algorithm is robust to heterogeneous problem instances and conse-
quently decreased Greedy’s optimality gap by 85.5%. For large problems where high-quality
solutions are desired, we developed a Simualated Annealing (SA) algorithm with “reanneal-
ing” that works in conjunction with Greedy or GRASP. Given an appropriate tuning, SA
with reannealing can yield superior results within a foreseeable and limited time.

In addition to the solution techniques, we incorporated a hexagonal tessellation method
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to dynamically create candidate locations. With this scalable method, we can control the size
of problem instances and inherently the potential solution quality. Moreover, incorporating
this approach eliminates the requirement of obtaining coordinates of candidate locations (e.g.
buildings) for decision-makers. The power of this addition is shown in the computational re-
sults where we compared different optimization techniques with different candidate locations
set. Here we showed that a granular density of candidate locations in combination with a fast
algorithm as Greedy outperforms more complex (and computation-intensive) algorithms with
less granular candidate locations set. With this dynamic method, solutions can be reached
that are close to the continuous problem where AEDs can be placed on the plane without
any restrictions.

Eventually we applied our methods on historical cardiac arrest data from two vast regions
with 43 municipalities in the Netherlands. The municipalities have heterogeneous spatial
characteristics and we included both public and residential cardiac arrests. We showed that
by relocating existing AEDs (median number of AEDs per municipality is 44 (interquartile
range (IQR): 23–83)), an average improvement of 73.5% can be achieved. Approximately,
this is more effective as buying and deploying 10 additional AEDs. As part of the methods,
we could simply derive an approximate solution to the set covering location problem (SCLP)
solution — minimizing the number required AEDs that can cover all demand. We found that
currently, the average number of AEDs per municipality is 18.8% with respect to the total
number needed to cover all OHCAs within the critical time.

Limitations

Naturally, our research has its limitations. One is that we used a subset of the actual available
AEDs in the discussed study area — only registered AEDs. However, it is not very likely that
a bystander would search for an unregistered AED and find it, especially since the emergency
medical services (EMS) guided systems are increasingly entrenching into society. Moreover,
there are increasingly more AEDs are registered. For example, at the moment of writing, the
Dutch Heart Association (DHA) is placing 1400 additional AEDs at “well spread locations”
throughout the Netherlands (Hartstichting reikt 1400 AED-buitenkasten uit, 2017). Also,
although AED owners might be willing to register their AED to a public system, the costs
per usage of approx. e150 might restrain them of making their AED public. A new motion in
the Netherlands might improve the AED registration rates, as residents may be compensated
for the usage of their AED directly through the regional ambulance facility (RAF) starting
from 1 January 2018 (Schippers, 2017).

Also, we did not account for the temporal availability of AEDs in our optimization meth-
ods. This is mostly relevant for existing AEDs, as we assumed and gave justification from
reports that newly placed AEDs will mostly be placed outdoors and therefore will be always
available. However, even then it is possible that an AED is not available, for instance due to
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being elsewhere or due to operational issues.

Also, due to the symmetrical aspect of the hexagonal tessellation that we used for the
creation of candidate AED locations, it might be possible that our models will allocate
AEDs to infeasible locations. However, we mentioned that in practice the actual location of
AEDs will deviate from a model anyway, since aspects like architectural design and building
function need to be considered on-site. Therefore, the locations of deployed AEDs should
be considered as a guideline. Mathematically speaking, an effective approach would be to
run our model, physically place one AED with the model’s solution as a guideline, and then
update the coordinates of the newly placed AED in the model. Then, that AED should be
set as “fixed” and the model can be run again. With the approach, the method will account
for the deviations per actually placed AEDs and consequently adjust other locations when
needed.

We have also assumed that the historical distribution of OHCAs is representative for
future incidences. Although we justified this by referring to findings in previous research,
aspects such as population movement are not considered. Also, we used a certain bandwidth
to assess the extent of the OHCA risk per municipality. By doing so, we aggregated and
generalized the spread of the risk over the entire municipality, while realistically there might
be different clustering on smaller level (e.g. neighborhoods).

Unfortunately, with the given computational resources, the most effective approach was
to optimize with relatively large hexagons since a large training set of simulated OHCAs
was necessary to ensure robust solutions. Namely, AEDs should be deployed at locations
that are representative for future cardiac arrests (as tested with independent validation set).
However, we have shown that the best possible results can be achieved by a more granular
tessellation. Consequently, we have not fully exploited the potential of the solution quality
due to computational limitations. However, to the best of our knowledge, among AED
deployment literature, we are (1) the first to determine an adequate size of the training set,
(2) the first to determine an adequate number of validation sets, (3) the first to examine the
effect and potential of the granularity of candidate locations. Consequently, we optimized
with a compromise between the settings that yield the best overall results.

Future research

Arguably the greatest improvement can be gained by the usage of better tools to more
accurately determine future cardiac arrests. Even though we have discussed that the Kernel
Density Estimation (KDE), given spatio-temporal stability of OHCAs, is a viable and effective
method, there is plenty of potential on improving the accuracy (e.g. Dahan et al., 2017; Deo
et al., 2016). Thus, using and combining different data and techniques to better predict
future cardiac arrest incidences is encouraged.

We mentioned that our models maximize the overall coverage and, therefore, with a



76 Chapter 6. Conclusions

(a) Nesting with scaling factor = 3 (b) Nesting with scaling factor = 7

Figure 6.1: Nesting a bigger hexagonal tessellation onto an existing tessellation

limited number of AEDs, no AEDs would be placed at areas with lower incidence rates.
We discussed that a trade-off between effectiveness and equity can be used, but, we think
other aspects can be incorporated as well — namely, the decision-maker might place certain
priorities for AED deployment on specific areas (e.g. Allahi, Mobin, Vafadarnikjoo, & Salmon,
2015). For instance, certain areas might have more allocated funds. Or, there might be
a difference of effective AED usage between regions, e.g. due to expected differences in
witnessed incidences, shockable rhythm and bystander behavior. Therefore, our models could
be extended to incorporate weights that model such aspects of certain regions.

We have shown that the algorithms we have developed yield good results, but improving on
this regard is possible. We mentioned the existence of many extensions for both GRASP and
SA which could be explored for the AED deployment problem. Also, using more intelligent,
case-specific neighborhood transitions would benefit the local search algorithms.

In addition, we note that the hexagonal tessellation can be scaled and nested onto an
existing tessellation as in Figure 6.1. Such nesting can be applied to generate candidate
locations even more efficiently and effectively. Namely, by identifying higher demand regions,
nesting can allow the creation of candidate locations with higher densities at those regions. On
the other hand, regions with lower demand will contribute less to the objective function than
high density candidate locations. Thus, nesting enables dynamically distributing candidate
locations with consequently better potential solution quality while attaining tractable solution
spaces.

Other notable possibilities are methods to further improve the quality of the candidate
location sets. For instance methods that account for the actual physical location such as
pattern recognition (e.g. Zhang, Ai, Stoter, Kraak, & Molenaar, 2013). This way, it might
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(a) KDE with probabilities per cell (b) Candidate location with weight components

Figure 6.2: Figure 6.2a illustrates a typical KDE simplified to four cells. Figure 6.2b illustrates the
weight components, which belong to a candidate location in the upper right corner, per KDE cell.
The weight is determined by the coverage function and considers the probabilities of the KDE. In
this example: weight = 100% of probability if candidate location is in the considered cell, 50% for a
directly neighboring cell and 25% for a cell at a neighboring diagonal.

be possible to detect infeasible locations, such as private buildings and water.

However, we have shown that a high solution quality does not guarantee good actual
performance if data is used that is not representative. For this reason, we used a large set of
simulated cardiac arrests to train our model at the expense of solution quality. Ultimately,
this proved to be more effective. However, there are methods that can alleviate the loss
of quality between the training and validation sets. In this research, we simulated demand
for both training and validation sets from these KDE cells. Consequently, this introduces
randomness and thus the mentioned disparity between sets occurs. However, these KDE cells
can be used as demand areas directly with certain weights extracted from their probability
values. See a basic illustration in Figure 6.2. Figure 6.2a shows a typical KDE with four
cells. Normally, we would simulate demand with these spatial probabilities, and with sufficient
simulations, there would be twice as much demand nodes in the upper left cell as in the lower
left cell. Instead, the values of the probabilities can be used directly. Using a decaying
coverage function as in this research, only now considering distances to a KDE cell instead
of a simulated node, these probabilities can be converted to weights as in Figure 6.2b. The
total weight attributed to the illustrated candidate location is the sum of the neighboring
KDE cells: 0.50. Note that with this method, not only is the loss of quality due to using
separate training and validating sets eliminated, but also the data for optimization is no
longer a two-dimensional (distance) matrix but a one-dimensional array of weights. It would
be interesting to compare this method with the method using simulations that we have used
in this research.
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We also note that in this research, we have incorporated only AEDs as devices that deliver
defibrillation to OHCA victims. However, one obvious example is that in the close proximity
of hospitals, no AEDs should be placed since hospitals already possess a defibrillator and can
deliver it directly. Thus, a more realistic and efficient approach would incorporate a certain
distance around hospitals were no AEDs should be placed. Also other defibrillators might be
integrated. For instance, if first responders (FRs) are always present in a certain region, there
is no need to place additional AEDs there. Note that such extension can easily be achieved
with our proposed model: by placing an “existing” AED at e.g. the locations of hospitals
and possibly giving them a different coverage function than the one we used for the AEDs,
our optimization model will account for these locations correctly and will not place AEDs in
the proximity.

Another similar future extension is integrating a defibrillator drone network to the existing
AED network. Since recently, unmanned arial vehicles (UAVs) (or “drones”) are developed
that bring a defibrillator to a victim (e.g. Boutilier et al., 2017; Claesson et al., 2017; Mark,
Hansen, Starks, & Cummings, 2017; Pulver, Wei, & Mann, 2016). The obvious benefit of
drones is that they are very fast and thus have a greater coverage range. Research shows that
especially rural areas can benefit from such defibrillator drones. This is nicely in line with our
AED optimization that prioritizes regions with high cardiac arrest risk, which are often in the
more urban areas. Also note that we have modelled the AED placement as static locations.
However, drones can be modelled with dynamic locations, meaning that the locations can
account for daytime/nighttime incidence rates, seasonal changes, certain events, etc. Thus,
extending our optimization methods and integrating AEDs, drones, hospitals and possibly
other defibrillators can further improve coverage and decrease the time to defibrillation.

We have argued that it is much worthwhile to consider cardiac arrests occurring in residen-
tial locations, although these locations have typically fewer witnessed incidences. However,
the still yearly increasing trend of wearable devices might eventually mitigate the dire conse-
quences of unwitnessed cardiac arrests. A recent study enrolled 6158 users of an application
on Apple Watch© to train a deep neural network. The algorithms could distinguish atrial
fibrillation from a normal heart rhythm with 97% accuracy (Artificial Intelligence Automat-
ically Detects Atrial Fibrillation Using Apple Watch’s Heart Rate Sensor, 2017). Separately,
Apple launched a joint study with Stanford Medicine to recognize irregular heart rhythms
(Apple Heart Study launches to identify irregular heart rhythms, 2017). If an irregular heart
rhythm is identified, users will receive a notification. The further implications are that in case
of a cardiac arrest (or other cardiovascular problem), EMS could be automatically triggered
by these wearable devices over the Internet in the future. This is similar to the “implantable
arrest alarm device” discussed by Wellens et al. (2016), although wearable devices can ar-
guably have more impact as their user base is far greater. Consequently, in combination
with effective deployment of AEDs and a well-implemented civilian response system (CRS),
even unwitnessed OHCAs might have a positive outcome. In addition, these devices enable
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a quick, automatic and reliable recognition of a cardiac arrest, in contrast to the “manual”
recognition over the phone, and thus further improve the time to defibrillation and survival.

However, all mentioned measures only help improving survival after a cardiac arrest. More
benefit to society can be achieved by not only improving better outcomes of OHCA victims,
but also reducing the overall number of OHCA incidences. Modifiable behavioral factors,
including aspects of hypertension, hypercholesterolemia, diabetes, obesity, and smoking have
been shown to predict cardiac arrests (Kannel, Cupples, & D’Agostino, 1987; Wannamethee,
Shaper, Macfarlane, & Walker, 1995). With pertinent prevention measures, it is estimated
that 80% of cardiovascular deaths can be avoided (Willet, 2002). Although not necessary
an extension of this research, the similar goal of decreasing cardiac arrest deaths is evident.
Therefore, prevention of cardiac arrests should be a fundamental strategy to pursue.
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